xref: /freebsd-13.1/sys/kern/vfs_mount.c (revision b4889992)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2004 Poul-Henning Kamp
5  * Copyright (c) 1999 Michael Smith
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/smp.h>
45 #include <sys/devctl.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/libkern.h>
52 #include <sys/malloc.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/namei.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/filedesc.h>
59 #include <sys/reboot.h>
60 #include <sys/sbuf.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/sysproto.h>
63 #include <sys/sx.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysent.h>
66 #include <sys/systm.h>
67 #include <sys/vnode.h>
68 #include <vm/uma.h>
69 
70 #include <geom/geom.h>
71 
72 #include <machine/stdarg.h>
73 
74 #include <security/audit/audit.h>
75 #include <security/mac/mac_framework.h>
76 
77 #define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
78 
79 static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
80 		    uint64_t fsflags, struct vfsoptlist **optlist);
81 static void	free_mntarg(struct mntarg *ma);
82 
83 static int	usermount = 0;
84 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
85     "Unprivileged users may mount and unmount file systems");
86 
87 static bool	default_autoro = false;
88 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
89     "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
90 
91 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
92 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
93 static uma_zone_t mount_zone;
94 
95 /* List of mounted filesystems. */
96 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
97 
98 /* For any iteration/modification of mountlist */
99 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
100 MTX_SYSINIT(mountlist, &mountlist_mtx, "mountlist", MTX_DEF);
101 
102 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
103 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
104 
105 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
106 
107 /*
108  * Global opts, taken by all filesystems
109  */
110 static const char *global_opts[] = {
111 	"errmsg",
112 	"fstype",
113 	"fspath",
114 	"ro",
115 	"rw",
116 	"nosuid",
117 	"noexec",
118 	NULL
119 };
120 
121 static int
mount_init(void * mem,int size,int flags)122 mount_init(void *mem, int size, int flags)
123 {
124 	struct mount *mp;
125 
126 	mp = (struct mount *)mem;
127 	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
128 	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
129 	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
130 	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
131 	mp->mnt_ref = 0;
132 	mp->mnt_vfs_ops = 1;
133 	mp->mnt_rootvnode = NULL;
134 	return (0);
135 }
136 
137 static void
mount_fini(void * mem,int size)138 mount_fini(void *mem, int size)
139 {
140 	struct mount *mp;
141 
142 	mp = (struct mount *)mem;
143 	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
144 	lockdestroy(&mp->mnt_explock);
145 	mtx_destroy(&mp->mnt_listmtx);
146 	mtx_destroy(&mp->mnt_mtx);
147 }
148 
149 static void
vfs_mount_init(void * dummy __unused)150 vfs_mount_init(void *dummy __unused)
151 {
152 
153 	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
154 	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
155 }
156 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
157 
158 /*
159  * ---------------------------------------------------------------------
160  * Functions for building and sanitizing the mount options
161  */
162 
163 /* Remove one mount option. */
164 static void
vfs_freeopt(struct vfsoptlist * opts,struct vfsopt * opt)165 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
166 {
167 
168 	TAILQ_REMOVE(opts, opt, link);
169 	free(opt->name, M_MOUNT);
170 	if (opt->value != NULL)
171 		free(opt->value, M_MOUNT);
172 	free(opt, M_MOUNT);
173 }
174 
175 /* Release all resources related to the mount options. */
176 void
vfs_freeopts(struct vfsoptlist * opts)177 vfs_freeopts(struct vfsoptlist *opts)
178 {
179 	struct vfsopt *opt;
180 
181 	while (!TAILQ_EMPTY(opts)) {
182 		opt = TAILQ_FIRST(opts);
183 		vfs_freeopt(opts, opt);
184 	}
185 	free(opts, M_MOUNT);
186 }
187 
188 void
vfs_deleteopt(struct vfsoptlist * opts,const char * name)189 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
190 {
191 	struct vfsopt *opt, *temp;
192 
193 	if (opts == NULL)
194 		return;
195 	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
196 		if (strcmp(opt->name, name) == 0)
197 			vfs_freeopt(opts, opt);
198 	}
199 }
200 
201 static int
vfs_isopt_ro(const char * opt)202 vfs_isopt_ro(const char *opt)
203 {
204 
205 	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
206 	    strcmp(opt, "norw") == 0)
207 		return (1);
208 	return (0);
209 }
210 
211 static int
vfs_isopt_rw(const char * opt)212 vfs_isopt_rw(const char *opt)
213 {
214 
215 	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
216 		return (1);
217 	return (0);
218 }
219 
220 /*
221  * Check if options are equal (with or without the "no" prefix).
222  */
223 static int
vfs_equalopts(const char * opt1,const char * opt2)224 vfs_equalopts(const char *opt1, const char *opt2)
225 {
226 	char *p;
227 
228 	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
229 	if (strcmp(opt1, opt2) == 0)
230 		return (1);
231 	/* "noopt" vs. "opt" */
232 	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
233 		return (1);
234 	/* "opt" vs. "noopt" */
235 	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
236 		return (1);
237 	while ((p = strchr(opt1, '.')) != NULL &&
238 	    !strncmp(opt1, opt2, ++p - opt1)) {
239 		opt2 += p - opt1;
240 		opt1 = p;
241 		/* "foo.noopt" vs. "foo.opt" */
242 		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
243 			return (1);
244 		/* "foo.opt" vs. "foo.noopt" */
245 		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
246 			return (1);
247 	}
248 	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
249 	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
250 	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
251 		return (1);
252 	return (0);
253 }
254 
255 /*
256  * If a mount option is specified several times,
257  * (with or without the "no" prefix) only keep
258  * the last occurrence of it.
259  */
260 static void
vfs_sanitizeopts(struct vfsoptlist * opts)261 vfs_sanitizeopts(struct vfsoptlist *opts)
262 {
263 	struct vfsopt *opt, *opt2, *tmp;
264 
265 	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
266 		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
267 		while (opt2 != NULL) {
268 			if (vfs_equalopts(opt->name, opt2->name)) {
269 				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
270 				vfs_freeopt(opts, opt2);
271 				opt2 = tmp;
272 			} else {
273 				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
274 			}
275 		}
276 	}
277 }
278 
279 /*
280  * Build a linked list of mount options from a struct uio.
281  */
282 int
vfs_buildopts(struct uio * auio,struct vfsoptlist ** options)283 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
284 {
285 	struct vfsoptlist *opts;
286 	struct vfsopt *opt;
287 	size_t memused, namelen, optlen;
288 	unsigned int i, iovcnt;
289 	int error;
290 
291 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
292 	TAILQ_INIT(opts);
293 	memused = 0;
294 	iovcnt = auio->uio_iovcnt;
295 	for (i = 0; i < iovcnt; i += 2) {
296 		namelen = auio->uio_iov[i].iov_len;
297 		optlen = auio->uio_iov[i + 1].iov_len;
298 		memused += sizeof(struct vfsopt) + optlen + namelen;
299 		/*
300 		 * Avoid consuming too much memory, and attempts to overflow
301 		 * memused.
302 		 */
303 		if (memused > VFS_MOUNTARG_SIZE_MAX ||
304 		    optlen > VFS_MOUNTARG_SIZE_MAX ||
305 		    namelen > VFS_MOUNTARG_SIZE_MAX) {
306 			error = EINVAL;
307 			goto bad;
308 		}
309 
310 		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
311 		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
312 		opt->value = NULL;
313 		opt->len = 0;
314 		opt->pos = i / 2;
315 		opt->seen = 0;
316 
317 		/*
318 		 * Do this early, so jumps to "bad" will free the current
319 		 * option.
320 		 */
321 		TAILQ_INSERT_TAIL(opts, opt, link);
322 
323 		if (auio->uio_segflg == UIO_SYSSPACE) {
324 			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
325 		} else {
326 			error = copyin(auio->uio_iov[i].iov_base, opt->name,
327 			    namelen);
328 			if (error)
329 				goto bad;
330 		}
331 		/* Ensure names are null-terminated strings. */
332 		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
333 			error = EINVAL;
334 			goto bad;
335 		}
336 		if (optlen != 0) {
337 			opt->len = optlen;
338 			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
339 			if (auio->uio_segflg == UIO_SYSSPACE) {
340 				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
341 				    optlen);
342 			} else {
343 				error = copyin(auio->uio_iov[i + 1].iov_base,
344 				    opt->value, optlen);
345 				if (error)
346 					goto bad;
347 			}
348 		}
349 	}
350 	vfs_sanitizeopts(opts);
351 	*options = opts;
352 	return (0);
353 bad:
354 	vfs_freeopts(opts);
355 	return (error);
356 }
357 
358 /*
359  * Merge the old mount options with the new ones passed
360  * in the MNT_UPDATE case.
361  *
362  * XXX: This function will keep a "nofoo" option in the new
363  * options.  E.g, if the option's canonical name is "foo",
364  * "nofoo" ends up in the mount point's active options.
365  */
366 static void
vfs_mergeopts(struct vfsoptlist * toopts,struct vfsoptlist * oldopts)367 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
368 {
369 	struct vfsopt *opt, *new;
370 
371 	TAILQ_FOREACH(opt, oldopts, link) {
372 		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
373 		new->name = strdup(opt->name, M_MOUNT);
374 		if (opt->len != 0) {
375 			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
376 			bcopy(opt->value, new->value, opt->len);
377 		} else
378 			new->value = NULL;
379 		new->len = opt->len;
380 		new->seen = opt->seen;
381 		TAILQ_INSERT_HEAD(toopts, new, link);
382 	}
383 	vfs_sanitizeopts(toopts);
384 }
385 
386 /*
387  * Mount a filesystem.
388  */
389 #ifndef _SYS_SYSPROTO_H_
390 struct nmount_args {
391 	struct iovec *iovp;
392 	unsigned int iovcnt;
393 	int flags;
394 };
395 #endif
396 int
sys_nmount(struct thread * td,struct nmount_args * uap)397 sys_nmount(struct thread *td, struct nmount_args *uap)
398 {
399 	struct uio *auio;
400 	int error;
401 	u_int iovcnt;
402 	uint64_t flags;
403 
404 	/*
405 	 * Mount flags are now 64-bits. On 32-bit archtectures only
406 	 * 32-bits are passed in, but from here on everything handles
407 	 * 64-bit flags correctly.
408 	 */
409 	flags = uap->flags;
410 
411 	AUDIT_ARG_FFLAGS(flags);
412 	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
413 	    uap->iovp, uap->iovcnt, flags);
414 
415 	/*
416 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
417 	 * userspace to set this flag, but we must filter it out if we want
418 	 * MNT_UPDATE on the root file system to work.
419 	 * MNT_ROOTFS should only be set by the kernel when mounting its
420 	 * root file system.
421 	 */
422 	flags &= ~MNT_ROOTFS;
423 
424 	iovcnt = uap->iovcnt;
425 	/*
426 	 * Check that we have an even number of iovec's
427 	 * and that we have at least two options.
428 	 */
429 	if ((iovcnt & 1) || (iovcnt < 4)) {
430 		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
431 		    uap->iovcnt);
432 		return (EINVAL);
433 	}
434 
435 	error = copyinuio(uap->iovp, iovcnt, &auio);
436 	if (error) {
437 		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
438 		    __func__, error);
439 		return (error);
440 	}
441 	error = vfs_donmount(td, flags, auio);
442 
443 	free(auio, M_IOV);
444 	return (error);
445 }
446 
447 /*
448  * ---------------------------------------------------------------------
449  * Various utility functions
450  */
451 
452 /*
453  * Get a reference on a mount point from a vnode.
