1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
59
60 static kstat_t *dbuf_ksp;
61
62 typedef struct dbuf_stats {
63 /*
64 * Various statistics about the size of the dbuf cache.
65 */
66 kstat_named_t cache_count;
67 kstat_named_t cache_size_bytes;
68 kstat_named_t cache_size_bytes_max;
69 /*
70 * Statistics regarding the bounds on the dbuf cache size.
71 */
72 kstat_named_t cache_target_bytes;
73 kstat_named_t cache_lowater_bytes;
74 kstat_named_t cache_hiwater_bytes;
75 /*
76 * Total number of dbuf cache evictions that have occurred.
77 */
78 kstat_named_t cache_total_evicts;
79 /*
80 * The distribution of dbuf levels in the dbuf cache and
81 * the total size of all dbufs at each level.
82 */
83 kstat_named_t cache_levels[DN_MAX_LEVELS];
84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
85 /*
86 * Statistics about the dbuf hash table.
87 */
88 kstat_named_t hash_hits;
89 kstat_named_t hash_misses;
90 kstat_named_t hash_collisions;
91 kstat_named_t hash_elements;
92 kstat_named_t hash_elements_max;
93 /*
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
96 */
97 kstat_named_t hash_chains;
98 kstat_named_t hash_chain_max;
99 /*
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
102 */
103 kstat_named_t hash_insert_race;
104 /*
105 * Number of entries in the hash table dbuf and mutex arrays.
106 */
107 kstat_named_t hash_table_count;
108 kstat_named_t hash_mutex_count;
109 /*
110 * Statistics about the size of the metadata dbuf cache.
111 */
112 kstat_named_t metadata_cache_count;
113 kstat_named_t metadata_cache_size_bytes;
114 kstat_named_t metadata_cache_size_bytes_max;
115 /*
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
119 */
120 kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122
123 dbuf_stats_t dbuf_stats = {
124 { "cache_count", KSTAT_DATA_UINT64 },
125 { "cache_size_bytes", KSTAT_DATA_UINT64 },
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
127 { "cache_target_bytes", KSTAT_DATA_UINT64 },
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
130 { "cache_total_evicts", KSTAT_DATA_UINT64 },
131 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
133 { "hash_hits", KSTAT_DATA_UINT64 },
134 { "hash_misses", KSTAT_DATA_UINT64 },
135 { "hash_collisions", KSTAT_DATA_UINT64 },
136 { "hash_elements", KSTAT_DATA_UINT64 },
137 { "hash_elements_max", KSTAT_DATA_UINT64 },
138 { "hash_chains", KSTAT_DATA_UINT64 },
139 { "hash_chain_max", KSTAT_DATA_UINT64 },
140 { "hash_insert_race", KSTAT_DATA_UINT64 },
141 { "hash_table_count", KSTAT_DATA_UINT64 },
142 { "hash_mutex_count", KSTAT_DATA_UINT64 },
143 { "metadata_cache_count", KSTAT_DATA_UINT64 },
144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
147 };
148
149 struct {
150 wmsum_t cache_count;
151 wmsum_t cache_total_evicts;
152 wmsum_t cache_levels[DN_MAX_LEVELS];
153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
154 wmsum_t hash_hits;
155 wmsum_t hash_misses;
156 wmsum_t hash_collisions;
157 wmsum_t hash_chains;
158 wmsum_t hash_insert_race;
159 wmsum_t metadata_cache_count;
160 wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val)
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val))
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1)
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1)
171 #define DBUF_STAT_MAX(stat, v) { \
172 uint64_t _m; \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 continue; \
176 }
177
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180
181 /*
182 * Global data structures and functions for the dbuf cache.
183 */
184 static kmem_cache_t *dbuf_kmem_cache;
185 static taskq_t *dbu_evict_taskq;
186
187 static kthread_t *dbuf_cache_evict_thread;
188 static kmutex_t dbuf_evict_lock;
189 static kcondvar_t dbuf_evict_cv;
190 static boolean_t dbuf_evict_thread_exit;
191
192 /*
193 * There are two dbuf caches; each dbuf can only be in one of them at a time.
194 *
195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
197 * that represent the metadata that describes filesystems/snapshots/
198 * bookmarks/properties/etc. We only evict from this cache when we export a
199 * pool, to short-circuit as much I/O as possible for all administrative
200 * commands that need the metadata. There is no eviction policy for this
201 * cache, because we try to only include types in it which would occupy a
202 * very small amount of space per object but create a large impact on the
203 * performance of these commands. Instead, after it reaches a maximum size
204 * (which should only happen on very small memory systems with a very large
205 * number of filesystem objects), we stop taking new dbufs into the
206 * metadata cache, instead putting them in the normal dbuf cache.
207 *
208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
209 * are not currently held but have been recently released. These dbufs
210 * are not eligible for arc eviction until they are aged out of the cache.
211 * Dbufs that are aged out of the cache will be immediately destroyed and
212 * become eligible for arc eviction.
213 *
214 * Dbufs are added to these caches once the last hold is released. If a dbuf is
215 * later accessed and still exists in the dbuf cache, then it will be removed
216 * from the cache and later re-added to the head of the cache.
217 *
218 * If a given dbuf meets the requirements for the metadata cache, it will go
219 * there, otherwise it will be considered for the generic LRU dbuf cache. The
220 * caches and the refcounts tracking their sizes are stored in an array indexed
221 * by those caches' matching enum values (from dbuf_cached_state_t).
222 */
223 typedef struct dbuf_cache {
224 multilist_t cache;
225 zfs_refcount_t size ____cacheline_aligned;
226 } dbuf_cache_t;
227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
228
229 /* Size limits for the caches */
230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
232
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 static uint_t dbuf_cache_shift = 5;
235 static uint_t dbuf_metadata_cache_shift = 6;
236
237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
238 static uint_t dbuf_mutex_cache_shift = 0;
239
240 static unsigned long dbuf_cache_target_bytes(void);
241 static unsigned long dbuf_metadata_cache_target_bytes(void);
242
243 /*
244 * The LRU dbuf cache uses a three-stage eviction policy:
245 * - A low water marker designates when the dbuf eviction thread
246 * should stop evicting from the dbuf cache.
247 * - When we reach the maximum size (aka mid water mark), we
248 * signal the eviction thread to run.
249 * - The high water mark indicates when the eviction thread
250 * is unable to keep up with the incoming load and eviction must
251 * happen in the context of the calling thread.
252 *
253 * The dbuf cache:
254 * (max size)
255 * low water mid water hi water
256 * +----------------------------------------+----------+----------+
257 * | | | |
258 * | | | |
259 * | | | |
260 * | | | |
261 * +----------------------------------------+----------+----------+
262 * stop signal evict
263 * evicting eviction directly
264 * thread
265 *
266 * The high and low water marks indicate the operating range for the eviction
267 * thread. The low water mark is, by default, 90% of the total size of the
268 * cache and the high water mark is at 110% (both of these percentages can be
269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
270 * respectively). The eviction thread will try to ensure that the cache remains
271 * within this range by waking up every second and checking if the cache is
272 * above the low water mark. The thread can also be woken up by callers adding
273 * elements into the cache if the cache is larger than the mid water (i.e max
274 * cache size). Once the eviction thread is woken up and eviction is required,
275 * it will continue evicting buffers until it's able to reduce the cache size
276 * to the low water mark. If the cache size continues to grow and hits the high
277 * water mark, then callers adding elements to the cache will begin to evict
278 * directly from the cache until the cache is no longer above the high water
279 * mark.
280 */
281
282 /*
283 * The percentage above and below the maximum cache size.
284 */
285 static uint_t dbuf_cache_hiwater_pct = 10;
286 static uint_t dbuf_cache_lowater_pct = 10;
287
288 static int
dbuf_cons(void * vdb,void * unused,int kmflag)289 dbuf_cons(void *vdb, void *unused, int kmflag)
290 {
291 (void) unused, (void) kmflag;
292 dmu_buf_impl_t *db = vdb;
293 memset(db, 0, sizeof (dmu_buf_impl_t));
294
295 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
296 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
298 multilist_link_init(&db->db_cache_link);
299 zfs_refcount_create(&db->db_holds);
300
301 return (0);
302 }
303
304 static void
dbuf_dest(void * vdb,void * unused)305 dbuf_dest(void *vdb, void *unused)
306 {
307 (void) unused;
308 dmu_buf_impl_t *db = vdb;
309 mutex_destroy(&db->db_mtx);
310 rw_destroy(&db->db_rwlock);
311 cv_destroy(&db->db_changed);
312 ASSERT(!multilist_link_active(&db->db_cache_link));
313 zfs_refcount_destroy(&db->db_holds);
314 }
315
316 /*
317 * dbuf hash table routines
318 */
319 static dbuf_hash_table_t dbuf_hash_table;
320
321 /*
322 * We use Cityhash for this. It's fast, and has good hash properties without
323 * requiring any large static buffers.
324 */
325 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
327 {
328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
329 }
330
331 #define DTRACE_SET_STATE(db, why) \
332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
333 const char *, why)
334
335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
336 ((dbuf)->db.db_object == (obj) && \
337 (dbuf)->db_objset == (os) && \
338 (dbuf)->db_level == (level) && \
339 (dbuf)->db_blkid == (blkid))
340
341 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid,uint64_t * hash_out)342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
343 uint64_t *hash_out)
344 {
345 dbuf_hash_table_t *h = &dbuf_hash_table;
346 uint64_t hv;
347 uint64_t idx;
348 dmu_buf_impl_t *db;
349
350 hv = dbuf_hash(os, obj, level, blkid);
351 idx = hv & h->hash_table_mask;
352
353 mutex_enter(DBUF_HASH_MUTEX(h, idx));
354 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
355 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
356 mutex_enter(&db->db_mtx);
357 if (db->db_state != DB_EVICTING) {
358 mutex_exit(DBUF_HASH_MUTEX(h, idx));
359 return (db);
360 }
361 mutex_exit(&db->db_mtx);
362 }
363 }
364 mutex_exit(DBUF_HASH_MUTEX(h, idx));
365 if (hash_out != NULL)
366 *hash_out = hv;
367 return (NULL);
368 }
369
370 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)371 dbuf_find_bonus(objset_t *os, uint64_t object)
372 {
373 dnode_t *dn;
374 dmu_buf_impl_t *db = NULL;
375
376 if (dnode_hold(os, object, FTAG, &dn) == 0) {
377 rw_enter(&dn->dn_struct_rwlock, RW_READER);
378 if (dn->dn_bonus != NULL) {
379 db = dn->dn_bonus;
380 mutex_enter(&db->db_mtx);
381 }
382 rw_exit(&dn->dn_struct_rwlock);
383 dnode_rele(dn, FTAG);
384 }
385 return (db);
386 }
387
388 /*
389 * Insert an entry into the hash table. If there is already an element
390 * equal to elem in the hash table, then the already existing element
391 * will be returned and the new element will not be inserted.
392 * Otherwise returns NULL.
393 */
394 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)395 dbuf_hash_insert(dmu_buf_impl_t *db)
396 {
397 dbuf_hash_table_t *h = &dbuf_hash_table;
398 objset_t *os = db->db_objset;
399 uint64_t obj = db->db.db_object;
400 int level = db->db_level;
401 uint64_t blkid, idx;
402 dmu_buf_impl_t *dbf;
403 uint32_t i;
404
405 blkid = db->db_blkid;
406 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
407 idx = db->db_hash & h->hash_table_mask;
408
409 mutex_enter(DBUF_HASH_MUTEX(h, idx));
410 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
411 dbf = dbf->db_hash_next, i++) {
412 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
413 mutex_enter(&dbf->db_mtx);
414 if (dbf->db_state != DB_EVICTING) {
415 mutex_exit(DBUF_HASH_MUTEX(h, idx));
416 return (dbf);
417 }
418 mutex_exit(&dbf->db_mtx);
419 }
420 }
421
422 if (i > 0) {
423 DBUF_STAT_BUMP(hash_collisions);
424 if (i == 1)
425 DBUF_STAT_BUMP(hash_chains);
426
427 DBUF_STAT_MAX(hash_chain_max, i);
428 }
429
430 mutex_enter(&db->db_mtx);
431 db->db_hash_next = h->hash_table[idx];
432 h->hash_table[idx] = db;
433 mutex_exit(DBUF_HASH_MUTEX(h, idx));
434 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
435 DBUF_STAT_MAX(hash_elements_max, he);
436
437 return (NULL);
438 }
439
440 /*
441 * This returns whether this dbuf should be stored in the metadata cache, which
442 * is based on whether it's from one of the dnode types that store data related
443 * to traversing dataset hierarchies.
