xref: /freebsd-12.1/sys/dev/drm2/i915/intel_pm.c (revision 592ffb21)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <[email protected]>
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <dev/drm2/drmP.h>
32 #include <dev/drm2/i915/i915_drv.h>
33 #include <dev/drm2/i915/intel_drv.h>
34 #include <sys/kdb.h>
35 #include <machine/clock.h>
36 
37 #define FORCEWAKE_ACK_TIMEOUT_MS 2
38 
39 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
40  * framebuffer contents in-memory, aiming at reducing the required bandwidth
41  * during in-memory transfers and, therefore, reduce the power packet.
42  *
43  * The benefits of FBC are mostly visible with solid backgrounds and
44  * variation-less patterns.
45  *
46  * FBC-related functionality can be enabled by the means of the
47  * i915.i915_enable_fbc parameter
48  */
49 
intel_crtc_active(struct drm_crtc * crtc)50 static bool intel_crtc_active(struct drm_crtc *crtc)
51 {
52 	/* Be paranoid as we can arrive here with only partial
53 	 * state retrieved from the hardware during setup.
54 	 */
55 	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
56 }
57 
i8xx_disable_fbc(struct drm_device * dev)58 static void i8xx_disable_fbc(struct drm_device *dev)
59 {
60 	struct drm_i915_private *dev_priv = dev->dev_private;
61 	u32 fbc_ctl;
62 
63 	/* Disable compression */
64 	fbc_ctl = I915_READ(FBC_CONTROL);
65 	if ((fbc_ctl & FBC_CTL_EN) == 0)
66 		return;
67 
68 	fbc_ctl &= ~FBC_CTL_EN;
69 	I915_WRITE(FBC_CONTROL, fbc_ctl);
70 
71 	/* Wait for compressing bit to clear */
72 	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
73 		DRM_DEBUG_KMS("FBC idle timed out\n");
74 		return;
75 	}
76 
77 	DRM_DEBUG_KMS("disabled FBC\n");
78 }
79 
i8xx_enable_fbc(struct drm_crtc * crtc,unsigned long interval)80 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
81 {
82 	struct drm_device *dev = crtc->dev;
83 	struct drm_i915_private *dev_priv = dev->dev_private;
84 	struct drm_framebuffer *fb = crtc->fb;
85 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
86 	struct drm_i915_gem_object *obj = intel_fb->obj;
87 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
88 	int cfb_pitch;
89 	int plane, i;
90 	u32 fbc_ctl, fbc_ctl2;
91 
92 	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
93 	if (fb->pitches[0] < cfb_pitch)
94 		cfb_pitch = fb->pitches[0];
95 
96 	/* FBC_CTL wants 64B units */
97 	cfb_pitch = (cfb_pitch / 64) - 1;
98 	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
99 
100 	/* Clear old tags */
101 	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
102 		I915_WRITE(FBC_TAG + (i * 4), 0);
103 
104 	/* Set it up... */
105 	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
106 	fbc_ctl2 |= plane;
107 	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
108 	I915_WRITE(FBC_FENCE_OFF, crtc->y);
109 
110 	/* enable it... */
111 	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
112 	if (IS_I945GM(dev))
113 		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
114 	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
115 	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
116 	fbc_ctl |= obj->fence_reg;
117 	I915_WRITE(FBC_CONTROL, fbc_ctl);
118 
119 	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
120 		      cfb_pitch, crtc->y, intel_crtc->plane);
121 }
122 
i8xx_fbc_enabled(struct drm_device * dev)123 static bool i8xx_fbc_enabled(struct drm_device *dev)
124 {
125 	struct drm_i915_private *dev_priv = dev->dev_private;
126 
127 	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
128 }
129 
g4x_enable_fbc(struct drm_crtc * crtc,unsigned long interval)130 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
131 {
132 	struct drm_device *dev = crtc->dev;
133 	struct drm_i915_private *dev_priv = dev->dev_private;
134 	struct drm_framebuffer *fb = crtc->fb;
135 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
136 	struct drm_i915_gem_object *obj = intel_fb->obj;
137 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
138 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
139 	unsigned long stall_watermark = 200;
140 	u32 dpfc_ctl;
141 
142 	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
143 	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
144 	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
145 
146 	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
147 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
148 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
149 	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
150 
151 	/* enable it... */
152 	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
153 
154 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
155 }
156 
g4x_disable_fbc(struct drm_device * dev)157 static void g4x_disable_fbc(struct drm_device *dev)
158 {
159 	struct drm_i915_private *dev_priv = dev->dev_private;
160 	u32 dpfc_ctl;
161 
162 	/* Disable compression */
163 	dpfc_ctl = I915_READ(DPFC_CONTROL);
164 	if (dpfc_ctl & DPFC_CTL_EN) {
165 		dpfc_ctl &= ~DPFC_CTL_EN;
166 		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
167 
168 		DRM_DEBUG_KMS("disabled FBC\n");
169 	}
170 }
171 
g4x_fbc_enabled(struct drm_device * dev)172 static bool g4x_fbc_enabled(struct drm_device *dev)
173 {
174 	struct drm_i915_private *dev_priv = dev->dev_private;
175 
176 	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
177 }
178 
sandybridge_blit_fbc_update(struct drm_device * dev)179 static void sandybridge_blit_fbc_update(struct drm_device *dev)
180 {
181 	struct drm_i915_private *dev_priv = dev->dev_private;
182 	u32 blt_ecoskpd;
183 
184 	/* Make sure blitter notifies FBC of writes */
185 	gen6_gt_force_wake_get(dev_priv);
186 	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
187 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
188 		GEN6_BLITTER_LOCK_SHIFT;
189 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
190 	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
191 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192 	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
193 			 GEN6_BLITTER_LOCK_SHIFT);
194 	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
195 	POSTING_READ(GEN6_BLITTER_ECOSKPD);
196 	gen6_gt_force_wake_put(dev_priv);
197 }
198 
ironlake_enable_fbc(struct drm_crtc * crtc,unsigned long interval)199 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
200 {
201 	struct drm_device *dev = crtc->dev;
202 	struct drm_i915_private *dev_priv = dev->dev_private;
203 	struct drm_framebuffer *fb = crtc->fb;
204 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
205 	struct drm_i915_gem_object *obj = intel_fb->obj;
206 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
207 	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
208 	unsigned long stall_watermark = 200;
209 	u32 dpfc_ctl;
210 
211 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
212 	dpfc_ctl &= DPFC_RESERVED;
213 	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
214 	/* Set persistent mode for front-buffer rendering, ala X. */
215 	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
216 	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
217 	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
218 
219 	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
220 		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
221 		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
222 	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
223 	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
224 	/* enable it... */
225 	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
226 
227 	if (IS_GEN6(dev)) {
228 		I915_WRITE(SNB_DPFC_CTL_SA,
229 			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
230 		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
231 		sandybridge_blit_fbc_update(dev);
232 	}
233 
234 	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
235 }
236 
ironlake_disable_fbc(struct drm_device * dev)237 static void ironlake_disable_fbc(struct drm_device *dev)
238 {
239 	struct drm_i915_private *dev_priv = dev->dev_private;
240 	u32 dpfc_ctl;
241 
242 	/* Disable compression */
243 	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
244 	if (dpfc_ctl & DPFC_CTL_EN) {
245 		dpfc_ctl &= ~DPFC_CTL_EN;
246 		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
247 
248 		DRM_DEBUG_KMS("disabled FBC\n");
249 	}
250 }
251 
ironlake_fbc_enabled(struct drm_device * dev)252 static bool ironlake_fbc_enabled(struct drm_device *dev)
253 {
254 	struct drm_i915_private *dev_priv = dev->dev_private;
255 
256 	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
257 }
258 
intel_fbc_enabled(struct drm_device * dev)259 bool intel_fbc_enabled(struct drm_device *dev)
260 {
261 	struct drm_i915_private *dev_priv = dev->dev_private;
262 
263 	if (!dev_priv->display.fbc_enabled)
264 		return false;
265 
266 	return dev_priv->display.fbc_enabled(dev);
267 }
268 
intel_fbc_work_fn(void * arg,int pending)269 static void intel_fbc_work_fn(void *arg, int pending)
270 {
271 	struct intel_fbc_work *work = arg;
272 	struct drm_device *dev = work->crtc->dev;
273 	struct drm_i915_private *dev_priv = dev->dev_private;
274 
275 	DRM_LOCK(dev);
276 	if (work == dev_priv->fbc_work) {
277 		/* Double check that we haven't switched fb without cancelling
278 		 * the prior work.
279 		 */
280 		if (work->crtc->fb == work->fb) {
281 			dev_priv->display.enable_fbc(work->crtc,
282 						     work->interval);
283 
284 			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
285 			dev_priv->cfb_fb = work->crtc->fb->base.id;
286 			dev_priv->cfb_y = work->crtc->y;
287 		}
288 
289 		dev_priv->fbc_work = NULL;
290 	}
291 	DRM_UNLOCK(dev);
292 
293 	free(work, DRM_MEM_KMS);
294 }
295 
intel_cancel_fbc_work(struct drm_i915_private * dev_priv)296 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
297 {
298 	if (dev_priv->fbc_work == NULL)
299 		return;
300 
301 	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
302 
303 	/* Synchronisation is provided by struct_mutex and checking of
304 	 * dev_priv->fbc_work, so we can perform the cancellation
305 	 * entirely asynchronously.
306 	 */
307 	if (taskqueue_cancel_timeout(dev_priv->wq, &dev_priv->fbc_work->work,
308 	    NULL) == 0)
309 		/* tasklet was killed before being run, clean up */
310 		free(dev_priv->fbc_work, DRM_MEM_KMS);
311 
312 	/* Mark the work as no longer wanted so that if it does
313 	 * wake-up (because the work was already running and waiting
314 	 * for our mutex), it will discover that is no longer
315 	 * necessary to run.
316 	 */
317 	dev_priv->fbc_work = NULL;
318 }
319 
intel_enable_fbc(struct drm_crtc * crtc,unsigned long interval)320 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
321 {
322 	struct intel_fbc_work *work;
323 	struct drm_device *dev = crtc->dev;
324 	struct drm_i915_private *dev_priv = dev->dev_private;
325 
326 	if (!dev_priv->display.enable_fbc)
327 		return;
328 
329 	intel_cancel_fbc_work(dev_priv);
330 
331 	work = malloc(sizeof *work, DRM_MEM_KMS, M_WAITOK | M_ZERO);
332 	if (work == NULL) {
333 		dev_priv->display.enable_fbc(crtc, interval);
334 		return;
335 	}
336 
337 	work->crtc = crtc;
338 	work->fb = crtc->fb;
339 	work->interval = interval;
340 	TIMEOUT_TASK_INIT(dev_priv->wq, &work->work, 0, intel_fbc_work_fn,
341 	    work);
342 
343 	dev_priv->fbc_work = work;
344 
345 	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
346 
347 	/* Delay the actual enabling to let pageflipping cease and the
348 	 * display to settle before starting the compression. Note that
349 	 * this delay also serves a second purpose: it allows for a
350 	 * vblank to pass after disabling the FBC before we attempt
351 	 * to modify the control registers.
352 	 *
353 	 * A more complicated solution would involve tracking vblanks
354 	 * following the termination of the page-flipping sequence
355 	 * and indeed performing the enable as a co-routine and not
356 	 * waiting synchronously upon the vblank.
357 	 */
358 	taskqueue_enqueue_timeout(dev_priv->wq, &work->work,
359 	    msecs_to_jiffies(50));
360 }
361 
intel_disable_fbc(struct drm_device * dev)362 void intel_disable_fbc(struct drm_device *dev)
363 {
364 	struct drm_i915_private *dev_priv = dev->dev_private;
365 
366 	intel_cancel_fbc_work(dev_priv);
367 
368 	if (!dev_priv->display.disable_fbc)
369 		return;
370 
371 	dev_priv->display.disable_fbc(dev);
372 	dev_priv->cfb_plane = -1;
373 }
374 
375 /**
376  * intel_update_fbc - enable/disable FBC as needed
377  * @dev: the drm_device
378  *
379  * Set up the framebuffer compression hardware at mode set time.  We
380  * enable it if possible:
381  *   - plane A only (on pre-965)
382  *   - no pixel mulitply/line duplication
383  *   - no alpha buffer discard
384  *   - no dual wide
385  *   - framebuffer <= 2048 in width, 1536 in height
386  *
387  * We can't assume that any compression will take place (worst case),
388  * so the compressed buffer has to be the same size as the uncompressed
389  * one.  It also must reside (along with the line length buffer) in
390  * stolen memory.
391  *
392  * We need to enable/disable FBC on a global basis.
393  */
intel_update_fbc(struct drm_device * dev)394 void intel_update_fbc(struct drm_device *dev)
395 {
396 	struct drm_i915_private *dev_priv = dev->dev_private;
397 	struct drm_crtc *crtc = NULL, *tmp_crtc;
398 	struct intel_crtc *intel_crtc;
399 	struct drm_framebuffer *fb;
400 	struct intel_framebuffer *intel_fb;
401 	struct drm_i915_gem_object *obj;
402 	int enable_fbc;
403 
404 	if (!i915_powersave)
405 		return;
406 
407 	if (!I915_HAS_FBC(dev))
408 		return;
409 
410 	/*
411 	 * If FBC is already on, we just have to verify that we can
412 	 * keep it that way...
413 	 * Need to disable if:
414 	 *   - more than one pipe is active
415 	 *   - changing FBC params (stride, fence, mode)
416 	 *   - new fb is too large to fit in compressed buffer
417 	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
418 	 */
419 	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
420 		if (intel_crtc_active(tmp_crtc) &&
421 		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
422 			if (crtc) {
423 				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
424 				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
425 				goto out_disable;
426 			}
427 			crtc = tmp_crtc;
428 		}
429 	}
430 
431 	if (!crtc || crtc->fb == NULL) {
432 		DRM_DEBUG_KMS("no output, disabling\n");
433 		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
434 		goto out_disable;
435 	}
436 
437 	intel_crtc = to_intel_crtc(crtc);
438 	fb = crtc->fb;
439 	intel_fb = to_intel_framebuffer(fb);
440 	obj = intel_fb->obj;
441 
442 	enable_fbc = i915_enable_fbc;
443 	if (enable_fbc < 0) {
444 		DRM_DEBUG_KMS("fbc set to per-chip default\n");
445 		enable_fbc = 1;
446 		if (INTEL_INFO(dev)->gen <= 6)
447 			enable_fbc = 0;
448 	}
449 	if (!enable_fbc) {
450 		DRM_DEBUG_KMS("fbc disabled per module param\n");
451 		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
452 		goto out_disable;
453 	}
454 	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
455 		DRM_DEBUG_KMS("framebuffer too large, disabling "
456 			      "compression\n");
457 		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
458 		goto out_disable;
459 	}
460 	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
461 	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
462 		DRM_DEBUG_KMS("mode incompatible with compression, "
463 			      "disabling\n");
464 		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
465 		goto out_disable;
466 	}
467 	if ((crtc->mode.hdisplay > 2048) ||
468 	    (crtc->mode.vdisplay > 1536)) {
469 		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
470 		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
471 		goto out_disable;
472 	}
473 	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
474 		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
475 		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
476 		goto out_disable;
477 	}
478 
479 	/* The use of a CPU fence is mandatory in order to detect writes
480 	 * by the CPU to the scanout and trigger updates to the FBC.
481 	 */
482 	if (obj->tiling_mode != I915_TILING_X ||
483 	    obj->fence_reg == I915_FENCE_REG_NONE) {
484 		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
485 		dev_priv->no_fbc_reason = FBC_NOT_TILED;
486 		goto out_disable;
487 	}
488 
489 	/* If the kernel debugger is active, always disable compression */
490 	if (kdb_active)
491 		goto out_disable;
492 
493 	/* If the scanout has not changed, don't modify the FBC settings.
494 	 * Note that we make the fundamental assumption that the fb->obj
495 	 * cannot be unpinned (and have its GTT offset and fence revoked)
496 	 * without first being decoupled from the scanout and FBC disabled.
497 	 */
498 	if (dev_priv->cfb_plane == intel_crtc->plane &&
499 	    dev_priv->cfb_fb == fb->base.id &&
500 	    dev_priv->cfb_y == crtc->y)
501 		return;
502 
503 	if (intel_fbc_enabled(dev)) {
504 		/* We update FBC along two paths, after changing fb/crtc
505 		 * configuration (modeswitching) and after page-flipping
506 		 * finishes. For the latter, we know that not only did
507 		 * we disable the FBC at the start of the page-flip
508 		 * sequence, but also more than one vblank has passed.
509 		 *
510 		 * For the former case of modeswitching, it is possible
511 		 * to switch between two FBC valid configurations
512 		 * instantaneously so we do need to disable the FBC
513 		 * before we can modify its control registers. We also
514 		 * have to wait for the next vblank for that to take
515 		 * effect. However, since we delay enabling FBC we can
516 		 * assume that a vblank has passed since disabling and
517 		 * that we can safely alter the registers in the deferred
518 		 * callback.
519 		 *
520 		 * In the scenario that we go from a valid to invalid
521 		 * and then back to valid FBC configuration we have
522 		 * no strict enforcement that a vblank occurred since
523 		 * disabling the FBC. However, along all current pipe
524 		 * disabling paths we do need to wait for a vblank at
525 		 * some point. And we wait before enabling FBC anyway.