454  *
455  * The vnode is allowed to be passed unlocked and race against dooming. Note in
456  * such case there are no guarantees the referenced mount point will still be
457  * associated with it after the function returns.
458  */
459 struct mount *
vfs_ref_from_vp(struct vnode * vp)460 vfs_ref_from_vp(struct vnode *vp)
461 {
462 	struct mount *mp;
463 	struct mount_pcpu *mpcpu;
464 
465 	mp = atomic_load_ptr(&vp->v_mount);
466 	if (__predict_false(mp == NULL)) {
467 		return (mp);
468 	}
469 	if (vfs_op_thread_enter(mp, mpcpu)) {
470 		if (__predict_true(mp == vp->v_mount)) {
471 			vfs_mp_count_add_pcpu(mpcpu, ref, 1);
472 			vfs_op_thread_exit(mp, mpcpu);
473 		} else {
474 			vfs_op_thread_exit(mp, mpcpu);
475 			mp = NULL;
476 		}
477 	} else {
478 		MNT_ILOCK(mp);
479 		if (mp == vp->v_mount) {
480 			MNT_REF(mp);
481 			MNT_IUNLOCK(mp);
482 		} else {
483 			MNT_IUNLOCK(mp);
484 			mp = NULL;
485 		}
486 	}
487 	return (mp);
488 }
489 
490 void
vfs_ref(struct mount * mp)491 vfs_ref(struct mount *mp)
492 {
493 	struct mount_pcpu *mpcpu;
494 
495 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
496 	if (vfs_op_thread_enter(mp, mpcpu)) {
497 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
498 		vfs_op_thread_exit(mp, mpcpu);
499 		return;
500 	}
501 
502 	MNT_ILOCK(mp);
503 	MNT_REF(mp);
504 	MNT_IUNLOCK(mp);
505 }
506 
507 void
vfs_rel(struct mount * mp)508 vfs_rel(struct mount *mp)
509 {
510 	struct mount_pcpu *mpcpu;
511 
512 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
513 	if (vfs_op_thread_enter(mp, mpcpu)) {
514 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
515 		vfs_op_thread_exit(mp, mpcpu);
516 		return;
517 	}
518 
519 	MNT_ILOCK(mp);
520 	MNT_REL(mp);
521 	MNT_IUNLOCK(mp);
522 }
523 
524 /*
525  * Allocate and initialize the mount point struct.
526  */
527 struct mount *
vfs_mount_alloc(struct vnode * vp,struct vfsconf * vfsp,const char * fspath,struct ucred * cred)528 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
529     struct ucred *cred)
530 {
531 	struct mount *mp;
532 
533 	mp = uma_zalloc(mount_zone, M_WAITOK);
534 	bzero(&mp->mnt_startzero,
535 	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
536 	mp->mnt_kern_flag = 0;
537 	mp->mnt_flag = 0;
538 	mp->mnt_rootvnode = NULL;
539 	mp->mnt_vnodecovered = NULL;
540 	mp->mnt_op = NULL;
541 	mp->mnt_vfc = NULL;
542 	TAILQ_INIT(&mp->mnt_nvnodelist);
543 	mp->mnt_nvnodelistsize = 0;
544 	TAILQ_INIT(&mp->mnt_lazyvnodelist);
545 	mp->mnt_lazyvnodelistsize = 0;
546 	if (mp->mnt_ref != 0 || mp->mnt_lockref != 0 ||
547 	    mp->mnt_writeopcount != 0)
548 		panic("%s: non-zero counters on new mp %p\n", __func__, mp);
549 	if (mp->mnt_vfs_ops != 1)
550 		panic("%s: vfs_ops should be 1 but %d found\n", __func__,
551 		    mp->mnt_vfs_ops);
552 	(void) vfs_busy(mp, MBF_NOWAIT);
553 	atomic_add_acq_int(&vfsp->vfc_refcount, 1);
554 	mp->mnt_op = vfsp->vfc_vfsops;
555 	mp->mnt_vfc = vfsp;
556 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
557 	mp->mnt_gen++;
558 	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
559 	mp->mnt_vnodecovered = vp;
560 	mp->mnt_cred = crdup(cred);
561 	mp->mnt_stat.f_owner = cred->cr_uid;
562 	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
563 	mp->mnt_iosize_max = DFLTPHYS;
564 #ifdef MAC
565 	mac_mount_init(mp);
566 	mac_mount_create(cred, mp);
567 #endif
568 	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
569 	TAILQ_INIT(&mp->mnt_uppers);
570 	return (mp);
571 }
572 
573 /*
574  * Destroy the mount struct previously allocated by vfs_mount_alloc().
575  */
576 void
vfs_mount_destroy(struct mount * mp)577 vfs_mount_destroy(struct mount *mp)
578 {
579 
580 	if (mp->mnt_vfs_ops == 0)
581 		panic("%s: entered with zero vfs_ops\n", __func__);
582 
583 	vfs_assert_mount_counters(mp);
584 
585 	MNT_ILOCK(mp);
586 	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
587 	if (mp->mnt_kern_flag & MNTK_MWAIT) {
588 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
589 		wakeup(mp);
590 	}
591 	while (mp->mnt_ref)
592 		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
593 	KASSERT(mp->mnt_ref == 0,
594 	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
595 	    __FILE__, __LINE__));
596 	if (mp->mnt_writeopcount != 0)
597 		panic("vfs_mount_destroy: nonzero writeopcount");
598 	if (mp->mnt_secondary_writes != 0)
599 		panic("vfs_mount_destroy: nonzero secondary_writes");
600 	atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
601 	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
602 		struct vnode *vp;
603 
604 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
605 			vn_printf(vp, "dangling vnode ");
606 		panic("unmount: dangling vnode");
607 	}
608 	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
609 	if (mp->mnt_nvnodelistsize != 0)
610 		panic("vfs_mount_destroy: nonzero nvnodelistsize");
611 	if (mp->mnt_lazyvnodelistsize != 0)
612 		panic("vfs_mount_destroy: nonzero lazyvnodelistsize");
613 	if (mp->mnt_lockref != 0)
614 		panic("vfs_mount_destroy: nonzero lock refcount");
615 	MNT_IUNLOCK(mp);
616 
617 	if (mp->mnt_vfs_ops != 1)
618 		panic("%s: vfs_ops should be 1 but %d found\n", __func__,
619 		    mp->mnt_vfs_ops);
620 
621 	if (mp->mnt_rootvnode != NULL)
622 		panic("%s: mount point still has a root vnode %p\n", __func__,
623 		    mp->mnt_rootvnode);
624 
625 	if (mp->mnt_vnodecovered != NULL)
626 		vrele(mp->mnt_vnodecovered);
627 #ifdef MAC
628 	mac_mount_destroy(mp);
629 #endif
630 	if (mp->mnt_opt != NULL)
631 		vfs_freeopts(mp->mnt_opt);
632 	crfree(mp->mnt_cred);
633 	uma_zfree(mount_zone, mp);
634 }
635 
636 static bool
vfs_should_downgrade_to_ro_mount(uint64_t fsflags,int error)637 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
638 {
639 	/* This is an upgrade of an exisiting mount. */
640 	if ((fsflags & MNT_UPDATE) != 0)
641 		return (false);
642 	/* This is already an R/O mount. */
643 	if ((fsflags & MNT_RDONLY) != 0)
644 		return (false);
645 
646 	switch (error) {
647 	case ENODEV:	/* generic, geom, ... */
648 	case EACCES:	/* cam/scsi, ... */
649 	case EROFS:	/* md, mmcsd, ... */
650 		/*
651 		 * These errors can be returned by the storage layer to signal
652 		 * that the media is read-only.  No harm in the R/O mount
653 		 * attempt if the error was returned for some other reason.
654 		 */
655 		return (true);
656 	default:
657 		return (false);
658 	}
659 }
660 
661 int
vfs_donmount(struct thread * td,uint64_t fsflags,struct uio * fsoptions)662 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
663 {
664 	struct vfsoptlist *optlist;
665 	struct vfsopt *opt, *tmp_opt;
666 	char *fstype, *fspath, *errmsg;
667 	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
668 	bool autoro;
669 
670 	errmsg = fspath = NULL;
671 	errmsg_len = fspathlen = 0;
672 	errmsg_pos = -1;
673 	autoro = default_autoro;
674 
675 	error = vfs_buildopts(fsoptions, &optlist);
676 	if (error)
677 		return (error);
678 
679 	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
680 		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
681 
682 	/*
683 	 * We need these two options before the others,
684 	 * and they are mandatory for any filesystem.
685 	 * Ensure they are NUL terminated as well.
686 	 */
687 	fstypelen = 0;
688 	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
689 	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
690 		error = EINVAL;
691 		if (errmsg != NULL)
692 			strncpy(errmsg, "Invalid fstype", errmsg_len);
693 		goto bail;
694 	}
695 	fspathlen = 0;
696 	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
697 	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
698 		error = EINVAL;
699 		if (errmsg != NULL)
700 			strncpy(errmsg, "Invalid fspath", errmsg_len);
701 		goto bail;
702 	}
703 
704 	/*
705 	 * We need to see if we have the "update" option
706 	 * before we call vfs_domount(), since vfs_domount() has special
707 	 * logic based on MNT_UPDATE.  This is very important
708 	 * when we want to update the root filesystem.