444 */
445 static boolean_t
dbuf_include_in_metadata_cache(dmu_buf_impl_t * db)446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447 {
448 DB_DNODE_ENTER(db);
449 dmu_object_type_t type = DB_DNODE(db)->dn_type;
450 DB_DNODE_EXIT(db);
451
452 /* Check if this dbuf is one of the types we care about */
453 if (DMU_OT_IS_METADATA_CACHED(type)) {
454 /* If we hit this, then we set something up wrong in dmu_ot */
455 ASSERT(DMU_OT_IS_METADATA(type));
456
457 /*
458 * Sanity check for small-memory systems: don't allocate too
459 * much memory for this purpose.
460 */
461 if (zfs_refcount_count(
462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
463 dbuf_metadata_cache_target_bytes()) {
464 DBUF_STAT_BUMP(metadata_cache_overflow);
465 return (B_FALSE);
466 }
467
468 return (B_TRUE);
469 }
470
471 return (B_FALSE);
472 }
473
474 /*
475 * Remove an entry from the hash table. It must be in the EVICTING state.
476 */
477 static void
dbuf_hash_remove(dmu_buf_impl_t * db)478 dbuf_hash_remove(dmu_buf_impl_t *db)
479 {
480 dbuf_hash_table_t *h = &dbuf_hash_table;
481 uint64_t idx;
482 dmu_buf_impl_t *dbf, **dbp;
483
484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
485 db->db_blkid), ==, db->db_hash);
486 idx = db->db_hash & h->hash_table_mask;
487
488 /*
489 * We mustn't hold db_mtx to maintain lock ordering:
490 * DBUF_HASH_MUTEX > db_mtx.
491 */
492 ASSERT(zfs_refcount_is_zero(&db->db_holds));
493 ASSERT(db->db_state == DB_EVICTING);
494 ASSERT(!MUTEX_HELD(&db->db_mtx));
495
496 mutex_enter(DBUF_HASH_MUTEX(h, idx));
497 dbp = &h->hash_table[idx];
498 while ((dbf = *dbp) != db) {
499 dbp = &dbf->db_hash_next;
500 ASSERT(dbf != NULL);
501 }
502 *dbp = db->db_hash_next;
503 db->db_hash_next = NULL;
504 if (h->hash_table[idx] &&
505 h->hash_table[idx]->db_hash_next == NULL)
506 DBUF_STAT_BUMPDOWN(hash_chains);
507 mutex_exit(DBUF_HASH_MUTEX(h, idx));
508 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
509 }
510
511 typedef enum {
512 DBVU_EVICTING,
513 DBVU_NOT_EVICTING
514 } dbvu_verify_type_t;
515
516 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
518 {
519 #ifdef ZFS_DEBUG
520 int64_t holds;
521
522 if (db->db_user == NULL)
523 return;
524
525 /* Only data blocks support the attachment of user data. */
526 ASSERT(db->db_level == 0);
527
528 /* Clients must resolve a dbuf before attaching user data. */
529 ASSERT(db->db.db_data != NULL);
530 ASSERT3U(db->db_state, ==, DB_CACHED);
531
532 holds = zfs_refcount_count(&db->db_holds);
533 if (verify_type == DBVU_EVICTING) {
534 /*
535 * Immediate eviction occurs when holds == dirtycnt.
536 * For normal eviction buffers, holds is zero on
537 * eviction, except when dbuf_fix_old_data() calls
538 * dbuf_clear_data(). However, the hold count can grow
539 * during eviction even though db_mtx is held (see
540 * dmu_bonus_hold() for an example), so we can only
541 * test the generic invariant that holds >= dirtycnt.
542 */
543 ASSERT3U(holds, >=, db->db_dirtycnt);
544 } else {
545 if (db->db_user_immediate_evict == TRUE)
546 ASSERT3U(holds, >=, db->db_dirtycnt);
547 else
548 ASSERT3U(holds, >, 0);
549 }
550 #endif
551 }
552
553 static void
dbuf_evict_user(dmu_buf_impl_t * db)554 dbuf_evict_user(dmu_buf_impl_t *db)
555 {
556 dmu_buf_user_t *dbu = db->db_user;
557
558 ASSERT(MUTEX_HELD(&db->db_mtx));
559
560 if (dbu == NULL)
561 return;
562
563 dbuf_verify_user(db, DBVU_EVICTING);
564 db->db_user = NULL;
565
566 #ifdef ZFS_DEBUG
567 if (dbu->dbu_clear_on_evict_dbufp != NULL)
568 *dbu->dbu_clear_on_evict_dbufp = NULL;
569 #endif
570
571 /*
572 * There are two eviction callbacks - one that we call synchronously
573 * and one that we invoke via a taskq. The async one is useful for
574 * avoiding lock order reversals and limiting stack depth.
575 *
576 * Note that if we have a sync callback but no async callback,
577 * it's likely that the sync callback will free the structure
578 * containing the dbu. In that case we need to take care to not
579 * dereference dbu after calling the sync evict func.
580 */
581 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
582
583 if (dbu->dbu_evict_func_sync != NULL)
584 dbu->dbu_evict_func_sync(dbu);
585
586 if (has_async) {
587 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
588 dbu, 0, &dbu->dbu_tqent);
589 }
590 }
591
592 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)593 dbuf_is_metadata(dmu_buf_impl_t *db)
594 {
595 /*
596 * Consider indirect blocks and spill blocks to be meta data.
597 */
598 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
599 return (B_TRUE);
600 } else {
601 boolean_t is_metadata;
602
603 DB_DNODE_ENTER(db);
604 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
605 DB_DNODE_EXIT(db);
606
607 return (is_metadata);
608 }
609 }
610
611 /*
612 * We want to exclude buffers that are on a special allocation class from
613 * L2ARC.
614 */
615 boolean_t
dbuf_is_l2cacheable(dmu_buf_impl_t * db)616 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
617 {
618 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
619 (db->db_objset->os_secondary_cache ==
620 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
621 if (l2arc_exclude_special == 0)
622 return (B_TRUE);
623
624 blkptr_t *bp = db->db_blkptr;
625 if (bp == NULL || BP_IS_HOLE(bp))
626 return (B_FALSE);
627 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
628 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
629 vdev_t *vd = NULL;
630
631 if (vdev < rvd->vdev_children)
632 vd = rvd->vdev_child[vdev];
633
634 if (vd == NULL)
635 return (B_TRUE);
636
637 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
638 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
639 return (B_TRUE);
640 }
641 return (B_FALSE);
642 }
643
644 static inline boolean_t
dnode_level_is_l2cacheable(blkptr_t * bp,dnode_t * dn,int64_t level)645 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
646 {
647 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
648 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
649 (level > 0 ||
650 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
651 if (l2arc_exclude_special == 0)
652 return (B_TRUE);
653
654 if (bp == NULL || BP_IS_HOLE(bp))
655 return (B_FALSE);
656 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
657 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
658 vdev_t *vd = NULL;
659
660 if (vdev < rvd->vdev_children)
661 vd = rvd->vdev_child[vdev];
662
663 if (vd == NULL)
664 return (B_TRUE);
665
666 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
667 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
668 return (B_TRUE);
669 }
670 return (B_FALSE);
671 }
672
673
674 /*
675 * This function *must* return indices evenly distributed between all
676 * sublists of the multilist. This is needed due to how the dbuf eviction
677 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
678 * distributed between all sublists and uses this assumption when
679 * deciding which sublist to evict from and how much to evict from it.
680 */
681 static unsigned int
dbuf_cache_multilist_index_func(multilist_t * ml,void * obj)682 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
683 {
684 dmu_buf_impl_t *db = obj;
685
686 /*
687 * The assumption here, is the hash value for a given
688 * dmu_buf_impl_t will remain constant throughout it's lifetime
689 * (i.e. it's objset, object, level and blkid fields don't change).
690 * Thus, we don't need to store the dbuf's sublist index
691 * on insertion, as this index can be recalculated on removal.
692 *
693 * Also, the low order bits of the hash value are thought to be
694 * distributed evenly. Otherwise, in the case that the multilist
695 * has a power of two number of sublists, each sublists' usage
696 * would not be evenly distributed. In this context full 64bit
697 * division would be a waste of time, so limit it to 32 bits.
698 */
699 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
700 db->db_level, db->db_blkid) %
701 multilist_get_num_sublists(ml));
702 }
703
704 /*
705 * The target size of the dbuf cache can grow with the ARC target,
706 * unless limited by the tunable dbuf_cache_max_bytes.
707 */
708 static inline unsigned long
dbuf_cache_target_bytes(void)709 dbuf_cache_target_bytes(void)
710 {
711 return (MIN(dbuf_cache_max_bytes,
712 arc_target_bytes() >> dbuf_cache_shift));
713 }
714
715 /*
716 * The target size of the dbuf metadata cache can grow with the ARC target,
717 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
718 */
719 static inline unsigned long
dbuf_metadata_cache_target_bytes(void)720 dbuf_metadata_cache_target_bytes(void)
721 {
722 return (MIN(dbuf_metadata_cache_max_bytes,
723 arc_target_bytes() >> dbuf_metadata_cache_shift));
724 }
725
726 static inline uint64_t
dbuf_cache_hiwater_bytes(void)727 dbuf_cache_hiwater_bytes(void)
728 {
729 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
730 return (dbuf_cache_target +
731 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
732 }
733
734 static inline uint64_t
dbuf_cache_lowater_bytes(void)735 dbuf_cache_lowater_bytes(void)
736 {
737 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
738 return (dbuf_cache_target -
739 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
740 }
741
742 static inline boolean_t
dbuf_cache_above_lowater(void)743 dbuf_cache_above_lowater(void)
744 {
745 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
746 dbuf_cache_lowater_bytes());
747 }
748
749 /*
750 * Evict the oldest eligible dbuf from the dbuf cache.
751 */
752 static void
dbuf_evict_one(void)753 dbuf_evict_one(void)
754 {
755 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
756 multilist_sublist_t *mls = multilist_sublist_lock_idx(
757 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
758
759 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
760
761 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
762 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
763 db = multilist_sublist_prev(mls, db);
764 }
765
766 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
767 multilist_sublist_t *, mls);
768
769 if (db != NULL) {
770 multilist_sublist_remove(mls, db);
771 multilist_sublist_unlock(mls);
772 (void) zfs_refcount_remove_many(
773 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
774 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
775 DBUF_STAT_BUMPDOWN(cache_count);
776 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
777 db->db.db_size);
778 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
779 db->db_caching_status = DB_NO_CACHE;
780 dbuf_destroy(db);
781 DBUF_STAT_BUMP(cache_total_evicts);
782 } else {
783 multilist_sublist_unlock(mls);
784 }
785 }
786
787 /*
788 * The dbuf evict thread is responsible for aging out dbufs from the
789 * cache. Once the cache has reached it's maximum size, dbufs are removed
790 * and destroyed. The eviction thread will continue running until the size
791 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
792 * out of the cache it is destroyed and becomes eligible for arc eviction.