526 		 */
527 		DRM_DEBUG_KMS("disabling active FBC for update\n");
528 		intel_disable_fbc(dev);
529 	}
530 
531 	intel_enable_fbc(crtc, 500);
532 	return;
533 
534 out_disable:
535 	/* Multiple disables should be harmless */
536 	if (intel_fbc_enabled(dev)) {
537 		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
538 		intel_disable_fbc(dev);
539 	}
540 }
541 
i915_pineview_get_mem_freq(struct drm_device * dev)542 static void i915_pineview_get_mem_freq(struct drm_device *dev)
543 {
544 	drm_i915_private_t *dev_priv = dev->dev_private;
545 	u32 tmp;
546 
547 	tmp = I915_READ(CLKCFG);
548 
549 	switch (tmp & CLKCFG_FSB_MASK) {
550 	case CLKCFG_FSB_533:
551 		dev_priv->fsb_freq = 533; /* 133*4 */
552 		break;
553 	case CLKCFG_FSB_800:
554 		dev_priv->fsb_freq = 800; /* 200*4 */
555 		break;
556 	case CLKCFG_FSB_667:
557 		dev_priv->fsb_freq =  667; /* 167*4 */
558 		break;
559 	case CLKCFG_FSB_400:
560 		dev_priv->fsb_freq = 400; /* 100*4 */
561 		break;
562 	}
563 
564 	switch (tmp & CLKCFG_MEM_MASK) {
565 	case CLKCFG_MEM_533:
566 		dev_priv->mem_freq = 533;
567 		break;
568 	case CLKCFG_MEM_667:
569 		dev_priv->mem_freq = 667;
570 		break;
571 	case CLKCFG_MEM_800:
572 		dev_priv->mem_freq = 800;
573 		break;
574 	}
575 
576 	/* detect pineview DDR3 setting */
577 	tmp = I915_READ(CSHRDDR3CTL);
578 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
579 }
580 
i915_ironlake_get_mem_freq(struct drm_device * dev)581 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
582 {
583 	drm_i915_private_t *dev_priv = dev->dev_private;
584 	u16 ddrpll, csipll;
585 
586 	ddrpll = I915_READ16(DDRMPLL1);
587 	csipll = I915_READ16(CSIPLL0);
588 
589 	switch (ddrpll & 0xff) {
590 	case 0xc:
591 		dev_priv->mem_freq = 800;
592 		break;
593 	case 0x10:
594 		dev_priv->mem_freq = 1066;
595 		break;
596 	case 0x14:
597 		dev_priv->mem_freq = 1333;
598 		break;
599 	case 0x18:
600 		dev_priv->mem_freq = 1600;
601 		break;
602 	default:
603 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
604 				 ddrpll & 0xff);
605 		dev_priv->mem_freq = 0;
606 		break;
607 	}
608 
609 	dev_priv->ips.r_t = dev_priv->mem_freq;
610 
611 	switch (csipll & 0x3ff) {
612 	case 0x00c:
613 		dev_priv->fsb_freq = 3200;
614 		break;
615 	case 0x00e:
616 		dev_priv->fsb_freq = 3733;
617 		break;
618 	case 0x010:
619 		dev_priv->fsb_freq = 4266;
620 		break;
621 	case 0x012:
622 		dev_priv->fsb_freq = 4800;
623 		break;
624 	case 0x014:
625 		dev_priv->fsb_freq = 5333;
626 		break;
627 	case 0x016:
628 		dev_priv->fsb_freq = 5866;
629 		break;
630 	case 0x018:
631 		dev_priv->fsb_freq = 6400;
632 		break;
633 	default:
634 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
635 				 csipll & 0x3ff);
636 		dev_priv->fsb_freq = 0;
637 		break;
638 	}
639 
640 	if (dev_priv->fsb_freq == 3200) {
641 		dev_priv->ips.c_m = 0;
642 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
643 		dev_priv->ips.c_m = 1;
644 	} else {
645 		dev_priv->ips.c_m = 2;
646 	}
647 }
648 
649 static const struct cxsr_latency cxsr_latency_table[] = {
650 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
651 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
652 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
653 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
654 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
655 
656 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
657 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
658 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
659 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
660 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
661 
662 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
663 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
664 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
665 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
666 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
667 
668 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
669 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
670 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
671 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
672 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
673 
674 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
675 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
676 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
677 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
678 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
679 
680 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
681 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
682 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
683 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
684 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
685 };
686 
intel_get_cxsr_latency(int is_desktop,int is_ddr3,int fsb,int mem)687 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
688 							 int is_ddr3,
689 							 int fsb,
690 							 int mem)
691 {
692 	const struct cxsr_latency *latency;
693 	int i;
694 
695 	if (fsb == 0 || mem == 0)
696 		return NULL;
697 
698 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
699 		latency = &cxsr_latency_table[i];
700 		if (is_desktop == latency->is_desktop &&
701 		    is_ddr3 == latency->is_ddr3 &&
702 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
703 			return latency;
704 	}
705 
706 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
707 
708 	return NULL;
709 }
710 
pineview_disable_cxsr(struct drm_device * dev)711 static void pineview_disable_cxsr(struct drm_device *dev)
712 {
713 	struct drm_i915_private *dev_priv = dev->dev_private;
714 
715 	/* deactivate cxsr */
716 	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
717 }
718 
719 /*
720  * Latency for FIFO fetches is dependent on several factors:
721  *   - memory configuration (speed, channels)
722  *   - chipset
723  *   - current MCH state
724  * It can be fairly high in some situations, so here we assume a fairly
725  * pessimal value.  It's a tradeoff between extra memory fetches (if we
726  * set this value too high, the FIFO will fetch frequently to stay full)
727  * and power consumption (set it too low to save power and we might see
728  * FIFO underruns and display "flicker").
729  *
730  * A value of 5us seems to be a good balance; safe for very low end
731  * platforms but not overly aggressive on lower latency configs.
732  */
733 static const int latency_ns = 5000;
734 
i9xx_get_fifo_size(struct drm_device * dev,int plane)735 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
736 {
737 	struct drm_i915_private *dev_priv = dev->dev_private;
738 	uint32_t dsparb = I915_READ(DSPARB);
739 	int size;
740 
741 	size = dsparb & 0x7f;
742 	if (plane)
743 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
744 
745 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
746 		      plane ? "B" : "A", size);
747 
748 	return size;
749 }
750 
i85x_get_fifo_size(struct drm_device * dev,int plane)751 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
752 {
753 	struct drm_i915_private *dev_priv = dev->dev_private;
754 	uint32_t dsparb = I915_READ(DSPARB);
755 	int size;
756 
757 	size = dsparb & 0x1ff;
758 	if (plane)
759 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
760 	size >>= 1; /* Convert to cachelines */
761 
762 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
763 		      plane ? "B" : "A", size);
764 
765 	return size;
766 }
767 
i845_get_fifo_size(struct drm_device * dev,int plane)768 static int i845_get_fifo_size(struct drm_device *dev, int plane)
769 {
770 	struct drm_i915_private *dev_priv = dev->dev_private;
771 	uint32_t dsparb = I915_READ(DSPARB);
772 	int size;
773 
774 	size = dsparb & 0x7f;
775 	size >>= 2; /* Convert to cachelines */
776 
777 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
778 		      plane ? "B" : "A",
779 		      size);
780 
781 	return size;
782 }
783 
i830_get_fifo_size(struct drm_device * dev,int plane)784 static int i830_get_fifo_size(struct drm_device *dev, int plane)
785 {
786 	struct drm_i915_private *dev_priv = dev->dev_private;
787 	uint32_t dsparb = I915_READ(DSPARB);
788 	int size;
789 
790 	size = dsparb & 0x7f;
791 	size >>= 1; /* Convert to cachelines */
792 
793 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
794 		      plane ? "B" : "A", size);
795 
796 	return size;
797 }
798 
799 /* Pineview has different values for various configs */
800 static const struct intel_watermark_params pineview_display_wm = {
801 	PINEVIEW_DISPLAY_FIFO,
802 	PINEVIEW_MAX_WM,
803 	PINEVIEW_DFT_WM,
804 	PINEVIEW_GUARD_WM,
805 	PINEVIEW_FIFO_LINE_SIZE
806 };
807 static const struct intel_watermark_params pineview_display_hplloff_wm = {
808 	PINEVIEW_DISPLAY_FIFO,
809 	PINEVIEW_MAX_WM,
810 	PINEVIEW_DFT_HPLLOFF_WM,
811 	PINEVIEW_GUARD_WM,
812 	PINEVIEW_FIFO_LINE_SIZE
813 };
814 static const struct intel_watermark_params pineview_cursor_wm = {
815 	PINEVIEW_CURSOR_FIFO,
816 	PINEVIEW_CURSOR_MAX_WM,
817 	PINEVIEW_CURSOR_DFT_WM,
818 	PINEVIEW_CURSOR_GUARD_WM,
819 	PINEVIEW_FIFO_LINE_SIZE,
820 };
821 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
822 	PINEVIEW_CURSOR_FIFO,
823 	PINEVIEW_CURSOR_MAX_WM,
824 	PINEVIEW_CURSOR_DFT_WM,
825 	PINEVIEW_CURSOR_GUARD_WM,
826 	PINEVIEW_FIFO_LINE_SIZE
827 };
828 static const struct intel_watermark_params g4x_wm_info = {
829 	G4X_FIFO_SIZE,
830 	G4X_MAX_WM,
831 	G4X_MAX_WM,
832 	2,
833 	G4X_FIFO_LINE_SIZE,
834 };
835 static const struct intel_watermark_params g4x_cursor_wm_info = {
836 	I965_CURSOR_FIFO,
837 	I965_CURSOR_MAX_WM,
838 	I965_CURSOR_DFT_WM,
839 	2,
840 	G4X_FIFO_LINE_SIZE,
841 };
842 static const struct intel_watermark_params valleyview_wm_info = {
843 	VALLEYVIEW_FIFO_SIZE,
844 	VALLEYVIEW_MAX_WM,
845 	VALLEYVIEW_MAX_WM,
846 	2,
847 	G4X_FIFO_LINE_SIZE,
848 };
849 static const struct intel_watermark_params valleyview_cursor_wm_info = {
850 	I965_CURSOR_FIFO,
851 	VALLEYVIEW_CURSOR_MAX_WM,
852 	I965_CURSOR_DFT_WM,
853 	2,
854 	G4X_FIFO_LINE_SIZE,
855 };
856 static const struct intel_watermark_params i965_cursor_wm_info = {
857 	I965_CURSOR_FIFO,
858 	I965_CURSOR_MAX_WM,
859 	I965_CURSOR_DFT_WM,
860 	2,
861 	I915_FIFO_LINE_SIZE,
862 };
863 static const struct intel_watermark_params i945_wm_info = {
864 	I945_FIFO_SIZE,
865 	I915_MAX_WM,
866 	1,
867 	2,
868 	I915_FIFO_LINE_SIZE
869 };
870 static const struct intel_watermark_params i915_wm_info = {
871 	I915_FIFO_SIZE,
872 	I915_MAX_WM,
873 	1,
874 	2,
875 	I915_FIFO_LINE_SIZE
876 };
877 static const struct intel_watermark_params i855_wm_info = {
878 	I855GM_FIFO_SIZE,
879 	I915_MAX_WM,
880 	1,
881 	2,
882 	I830_FIFO_LINE_SIZE
883 };
884 static const struct intel_watermark_params i830_wm_info = {
885 	I830_FIFO_SIZE,
886 	I915_MAX_WM,
887 	1,
888 	2,
889 	I830_FIFO_LINE_SIZE
890 };
891 
892 static const struct intel_watermark_params ironlake_display_wm_info = {
893 	ILK_DISPLAY_FIFO,
894 	ILK_DISPLAY_MAXWM,
895 	ILK_DISPLAY_DFTWM,
896 	2,
897 	ILK_FIFO_LINE_SIZE
898 };
899 static const struct intel_watermark_params ironlake_cursor_wm_info = {
900 	ILK_CURSOR_FIFO,
901 	ILK_CURSOR_MAXWM,
902 	ILK_CURSOR_DFTWM,
903 	2,
904 	ILK_FIFO_LINE_SIZE
905 };
906 static const struct intel_watermark_params ironlake_display_srwm_info = {
907 	ILK_DISPLAY_SR_FIFO,
908 	ILK_DISPLAY_MAX_SRWM,
909 	ILK_DISPLAY_DFT_SRWM,
910 	2,
911 	ILK_FIFO_LINE_SIZE
912 };
913 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
914 	ILK_CURSOR_SR_FIFO,
915 	ILK_CURSOR_MAX_SRWM,
916 	ILK_CURSOR_DFT_SRWM,
917 	2,
918 	ILK_FIFO_LINE_SIZE
919 };
920 
921 static const struct intel_watermark_params sandybridge_display_wm_info = {
922 	SNB_DISPLAY_FIFO,
923 	SNB_DISPLAY_MAXWM,
924 	SNB_DISPLAY_DFTWM,
925 	2,
926 	SNB_FIFO_LINE_SIZE
927 };
928 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
929 	SNB_CURSOR_FIFO,
930 	SNB_CURSOR_MAXWM,
931 	SNB_CURSOR_DFTWM,
932 	2,
933 	SNB_FIFO_LINE_SIZE
934 };
935 static const struct intel_watermark_params sandybridge_display_srwm_info = {
936 	SNB_DISPLAY_SR_FIFO,
937 	SNB_DISPLAY_MAX_SRWM,
938 	SNB_DISPLAY_DFT_SRWM,
939 	2,
940 	SNB_FIFO_LINE_SIZE
941 };
942 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
943 	SNB_CURSOR_SR_FIFO,
944 	SNB_CURSOR_MAX_SRWM,
945 	SNB_CURSOR_DFT_SRWM,
946 	2,
947 	SNB_FIFO_LINE_SIZE
948 };
949 
950 
951 /**
952  * intel_calculate_wm - calculate watermark level
953  * @clock_in_khz: pixel clock
954  * @wm: chip FIFO params
955  * @pixel_size: display pixel size
956  * @latency_ns: memory latency for the platform
957  *
958  * Calculate the watermark level (the level at which the display plane will
959  * start fetching from memory again).  Each chip has a different display
960  * FIFO size and allocation, so the caller needs to figure that out and pass
961  * in the correct intel_watermark_params structure.
962  *
963  * As the pixel clock runs, the FIFO will be drained at a rate that depends
964  * on the pixel size.  When it reaches the watermark level, it'll start
965  * fetching FIFO line sized based chunks from memory until the FIFO fills
966  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
967  * will occur, and a display engine hang could result.
968  */
intel_calculate_wm(unsigned long clock_in_khz,const struct intel_watermark_params * wm,int fifo_size,int pixel_size,unsigned long latency_ns)969 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
970 					const struct intel_watermark_params *wm,
971 					int fifo_size,
972 					int pixel_size,
973 					unsigned long latency_ns)
974 {
975 	long entries_required, wm_size;
976 
977 	/*
978 	 * Note: we need to make sure we don't overflow for various clock &
979 	 * latency values.
980 	 * clocks go from a few thousand to several hundred thousand.
981 	 * latency is usually a few thousand
982 	 */
983 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
984 		1000;
985 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
986 
987 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
988 
989 	wm_size = fifo_size - (entries_required + wm->guard_size);
990 
991 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
992 
993 	/* Don't promote wm_size to unsigned... */
994 	if (wm_size > (long)wm->max_wm)
995 		wm_size = wm->max_wm;
996 	if (wm_size <= 0)
997 		wm_size = wm->default_wm;
998 	return wm_size;
999 }
1000 
single_enabled_crtc(struct drm_device * dev)1001 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1002 {
1003 	struct drm_crtc *crtc, *enabled = NULL;
1004 
1005 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1006 		if (intel_crtc_active(crtc)) {
1007 			if (enabled)
1008 				return NULL;
1009 			enabled = crtc;
1010 		}
1011 	}
1012 
1013 	return enabled;
1014 }
1015 
pineview_update_wm(struct drm_device * dev)1016 static void pineview_update_wm(struct drm_device *dev)
1017 {
1018 	struct drm_i915_private *dev_priv = dev->dev_private;
1019 	struct drm_crtc *crtc;
1020 	const struct cxsr_latency *latency;
1021 	u32 reg;
1022 	unsigned long wm;
1023 
1024 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1025 					 dev_priv->fsb_freq, dev_priv->mem_freq);
1026 	if (!latency) {
1027 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1028 		pineview_disable_cxsr(dev);
1029 		return;
1030 	}
1031 
1032 	crtc = single_enabled_crtc(dev);
1033 	if (crtc) {
1034 		int clock = crtc->mode.clock;
1035 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1036 
1037 		/* Display SR */
1038 		wm = intel_calculate_wm(clock, &pineview_display_wm,
1039 					pineview_display_wm.fifo_size,
1040 					pixel_size, latency->display_sr);
1041 		reg = I915_READ(DSPFW1);
1042 		reg &= ~DSPFW_SR_MASK;
1043 		reg |= wm << DSPFW_SR_SHIFT;
1044 		I915_WRITE(DSPFW1, reg);
1045 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1046 
1047 		/* cursor SR */
1048 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1049 					pineview_display_wm.fifo_size,
1050 					pixel_size, latency->cursor_sr);
1051 		reg = I915_READ(DSPFW3);
1052 		reg &= ~DSPFW_CURSOR_SR_MASK;
1053 		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1054 		I915_WRITE(DSPFW3, reg);
1055 
1056 		/* Display HPLL off SR */
1057 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1058 					pineview_display_hplloff_wm.fifo_size,
1059 					pixel_size, latency->display_hpll_disable);
1060 		reg = I915_READ(DSPFW3);
1061 		reg &= ~DSPFW_HPLL_SR_MASK;
1062 		reg |= wm & DSPFW_HPLL_SR_MASK;
1063 		I915_WRITE(DSPFW3, reg);
1064 
1065 		/* cursor HPLL off SR */
1066 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1067 					pineview_display_hplloff_wm.fifo_size,
1068 					pixel_size, latency->cursor_hpll_disable);
1069 		reg = I915_READ(DSPFW3);
1070 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1071 		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1072 		I915_WRITE(DSPFW3, reg);
1073 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1074 
1075 		/* activate cxsr */
1076 		I915_WRITE(DSPFW3,
1077 			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1078 		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1079 	} else {
1080 		pineview_disable_cxsr(dev);
1081 		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1082 	}
1083 }
1084 
g4x_compute_wm0(struct drm_device * dev,int plane,const struct intel_watermark_params * display,int display_latency_ns,const struct intel_watermark_params * cursor,int cursor_latency_ns,int * plane_wm,int * cursor_wm)1085 static bool g4x_compute_wm0(struct drm_device *dev,
1086 			    int plane,
1087 			    const struct intel_watermark_params *display,
1088 			    int display_latency_ns,
1089 			    const struct intel_watermark_params *cursor,
1090 			    int cursor_latency_ns,
1091 			    int *plane_wm,
1092 			    int *cursor_wm)
1093 {
1094 	struct drm_crtc *crtc;
1095 	int htotal, hdisplay, clock, pixel_size;
1096 	int line_time_us, line_count;
1097 	int entries, tlb_miss;
1098 
1099 	crtc = intel_get_crtc_for_plane(dev, plane);
1100 	if (!intel_crtc_active(crtc)) {
1101 		*cursor_wm = cursor->guard_size;
1102 		*plane_wm = display->guard_size;
1103 		return false;
1104 	}
1105 
1106 	htotal = crtc->mode.htotal;
1107 	hdisplay = crtc->mode.hdisplay;
1108 	clock = crtc->mode.clock;
1109 	pixel_size = crtc->fb->bits_per_pixel / 8;
1110 
1111 	/* Use the small buffer method to calculate plane watermark */
1112 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1113 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1114 	if (tlb_miss > 0)
1115 		entries += tlb_miss;
1116 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1117 	*plane_wm = entries + display->guard_size;
1118 	if (*plane_wm > (int)display->max_wm)
1119 		*plane_wm = display->max_wm;
1120 
1121 	/* Use the large buffer method to calculate cursor watermark */
1122 	line_time_us = ((htotal * 1000) / clock);
1123 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1124 	entries = line_count * 64 * pixel_size;
1125 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1126 	if (tlb_miss > 0)
1127 		entries += tlb_miss;
1128 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1129 	*cursor_wm = entries + cursor->guard_size;
1130 	if (*cursor_wm > (int)cursor->max_wm)
1131 		*cursor_wm = (int)cursor->max_wm;
1132 
1133 	return true;
1134 }
1135 
1136 /*
1137  * Check the wm result.
1138  *
1139  * If any calculated watermark values is larger than the maximum value that
1140  * can be programmed into the associated watermark register, that watermark
1141  * must be disabled.