709 	 */
710 	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
711 		int do_freeopt = 0;
712 
713 		if (strcmp(opt->name, "update") == 0) {
714 			fsflags |= MNT_UPDATE;
715 			do_freeopt = 1;
716 		}
717 		else if (strcmp(opt->name, "async") == 0)
718 			fsflags |= MNT_ASYNC;
719 		else if (strcmp(opt->name, "force") == 0) {
720 			fsflags |= MNT_FORCE;
721 			do_freeopt = 1;
722 		}
723 		else if (strcmp(opt->name, "reload") == 0) {
724 			fsflags |= MNT_RELOAD;
725 			do_freeopt = 1;
726 		}
727 		else if (strcmp(opt->name, "multilabel") == 0)
728 			fsflags |= MNT_MULTILABEL;
729 		else if (strcmp(opt->name, "noasync") == 0)
730 			fsflags &= ~MNT_ASYNC;
731 		else if (strcmp(opt->name, "noatime") == 0)
732 			fsflags |= MNT_NOATIME;
733 		else if (strcmp(opt->name, "atime") == 0) {
734 			free(opt->name, M_MOUNT);
735 			opt->name = strdup("nonoatime", M_MOUNT);
736 		}
737 		else if (strcmp(opt->name, "noclusterr") == 0)
738 			fsflags |= MNT_NOCLUSTERR;
739 		else if (strcmp(opt->name, "clusterr") == 0) {
740 			free(opt->name, M_MOUNT);
741 			opt->name = strdup("nonoclusterr", M_MOUNT);
742 		}
743 		else if (strcmp(opt->name, "noclusterw") == 0)
744 			fsflags |= MNT_NOCLUSTERW;
745 		else if (strcmp(opt->name, "clusterw") == 0) {
746 			free(opt->name, M_MOUNT);
747 			opt->name = strdup("nonoclusterw", M_MOUNT);
748 		}
749 		else if (strcmp(opt->name, "noexec") == 0)
750 			fsflags |= MNT_NOEXEC;
751 		else if (strcmp(opt->name, "exec") == 0) {
752 			free(opt->name, M_MOUNT);
753 			opt->name = strdup("nonoexec", M_MOUNT);
754 		}
755 		else if (strcmp(opt->name, "nosuid") == 0)
756 			fsflags |= MNT_NOSUID;
757 		else if (strcmp(opt->name, "suid") == 0) {
758 			free(opt->name, M_MOUNT);
759 			opt->name = strdup("nonosuid", M_MOUNT);
760 		}
761 		else if (strcmp(opt->name, "nosymfollow") == 0)
762 			fsflags |= MNT_NOSYMFOLLOW;
763 		else if (strcmp(opt->name, "symfollow") == 0) {
764 			free(opt->name, M_MOUNT);
765 			opt->name = strdup("nonosymfollow", M_MOUNT);
766 		}
767 		else if (strcmp(opt->name, "noro") == 0) {
768 			fsflags &= ~MNT_RDONLY;
769 			autoro = false;
770 		}
771 		else if (strcmp(opt->name, "rw") == 0) {
772 			fsflags &= ~MNT_RDONLY;
773 			autoro = false;
774 		}
775 		else if (strcmp(opt->name, "ro") == 0) {
776 			fsflags |= MNT_RDONLY;
777 			autoro = false;
778 		}
779 		else if (strcmp(opt->name, "rdonly") == 0) {
780 			free(opt->name, M_MOUNT);
781 			opt->name = strdup("ro", M_MOUNT);
782 			fsflags |= MNT_RDONLY;
783 			autoro = false;
784 		}
785 		else if (strcmp(opt->name, "autoro") == 0) {
786 			do_freeopt = 1;
787 			autoro = true;
788 		}
789 		else if (strcmp(opt->name, "suiddir") == 0)
790 			fsflags |= MNT_SUIDDIR;
791 		else if (strcmp(opt->name, "sync") == 0)
792 			fsflags |= MNT_SYNCHRONOUS;
793 		else if (strcmp(opt->name, "union") == 0)
794 			fsflags |= MNT_UNION;
795 		else if (strcmp(opt->name, "automounted") == 0) {
796 			fsflags |= MNT_AUTOMOUNTED;
797 			do_freeopt = 1;
798 		} else if (strcmp(opt->name, "nocover") == 0) {
799 			fsflags |= MNT_NOCOVER;
800 			do_freeopt = 1;
801 		} else if (strcmp(opt->name, "cover") == 0) {
802 			fsflags &= ~MNT_NOCOVER;
803 			do_freeopt = 1;
804 		} else if (strcmp(opt->name, "emptydir") == 0) {
805 			fsflags |= MNT_EMPTYDIR;
806 			do_freeopt = 1;
807 		} else if (strcmp(opt->name, "noemptydir") == 0) {
808 			fsflags &= ~MNT_EMPTYDIR;
809 			do_freeopt = 1;
810 		}
811 		if (do_freeopt)
812 			vfs_freeopt(optlist, opt);
813 	}
814 
815 	/*
816 	 * Be ultra-paranoid about making sure the type and fspath
817 	 * variables will fit in our mp buffers, including the
818 	 * terminating NUL.
819 	 */
820 	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
821 		error = ENAMETOOLONG;
822 		goto bail;
823 	}
824 
825 	error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
826 
827 	/*
828 	 * See if we can mount in the read-only mode if the error code suggests
829 	 * that it could be possible and the mount options allow for that.
830 	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
831 	 * overridden by "autoro".
832 	 */
833 	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
834 		printf("%s: R/W mount failed, possibly R/O media,"
835 		    " trying R/O mount\n", __func__);
836 		fsflags |= MNT_RDONLY;
837 		error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
838 	}
839 bail:
840 	/* copyout the errmsg */
841 	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
842 	    && errmsg_len > 0 && errmsg != NULL) {
843 		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
844 			bcopy(errmsg,
845 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
846 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
847 		} else {
848 			copyout(errmsg,
849 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
850 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
851 		}
852 	}
853 
854 	if (optlist != NULL)
855 		vfs_freeopts(optlist);
856 	return (error);
857 }
858 
859 /*
860  * Old mount API.
861  */
862 #ifndef _SYS_SYSPROTO_H_
863 struct mount_args {
864 	char	*type;
865 	char	*path;
866 	int	flags;
867 	caddr_t	data;
868 };
869 #endif
870 /* ARGSUSED */
871 int
sys_mount(struct thread * td,struct mount_args * uap)872 sys_mount(struct thread *td, struct mount_args *uap)
873 {
874 	char *fstype;
875 	struct vfsconf *vfsp = NULL;
876 	struct mntarg *ma = NULL;
877 	uint64_t flags;
878 	int error;
879 
880 	/*
881 	 * Mount flags are now 64-bits. On 32-bit architectures only
882 	 * 32-bits are passed in, but from here on everything handles
883 	 * 64-bit flags correctly.
884 	 */
885 	flags = uap->flags;
886 
887 	AUDIT_ARG_FFLAGS(flags);
888 
889 	/*
890 	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
891 	 * userspace to set this flag, but we must filter it out if we want
892 	 * MNT_UPDATE on the root file system to work.
893 	 * MNT_ROOTFS should only be set by the kernel when mounting its
894 	 * root file system.
895 	 */
896 	flags &= ~MNT_ROOTFS;
897 
898 	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
899 	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
900 	if (error) {
901 		free(fstype, M_TEMP);
902 		return (error);
903 	}
904 
905 	AUDIT_ARG_TEXT(fstype);
906 	vfsp = vfs_byname_kld(fstype, td, &error);
907 	free(fstype, M_TEMP);
908 	if (vfsp == NULL)
909 		return (ENOENT);
910 	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
911 	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
912 	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
913 	    vfsp->vfc_vfsops->vfs_cmount == NULL))
914 		return (EOPNOTSUPP);
915 
916 	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
917 	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
918 	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
919 	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
920 	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
921 
922 	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
923 		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
924 	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
925 }
926 
927 /*
928  * vfs_domount_first(): first file system mount (not update)
929  */
930 static int
vfs_domount_first(struct thread * td,struct vfsconf * vfsp,char * fspath,struct vnode * vp,uint64_t fsflags,struct vfsoptlist ** optlist)931 vfs_domount_first(
932 	struct thread *td,		/* Calling thread. */
933 	struct vfsconf *vfsp,		/* File system type. */
934 	char *fspath,			/* Mount path. */
935 	struct vnode *vp,		/* Vnode to be covered. */
936 	uint64_t fsflags,		/* Flags common to all filesystems. */
937 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
938 	)
939 {
940 	struct vattr va;
941 	struct mount *mp;
942 	struct vnode *newdp, *rootvp;
943 	int error, error1;
944 	bool unmounted;
945 
946 	ASSERT_VOP_ELOCKED(vp, __func__);
947 	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
948 
949 	/*
950 	 * If the jail of the calling thread lacks permission for this type of
951 	 * file system, or is trying to cover its own root, deny immediately.
952 	 */
953 	if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
954 	    vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
955 		vput(vp);
956 		return (EPERM);
957 	}
958 
959 	/*
960 	 * If the user is not root, ensure that they own the directory
961 	 * onto which we are attempting to mount.
962 	 */
963 	error = VOP_GETATTR(vp, &va, td->td_ucred);
964 	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
965 		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
966 	if (error == 0)
967 		error = vinvalbuf(vp, V_SAVE, 0, 0);
968 	if (error == 0 && vp->v_type != VDIR)
969 		error = ENOTDIR;
970 	if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
971 		error = vfs_emptydir(vp);
972 	if (error == 0) {
973 		VI_LOCK(vp);
974 		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
975 			vp->v_iflag |= VI_MOUNT;
976 		else
977 			error = EBUSY;
978 		VI_UNLOCK(vp);
979 	}
980 	if (error != 0) {
981 		vput(vp);
982 		return (error);
983 	}
984 	vn_seqc_write_begin(vp);
985 	VOP_UNLOCK(vp);
986 
987 	/* Allocate and initialize the filesystem. */
988 	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
989 	/* XXXMAC: pass to vfs_mount_alloc? */
990 	mp->mnt_optnew = *optlist;
991 	/* Set the mount level flags. */
992 	mp->mnt_flag = (fsflags & (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY));
993 
994 	/*
995 	 * Mount the filesystem.
996 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
997 	 * get.  No freeing of cn_pnbuf.
998 	 */
999 	error1 = 0;
1000 	unmounted = true;
1001 	if ((error = VFS_MOUNT(mp)) != 0 ||
1002 	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1003 	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1004 		rootvp = NULL;
1005 		if (error1 != 0) {
1006 			MPASS(error == 0);
1007 			rootvp = vfs_cache_root_clear(mp);
1008 			if (rootvp != NULL) {
1009 				vhold(rootvp);
1010 				vrele(rootvp);
1011 			}
1012 			(void)vn_start_write(NULL, &mp, V_WAIT);
1013 			MNT_ILOCK(mp);
1014 			mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1015 			MNT_IUNLOCK(mp);
1016 			VFS_PURGE(mp);
1017 			error = VFS_UNMOUNT(mp, 0);
1018 			vn_finished_write(mp);
1019 			if (error != 0) {
1020 				printf(
1021 		    "failed post-mount (%d): rollback unmount returned %d\n",
1022 				    error1, error);
1023 				unmounted = false;
1024 			}
1025 			error = error1;
1026 		}
1027 		vfs_unbusy(mp);
1028 		mp->mnt_vnodecovered = NULL;
1029 		if (unmounted) {
1030 			/* XXXKIB wait for mnt_lockref drain? */
1031 			vfs_mount_destroy(mp);
1032 		}
1033 		VI_LOCK(vp);
1034 		vp->v_iflag &= ~VI_MOUNT;
1035 		VI_UNLOCK(vp);
1036 		if (rootvp != NULL) {
1037 			vn_seqc_write_end(rootvp);
1038 			vdrop(rootvp);
1039 		}
1040 		vn_seqc_write_end(vp);
1041 		vrele(vp);
1042 		return (error);
1043 	}
1044 	vn_seqc_write_begin(newdp);
1045 	VOP_UNLOCK(newdp);
1046 
1047 	if (mp->mnt_opt != NULL)
1048 		vfs_freeopts(mp->mnt_opt);
1049 	mp->mnt_opt = mp->mnt_optnew;
1050 	*optlist = NULL;
1051 
1052 	/*
1053 	 * Prevent external consumers of mount options from reading mnt_optnew.