793 */
794 static __attribute__((noreturn)) void
dbuf_evict_thread(void * unused)795 dbuf_evict_thread(void *unused)
796 {
797 (void) unused;
798 callb_cpr_t cpr;
799
800 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
801
802 mutex_enter(&dbuf_evict_lock);
803 while (!dbuf_evict_thread_exit) {
804 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
805 CALLB_CPR_SAFE_BEGIN(&cpr);
806 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
807 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
808 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
809 }
810 mutex_exit(&dbuf_evict_lock);
811
812 /*
813 * Keep evicting as long as we're above the low water mark
814 * for the cache. We do this without holding the locks to
815 * minimize lock contention.
816 */
817 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
818 dbuf_evict_one();
819 }
820
821 mutex_enter(&dbuf_evict_lock);
822 }
823
824 dbuf_evict_thread_exit = B_FALSE;
825 cv_broadcast(&dbuf_evict_cv);
826 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
827 thread_exit();
828 }
829
830 /*
831 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
832 * If the dbuf cache is at its high water mark, then evict a dbuf from the
833 * dbuf cache using the caller's context.
834 */
835 static void
dbuf_evict_notify(uint64_t size)836 dbuf_evict_notify(uint64_t size)
837 {
838 /*
839 * We check if we should evict without holding the dbuf_evict_lock,
840 * because it's OK to occasionally make the wrong decision here,
841 * and grabbing the lock results in massive lock contention.
842 */
843 if (size > dbuf_cache_target_bytes()) {
844 if (size > dbuf_cache_hiwater_bytes())
845 dbuf_evict_one();
846 cv_signal(&dbuf_evict_cv);
847 }
848 }
849
850 static int
dbuf_kstat_update(kstat_t * ksp,int rw)851 dbuf_kstat_update(kstat_t *ksp, int rw)
852 {
853 dbuf_stats_t *ds = ksp->ks_data;
854 dbuf_hash_table_t *h = &dbuf_hash_table;
855
856 if (rw == KSTAT_WRITE)
857 return (SET_ERROR(EACCES));
858
859 ds->cache_count.value.ui64 =
860 wmsum_value(&dbuf_sums.cache_count);
861 ds->cache_size_bytes.value.ui64 =
862 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
863 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
864 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
865 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
866 ds->cache_total_evicts.value.ui64 =
867 wmsum_value(&dbuf_sums.cache_total_evicts);
868 for (int i = 0; i < DN_MAX_LEVELS; i++) {
869 ds->cache_levels[i].value.ui64 =
870 wmsum_value(&dbuf_sums.cache_levels[i]);
871 ds->cache_levels_bytes[i].value.ui64 =
872 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
873 }
874 ds->hash_hits.value.ui64 =
875 wmsum_value(&dbuf_sums.hash_hits);
876 ds->hash_misses.value.ui64 =
877 wmsum_value(&dbuf_sums.hash_misses);
878 ds->hash_collisions.value.ui64 =
879 wmsum_value(&dbuf_sums.hash_collisions);
880 ds->hash_chains.value.ui64 =
881 wmsum_value(&dbuf_sums.hash_chains);
882 ds->hash_insert_race.value.ui64 =
883 wmsum_value(&dbuf_sums.hash_insert_race);
884 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
885 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
886 ds->metadata_cache_count.value.ui64 =
887 wmsum_value(&dbuf_sums.metadata_cache_count);
888 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
889 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
890 ds->metadata_cache_overflow.value.ui64 =
891 wmsum_value(&dbuf_sums.metadata_cache_overflow);
892 return (0);
893 }
894
895 void
dbuf_init(void)896 dbuf_init(void)
897 {
898 uint64_t hmsize, hsize = 1ULL << 16;
899 dbuf_hash_table_t *h = &dbuf_hash_table;
900
901 /*
902 * The hash table is big enough to fill one eighth of physical memory
903 * with an average block size of zfs_arc_average_blocksize (default 8K).
904 * By default, the table will take up
905 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
906 */
907 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
908 hsize <<= 1;
909
910 h->hash_table = NULL;
911 while (h->hash_table == NULL) {
912 h->hash_table_mask = hsize - 1;
913
914 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
915 if (h->hash_table == NULL)
916 hsize >>= 1;
917
918 ASSERT3U(hsize, >=, 1ULL << 10);
919 }
920
921 /*
922 * The hash table buckets are protected by an array of mutexes where
923 * each mutex is reponsible for protecting 128 buckets. A minimum
924 * array size of 8192 is targeted to avoid contention.
925 */
926 if (dbuf_mutex_cache_shift == 0)
927 hmsize = MAX(hsize >> 7, 1ULL << 13);
928 else
929 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
930
931 h->hash_mutexes = NULL;
932 while (h->hash_mutexes == NULL) {
933 h->hash_mutex_mask = hmsize - 1;
934
935 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
936 KM_SLEEP);
937 if (h->hash_mutexes == NULL)
938 hmsize >>= 1;
939 }
940
941 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
942 sizeof (dmu_buf_impl_t),
943 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
944
945 for (int i = 0; i < hmsize; i++)
946 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
947
948 dbuf_stats_init(h);
949
950 /*
951 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
952 * configuration is not required.
953 */
954 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
955
956 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
957 multilist_create(&dbuf_caches[dcs].cache,
958 sizeof (dmu_buf_impl_t),
959 offsetof(dmu_buf_impl_t, db_cache_link),
960 dbuf_cache_multilist_index_func);
961 zfs_refcount_create(&dbuf_caches[dcs].size);
962 }
963
964 dbuf_evict_thread_exit = B_FALSE;
965 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
966 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
967 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
968 NULL, 0, &p0, TS_RUN, minclsyspri);
969
970 wmsum_init(&dbuf_sums.cache_count, 0);
971 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
972 for (int i = 0; i < DN_MAX_LEVELS; i++) {
973 wmsum_init(&dbuf_sums.cache_levels[i], 0);
974 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
975 }
976 wmsum_init(&dbuf_sums.hash_hits, 0);
977 wmsum_init(&dbuf_sums.hash_misses, 0);
978 wmsum_init(&dbuf_sums.hash_collisions, 0);
979 wmsum_init(&dbuf_sums.hash_chains, 0);
980 wmsum_init(&dbuf_sums.hash_insert_race, 0);
981 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
982 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
983
984 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
985 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
986 KSTAT_FLAG_VIRTUAL);
987 if (dbuf_ksp != NULL) {
988 for (int i = 0; i < DN_MAX_LEVELS; i++) {
989 snprintf(dbuf_stats.cache_levels[i].name,
990 KSTAT_STRLEN, "cache_level_%d", i);
991 dbuf_stats.cache_levels[i].data_type =
992 KSTAT_DATA_UINT64;
993 snprintf(dbuf_stats.cache_levels_bytes[i].name,
994 KSTAT_STRLEN, "cache_level_%d_bytes", i);
995 dbuf_stats.cache_levels_bytes[i].data_type =
996 KSTAT_DATA_UINT64;
997 }
998 dbuf_ksp->ks_data = &dbuf_stats;
999 dbuf_ksp->ks_update = dbuf_kstat_update;
1000 kstat_install(dbuf_ksp);
1001 }
1002 }
1003
1004 void
dbuf_fini(void)1005 dbuf_fini(void)
1006 {
1007 dbuf_hash_table_t *h = &dbuf_hash_table;
1008
1009 dbuf_stats_destroy();
1010
1011 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1012 mutex_destroy(&h->hash_mutexes[i]);
1013
1014 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1015 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1016 sizeof (kmutex_t));
1017
1018 kmem_cache_destroy(dbuf_kmem_cache);
1019 taskq_destroy(dbu_evict_taskq);
1020
1021 mutex_enter(&dbuf_evict_lock);
1022 dbuf_evict_thread_exit = B_TRUE;
1023 while (dbuf_evict_thread_exit) {
1024 cv_signal(&dbuf_evict_cv);
1025 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1026 }
1027 mutex_exit(&dbuf_evict_lock);
1028
1029 mutex_destroy(&dbuf_evict_lock);
1030 cv_destroy(&dbuf_evict_cv);
1031
1032 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1033 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1034 multilist_destroy(&dbuf_caches[dcs].cache);
1035 }
1036
1037 if (dbuf_ksp != NULL) {
1038 kstat_delete(dbuf_ksp);
1039 dbuf_ksp = NULL;
1040 }
1041
1042 wmsum_fini(&dbuf_sums.cache_count);
1043 wmsum_fini(&dbuf_sums.cache_total_evicts);
1044 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1045 wmsum_fini(&dbuf_sums.cache_levels[i]);
1046 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1047 }
1048 wmsum_fini(&dbuf_sums.hash_hits);
1049 wmsum_fini(&dbuf_sums.hash_misses);
1050 wmsum_fini(&dbuf_sums.hash_collisions);
1051 wmsum_fini(&dbuf_sums.hash_chains);
1052 wmsum_fini(&dbuf_sums.hash_insert_race);
1053 wmsum_fini(&dbuf_sums.metadata_cache_count);
1054 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1055 }
1056
1057 /*
1058 * Other stuff.
1059 */
1060
1061 #ifdef ZFS_DEBUG
1062 static void
dbuf_verify(dmu_buf_impl_t * db)1063 dbuf_verify(dmu_buf_impl_t *db)
1064 {
1065 dnode_t *dn;
1066 dbuf_dirty_record_t *dr;
1067 uint32_t txg_prev;
1068
1069 ASSERT(MUTEX_HELD(&db->db_mtx));
1070
1071 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1072 return;
1073
1074 ASSERT(db->db_objset != NULL);
1075 DB_DNODE_ENTER(db);
1076 dn = DB_DNODE(db);
1077 if (dn == NULL) {
1078 ASSERT(db->db_parent == NULL);
1079 ASSERT(db->db_blkptr == NULL);
1080 } else {
1081 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1082 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1083 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1084 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1085 db->db_blkid == DMU_SPILL_BLKID ||
1086 !avl_is_empty(&dn->dn_dbufs));
1087 }
1088 if (db->db_blkid == DMU_BONUS_BLKID) {
1089 ASSERT(dn != NULL);
1090 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1091 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1092 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1093 ASSERT(dn != NULL);
1094 ASSERT0(db->db.db_offset);
1095 } else {
1096 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1097 }
1098
1099 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1100 ASSERT(dr->dr_dbuf == db);
1101 txg_prev = dr->dr_txg;
1102 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1103 dr = list_next(&db->db_dirty_records, dr)) {
1104 ASSERT(dr->dr_dbuf == db);
1105 ASSERT(txg_prev > dr->dr_txg);
1106 txg_prev = dr->dr_txg;
1107 }
1108 }
1109
1110 /*
1111 * We can't assert that db_size matches dn_datablksz because it
1112 * can be momentarily different when another thread is doing
1113 * dnode_set_blksz().
1114 */
1115 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1116 dr = db->db_data_pending;
1117 /*
1118 * It should only be modified in syncing context, so
1119 * make sure we only have one copy of the data.
1120 */
1121 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1122 }
1123
1124 /* verify db->db_blkptr */
1125 if (db->db_blkptr) {
1126 if (db->db_parent == dn->dn_dbuf) {
1127 /* db is pointed to by the dnode */
1128 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1129 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1130 ASSERT(db->db_parent == NULL);
1131 else
1132 ASSERT(db->db_parent != NULL);
1133 if (db->db_blkid != DMU_SPILL_BLKID)
1134 ASSERT3P(db->db_blkptr, ==,
1135 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1136 } else {
1137 /* db is pointed to by an indirect block */
1138 int epb __maybe_unused = db->db_parent->db.db_size >>
1139 SPA_BLKPTRSHIFT;
1140 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1141 ASSERT3U(db->db_parent->db.db_object, ==,
1142 db->db.db_object);
1143 /*
1144 * dnode_grow_indblksz() can make this fail if we don't
1145 * have the parent's rwlock. XXX indblksz no longer
1146 * grows. safe to do this now?