1142  */
g4x_check_srwm(struct drm_device * dev,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)1143 static bool g4x_check_srwm(struct drm_device *dev,
1144 			   int display_wm, int cursor_wm,
1145 			   const struct intel_watermark_params *display,
1146 			   const struct intel_watermark_params *cursor)
1147 {
1148 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1149 		      display_wm, cursor_wm);
1150 
1151 	if (display_wm > display->max_wm) {
1152 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1153 			      display_wm, display->max_wm);
1154 		return false;
1155 	}
1156 
1157 	if (cursor_wm > cursor->max_wm) {
1158 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1159 			      cursor_wm, cursor->max_wm);
1160 		return false;
1161 	}
1162 
1163 	if (!(display_wm || cursor_wm)) {
1164 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1165 		return false;
1166 	}
1167 
1168 	return true;
1169 }
1170 
g4x_compute_srwm(struct drm_device * dev,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * display_wm,int * cursor_wm)1171 static bool g4x_compute_srwm(struct drm_device *dev,
1172 			     int plane,
1173 			     int latency_ns,
1174 			     const struct intel_watermark_params *display,
1175 			     const struct intel_watermark_params *cursor,
1176 			     int *display_wm, int *cursor_wm)
1177 {
1178 	struct drm_crtc *crtc;
1179 	int hdisplay, htotal, pixel_size, clock;
1180 	unsigned long line_time_us;
1181 	int line_count, line_size;
1182 	int small, large;
1183 	int entries;
1184 
1185 	if (!latency_ns) {
1186 		*display_wm = *cursor_wm = 0;
1187 		return false;
1188 	}
1189 
1190 	crtc = intel_get_crtc_for_plane(dev, plane);
1191 	hdisplay = crtc->mode.hdisplay;
1192 	htotal = crtc->mode.htotal;
1193 	clock = crtc->mode.clock;
1194 	pixel_size = crtc->fb->bits_per_pixel / 8;
1195 
1196 	line_time_us = (htotal * 1000) / clock;
1197 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1198 	line_size = hdisplay * pixel_size;
1199 
1200 	/* Use the minimum of the small and large buffer method for primary */
1201 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1202 	large = line_count * line_size;
1203 
1204 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1205 	*display_wm = entries + display->guard_size;
1206 
1207 	/* calculate the self-refresh watermark for display cursor */
1208 	entries = line_count * pixel_size * 64;
1209 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1210 	*cursor_wm = entries + cursor->guard_size;
1211 
1212 	return g4x_check_srwm(dev,
1213 			      *display_wm, *cursor_wm,
1214 			      display, cursor);
1215 }
1216 
vlv_compute_drain_latency(struct drm_device * dev,int plane,int * plane_prec_mult,int * plane_dl,int * cursor_prec_mult,int * cursor_dl)1217 static bool vlv_compute_drain_latency(struct drm_device *dev,
1218 				     int plane,
1219 				     int *plane_prec_mult,
1220 				     int *plane_dl,
1221 				     int *cursor_prec_mult,
1222 				     int *cursor_dl)
1223 {
1224 	struct drm_crtc *crtc;
1225 	int clock, pixel_size;
1226 	int entries;
1227 
1228 	crtc = intel_get_crtc_for_plane(dev, plane);
1229 	if (!intel_crtc_active(crtc))
1230 		return false;
1231 
1232 	clock = crtc->mode.clock;	/* VESA DOT Clock */
1233 	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1234 
1235 	entries = (clock / 1000) * pixel_size;
1236 	*plane_prec_mult = (entries > 256) ?
1237 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1238 	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1239 						     pixel_size);
1240 
1241 	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1242 	*cursor_prec_mult = (entries > 256) ?
1243 		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1244 	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1245 
1246 	return true;
1247 }
1248 
1249 /*
1250  * Update drain latency registers of memory arbiter
1251  *
1252  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1253  * to be programmed. Each plane has a drain latency multiplier and a drain
1254  * latency value.
1255  */
1256 
vlv_update_drain_latency(struct drm_device * dev)1257 static void vlv_update_drain_latency(struct drm_device *dev)
1258 {
1259 	struct drm_i915_private *dev_priv = dev->dev_private;
1260 	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1261 	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1262 	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1263 							either 16 or 32 */
1264 
1265 	/* For plane A, Cursor A */
1266 	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1267 				      &cursor_prec_mult, &cursora_dl)) {
1268 		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269 			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1270 		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271 			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1272 
1273 		I915_WRITE(VLV_DDL1, cursora_prec |
1274 				(cursora_dl << DDL_CURSORA_SHIFT) |
1275 				planea_prec | planea_dl);
1276 	}
1277 
1278 	/* For plane B, Cursor B */
1279 	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1280 				      &cursor_prec_mult, &cursorb_dl)) {
1281 		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282 			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1283 		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1284 			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1285 
1286 		I915_WRITE(VLV_DDL2, cursorb_prec |
1287 				(cursorb_dl << DDL_CURSORB_SHIFT) |
1288 				planeb_prec | planeb_dl);
1289 	}
1290 }
1291 
1292 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
1293 
valleyview_update_wm(struct drm_device * dev)1294 static void valleyview_update_wm(struct drm_device *dev)
1295 {
1296 	static const int sr_latency_ns = 12000;
1297 	struct drm_i915_private *dev_priv = dev->dev_private;
1298 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1299 	int plane_sr, cursor_sr;
1300 	int ignore_plane_sr, ignore_cursor_sr;
1301 	unsigned int enabled = 0;
1302 
1303 	vlv_update_drain_latency(dev);
1304 
1305 	if (g4x_compute_wm0(dev, 0,
1306 			    &valleyview_wm_info, latency_ns,
1307 			    &valleyview_cursor_wm_info, latency_ns,
1308 			    &planea_wm, &cursora_wm))
1309 		enabled |= 1;
1310 
1311 	if (g4x_compute_wm0(dev, 1,
1312 			    &valleyview_wm_info, latency_ns,
1313 			    &valleyview_cursor_wm_info, latency_ns,
1314 			    &planeb_wm, &cursorb_wm))
1315 		enabled |= 2;
1316 
1317 	if (single_plane_enabled(enabled) &&
1318 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1319 			     sr_latency_ns,
1320 			     &valleyview_wm_info,
1321 			     &valleyview_cursor_wm_info,
1322 			     &plane_sr, &ignore_cursor_sr) &&
1323 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1324 			     2*sr_latency_ns,
1325 			     &valleyview_wm_info,
1326 			     &valleyview_cursor_wm_info,
1327 			     &ignore_plane_sr, &cursor_sr)) {
1328 		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1329 	} else {
1330 		I915_WRITE(FW_BLC_SELF_VLV,
1331 			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1332 		plane_sr = cursor_sr = 0;
1333 	}
1334 
1335 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1336 		      planea_wm, cursora_wm,
1337 		      planeb_wm, cursorb_wm,
1338 		      plane_sr, cursor_sr);
1339 
1340 	I915_WRITE(DSPFW1,
1341 		   (plane_sr << DSPFW_SR_SHIFT) |
1342 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1343 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1344 		   planea_wm);
1345 	I915_WRITE(DSPFW2,
1346 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1347 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1348 	I915_WRITE(DSPFW3,
1349 		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1350 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1351 }
1352 
g4x_update_wm(struct drm_device * dev)1353 static void g4x_update_wm(struct drm_device *dev)
1354 {
1355 	static const int sr_latency_ns = 12000;
1356 	struct drm_i915_private *dev_priv = dev->dev_private;
1357 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1358 	int plane_sr, cursor_sr;
1359 	unsigned int enabled = 0;
1360 
1361 	if (g4x_compute_wm0(dev, 0,
1362 			    &g4x_wm_info, latency_ns,
1363 			    &g4x_cursor_wm_info, latency_ns,
1364 			    &planea_wm, &cursora_wm))
1365 		enabled |= 1;
1366 
1367 	if (g4x_compute_wm0(dev, 1,
1368 			    &g4x_wm_info, latency_ns,
1369 			    &g4x_cursor_wm_info, latency_ns,
1370 			    &planeb_wm, &cursorb_wm))
1371 		enabled |= 2;
1372 
1373 	if (single_plane_enabled(enabled) &&
1374 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1375 			     sr_latency_ns,
1376 			     &g4x_wm_info,
1377 			     &g4x_cursor_wm_info,
1378 			     &plane_sr, &cursor_sr)) {
1379 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1380 	} else {
1381 		I915_WRITE(FW_BLC_SELF,
1382 			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1383 		plane_sr = cursor_sr = 0;
1384 	}
1385 
1386 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1387 		      planea_wm, cursora_wm,
1388 		      planeb_wm, cursorb_wm,
1389 		      plane_sr, cursor_sr);
1390 
1391 	I915_WRITE(DSPFW1,
1392 		   (plane_sr << DSPFW_SR_SHIFT) |
1393 		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1394 		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1395 		   planea_wm);
1396 	I915_WRITE(DSPFW2,
1397 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1398 		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1399 	/* HPLL off in SR has some issues on G4x... disable it */
1400 	I915_WRITE(DSPFW3,
1401 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1402 		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1403 }
1404 
i965_update_wm(struct drm_device * dev)1405 static void i965_update_wm(struct drm_device *dev)
1406 {
1407 	struct drm_i915_private *dev_priv = dev->dev_private;
1408 	struct drm_crtc *crtc;
1409 	int srwm = 1;
1410 	int cursor_sr = 16;
1411 
1412 	/* Calc sr entries for one plane configs */
1413 	crtc = single_enabled_crtc(dev);
1414 	if (crtc) {
1415 		/* self-refresh has much higher latency */
1416 		static const int sr_latency_ns = 12000;
1417 		int clock = crtc->mode.clock;
1418 		int htotal = crtc->mode.htotal;
1419 		int hdisplay = crtc->mode.hdisplay;
1420 		int pixel_size = crtc->fb->bits_per_pixel / 8;
1421 		unsigned long line_time_us;
1422 		int entries;
1423 
1424 		line_time_us = ((htotal * 1000) / clock);
1425 
1426 		/* Use ns/us then divide to preserve precision */
1427 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1428 			pixel_size * hdisplay;
1429 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1430 		srwm = I965_FIFO_SIZE - entries;
1431 		if (srwm < 0)
1432 			srwm = 1;
1433 		srwm &= 0x1ff;
1434 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1435 			      entries, srwm);
1436 
1437 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1438 			pixel_size * 64;
1439 		entries = DIV_ROUND_UP(entries,
1440 					  i965_cursor_wm_info.cacheline_size);
1441 		cursor_sr = i965_cursor_wm_info.fifo_size -
1442 			(entries + i965_cursor_wm_info.guard_size);
1443 
1444 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1445 			cursor_sr = i965_cursor_wm_info.max_wm;
1446 
1447 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1448 			      "cursor %d\n", srwm, cursor_sr);
1449 
1450 		if (IS_CRESTLINE(dev))
1451 			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1452 	} else {
1453 		/* Turn off self refresh if both pipes are enabled */
1454 		if (IS_CRESTLINE(dev))
1455 			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1456 				   & ~FW_BLC_SELF_EN);
1457 	}
1458 
1459 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1460 		      srwm);
1461 
1462 	/* 965 has limitations... */
1463 	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1464 		   (8 << 16) | (8 << 8) | (8 << 0));
1465 	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1466 	/* update cursor SR watermark */
1467 	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1468 }
1469 
i9xx_update_wm(struct drm_device * dev)1470 static void i9xx_update_wm(struct drm_device *dev)
1471 {
1472 	struct drm_i915_private *dev_priv = dev->dev_private;
1473 	const struct intel_watermark_params *wm_info;
1474 	uint32_t fwater_lo;
1475 	uint32_t fwater_hi;
1476 	int cwm, srwm = 1;
1477 	int fifo_size;
1478 	int planea_wm, planeb_wm;
1479 	struct drm_crtc *crtc, *enabled = NULL;
1480 
1481 	if (IS_I945GM(dev))
1482 		wm_info = &i945_wm_info;
1483 	else if (!IS_GEN2(dev))
1484 		wm_info = &i915_wm_info;
1485 	else
1486 		wm_info = &i855_wm_info;
1487 
1488 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1489 	crtc = intel_get_crtc_for_plane(dev, 0);
1490 	if (intel_crtc_active(crtc)) {
1491 		int cpp = crtc->fb->bits_per_pixel / 8;
1492 		if (IS_GEN2(dev))
1493 			cpp = 4;
1494 
1495 		planea_wm = intel_calculate_wm(crtc->mode.clock,
1496 					       wm_info, fifo_size, cpp,
1497 					       latency_ns);
1498 		enabled = crtc;
1499 	} else
1500 		planea_wm = fifo_size - wm_info->guard_size;
1501 
1502 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1503 	crtc = intel_get_crtc_for_plane(dev, 1);
1504 	if (intel_crtc_active(crtc)) {
1505 		int cpp = crtc->fb->bits_per_pixel / 8;
1506 		if (IS_GEN2(dev))
1507 			cpp = 4;
1508 
1509 		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1510 					       wm_info, fifo_size, cpp,
1511 					       latency_ns);
1512 		if (enabled == NULL)
1513 			enabled = crtc;
1514 		else
1515 			enabled = NULL;
1516 	} else
1517 		planeb_wm = fifo_size - wm_info->guard_size;
1518 
1519 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1520 
1521 	/*
1522 	 * Overlay gets an aggressive default since video jitter is bad.
1523 	 */
1524 	cwm = 2;
1525 
1526 	/* Play safe and disable self-refresh before adjusting watermarks. */
1527 	if (IS_I945G(dev) || IS_I945GM(dev))
1528 		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1529 	else if (IS_I915GM(dev))
1530 		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1531 
1532 	/* Calc sr entries for one plane configs */
1533 	if (HAS_FW_BLC(dev) && enabled) {
1534 		/* self-refresh has much higher latency */
1535 		static const int sr_latency_ns = 6000;
1536 		int clock = enabled->mode.clock;
1537 		int htotal = enabled->mode.htotal;
1538 		int hdisplay = enabled->mode.hdisplay;
1539 		int pixel_size = enabled->fb->bits_per_pixel / 8;
1540 		unsigned long line_time_us;
1541 		int entries;
1542 
1543 		line_time_us = (htotal * 1000) / clock;
1544 
1545 		/* Use ns/us then divide to preserve precision */
1546 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1547 			pixel_size * hdisplay;
1548 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1549 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1550 		srwm = wm_info->fifo_size - entries;
1551 		if (srwm < 0)
1552 			srwm = 1;
1553 
1554 		if (IS_I945G(dev) || IS_I945GM(dev))
1555 			I915_WRITE(FW_BLC_SELF,
1556 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1557 		else if (IS_I915GM(dev))
1558 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1559 	}
1560 
1561 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1562 		      planea_wm, planeb_wm, cwm, srwm);
1563 
1564 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1565 	fwater_hi = (cwm & 0x1f);
1566 
1567 	/* Set request length to 8 cachelines per fetch */
1568 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1569 	fwater_hi = fwater_hi | (1 << 8);
1570 
1571 	I915_WRITE(FW_BLC, fwater_lo);
1572 	I915_WRITE(FW_BLC2, fwater_hi);
1573 
1574 	if (HAS_FW_BLC(dev)) {
1575 		if (enabled) {
1576 			if (IS_I945G(dev) || IS_I945GM(dev))
1577 				I915_WRITE(FW_BLC_SELF,
1578 					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1579 			else if (IS_I915GM(dev))
1580 				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1581 			DRM_DEBUG_KMS("memory self refresh enabled\n");
1582 		} else
1583 			DRM_DEBUG_KMS("memory self refresh disabled\n");
1584 	}
1585 }
1586 
i830_update_wm(struct drm_device * dev)1587 static void i830_update_wm(struct drm_device *dev)
1588 {
1589 	struct drm_i915_private *dev_priv = dev->dev_private;
1590 	struct drm_crtc *crtc;
1591 	uint32_t fwater_lo;
1592 	int planea_wm;
1593 
1594 	crtc = single_enabled_crtc(dev);
1595 	if (crtc == NULL)
1596 		return;
1597 
1598 	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1599 				       dev_priv->display.get_fifo_size(dev, 0),
1600 				       4, latency_ns);
1601 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1602 	fwater_lo |= (3<<8) | planea_wm;
1603 
1604 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1605 
1606 	I915_WRITE(FW_BLC, fwater_lo);
1607 }
1608 
1609 #define ILK_LP0_PLANE_LATENCY		700
1610 #define ILK_LP0_CURSOR_LATENCY		1300
1611 
1612 /*
1613  * Check the wm result.
1614  *
1615  * If any calculated watermark values is larger than the maximum value that
1616  * can be programmed into the associated watermark register, that watermark
1617  * must be disabled.
1618  */
ironlake_check_srwm(struct drm_device * dev,int level,int fbc_wm,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)1619 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1620 				int fbc_wm, int display_wm, int cursor_wm,
1621 				const struct intel_watermark_params *display,
1622 				const struct intel_watermark_params *cursor)
1623 {
1624 	struct drm_i915_private *dev_priv = dev->dev_private;
1625 
1626 	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1627 		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1628 
1629 	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1630 		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1631 			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1632 
1633 		/* fbc has it's own way to disable FBC WM */
1634 		I915_WRITE(DISP_ARB_CTL,
1635 			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1636 		return false;
1637 	}
1638 
1639 	if (display_wm > display->max_wm) {
1640 		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1641 			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1642 		return false;
1643 	}
1644 
1645 	if (cursor_wm > cursor->max_wm) {
1646 		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1647 			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1648 		return false;
1649 	}
1650 
1651 	if (!(fbc_wm || display_wm || cursor_wm)) {
1652 		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1653 		return false;
1654 	}
1655 
1656 	return true;
1657 }
1658 
1659 /*
1660  * Compute watermark values of WM[1-3],
1661  */
ironlake_compute_srwm(struct drm_device * dev,int level,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * fbc_wm,int * display_wm,int * cursor_wm)1662 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1663 				  int latency_ns,
1664 				  const struct intel_watermark_params *display,
1665 				  const struct intel_watermark_params *cursor,
1666 				  int *fbc_wm, int *display_wm, int *cursor_wm)
1667 {
1668 	struct drm_crtc *crtc;
1669 	unsigned long line_time_us;
1670 	int hdisplay, htotal, pixel_size, clock;
1671 	int line_count, line_size;
1672 	int small, large;
1673 	int entries;
1674 
1675 	if (!latency_ns) {
1676 		*fbc_wm = *display_wm = *cursor_wm = 0;
1677 		return false;
1678 	}
1679 
1680 	crtc = intel_get_crtc_for_plane(dev, plane);
1681 	hdisplay = crtc->mode.hdisplay;
1682 	htotal = crtc->mode.htotal;
1683 	clock = crtc->mode.clock;
1684 	pixel_size = crtc->fb->bits_per_pixel / 8;
1685 
1686 	line_time_us = (htotal * 1000) / clock;
1687 	line_count = (latency_ns / line_time_us + 1000) / 1000;
1688 	line_size = hdisplay * pixel_size;
1689 
1690 	/* Use the minimum of the small and large buffer method for primary */
1691 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1692 	large = line_count * line_size;
1693 
1694 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1695 	*display_wm = entries + display->guard_size;
1696 
1697 	/*
1698 	 * Spec says:
1699 	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1700 	 */
1701 	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1702 
1703 	/* calculate the self-refresh watermark for display cursor */
1704 	entries = line_count * pixel_size * 64;
1705 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1706 	*cursor_wm = entries + cursor->guard_size;
1707 
1708 	return ironlake_check_srwm(dev, level,
1709 				   *fbc_wm, *display_wm, *cursor_wm,
1710 				   display, cursor);
1711 }
1712 
ironlake_update_wm(struct drm_device * dev)1713 static void ironlake_update_wm(struct drm_device *dev)
1714 {
1715 	struct drm_i915_private *dev_priv = dev->dev_private;
1716 	int fbc_wm, plane_wm, cursor_wm;
1717 	unsigned int enabled;
1718 
1719 	enabled = 0;
1720 	if (g4x_compute_wm0(dev, 0,
1721 			    &ironlake_display_wm_info,
1722 			    ILK_LP0_PLANE_LATENCY,
1723 			    &ironlake_cursor_wm_info,
1724 			    ILK_LP0_CURSOR_LATENCY,
1725 			    &plane_wm, &cursor_wm)) {
1726 		I915_WRITE(WM0_PIPEA_ILK,
1727 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1728 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1729 			      " plane %d, " "cursor: %d\n",
1730 			      plane_wm, cursor_wm);
1731 		enabled |= 1;
1732 	}
1733 
1734 	if (g4x_compute_wm0(dev, 1,
1735 			    &ironlake_display_wm_info,
1736 			    ILK_LP0_PLANE_LATENCY,
1737 			    &ironlake_cursor_wm_info,
1738 			    ILK_LP0_CURSOR_LATENCY,
1739 			    &plane_wm, &cursor_wm)) {
1740 		I915_WRITE(WM0_PIPEB_ILK,
1741 			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1742 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1743 			      " plane %d, cursor: %d\n",
1744 			      plane_wm, cursor_wm);
1745 		enabled |= 2;
1746 	}
1747 
1748 	/*
1749 	 * Calculate and update the self-refresh watermark only when one
1750 	 * display plane is used.