1054 	 */
1055 	mp->mnt_optnew = NULL;
1056 
1057 	MNT_ILOCK(mp);
1058 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1059 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1060 		mp->mnt_kern_flag |= MNTK_ASYNC;
1061 	else
1062 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1063 	MNT_IUNLOCK(mp);
1064 
1065 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1066 	cache_purge(vp);
1067 	VI_LOCK(vp);
1068 	vp->v_iflag &= ~VI_MOUNT;
1069 	vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1070 	vp->v_mountedhere = mp;
1071 	VI_UNLOCK(vp);
1072 	/* Place the new filesystem at the end of the mount list. */
1073 	mtx_lock(&mountlist_mtx);
1074 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1075 	mtx_unlock(&mountlist_mtx);
1076 	vfs_event_signal(NULL, VQ_MOUNT, 0);
1077 	vn_lock(newdp, LK_EXCLUSIVE | LK_RETRY);
1078 	VOP_UNLOCK(vp);
1079 	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1080 	VOP_UNLOCK(newdp);
1081 	mount_devctl_event("MOUNT", mp, false);
1082 	mountcheckdirs(vp, newdp);
1083 	vn_seqc_write_end(vp);
1084 	vn_seqc_write_end(newdp);
1085 	vrele(newdp);
1086 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1087 		vfs_allocate_syncvnode(mp);
1088 	vfs_op_exit(mp);
1089 	vfs_unbusy(mp);
1090 	return (0);
1091 }
1092 
1093 /*
1094  * vfs_domount_update(): update of mounted file system
1095  */
1096 static int
vfs_domount_update(struct thread * td,struct vnode * vp,uint64_t fsflags,struct vfsoptlist ** optlist)1097 vfs_domount_update(
1098 	struct thread *td,		/* Calling thread. */
1099 	struct vnode *vp,		/* Mount point vnode. */
1100 	uint64_t fsflags,		/* Flags common to all filesystems. */
1101 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1102 	)
1103 {
1104 	struct export_args export;
1105 	struct o2export_args o2export;
1106 	struct vnode *rootvp;
1107 	void *bufp;
1108 	struct mount *mp;
1109 	int error, export_error, i, len;
1110 	uint64_t flag;
1111 	gid_t *grps;
1112 
1113 	ASSERT_VOP_ELOCKED(vp, __func__);
1114 	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1115 	mp = vp->v_mount;
1116 
1117 	if ((vp->v_vflag & VV_ROOT) == 0) {
1118 		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1119 		    == 0)
1120 			error = EXDEV;
1121 		else
1122 			error = EINVAL;
1123 		vput(vp);
1124 		return (error);
1125 	}
1126 
1127 	/*
1128 	 * We only allow the filesystem to be reloaded if it
1129 	 * is currently mounted read-only.
1130 	 */
1131 	flag = mp->mnt_flag;
1132 	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1133 		vput(vp);
1134 		return (EOPNOTSUPP);	/* Needs translation */
1135 	}
1136 	/*
1137 	 * Only privileged root, or (if MNT_USER is set) the user that
1138 	 * did the original mount is permitted to update it.
1139 	 */
1140 	error = vfs_suser(mp, td);
1141 	if (error != 0) {
1142 		vput(vp);
1143 		return (error);
1144 	}
1145 	if (vfs_busy(mp, MBF_NOWAIT)) {
1146 		vput(vp);
1147 		return (EBUSY);
1148 	}
1149 	VI_LOCK(vp);
1150 	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1151 		VI_UNLOCK(vp);
1152 		vfs_unbusy(mp);
1153 		vput(vp);
1154 		return (EBUSY);
1155 	}
1156 	vp->v_iflag |= VI_MOUNT;
1157 	VI_UNLOCK(vp);
1158 	VOP_UNLOCK(vp);
1159 
1160 	vfs_op_enter(mp);
1161 	vn_seqc_write_begin(vp);
1162 
1163 	rootvp = NULL;
1164 	MNT_ILOCK(mp);
1165 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1166 		MNT_IUNLOCK(mp);
1167 		error = EBUSY;
1168 		goto end;
1169 	}
1170 	mp->mnt_flag &= ~MNT_UPDATEMASK;
1171 	mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1172 	    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1173 	if ((mp->mnt_flag & MNT_ASYNC) == 0)
1174 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1175 	rootvp = vfs_cache_root_clear(mp);
1176 	MNT_IUNLOCK(mp);
1177 	mp->mnt_optnew = *optlist;
1178 	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1179 
1180 	/*
1181 	 * Mount the filesystem.
1182 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1183 	 * get.  No freeing of cn_pnbuf.
1184 	 */
1185 	error = VFS_MOUNT(mp);
1186 
1187 	export_error = 0;
1188 	/* Process the export option. */
1189 	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1190 	    &len) == 0) {
1191 		/* Assume that there is only 1 ABI for each length. */
1192 		switch (len) {
1193 		case (sizeof(struct oexport_args)):
1194 			bzero(&o2export, sizeof(o2export));
1195 			/* FALLTHROUGH */
1196 		case (sizeof(o2export)):
1197 			bcopy(bufp, &o2export, len);
1198 			export.ex_flags = (uint64_t)o2export.ex_flags;
1199 			export.ex_root = o2export.ex_root;
1200 			export.ex_uid = o2export.ex_anon.cr_uid;
1201 			export.ex_groups = NULL;
1202 			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1203 			if (export.ex_ngroups > 0) {
1204 				if (export.ex_ngroups <= XU_NGROUPS) {
1205 					export.ex_groups = malloc(
1206 					    export.ex_ngroups * sizeof(gid_t),
1207 					    M_TEMP, M_WAITOK);
1208 					for (i = 0; i < export.ex_ngroups; i++)
1209 						export.ex_groups[i] =
1210 						  o2export.ex_anon.cr_groups[i];
1211 				} else
1212 					export_error = EINVAL;
1213 			} else if (export.ex_ngroups < 0)
1214 				export_error = EINVAL;
1215 			export.ex_addr = o2export.ex_addr;
1216 			export.ex_addrlen = o2export.ex_addrlen;
1217 			export.ex_mask = o2export.ex_mask;
1218 			export.ex_masklen = o2export.ex_masklen;
1219 			export.ex_indexfile = o2export.ex_indexfile;
1220 			export.ex_numsecflavors = o2export.ex_numsecflavors;
1221 			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1222 				for (i = 0; i < export.ex_numsecflavors; i++)
1223 					export.ex_secflavors[i] =
1224 					    o2export.ex_secflavors[i];
1225 			} else
1226 				export_error = EINVAL;
1227 			if (export_error == 0)
1228 				export_error = vfs_export(mp, &export);
1229 			free(export.ex_groups, M_TEMP);
1230 			break;
1231 		case (sizeof(export)):
1232 			bcopy(bufp, &export, len);
1233 			grps = NULL;
1234 			if (export.ex_ngroups > 0) {
1235 				if (export.ex_ngroups <= NGROUPS_MAX) {
1236 					grps = malloc(export.ex_ngroups *
1237 					    sizeof(gid_t), M_TEMP, M_WAITOK);
1238 					export_error = copyin(export.ex_groups,
1239 					    grps, export.ex_ngroups *
1240 					    sizeof(gid_t));
1241 					if (export_error == 0)
1242 						export.ex_groups = grps;
1243 				} else
1244 					export_error = EINVAL;
1245 			} else if (export.ex_ngroups == 0)
1246 				export.ex_groups = NULL;
1247 			else
1248 				export_error = EINVAL;
1249 			if (export_error == 0)
1250 				export_error = vfs_export(mp, &export);
1251 			free(grps, M_TEMP);
1252 			break;
1253 		default:
1254 			export_error = EINVAL;
1255 			break;
1256 		}
1257 	}
1258 
1259 	MNT_ILOCK(mp);
1260 	if (error == 0) {
1261 		mp->mnt_flag &=	~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1262 		    MNT_SNAPSHOT);
1263 	} else {
1264 		/*
1265 		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1266 		 * because it is not part of MNT_UPDATEMASK, but it could have
1267 		 * changed in the meantime if quotactl(2) was called.
1268 		 * All in all we want current value of MNT_QUOTA, not the old
1269 		 * one.
1270 		 */
1271 		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1272 	}
1273 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1274 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1275 		mp->mnt_kern_flag |= MNTK_ASYNC;
1276 	else
1277 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1278 	MNT_IUNLOCK(mp);
1279 
1280 	if (error != 0)
1281 		goto end;
1282 
1283 	mount_devctl_event("REMOUNT", mp, true);
1284 	if (mp->mnt_opt != NULL)
1285 		vfs_freeopts(mp->mnt_opt);
1286 	mp->mnt_opt = mp->mnt_optnew;
1287 	*optlist = NULL;
1288 	(void)VFS_STATFS(mp, &mp->mnt_stat);
1289 	/*
1290 	 * Prevent external consumers of mount options from reading
1291 	 * mnt_optnew.
1292 	 */
1293 	mp->mnt_optnew = NULL;
1294 
1295 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1296 		vfs_allocate_syncvnode(mp);
1297 	else
1298 		vfs_deallocate_syncvnode(mp);
1299 end:
1300 	vfs_op_exit(mp);
1301 	if (rootvp != NULL) {
1302 		vn_seqc_write_end(rootvp);
1303 		vrele(rootvp);
1304 	}
1305 	vn_seqc_write_end(vp);
1306 	vfs_unbusy(mp);
1307 	VI_LOCK(vp);
1308 	vp->v_iflag &= ~VI_MOUNT;
1309 	VI_UNLOCK(vp);
1310 	vrele(vp);
1311 	return (error != 0 ? error : export_error);
1312 }
1313 
1314 /*
1315  * vfs_domount(): actually attempt a filesystem mount.
1316  */
1317 static int
vfs_domount(struct thread * td,const char * fstype,char * fspath,uint64_t fsflags,struct vfsoptlist ** optlist)1318 vfs_domount(
1319 	struct thread *td,		/* Calling thread. */
1320 	const char *fstype,		/* Filesystem type. */
1321 	char *fspath,			/* Mount path. */
1322 	uint64_t fsflags,		/* Flags common to all filesystems. */
1323 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1324 	)
1325 {
1326 	struct vfsconf *vfsp;
1327 	struct nameidata nd;
1328 	struct vnode *vp;
1329 	char *pathbuf;
1330 	int error;
1331 
1332 	/*
1333 	 * Be ultra-paranoid about making sure the type and fspath
1334 	 * variables will fit in our mp buffers, including the
1335 	 * terminating NUL.
1336 	 */
1337 	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1338 		return (ENAMETOOLONG);
1339 
1340 	if (jailed(td->td_ucred) || usermount == 0) {
1341 		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1342 			return (error);
1343 	}
1344 
1345 	/*
1346 	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1347 	 */
1348 	if (fsflags & MNT_EXPORTED) {
1349 		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1350 		if (error)
1351 			return (error);
1352 	}
1353 	if (fsflags & MNT_SUIDDIR) {
1354 		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1355 		if (error)
1356 			return (error);
1357 	}
1358 	/*
1359 	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1360 	 */
1361 	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1362 		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1363 			fsflags |= MNT_NOSUID | MNT_USER;
1364 	}
1365 
1366 	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1367 	vfsp = NULL;
1368 	if ((fsflags & MNT_UPDATE) == 0) {
1369 		/* Don't try to load KLDs if we're mounting the root. */
1370 		if (fsflags & MNT_ROOTFS)
1371 			vfsp = vfs_byname(fstype);
1372 		else
1373 			vfsp = vfs_byname_kld(fstype, td, &error);
1374 		if (vfsp == NULL)
1375 			return (ENODEV);
1376 	}
1377 
1378 	/*
1379 	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1380 	 */
1381 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1382 	    UIO_SYSSPACE, fspath, td);
1383 	error = namei(&nd);
1384 	if (error != 0)
1385 		return (error);
1386 	NDFREE(&nd, NDF_ONLY_PNBUF);
1387 	vp = nd.ni_vp;
1388 	if ((fsflags & MNT_UPDATE) == 0) {
1389 		if ((vp->v_vflag & VV_ROOT) != 0 &&
1390 		    (fsflags & MNT_NOCOVER) != 0) {
1391 			vput(vp);
1392 			return (EBUSY);
1393 		}
1394 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1395 		strcpy(pathbuf, fspath);
1396 		error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN);
1397 		if (error == 0) {
1398 			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1399 			    fsflags, optlist);
1400 		}
1401 		free(pathbuf, M_TEMP);
1402 	} else
1403 		error = vfs_domount_update(td, vp, fsflags, optlist);
1404 
1405 	return (error);
1406 }
1407 
1408 /*
1409  * Unmount a filesystem.
