1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <[email protected]>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
41 #include <linux/blk-cgroup.h>
42 #endif
43 
44 typedef struct vdev_disk {
45 	struct block_device		*vd_bdev;
46 	krwlock_t			vd_lock;
47 } vdev_disk_t;
48 
49 /*
50  * Unique identifier for the exclusive vdev holder.
51  */
52 static void *zfs_vdev_holder = VDEV_HOLDER;
53 
54 /*
55  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
56  * device is missing. The missing path may be transient since the links
57  * can be briefly removed and recreated in response to udev events.
58  */
59 static unsigned zfs_vdev_open_timeout_ms = 1000;
60 
61 /*
62  * Size of the "reserved" partition, in blocks.
63  */
64 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
65 
66 /*
67  * Virtual device vector for disks.
68  */
69 typedef struct dio_request {
70 	zio_t			*dr_zio;	/* Parent ZIO */
71 	atomic_t		dr_ref;		/* References */
72 	int			dr_error;	/* Bio error */
73 	int			dr_bio_count;	/* Count of bio's */
74 	struct bio		*dr_bio[0];	/* Attached bio's */
75 } dio_request_t;
76 
77 static fmode_t
vdev_bdev_mode(spa_mode_t spa_mode)78 vdev_bdev_mode(spa_mode_t spa_mode)
79 {
80 	fmode_t mode = 0;
81 
82 	if (spa_mode & SPA_MODE_READ)
83 		mode |= FMODE_READ;
84 
85 	if (spa_mode & SPA_MODE_WRITE)
86 		mode |= FMODE_WRITE;
87 
88 	return (mode);
89 }
90 
91 /*
92  * Returns the usable capacity (in bytes) for the partition or disk.
93  */
94 static uint64_t
bdev_capacity(struct block_device * bdev)95 bdev_capacity(struct block_device *bdev)
96 {
97 	return (i_size_read(bdev->bd_inode));
98 }
99 
100 #if !defined(HAVE_BDEV_WHOLE)
101 static inline struct block_device *
bdev_whole(struct block_device * bdev)102 bdev_whole(struct block_device *bdev)
103 {
104 	return (bdev->bd_contains);
105 }
106 #endif
107 
108 /*
109  * Returns the maximum expansion capacity of the block device (in bytes).
110  *
111  * It is possible to expand a vdev when it has been created as a wholedisk
112  * and the containing block device has increased in capacity.  Or when the
113  * partition containing the pool has been manually increased in size.
114  *
115  * This function is only responsible for calculating the potential expansion
116  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
117  * responsible for verifying the expected partition layout in the wholedisk
118  * case, and updating the partition table if appropriate.  Once the partition
119  * size has been increased the additional capacity will be visible using
120  * bdev_capacity().
121  *
122  * The returned maximum expansion capacity is always expected to be larger, or
123  * at the very least equal, to its usable capacity to prevent overestimating
124  * the pool expandsize.
125  */
126 static uint64_t
bdev_max_capacity(struct block_device * bdev,uint64_t wholedisk)127 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
128 {
129 	uint64_t psize;
130 	int64_t available;
131 
132 	if (wholedisk && bdev != bdev_whole(bdev)) {
133 		/*
134 		 * When reporting maximum expansion capacity for a wholedisk
135 		 * deduct any capacity which is expected to be lost due to
136 		 * alignment restrictions.  Over reporting this value isn't
137 		 * harmful and would only result in slightly less capacity
138 		 * than expected post expansion.
139 		 * The estimated available space may be slightly smaller than
140 		 * bdev_capacity() for devices where the number of sectors is
141 		 * not a multiple of the alignment size and the partition layout
142 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
143 		 * "reserved" EFI partition: in such cases return the device
144 		 * usable capacity.