1751 	 */
1752 	I915_WRITE(WM3_LP_ILK, 0);
1753 	I915_WRITE(WM2_LP_ILK, 0);
1754 	I915_WRITE(WM1_LP_ILK, 0);
1755 
1756 	if (!single_plane_enabled(enabled))
1757 		return;
1758 	enabled = ffs(enabled) - 1;
1759 
1760 	/* WM1 */
1761 	if (!ironlake_compute_srwm(dev, 1, enabled,
1762 				   ILK_READ_WM1_LATENCY() * 500,
1763 				   &ironlake_display_srwm_info,
1764 				   &ironlake_cursor_srwm_info,
1765 				   &fbc_wm, &plane_wm, &cursor_wm))
1766 		return;
1767 
1768 	I915_WRITE(WM1_LP_ILK,
1769 		   WM1_LP_SR_EN |
1770 		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1771 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1772 		   (plane_wm << WM1_LP_SR_SHIFT) |
1773 		   cursor_wm);
1774 
1775 	/* WM2 */
1776 	if (!ironlake_compute_srwm(dev, 2, enabled,
1777 				   ILK_READ_WM2_LATENCY() * 500,
1778 				   &ironlake_display_srwm_info,
1779 				   &ironlake_cursor_srwm_info,
1780 				   &fbc_wm, &plane_wm, &cursor_wm))
1781 		return;
1782 
1783 	I915_WRITE(WM2_LP_ILK,
1784 		   WM2_LP_EN |
1785 		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1786 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1787 		   (plane_wm << WM1_LP_SR_SHIFT) |
1788 		   cursor_wm);
1789 
1790 	/*
1791 	 * WM3 is unsupported on ILK, probably because we don't have latency
1792 	 * data for that power state
1793 	 */
1794 }
1795 
sandybridge_update_wm(struct drm_device * dev)1796 static void sandybridge_update_wm(struct drm_device *dev)
1797 {
1798 	struct drm_i915_private *dev_priv = dev->dev_private;
1799 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1800 	u32 val;
1801 	int fbc_wm, plane_wm, cursor_wm;
1802 	unsigned int enabled;
1803 
1804 	enabled = 0;
1805 	if (g4x_compute_wm0(dev, 0,
1806 			    &sandybridge_display_wm_info, latency,
1807 			    &sandybridge_cursor_wm_info, latency,
1808 			    &plane_wm, &cursor_wm)) {
1809 		val = I915_READ(WM0_PIPEA_ILK);
1810 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1811 		I915_WRITE(WM0_PIPEA_ILK, val |
1812 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1813 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1814 			      " plane %d, " "cursor: %d\n",
1815 			      plane_wm, cursor_wm);
1816 		enabled |= 1;
1817 	}
1818 
1819 	if (g4x_compute_wm0(dev, 1,
1820 			    &sandybridge_display_wm_info, latency,
1821 			    &sandybridge_cursor_wm_info, latency,
1822 			    &plane_wm, &cursor_wm)) {
1823 		val = I915_READ(WM0_PIPEB_ILK);
1824 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1825 		I915_WRITE(WM0_PIPEB_ILK, val |
1826 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1827 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1828 			      " plane %d, cursor: %d\n",
1829 			      plane_wm, cursor_wm);
1830 		enabled |= 2;
1831 	}
1832 
1833 	/*
1834 	 * Calculate and update the self-refresh watermark only when one
1835 	 * display plane is used.
1836 	 *
1837 	 * SNB support 3 levels of watermark.
1838 	 *
1839 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1840 	 * and disabled in the descending order
1841 	 *
1842 	 */
1843 	I915_WRITE(WM3_LP_ILK, 0);
1844 	I915_WRITE(WM2_LP_ILK, 0);
1845 	I915_WRITE(WM1_LP_ILK, 0);
1846 
1847 	if (!single_plane_enabled(enabled) ||
1848 	    dev_priv->sprite_scaling_enabled)
1849 		return;
1850 	enabled = ffs(enabled) - 1;
1851 
1852 	/* WM1 */
1853 	if (!ironlake_compute_srwm(dev, 1, enabled,
1854 				   SNB_READ_WM1_LATENCY() * 500,
1855 				   &sandybridge_display_srwm_info,
1856 				   &sandybridge_cursor_srwm_info,
1857 				   &fbc_wm, &plane_wm, &cursor_wm))
1858 		return;
1859 
1860 	I915_WRITE(WM1_LP_ILK,
1861 		   WM1_LP_SR_EN |
1862 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1863 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1864 		   (plane_wm << WM1_LP_SR_SHIFT) |
1865 		   cursor_wm);
1866 
1867 	/* WM2 */
1868 	if (!ironlake_compute_srwm(dev, 2, enabled,
1869 				   SNB_READ_WM2_LATENCY() * 500,
1870 				   &sandybridge_display_srwm_info,
1871 				   &sandybridge_cursor_srwm_info,
1872 				   &fbc_wm, &plane_wm, &cursor_wm))
1873 		return;
1874 
1875 	I915_WRITE(WM2_LP_ILK,
1876 		   WM2_LP_EN |
1877 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1878 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1879 		   (plane_wm << WM1_LP_SR_SHIFT) |
1880 		   cursor_wm);
1881 
1882 	/* WM3 */
1883 	if (!ironlake_compute_srwm(dev, 3, enabled,
1884 				   SNB_READ_WM3_LATENCY() * 500,
1885 				   &sandybridge_display_srwm_info,
1886 				   &sandybridge_cursor_srwm_info,
1887 				   &fbc_wm, &plane_wm, &cursor_wm))
1888 		return;
1889 
1890 	I915_WRITE(WM3_LP_ILK,
1891 		   WM3_LP_EN |
1892 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1893 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1894 		   (plane_wm << WM1_LP_SR_SHIFT) |
1895 		   cursor_wm);
1896 }
1897 
ivybridge_update_wm(struct drm_device * dev)1898 static void ivybridge_update_wm(struct drm_device *dev)
1899 {
1900 	struct drm_i915_private *dev_priv = dev->dev_private;
1901 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1902 	u32 val;
1903 	int fbc_wm, plane_wm, cursor_wm;
1904 	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1905 	unsigned int enabled;
1906 
1907 	enabled = 0;
1908 	if (g4x_compute_wm0(dev, 0,
1909 			    &sandybridge_display_wm_info, latency,
1910 			    &sandybridge_cursor_wm_info, latency,
1911 			    &plane_wm, &cursor_wm)) {
1912 		val = I915_READ(WM0_PIPEA_ILK);
1913 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1914 		I915_WRITE(WM0_PIPEA_ILK, val |
1915 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1916 		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1917 			      " plane %d, " "cursor: %d\n",
1918 			      plane_wm, cursor_wm);
1919 		enabled |= 1;
1920 	}
1921 
1922 	if (g4x_compute_wm0(dev, 1,
1923 			    &sandybridge_display_wm_info, latency,
1924 			    &sandybridge_cursor_wm_info, latency,
1925 			    &plane_wm, &cursor_wm)) {
1926 		val = I915_READ(WM0_PIPEB_ILK);
1927 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1928 		I915_WRITE(WM0_PIPEB_ILK, val |
1929 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1930 		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1931 			      " plane %d, cursor: %d\n",
1932 			      plane_wm, cursor_wm);
1933 		enabled |= 2;
1934 	}
1935 
1936 	if (g4x_compute_wm0(dev, 2,
1937 			    &sandybridge_display_wm_info, latency,
1938 			    &sandybridge_cursor_wm_info, latency,
1939 			    &plane_wm, &cursor_wm)) {
1940 		val = I915_READ(WM0_PIPEC_IVB);
1941 		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1942 		I915_WRITE(WM0_PIPEC_IVB, val |
1943 			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1944 		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1945 			      " plane %d, cursor: %d\n",
1946 			      plane_wm, cursor_wm);
1947 		enabled |= 3;
1948 	}
1949 
1950 	/*
1951 	 * Calculate and update the self-refresh watermark only when one
1952 	 * display plane is used.
1953 	 *
1954 	 * SNB support 3 levels of watermark.
1955 	 *
1956 	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1957 	 * and disabled in the descending order
1958 	 *
1959 	 */
1960 	I915_WRITE(WM3_LP_ILK, 0);
1961 	I915_WRITE(WM2_LP_ILK, 0);
1962 	I915_WRITE(WM1_LP_ILK, 0);
1963 
1964 	if (!single_plane_enabled(enabled) ||
1965 	    dev_priv->sprite_scaling_enabled)
1966 		return;
1967 	enabled = ffs(enabled) - 1;
1968 
1969 	/* WM1 */
1970 	if (!ironlake_compute_srwm(dev, 1, enabled,
1971 				   SNB_READ_WM1_LATENCY() * 500,
1972 				   &sandybridge_display_srwm_info,
1973 				   &sandybridge_cursor_srwm_info,
1974 				   &fbc_wm, &plane_wm, &cursor_wm))
1975 		return;
1976 
1977 	I915_WRITE(WM1_LP_ILK,
1978 		   WM1_LP_SR_EN |
1979 		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1980 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1981 		   (plane_wm << WM1_LP_SR_SHIFT) |
1982 		   cursor_wm);
1983 
1984 	/* WM2 */
1985 	if (!ironlake_compute_srwm(dev, 2, enabled,
1986 				   SNB_READ_WM2_LATENCY() * 500,
1987 				   &sandybridge_display_srwm_info,
1988 				   &sandybridge_cursor_srwm_info,
1989 				   &fbc_wm, &plane_wm, &cursor_wm))
1990 		return;
1991 
1992 	I915_WRITE(WM2_LP_ILK,
1993 		   WM2_LP_EN |
1994 		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1995 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1996 		   (plane_wm << WM1_LP_SR_SHIFT) |
1997 		   cursor_wm);
1998 
1999 	/* WM3, note we have to correct the cursor latency */
2000 	if (!ironlake_compute_srwm(dev, 3, enabled,
2001 				   SNB_READ_WM3_LATENCY() * 500,
2002 				   &sandybridge_display_srwm_info,
2003 				   &sandybridge_cursor_srwm_info,
2004 				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2005 	    !ironlake_compute_srwm(dev, 3, enabled,
2006 				   2 * SNB_READ_WM3_LATENCY() * 500,
2007 				   &sandybridge_display_srwm_info,
2008 				   &sandybridge_cursor_srwm_info,
2009 				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2010 		return;
2011 
2012 	I915_WRITE(WM3_LP_ILK,
2013 		   WM3_LP_EN |
2014 		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2015 		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2016 		   (plane_wm << WM1_LP_SR_SHIFT) |
2017 		   cursor_wm);
2018 }
2019 
2020 static void
haswell_update_linetime_wm(struct drm_device * dev,int pipe,struct drm_display_mode * mode)2021 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2022 				 struct drm_display_mode *mode)
2023 {
2024 	struct drm_i915_private *dev_priv = dev->dev_private;
2025 	u32 temp;
2026 
2027 	temp = I915_READ(PIPE_WM_LINETIME(pipe));
2028 	temp &= ~PIPE_WM_LINETIME_MASK;
2029 
2030 	/* The WM are computed with base on how long it takes to fill a single
2031 	 * row at the given clock rate, multiplied by 8.
2032 	 * */
2033 	temp |= PIPE_WM_LINETIME_TIME(
2034 		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2035 
2036 	/* IPS watermarks are only used by pipe A, and are ignored by
2037 	 * pipes B and C.  They are calculated similarly to the common
2038 	 * linetime values, except that we are using CD clock frequency
2039 	 * in MHz instead of pixel rate for the division.
2040 	 *
2041 	 * This is a placeholder for the IPS watermark calculation code.
2042 	 */
2043 
2044 	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2045 }
2046 
2047 static bool
sandybridge_compute_sprite_wm(struct drm_device * dev,int plane,uint32_t sprite_width,int pixel_size,const struct intel_watermark_params * display,int display_latency_ns,int * sprite_wm)2048 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2049 			      uint32_t sprite_width, int pixel_size,
2050 			      const struct intel_watermark_params *display,
2051 			      int display_latency_ns, int *sprite_wm)
2052 {
2053 	struct drm_crtc *crtc;
2054 	int clock;
2055 	int entries, tlb_miss;
2056 
2057 	crtc = intel_get_crtc_for_plane(dev, plane);
2058 	if (!intel_crtc_active(crtc)) {
2059 		*sprite_wm = display->guard_size;
2060 		return false;
2061 	}
2062 
2063 	clock = crtc->mode.clock;
2064 
2065 	/* Use the small buffer method to calculate the sprite watermark */
2066 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2067 	tlb_miss = display->fifo_size*display->cacheline_size -
2068 		sprite_width * 8;
2069 	if (tlb_miss > 0)
2070 		entries += tlb_miss;
2071 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
2072 	*sprite_wm = entries + display->guard_size;
2073 	if (*sprite_wm > (int)display->max_wm)
2074 		*sprite_wm = display->max_wm;
2075 
2076 	return true;
2077 }
2078 
2079 static bool
sandybridge_compute_sprite_srwm(struct drm_device * dev,int plane,uint32_t sprite_width,int pixel_size,const struct intel_watermark_params * display,int latency_ns,int * sprite_wm)2080 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2081 				uint32_t sprite_width, int pixel_size,
2082 				const struct intel_watermark_params *display,
2083 				int latency_ns, int *sprite_wm)
2084 {
2085 	struct drm_crtc *crtc;
2086 	unsigned long line_time_us;
2087 	int clock;
2088 	int line_count, line_size;
2089 	int small, large;
2090 	int entries;
2091 
2092 	if (!latency_ns) {
2093 		*sprite_wm = 0;
2094 		return false;
2095 	}
2096 
2097 	crtc = intel_get_crtc_for_plane(dev, plane);
2098 	clock = crtc->mode.clock;
2099 	if (!clock) {
2100 		*sprite_wm = 0;
2101 		return false;
2102 	}
2103 
2104 	line_time_us = (sprite_width * 1000) / clock;
2105 	if (!line_time_us) {
2106 		*sprite_wm = 0;
2107 		return false;
2108 	}
2109 
2110 	line_count = (latency_ns / line_time_us + 1000) / 1000;
2111 	line_size = sprite_width * pixel_size;
2112 
2113 	/* Use the minimum of the small and large buffer method for primary */
2114 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2115 	large = line_count * line_size;
2116 
2117 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2118 	*sprite_wm = entries + display->guard_size;
2119 
2120 	return *sprite_wm > 0x3ff ? false : true;
2121 }
2122 
sandybridge_update_sprite_wm(struct drm_device * dev,int pipe,uint32_t sprite_width,int pixel_size)2123 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2124 					 uint32_t sprite_width, int pixel_size)
2125 {
2126 	struct drm_i915_private *dev_priv = dev->dev_private;
2127 	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
2128 	u32 val;
2129 	int sprite_wm, reg;
2130 	int ret;
2131 
2132 	switch (pipe) {
2133 	case 0:
2134 		reg = WM0_PIPEA_ILK;
2135 		break;
2136 	case 1:
2137 		reg = WM0_PIPEB_ILK;
2138 		break;
2139 	case 2:
2140 		reg = WM0_PIPEC_IVB;
2141 		break;
2142 	default:
2143 		return; /* bad pipe */
2144 	}
2145 
2146 	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2147 					    &sandybridge_display_wm_info,
2148 					    latency, &sprite_wm);
2149 	if (!ret) {
2150 		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2151 			      pipe);
2152 		return;
2153 	}
2154 
2155 	val = I915_READ(reg);
2156 	val &= ~WM0_PIPE_SPRITE_MASK;
2157 	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2158 	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2159 
2160 
2161 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2162 					      pixel_size,
2163 					      &sandybridge_display_srwm_info,
2164 					      SNB_READ_WM1_LATENCY() * 500,
2165 					      &sprite_wm);
2166 	if (!ret) {
2167 		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2168 			      pipe);
2169 		return;
2170 	}
2171 	I915_WRITE(WM1S_LP_ILK, sprite_wm);
2172 
2173 	/* Only IVB has two more LP watermarks for sprite */
2174 	if (!IS_IVYBRIDGE(dev))
2175 		return;
2176 
2177 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2178 					      pixel_size,
2179 					      &sandybridge_display_srwm_info,
2180 					      SNB_READ_WM2_LATENCY() * 500,
2181 					      &sprite_wm);
2182 	if (!ret) {
2183 		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2184 			      pipe);
2185 		return;
2186 	}
2187 	I915_WRITE(WM2S_LP_IVB, sprite_wm);
2188 
2189 	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2190 					      pixel_size,
2191 					      &sandybridge_display_srwm_info,
2192 					      SNB_READ_WM3_LATENCY() * 500,
2193 					      &sprite_wm);
2194 	if (!ret) {
2195 		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2196 			      pipe);
2197 		return;
2198 	}
2199 	I915_WRITE(WM3S_LP_IVB, sprite_wm);
2200 }
2201 
2202 /**
2203  * intel_update_watermarks - update FIFO watermark values based on current modes
2204  *
2205  * Calculate watermark values for the various WM regs based on current mode
2206  * and plane configuration.
2207  *
2208  * There are several cases to deal with here:
2209  *   - normal (i.e. non-self-refresh)
2210  *   - self-refresh (SR) mode
2211  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2212  *   - lines are small relative to FIFO size (buffer can hold more than 2
2213  *     lines), so need to account for TLB latency
2214  *
2215  *   The normal calculation is:
2216  *     watermark = dotclock * bytes per pixel * latency
2217  *   where latency is platform & configuration dependent (we assume pessimal
2218  *   values here).
2219  *
2220  *   The SR calculation is:
2221  *     watermark = (trunc(latency/line time)+1) * surface width *
2222  *       bytes per pixel
2223  *   where
2224  *     line time = htotal / dotclock
2225  *     surface width = hdisplay for normal plane and 64 for cursor
2226  *   and latency is assumed to be high, as above.
2227  *
2228  * The final value programmed to the register should always be rounded up,
2229  * and include an extra 2 entries to account for clock crossings.
2230  *
2231  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2232  * to set the non-SR watermarks to 8.