1147 */
1148 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1149 ASSERT3P(db->db_blkptr, ==,
1150 ((blkptr_t *)db->db_parent->db.db_data +
1151 db->db_blkid % epb));
1152 }
1153 }
1154 }
1155 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1156 (db->db_buf == NULL || db->db_buf->b_data) &&
1157 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1158 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1159 /*
1160 * If the blkptr isn't set but they have nonzero data,
1161 * it had better be dirty, otherwise we'll lose that
1162 * data when we evict this buffer.
1163 *
1164 * There is an exception to this rule for indirect blocks; in
1165 * this case, if the indirect block is a hole, we fill in a few
1166 * fields on each of the child blocks (importantly, birth time)
1167 * to prevent hole birth times from being lost when you
1168 * partially fill in a hole.
1169 */
1170 if (db->db_dirtycnt == 0) {
1171 if (db->db_level == 0) {
1172 uint64_t *buf = db->db.db_data;
1173 int i;
1174
1175 for (i = 0; i < db->db.db_size >> 3; i++) {
1176 ASSERT(buf[i] == 0);
1177 }
1178 } else {
1179 blkptr_t *bps = db->db.db_data;
1180 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1181 db->db.db_size);
1182 /*
1183 * We want to verify that all the blkptrs in the
1184 * indirect block are holes, but we may have
1185 * automatically set up a few fields for them.
1186 * We iterate through each blkptr and verify
1187 * they only have those fields set.
1188 */
1189 for (int i = 0;
1190 i < db->db.db_size / sizeof (blkptr_t);
1191 i++) {
1192 blkptr_t *bp = &bps[i];
1193 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1194 &bp->blk_cksum));
1195 ASSERT(
1196 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1197 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1198 DVA_IS_EMPTY(&bp->blk_dva[2]));
1199 ASSERT0(bp->blk_fill);
1200 ASSERT0(bp->blk_pad[0]);
1201 ASSERT0(bp->blk_pad[1]);
1202 ASSERT(!BP_IS_EMBEDDED(bp));
1203 ASSERT(BP_IS_HOLE(bp));
1204 ASSERT0(bp->blk_phys_birth);
1205 }
1206 }
1207 }
1208 }
1209 DB_DNODE_EXIT(db);
1210 }
1211 #endif
1212
1213 static void
dbuf_clear_data(dmu_buf_impl_t * db)1214 dbuf_clear_data(dmu_buf_impl_t *db)
1215 {
1216 ASSERT(MUTEX_HELD(&db->db_mtx));
1217 dbuf_evict_user(db);
1218 ASSERT3P(db->db_buf, ==, NULL);
1219 db->db.db_data = NULL;
1220 if (db->db_state != DB_NOFILL) {
1221 db->db_state = DB_UNCACHED;
1222 DTRACE_SET_STATE(db, "clear data");
1223 }
1224 }
1225
1226 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)1227 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1228 {
1229 ASSERT(MUTEX_HELD(&db->db_mtx));
1230 ASSERT(buf != NULL);
1231
1232 db->db_buf = buf;
1233 ASSERT(buf->b_data != NULL);
1234 db->db.db_data = buf->b_data;
1235 }
1236
1237 static arc_buf_t *
dbuf_alloc_arcbuf(dmu_buf_impl_t * db)1238 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1239 {
1240 spa_t *spa = db->db_objset->os_spa;
1241
1242 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1243 }
1244
1245 /*
1246 * Loan out an arc_buf for read. Return the loaned arc_buf.
1247 */
1248 arc_buf_t *
dbuf_loan_arcbuf(dmu_buf_impl_t * db)1249 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1250 {
1251 arc_buf_t *abuf;
1252
1253 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1254 mutex_enter(&db->db_mtx);
1255 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1256 int blksz = db->db.db_size;
1257 spa_t *spa = db->db_objset->os_spa;
1258
1259 mutex_exit(&db->db_mtx);
1260 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1261 memcpy(abuf->b_data, db->db.db_data, blksz);
1262 } else {
1263 abuf = db->db_buf;
1264 arc_loan_inuse_buf(abuf, db);
1265 db->db_buf = NULL;
1266 dbuf_clear_data(db);
1267 mutex_exit(&db->db_mtx);
1268 }
1269 return (abuf);
1270 }
1271
1272 /*
1273 * Calculate which level n block references the data at the level 0 offset
1274 * provided.
1275 */
1276 uint64_t
dbuf_whichblock(const dnode_t * dn,const int64_t level,const uint64_t offset)1277 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1278 {
1279 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1280 /*
1281 * The level n blkid is equal to the level 0 blkid divided by
1282 * the number of level 0s in a level n block.
1283 *
1284 * The level 0 blkid is offset >> datablkshift =
1285 * offset / 2^datablkshift.
1286 *
1287 * The number of level 0s in a level n is the number of block
1288 * pointers in an indirect block, raised to the power of level.
1289 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1290 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1291 *
1292 * Thus, the level n blkid is: offset /
1293 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1294 * = offset / 2^(datablkshift + level *
1295 * (indblkshift - SPA_BLKPTRSHIFT))
1296 * = offset >> (datablkshift + level *
1297 * (indblkshift - SPA_BLKPTRSHIFT))
1298 */
1299
1300 const unsigned exp = dn->dn_datablkshift +
1301 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1302
1303 if (exp >= 8 * sizeof (offset)) {
1304 /* This only happens on the highest indirection level */
1305 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1306 return (0);
1307 }
1308
1309 ASSERT3U(exp, <, 8 * sizeof (offset));
1310
1311 return (offset >> exp);
1312 } else {
1313 ASSERT3U(offset, <, dn->dn_datablksz);
1314 return (0);
1315 }
1316 }
1317
1318 /*
1319 * This function is used to lock the parent of the provided dbuf. This should be
1320 * used when modifying or reading db_blkptr.
1321 */
1322 db_lock_type_t
dmu_buf_lock_parent(dmu_buf_impl_t * db,krw_t rw,const void * tag)1323 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1324 {
1325 enum db_lock_type ret = DLT_NONE;
1326 if (db->db_parent != NULL) {
1327 rw_enter(&db->db_parent->db_rwlock, rw);
1328 ret = DLT_PARENT;
1329 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1330 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1331 tag);
1332 ret = DLT_OBJSET;
1333 }
1334 /*
1335 * We only return a DLT_NONE lock when it's the top-most indirect block
1336 * of the meta-dnode of the MOS.
1337 */
1338 return (ret);
1339 }
1340
1341 /*
1342 * We need to pass the lock type in because it's possible that the block will
1343 * move from being the topmost indirect block in a dnode (and thus, have no
1344 * parent) to not the top-most via an indirection increase. This would cause a
1345 * panic if we didn't pass the lock type in.
1346 */
1347 void
dmu_buf_unlock_parent(dmu_buf_impl_t * db,db_lock_type_t type,const void * tag)1348 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1349 {
1350 if (type == DLT_PARENT)
1351 rw_exit(&db->db_parent->db_rwlock);
1352 else if (type == DLT_OBJSET)
1353 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1354 }
1355
1356 static void
dbuf_read_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * vdb)1357 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1358 arc_buf_t *buf, void *vdb)
1359 {
1360 (void) zb, (void) bp;
1361 dmu_buf_impl_t *db = vdb;
1362
1363 mutex_enter(&db->db_mtx);
1364 ASSERT3U(db->db_state, ==, DB_READ);
1365 /*
1366 * All reads are synchronous, so we must have a hold on the dbuf
1367 */
1368 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1369 ASSERT(db->db_buf == NULL);
1370 ASSERT(db->db.db_data == NULL);
1371 if (buf == NULL) {
1372 /* i/o error */
1373 ASSERT(zio == NULL || zio->io_error != 0);
1374 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1375 ASSERT3P(db->db_buf, ==, NULL);
1376 db->db_state = DB_UNCACHED;
1377 DTRACE_SET_STATE(db, "i/o error");
1378 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1379 /* freed in flight */
1380 ASSERT(zio == NULL || zio->io_error == 0);
1381 arc_release(buf, db);
1382 memset(buf->b_data, 0, db->db.db_size);
1383 arc_buf_freeze(buf);
1384 db->db_freed_in_flight = FALSE;
1385 dbuf_set_data(db, buf);
1386 db->db_state = DB_CACHED;
1387 DTRACE_SET_STATE(db, "freed in flight");
1388 } else {
1389 /* success */
1390 ASSERT(zio == NULL || zio->io_error == 0);
1391 dbuf_set_data(db, buf);
1392 db->db_state = DB_CACHED;
1393 DTRACE_SET_STATE(db, "successful read");
1394 }
1395 cv_broadcast(&db->db_changed);
1396 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1397 }
1398
1399 /*
1400 * Shortcut for performing reads on bonus dbufs. Returns
1401 * an error if we fail to verify the dnode associated with
1402 * a decrypted block. Otherwise success.
1403 */
1404 static int
dbuf_read_bonus(dmu_buf_impl_t * db,dnode_t * dn)1405 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1406 {
1407 int bonuslen, max_bonuslen;
1408
1409 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1410 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1411 ASSERT(MUTEX_HELD(&db->db_mtx));
1412 ASSERT(DB_DNODE_HELD(db));
1413 ASSERT3U(bonuslen, <=, db->db.db_size);
1414 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1415 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1416 if (bonuslen < max_bonuslen)
1417 memset(db->db.db_data, 0, max_bonuslen);
1418 if (bonuslen)
1419 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1420 db->db_state = DB_CACHED;
1421 DTRACE_SET_STATE(db, "bonus buffer filled");
1422 return (0);
1423 }
1424
1425 static void
dbuf_handle_indirect_hole(dmu_buf_impl_t * db,dnode_t * dn,blkptr_t * dbbp)1426 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1427 {
1428 blkptr_t *bps = db->db.db_data;
1429 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1430 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1431
1432 for (int i = 0; i < n_bps; i++) {
1433 blkptr_t *bp = &bps[i];
1434
1435 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1436 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1437 dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1438 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1439 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1440 BP_SET_BIRTH(bp, dbbp->blk_birth, 0);
1441 }
1442 }
1443
1444 /*
1445 * Handle reads on dbufs that are holes, if necessary. This function
1446 * requires that the dbuf's mutex is held. Returns success (0) if action
1447 * was taken, ENOENT if no action was taken.
1448 */
1449 static int
dbuf_read_hole(dmu_buf_impl_t * db,dnode_t * dn,blkptr_t * bp)1450 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1451 {
1452 ASSERT(MUTEX_HELD(&db->db_mtx));
1453
1454 int is_hole = bp == NULL || BP_IS_HOLE(bp);
1455 /*
1456 * For level 0 blocks only, if the above check fails:
1457 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1458 * processes the delete record and clears the bp while we are waiting
1459 * for the dn_mtx (resulting in a "no" from block_freed).
1460 */
1461 if (!is_hole && db->db_level == 0)
1462 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1463
1464 if (is_hole) {
1465 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1466 memset(db->db.db_data, 0, db->db.db_size);
1467
1468 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1469 bp->blk_birth != 0) {
1470 dbuf_handle_indirect_hole(db, dn, bp);
1471 }
1472 db->db_state = DB_CACHED;
1473 DTRACE_SET_STATE(db, "hole read satisfied");
1474 return (0);
1475 }
1476 return (ENOENT);
1477 }
1478
1479 /*
1480 * This function ensures that, when doing a decrypting read of a block,
1481 * we make sure we have decrypted the dnode associated with it. We must do
1482 * this so that we ensure we are fully authenticating the checksum-of-MACs
1483 * tree from the root of the objset down to this block. Indirect blocks are
1484 * always verified against their secure checksum-of-MACs assuming that the
1485 * dnode containing them is correct. Now that we are doing a decrypting read,
1486 * we can be sure that the key is loaded and verify that assumption. This is
1487 * especially important considering that we always read encrypted dnode
1488 * blocks as raw data (without verifying their MACs) to start, and
1489 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1490 */
1491 static int
dbuf_read_verify_dnode_crypt(dmu_buf_impl_t * db,dnode_t * dn,uint32_t flags)1492 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1493 {
1494 objset_t *os = db->db_objset;
1495 dmu_buf_impl_t *dndb;
1496 arc_buf_t *dnbuf;
1497 zbookmark_phys_t zb;
1498 int err;
1499
1500 if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1501 !os->os_encrypted || os->os_raw_receive ||
1502 (dndb = dn->dn_dbuf) == NULL)
1503 return (0);
1504
1505 dnbuf = dndb->db_buf;
1506 if (!arc_is_encrypted(dnbuf))
1507 return (0);
1508
1509 mutex_enter(&dndb->db_mtx);
1510
1511 /*
1512 * Since dnode buffer is modified by sync process, there can be only
1513 * one copy of it. It means we can not modify (decrypt) it while it
1514 * is being written. I don't see how this may happen now, since
1515 * encrypted dnode writes by receive should be completed before any
1516 * plain-text reads due to txg wait, but better be safe than sorry.