145 		 */
146 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
147 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
148 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
149 		psize = MAX(available, bdev_capacity(bdev));
150 	} else {
151 		psize = bdev_capacity(bdev);
152 	}
153 
154 	return (psize);
155 }
156 
157 static void
vdev_disk_error(zio_t * zio)158 vdev_disk_error(zio_t *zio)
159 {
160 	/*
161 	 * This function can be called in interrupt context, for instance while
162 	 * handling IRQs coming from a misbehaving disk device; use printk()
163 	 * which is safe from any context.
164 	 */
165 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
166 	    "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
167 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
168 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
169 	    zio->io_flags);
170 }
171 
172 static int
vdev_disk_open(vdev_t * v,uint64_t * psize,uint64_t * max_psize,uint64_t * logical_ashift,uint64_t * physical_ashift)173 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
174     uint64_t *logical_ashift, uint64_t *physical_ashift)
175 {
176 	struct block_device *bdev;
177 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
178 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
179 	vdev_disk_t *vd;
180 
181 	/* Must have a pathname and it must be absolute. */
182 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
183 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
184 		vdev_dbgmsg(v, "invalid vdev_path");
185 		return (SET_ERROR(EINVAL));
186 	}
187 
188 	/*
189 	 * Reopen the device if it is currently open.  When expanding a
190 	 * partition force re-scanning the partition table if userland
191 	 * did not take care of this already. We need to do this while closed
192 	 * in order to get an accurate updated block device size.  Then
193 	 * since udev may need to recreate the device links increase the
194 	 * open retry timeout before reporting the device as unavailable.
195 	 */
196 	vd = v->vdev_tsd;
197 	if (vd) {
198 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
199 		boolean_t reread_part = B_FALSE;
200 
201 		rw_enter(&vd->vd_lock, RW_WRITER);
202 		bdev = vd->vd_bdev;
203 		vd->vd_bdev = NULL;
204 
205 		if (bdev) {
206 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
207 				bdevname(bdev_whole(bdev), disk_name + 5);
208 				/*
209 				 * If userland has BLKPG_RESIZE_PARTITION,
210 				 * then it should have updated the partition
211 				 * table already. We can detect this by
212 				 * comparing our current physical size
213 				 * with that of the device. If they are
214 				 * the same, then we must not have
215 				 * BLKPG_RESIZE_PARTITION or it failed to
216 				 * update the partition table online. We
217 				 * fallback to rescanning the partition
218 				 * table from the kernel below. However,
219 				 * if the capacity already reflects the
220 				 * updated partition, then we skip
221 				 * rescanning the partition table here.
222 				 */
223 				if (v->vdev_psize == bdev_capacity(bdev))
224 					reread_part = B_TRUE;
225 			}
226 
227 			blkdev_put(bdev, mode | FMODE_EXCL);
228 		}
229 
230 		if (reread_part) {
231 			bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
232 			    zfs_vdev_holder);
233 			if (!IS_ERR(bdev)) {
234 				int error = vdev_bdev_reread_part(bdev);
235 				blkdev_put(bdev, mode | FMODE_EXCL);
236 				if (error == 0) {
237 					timeout = MSEC2NSEC(
238 					    zfs_vdev_open_timeout_ms * 2);
239 				}
240 			}
241 		}
242 	} else {
243 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
244 
245 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
246 		rw_enter(&vd->vd_lock, RW_WRITER);
247 	}
248 
249 	/*
250 	 * Devices are always opened by the path provided at configuration
251 	 * time.  This means that if the provided path is a udev by-id path
252 	 * then drives may be re-cabled without an issue.  If the provided
253 	 * path is a udev by-path path, then the physical location information
254 	 * will be preserved.  This can be critical for more complicated
255 	 * configurations where drives are located in specific physical
256 	 * locations to maximize the systems tolerance to component failure.
257 	 *
258 	 * Alternatively, you can provide your own udev rule to flexibly map
259 	 * the drives as you see fit.  It is not advised that you use the
260 	 * /dev/[hd]d devices which may be reordered due to probing order.
261 	 * Devices in the wrong locations will be detected by the higher
262 	 * level vdev validation.