2233  */
intel_update_watermarks(struct drm_device * dev)2234 void intel_update_watermarks(struct drm_device *dev)
2235 {
2236 	struct drm_i915_private *dev_priv = dev->dev_private;
2237 
2238 	if (dev_priv->display.update_wm)
2239 		dev_priv->display.update_wm(dev);
2240 }
2241 
intel_update_linetime_watermarks(struct drm_device * dev,int pipe,struct drm_display_mode * mode)2242 void intel_update_linetime_watermarks(struct drm_device *dev,
2243 		int pipe, struct drm_display_mode *mode)
2244 {
2245 	struct drm_i915_private *dev_priv = dev->dev_private;
2246 
2247 	if (dev_priv->display.update_linetime_wm)
2248 		dev_priv->display.update_linetime_wm(dev, pipe, mode);
2249 }
2250 
intel_update_sprite_watermarks(struct drm_device * dev,int pipe,uint32_t sprite_width,int pixel_size)2251 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2252 				    uint32_t sprite_width, int pixel_size)
2253 {
2254 	struct drm_i915_private *dev_priv = dev->dev_private;
2255 
2256 	if (dev_priv->display.update_sprite_wm)
2257 		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2258 						   pixel_size);
2259 }
2260 
2261 static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device * dev)2262 intel_alloc_context_page(struct drm_device *dev)
2263 {
2264 	struct drm_i915_gem_object *ctx;
2265 	int ret;
2266 
2267 	DRM_LOCK_ASSERT(dev);
2268 
2269 	ctx = i915_gem_alloc_object(dev, 4096);
2270 	if (!ctx) {
2271 		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2272 		return NULL;
2273 	}
2274 
2275 	ret = i915_gem_object_pin(ctx, 4096, true, false);
2276 	if (ret) {
2277 		DRM_ERROR("failed to pin power context: %d\n", ret);
2278 		goto err_unref;
2279 	}
2280 
2281 	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2282 	if (ret) {
2283 		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2284 		goto err_unpin;
2285 	}
2286 
2287 	return ctx;
2288 
2289 err_unpin:
2290 	i915_gem_object_unpin(ctx);
2291 err_unref:
2292 	drm_gem_object_unreference(&ctx->base);
2293 	DRM_UNLOCK(dev);
2294 	return NULL;
2295 }
2296 
2297 /**
2298  * Lock protecting IPS related data structures
2299  */
2300 struct mtx mchdev_lock;
2301 MTX_SYSINIT(mchdev, &mchdev_lock, "mchdev", MTX_DEF);
2302 
2303 /* Global for IPS driver to get at the current i915 device. Protected by
2304  * mchdev_lock. */
2305 static struct drm_i915_private *i915_mch_dev;
2306 
ironlake_set_drps(struct drm_device * dev,u8 val)2307 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2308 {
2309 	struct drm_i915_private *dev_priv = dev->dev_private;
2310 	u16 rgvswctl;
2311 
2312 	mtx_assert(&mchdev_lock, MA_OWNED);
2313 
2314 	rgvswctl = I915_READ16(MEMSWCTL);
2315 	if (rgvswctl & MEMCTL_CMD_STS) {
2316 		DRM_DEBUG("gpu busy, RCS change rejected\n");
2317 		return false; /* still busy with another command */
2318 	}
2319 
2320 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2321 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2322 	I915_WRITE16(MEMSWCTL, rgvswctl);
2323 	POSTING_READ16(MEMSWCTL);
2324 
2325 	rgvswctl |= MEMCTL_CMD_STS;
2326 	I915_WRITE16(MEMSWCTL, rgvswctl);
2327 
2328 	return true;
2329 }
2330 
ironlake_enable_drps(struct drm_device * dev)2331 static void ironlake_enable_drps(struct drm_device *dev)
2332 {
2333 	struct drm_i915_private *dev_priv = dev->dev_private;
2334 	u32 rgvmodectl = I915_READ(MEMMODECTL);
2335 	u8 fmax, fmin, fstart, vstart;
2336 
2337 	mtx_lock(&mchdev_lock);
2338 
2339 	/* Enable temp reporting */
2340 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2341 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2342 
2343 	/* 100ms RC evaluation intervals */
2344 	I915_WRITE(RCUPEI, 100000);
2345 	I915_WRITE(RCDNEI, 100000);
2346 
2347 	/* Set max/min thresholds to 90ms and 80ms respectively */
2348 	I915_WRITE(RCBMAXAVG, 90000);
2349 	I915_WRITE(RCBMINAVG, 80000);
2350 
2351 	I915_WRITE(MEMIHYST, 1);
2352 
2353 	/* Set up min, max, and cur for interrupt handling */
2354 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2355 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2356 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2357 		MEMMODE_FSTART_SHIFT;
2358 
2359 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2360 		PXVFREQ_PX_SHIFT;
2361 
2362 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2363 	dev_priv->ips.fstart = fstart;
2364 
2365 	dev_priv->ips.max_delay = fstart;
2366 	dev_priv->ips.min_delay = fmin;
2367 	dev_priv->ips.cur_delay = fstart;
2368 
2369 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2370 			 fmax, fmin, fstart);
2371 
2372 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2373 
2374 	/*
2375 	 * Interrupts will be enabled in ironlake_irq_postinstall
2376 	 */
2377 
2378 	I915_WRITE(VIDSTART, vstart);
2379 	POSTING_READ(VIDSTART);
2380 
2381 	rgvmodectl |= MEMMODE_SWMODE_EN;
2382 	I915_WRITE(MEMMODECTL, rgvmodectl);
2383 
2384 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2385 		DRM_ERROR("stuck trying to change perf mode\n");
2386 	mdelay(1);
2387 
2388 	ironlake_set_drps(dev, fstart);
2389 
2390 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2391 		I915_READ(0x112e0);
2392 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2393 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
2394 	getrawmonotonic(&dev_priv->ips.last_time2);
2395 
2396 	mtx_unlock(&mchdev_lock);
2397 }
2398 
ironlake_disable_drps(struct drm_device * dev)2399 static void ironlake_disable_drps(struct drm_device *dev)
2400 {
2401 	struct drm_i915_private *dev_priv = dev->dev_private;
2402 	u16 rgvswctl;
2403 
2404 	mtx_lock(&mchdev_lock);
2405 
2406 	rgvswctl = I915_READ16(MEMSWCTL);
2407 
2408 	/* Ack interrupts, disable EFC interrupt */
2409 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2410 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2411 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2412 	I915_WRITE(DEIIR, DE_PCU_EVENT);
2413 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2414 
2415 	/* Go back to the starting frequency */
2416 	ironlake_set_drps(dev, dev_priv->ips.fstart);
2417 	mdelay(1);
2418 	rgvswctl |= MEMCTL_CMD_STS;
2419 	I915_WRITE(MEMSWCTL, rgvswctl);
2420 	mdelay(1);
2421 
2422 	mtx_unlock(&mchdev_lock);
2423 }
2424 
2425 /* There's a funny hw issue where the hw returns all 0 when reading from
2426  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2427  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2428  * all limits and the gpu stuck at whatever frequency it is at atm).
2429  */
gen6_rps_limits(struct drm_i915_private * dev_priv,u8 * val)2430 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2431 {
2432 	u32 limits;
2433 
2434 	limits = 0;
2435 
2436 	if (*val >= dev_priv->rps.max_delay)
2437 		*val = dev_priv->rps.max_delay;
2438 	limits |= dev_priv->rps.max_delay << 24;
2439 
2440 	/* Only set the down limit when we've reached the lowest level to avoid
2441 	 * getting more interrupts, otherwise leave this clear. This prevents a
2442 	 * race in the hw when coming out of rc6: There's a tiny window where
2443 	 * the hw runs at the minimal clock before selecting the desired
2444 	 * frequency, if the down threshold expires in that window we will not
2445 	 * receive a down interrupt. */
2446 	if (*val <= dev_priv->rps.min_delay) {
2447 		*val = dev_priv->rps.min_delay;
2448 		limits |= dev_priv->rps.min_delay << 16;
2449 	}
2450 
2451 	return limits;
2452 }
2453 
gen6_set_rps(struct drm_device * dev,u8 val)2454 void gen6_set_rps(struct drm_device *dev, u8 val)
2455 {
2456 	struct drm_i915_private *dev_priv = dev->dev_private;
2457 	u32 limits = gen6_rps_limits(dev_priv, &val);
2458 
2459 	sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
2460 	WARN_ON(val > dev_priv->rps.max_delay);
2461 	WARN_ON(val < dev_priv->rps.min_delay);
2462 
2463 	if (val == dev_priv->rps.cur_delay)
2464 		return;
2465 
2466 	I915_WRITE(GEN6_RPNSWREQ,
2467 		   GEN6_FREQUENCY(val) |
2468 		   GEN6_OFFSET(0) |
2469 		   GEN6_AGGRESSIVE_TURBO);
2470 
2471 	/* Make sure we continue to get interrupts
2472 	 * until we hit the minimum or maximum frequencies.
2473 	 */
2474 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2475 
2476 	POSTING_READ(GEN6_RPNSWREQ);
2477 
2478 	dev_priv->rps.cur_delay = val;
2479 }
2480 
gen6_disable_rps(struct drm_device * dev)2481 static void gen6_disable_rps(struct drm_device *dev)
2482 {
2483 	struct drm_i915_private *dev_priv = dev->dev_private;
2484 
2485 	I915_WRITE(GEN6_RC_CONTROL, 0);
2486 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2487 	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2488 	I915_WRITE(GEN6_PMIER, 0);
2489 	/* Complete PM interrupt masking here doesn't race with the rps work
2490 	 * item again unmasking PM interrupts because that is using a different
2491 	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2492 	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2493 
2494 	mtx_lock(&dev_priv->rps.lock);
2495 	dev_priv->rps.pm_iir = 0;
2496 	mtx_unlock(&dev_priv->rps.lock);
2497 
2498 	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2499 }
2500 
intel_enable_rc6(const struct drm_device * dev)2501 int intel_enable_rc6(const struct drm_device *dev)
2502 {
2503 	/* Respect the kernel parameter if it is set */
2504 	if (i915_enable_rc6 >= 0)
2505 		return i915_enable_rc6;
2506 
2507 	/* Disable RC6 on Ironlake */
2508 	if (INTEL_INFO(dev)->gen == 5)
2509 		return 0;
2510 
2511 	if (IS_HASWELL(dev)) {
2512 		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2513 		return INTEL_RC6_ENABLE;
2514 	}
2515 
2516 	/* snb/ivb have more than one rc6 state. */
2517 	if (INTEL_INFO(dev)->gen == 6) {
2518 		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2519 		return INTEL_RC6_ENABLE;
2520 	}
2521 
2522 	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2523 	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2524 }
2525 
gen6_enable_rps(struct drm_device * dev)2526 static void gen6_enable_rps(struct drm_device *dev)
2527 {
2528 	struct drm_i915_private *dev_priv = dev->dev_private;
2529 	struct intel_ring_buffer *ring;
2530 	u32 rp_state_cap;
2531 	u32 gt_perf_status;
2532 	u32 rc6vids, pcu_mbox, rc6_mask = 0;
2533 	u32 gtfifodbg;
2534 	int rc6_mode;
2535 	int i, ret;
2536 
2537 	sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
2538 
2539 	/* Here begins a magic sequence of register writes to enable
2540 	 * auto-downclocking.
2541 	 *
2542 	 * Perhaps there might be some value in exposing these to
2543 	 * userspace...
2544 	 */
2545 	I915_WRITE(GEN6_RC_STATE, 0);
2546 
2547 	/* Clear the DBG now so we don't confuse earlier errors */
2548 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2549 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2550 		I915_WRITE(GTFIFODBG, gtfifodbg);
2551 	}
2552 
2553 	gen6_gt_force_wake_get(dev_priv);
2554 
2555 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2556 	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2557 
2558 	/* In units of 100MHz */
2559 	dev_priv->rps.max_delay = rp_state_cap & 0xff;
2560 	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2561 	dev_priv->rps.cur_delay = 0;
2562 
2563 	/* disable the counters and set deterministic thresholds */
2564 	I915_WRITE(GEN6_RC_CONTROL, 0);
2565 
2566 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2567 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2568 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2569 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2570 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2571 
2572 	for_each_ring(ring, dev_priv, i)
2573 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2574 
2575 	I915_WRITE(GEN6_RC_SLEEP, 0);
2576 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2577 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2578 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2579 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2580 
2581 	/* Check if we are enabling RC6 */
2582 	rc6_mode = intel_enable_rc6(dev_priv->dev);
2583 	if (rc6_mode & INTEL_RC6_ENABLE)
2584 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2585 
2586 	/* We don't use those on Haswell */
2587 	if (!IS_HASWELL(dev)) {
2588 		if (rc6_mode & INTEL_RC6p_ENABLE)
2589 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2590 
2591 		if (rc6_mode & INTEL_RC6pp_ENABLE)
2592 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2593 	}
2594 
2595 	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2596 			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2597 			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2598 			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2599 
2600 	I915_WRITE(GEN6_RC_CONTROL,
2601 		   rc6_mask |
2602 		   GEN6_RC_CTL_EI_MODE(1) |
2603 		   GEN6_RC_CTL_HW_ENABLE);
2604 
2605 	I915_WRITE(GEN6_RPNSWREQ,
2606 		   GEN6_FREQUENCY(10) |
2607 		   GEN6_OFFSET(0) |
2608 		   GEN6_AGGRESSIVE_TURBO);
2609 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2610 		   GEN6_FREQUENCY(12));
2611 
2612 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2613 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2614 		   dev_priv->rps.max_delay << 24 |
2615 		   dev_priv->rps.min_delay << 16);
2616 
2617 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2618 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2619 	I915_WRITE(GEN6_RP_UP_EI, 66000);
2620 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2621 
2622 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2623 	I915_WRITE(GEN6_RP_CONTROL,
2624 		   GEN6_RP_MEDIA_TURBO |
2625 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2626 		   GEN6_RP_MEDIA_IS_GFX |
2627 		   GEN6_RP_ENABLE |
2628 		   GEN6_RP_UP_BUSY_AVG |
2629 		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2630 
2631 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2632 	if (!ret) {
2633 		pcu_mbox = 0;
2634 		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2635 		if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2636 			dev_priv->rps.max_delay = pcu_mbox & 0xff;
2637 			DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2638 		}
2639 	} else {
2640 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2641 	}
2642 
2643 	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2644 
2645 	/* requires MSI enabled */
2646 	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2647 	mtx_lock(&dev_priv->rps.lock);
2648 	WARN_ON(dev_priv->rps.pm_iir != 0);
2649 	I915_WRITE(GEN6_PMIMR, 0);
2650 	mtx_unlock(&dev_priv->rps.lock);
2651 	/* enable all PM interrupts */
2652 	I915_WRITE(GEN6_PMINTRMSK, 0);
2653 
2654 	rc6vids = 0;
2655 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2656 	if (IS_GEN6(dev) && ret) {
2657 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2658 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2659 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2660 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2661 		rc6vids &= 0xffff00;
2662 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
2663 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2664 		if (ret)
2665 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2666 	}
2667 
2668 	gen6_gt_force_wake_put(dev_priv);
2669 }
2670 
gen6_update_ring_freq(struct drm_device * dev)2671 static void gen6_update_ring_freq(struct drm_device *dev)
2672 {
2673 	struct drm_i915_private *dev_priv = dev->dev_private;
2674 	int min_freq = 15;
2675 	int gpu_freq;
2676 	unsigned int ia_freq, max_ia_freq;
2677 	int scaling_factor = 180;
2678 
2679 	sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
2680 
2681 #ifdef FREEBSD_WIP
2682 	max_ia_freq = cpufreq_quick_get_max(0);
2683 	/*
2684 	 * Default to measured freq if none found, PCU will ensure we don't go
2685 	 * over
2686 	 */
2687 	if (!max_ia_freq)
2688 		max_ia_freq = tsc_khz;
2689 #else
2690 	uint64_t freq;
2691 	freq = atomic_load_acq_64(&tsc_freq);
2692 	max_ia_freq = freq / 1000;
2693 #endif /* FREEBSD_WIP */
2694 
2695 	/* Convert from kHz to MHz */
2696 	max_ia_freq /= 1000;
2697 
2698 	/*
2699 	 * For each potential GPU frequency, load a ring frequency we'd like
2700 	 * to use for memory access.  We do this by specifying the IA frequency
2701 	 * the PCU should use as a reference to determine the ring frequency.
2702 	 */
2703 	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2704 	     gpu_freq--) {
2705 		int diff = dev_priv->rps.max_delay - gpu_freq;
2706 
2707 		/*
2708 		 * For GPU frequencies less than 750MHz, just use the lowest
2709 		 * ring freq.
2710 		 */
2711 		if (gpu_freq < min_freq)
2712 			ia_freq = 800;
2713 		else
2714 			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2715 		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2716 		ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2717 
2718 		sandybridge_pcode_write(dev_priv,
2719 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2720 					ia_freq | gpu_freq);
2721 	}
2722 }
2723 
ironlake_teardown_rc6(struct drm_device * dev)2724 void ironlake_teardown_rc6(struct drm_device *dev)
2725 {
2726 	struct drm_i915_private *dev_priv = dev->dev_private;
2727 
2728 	if (dev_priv->ips.renderctx) {
2729 		i915_gem_object_unpin(dev_priv->ips.renderctx);
2730 		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2731 		dev_priv->ips.renderctx = NULL;
2732 	}
2733 
2734 	if (dev_priv->ips.pwrctx) {
2735 		i915_gem_object_unpin(dev_priv->ips.pwrctx);
2736 		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2737 		dev_priv->ips.pwrctx = NULL;
2738 	}
2739 }
2740 
ironlake_disable_rc6(struct drm_device * dev)2741 static void ironlake_disable_rc6(struct drm_device *dev)
2742 {
2743 	struct drm_i915_private *dev_priv = dev->dev_private;
2744 
2745 	if (I915_READ(PWRCTXA)) {
2746 		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2747 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2748 		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2749 			 50);
2750 
2751 		I915_WRITE(PWRCTXA, 0);
2752 		POSTING_READ(PWRCTXA);
2753 
2754 		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2755 		POSTING_READ(RSTDBYCTL);
2756 	}
2757 }
2758 
ironlake_setup_rc6(struct drm_device * dev)2759 static int ironlake_setup_rc6(struct drm_device *dev)
2760 {
2761 	struct drm_i915_private *dev_priv = dev->dev_private;
2762 
2763 	if (dev_priv->ips.renderctx == NULL)
2764 		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2765 	if (!dev_priv->ips.renderctx)
2766 		return -ENOMEM;
2767 
2768 	if (dev_priv->ips.pwrctx == NULL)
2769 		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2770 	if (!dev_priv->ips.pwrctx) {
2771 		ironlake_teardown_rc6(dev);
2772 		return -ENOMEM;
2773 	}
2774 
2775 	return 0;
2776 }
2777 
ironlake_enable_rc6(struct drm_device * dev)2778 static void ironlake_enable_rc6(struct drm_device *dev)
2779 {
2780 	struct drm_i915_private *dev_priv = dev->dev_private;
2781 	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2782 	bool was_interruptible;
2783 	int ret;
2784 
2785 	/* rc6 disabled by default due to repeated reports of hanging during
2786 	 * boot and resume.
2787 	 */
2788 	if (!intel_enable_rc6(dev))
2789 		return;
2790 
2791 	DRM_LOCK_ASSERT(dev);
2792 
2793 	ret = ironlake_setup_rc6(dev);
2794 	if (ret)
2795 		return;
2796 
2797 	was_interruptible = dev_priv->mm.interruptible;
2798 	dev_priv->mm.interruptible = false;
2799 
2800 	/*
2801 	 * GPU can automatically power down the render unit if given a page
2802 	 * to save state.