1410  *
1411  * Note: unmount takes a path to the vnode mounted on as argument, not
1412  * special file (as before).
1413  */
1414 #ifndef _SYS_SYSPROTO_H_
1415 struct unmount_args {
1416 	char	*path;
1417 	int	flags;
1418 };
1419 #endif
1420 /* ARGSUSED */
1421 int
sys_unmount(struct thread * td,struct unmount_args * uap)1422 sys_unmount(struct thread *td, struct unmount_args *uap)
1423 {
1424 
1425 	return (kern_unmount(td, uap->path, uap->flags));
1426 }
1427 
1428 int
kern_unmount(struct thread * td,const char * path,int flags)1429 kern_unmount(struct thread *td, const char *path, int flags)
1430 {
1431 	struct nameidata nd;
1432 	struct mount *mp;
1433 	char *pathbuf;
1434 	int error, id0, id1;
1435 
1436 	AUDIT_ARG_VALUE(flags);
1437 	if (jailed(td->td_ucred) || usermount == 0) {
1438 		error = priv_check(td, PRIV_VFS_UNMOUNT);
1439 		if (error)
1440 			return (error);
1441 	}
1442 
1443 	pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1444 	error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1445 	if (error) {
1446 		free(pathbuf, M_TEMP);
1447 		return (error);
1448 	}
1449 	if (flags & MNT_BYFSID) {
1450 		AUDIT_ARG_TEXT(pathbuf);
1451 		/* Decode the filesystem ID. */
1452 		if (sscanf(pathbuf, "FSID:%d:%d", &id0, &id1) != 2) {
1453 			free(pathbuf, M_TEMP);
1454 			return (EINVAL);
1455 		}
1456 
1457 		mtx_lock(&mountlist_mtx);
1458 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1459 			if (mp->mnt_stat.f_fsid.val[0] == id0 &&
1460 			    mp->mnt_stat.f_fsid.val[1] == id1) {
1461 				vfs_ref(mp);
1462 				break;
1463 			}
1464 		}
1465 		mtx_unlock(&mountlist_mtx);
1466 	} else {
1467 		/*
1468 		 * Try to find global path for path argument.
1469 		 */
1470 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1471 		    UIO_SYSSPACE, pathbuf, td);
1472 		if (namei(&nd) == 0) {
1473 			NDFREE(&nd, NDF_ONLY_PNBUF);
1474 			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1475 			    MNAMELEN);
1476 			if (error == 0)
1477 				vput(nd.ni_vp);
1478 		}
1479 		mtx_lock(&mountlist_mtx);
1480 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1481 			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1482 				vfs_ref(mp);
1483 				break;
1484 			}
1485 		}
1486 		mtx_unlock(&mountlist_mtx);
1487 	}
1488 	free(pathbuf, M_TEMP);
1489 	if (mp == NULL) {
1490 		/*
1491 		 * Previously we returned ENOENT for a nonexistent path and
1492 		 * EINVAL for a non-mountpoint.  We cannot tell these apart
1493 		 * now, so in the !MNT_BYFSID case return the more likely
1494 		 * EINVAL for compatibility.
1495 		 */
1496 		return ((flags & MNT_BYFSID) ? ENOENT : EINVAL);
1497 	}
1498 
1499 	/*
1500 	 * Don't allow unmounting the root filesystem.
1501 	 */
1502 	if (mp->mnt_flag & MNT_ROOTFS) {
1503 		vfs_rel(mp);
1504 		return (EINVAL);
1505 	}
1506 	error = dounmount(mp, flags, td);
1507 	return (error);
1508 }
1509 
1510 /*
1511  * Return error if any of the vnodes, ignoring the root vnode
1512  * and the syncer vnode, have non-zero usecount.
1513  *
1514  * This function is purely advisory - it can return false positives
1515  * and negatives.
1516  */
1517 static int
vfs_check_usecounts(struct mount * mp)1518 vfs_check_usecounts(struct mount *mp)
1519 {
1520 	struct vnode *vp, *mvp;
1521 
1522 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1523 		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1524 		    vp->v_usecount != 0) {
1525 			VI_UNLOCK(vp);
1526 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1527 			return (EBUSY);
1528 		}
1529 		VI_UNLOCK(vp);
1530 	}
1531 
1532 	return (0);
1533 }
1534 
1535 static void
dounmount_cleanup(struct mount * mp,struct vnode * coveredvp,int mntkflags)1536 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1537 {
1538 
1539 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1540 	mp->mnt_kern_flag &= ~mntkflags;
1541 	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1542 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1543 		wakeup(mp);
1544 	}
1545 	vfs_op_exit_locked(mp);
1546 	MNT_IUNLOCK(mp);
1547 	if (coveredvp != NULL) {
1548 		VOP_UNLOCK(coveredvp);
1549 		vdrop(coveredvp);
1550 	}
1551 	vn_finished_write(mp);
1552 }
1553 
1554 /*
1555  * There are various reference counters associated with the mount point.
1556  * Normally it is permitted to modify them without taking the mnt ilock,
1557  * but this behavior can be temporarily disabled if stable value is needed
1558  * or callers are expected to block (e.g. to not allow new users during
1559  * forced unmount).
1560  */
1561 void
vfs_op_enter(struct mount * mp)1562 vfs_op_enter(struct mount *mp)
1563 {
1564 	struct mount_pcpu *mpcpu;
1565 	int cpu;
1566 
1567 	MNT_ILOCK(mp);
1568 	mp->mnt_vfs_ops++;
1569 	if (mp->mnt_vfs_ops > 1) {
1570 		MNT_IUNLOCK(mp);
1571 		return;
1572 	}
1573 	vfs_op_barrier_wait(mp);
1574 	CPU_FOREACH(cpu) {
1575 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1576 
1577 		mp->mnt_ref += mpcpu->mntp_ref;
1578 		mpcpu->mntp_ref = 0;
1579 
1580 		mp->mnt_lockref += mpcpu->mntp_lockref;
1581 		mpcpu->mntp_lockref = 0;
1582 
1583 		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1584 		mpcpu->mntp_writeopcount = 0;
1585 	}
1586 	if (mp->mnt_ref <= 0 || mp->mnt_lockref < 0 || mp->mnt_writeopcount < 0)
1587 		panic("%s: invalid count(s) on mp %p: ref %d lockref %d writeopcount %d\n",
1588 		    __func__, mp, mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount);
1589 	MNT_IUNLOCK(mp);
1590 	vfs_assert_mount_counters(mp);
1591 }
1592 
1593 void
vfs_op_exit_locked(struct mount * mp)1594 vfs_op_exit_locked(struct mount *mp)
1595 {
1596 
1597 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1598 
1599 	if (mp->mnt_vfs_ops <= 0)
1600 		panic("%s: invalid vfs_ops count %d for mp %p\n",
1601 		    __func__, mp->mnt_vfs_ops, mp);
1602 	mp->mnt_vfs_ops--;
1603 }
1604 
1605 void
vfs_op_exit(struct mount * mp)1606 vfs_op_exit(struct mount *mp)
1607 {
1608 
1609 	MNT_ILOCK(mp);
1610 	vfs_op_exit_locked(mp);
1611 	MNT_IUNLOCK(mp);
1612 }
1613 
1614 struct vfs_op_barrier_ipi {
1615 	struct mount *mp;
1616 	struct smp_rendezvous_cpus_retry_arg srcra;
1617 };
1618 
1619 static void
vfs_op_action_func(void * arg)1620 vfs_op_action_func(void *arg)
1621 {
1622 	struct vfs_op_barrier_ipi *vfsopipi;
1623 	struct mount *mp;
1624 
1625 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1626 	mp = vfsopipi->mp;
1627 
1628 	if (!vfs_op_thread_entered(mp))
1629 		smp_rendezvous_cpus_done(arg);
1630 }
1631 
1632 static void
vfs_op_wait_func(void * arg,int cpu)1633 vfs_op_wait_func(void *arg, int cpu)
1634 {
1635 	struct vfs_op_barrier_ipi *vfsopipi;
1636 	struct mount *mp;
1637 	struct mount_pcpu *mpcpu;
1638 
1639 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1640 	mp = vfsopipi->mp;
1641 
1642 	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1643 	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1644 		cpu_spinwait();
1645 }
1646 
1647 void
vfs_op_barrier_wait(struct mount * mp)1648 vfs_op_barrier_wait(struct mount *mp)
1649 {
1650 	struct vfs_op_barrier_ipi vfsopipi;
1651 
1652 	vfsopipi.mp = mp;
1653 
1654 	smp_rendezvous_cpus_retry(all_cpus,
1655 	    smp_no_rendezvous_barrier,
1656 	    vfs_op_action_func,
1657 	    smp_no_rendezvous_barrier,
1658 	    vfs_op_wait_func,
1659 	    &vfsopipi.srcra);
1660 }
1661 
1662 #ifdef DIAGNOSTIC
1663 void
vfs_assert_mount_counters(struct mount * mp)1664 vfs_assert_mount_counters(struct mount *mp)
1665 {
1666 	struct mount_pcpu *mpcpu;
1667 	int cpu;
1668 
1669 	if (mp->mnt_vfs_ops == 0)
1670 		return;
1671 
1672 	CPU_FOREACH(cpu) {
1673 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1674 		if (mpcpu->mntp_ref != 0 ||
1675 		    mpcpu->mntp_lockref != 0 ||
1676 		    mpcpu->mntp_writeopcount != 0)
1677 			vfs_dump_mount_counters(mp);
1678 	}
1679 }
1680 
1681 void
vfs_dump_mount_counters(struct mount * mp)1682 vfs_dump_mount_counters(struct mount *mp)
1683 {
1684 	struct mount_pcpu *mpcpu;
1685 	int ref, lockref, writeopcount;
1686 	int cpu;
1687 
1688 	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1689 
1690 	printf("        ref : ");
1691 	ref = mp->mnt_ref;
1692 	CPU_FOREACH(cpu) {
1693 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1694 		printf("%d ", mpcpu->mntp_ref);
1695 		ref += mpcpu->mntp_ref;
1696 	}
1697 	printf("\n");
1698 	printf("    lockref : ");
1699 	lockref = mp->mnt_lockref;
1700 	CPU_FOREACH(cpu) {
1701 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1702 		printf("%d ", mpcpu->mntp_lockref);
1703 		lockref += mpcpu->mntp_lockref;
1704 	}
1705 	printf("\n");
1706 	printf("writeopcount: ");
1707 	writeopcount = mp->mnt_writeopcount;
1708 	CPU_FOREACH(cpu) {
1709 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1710 		printf("%d ", mpcpu->mntp_writeopcount);
1711 		writeopcount += mpcpu->mntp_writeopcount;
1712 	}
1713 	printf("\n");
1714 
1715 	printf("counter       struct total\n");
1716 	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
1717 	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
1718 	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
1719 
1720 	panic("invalid counts on struct mount");
1721 }
1722 #endif
1723 
1724 int
vfs_mount_fetch_counter(struct mount * mp,enum mount_counter which)1725 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
1726 {
1727 	struct mount_pcpu *mpcpu;
1728 	int cpu, sum;
1729 
1730 	switch (which) {
1731 	case MNT_COUNT_REF:
1732 		sum = mp->mnt_ref;
1733 		break;
1734 	case MNT_COUNT_LOCKREF:
1735 		sum = mp->mnt_lockref;
1736 		break;
1737 	case MNT_COUNT_WRITEOPCOUNT:
1738 		sum = mp->mnt_writeopcount;
1739 		break;
1740 	}
1741 
1742 	CPU_FOREACH(cpu) {
1743 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1744 		switch (which) {
1745 		case MNT_COUNT_REF:
1746 			sum += mpcpu->mntp_ref;
1747 			break;
1748 		case MNT_COUNT_LOCKREF:
1749 			sum += mpcpu->mntp_lockref;
1750 			break;
1751 		case MNT_COUNT_WRITEOPCOUNT:
1752 			sum += mpcpu->mntp_writeopcount;
1753 			break;
1754 		}
1755 	}
1756 	return (sum);
1757 }
1758 
1759 /*
1760  * Do the actual filesystem unmount.