263 	 *
264 	 * The specified paths may be briefly removed and recreated in
265 	 * response to udev events.  This should be exceptionally unlikely
266 	 * because the zpool command makes every effort to verify these paths
267 	 * have already settled prior to reaching this point.  Therefore,
268 	 * a ENOENT failure at this point is highly likely to be transient
269 	 * and it is reasonable to sleep and retry before giving up.  In
270 	 * practice delays have been observed to be on the order of 100ms.
271 	 *
272 	 * When ERESTARTSYS is returned it indicates the block device is
273 	 * a zvol which could not be opened due to the deadlock detection
274 	 * logic in zvol_open().  Extend the timeout and retry the open
275 	 * subsequent attempts are expected to eventually succeed.
276 	 */
277 	hrtime_t start = gethrtime();
278 	bdev = ERR_PTR(-ENXIO);
279 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
280 		bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
281 		    zfs_vdev_holder);
282 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
283 			schedule_timeout(MSEC_TO_TICK(10));
284 		} else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) {
285 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
286 			continue;
287 		} else if (IS_ERR(bdev)) {
288 			break;
289 		}
290 	}
291 
292 	if (IS_ERR(bdev)) {
293 		int error = -PTR_ERR(bdev);
294 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
295 		    (u_longlong_t)(gethrtime() - start),
296 		    (u_longlong_t)timeout);
297 		vd->vd_bdev = NULL;
298 		v->vdev_tsd = vd;
299 		rw_exit(&vd->vd_lock);
300 		return (SET_ERROR(error));
301 	} else {
302 		vd->vd_bdev = bdev;
303 		v->vdev_tsd = vd;
304 		rw_exit(&vd->vd_lock);
305 	}
306 
307 	struct request_queue *q = bdev_get_queue(vd->vd_bdev);
308 
309 	/*  Determine the physical block size */
310 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
311 
312 	/*  Determine the logical block size */
313 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
314 
315 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
316 	v->vdev_nowritecache = B_FALSE;
317 
318 	/* Set when device reports it supports TRIM. */
319 	v->vdev_has_trim = !!blk_queue_discard(q);
320 
321 	/* Set when device reports it supports secure TRIM. */
322 	v->vdev_has_securetrim = !!blk_queue_discard_secure(q);
323 
324 	/* Inform the ZIO pipeline that we are non-rotational */
325 	v->vdev_nonrot = blk_queue_nonrot(q);
326 
327 	/* Physical volume size in bytes for the partition */
328 	*psize = bdev_capacity(vd->vd_bdev);
329 
330 	/* Physical volume size in bytes including possible expansion space */
331 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
332 
333 	/* Based on the minimum sector size set the block size */
334 	*physical_ashift = highbit64(MAX(physical_block_size,
335 	    SPA_MINBLOCKSIZE)) - 1;
336 
337 	*logical_ashift = highbit64(MAX(logical_block_size,
338 	    SPA_MINBLOCKSIZE)) - 1;
339 
340 	return (0);
341 }
342 
343 static void
vdev_disk_close(vdev_t * v)344 vdev_disk_close(vdev_t *v)
345 {
346 	vdev_disk_t *vd = v->vdev_tsd;
347 
348 	if (v->vdev_reopening || vd == NULL)
349 		return;
350 
351 	if (vd->vd_bdev != NULL) {
352 		blkdev_put(vd->vd_bdev,
353 		    vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
354 	}
355 
356 	rw_destroy(&vd->vd_lock);
357 	kmem_free(vd, sizeof (vdev_disk_t));
358 	v->vdev_tsd = NULL;
359 }
360 
361 static dio_request_t *
vdev_disk_dio_alloc(int bio_count)362 vdev_disk_dio_alloc(int bio_count)
363 {
364 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
365 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
366 	atomic_set(&dr->dr_ref, 0);
367 	dr->dr_bio_count = bio_count;
368 	dr->dr_error = 0;
369 