2803 	 */
2804 	ret = intel_ring_begin(ring, 6);
2805 	if (ret) {
2806 		ironlake_teardown_rc6(dev);
2807 		dev_priv->mm.interruptible = was_interruptible;
2808 		return;
2809 	}
2810 
2811 	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2812 	intel_ring_emit(ring, MI_SET_CONTEXT);
2813 	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2814 			MI_MM_SPACE_GTT |
2815 			MI_SAVE_EXT_STATE_EN |
2816 			MI_RESTORE_EXT_STATE_EN |
2817 			MI_RESTORE_INHIBIT);
2818 	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2819 	intel_ring_emit(ring, MI_NOOP);
2820 	intel_ring_emit(ring, MI_FLUSH);
2821 	intel_ring_advance(ring);
2822 
2823 	/*
2824 	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2825 	 * does an implicit flush, combined with MI_FLUSH above, it should be
2826 	 * safe to assume that renderctx is valid
2827 	 */
2828 	ret = intel_ring_idle(ring);
2829 	dev_priv->mm.interruptible = was_interruptible;
2830 	if (ret) {
2831 		DRM_ERROR("failed to enable ironlake power power savings\n");
2832 		ironlake_teardown_rc6(dev);
2833 		return;
2834 	}
2835 
2836 	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2837 	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2838 }
2839 
intel_pxfreq(u32 vidfreq)2840 static unsigned long intel_pxfreq(u32 vidfreq)
2841 {
2842 	unsigned long freq;
2843 	int div = (vidfreq & 0x3f0000) >> 16;
2844 	int post = (vidfreq & 0x3000) >> 12;
2845 	int pre = (vidfreq & 0x7);
2846 
2847 	if (!pre)
2848 		return 0;
2849 
2850 	freq = ((div * 133333) / ((1<<post) * pre));
2851 
2852 	return freq;
2853 }
2854 
2855 static const struct cparams {
2856 	u16 i;
2857 	u16 t;
2858 	u16 m;
2859 	u16 c;
2860 } cparams[] = {
2861 	{ 1, 1333, 301, 28664 },
2862 	{ 1, 1066, 294, 24460 },
2863 	{ 1, 800, 294, 25192 },
2864 	{ 0, 1333, 276, 27605 },
2865 	{ 0, 1066, 276, 27605 },
2866 	{ 0, 800, 231, 23784 },
2867 };
2868 
__i915_chipset_val(struct drm_i915_private * dev_priv)2869 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2870 {
2871 	u64 total_count, diff, ret;
2872 	u32 count1, count2, count3, m = 0, c = 0;
2873 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
2874 	int i;
2875 
2876 	mtx_assert(&mchdev_lock, MA_OWNED);
2877 
2878 	diff1 = now - dev_priv->ips.last_time1;
2879 
2880 	/* Prevent division-by-zero if we are asking too fast.
2881 	 * Also, we don't get interesting results if we are polling
2882 	 * faster than once in 10ms, so just return the saved value
2883 	 * in such cases.
2884 	 */
2885 	if (diff1 <= 10)
2886 		return dev_priv->ips.chipset_power;
2887 
2888 	count1 = I915_READ(DMIEC);
2889 	count2 = I915_READ(DDREC);
2890 	count3 = I915_READ(CSIEC);
2891 
2892 	total_count = count1 + count2 + count3;
2893 
2894 	/* FIXME: handle per-counter overflow */
2895 	if (total_count < dev_priv->ips.last_count1) {
2896 		diff = ~0UL - dev_priv->ips.last_count1;
2897 		diff += total_count;
2898 	} else {
2899 		diff = total_count - dev_priv->ips.last_count1;
2900 	}
2901 
2902 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2903 		if (cparams[i].i == dev_priv->ips.c_m &&
2904 		    cparams[i].t == dev_priv->ips.r_t) {
2905 			m = cparams[i].m;
2906 			c = cparams[i].c;
2907 			break;
2908 		}
2909 	}
2910 
2911 	diff = div_u64(diff, diff1);
2912 	ret = ((m * diff) + c);
2913 	ret = div_u64(ret, 10);
2914 
2915 	dev_priv->ips.last_count1 = total_count;
2916 	dev_priv->ips.last_time1 = now;
2917 
2918 	dev_priv->ips.chipset_power = ret;
2919 
2920 	return ret;
2921 }
2922 
i915_chipset_val(struct drm_i915_private * dev_priv)2923 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2924 {
2925 	unsigned long val;
2926 
2927 	if (dev_priv->info->gen != 5)
2928 		return 0;
2929 
2930 	mtx_lock(&mchdev_lock);
2931 
2932 	val = __i915_chipset_val(dev_priv);
2933 
2934 	mtx_unlock(&mchdev_lock);
2935 
2936 	return val;
2937 }
2938 
i915_mch_val(struct drm_i915_private * dev_priv)2939 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2940 {
2941 	unsigned long m, x, b;
2942 	u32 tsfs;
2943 
2944 	tsfs = I915_READ(TSFS);
2945 
2946 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2947 	x = I915_READ8(I915_TR1);
2948 
2949 	b = tsfs & TSFS_INTR_MASK;
2950 
2951 	return ((m * x) / 127) - b;
2952 }
2953 
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)2954 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2955 {
2956 	static const struct v_table {
2957 		u16 vd; /* in .1 mil */
2958 		u16 vm; /* in .1 mil */
2959 	} v_table[] = {
2960 		{ 0, 0, },
2961 		{ 375, 0, },
2962 		{ 500, 0, },
2963 		{ 625, 0, },
2964 		{ 750, 0, },
2965 		{ 875, 0, },
2966 		{ 1000, 0, },
2967 		{ 1125, 0, },
2968 		{ 4125, 3000, },
2969 		{ 4125, 3000, },
2970 		{ 4125, 3000, },
2971 		{ 4125, 3000, },
2972 		{ 4125, 3000, },
2973 		{ 4125, 3000, },
2974 		{ 4125, 3000, },
2975 		{ 4125, 3000, },
2976 		{ 4125, 3000, },
2977 		{ 4125, 3000, },
2978 		{ 4125, 3000, },
2979 		{ 4125, 3000, },
2980 		{ 4125, 3000, },
2981 		{ 4125, 3000, },
2982 		{ 4125, 3000, },
2983 		{ 4125, 3000, },
2984 		{ 4125, 3000, },
2985 		{ 4125, 3000, },
2986 		{ 4125, 3000, },
2987 		{ 4125, 3000, },
2988 		{ 4125, 3000, },
2989 		{ 4125, 3000, },
2990 		{ 4125, 3000, },
2991 		{ 4125, 3000, },
2992 		{ 4250, 3125, },
2993 		{ 4375, 3250, },
2994 		{ 4500, 3375, },
2995 		{ 4625, 3500, },
2996 		{ 4750, 3625, },
2997 		{ 4875, 3750, },
2998 		{ 5000, 3875, },
2999 		{ 5125, 4000, },
3000 		{ 5250, 4125, },
3001 		{ 5375, 4250, },
3002 		{ 5500, 4375, },
3003 		{ 5625, 4500, },
3004 		{ 5750, 4625, },
3005 		{ 5875, 4750, },
3006 		{ 6000, 4875, },
3007 		{ 6125, 5000, },
3008 		{ 6250, 5125, },
3009 		{ 6375, 5250, },
3010 		{ 6500, 5375, },
3011 		{ 6625, 5500, },
3012 		{ 6750, 5625, },
3013 		{ 6875, 5750, },
3014 		{ 7000, 5875, },
3015 		{ 7125, 6000, },
3016 		{ 7250, 6125, },
3017 		{ 7375, 6250, },
3018 		{ 7500, 6375, },
3019 		{ 7625, 6500, },
3020 		{ 7750, 6625, },
3021 		{ 7875, 6750, },
3022 		{ 8000, 6875, },
3023 		{ 8125, 7000, },
3024 		{ 8250, 7125, },
3025 		{ 8375, 7250, },
3026 		{ 8500, 7375, },
3027 		{ 8625, 7500, },
3028 		{ 8750, 7625, },
3029 		{ 8875, 7750, },
3030 		{ 9000, 7875, },
3031 		{ 9125, 8000, },
3032 		{ 9250, 8125, },
3033 		{ 9375, 8250, },
3034 		{ 9500, 8375, },
3035 		{ 9625, 8500, },
3036 		{ 9750, 8625, },
3037 		{ 9875, 8750, },
3038 		{ 10000, 8875, },
3039 		{ 10125, 9000, },
3040 		{ 10250, 9125, },
3041 		{ 10375, 9250, },
3042 		{ 10500, 9375, },
3043 		{ 10625, 9500, },
3044 		{ 10750, 9625, },
3045 		{ 10875, 9750, },
3046 		{ 11000, 9875, },
3047 		{ 11125, 10000, },
3048 		{ 11250, 10125, },
3049 		{ 11375, 10250, },
3050 		{ 11500, 10375, },
3051 		{ 11625, 10500, },
3052 		{ 11750, 10625, },
3053 		{ 11875, 10750, },
3054 		{ 12000, 10875, },
3055 		{ 12125, 11000, },
3056 		{ 12250, 11125, },
3057 		{ 12375, 11250, },
3058 		{ 12500, 11375, },
3059 		{ 12625, 11500, },
3060 		{ 12750, 11625, },
3061 		{ 12875, 11750, },
3062 		{ 13000, 11875, },
3063 		{ 13125, 12000, },
3064 		{ 13250, 12125, },
3065 		{ 13375, 12250, },
3066 		{ 13500, 12375, },
3067 		{ 13625, 12500, },
3068 		{ 13750, 12625, },
3069 		{ 13875, 12750, },
3070 		{ 14000, 12875, },
3071 		{ 14125, 13000, },
3072 		{ 14250, 13125, },
3073 		{ 14375, 13250, },
3074 		{ 14500, 13375, },
3075 		{ 14625, 13500, },
3076 		{ 14750, 13625, },
3077 		{ 14875, 13750, },
3078 		{ 15000, 13875, },
3079 		{ 15125, 14000, },
3080 		{ 15250, 14125, },
3081 		{ 15375, 14250, },
3082 		{ 15500, 14375, },
3083 		{ 15625, 14500, },
3084 		{ 15750, 14625, },
3085 		{ 15875, 14750, },
3086 		{ 16000, 14875, },
3087 		{ 16125, 15000, },
3088 	};
3089 	if (dev_priv->info->is_mobile)
3090 		return v_table[pxvid].vm;
3091 	else
3092 		return v_table[pxvid].vd;
3093 }
3094 
__i915_update_gfx_val(struct drm_i915_private * dev_priv)3095 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3096 {
3097 	struct timespec now, diff1;
3098 	u64 diff;
3099 	unsigned long diffms;
3100 	u32 count;
3101 
3102 	mtx_assert(&mchdev_lock, MA_OWNED);
3103 
3104 	nanotime(&now);
3105 	timespecsub(&now, &dev_priv->ips.last_time2, &diff1);
3106 
3107 	/* Don't divide by 0 */
3108 	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3109 	if (!diffms)
3110 		return;
3111 
3112 	count = I915_READ(GFXEC);
3113 
3114 	if (count < dev_priv->ips.last_count2) {
3115 		diff = ~0UL - dev_priv->ips.last_count2;
3116 		diff += count;
3117 	} else {
3118 		diff = count - dev_priv->ips.last_count2;
3119 	}
3120 
3121 	dev_priv->ips.last_count2 = count;
3122 	dev_priv->ips.last_time2 = now;
3123 
3124 	/* More magic constants... */
3125 	diff = diff * 1181;
3126 	diff = div_u64(diff, diffms * 10);
3127 	dev_priv->ips.gfx_power = diff;
3128 }
3129 
i915_update_gfx_val(struct drm_i915_private * dev_priv)3130 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3131 {
3132 	if (dev_priv->info->gen != 5)
3133 		return;
3134 
3135 	mtx_lock(&mchdev_lock);
3136 
3137 	__i915_update_gfx_val(dev_priv);
3138 
3139 	mtx_unlock(&mchdev_lock);
3140 }
3141 
__i915_gfx_val(struct drm_i915_private * dev_priv)3142 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3143 {
3144 	unsigned long t, corr, state1, corr2, state2;
3145 	u32 pxvid, ext_v;
3146 
3147 	mtx_assert(&mchdev_lock, MA_OWNED);
3148 
3149 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3150 	pxvid = (pxvid >> 24) & 0x7f;
3151 	ext_v = pvid_to_extvid(dev_priv, pxvid);
3152 
3153 	state1 = ext_v;
3154 
3155 	t = i915_mch_val(dev_priv);
3156 
3157 	/* Revel in the empirically derived constants */
3158 
3159 	/* Correction factor in 1/100000 units */
3160 	if (t > 80)
3161 		corr = ((t * 2349) + 135940);
3162 	else if (t >= 50)
3163 		corr = ((t * 964) + 29317);
3164 	else /* < 50 */
3165 		corr = ((t * 301) + 1004);
3166 
3167 	corr = corr * ((150142 * state1) / 10000 - 78642);
3168 	corr /= 100000;
3169 	corr2 = (corr * dev_priv->ips.corr);
3170 
3171 	state2 = (corr2 * state1) / 10000;
3172 	state2 /= 100; /* convert to mW */
3173 
3174 	__i915_update_gfx_val(dev_priv);
3175 
3176 	return dev_priv->ips.gfx_power + state2;
3177 }
3178 
i915_gfx_val(struct drm_i915_private * dev_priv)3179 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3180 {
3181 	unsigned long val;
3182 
3183 	if (dev_priv->info->gen != 5)
3184 		return 0;
3185 
3186 	mtx_lock(&mchdev_lock);
3187 
3188 	val = __i915_gfx_val(dev_priv);
3189 
3190 	mtx_unlock(&mchdev_lock);
3191 
3192 	return val;
3193 }
3194 
3195 /**
3196  * i915_read_mch_val - return value for IPS use
3197  *
3198  * Calculate and return a value for the IPS driver to use when deciding whether
3199  * we have thermal and power headroom to increase CPU or GPU power budget.
3200  */
i915_read_mch_val(void)3201 unsigned long i915_read_mch_val(void)
3202 {
3203 	struct drm_i915_private *dev_priv;
3204 	unsigned long chipset_val, graphics_val, ret = 0;
3205 
3206 	mtx_lock(&mchdev_lock);
3207 	if (!i915_mch_dev)
3208 		goto out_unlock;
3209 	dev_priv = i915_mch_dev;
3210 
3211 	chipset_val = __i915_chipset_val(dev_priv);
3212 	graphics_val = __i915_gfx_val(dev_priv);
3213 
3214 	ret = chipset_val + graphics_val;
3215 
3216 out_unlock:
3217 	mtx_unlock(&mchdev_lock);
3218 
3219 	return ret;
3220 }
3221 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3222 
3223 /**
3224  * i915_gpu_raise - raise GPU frequency limit
3225  *
3226  * Raise the limit; IPS indicates we have thermal headroom.
3227  */
i915_gpu_raise(void)3228 bool i915_gpu_raise(void)
3229 {
3230 	struct drm_i915_private *dev_priv;
3231 	bool ret = true;
3232 
3233 	mtx_lock(&mchdev_lock);
3234 	if (!i915_mch_dev) {
3235 		ret = false;
3236 		goto out_unlock;
3237 	}
3238 	dev_priv = i915_mch_dev;
3239 
3240 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3241 		dev_priv->ips.max_delay--;
3242 
3243 out_unlock:
3244 	mtx_unlock(&mchdev_lock);
3245 
3246 	return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3249 
3250 /**
3251  * i915_gpu_lower - lower GPU frequency limit
3252  *
3253  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3254  * frequency maximum.
3255  */
i915_gpu_lower(void)3256 bool i915_gpu_lower(void)
3257 {
3258 	struct drm_i915_private *dev_priv;
3259 	bool ret = true;
3260 
3261 	mtx_lock(&mchdev_lock);
3262 	if (!i915_mch_dev) {
3263 		ret = false;
3264 		goto out_unlock;
3265 	}
3266 	dev_priv = i915_mch_dev;
3267 
3268 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3269 		dev_priv->ips.max_delay++;
3270 
3271 out_unlock:
3272 	mtx_unlock(&mchdev_lock);
3273 
3274 	return ret;
3275 }
3276 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3277 
3278 /**
3279  * i915_gpu_busy - indicate GPU business to IPS
3280  *
3281  * Tell the IPS driver whether or not the GPU is busy.
3282  */
i915_gpu_busy(void)3283 bool i915_gpu_busy(void)
3284 {
3285 	struct drm_i915_private *dev_priv;
3286 	struct intel_ring_buffer *ring;
3287 	bool ret = false;
3288 	int i;
3289 
3290 	mtx_lock(&mchdev_lock);
3291 	if (!i915_mch_dev)
3292 		goto out_unlock;
3293 	dev_priv = i915_mch_dev;
3294 
3295 	for_each_ring(ring, dev_priv, i)
3296 		ret |= !list_empty(&ring->request_list);
3297 
3298 out_unlock:
3299 	mtx_unlock(&mchdev_lock);
3300 
3301 	return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3304 
3305 /**
3306  * i915_gpu_turbo_disable - disable graphics turbo
3307  *
3308  * Disable graphics turbo by resetting the max frequency and setting the
3309  * current frequency to the default.
3310  */
i915_gpu_turbo_disable(void)3311 bool i915_gpu_turbo_disable(void)
3312 {
3313 	struct drm_i915_private *dev_priv;
3314 	bool ret = true;
3315 
3316 	mtx_lock(&mchdev_lock);
3317 	if (!i915_mch_dev) {
3318 		ret = false;
3319 		goto out_unlock;
3320 	}
3321 	dev_priv = i915_mch_dev;
3322 
3323 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
3324 
3325 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3326 		ret = false;
3327 
3328 out_unlock:
3329 	mtx_unlock(&mchdev_lock);
3330 
3331 	return ret;
3332 }
3333 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3334 
3335 #ifdef FREEBSD_WIP
3336 /**
3337  * Tells the intel_ips driver that the i915 driver is now loaded, if
3338  * IPS got loaded first.
3339  *
3340  * This awkward dance is so that neither module has to depend on the
3341  * other in order for IPS to do the appropriate communication of
3342  * GPU turbo limits to i915.