1517 */
1518 while (1) {
1519 if (!arc_is_encrypted(dnbuf)) {
1520 mutex_exit(&dndb->db_mtx);
1521 return (0);
1522 }
1523 dbuf_dirty_record_t *dr = dndb->db_data_pending;
1524 if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1525 break;
1526 cv_wait(&dndb->db_changed, &dndb->db_mtx);
1527 };
1528
1529 SET_BOOKMARK(&zb, dmu_objset_id(os),
1530 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1531 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1532
1533 /*
1534 * An error code of EACCES tells us that the key is still not
1535 * available. This is ok if we are only reading authenticated
1536 * (and therefore non-encrypted) blocks.
1537 */
1538 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1539 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1540 (db->db_blkid == DMU_BONUS_BLKID &&
1541 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1542 err = 0;
1543
1544 mutex_exit(&dndb->db_mtx);
1545
1546 return (err);
1547 }
1548
1549 /*
1550 * Drops db_mtx and the parent lock specified by dblt and tag before
1551 * returning.
1552 */
1553 static int
dbuf_read_impl(dmu_buf_impl_t * db,dnode_t * dn,zio_t * zio,uint32_t flags,db_lock_type_t dblt,const void * tag)1554 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags,
1555 db_lock_type_t dblt, const void *tag)
1556 {
1557 zbookmark_phys_t zb;
1558 uint32_t aflags = ARC_FLAG_NOWAIT;
1559 int err, zio_flags;
1560 blkptr_t bp, *bpp = NULL;
1561
1562 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1563 ASSERT(MUTEX_HELD(&db->db_mtx));
1564 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1565 ASSERT(db->db_buf == NULL);
1566 ASSERT(db->db_parent == NULL ||
1567 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1568
1569 if (db->db_blkid == DMU_BONUS_BLKID) {
1570 err = dbuf_read_bonus(db, dn);
1571 goto early_unlock;
1572 }
1573
1574 /*
1575 * If we have a pending block clone, we don't want to read the
1576 * underlying block, but the content of the block being cloned,
1577 * pointed by the dirty record, so we have the most recent data.
1578 * If there is no dirty record, then we hit a race in a sync
1579 * process when the dirty record is already removed, while the
1580 * dbuf is not yet destroyed. Such case is equivalent to uncached.
1581 */
1582 if (db->db_state == DB_NOFILL) {
1583 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1584 if (dr != NULL) {
1585 if (!dr->dt.dl.dr_brtwrite) {
1586 err = EIO;
1587 goto early_unlock;
1588 }
1589 bp = dr->dt.dl.dr_overridden_by;
1590 bpp = &bp;
1591 }
1592 }
1593
1594 if (bpp == NULL && db->db_blkptr != NULL) {
1595 bp = *db->db_blkptr;
1596 bpp = &bp;
1597 }
1598
1599 err = dbuf_read_hole(db, dn, bpp);
1600 if (err == 0)
1601 goto early_unlock;
1602
1603 ASSERT(bpp != NULL);
1604
1605 /*
1606 * Any attempt to read a redacted block should result in an error. This
1607 * will never happen under normal conditions, but can be useful for
1608 * debugging purposes.
1609 */
1610 if (BP_IS_REDACTED(bpp)) {
1611 ASSERT(dsl_dataset_feature_is_active(
1612 db->db_objset->os_dsl_dataset,
1613 SPA_FEATURE_REDACTED_DATASETS));
1614 err = SET_ERROR(EIO);
1615 goto early_unlock;
1616 }
1617
1618 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1619 db->db.db_object, db->db_level, db->db_blkid);
1620
1621 /*
1622 * All bps of an encrypted os should have the encryption bit set.
1623 * If this is not true it indicates tampering and we report an error.
1624 */
1625 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) {
1626 spa_log_error(db->db_objset->os_spa, &zb, &bpp->blk_birth);
1627 err = SET_ERROR(EIO);
1628 goto early_unlock;
1629 }
1630
1631 db->db_state = DB_READ;
1632 DTRACE_SET_STATE(db, "read issued");
1633 mutex_exit(&db->db_mtx);
1634
1635 if (!DBUF_IS_CACHEABLE(db))
1636 aflags |= ARC_FLAG_UNCACHED;
1637 else if (dbuf_is_l2cacheable(db))
1638 aflags |= ARC_FLAG_L2CACHE;
1639
1640 dbuf_add_ref(db, NULL);
1641
1642 zio_flags = (flags & DB_RF_CANFAIL) ?
1643 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1644
1645 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1646 zio_flags |= ZIO_FLAG_RAW;
1647 /*
1648 * The zio layer will copy the provided blkptr later, but we have our
1649 * own copy so that we can release the parent's rwlock. We have to
1650 * do that so that if dbuf_read_done is called synchronously (on
1651 * an l1 cache hit) we don't acquire the db_mtx while holding the
1652 * parent's rwlock, which would be a lock ordering violation.
1653 */
1654 dmu_buf_unlock_parent(db, dblt, tag);
1655 return (arc_read(zio, db->db_objset->os_spa, bpp,
1656 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1657 &aflags, &zb));
1658
1659 early_unlock:
1660 mutex_exit(&db->db_mtx);
1661 dmu_buf_unlock_parent(db, dblt, tag);
1662 return (err);
1663 }
1664
1665 /*
1666 * This is our just-in-time copy function. It makes a copy of buffers that
1667 * have been modified in a previous transaction group before we access them in
1668 * the current active group.
1669 *
1670 * This function is used in three places: when we are dirtying a buffer for the
1671 * first time in a txg, when we are freeing a range in a dnode that includes
1672 * this buffer, and when we are accessing a buffer which was received compressed
1673 * and later referenced in a WRITE_BYREF record.
1674 *
1675 * Note that when we are called from dbuf_free_range() we do not put a hold on
1676 * the buffer, we just traverse the active dbuf list for the dnode.
1677 */
1678 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)1679 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1680 {
1681 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1682
1683 ASSERT(MUTEX_HELD(&db->db_mtx));
1684 ASSERT(db->db.db_data != NULL);
1685 ASSERT(db->db_level == 0);
1686 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1687
1688 if (dr == NULL ||
1689 (dr->dt.dl.dr_data !=
1690 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1691 return;
1692
1693 /*
1694 * If the last dirty record for this dbuf has not yet synced
1695 * and its referencing the dbuf data, either:
1696 * reset the reference to point to a new copy,
1697 * or (if there a no active holders)
1698 * just null out the current db_data pointer.
1699 */
1700 ASSERT3U(dr->dr_txg, >=, txg - 2);
1701 if (db->db_blkid == DMU_BONUS_BLKID) {
1702 dnode_t *dn = DB_DNODE(db);
1703 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1704 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1705 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1706 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1707 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1708 dnode_t *dn = DB_DNODE(db);
1709 int size = arc_buf_size(db->db_buf);
1710 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1711 spa_t *spa = db->db_objset->os_spa;
1712 enum zio_compress compress_type =
1713 arc_get_compression(db->db_buf);
1714 uint8_t complevel = arc_get_complevel(db->db_buf);
1715
1716 if (arc_is_encrypted(db->db_buf)) {
1717 boolean_t byteorder;
1718 uint8_t salt[ZIO_DATA_SALT_LEN];
1719 uint8_t iv[ZIO_DATA_IV_LEN];
1720 uint8_t mac[ZIO_DATA_MAC_LEN];
1721
1722 arc_get_raw_params(db->db_buf, &byteorder, salt,
1723 iv, mac);
1724 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1725 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1726 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1727 compress_type, complevel);
1728 } else if (compress_type != ZIO_COMPRESS_OFF) {
1729 ASSERT3U(type, ==, ARC_BUFC_DATA);
1730 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1731 size, arc_buf_lsize(db->db_buf), compress_type,
1732 complevel);
1733 } else {
1734 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1735 }
1736 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1737 } else {
1738 db->db_buf = NULL;
1739 dbuf_clear_data(db);
1740 }
1741 }
1742
1743 int
dbuf_read(dmu_buf_impl_t * db,zio_t * pio,uint32_t flags)1744 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags)
1745 {
1746 dnode_t *dn;
1747 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1748 int err;
1749
1750 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1751
1752 DB_DNODE_ENTER(db);
1753 dn = DB_DNODE(db);
1754
1755 /*
1756 * Ensure that this block's dnode has been decrypted if the caller
1757 * has requested decrypted data.
1758 */
1759 err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1760 if (err != 0)
1761 goto done;
1762
1763 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1764 (flags & DB_RF_NOPREFETCH) == 0;
1765
1766 mutex_enter(&db->db_mtx);
1767 if (flags & DB_RF_PARTIAL_FIRST)
1768 db->db_partial_read = B_TRUE;
1769 else if (!(flags & DB_RF_PARTIAL_MORE))
1770 db->db_partial_read = B_FALSE;
1771 miss = (db->db_state != DB_CACHED);
1772
1773 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1774 /*
1775 * Another reader came in while the dbuf was in flight between
1776 * UNCACHED and CACHED. Either a writer will finish filling
1777 * the buffer, sending the dbuf to CACHED, or the first reader's
1778 * request will reach the read_done callback and send the dbuf
1779 * to CACHED. Otherwise, a failure occurred and the dbuf will
1780 * be sent to UNCACHED.
1781 */
1782 if (flags & DB_RF_NEVERWAIT) {
1783 mutex_exit(&db->db_mtx);
1784 DB_DNODE_EXIT(db);
1785 goto done;
1786 }
1787 do {
1788 ASSERT(db->db_state == DB_READ ||
1789 (flags & DB_RF_HAVESTRUCT) == 0);
1790 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1791 zio_t *, pio);
1792 cv_wait(&db->db_changed, &db->db_mtx);
1793 } while (db->db_state == DB_READ || db->db_state == DB_FILL);
1794 if (db->db_state == DB_UNCACHED) {
1795 err = SET_ERROR(EIO);
1796 mutex_exit(&db->db_mtx);
1797 DB_DNODE_EXIT(db);
1798 goto done;
1799 }
1800 }
1801
1802 if (db->db_state == DB_CACHED) {
1803 /*
1804 * If the arc buf is compressed or encrypted and the caller
1805 * requested uncompressed data, we need to untransform it
1806 * before returning. We also call arc_untransform() on any
1807 * unauthenticated blocks, which will verify their MAC if
1808 * the key is now available.
1809 */
1810 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1811 (arc_is_encrypted(db->db_buf) ||
1812 arc_is_unauthenticated(db->db_buf) ||
1813 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1814 spa_t *spa = dn->dn_objset->os_spa;
1815 zbookmark_phys_t zb;
1816
1817 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1818 db->db.db_object, db->db_level, db->db_blkid);
1819 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1820 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1821 dbuf_set_data(db, db->db_buf);
1822 }
1823 mutex_exit(&db->db_mtx);
1824 } else {
1825 ASSERT(db->db_state == DB_UNCACHED ||
1826 db->db_state == DB_NOFILL);
1827 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1828 if (pio == NULL && (db->db_state == DB_NOFILL ||
1829 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) {
1830 spa_t *spa = dn->dn_objset->os_spa;
1831 pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1832 need_wait = B_TRUE;
1833 }
1834 err = dbuf_read_impl(db, dn, pio, flags, dblt, FTAG);
1835 /* dbuf_read_impl drops db_mtx and parent's rwlock. */
1836 miss = (db->db_state != DB_CACHED);
1837 }
1838
1839 if (err == 0 && prefetch) {
1840 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1841 flags & DB_RF_HAVESTRUCT);
1842 }
1843 DB_DNODE_EXIT(db);
1844
1845 /*
1846 * If we created a zio we must execute it to avoid leaking it, even if
1847 * it isn't attached to any work due to an error in dbuf_read_impl().