370 	for (int i = 0; i < dr->dr_bio_count; i++)
371 		dr->dr_bio[i] = NULL;
372 
373 	return (dr);
374 }
375 
376 static void
vdev_disk_dio_free(dio_request_t * dr)377 vdev_disk_dio_free(dio_request_t *dr)
378 {
379 	int i;
380 
381 	for (i = 0; i < dr->dr_bio_count; i++)
382 		if (dr->dr_bio[i])
383 			bio_put(dr->dr_bio[i]);
384 
385 	kmem_free(dr, sizeof (dio_request_t) +
386 	    sizeof (struct bio *) * dr->dr_bio_count);
387 }
388 
389 static void
vdev_disk_dio_get(dio_request_t * dr)390 vdev_disk_dio_get(dio_request_t *dr)
391 {
392 	atomic_inc(&dr->dr_ref);
393 }
394 
395 static int
vdev_disk_dio_put(dio_request_t * dr)396 vdev_disk_dio_put(dio_request_t *dr)
397 {
398 	int rc = atomic_dec_return(&dr->dr_ref);
399 
400 	/*
401 	 * Free the dio_request when the last reference is dropped and
402 	 * ensure zio_interpret is called only once with the correct zio
403 	 */
404 	if (rc == 0) {
405 		zio_t *zio = dr->dr_zio;
406 		int error = dr->dr_error;
407 
408 		vdev_disk_dio_free(dr);
409 
410 		if (zio) {
411 			zio->io_error = error;
412 			ASSERT3S(zio->io_error, >=, 0);
413 			if (zio->io_error)
414 				vdev_disk_error(zio);
415 
416 			zio_delay_interrupt(zio);
417 		}
418 	}
419 
420 	return (rc);
421 }
422 
BIO_END_IO_PROTO(vdev_disk_physio_completion,bio,error)423 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
424 {
425 	dio_request_t *dr = bio->bi_private;
426 	int rc;
427 
428 	if (dr->dr_error == 0) {
429 #ifdef HAVE_1ARG_BIO_END_IO_T
430 		dr->dr_error = BIO_END_IO_ERROR(bio);
431 #else
432 		if (error)
433 			dr->dr_error = -(error);
434 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
435 			dr->dr_error = EIO;
436 #endif
437 	}
438 
439 	/* Drop reference acquired by __vdev_disk_physio */
440 	rc = vdev_disk_dio_put(dr);
441 }
442 
443 static inline void
vdev_submit_bio_impl(struct bio * bio)444 vdev_submit_bio_impl(struct bio *bio)
445 {
446 #ifdef HAVE_1ARG_SUBMIT_BIO
447 	(void) submit_bio(bio);
448 #else
449 	(void) submit_bio(bio_data_dir(bio), bio);
450 #endif
451 }
452 
453 /*
454  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
455  * replace it with preempt_schedule under the following condition:
456  */
457 #if defined(CONFIG_ARM64) && \
458     defined(CONFIG_PREEMPTION) && \
459     defined(CONFIG_BLK_CGROUP)
460 #define	preempt_schedule_notrace(x) preempt_schedule(x)
461 #endif
462 
463 #ifdef HAVE_BIO_SET_DEV
464 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
465 /*
466  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
467  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
468  * As a side effect the function was converted to GPL-only.  Define our
469  * own version when needed which uses rcu_read_lock_sched().
470  */
471 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY)
472 static inline bool
vdev_blkg_tryget(struct blkcg_gq * blkg)473 vdev_blkg_tryget(struct blkcg_gq *blkg)
474 {
475 	struct percpu_ref *ref = &blkg->refcnt;
476 	unsigned long __percpu *count;
477 	bool rc;
478 
479 	rcu_read_lock_sched();
480 
481 	if (__ref_is_percpu(ref, &count)) {
482 		this_cpu_inc(*count);
483 		rc = true;
484 	} else {
485 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
486 		rc = atomic_long_inc_not_zero(&ref->data->count);
487 #else
488 		rc = atomic_long_inc_not_zero(&ref->count);
489 #endif
490 	}
491 
492 	rcu_read_unlock_sched();
493 
494 	return (rc);
495 }
496 #elif defined(HAVE_BLKG_TRYGET)
497 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
498 #endif
499 #ifdef HAVE_BIO_SET_DEV_MACRO
500 /*
501  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
502  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
503  * the entire macro.  Provide a minimal version which always assigns the
504  * request queue's root_blkg to the bio.