1761  */
1762 int
dounmount(struct mount * mp,int flags,struct thread * td)1763 dounmount(struct mount *mp, int flags, struct thread *td)
1764 {
1765 	struct vnode *coveredvp, *rootvp;
1766 	int error;
1767 	uint64_t async_flag;
1768 	int mnt_gen_r;
1769 
1770 	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
1771 		mnt_gen_r = mp->mnt_gen;
1772 		VI_LOCK(coveredvp);
1773 		vholdl(coveredvp);
1774 		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
1775 		/*
1776 		 * Check for mp being unmounted while waiting for the
1777 		 * covered vnode lock.
1778 		 */
1779 		if (coveredvp->v_mountedhere != mp ||
1780 		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
1781 			VOP_UNLOCK(coveredvp);
1782 			vdrop(coveredvp);
1783 			vfs_rel(mp);
1784 			return (EBUSY);
1785 		}
1786 	}
1787 
1788 	/*
1789 	 * Only privileged root, or (if MNT_USER is set) the user that did the
1790 	 * original mount is permitted to unmount this filesystem.
1791 	 */
1792 	error = vfs_suser(mp, td);
1793 	if (error != 0) {
1794 		if (coveredvp != NULL) {
1795 			VOP_UNLOCK(coveredvp);
1796 			vdrop(coveredvp);
1797 		}
1798 		vfs_rel(mp);
1799 		return (error);
1800 	}
1801 
1802 	vfs_op_enter(mp);
1803 
1804 	vn_start_write(NULL, &mp, V_WAIT | V_MNTREF);
1805 	MNT_ILOCK(mp);
1806 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
1807 	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
1808 	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
1809 		dounmount_cleanup(mp, coveredvp, 0);
1810 		return (EBUSY);
1811 	}
1812 	mp->mnt_kern_flag |= MNTK_UNMOUNT;
1813 	rootvp = vfs_cache_root_clear(mp);
1814 	if (coveredvp != NULL)
1815 		vn_seqc_write_begin(coveredvp);
1816 	if (flags & MNT_NONBUSY) {
1817 		MNT_IUNLOCK(mp);
1818 		error = vfs_check_usecounts(mp);
1819 		MNT_ILOCK(mp);
1820 		if (error != 0) {
1821 			vn_seqc_write_end(coveredvp);
1822 			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
1823 			if (rootvp != NULL) {
1824 				vn_seqc_write_end(rootvp);
1825 				vrele(rootvp);
1826 			}
1827 			return (error);
1828 		}
1829 	}
1830 	/* Allow filesystems to detect that a forced unmount is in progress. */
1831 	if (flags & MNT_FORCE) {
1832 		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
1833 		MNT_IUNLOCK(mp);
1834 		/*
1835 		 * Must be done after setting MNTK_UNMOUNTF and before
1836 		 * waiting for mnt_lockref to become 0.
1837 		 */
1838 		VFS_PURGE(mp);
1839 		MNT_ILOCK(mp);
1840 	}
1841 	error = 0;
1842 	if (mp->mnt_lockref) {
1843 		mp->mnt_kern_flag |= MNTK_DRAINING;
1844 		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
1845 		    "mount drain", 0);
1846 	}
1847 	MNT_IUNLOCK(mp);
1848 	KASSERT(mp->mnt_lockref == 0,
1849 	    ("%s: invalid lock refcount in the drain path @ %s:%d",
1850 	    __func__, __FILE__, __LINE__));
1851 	KASSERT(error == 0,
1852 	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
1853 	    __func__, __FILE__, __LINE__));
1854 
1855 	/*
1856 	 * We want to keep the vnode around so that we can vn_seqc_write_end
1857 	 * after we are done with unmount. Downgrade our reference to a mere
1858 	 * hold count so that we don't interefere with anything.
1859 	 */
1860 	if (rootvp != NULL) {
1861 		vhold(rootvp);
1862 		vrele(rootvp);
1863 	}
1864 
1865 	if (mp->mnt_flag & MNT_EXPUBLIC)
1866 		vfs_setpublicfs(NULL, NULL, NULL);
1867 
1868 	vfs_periodic(mp, MNT_WAIT);
1869 	MNT_ILOCK(mp);
1870 	async_flag = mp->mnt_flag & MNT_ASYNC;
1871 	mp->mnt_flag &= ~MNT_ASYNC;
1872 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
1873 	MNT_IUNLOCK(mp);
1874 	vfs_deallocate_syncvnode(mp);
1875 	error = VFS_UNMOUNT(mp, flags);
1876 	vn_finished_write(mp);
1877 	/*
1878 	 * If we failed to flush the dirty blocks for this mount point,
1879 	 * undo all the cdir/rdir and rootvnode changes we made above.
1880 	 * Unless we failed to do so because the device is reporting that
1881 	 * it doesn't exist anymore.
1882 	 */
1883 	if (error && error != ENXIO) {
1884 		MNT_ILOCK(mp);
1885 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1886 			MNT_IUNLOCK(mp);
1887 			vfs_allocate_syncvnode(mp);
1888 			MNT_ILOCK(mp);
1889 		}
1890 		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
1891 		mp->mnt_flag |= async_flag;
1892 		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1893 		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1894 			mp->mnt_kern_flag |= MNTK_ASYNC;
1895 		if (mp->mnt_kern_flag & MNTK_MWAIT) {
1896 			mp->mnt_kern_flag &= ~MNTK_MWAIT;
1897 			wakeup(mp);
1898 		}
1899 		vfs_op_exit_locked(mp);
1900 		MNT_IUNLOCK(mp);
1901 		if (coveredvp) {
1902 			vn_seqc_write_end(coveredvp);
1903 			VOP_UNLOCK(coveredvp);
1904 			vdrop(coveredvp);
1905 		}
1906 		if (rootvp != NULL) {
1907 			vn_seqc_write_end(rootvp);
1908 			vdrop(rootvp);
1909 		}
1910 		return (error);
1911 	}
1912 	mtx_lock(&mountlist_mtx);
1913 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
1914 	mtx_unlock(&mountlist_mtx);
1915 	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
1916 	if (coveredvp != NULL) {
1917 		VI_LOCK(coveredvp);
1918 		vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
1919 		coveredvp->v_mountedhere = NULL;
1920 		vn_seqc_write_end_locked(coveredvp);
1921 		VI_UNLOCK(coveredvp);
1922 		VOP_UNLOCK(coveredvp);
1923 		vdrop(coveredvp);
1924 	}
1925 	mount_devctl_event("UNMOUNT", mp, false);
1926 	if (rootvp != NULL) {
1927 		vn_seqc_write_end(rootvp);
1928 		vdrop(rootvp);
1929 	}
1930 	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
1931 	if (rootvnode != NULL && mp == rootvnode->v_mount) {
1932 		vrele(rootvnode);
1933 		rootvnode = NULL;
1934 	}
1935 	if (mp == rootdevmp)
1936 		rootdevmp = NULL;
1937 	vfs_mount_destroy(mp);
1938 	return (0);
1939 }
1940 
1941 /*
1942  * Report errors during filesystem mounting.
1943  */
1944 void
vfs_mount_error(struct mount * mp,const char * fmt,...)1945 vfs_mount_error(struct mount *mp, const char *fmt, ...)
1946 {
1947 	struct vfsoptlist *moptlist = mp->mnt_optnew;
1948 	va_list ap;
1949 	int error, len;
1950 	char *errmsg;
1951 
1952 	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
1953 	if (error || errmsg == NULL || len <= 0)
1954 		return;
1955 
1956 	va_start(ap, fmt);
1957 	vsnprintf(errmsg, (size_t)len, fmt, ap);
1958 	va_end(ap);
1959 }
1960 
1961 void
vfs_opterror(struct vfsoptlist * opts,const char * fmt,...)1962 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
1963 {
1964 	va_list ap;
1965 	int error, len;
1966 	char *errmsg;
1967 
1968 	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
1969 	if (error || errmsg == NULL || len <= 0)
1970 		return;
1971 
1972 	va_start(ap, fmt);
1973 	vsnprintf(errmsg, (size_t)len, fmt, ap);
1974 	va_end(ap);
1975 }
1976 
1977 /*
1978  * ---------------------------------------------------------------------
1979  * Functions for querying mount options/arguments from filesystems.
1980  */
1981 
1982 /*
1983  * Check that no unknown options are given
1984  */
1985 int
vfs_filteropt(struct vfsoptlist * opts,const char ** legal)1986 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
1987 {
1988 	struct vfsopt *opt;
1989 	char errmsg[255];
1990 	const char **t, *p, *q;
1991 	int ret = 0;
1992 
1993 	TAILQ_FOREACH(opt, opts, link) {
1994 		p = opt->name;
1995 		q = NULL;
1996 		if (p[0] == 'n' && p[1] == 'o')
1997 			q = p + 2;
1998 		for(t = global_opts; *t != NULL; t++) {
1999 			if (strcmp(*t, p) == 0)
2000 				break;
2001 			if (q != NULL) {
2002 				if (strcmp(*t, q) == 0)
2003 					break;
2004 			}
2005 		}
2006 		if (*t != NULL)
2007 			continue;
2008 		for(t = legal; *t != NULL; t++) {
2009 			if (strcmp(*t, p) == 0)
2010 				break;
2011 			if (q != NULL) {
2012 				if (strcmp(*t, q) == 0)
2013 					break;
2014 			}
2015 		}
2016 		if (*t != NULL)
2017 			continue;
2018 		snprintf(errmsg, sizeof(errmsg),
2019 		    "mount option <%s> is unknown", p);
2020 		ret = EINVAL;
2021 	}
2022 	if (ret != 0) {
2023 		TAILQ_FOREACH(opt, opts, link) {
2024 			if (strcmp(opt->name, "errmsg") == 0) {
2025 				strncpy((char *)opt->value, errmsg, opt->len);
2026 				break;
2027 			}
2028 		}
2029 		if (opt == NULL)
2030 			printf("%s\n", errmsg);
2031 	}
2032 	return (ret);
2033 }
2034 
2035 /*
2036  * Get a mount option by its name.