1848 */
1849 if (need_wait) {
1850 if (err == 0)
1851 err = zio_wait(pio);
1852 else
1853 (void) zio_wait(pio);
1854 pio = NULL;
1855 }
1856
1857 done:
1858 if (miss)
1859 DBUF_STAT_BUMP(hash_misses);
1860 else
1861 DBUF_STAT_BUMP(hash_hits);
1862 if (pio && err != 0) {
1863 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1864 ZIO_FLAG_CANFAIL);
1865 zio->io_error = err;
1866 zio_nowait(zio);
1867 }
1868
1869 return (err);
1870 }
1871
1872 static void
dbuf_noread(dmu_buf_impl_t * db)1873 dbuf_noread(dmu_buf_impl_t *db)
1874 {
1875 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1876 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1877 mutex_enter(&db->db_mtx);
1878 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1879 cv_wait(&db->db_changed, &db->db_mtx);
1880 if (db->db_state == DB_UNCACHED) {
1881 ASSERT(db->db_buf == NULL);
1882 ASSERT(db->db.db_data == NULL);
1883 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1884 db->db_state = DB_FILL;
1885 DTRACE_SET_STATE(db, "assigning filled buffer");
1886 } else if (db->db_state == DB_NOFILL) {
1887 dbuf_clear_data(db);
1888 } else {
1889 ASSERT3U(db->db_state, ==, DB_CACHED);
1890 }
1891 mutex_exit(&db->db_mtx);
1892 }
1893
1894 void
dbuf_unoverride(dbuf_dirty_record_t * dr)1895 dbuf_unoverride(dbuf_dirty_record_t *dr)
1896 {
1897 dmu_buf_impl_t *db = dr->dr_dbuf;
1898 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1899 uint64_t txg = dr->dr_txg;
1900
1901 ASSERT(MUTEX_HELD(&db->db_mtx));
1902 /*
1903 * This assert is valid because dmu_sync() expects to be called by
1904 * a zilog's get_data while holding a range lock. This call only
1905 * comes from dbuf_dirty() callers who must also hold a range lock.
1906 */
1907 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1908 ASSERT(db->db_level == 0);
1909
1910 if (db->db_blkid == DMU_BONUS_BLKID ||
1911 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1912 return;
1913
1914 ASSERT(db->db_data_pending != dr);
1915
1916 /* free this block */
1917 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1918 zio_free(db->db_objset->os_spa, txg, bp);
1919
1920 if (dr->dt.dl.dr_brtwrite) {
1921 ASSERT(dr->dt.dl.dr_data == NULL);
1922 dr->dt.dl.dr_data = db->db_buf;
1923 }
1924 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1925 dr->dt.dl.dr_nopwrite = B_FALSE;
1926 dr->dt.dl.dr_brtwrite = B_FALSE;
1927 dr->dt.dl.dr_has_raw_params = B_FALSE;
1928
1929 /*
1930 * Release the already-written buffer, so we leave it in
1931 * a consistent dirty state. Note that all callers are
1932 * modifying the buffer, so they will immediately do
1933 * another (redundant) arc_release(). Therefore, leave
1934 * the buf thawed to save the effort of freezing &
1935 * immediately re-thawing it.
1936 */
1937 if (dr->dt.dl.dr_data)
1938 arc_release(dr->dt.dl.dr_data, db);
1939 }
1940
1941 /*
1942 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1943 * data blocks in the free range, so that any future readers will find
1944 * empty blocks.
1945 */
1946 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)1947 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1948 dmu_tx_t *tx)
1949 {
1950 dmu_buf_impl_t *db_search;
1951 dmu_buf_impl_t *db, *db_next;
1952 uint64_t txg = tx->tx_txg;
1953 avl_index_t where;
1954 dbuf_dirty_record_t *dr;
1955
1956 if (end_blkid > dn->dn_maxblkid &&
1957 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1958 end_blkid = dn->dn_maxblkid;
1959 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1960 (u_longlong_t)end_blkid);
1961
1962 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1963 db_search->db_level = 0;
1964 db_search->db_blkid = start_blkid;
1965 db_search->db_state = DB_SEARCH;
1966
1967 mutex_enter(&dn->dn_dbufs_mtx);
1968 db = avl_find(&dn->dn_dbufs, db_search, &where);
1969 ASSERT3P(db, ==, NULL);
1970
1971 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1972
1973 for (; db != NULL; db = db_next) {
1974 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1975 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1976
1977 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1978 break;
1979 }
1980 ASSERT3U(db->db_blkid, >=, start_blkid);
1981
1982 /* found a level 0 buffer in the range */
1983 mutex_enter(&db->db_mtx);
1984 if (dbuf_undirty(db, tx)) {
1985 /* mutex has been dropped and dbuf destroyed */
1986 continue;
1987 }
1988
1989 if (db->db_state == DB_UNCACHED ||
1990 db->db_state == DB_NOFILL ||
1991 db->db_state == DB_EVICTING) {
1992 ASSERT(db->db.db_data == NULL);
1993 mutex_exit(&db->db_mtx);
1994 continue;
1995 }
1996 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1997 /* will be handled in dbuf_read_done or dbuf_rele */
1998 db->db_freed_in_flight = TRUE;
1999 mutex_exit(&db->db_mtx);
2000 continue;
2001 }
2002 if (zfs_refcount_count(&db->db_holds) == 0) {
2003 ASSERT(db->db_buf);
2004 dbuf_destroy(db);
2005 continue;
2006 }
2007 /* The dbuf is referenced */
2008
2009 dr = list_head(&db->db_dirty_records);
2010 if (dr != NULL) {
2011 if (dr->dr_txg == txg) {
2012 /*
2013 * This buffer is "in-use", re-adjust the file
2014 * size to reflect that this buffer may
2015 * contain new data when we sync.
2016 */
2017 if (db->db_blkid != DMU_SPILL_BLKID &&
2018 db->db_blkid > dn->dn_maxblkid)
2019 dn->dn_maxblkid = db->db_blkid;
2020 dbuf_unoverride(dr);
2021 } else {
2022 /*
2023 * This dbuf is not dirty in the open context.
2024 * Either uncache it (if its not referenced in
2025 * the open context) or reset its contents to
2026 * empty.
2027 */
2028 dbuf_fix_old_data(db, txg);
2029 }
2030 }
2031 /* clear the contents if its cached */
2032 if (db->db_state == DB_CACHED) {
2033 ASSERT(db->db.db_data != NULL);
2034 arc_release(db->db_buf, db);
2035 rw_enter(&db->db_rwlock, RW_WRITER);
2036 memset(db->db.db_data, 0, db->db.db_size);
2037 rw_exit(&db->db_rwlock);
2038 arc_buf_freeze(db->db_buf);
2039 }
2040
2041 mutex_exit(&db->db_mtx);
2042 }
2043
2044 mutex_exit(&dn->dn_dbufs_mtx);
2045 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2046 }
2047
2048 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)2049 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2050 {
2051 arc_buf_t *buf, *old_buf;
2052 dbuf_dirty_record_t *dr;
2053 int osize = db->db.db_size;
2054 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2055 dnode_t *dn;
2056
2057 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2058
2059 DB_DNODE_ENTER(db);
2060 dn = DB_DNODE(db);
2061
2062 /*
2063 * XXX we should be doing a dbuf_read, checking the return
2064 * value and returning that up to our callers
2065 */
2066 dmu_buf_will_dirty(&db->db, tx);
2067
2068 /* create the data buffer for the new block */
2069 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2070
2071 /* copy old block data to the new block */
2072 old_buf = db->db_buf;
2073 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2074 /* zero the remainder */
2075 if (size > osize)
2076 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2077
2078 mutex_enter(&db->db_mtx);
2079 dbuf_set_data(db, buf);
2080 arc_buf_destroy(old_buf, db);
2081 db->db.db_size = size;
2082
2083 dr = list_head(&db->db_dirty_records);
2084 /* dirty record added by dmu_buf_will_dirty() */
2085 VERIFY(dr != NULL);
2086 if (db->db_level == 0)
2087 dr->dt.dl.dr_data = buf;
2088 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2089 ASSERT3U(dr->dr_accounted, ==, osize);
2090 dr->dr_accounted = size;
2091 mutex_exit(&db->db_mtx);
2092
2093 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2094 DB_DNODE_EXIT(db);
2095 }
2096
2097 void
dbuf_release_bp(dmu_buf_impl_t * db)2098 dbuf_release_bp(dmu_buf_impl_t *db)
2099 {
2100 objset_t *os __maybe_unused = db->db_objset;
2101
2102 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2103 ASSERT(arc_released(os->os_phys_buf) ||
2104 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2105 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2106
2107 (void) arc_release(db->db_buf, db);
2108 }
2109
2110 /*
2111 * We already have a dirty record for this TXG, and we are being
2112 * dirtied again.
2113 */
2114 static void
dbuf_redirty(dbuf_dirty_record_t * dr)2115 dbuf_redirty(dbuf_dirty_record_t *dr)
2116 {
2117 dmu_buf_impl_t *db = dr->dr_dbuf;
2118
2119 ASSERT(MUTEX_HELD(&db->db_mtx));
2120
2121 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2122 /*
2123 * If this buffer has already been written out,
2124 * we now need to reset its state.
2125 */
2126 dbuf_unoverride(dr);
2127 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2128 db->db_state != DB_NOFILL) {
2129 /* Already released on initial dirty, so just thaw. */
2130 ASSERT(arc_released(db->db_buf));
2131 arc_buf_thaw(db->db_buf);
2132 }
2133 }
2134 }
2135
2136 dbuf_dirty_record_t *
dbuf_dirty_lightweight(dnode_t * dn,uint64_t blkid,dmu_tx_t * tx)2137 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2138 {
2139 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2140 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2141 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2142 ASSERT(dn->dn_maxblkid >= blkid);
2143
2144 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2145 list_link_init(&dr->dr_dirty_node);
2146 list_link_init(&dr->dr_dbuf_node);
2147 dr->dr_dnode = dn;
2148 dr->dr_txg = tx->tx_txg;
2149 dr->dt.dll.dr_blkid = blkid;
2150 dr->dr_accounted = dn->dn_datablksz;
2151
2152 /*
2153 * There should not be any dbuf for the block that we're dirtying.
2154 * Otherwise the buffer contents could be inconsistent between the
2155 * dbuf and the lightweight dirty record.