505  */
506 static inline void
vdev_bio_associate_blkg(struct bio * bio)507 vdev_bio_associate_blkg(struct bio *bio)
508 {
509 #if defined(HAVE_BIO_BDEV_DISK)
510 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
511 #else
512 	struct request_queue *q = bio->bi_disk->queue;
513 #endif
514 
515 	ASSERT3P(q, !=, NULL);
516 	ASSERT3P(bio->bi_blkg, ==, NULL);
517 
518 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
519 		bio->bi_blkg = q->root_blkg;
520 }
521 
522 #define	bio_associate_blkg vdev_bio_associate_blkg
523 #else
524 static inline void
vdev_bio_set_dev(struct bio * bio,struct block_device * bdev)525 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
526 {
527 #if defined(HAVE_BIO_BDEV_DISK)
528 	struct request_queue *q = bdev->bd_disk->queue;
529 #else
530 	struct request_queue *q = bio->bi_disk->queue;
531 #endif
532 	bio_clear_flag(bio, BIO_REMAPPED);
533 	if (bio->bi_bdev != bdev)
534 		bio_clear_flag(bio, BIO_THROTTLED);
535 	bio->bi_bdev = bdev;
536 
537 	ASSERT3P(q, !=, NULL);
538 	ASSERT3P(bio->bi_blkg, ==, NULL);
539 
540 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
541 		bio->bi_blkg = q->root_blkg;
542 }
543 #define	bio_set_dev		vdev_bio_set_dev
544 #endif
545 #endif
546 #else
547 /*
548  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
549  */
550 static inline void
bio_set_dev(struct bio * bio,struct block_device * bdev)551 bio_set_dev(struct bio *bio, struct block_device *bdev)
552 {
553 	bio->bi_bdev = bdev;
554 }
555 #endif /* HAVE_BIO_SET_DEV */
556 
557 static inline void
vdev_submit_bio(struct bio * bio)558 vdev_submit_bio(struct bio *bio)
559 {
560 	struct bio_list *bio_list = current->bio_list;
561 	current->bio_list = NULL;
562 	vdev_submit_bio_impl(bio);
563 	current->bio_list = bio_list;
564 }
565 
566 static int
__vdev_disk_physio(struct block_device * bdev,zio_t * zio,size_t io_size,uint64_t io_offset,int rw,int flags)567 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
568     size_t io_size, uint64_t io_offset, int rw, int flags)
569 {
570 	dio_request_t *dr;
571 	uint64_t abd_offset;
572 	uint64_t bio_offset;
573 	int bio_size;
574 	int bio_count = 16;
575 	int error = 0;
576 	struct blk_plug plug;
577 
578 	/*
579 	 * Accessing outside the block device is never allowed.
580 	 */
581 	if (io_offset + io_size > bdev->bd_inode->i_size) {
582 		vdev_dbgmsg(zio->io_vd,
583 		    "Illegal access %llu size %llu, device size %llu",
584 		    io_offset, io_size, i_size_read(bdev->bd_inode));
585 		return (SET_ERROR(EIO));
586 	}
587 
588 retry:
589 	dr = vdev_disk_dio_alloc(bio_count);
590 
591 	if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
592 		bio_set_flags_failfast(bdev, &flags);
593 
594 	dr->dr_zio = zio;
595 
596 	/*
597 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
598 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
599 	 * can cover at least 128KB and at most 1MB.  When the required number
600 	 * of iovec's exceeds this, we are forced to break the IO in multiple
601 	 * bio's and wait for them all to complete.  This is likely if the
602 	 * recordsize property is increased beyond 1MB.  The default
603 	 * bio_count=16 should typically accommodate the maximum-size zio of
604 	 * 16MB.