2037  *
2038  * Return 0 if the option was found, ENOENT otherwise.
2039  * If len is non-NULL it will be filled with the length
2040  * of the option. If buf is non-NULL, it will be filled
2041  * with the address of the option.
2042  */
2043 int
vfs_getopt(struct vfsoptlist * opts,const char * name,void ** buf,int * len)2044 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2045 {
2046 	struct vfsopt *opt;
2047 
2048 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2049 
2050 	TAILQ_FOREACH(opt, opts, link) {
2051 		if (strcmp(name, opt->name) == 0) {
2052 			opt->seen = 1;
2053 			if (len != NULL)
2054 				*len = opt->len;
2055 			if (buf != NULL)
2056 				*buf = opt->value;
2057 			return (0);
2058 		}
2059 	}
2060 	return (ENOENT);
2061 }
2062 
2063 int
vfs_getopt_pos(struct vfsoptlist * opts,const char * name)2064 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2065 {
2066 	struct vfsopt *opt;
2067 
2068 	if (opts == NULL)
2069 		return (-1);
2070 
2071 	TAILQ_FOREACH(opt, opts, link) {
2072 		if (strcmp(name, opt->name) == 0) {
2073 			opt->seen = 1;
2074 			return (opt->pos);
2075 		}
2076 	}
2077 	return (-1);
2078 }
2079 
2080 int
vfs_getopt_size(struct vfsoptlist * opts,const char * name,off_t * value)2081 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2082 {
2083 	char *opt_value, *vtp;
2084 	quad_t iv;
2085 	int error, opt_len;
2086 
2087 	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2088 	if (error != 0)
2089 		return (error);
2090 	if (opt_len == 0 || opt_value == NULL)
2091 		return (EINVAL);
2092 	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2093 		return (EINVAL);
2094 	iv = strtoq(opt_value, &vtp, 0);
2095 	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2096 		return (EINVAL);
2097 	if (iv < 0)
2098 		return (EINVAL);
2099 	switch (vtp[0]) {
2100 	case 't': case 'T':
2101 		iv *= 1024;
2102 		/* FALLTHROUGH */
2103 	case 'g': case 'G':
2104 		iv *= 1024;
2105 		/* FALLTHROUGH */
2106 	case 'm': case 'M':
2107 		iv *= 1024;
2108 		/* FALLTHROUGH */
2109 	case 'k': case 'K':
2110 		iv *= 1024;
2111 	case '\0':
2112 		break;
2113 	default:
2114 		return (EINVAL);
2115 	}
2116 	*value = iv;
2117 
2118 	return (0);
2119 }
2120 
2121 char *
vfs_getopts(struct vfsoptlist * opts,const char * name,int * error)2122 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2123 {
2124 	struct vfsopt *opt;
2125 
2126 	*error = 0;
2127 	TAILQ_FOREACH(opt, opts, link) {
2128 		if (strcmp(name, opt->name) != 0)
2129 			continue;
2130 		opt->seen = 1;
2131 		if (opt->len == 0 ||
2132 		    ((char *)opt->value)[opt->len - 1] != '\0') {
2133 			*error = EINVAL;
2134 			return (NULL);
2135 		}
2136 		return (opt->value);
2137 	}
2138 	*error = ENOENT;
2139 	return (NULL);
2140 }
2141 
2142 int
vfs_flagopt(struct vfsoptlist * opts,const char * name,uint64_t * w,uint64_t val)2143 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2144 	uint64_t val)
2145 {
2146 	struct vfsopt *opt;
2147 
2148 	TAILQ_FOREACH(opt, opts, link) {
2149 		if (strcmp(name, opt->name) == 0) {
2150 			opt->seen = 1;
2151 			if (w != NULL)
2152 				*w |= val;
2153 			return (1);
2154 		}
2155 	}
2156 	if (w != NULL)
2157 		*w &= ~val;
2158 	return (0);
2159 }
2160 
2161 int
vfs_scanopt(struct vfsoptlist * opts,const char * name,const char * fmt,...)2162 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2163 {
2164 	va_list ap;
2165 	struct vfsopt *opt;
2166 	int ret;
2167 
2168 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2169 
2170 	TAILQ_FOREACH(opt, opts, link) {
2171 		if (strcmp(name, opt->name) != 0)
2172 			continue;
2173 		opt->seen = 1;
2174 		if (opt->len == 0 || opt->value == NULL)
2175 			return (0);
2176 		if (((char *)opt->value)[opt->len - 1] != '\0')
2177 			return (0);
2178 		va_start(ap, fmt);
2179 		ret = vsscanf(opt->value, fmt, ap);
2180 		va_end(ap);
2181 		return (ret);
2182 	}
2183 	return (0);
2184 }
2185 
2186 int
vfs_setopt(struct vfsoptlist * opts,const char * name,void * value,int len)2187 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2188 {
2189 	struct vfsopt *opt;
2190 
2191 	TAILQ_FOREACH(opt, opts, link) {
2192 		if (strcmp(name, opt->name) != 0)
2193 			continue;
2194 		opt->seen = 1;
2195 		if (opt->value == NULL)
2196 			opt->len = len;
2197 		else {
2198 			if (opt->len != len)
2199 				return (EINVAL);
2200 			bcopy(value, opt->value, len);
2201 		}
2202 		return (0);
2203 	}
2204 	return (ENOENT);
2205 }
2206 
2207 int
vfs_setopt_part(struct vfsoptlist * opts,const char * name,void * value,int len)2208 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2209 {
2210 	struct vfsopt *opt;
2211 
2212 	TAILQ_FOREACH(opt, opts, link) {
2213 		if (strcmp(name, opt->name) != 0)
2214 			continue;
2215 		opt->seen = 1;
2216 		if (opt->value == NULL)
2217 			opt->len = len;
2218 		else {
2219 			if (opt->len < len)
2220 				return (EINVAL);
2221 			opt->len = len;
2222 			bcopy(value, opt->value, len);
2223 		}
2224 		return (0);
2225 	}
2226 	return (ENOENT);
2227 }
2228 
2229 int
vfs_setopts(struct vfsoptlist * opts,const char * name,const char * value)2230 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2231 {
2232 	struct vfsopt *opt;
2233 
2234 	TAILQ_FOREACH(opt, opts, link) {
2235 		if (strcmp(name, opt->name) != 0)
2236 			continue;
2237 		opt->seen = 1;
2238 		if (opt->value == NULL)
2239 			opt->len = strlen(value) + 1;
2240 		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2241 			return (EINVAL);
2242 		return (0);
2243 	}
2244 	return (ENOENT);
2245 }
2246 
2247 /*
2248  * Find and copy a mount option.
2249  *
2250  * The size of the buffer has to be specified
2251  * in len, if it is not the same length as the
2252  * mount option, EINVAL is returned.
2253  * Returns ENOENT if the option is not found.
2254  */
2255 int
vfs_copyopt(struct vfsoptlist * opts,const char * name,void * dest,int len)2256 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2257 {
2258 	struct vfsopt *opt;
2259 
2260 	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2261 
2262 	TAILQ_FOREACH(opt, opts, link) {
2263 		if (strcmp(name, opt->name) == 0) {
2264 			opt->seen = 1;
2265 			if (len != opt->len)
2266 				return (EINVAL);
2267 			bcopy(opt->value, dest, opt->len);
2268 			return (0);
2269 		}
2270 	}
2271 	return (ENOENT);
2272 }
2273 
2274 int
__vfs_statfs(struct mount * mp,struct statfs * sbp)2275 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2276 {
2277 
2278 	/*
2279 	 * Filesystems only fill in part of the structure for updates, we
2280 	 * have to read the entirety first to get all content.
2281 	 */
2282 	if (sbp != &mp->mnt_stat)
2283 		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2284 
2285 	/*
2286 	 * Set these in case the underlying filesystem fails to do so.
2287 	 */
2288 	sbp->f_version = STATFS_VERSION;
2289 	sbp->f_namemax = NAME_MAX;
2290 	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2291 
2292 	return (mp->mnt_op->vfs_statfs(mp, sbp));
2293 }
2294 
2295 void
vfs_mountedfrom(struct mount * mp,const char * from)2296 vfs_mountedfrom(struct mount *mp, const char *from)
2297 {
2298 
2299 	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2300 	strlcpy(mp->mnt_stat.f_mntfromname, from,
2301 	    sizeof mp->mnt_stat.f_mntfromname);
2302 }
2303 
2304 /*
2305  * ---------------------------------------------------------------------
2306  * This is the api for building mount args and mounting filesystems from
2307  * inside the kernel.
2308  *
2309  * The API works by accumulation of individual args.  First error is
2310  * latched.
2311  *
2312  * XXX: should be documented in new manpage kernel_mount(9)
2313  */
2314 
2315 /* A memory allocation which must be freed when we are done */
2316 struct mntaarg {
2317 	SLIST_ENTRY(mntaarg)	next;
2318 };
2319 
2320 /* The header for the mount arguments */
2321 struct mntarg {
2322 	struct iovec *v;
2323 	int len;
2324 	int error;
2325 	SLIST_HEAD(, mntaarg)	list;
2326 };
2327 
2328 /*
2329  * Add a boolean argument.
2330  *
2331  * flag is the boolean value.
2332  * name must start with "no".
2333  */
2334 struct mntarg *
mount_argb(struct mntarg * ma,int flag,const char * name)2335 mount_argb(struct mntarg *ma, int flag, const char *name)
2336 {
2337 
2338 	KASSERT(name[0] == 'n' && name[1] == 'o',
2339 	    ("mount_argb(...,%s): name must start with 'no'", name));
2340 
2341 	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2342 }
2343 
2344 /*
2345  * Add an argument printf style
2346  */
2347 struct mntarg *
mount_argf(struct mntarg * ma,const char * name,const char * fmt,...)2348 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2349 {
2350 	va_list ap;
2351 	struct mntaarg *maa;
2352 	struct sbuf *sb;
2353 	int len;
2354 
2355 	if (ma == NULL) {
2356 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2357 		SLIST_INIT(&ma->list);
2358 	}
2359 	if (ma->error)
2360 		return (ma);
2361 
2362 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2363 	    M_MOUNT, M_WAITOK);
2364 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2365 	ma->v[ma->len].iov_len = strlen(name) + 1;
2366 	ma->len++;
2367 
2368 	sb = sbuf_new_auto();
2369 	va_start(ap, fmt);
2370 	sbuf_vprintf(sb, fmt, ap);
2371 	va_end(ap);
2372 	sbuf_finish(sb);
2373 	len = sbuf_len(sb) + 1;
2374 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2375 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2376 	bcopy(sbuf_data(sb), maa + 1, len);
2377 	sbuf_delete(sb);
2378 
2379 	ma->v[ma->len].iov_base = maa + 1;
2380 	ma->v[ma->len].iov_len = len;
2381 	ma->len++;
2382 
2383 	return (ma);
2384 }
2385 
2386 /*
2387  * Add an argument which is a userland string.