3343  */
3344 static void
ips_ping_for_i915_load(void)3345 ips_ping_for_i915_load(void)
3346 {
3347 	void (*link)(void);
3348 
3349 	link = symbol_get(ips_link_to_i915_driver);
3350 	if (link) {
3351 		link();
3352 		symbol_put(ips_link_to_i915_driver);
3353 	}
3354 }
3355 #endif /* FREEBSD_WIP */
3356 
intel_gpu_ips_init(struct drm_i915_private * dev_priv)3357 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3358 {
3359 	/* We only register the i915 ips part with intel-ips once everything is
3360 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3361 	mtx_lock(&mchdev_lock);
3362 	i915_mch_dev = dev_priv;
3363 	mtx_unlock(&mchdev_lock);
3364 
3365 #ifdef FREEBSD_WIP
3366 	ips_ping_for_i915_load();
3367 #endif /* FREEBSD_WIP */
3368 }
3369 
intel_gpu_ips_teardown(void)3370 void intel_gpu_ips_teardown(void)
3371 {
3372 	mtx_lock(&mchdev_lock);
3373 	i915_mch_dev = NULL;
3374 	mtx_unlock(&mchdev_lock);
3375 }
intel_init_emon(struct drm_device * dev)3376 static void intel_init_emon(struct drm_device *dev)
3377 {
3378 	struct drm_i915_private *dev_priv = dev->dev_private;
3379 	u32 lcfuse;
3380 	u8 pxw[16];
3381 	int i;
3382 
3383 	/* Disable to program */
3384 	I915_WRITE(ECR, 0);
3385 	POSTING_READ(ECR);
3386 
3387 	/* Program energy weights for various events */
3388 	I915_WRITE(SDEW, 0x15040d00);
3389 	I915_WRITE(CSIEW0, 0x007f0000);
3390 	I915_WRITE(CSIEW1, 0x1e220004);
3391 	I915_WRITE(CSIEW2, 0x04000004);
3392 
3393 	for (i = 0; i < 5; i++)
3394 		I915_WRITE(PEW + (i * 4), 0);
3395 	for (i = 0; i < 3; i++)
3396 		I915_WRITE(DEW + (i * 4), 0);
3397 
3398 	/* Program P-state weights to account for frequency power adjustment */
3399 	for (i = 0; i < 16; i++) {
3400 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3401 		unsigned long freq = intel_pxfreq(pxvidfreq);
3402 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3403 			PXVFREQ_PX_SHIFT;
3404 		unsigned long val;
3405 
3406 		val = vid * vid;
3407 		val *= (freq / 1000);
3408 		val *= 255;
3409 		val /= (127*127*900);
3410 		if (val > 0xff)
3411 			DRM_ERROR("bad pxval: %ld\n", val);
3412 		pxw[i] = val;
3413 	}
3414 	/* Render standby states get 0 weight */
3415 	pxw[14] = 0;
3416 	pxw[15] = 0;
3417 
3418 	for (i = 0; i < 4; i++) {
3419 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3420 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3421 		I915_WRITE(PXW + (i * 4), val);
3422 	}
3423 
3424 	/* Adjust magic regs to magic values (more experimental results) */
3425 	I915_WRITE(OGW0, 0);
3426 	I915_WRITE(OGW1, 0);
3427 	I915_WRITE(EG0, 0x00007f00);
3428 	I915_WRITE(EG1, 0x0000000e);
3429 	I915_WRITE(EG2, 0x000e0000);
3430 	I915_WRITE(EG3, 0x68000300);
3431 	I915_WRITE(EG4, 0x42000000);
3432 	I915_WRITE(EG5, 0x00140031);
3433 	I915_WRITE(EG6, 0);
3434 	I915_WRITE(EG7, 0);
3435 
3436 	for (i = 0; i < 8; i++)
3437 		I915_WRITE(PXWL + (i * 4), 0);
3438 
3439 	/* Enable PMON + select events */
3440 	I915_WRITE(ECR, 0x80000019);
3441 
3442 	lcfuse = I915_READ(LCFUSE02);
3443 
3444 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3445 }
3446 
intel_disable_gt_powersave(struct drm_device * dev)3447 void intel_disable_gt_powersave(struct drm_device *dev)
3448 {
3449 	struct drm_i915_private *dev_priv = dev->dev_private;
3450 
3451 	if (IS_IRONLAKE_M(dev)) {
3452 		ironlake_disable_drps(dev);
3453 		ironlake_disable_rc6(dev);
3454 	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3455 		taskqueue_cancel_timeout(dev_priv->wq, &dev_priv->rps.delayed_resume_work, NULL);
3456 		sx_xlock(&dev_priv->rps.hw_lock);
3457 		gen6_disable_rps(dev);
3458 		sx_xunlock(&dev_priv->rps.hw_lock);
3459 	}
3460 }
3461 
intel_gen6_powersave_work(void * arg,int pending)3462 static void intel_gen6_powersave_work(void *arg, int pending)
3463 {
3464 	struct drm_i915_private *dev_priv = arg;
3465 	struct drm_device *dev = dev_priv->dev;
3466 
3467 	sx_xlock(&dev_priv->rps.hw_lock);
3468 	gen6_enable_rps(dev);
3469 	gen6_update_ring_freq(dev);
3470 	sx_xunlock(&dev_priv->rps.hw_lock);
3471 }
3472 
intel_enable_gt_powersave(struct drm_device * dev)3473 void intel_enable_gt_powersave(struct drm_device *dev)
3474 {
3475 	struct drm_i915_private *dev_priv = dev->dev_private;
3476 
3477 	if (IS_IRONLAKE_M(dev)) {
3478 		ironlake_enable_drps(dev);
3479 		ironlake_enable_rc6(dev);
3480 		intel_init_emon(dev);
3481 	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3482 		/*
3483 		 * PCU communication is slow and this doesn't need to be
3484 		 * done at any specific time, so do this out of our fast path
3485 		 * to make resume and init faster.
3486 		 */
3487 		taskqueue_enqueue_timeout(dev_priv->wq, &dev_priv->rps.delayed_resume_work,
3488 		    round_jiffies_up_relative(HZ));
3489 	}
3490 }
3491 
ibx_init_clock_gating(struct drm_device * dev)3492 static void ibx_init_clock_gating(struct drm_device *dev)
3493 {
3494 	struct drm_i915_private *dev_priv = dev->dev_private;
3495 
3496 	/*
3497 	 * On Ibex Peak and Cougar Point, we need to disable clock
3498 	 * gating for the panel power sequencer or it will fail to
3499 	 * start up when no ports are active.
3500 	 */
3501 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3502 }
3503 
ironlake_init_clock_gating(struct drm_device * dev)3504 static void ironlake_init_clock_gating(struct drm_device *dev)
3505 {
3506 	struct drm_i915_private *dev_priv = dev->dev_private;
3507 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3508 
3509 	/* Required for FBC */
3510 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3511 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3512 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3513 
3514 	I915_WRITE(PCH_3DCGDIS0,
3515 		   MARIUNIT_CLOCK_GATE_DISABLE |
3516 		   SVSMUNIT_CLOCK_GATE_DISABLE);
3517 	I915_WRITE(PCH_3DCGDIS1,
3518 		   VFMUNIT_CLOCK_GATE_DISABLE);
3519 
3520 	/*
3521 	 * According to the spec the following bits should be set in
3522 	 * order to enable memory self-refresh
3523 	 * The bit 22/21 of 0x42004
3524 	 * The bit 5 of 0x42020
3525 	 * The bit 15 of 0x45000
3526 	 */
3527 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3528 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3529 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3530 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3531 	I915_WRITE(DISP_ARB_CTL,
3532 		   (I915_READ(DISP_ARB_CTL) |
3533 		    DISP_FBC_WM_DIS));
3534 	I915_WRITE(WM3_LP_ILK, 0);
3535 	I915_WRITE(WM2_LP_ILK, 0);
3536 	I915_WRITE(WM1_LP_ILK, 0);
3537 
3538 	/*
3539 	 * Based on the document from hardware guys the following bits
3540 	 * should be set unconditionally in order to enable FBC.
3541 	 * The bit 22 of 0x42000
3542 	 * The bit 22 of 0x42004
3543 	 * The bit 7,8,9 of 0x42020.
3544 	 */
3545 	if (IS_IRONLAKE_M(dev)) {
3546 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
3547 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
3548 			   ILK_FBCQ_DIS);
3549 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
3550 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
3551 			   ILK_DPARB_GATE);
3552 	}
3553 
3554 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3555 
3556 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3557 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3558 		   ILK_ELPIN_409_SELECT);
3559 	I915_WRITE(_3D_CHICKEN2,
3560 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3561 		   _3D_CHICKEN2_WM_READ_PIPELINED);
3562 
3563 	/* WaDisableRenderCachePipelinedFlush */
3564 	I915_WRITE(CACHE_MODE_0,
3565 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3566 
3567 	ibx_init_clock_gating(dev);
3568 }
3569 
cpt_init_clock_gating(struct drm_device * dev)3570 static void cpt_init_clock_gating(struct drm_device *dev)
3571 {
3572 	struct drm_i915_private *dev_priv = dev->dev_private;
3573 	int pipe;
3574 	uint32_t val;
3575 
3576 	/*
3577 	 * On Ibex Peak and Cougar Point, we need to disable clock
3578 	 * gating for the panel power sequencer or it will fail to
3579 	 * start up when no ports are active.
3580 	 */
3581 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3582 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3583 		   DPLS_EDP_PPS_FIX_DIS);
3584 	/* The below fixes the weird display corruption, a few pixels shifted
3585 	 * downward, on (only) LVDS of some HP laptops with IVY.
3586 	 */
3587 	for_each_pipe(pipe) {
3588 		val = TRANS_CHICKEN2_TIMING_OVERRIDE;
3589 		if (dev_priv->fdi_rx_polarity_inverted)
3590 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3591 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
3592 	}
3593 	/* WADP0ClockGatingDisable */
3594 	for_each_pipe(pipe) {
3595 		I915_WRITE(TRANS_CHICKEN1(pipe),
3596 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3597 	}
3598 }
3599 
gen6_init_clock_gating(struct drm_device * dev)3600 static void gen6_init_clock_gating(struct drm_device *dev)
3601 {
3602 	struct drm_i915_private *dev_priv = dev->dev_private;
3603 	int pipe;
3604 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3605 
3606 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3607 
3608 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3609 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3610 		   ILK_ELPIN_409_SELECT);
3611 
3612 	/* WaDisableHiZPlanesWhenMSAAEnabled */
3613 	I915_WRITE(_3D_CHICKEN,
3614 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3615 
3616 	/* WaSetupGtModeTdRowDispatch */
3617 	if (IS_SNB_GT1(dev))
3618 		I915_WRITE(GEN6_GT_MODE,
3619 			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3620 
3621 	I915_WRITE(WM3_LP_ILK, 0);
3622 	I915_WRITE(WM2_LP_ILK, 0);
3623 	I915_WRITE(WM1_LP_ILK, 0);
3624 
3625 	I915_WRITE(CACHE_MODE_0,
3626 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3627 
3628 	I915_WRITE(GEN6_UCGCTL1,
3629 		   I915_READ(GEN6_UCGCTL1) |
3630 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3631 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3632 
3633 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3634 	 * gating disable must be set.  Failure to set it results in
3635 	 * flickering pixels due to Z write ordering failures after
3636 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3637 	 * Sanctuary and Tropics, and apparently anything else with
3638 	 * alpha test or pixel discard.
3639 	 *
3640 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3641 	 * but we didn't debug actual testcases to find it out.
3642 	 *
3643 	 * Also apply WaDisableVDSUnitClockGating and
3644 	 * WaDisableRCPBUnitClockGating.
3645 	 */
3646 	I915_WRITE(GEN6_UCGCTL2,
3647 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3648 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3649 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3650 
3651 	/* Bspec says we need to always set all mask bits. */
3652 	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3653 		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3654 
3655 	/*
3656 	 * According to the spec the following bits should be
3657 	 * set in order to enable memory self-refresh and fbc:
3658 	 * The bit21 and bit22 of 0x42000
3659 	 * The bit21 and bit22 of 0x42004
3660 	 * The bit5 and bit7 of 0x42020
3661 	 * The bit14 of 0x70180
3662 	 * The bit14 of 0x71180
3663 	 */
3664 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3665 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3666 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3667 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3668 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3669 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3670 	I915_WRITE(ILK_DSPCLK_GATE_D,
3671 		   I915_READ(ILK_DSPCLK_GATE_D) |
3672 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3673 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3674 
3675 
3676 #ifdef FREEBSD_WIP
3677 	/* NOTE Linux<->FreeBSD: Disable GEN6_MBCTL write.
3678 	 *
3679 	 * This arrived in Linux 3.6 in commit
3680 	 * b4ae3f22d238617ca11610b29fde16cf8c0bc6e0 and causes significantly
3681 	 * increased power consumption after kldloading i915kms.ko on FreeBSD
3682 	 * on (some) Sandy Bridge laptops. A Thinkpad X220 reported about 11W
3683 	 * after booting while idle at the vt(4) console and about double that
3684 	 * after loading the driver.
3685 	 *
3686 	 * There were reports in Linux of increased consumption after a suspend
3687 	 * and resume cycle due to that change.
3688 	 *
3689 	 * Linux bug reports:
3690 	 * https://bugs.freedesktop.org/show_bug.cgi?id=54089
3691 	 * https://bugzilla.kernel.org/show_bug.cgi?id=58971
3692 	 *
3693 	 * This suspend and resume issue is reportedly fixed in Linux with
3694 	 * commits 7dcd2677ea912573d9ed4bcd629b0023b2d11505 and
3695 	 * 7dcd2677ea912573d9ed4bcd629b0023b2d11505 (Linux 3.11). However, I
3696 	 * found that those changes did not help on FreeBSD, where increased
3697 	 * power consumption is observed after loading i915kms.ko without
3698 	 * suspending and resuming.
3699 	 *
3700 	 * This workaround should be removed after updating to a future Linux
3701 	 * i915 version and verifying normal power consumption on Sandy Bridge.
3702 	 */
3703 
3704 	/* WaMbcDriverBootEnable */
3705 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3706 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3707 #endif /* FREEBSD_WIP */
3708 
3709 	for_each_pipe(pipe) {
3710 		I915_WRITE(DSPCNTR(pipe),
3711 			   I915_READ(DSPCNTR(pipe)) |
3712 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3713 		intel_flush_display_plane(dev_priv, pipe);
3714 	}
3715 
3716 	/* The default value should be 0x200 according to docs, but the two
3717 	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3718 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3719 	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3720 
3721 	cpt_init_clock_gating(dev);
3722 }
3723 
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)3724 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3725 {
3726 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3727 
3728 	reg &= ~GEN7_FF_SCHED_MASK;
3729 	reg |= GEN7_FF_TS_SCHED_HW;
3730 	reg |= GEN7_FF_VS_SCHED_HW;
3731 	reg |= GEN7_FF_DS_SCHED_HW;
3732 
3733 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3734 }
3735 
lpt_init_clock_gating(struct drm_device * dev)3736 static void lpt_init_clock_gating(struct drm_device *dev)
3737 {
3738 	struct drm_i915_private *dev_priv = dev->dev_private;
3739 
3740 	/*
3741 	 * TODO: this bit should only be enabled when really needed, then
3742 	 * disabled when not needed anymore in order to save power.
3743 	 */
3744 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3745 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
3746 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
3747 			   PCH_LP_PARTITION_LEVEL_DISABLE);
3748 }
3749 
haswell_init_clock_gating(struct drm_device * dev)3750 static void haswell_init_clock_gating(struct drm_device *dev)
3751 {
3752 	struct drm_i915_private *dev_priv = dev->dev_private;
3753 	int pipe;
3754 
3755 	I915_WRITE(WM3_LP_ILK, 0);
3756 	I915_WRITE(WM2_LP_ILK, 0);
3757 	I915_WRITE(WM1_LP_ILK, 0);
3758 
3759 	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3760 	 * This implements the WaDisableRCZUnitClockGating workaround.
3761 	 */
3762 	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3763 
3764 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3765 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3766 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3767 
3768 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3769 	I915_WRITE(GEN7_L3CNTLREG1,
3770 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3771 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3772 			GEN7_WA_L3_CHICKEN_MODE);
3773 
3774 	/* This is required by WaCatErrorRejectionIssue */
3775 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3776 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3777 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3778 
3779 	for_each_pipe(pipe) {
3780 		I915_WRITE(DSPCNTR(pipe),
3781 			   I915_READ(DSPCNTR(pipe)) |
3782 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3783 		intel_flush_display_plane(dev_priv, pipe);
3784 	}
3785 
3786 	gen7_setup_fixed_func_scheduler(dev_priv);
3787 
3788 	/* WaDisable4x2SubspanOptimization */
3789 	I915_WRITE(CACHE_MODE_1,
3790 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3791 
3792 	/* WaMbcDriverBootEnable */
3793 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3794 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3795 
3796 	/* XXX: This is a workaround for early silicon revisions and should be
3797 	 * removed later.
3798 	 */
3799 	I915_WRITE(WM_DBG,
3800 			I915_READ(WM_DBG) |
3801 			WM_DBG_DISALLOW_MULTIPLE_LP |
3802 			WM_DBG_DISALLOW_SPRITE |
3803 			WM_DBG_DISALLOW_MAXFIFO);
3804 
3805 	lpt_init_clock_gating(dev);
3806 }
3807 
ivybridge_init_clock_gating(struct drm_device * dev)3808 static void ivybridge_init_clock_gating(struct drm_device *dev)
3809 {
3810 	struct drm_i915_private *dev_priv = dev->dev_private;
3811 	int pipe;
3812 	uint32_t snpcr;
3813 
3814 	I915_WRITE(WM3_LP_ILK, 0);
3815 	I915_WRITE(WM2_LP_ILK, 0);
3816 	I915_WRITE(WM1_LP_ILK, 0);
3817 
3818 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3819 
3820 	/* WaDisableEarlyCull */
3821 	I915_WRITE(_3D_CHICKEN3,
3822 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3823 
3824 	/* WaDisableBackToBackFlipFix */
3825 	I915_WRITE(IVB_CHICKEN3,
3826 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3827 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3828 
3829 	/* WaDisablePSDDualDispatchEnable */
3830 	if (IS_IVB_GT1(dev))
3831 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3832 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3833 	else
3834 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3835 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3836 
3837 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3838 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3839 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3840 
3841 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3842 	I915_WRITE(GEN7_L3CNTLREG1,
3843 			GEN7_WA_FOR_GEN7_L3_CONTROL);
3844 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3845 		   GEN7_WA_L3_CHICKEN_MODE);
3846 	if (IS_IVB_GT1(dev))
3847 		I915_WRITE(GEN7_ROW_CHICKEN2,
3848 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3849 	else
3850 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3851 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3852 
3853 
3854 	/* WaForceL3Serialization */
3855 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3856 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3857 
3858 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3859 	 * gating disable must be set.  Failure to set it results in
3860 	 * flickering pixels due to Z write ordering failures after
3861 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3862 	 * Sanctuary and Tropics, and apparently anything else with
3863 	 * alpha test or pixel discard.
3864 	 *
3865 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3866 	 * but we didn't debug actual testcases to find it out.
3867 	 *
3868 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3869 	 * This implements the WaDisableRCZUnitClockGating workaround.
3870 	 */
3871 	I915_WRITE(GEN6_UCGCTL2,
3872 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3873 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3874 
3875 	/* This is required by WaCatErrorRejectionIssue */
3876 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3877 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3878 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3879 
3880 	for_each_pipe(pipe) {
3881 		I915_WRITE(DSPCNTR(pipe),
3882 			   I915_READ(DSPCNTR(pipe)) |
3883 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3884 		intel_flush_display_plane(dev_priv, pipe);
3885 	}
3886 
3887 	/* WaMbcDriverBootEnable */
3888 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3889 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3890 
3891 	gen7_setup_fixed_func_scheduler(dev_priv);
3892 
3893 	/* WaDisable4x2SubspanOptimization */
3894 	I915_WRITE(CACHE_MODE_1,
3895 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3896 
3897 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3898 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3899 	snpcr |= GEN6_MBC_SNPCR_MED;
3900 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3901 
3902 	cpt_init_clock_gating(dev);
3903 }
3904 
valleyview_init_clock_gating(struct drm_device * dev)3905 static void valleyview_init_clock_gating(struct drm_device *dev)
3906 {
3907 	struct drm_i915_private *dev_priv = dev->dev_private;
3908 	int pipe;
3909 
3910 	I915_WRITE(WM3_LP_ILK, 0);
3911 	I915_WRITE(WM2_LP_ILK, 0);
3912 	I915_WRITE(WM1_LP_ILK, 0);
3913 
3914 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3915 
3916 	/* WaDisableEarlyCull */
3917 	I915_WRITE(_3D_CHICKEN3,
3918 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3919 
3920 	/* WaDisableBackToBackFlipFix */
3921 	I915_WRITE(IVB_CHICKEN3,
3922 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3923 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3924 
3925 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3926 		   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3927 
3928 	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3929 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3930 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3931 
3932 	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3933 	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3934 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3935 
3936 	/* WaForceL3Serialization */
3937 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3938 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3939 
3940 	/* WaDisableDopClockGating */
3941 	I915_WRITE(GEN7_ROW_CHICKEN2,
3942 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3943 
3944 	/* WaForceL3Serialization */
3945 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3946 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3947 
3948 	/* This is required by WaCatErrorRejectionIssue */
3949 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3950 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3951 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3952 
3953 	/* WaMbcDriverBootEnable */
3954 	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3955 		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3956 
3957 
3958 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3959 	 * gating disable must be set.  Failure to set it results in
3960 	 * flickering pixels due to Z write ordering failures after
3961 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3962 	 * Sanctuary and Tropics, and apparently anything else with
3963 	 * alpha test or pixel discard.