605 	 */
606 
607 	abd_offset = 0;
608 	bio_offset = io_offset;
609 	bio_size = io_size;
610 	for (int i = 0; i <= dr->dr_bio_count; i++) {
611 
612 		/* Finished constructing bio's for given buffer */
613 		if (bio_size <= 0)
614 			break;
615 
616 		/*
617 		 * If additional bio's are required, we have to retry, but
618 		 * this should be rare - see the comment above.
619 		 */
620 		if (dr->dr_bio_count == i) {
621 			vdev_disk_dio_free(dr);
622 			bio_count *= 2;
623 			goto retry;
624 		}
625 
626 		/* bio_alloc() with __GFP_WAIT never returns NULL */
627 #ifdef HAVE_BIO_MAX_SEGS
628 		dr->dr_bio[i] = bio_alloc(GFP_NOIO, bio_max_segs(
629 		    abd_nr_pages_off(zio->io_abd, bio_size, abd_offset)));
630 #else
631 		dr->dr_bio[i] = bio_alloc(GFP_NOIO,
632 		    MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
633 		    BIO_MAX_PAGES));
634 #endif
635 		if (unlikely(dr->dr_bio[i] == NULL)) {
636 			vdev_disk_dio_free(dr);
637 			return (SET_ERROR(ENOMEM));
638 		}
639 
640 		/* Matching put called by vdev_disk_physio_completion */
641 		vdev_disk_dio_get(dr);
642 
643 		bio_set_dev(dr->dr_bio[i], bdev);
644 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
645 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
646 		dr->dr_bio[i]->bi_private = dr;
647 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
648 
649 		/* Remaining size is returned to become the new size */
650 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
651 		    bio_size, abd_offset);
652 
653 		/* Advance in buffer and construct another bio if needed */
654 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
655 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
656 	}
657 
658 	/* Extra reference to protect dio_request during vdev_submit_bio */
659 	vdev_disk_dio_get(dr);
660 
661 	if (dr->dr_bio_count > 1)
662 		blk_start_plug(&plug);
663 
664 	/* Submit all bio's associated with this dio */
665 	for (int i = 0; i < dr->dr_bio_count; i++) {
666 		if (dr->dr_bio[i])
667 			vdev_submit_bio(dr->dr_bio[i]);
668 	}
669 
670 	if (dr->dr_bio_count > 1)
671 		blk_finish_plug(&plug);
672 
673 	(void) vdev_disk_dio_put(dr);
674 
675 	return (error);
676 }
677 
BIO_END_IO_PROTO(vdev_disk_io_flush_completion,bio,error)678 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
679 {
680 	zio_t *zio = bio->bi_private;
681 #ifdef HAVE_1ARG_BIO_END_IO_T
682 	zio->io_error = BIO_END_IO_ERROR(bio);
683 #else
684 	zio->io_error = -error;
685 #endif
686 
687 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
688 		zio->io_vd->vdev_nowritecache = B_TRUE;
689 
690 	bio_put(bio);
691 	ASSERT3S(zio->io_error, >=, 0);
692 	if (zio->io_error)
693 		vdev_disk_error(zio);
694 	zio_interrupt(zio);
695 }
696 
697 static int
vdev_disk_io_flush(struct block_device * bdev,zio_t * zio)698 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
699 {
700 	struct request_queue *q;
701 	struct bio *bio;
702 
703 	q = bdev_get_queue(bdev);
704 	if (!q)
705 		return (SET_ERROR(ENXIO));
706 
707 	bio = bio_alloc(GFP_NOIO, 0);
708 	/* bio_alloc() with __GFP_WAIT never returns NULL */
709 	if (unlikely(bio == NULL))
710 		return (SET_ERROR(ENOMEM));
711 
712 	bio->bi_end_io = vdev_disk_io_flush_completion;
713 	bio->bi_private = zio;
714 	bio_set_dev(bio, bdev);
715 	bio_set_flush(bio);
716 	vdev_submit_bio(bio);
717 	invalidate_bdev(bdev);
718 
719 	return (0);
720 }
721 
722 static void
vdev_disk_io_start(zio_t * zio)723 vdev_disk_io_start(zio_t *zio)
724 {
725 	vdev_t *v = zio->io_vd;
726 	vdev_disk_t *vd = v->vdev_tsd;
727 	unsigned long trim_flags = 0;
728 	int rw, error;
729 
730 	/*
731 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
732 	 * Nothing to be done here but return failure.