2388  */
2389 struct mntarg *
mount_argsu(struct mntarg * ma,const char * name,const void * val,int len)2390 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2391 {
2392 	struct mntaarg *maa;
2393 	char *tbuf;
2394 
2395 	if (val == NULL)
2396 		return (ma);
2397 	if (ma == NULL) {
2398 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2399 		SLIST_INIT(&ma->list);
2400 	}
2401 	if (ma->error)
2402 		return (ma);
2403 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2404 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2405 	tbuf = (void *)(maa + 1);
2406 	ma->error = copyinstr(val, tbuf, len, NULL);
2407 	return (mount_arg(ma, name, tbuf, -1));
2408 }
2409 
2410 /*
2411  * Plain argument.
2412  *
2413  * If length is -1, treat value as a C string.
2414  */
2415 struct mntarg *
mount_arg(struct mntarg * ma,const char * name,const void * val,int len)2416 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2417 {
2418 
2419 	if (ma == NULL) {
2420 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2421 		SLIST_INIT(&ma->list);
2422 	}
2423 	if (ma->error)
2424 		return (ma);
2425 
2426 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2427 	    M_MOUNT, M_WAITOK);
2428 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2429 	ma->v[ma->len].iov_len = strlen(name) + 1;
2430 	ma->len++;
2431 
2432 	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2433 	if (len < 0)
2434 		ma->v[ma->len].iov_len = strlen(val) + 1;
2435 	else
2436 		ma->v[ma->len].iov_len = len;
2437 	ma->len++;
2438 	return (ma);
2439 }
2440 
2441 /*
2442  * Free a mntarg structure
2443  */
2444 static void
free_mntarg(struct mntarg * ma)2445 free_mntarg(struct mntarg *ma)
2446 {
2447 	struct mntaarg *maa;
2448 
2449 	while (!SLIST_EMPTY(&ma->list)) {
2450 		maa = SLIST_FIRST(&ma->list);
2451 		SLIST_REMOVE_HEAD(&ma->list, next);
2452 		free(maa, M_MOUNT);
2453 	}
2454 	free(ma->v, M_MOUNT);
2455 	free(ma, M_MOUNT);
2456 }
2457 
2458 /*
2459  * Mount a filesystem
2460  */
2461 int
kernel_mount(struct mntarg * ma,uint64_t flags)2462 kernel_mount(struct mntarg *ma, uint64_t flags)
2463 {
2464 	struct uio auio;
2465 	int error;
2466 
2467 	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2468 	KASSERT(ma->v != NULL, ("kernel_mount NULL ma->v"));
2469 	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2470 
2471 	auio.uio_iov = ma->v;
2472 	auio.uio_iovcnt = ma->len;
2473 	auio.uio_segflg = UIO_SYSSPACE;
2474 
2475 	error = ma->error;
2476 	if (!error)
2477 		error = vfs_donmount(curthread, flags, &auio);
2478 	free_mntarg(ma);
2479 	return (error);
2480 }
2481 
2482 /*
2483  * A printflike function to mount a filesystem.
2484  */
2485 int
kernel_vmount(int flags,...)2486 kernel_vmount(int flags, ...)
2487 {
2488 	struct mntarg *ma = NULL;
2489 	va_list ap;
2490 	const char *cp;
2491 	const void *vp;
2492 	int error;
2493 
2494 	va_start(ap, flags);
2495 	for (;;) {
2496 		cp = va_arg(ap, const char *);
2497 		if (cp == NULL)
2498 			break;
2499 		vp = va_arg(ap, const void *);
2500 		ma = mount_arg(ma, cp, vp, (vp != NULL ? -1 : 0));
2501 	}
2502 	va_end(ap);
2503 
2504 	error = kernel_mount(ma, flags);
2505 	return (error);
2506 }
2507 
2508 /* Map from mount options to printable formats. */
2509 static struct mntoptnames optnames[] = {
2510 	MNTOPT_NAMES
2511 };
2512 
2513 #define DEVCTL_LEN 1024
2514 static void
mount_devctl_event(const char * type,struct mount * mp,bool donew)2515 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2516 {
2517 	const uint8_t *cp;
2518 	struct mntoptnames *fp;
2519 	struct sbuf sb;
2520 	struct statfs *sfp = &mp->mnt_stat;
2521 	char *buf;
2522 
2523 	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2524 	if (buf == NULL)
2525 		return;
2526 	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2527 	sbuf_cpy(&sb, "mount-point=\"");
2528 	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2529 	sbuf_cat(&sb, "\" mount-dev=\"");
2530 	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2531 	sbuf_cat(&sb, "\" mount-type=\"");
2532 	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2533 	sbuf_cat(&sb, "\" fsid=0x");
2534 	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2535 	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2536 		sbuf_printf(&sb, "%02x", cp[i]);
2537 	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2538 	for (fp = optnames; fp->o_opt != 0; fp++) {
2539 		if ((mp->mnt_flag & fp->o_opt) != 0) {
2540 			sbuf_cat(&sb, fp->o_name);
2541 			sbuf_putc(&sb, ';');
2542 		}
2543 	}
2544 	sbuf_putc(&sb, '"');
2545 	sbuf_finish(&sb);
2546 
2547 	/*
2548 	 * Options are not published because the form of the options depends on
2549 	 * the file system and may include binary data. In addition, they don't
2550 	 * necessarily provide enough useful information to be actionable when
2551 	 * devd processes them.
2552 	 */
2553 
2554 	if (sbuf_error(&sb) == 0)
2555 		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2556 	sbuf_delete(&sb);
2557 	free(buf, M_MOUNT);
2558 }
2559 
2560 /*
2561  * Force remount specified mount point to read-only.  The argument
2562  * must be busied to avoid parallel unmount attempts.
2563  *
2564  * Intended use is to prevent further writes if some metadata
2565  * inconsistency is detected.  Note that the function still flushes
2566  * all cached metadata and data for the mount point, which might be
2567  * not always suitable.
2568  */
2569 int
vfs_remount_ro(struct mount * mp)2570 vfs_remount_ro(struct mount *mp)
2571 {
2572 	struct vfsoptlist *opts;
2573 	struct vfsopt *opt;
2574 	struct vnode *vp_covered, *rootvp;
2575 	int error;
2576 
2577 	KASSERT(mp->mnt_lockref > 0,
2578 	    ("vfs_remount_ro: mp %p is not busied", mp));
2579 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
2580 	    ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
2581 
2582 	rootvp = NULL;
2583 	vp_covered = mp->mnt_vnodecovered;
2584 	error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
2585 	if (error != 0)
2586 		return (error);
2587 	VI_LOCK(vp_covered);
2588 	if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
2589 		VI_UNLOCK(vp_covered);
2590 		vput(vp_covered);
2591 		return (EBUSY);
2592 	}
2593 	vp_covered->v_iflag |= VI_MOUNT;
2594 	VI_UNLOCK(vp_covered);
2595 	vfs_op_enter(mp);
2596 	vn_seqc_write_begin(vp_covered);
2597 
2598 	MNT_ILOCK(mp);
2599 	if ((mp->mnt_flag & MNT_RDONLY) != 0) {
2600 		MNT_IUNLOCK(mp);
2601 		error = EBUSY;
2602 		goto out;
2603 	}
2604 	mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
2605 	rootvp = vfs_cache_root_clear(mp);
2606 	MNT_IUNLOCK(mp);
2607 
2608 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
2609 	TAILQ_INIT(opts);
2610 	opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
2611 	opt->name = strdup("ro", M_MOUNT);
2612 	opt->value = NULL;
2613 	TAILQ_INSERT_TAIL(opts, opt, link);
2614 	vfs_mergeopts(opts, mp->mnt_opt);
2615 	mp->mnt_optnew = opts;
2616 
2617 	error = VFS_MOUNT(mp);
2618 
2619 	if (error == 0) {
2620 		MNT_ILOCK(mp);
2621 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
2622 		MNT_IUNLOCK(mp);
2623 		vfs_deallocate_syncvnode(mp);
2624 		if (mp->mnt_opt != NULL)
2625 			vfs_freeopts(mp->mnt_opt);
2626 		mp->mnt_opt = mp->mnt_optnew;
2627 	} else {
2628 		MNT_ILOCK(mp);
2629 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
2630 		MNT_IUNLOCK(mp);
2631 		vfs_freeopts(mp->mnt_optnew);
2632 	}
2633 	mp->mnt_optnew = NULL;
2634 
2635 out:
2636 	vfs_op_exit(mp);
2637 	VI_LOCK(vp_covered);
2638 	vp_covered->v_iflag &= ~VI_MOUNT;
2639 	VI_UNLOCK(vp_covered);
2640 	vput(vp_covered);
2641 	vn_seqc_write_end(vp_covered);
2642 	if (rootvp != NULL) {
2643 		vn_seqc_write_end(rootvp);
2644 		vrele(rootvp);
2645 	}
2646 	return (error);
2647 }
2648 
2649 /*
2650  * Suspend write operations on all local writeable filesystems.  Does
2651  * full sync of them in the process.
2652  *
2653  * Iterate over the mount points in reverse order, suspending most
2654  * recently mounted filesystems first.  It handles a case where a
2655  * filesystem mounted from a md(4) vnode-backed device should be
2656  * suspended before the filesystem that owns the vnode.
2657  */
2658 void
suspend_all_fs(void)2659 suspend_all_fs(void)
2660 {
2661 	struct mount *mp;
2662 	int error;
2663 
2664 	mtx_lock(&mountlist_mtx);
2665 	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
2666 		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
2667 		if (error != 0)
2668 			continue;
2669 		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
2670 		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2671 			mtx_lock(&mountlist_mtx);
2672 			vfs_unbusy(mp);
2673 			continue;
2674 		}
2675 		error = vfs_write_suspend(mp, 0);
2676 		if (error == 0) {
2677 			MNT_ILOCK(mp);
2678 			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
2679 			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
2680 			MNT_IUNLOCK(mp);
2681 			mtx_lock(&mountlist_mtx);
2682 		} else {
2683 			printf("suspend of %s failed, error %d\n",
2684 			    mp->mnt_stat.f_mntonname, error);
2685 			mtx_lock(&mountlist_mtx);
2686 			vfs_unbusy(mp);
2687 		}
2688 	}
2689 	mtx_unlock(&mountlist_mtx);
2690 }
2691 
2692 void
resume_all_fs(void)2693 resume_all_fs(void)
2694 {
2695 	struct mount *mp;
2696 
2697 	mtx_lock(&mountlist_mtx);
2698 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2699 		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
2700 			continue;
2701 		mtx_unlock(&mountlist_mtx);
2702 		MNT_ILOCK(mp);
2703 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
2704 		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
2705 		MNT_IUNLOCK(mp);
2706 		vfs_write_resume(mp, 0);
2707 		mtx_lock(&mountlist_mtx);
2708 		vfs_unbusy(mp);
2709 	}
2710 	mtx_unlock(&mountlist_mtx);
2711 }
2712