2156 */
2157 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2158 NULL));
2159
2160 mutex_enter(&dn->dn_mtx);
2161 int txgoff = tx->tx_txg & TXG_MASK;
2162 if (dn->dn_free_ranges[txgoff] != NULL) {
2163 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2164 }
2165
2166 if (dn->dn_nlevels == 1) {
2167 ASSERT3U(blkid, <, dn->dn_nblkptr);
2168 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2169 mutex_exit(&dn->dn_mtx);
2170 rw_exit(&dn->dn_struct_rwlock);
2171 dnode_setdirty(dn, tx);
2172 } else {
2173 mutex_exit(&dn->dn_mtx);
2174
2175 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2176 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2177 1, blkid >> epbs, FTAG);
2178 rw_exit(&dn->dn_struct_rwlock);
2179 if (parent_db == NULL) {
2180 kmem_free(dr, sizeof (*dr));
2181 return (NULL);
2182 }
2183 int err = dbuf_read(parent_db, NULL,
2184 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2185 if (err != 0) {
2186 dbuf_rele(parent_db, FTAG);
2187 kmem_free(dr, sizeof (*dr));
2188 return (NULL);
2189 }
2190
2191 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2192 dbuf_rele(parent_db, FTAG);
2193 mutex_enter(&parent_dr->dt.di.dr_mtx);
2194 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2195 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2196 mutex_exit(&parent_dr->dt.di.dr_mtx);
2197 dr->dr_parent = parent_dr;
2198 }
2199
2200 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2201
2202 return (dr);
2203 }
2204
2205 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2206 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2207 {
2208 dnode_t *dn;
2209 objset_t *os;
2210 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2211 int txgoff = tx->tx_txg & TXG_MASK;
2212 boolean_t drop_struct_rwlock = B_FALSE;
2213
2214 ASSERT(tx->tx_txg != 0);
2215 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2216 DMU_TX_DIRTY_BUF(tx, db);
2217
2218 DB_DNODE_ENTER(db);
2219 dn = DB_DNODE(db);
2220 /*
2221 * Shouldn't dirty a regular buffer in syncing context. Private
2222 * objects may be dirtied in syncing context, but only if they
2223 * were already pre-dirtied in open context.
2224 */
2225 #ifdef ZFS_DEBUG
2226 if (dn->dn_objset->os_dsl_dataset != NULL) {
2227 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2228 RW_READER, FTAG);
2229 }
2230 ASSERT(!dmu_tx_is_syncing(tx) ||
2231 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2232 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2233 dn->dn_objset->os_dsl_dataset == NULL);
2234 if (dn->dn_objset->os_dsl_dataset != NULL)
2235 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2236 #endif
2237 /*
2238 * We make this assert for private objects as well, but after we
2239 * check if we're already dirty. They are allowed to re-dirty
2240 * in syncing context.
2241 */
2242 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2243 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2244 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2245
2246 mutex_enter(&db->db_mtx);
2247 /*
2248 * XXX make this true for indirects too? The problem is that
2249 * transactions created with dmu_tx_create_assigned() from
2250 * syncing context don't bother holding ahead.
2251 */
2252 ASSERT(db->db_level != 0 ||
2253 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2254 db->db_state == DB_NOFILL);
2255
2256 mutex_enter(&dn->dn_mtx);
2257 dnode_set_dirtyctx(dn, tx, db);
2258 if (tx->tx_txg > dn->dn_dirty_txg)
2259 dn->dn_dirty_txg = tx->tx_txg;
2260 mutex_exit(&dn->dn_mtx);
2261
2262 if (db->db_blkid == DMU_SPILL_BLKID)
2263 dn->dn_have_spill = B_TRUE;
2264
2265 /*
2266 * If this buffer is already dirty, we're done.
2267 */
2268 dr_head = list_head(&db->db_dirty_records);
2269 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2270 db->db.db_object == DMU_META_DNODE_OBJECT);
2271 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2272 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2273 DB_DNODE_EXIT(db);
2274
2275 dbuf_redirty(dr_next);
2276 mutex_exit(&db->db_mtx);
2277 return (dr_next);
2278 }
2279
2280 /*
2281 * Only valid if not already dirty.
2282 */
2283 ASSERT(dn->dn_object == 0 ||
2284 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2285 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2286
2287 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2288
2289 /*
2290 * We should only be dirtying in syncing context if it's the
2291 * mos or we're initializing the os or it's a special object.
2292 * However, we are allowed to dirty in syncing context provided
2293 * we already dirtied it in open context. Hence we must make
2294 * this assertion only if we're not already dirty.
2295 */
2296 os = dn->dn_objset;
2297 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2298 #ifdef ZFS_DEBUG
2299 if (dn->dn_objset->os_dsl_dataset != NULL)
2300 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2301 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2302 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2303 if (dn->dn_objset->os_dsl_dataset != NULL)
2304 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2305 #endif
2306 ASSERT(db->db.db_size != 0);
2307
2308 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2309
2310 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2311 dmu_objset_willuse_space(os, db->db.db_size, tx);
2312 }
2313
2314 /*
2315 * If this buffer is dirty in an old transaction group we need
2316 * to make a copy of it so that the changes we make in this
2317 * transaction group won't leak out when we sync the older txg.
2318 */
2319 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2320 list_link_init(&dr->dr_dirty_node);
2321 list_link_init(&dr->dr_dbuf_node);
2322 dr->dr_dnode = dn;
2323 if (db->db_level == 0) {
2324 void *data_old = db->db_buf;
2325
2326 if (db->db_state != DB_NOFILL) {
2327 if (db->db_blkid == DMU_BONUS_BLKID) {
2328 dbuf_fix_old_data(db, tx->tx_txg);
2329 data_old = db->db.db_data;
2330 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2331 /*
2332 * Release the data buffer from the cache so
2333 * that we can modify it without impacting
2334 * possible other users of this cached data
2335 * block. Note that indirect blocks and
2336 * private objects are not released until the
2337 * syncing state (since they are only modified
2338 * then).
2339 */
2340 arc_release(db->db_buf, db);
2341 dbuf_fix_old_data(db, tx->tx_txg);
2342 data_old = db->db_buf;
2343 }
2344 ASSERT(data_old != NULL);
2345 }
2346 dr->dt.dl.dr_data = data_old;
2347 } else {
2348 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2349 list_create(&dr->dt.di.dr_children,
2350 sizeof (dbuf_dirty_record_t),
2351 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2352 }
2353 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2354 dr->dr_accounted = db->db.db_size;
2355 }
2356 dr->dr_dbuf = db;
2357 dr->dr_txg = tx->tx_txg;
2358 list_insert_before(&db->db_dirty_records, dr_next, dr);
2359
2360 /*
2361 * We could have been freed_in_flight between the dbuf_noread
2362 * and dbuf_dirty. We win, as though the dbuf_noread() had
2363 * happened after the free.
2364 */
2365 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2366 db->db_blkid != DMU_SPILL_BLKID) {
2367 mutex_enter(&dn->dn_mtx);
2368 if (dn->dn_free_ranges[txgoff] != NULL) {
2369 range_tree_clear(dn->dn_free_ranges[txgoff],
2370 db->db_blkid, 1);
2371 }
2372 mutex_exit(&dn->dn_mtx);
2373 db->db_freed_in_flight = FALSE;
2374 }
2375
2376 /*
2377 * This buffer is now part of this txg
2378 */
2379 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2380 db->db_dirtycnt += 1;
2381 ASSERT3U(db->db_dirtycnt, <=, 3);
2382
2383 mutex_exit(&db->db_mtx);
2384
2385 if (db->db_blkid == DMU_BONUS_BLKID ||
2386 db->db_blkid == DMU_SPILL_BLKID) {
2387 mutex_enter(&dn->dn_mtx);
2388 ASSERT(!list_link_active(&dr->dr_dirty_node));
2389 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2390 mutex_exit(&dn->dn_mtx);
2391 dnode_setdirty(dn, tx);
2392 DB_DNODE_EXIT(db);
2393 return (dr);
2394 }
2395
2396 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2397 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2398 drop_struct_rwlock = B_TRUE;
2399 }
2400
2401 /*
2402 * If we are overwriting a dedup BP, then unless it is snapshotted,
2403 * when we get to syncing context we will need to decrement its
2404 * refcount in the DDT. Prefetch the relevant DDT block so that
2405 * syncing context won't have to wait for the i/o.
2406 */
2407 if (db->db_blkptr != NULL) {
2408 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2409 ddt_prefetch(os->os_spa, db->db_blkptr);
2410 dmu_buf_unlock_parent(db, dblt, FTAG);
2411 }
2412
2413 /*
2414 * We need to hold the dn_struct_rwlock to make this assertion,
2415 * because it protects dn_phys / dn_next_nlevels from changing.
2416 */
2417 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2418 dn->dn_phys->dn_nlevels > db->db_level ||
2419 dn->dn_next_nlevels[txgoff] > db->db_level ||
2420 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2421 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2422
2423
2424 if (db->db_level == 0) {
2425 ASSERT(!db->db_objset->os_raw_receive ||
2426 dn->dn_maxblkid >= db->db_blkid);
2427 dnode_new_blkid(dn, db->db_blkid, tx,
2428 drop_struct_rwlock, B_FALSE);
2429 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2430 }
2431
2432 if (db->db_level+1 < dn->dn_nlevels) {
2433 dmu_buf_impl_t *parent = db->db_parent;
2434 dbuf_dirty_record_t *di;
2435 int parent_held = FALSE;
2436
2437 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2438 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2439 parent = dbuf_hold_level(dn, db->db_level + 1,
2440 db->db_blkid >> epbs, FTAG);
2441 ASSERT(parent != NULL);
2442 parent_held = TRUE;
2443 }
2444 if (drop_struct_rwlock)
2445 rw_exit(&dn->dn_struct_rwlock);
2446 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2447 di = dbuf_dirty(parent, tx);
2448 if (parent_held)
2449 dbuf_rele(parent, FTAG);
2450
2451 mutex_enter(&db->db_mtx);
2452 /*
2453 * Since we've dropped the mutex, it's possible that
2454 * dbuf_undirty() might have changed this out from under us.
2455 */
2456 if (list_head(&db->db_dirty_records) == dr ||
2457 dn->dn_object == DMU_META_DNODE_OBJECT) {
2458 mutex_enter(&di->dt.di.dr_mtx);
2459 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2460 ASSERT(!list_link_active(&dr->dr_dirty_node));
2461 list_insert_tail(&di->dt.di.dr_children, dr);
2462 mutex_exit(&di->dt.di.dr_mtx);
2463 dr->dr_parent = di;
2464 }
2465 mutex_exit(&db->db_mtx);
2466 } else {
2467 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2468 ASSERT(db->db_blkid < dn->dn_nblkptr);
2469 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2470 mutex_enter(&dn->dn_mtx);
2471 ASSERT(!list_link_active(&dr->dr_dirty_node));
2472 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2473 mutex_exit(&dn->dn_mtx);
2474 if (drop_struct_rwlock)
2475 rw_exit(&dn->dn_struct_rwlock);
2476 }
2477
2478 dnode_setdirty(dn, tx);
2479 DB_DNODE_EXIT(db);
2480 return (dr);
2481 }
2482
2483 static void
dbuf_undirty_bonus(dbuf_dirty_record_t * dr)2484 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2485 {
2486 dmu_buf_impl_t *db = dr->dr_dbuf;
2487
2488 if (dr->dt.dl.dr_data != db->db.db_data) {
2489 struct dnode *dn = dr->dr_dnode;
2490 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2491
2492 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2493 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2494 }
2495 db->db_data_pending = NULL;
2496 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2497 list_remove(&db->db_dirty_records, dr);
2498 if (dr->dr_dbuf->db_level != 0) {
2499 mutex_destroy(&dr->dt.di.dr_mtx);
2500 list_destroy(&dr->dt.di.dr_children);
2501 }
2502 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2503 ASSERT3U(db->db_dirtycnt, >, 0);
2504 db->db_dirtycnt -= 1;
2505 }
2506
2507 /*
2508 * Undirty a buffer in the transaction group referenced by the given
2509 * transaction. Return whether this evicted the dbuf.
2510 */
2511 boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)2512 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2513 {
2514 uint64_t txg = tx->tx_txg;
2515 boolean_t brtwrite;
2516
2517 ASSERT(txg != 0);
2518
2519 /*
2520 * Due to our use of dn_nlevels below, this can only be called
2521 * in open context, unless we are operating on the MOS.
2522 * From syncing context, dn_nlevels may be different from the
2523 * dn_nlevels used when dbuf was dirtied.
2524 */
2525 ASSERT(db->db_objset ==
2526 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2527 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2528 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2529 ASSERT0(db->db_level);
2530 ASSERT(MUTEX_HELD(&db->db_mtx));
2531
2532 /*
2533 * If this buffer is not dirty, we're done.