733 	 */
734 	if (vd == NULL) {
735 		zio->io_error = ENXIO;
736 		zio_interrupt(zio);
737 		return;
738 	}
739 
740 	rw_enter(&vd->vd_lock, RW_READER);
741 
742 	/*
743 	 * If the vdev is closed, it's likely due to a failed reopen and is
744 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
745 	 */
746 	if (vd->vd_bdev == NULL) {
747 		rw_exit(&vd->vd_lock);
748 		zio->io_error = ENXIO;
749 		zio_interrupt(zio);
750 		return;
751 	}
752 
753 	switch (zio->io_type) {
754 	case ZIO_TYPE_IOCTL:
755 
756 		if (!vdev_readable(v)) {
757 			rw_exit(&vd->vd_lock);
758 			zio->io_error = SET_ERROR(ENXIO);
759 			zio_interrupt(zio);
760 			return;
761 		}
762 
763 		switch (zio->io_cmd) {
764 		case DKIOCFLUSHWRITECACHE:
765 
766 			if (zfs_nocacheflush)
767 				break;
768 
769 			if (v->vdev_nowritecache) {
770 				zio->io_error = SET_ERROR(ENOTSUP);
771 				break;
772 			}
773 
774 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
775 			if (error == 0) {
776 				rw_exit(&vd->vd_lock);
777 				return;
778 			}
779 
780 			zio->io_error = error;
781 
782 			break;
783 
784 		default:
785 			zio->io_error = SET_ERROR(ENOTSUP);
786 		}
787 
788 		rw_exit(&vd->vd_lock);
789 		zio_execute(zio);
790 		return;
791 	case ZIO_TYPE_WRITE:
792 		rw = WRITE;
793 		break;
794 
795 	case ZIO_TYPE_READ:
796 		rw = READ;
797 		break;
798 
799 	case ZIO_TYPE_TRIM:
800 #if defined(BLKDEV_DISCARD_SECURE)
801 		if (zio->io_trim_flags & ZIO_TRIM_SECURE)
802 			trim_flags |= BLKDEV_DISCARD_SECURE;
803 #endif
804 		zio->io_error = -blkdev_issue_discard(vd->vd_bdev,
805 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS,
806 		    trim_flags);
807 
808 		rw_exit(&vd->vd_lock);
809 		zio_interrupt(zio);
810 		return;
811 
812 	default:
813 		rw_exit(&vd->vd_lock);
814 		zio->io_error = SET_ERROR(ENOTSUP);
815 		zio_interrupt(zio);
816 		return;
817 	}
818 
819 	zio->io_target_timestamp = zio_handle_io_delay(zio);
820 	error = __vdev_disk_physio(vd->vd_bdev, zio,
821 	    zio->io_size, zio->io_offset, rw, 0);
822 	rw_exit(&vd->vd_lock);
823 
824 	if (error) {
825 		zio->io_error = error;
826 		zio_interrupt(zio);
827 		return;
828 	}
829 }
830 
831 static void
vdev_disk_io_done(zio_t * zio)832 vdev_disk_io_done(zio_t *zio)
833 {
834 	/*
835 	 * If the device returned EIO, we revalidate the media.  If it is
836 	 * determined the media has changed this triggers the asynchronous
837 	 * removal of the device from the configuration.