3964 	 *
3965 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3966 	 * but we didn't debug actual testcases to find it out.
3967 	 *
3968 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3969 	 * This implements the WaDisableRCZUnitClockGating workaround.
3970 	 *
3971 	 * Also apply WaDisableVDSUnitClockGating and
3972 	 * WaDisableRCPBUnitClockGating.
3973 	 */
3974 	I915_WRITE(GEN6_UCGCTL2,
3975 		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3976 		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3977 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3978 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3979 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3980 
3981 	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3982 
3983 	for_each_pipe(pipe) {
3984 		I915_WRITE(DSPCNTR(pipe),
3985 			   I915_READ(DSPCNTR(pipe)) |
3986 			   DISPPLANE_TRICKLE_FEED_DISABLE);
3987 		intel_flush_display_plane(dev_priv, pipe);
3988 	}
3989 
3990 	I915_WRITE(CACHE_MODE_1,
3991 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3992 
3993 	/*
3994 	 * On ValleyView, the GUnit needs to signal the GT
3995 	 * when flip and other events complete.  So enable
3996 	 * all the GUnit->GT interrupts here
3997 	 */
3998 	I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3999 		   PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
4000 		   SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
4001 		   PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
4002 		   PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
4003 		   SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
4004 		   PLANEA_FLIPDONE_INT_EN);
4005 
4006 	/*
4007 	 * WaDisableVLVClockGating_VBIIssue
4008 	 * Disable clock gating on th GCFG unit to prevent a delay
4009 	 * in the reporting of vblank events.
4010 	 */
4011 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
4012 }
4013 
g4x_init_clock_gating(struct drm_device * dev)4014 static void g4x_init_clock_gating(struct drm_device *dev)
4015 {
4016 	struct drm_i915_private *dev_priv = dev->dev_private;
4017 	uint32_t dspclk_gate;
4018 
4019 	I915_WRITE(RENCLK_GATE_D1, 0);
4020 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4021 		   GS_UNIT_CLOCK_GATE_DISABLE |
4022 		   CL_UNIT_CLOCK_GATE_DISABLE);
4023 	I915_WRITE(RAMCLK_GATE_D, 0);
4024 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4025 		OVRUNIT_CLOCK_GATE_DISABLE |
4026 		OVCUNIT_CLOCK_GATE_DISABLE;
4027 	if (IS_GM45(dev))
4028 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4029 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4030 
4031 	/* WaDisableRenderCachePipelinedFlush */
4032 	I915_WRITE(CACHE_MODE_0,
4033 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4034 }
4035 
crestline_init_clock_gating(struct drm_device * dev)4036 static void crestline_init_clock_gating(struct drm_device *dev)
4037 {
4038 	struct drm_i915_private *dev_priv = dev->dev_private;
4039 
4040 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4041 	I915_WRITE(RENCLK_GATE_D2, 0);
4042 	I915_WRITE(DSPCLK_GATE_D, 0);
4043 	I915_WRITE(RAMCLK_GATE_D, 0);
4044 	I915_WRITE16(DEUC, 0);
4045 }
4046 
broadwater_init_clock_gating(struct drm_device * dev)4047 static void broadwater_init_clock_gating(struct drm_device *dev)
4048 {
4049 	struct drm_i915_private *dev_priv = dev->dev_private;
4050 
4051 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4052 		   I965_RCC_CLOCK_GATE_DISABLE |
4053 		   I965_RCPB_CLOCK_GATE_DISABLE |
4054 		   I965_ISC_CLOCK_GATE_DISABLE |
4055 		   I965_FBC_CLOCK_GATE_DISABLE);
4056 	I915_WRITE(RENCLK_GATE_D2, 0);
4057 }
4058 
gen3_init_clock_gating(struct drm_device * dev)4059 static void gen3_init_clock_gating(struct drm_device *dev)
4060 {
4061 	struct drm_i915_private *dev_priv = dev->dev_private;
4062 	u32 dstate = I915_READ(D_STATE);
4063 
4064 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4065 		DSTATE_DOT_CLOCK_GATING;
4066 	I915_WRITE(D_STATE, dstate);
4067 
4068 	if (IS_PINEVIEW(dev))
4069 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4070 
4071 	/* IIR "flip pending" means done if this bit is set */
4072 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4073 }
4074 
i85x_init_clock_gating(struct drm_device * dev)4075 static void i85x_init_clock_gating(struct drm_device *dev)
4076 {
4077 	struct drm_i915_private *dev_priv = dev->dev_private;
4078 
4079 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4080 }
4081 
i830_init_clock_gating(struct drm_device * dev)4082 static void i830_init_clock_gating(struct drm_device *dev)
4083 {
4084 	struct drm_i915_private *dev_priv = dev->dev_private;
4085 
4086 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4087 }
4088 
intel_init_clock_gating(struct drm_device * dev)4089 void intel_init_clock_gating(struct drm_device *dev)
4090 {
4091 	struct drm_i915_private *dev_priv = dev->dev_private;
4092 
4093 	dev_priv->display.init_clock_gating(dev);
4094 }
4095 
4096 /* Starting with Haswell, we have different power wells for
4097  * different parts of the GPU. This attempts to enable them all.
4098  */
intel_init_power_wells(struct drm_device * dev)4099 void intel_init_power_wells(struct drm_device *dev)
4100 {
4101 	struct drm_i915_private *dev_priv = dev->dev_private;
4102 	unsigned long power_wells[] = {
4103 		HSW_PWR_WELL_CTL1,
4104 		HSW_PWR_WELL_CTL2,
4105 		HSW_PWR_WELL_CTL4
4106 	};
4107 	int i;
4108 
4109 	if (!IS_HASWELL(dev))
4110 		return;
4111 
4112 	DRM_LOCK(dev);
4113 
4114 	for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
4115 		int well = I915_READ(power_wells[i]);
4116 
4117 		if ((well & HSW_PWR_WELL_STATE) == 0) {
4118 			I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
4119 			if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
4120 				DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
4121 		}
4122 	}
4123 
4124 	DRM_UNLOCK(dev);
4125 }
4126 
4127 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_device * dev)4128 void intel_init_pm(struct drm_device *dev)
4129 {
4130 	struct drm_i915_private *dev_priv = dev->dev_private;
4131 
4132 	if (I915_HAS_FBC(dev)) {
4133 		if (HAS_PCH_SPLIT(dev)) {
4134 			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4135 			dev_priv->display.enable_fbc = ironlake_enable_fbc;
4136 			dev_priv->display.disable_fbc = ironlake_disable_fbc;
4137 		} else if (IS_GM45(dev)) {
4138 			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4139 			dev_priv->display.enable_fbc = g4x_enable_fbc;
4140 			dev_priv->display.disable_fbc = g4x_disable_fbc;
4141 		} else if (IS_CRESTLINE(dev)) {
4142 			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4143 			dev_priv->display.enable_fbc = i8xx_enable_fbc;
4144 			dev_priv->display.disable_fbc = i8xx_disable_fbc;
4145 		}
4146 		/* 855GM needs testing */
4147 	}
4148 
4149 	/* For cxsr */
4150 	if (IS_PINEVIEW(dev))
4151 		i915_pineview_get_mem_freq(dev);
4152 	else if (IS_GEN5(dev))
4153 		i915_ironlake_get_mem_freq(dev);
4154 
4155 	/* For FIFO watermark updates */
4156 	if (HAS_PCH_SPLIT(dev)) {
4157 		if (IS_GEN5(dev)) {
4158 			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4159 				dev_priv->display.update_wm = ironlake_update_wm;
4160 			else {
4161 				DRM_DEBUG_KMS("Failed to get proper latency. "
4162 					      "Disable CxSR\n");
4163 				dev_priv->display.update_wm = NULL;
4164 			}
4165 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4166 		} else if (IS_GEN6(dev)) {
4167 			if (SNB_READ_WM0_LATENCY()) {
4168 				dev_priv->display.update_wm = sandybridge_update_wm;
4169 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4170 			} else {
4171 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4172 					      "Disable CxSR\n");
4173 				dev_priv->display.update_wm = NULL;
4174 			}
4175 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4176 		} else if (IS_IVYBRIDGE(dev)) {
4177 			/* FIXME: detect B0+ stepping and use auto training */
4178 			if (SNB_READ_WM0_LATENCY()) {
4179 				dev_priv->display.update_wm = ivybridge_update_wm;
4180 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4181 			} else {
4182 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4183 					      "Disable CxSR\n");
4184 				dev_priv->display.update_wm = NULL;
4185 			}
4186 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4187 		} else if (IS_HASWELL(dev)) {
4188 			if (SNB_READ_WM0_LATENCY()) {
4189 				dev_priv->display.update_wm = sandybridge_update_wm;
4190 				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4191 				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4192 			} else {
4193 				DRM_DEBUG_KMS("Failed to read display plane latency. "
4194 					      "Disable CxSR\n");
4195 				dev_priv->display.update_wm = NULL;
4196 			}
4197 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4198 		} else
4199 			dev_priv->display.update_wm = NULL;
4200 	} else if (IS_VALLEYVIEW(dev)) {
4201 		dev_priv->display.update_wm = valleyview_update_wm;
4202 		dev_priv->display.init_clock_gating =
4203 			valleyview_init_clock_gating;
4204 	} else if (IS_PINEVIEW(dev)) {
4205 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4206 					    dev_priv->is_ddr3,
4207 					    dev_priv->fsb_freq,
4208 					    dev_priv->mem_freq)) {
4209 			DRM_INFO("failed to find known CxSR latency "
4210 				 "(found ddr%s fsb freq %d, mem freq %d), "
4211 				 "disabling CxSR\n",
4212 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4213 				 dev_priv->fsb_freq, dev_priv->mem_freq);
4214 			/* Disable CxSR and never update its watermark again */
4215 			pineview_disable_cxsr(dev);
4216 			dev_priv->display.update_wm = NULL;
4217 		} else
4218 			dev_priv->display.update_wm = pineview_update_wm;
4219 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4220 	} else if (IS_G4X(dev)) {
4221 		dev_priv->display.update_wm = g4x_update_wm;
4222 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4223 	} else if (IS_GEN4(dev)) {
4224 		dev_priv->display.update_wm = i965_update_wm;
4225 		if (IS_CRESTLINE(dev))
4226 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4227 		else if (IS_BROADWATER(dev))
4228 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4229 	} else if (IS_GEN3(dev)) {
4230 		dev_priv->display.update_wm = i9xx_update_wm;
4231 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4232 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4233 	} else if (IS_I865G(dev)) {
4234 		dev_priv->display.update_wm = i830_update_wm;
4235 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4236 		dev_priv->display.get_fifo_size = i830_get_fifo_size;
4237 	} else if (IS_I85X(dev)) {
4238 		dev_priv->display.update_wm = i9xx_update_wm;
4239 		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4240 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4241 	} else {
4242 		dev_priv->display.update_wm = i830_update_wm;
4243 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
4244 		if (IS_845G(dev))
4245 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
4246 		else
4247 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4248 	}
4249 }
4250 
__gen6_gt_wait_for_thread_c0(struct drm_i915_private * dev_priv)4251 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4252 {
4253 	u32 gt_thread_status_mask;
4254 
4255 	if (IS_HASWELL(dev_priv->dev))
4256 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4257 	else
4258 		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4259 
4260 	/* w/a for a sporadic read returning 0 by waiting for the GT
4261 	 * thread to wake up.
4262 	 */
4263 	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4264 		DRM_ERROR("GT thread status wait timed out\n");
4265 }
4266 
__gen6_gt_force_wake_reset(struct drm_i915_private * dev_priv)4267 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4268 {
4269 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4270 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4271 }
4272 
__gen6_gt_force_wake_get(struct drm_i915_private * dev_priv)4273 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4274 {
4275 	u32 forcewake_ack;
4276 
4277 	if (IS_HASWELL(dev_priv->dev))
4278 		forcewake_ack = FORCEWAKE_ACK_HSW;
4279 	else
4280 		forcewake_ack = FORCEWAKE_ACK;
4281 
4282 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4283 			    FORCEWAKE_ACK_TIMEOUT_MS))
4284 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4285 
4286 	I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4287 	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4288 
4289 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4290 			    FORCEWAKE_ACK_TIMEOUT_MS))
4291 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4292 
4293 	__gen6_gt_wait_for_thread_c0(dev_priv);
4294 }
4295 
__gen6_gt_force_wake_mt_reset(struct drm_i915_private * dev_priv)4296 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4297 {
4298 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4299 	/* something from same cacheline, but !FORCEWAKE_MT */
4300 	POSTING_READ(ECOBUS);
4301 }
4302 
__gen6_gt_force_wake_mt_get(struct drm_i915_private * dev_priv)4303 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4304 {
4305 	u32 forcewake_ack;
4306 
4307 	if (IS_HASWELL(dev_priv->dev))
4308 		forcewake_ack = FORCEWAKE_ACK_HSW;
4309 	else
4310 		forcewake_ack = FORCEWAKE_MT_ACK;
4311 
4312 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4313 			    FORCEWAKE_ACK_TIMEOUT_MS))
4314 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4315 
4316 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4317 	/* something from same cacheline, but !FORCEWAKE_MT */
4318 	POSTING_READ(ECOBUS);
4319 
4320 	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4321 			    FORCEWAKE_ACK_TIMEOUT_MS))
4322 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4323 
4324 	__gen6_gt_wait_for_thread_c0(dev_priv);
4325 }
4326 
4327 /*
4328  * Generally this is called implicitly by the register read function. However,
4329  * if some sequence requires the GT to not power down then this function should
4330  * be called at the beginning of the sequence followed by a call to
4331  * gen6_gt_force_wake_put() at the end of the sequence.
4332  */
gen6_gt_force_wake_get(struct drm_i915_private * dev_priv)4333 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4334 {
4335 
4336 	mtx_lock(&dev_priv->gt_lock);
4337 	if (dev_priv->forcewake_count++ == 0)
4338 		dev_priv->gt.force_wake_get(dev_priv);
4339 	mtx_unlock(&dev_priv->gt_lock);
4340 }
4341 
gen6_gt_check_fifodbg(struct drm_i915_private * dev_priv)4342 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4343 {
4344 	u32 gtfifodbg;
4345 	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4346 	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4347 	     "MMIO read or write has been dropped %x\n", gtfifodbg))
4348 		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4349 }
4350 
__gen6_gt_force_wake_put(struct drm_i915_private * dev_priv)4351 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4352 {
4353 	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4354 	/* something from same cacheline, but !FORCEWAKE */
4355 	POSTING_READ(ECOBUS);
4356 	gen6_gt_check_fifodbg(dev_priv);
4357 }
4358 
__gen6_gt_force_wake_mt_put(struct drm_i915_private * dev_priv)4359 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4360 {
4361 	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4362 	/* something from same cacheline, but !FORCEWAKE_MT */
4363 	POSTING_READ(ECOBUS);
4364 	gen6_gt_check_fifodbg(dev_priv);
4365 }
4366 
4367 /*
4368  * see gen6_gt_force_wake_get()
4369  */
gen6_gt_force_wake_put(struct drm_i915_private * dev_priv)4370 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4371 {
4372 
4373 	mtx_lock(&dev_priv->gt_lock);
4374 	if (--dev_priv->forcewake_count == 0)
4375 		dev_priv->gt.force_wake_put(dev_priv);
4376 	mtx_unlock(&dev_priv->gt_lock);
4377 }
4378 
__gen6_gt_wait_for_fifo(struct drm_i915_private * dev_priv)4379 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4380 {
4381 	int ret = 0;
4382 
4383 	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4384 		int loop = 500;
4385 		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4386 		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4387 			udelay(10);
4388 			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4389 		}
4390 		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4391 			++ret;
4392 		dev_priv->gt_fifo_count = fifo;
4393 	}
4394 	dev_priv->gt_fifo_count--;
4395 
4396 	return ret;
4397 }
4398 
vlv_force_wake_reset(struct drm_i915_private * dev_priv)4399 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4400 {
4401 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4402 	/* something from same cacheline, but !FORCEWAKE_VLV */
4403 	POSTING_READ(FORCEWAKE_ACK_VLV);
4404 }
4405 
vlv_force_wake_get(struct drm_i915_private * dev_priv)4406 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4407 {
4408 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4409 			    FORCEWAKE_ACK_TIMEOUT_MS))
4410 		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4411 
4412 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4413 
4414 	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4415 			    FORCEWAKE_ACK_TIMEOUT_MS))
4416 		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4417 
4418 	__gen6_gt_wait_for_thread_c0(dev_priv);
4419 }
4420 
vlv_force_wake_put(struct drm_i915_private * dev_priv)4421 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4422 {
4423 	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4424 	/* something from same cacheline, but !FORCEWAKE_VLV */
4425 	POSTING_READ(FORCEWAKE_ACK_VLV);
4426 	gen6_gt_check_fifodbg(dev_priv);
4427 }
4428 
intel_gt_reset(struct drm_device * dev)4429 void intel_gt_reset(struct drm_device *dev)
4430 {
4431 	struct drm_i915_private *dev_priv = dev->dev_private;
4432 
4433 	if (IS_VALLEYVIEW(dev)) {
4434 		vlv_force_wake_reset(dev_priv);
4435 	} else if (INTEL_INFO(dev)->gen >= 6) {
4436 		__gen6_gt_force_wake_reset(dev_priv);
4437 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4438 			__gen6_gt_force_wake_mt_reset(dev_priv);
4439 	}
4440 }
4441 
intel_gt_init(struct drm_device * dev)4442 void intel_gt_init(struct drm_device *dev)
4443 {
4444 	struct drm_i915_private *dev_priv = dev->dev_private;
4445 
4446 	mtx_init(&dev_priv->gt_lock, "i915_gt_lock", NULL, MTX_DEF);
4447 
4448 	intel_gt_reset(dev);
4449 
4450 	if (IS_VALLEYVIEW(dev)) {
4451 		dev_priv->gt.force_wake_get = vlv_force_wake_get;
4452 		dev_priv->gt.force_wake_put = vlv_force_wake_put;
4453 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4454 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4455 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4456 	} else if (IS_GEN6(dev)) {
4457 		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4458 		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4459 	}
4460 	TIMEOUT_TASK_INIT(dev_priv->wq, &dev_priv->rps.delayed_resume_work, 0,
4461 	    intel_gen6_powersave_work, dev_priv);
4462 }
4463 
sandybridge_pcode_read(struct drm_i915_private * dev_priv,u8 mbox,u32 * val)4464 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4465 {
4466 	sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
4467 
4468 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4469 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4470 		return -EAGAIN;
4471 	}
4472 
4473 	I915_WRITE(GEN6_PCODE_DATA, *val);
4474 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4475 
4476 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4477 		     500)) {
4478 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4479 		return -ETIMEDOUT;
4480 	}
4481 
4482 	*val = I915_READ(GEN6_PCODE_DATA);
4483 	I915_WRITE(GEN6_PCODE_DATA, 0);
4484 
4485 	return 0;
4486 }
4487 
sandybridge_pcode_write(struct drm_i915_private * dev_priv,u8 mbox,u32 val)4488 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4489 {
4490 	sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
4491 
4492 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4493 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4494 		return -EAGAIN;
4495 	}
4496 
4497 	I915_WRITE(GEN6_PCODE_DATA, val);
4498 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4499 
4500 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4501 		     500)) {
4502 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4503 		return -ETIMEDOUT;
4504 	}
4505 
4506 	I915_WRITE(GEN6_PCODE_DATA, 0);
4507 
4508 	return 0;
4509 }
4510