838 	 */
839 	if (zio->io_error == EIO) {
840 		vdev_t *v = zio->io_vd;
841 		vdev_disk_t *vd = v->vdev_tsd;
842 
843 		if (zfs_check_media_change(vd->vd_bdev)) {
844 			invalidate_bdev(vd->vd_bdev);
845 			v->vdev_remove_wanted = B_TRUE;
846 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
847 		}
848 	}
849 }
850 
851 static void
vdev_disk_hold(vdev_t * vd)852 vdev_disk_hold(vdev_t *vd)
853 {
854 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
855 
856 	/* We must have a pathname, and it must be absolute. */
857 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
858 		return;
859 
860 	/*
861 	 * Only prefetch path and devid info if the device has
862 	 * never been opened.
863 	 */
864 	if (vd->vdev_tsd != NULL)
865 		return;
866 
867 }
868 
869 static void
vdev_disk_rele(vdev_t * vd)870 vdev_disk_rele(vdev_t *vd)
871 {
872 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
873 
874 	/* XXX: Implement me as a vnode rele for the device */
875 }
876 
877 vdev_ops_t vdev_disk_ops = {
878 	.vdev_op_init = NULL,
879 	.vdev_op_fini = NULL,
880 	.vdev_op_open = vdev_disk_open,
881 	.vdev_op_close = vdev_disk_close,
882 	.vdev_op_asize = vdev_default_asize,
883 	.vdev_op_min_asize = vdev_default_min_asize,
884 	.vdev_op_min_alloc = NULL,
885 	.vdev_op_io_start = vdev_disk_io_start,
886 	.vdev_op_io_done = vdev_disk_io_done,
887 	.vdev_op_state_change = NULL,
888 	.vdev_op_need_resilver = NULL,
889 	.vdev_op_hold = vdev_disk_hold,
890 	.vdev_op_rele = vdev_disk_rele,
891 	.vdev_op_remap = NULL,
892 	.vdev_op_xlate = vdev_default_xlate,
893 	.vdev_op_rebuild_asize = NULL,
894 	.vdev_op_metaslab_init = NULL,
895 	.vdev_op_config_generate = NULL,
896 	.vdev_op_nparity = NULL,
897 	.vdev_op_ndisks = NULL,
898 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
899 	.vdev_op_leaf = B_TRUE			/* leaf vdev */
900 };
901 
902 /*
903  * The zfs_vdev_scheduler module option has been deprecated. Setting this
904  * value no longer has any effect.  It has not yet been entirely removed
905  * to allow the module to be loaded if this option is specified in the
906  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
907  */
908 static int
param_set_vdev_scheduler(const char * val,zfs_kernel_param_t * kp)909 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
910 {
911 	int error = param_set_charp(val, kp);
912 	if (error == 0) {
913 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
914 		    "is not supported.\n");
915 	}
916 
917 	return (error);
918 }
919 
920 char *zfs_vdev_scheduler = "unused";
921 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
922     param_get_charp, &zfs_vdev_scheduler, 0644);
923 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
924 
925 int
param_set_min_auto_ashift(const char * buf,zfs_kernel_param_t * kp)926 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
927 {
928 	uint64_t val;
929 	int error;
930 
931 	error = kstrtoull(buf, 0, &val);
932 	if (error < 0)
933 		return (SET_ERROR(error));
934 
935 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
936 		return (SET_ERROR(-EINVAL));
937 
938 	error = param_set_ulong(buf, kp);
939 	if (error < 0)
940 		return (SET_ERROR(error));
941 
942 	return (0);
943 }
944 
945 int
param_set_max_auto_ashift(const char * buf,zfs_kernel_param_t * kp)946 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
947 {
948 	uint64_t val;
949 	int error;
950 
951 	error = kstrtoull(buf, 0, &val);
952 	if (error < 0)
953 		return (SET_ERROR(error));
954 
955 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
956 		return (SET_ERROR(-EINVAL));
957 
958 	error = param_set_ulong(buf, kp);
959 	if (error < 0)
960 		return (SET_ERROR(error));
961 
962 	return (0);
963 }
964