2534 */
2535 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2536 if (dr == NULL)
2537 return (B_FALSE);
2538 ASSERT(dr->dr_dbuf == db);
2539
2540 brtwrite = dr->dt.dl.dr_brtwrite;
2541 if (brtwrite) {
2542 /*
2543 * We are freeing a block that we cloned in the same
2544 * transaction group.
2545 */
2546 brt_pending_remove(dmu_objset_spa(db->db_objset),
2547 &dr->dt.dl.dr_overridden_by, tx);
2548 }
2549
2550 dnode_t *dn = dr->dr_dnode;
2551
2552 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2553
2554 ASSERT(db->db.db_size != 0);
2555
2556 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2557 dr->dr_accounted, txg);
2558
2559 list_remove(&db->db_dirty_records, dr);
2560
2561 /*
2562 * Note that there are three places in dbuf_dirty()
2563 * where this dirty record may be put on a list.
2564 * Make sure to do a list_remove corresponding to
2565 * every one of those list_insert calls.
2566 */
2567 if (dr->dr_parent) {
2568 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2569 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2570 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2571 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2572 db->db_level + 1 == dn->dn_nlevels) {
2573 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2574 mutex_enter(&dn->dn_mtx);
2575 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2576 mutex_exit(&dn->dn_mtx);
2577 }
2578
2579 if (db->db_state != DB_NOFILL && !brtwrite) {
2580 dbuf_unoverride(dr);
2581
2582 ASSERT(db->db_buf != NULL);
2583 ASSERT(dr->dt.dl.dr_data != NULL);
2584 if (dr->dt.dl.dr_data != db->db_buf)
2585 arc_buf_destroy(dr->dt.dl.dr_data, db);
2586 }
2587
2588 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2589
2590 ASSERT(db->db_dirtycnt > 0);
2591 db->db_dirtycnt -= 1;
2592
2593 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2594 ASSERT(db->db_state == DB_NOFILL || brtwrite ||
2595 arc_released(db->db_buf));
2596 dbuf_destroy(db);
2597 return (B_TRUE);
2598 }
2599
2600 return (B_FALSE);
2601 }
2602
2603 static void
dmu_buf_will_dirty_impl(dmu_buf_t * db_fake,int flags,dmu_tx_t * tx)2604 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2605 {
2606 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2607 boolean_t undirty = B_FALSE;
2608
2609 ASSERT(tx->tx_txg != 0);
2610 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2611
2612 /*
2613 * Quick check for dirtiness to improve performance for some workloads
2614 * (e.g. file deletion with indirect blocks cached).
2615 */
2616 mutex_enter(&db->db_mtx);
2617 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2618 /*
2619 * It's possible that the dbuf is already dirty but not cached,
2620 * because there are some calls to dbuf_dirty() that don't
2621 * go through dmu_buf_will_dirty().
2622 */
2623 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2624 if (dr != NULL) {
2625 if (db->db_level == 0 &&
2626 dr->dt.dl.dr_brtwrite) {
2627 /*
2628 * Block cloning: If we are dirtying a cloned
2629 * level 0 block, we cannot simply redirty it,
2630 * because this dr has no associated data.
2631 * We will go through a full undirtying below,
2632 * before dirtying it again.
2633 */
2634 undirty = B_TRUE;
2635 } else {
2636 /* This dbuf is already dirty and cached. */
2637 dbuf_redirty(dr);
2638 mutex_exit(&db->db_mtx);
2639 return;
2640 }
2641 }
2642 }
2643 mutex_exit(&db->db_mtx);
2644
2645 DB_DNODE_ENTER(db);
2646 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2647 flags |= DB_RF_HAVESTRUCT;
2648 DB_DNODE_EXIT(db);
2649
2650 /*
2651 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2652 * want to make sure dbuf_read() will read the pending cloned block and
2653 * not the uderlying block that is being replaced. dbuf_undirty() will
2654 * do dbuf_unoverride(), so we will end up with cloned block content,
2655 * without overridden BP.
2656 */
2657 (void) dbuf_read(db, NULL, flags);
2658 if (undirty) {
2659 mutex_enter(&db->db_mtx);
2660 VERIFY(!dbuf_undirty(db, tx));
2661 mutex_exit(&db->db_mtx);
2662 }
2663 (void) dbuf_dirty(db, tx);
2664 }
2665
2666 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2667 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2668 {
2669 dmu_buf_will_dirty_impl(db_fake,
2670 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2671 }
2672
2673 boolean_t
dmu_buf_is_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)2674 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2675 {
2676 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2677 dbuf_dirty_record_t *dr;
2678
2679 mutex_enter(&db->db_mtx);
2680 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2681 mutex_exit(&db->db_mtx);
2682 return (dr != NULL);
2683 }
2684
2685 void
dmu_buf_will_clone(dmu_buf_t * db_fake,dmu_tx_t * tx)2686 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx)
2687 {
2688 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2689
2690 /*
2691 * Block cloning: We are going to clone into this block, so undirty
2692 * modifications done to this block so far in this txg. This includes
2693 * writes and clones into this block.
2694 */
2695 mutex_enter(&db->db_mtx);
2696 DBUF_VERIFY(db);
2697 VERIFY(!dbuf_undirty(db, tx));
2698 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2699 if (db->db_buf != NULL) {
2700 arc_buf_destroy(db->db_buf, db);
2701 db->db_buf = NULL;
2702 dbuf_clear_data(db);
2703 }
2704
2705 db->db_state = DB_NOFILL;
2706 DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone");
2707
2708 DBUF_VERIFY(db);
2709 mutex_exit(&db->db_mtx);
2710
2711 dbuf_noread(db);
2712 (void) dbuf_dirty(db, tx);
2713 }
2714
2715 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)2716 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2717 {
2718 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2719
2720 mutex_enter(&db->db_mtx);
2721 db->db_state = DB_NOFILL;
2722 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2723 mutex_exit(&db->db_mtx);
2724
2725 dbuf_noread(db);
2726 (void) dbuf_dirty(db, tx);
2727 }
2728
2729 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx,boolean_t canfail)2730 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2731 {
2732 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2733
2734 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2735 ASSERT(tx->tx_txg != 0);
2736 ASSERT(db->db_level == 0);
2737 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2738
2739 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2740 dmu_tx_private_ok(tx));
2741
2742 mutex_enter(&db->db_mtx);
2743 if (db->db_state == DB_NOFILL) {
2744 /*
2745 * Block cloning: We will be completely overwriting a block
2746 * cloned in this transaction group, so let's undirty the
2747 * pending clone and mark the block as uncached. This will be
2748 * as if the clone was never done. But if the fill can fail
2749 * we should have a way to return back to the cloned data.
2750 */
2751 if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
2752 mutex_exit(&db->db_mtx);
2753 dmu_buf_will_dirty(db_fake, tx);
2754 return;
2755 }
2756 VERIFY(!dbuf_undirty(db, tx));
2757 db->db_state = DB_UNCACHED;
2758 }
2759 mutex_exit(&db->db_mtx);
2760
2761 dbuf_noread(db);
2762 (void) dbuf_dirty(db, tx);
2763 }
2764
2765 /*
2766 * This function is effectively the same as dmu_buf_will_dirty(), but
2767 * indicates the caller expects raw encrypted data in the db, and provides
2768 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2769 * blkptr_t when this dbuf is written. This is only used for blocks of
2770 * dnodes, during raw receive.
2771 */
2772 void
dmu_buf_set_crypt_params(dmu_buf_t * db_fake,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_tx_t * tx)2773 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2774 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2775 {
2776 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2777 dbuf_dirty_record_t *dr;
2778
2779 /*
2780 * dr_has_raw_params is only processed for blocks of dnodes
2781 * (see dbuf_sync_dnode_leaf_crypt()).
2782 */
2783 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2784 ASSERT3U(db->db_level, ==, 0);
2785 ASSERT(db->db_objset->os_raw_receive);
2786
2787 dmu_buf_will_dirty_impl(db_fake,
2788 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2789
2790 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2791
2792 ASSERT3P(dr, !=, NULL);
2793
2794 dr->dt.dl.dr_has_raw_params = B_TRUE;
2795 dr->dt.dl.dr_byteorder = byteorder;
2796 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2797 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2798 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2799 }
2800
2801 static void
dbuf_override_impl(dmu_buf_impl_t * db,const blkptr_t * bp,dmu_tx_t * tx)2802 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2803 {
2804 struct dirty_leaf *dl;
2805 dbuf_dirty_record_t *dr;
2806
2807 dr = list_head(&db->db_dirty_records);
2808 ASSERT3P(dr, !=, NULL);
2809 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2810 dl = &dr->dt.dl;
2811 dl->dr_overridden_by = *bp;
2812 dl->dr_override_state = DR_OVERRIDDEN;
2813 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2814 }
2815
2816 boolean_t
dmu_buf_fill_done(dmu_buf_t * dbuf,dmu_tx_t * tx,boolean_t failed)2817 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
2818 {
2819 (void) tx;
2820 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2821 mutex_enter(&db->db_mtx);
2822 DBUF_VERIFY(db);
2823
2824 if (db->db_state == DB_FILL) {
2825 if (db->db_level == 0 && db->db_freed_in_flight) {
2826 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2827 /* we were freed while filling */
2828 /* XXX dbuf_undirty? */
2829 memset(db->db.db_data, 0, db->db.db_size);
2830 db->db_freed_in_flight = FALSE;
2831 db->db_state = DB_CACHED;
2832 DTRACE_SET_STATE(db,
2833 "fill done handling freed in flight");
2834 failed = B_FALSE;
2835 } else if (failed) {
2836 VERIFY(!dbuf_undirty(db, tx));
2837 arc_buf_destroy(db->db_buf, db);
2838 db->db_buf = NULL;
2839 dbuf_clear_data(db);
2840 DTRACE_SET_STATE(db, "fill failed");
2841 } else {
2842 db->db_state = DB_CACHED;
2843 DTRACE_SET_STATE(db, "fill done");
2844 }
2845 cv_broadcast(&db->db_changed);
2846 } else {
2847 db->db_state = DB_CACHED;
2848 failed = B_FALSE;
2849 }
2850 mutex_exit(&db->db_mtx);
2851 return (failed);
2852 }
2853
2854 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)2855 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2856 bp_embedded_type_t etype, enum zio_compress comp,
2857 int uncompressed_size, int compressed_size, int byteorder,
2858 dmu_tx_t *tx)
2859 {
2860 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2861 struct dirty_leaf *dl;
2862 dmu_object_type_t type;
2863 dbuf_dirty_record_t *dr;
2864
2865 if (etype == BP_EMBEDDED_TYPE_DATA) {
2866 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2867 SPA_FEATURE_EMBEDDED_DATA));
2868 }
2869
2870 DB_DNODE_ENTER(db);
2871 type = DB_DNODE(db)->dn_type;
2872 DB_DNODE_EXIT(db);
2873
2874 ASSERT0(db->db_level);
2875 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2876
2877 dmu_buf_will_not_fill(dbuf, tx);
2878
2879 dr = list_head(&db->db_dirty_records);
2880 ASSERT3P(dr, !=, NULL);
2881 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2882 dl = &dr->dt.dl;
2883 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2884 data, comp, uncompressed_size, compressed_size);
2885 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2886 BP_SET_TYPE(&dl->dr_overridden_by, type);
2887 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2888 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2889
2890 dl->dr_override_state = DR_OVERRIDDEN;
2891 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2892 }
2893
2894 void
dmu_buf_redact(dmu_buf_t * dbuf,dmu_tx_t * tx)2895 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2896 {
2897 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2898 dmu_object_type_t type;
2899 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2900 SPA_FEATURE_REDACTED_DATASETS));
2901
2902 DB_DNODE_ENTER(db);
2903 type = DB_DNODE(db)->dn_type;
2904 DB_DNODE_EXIT(db);
2905
2906 ASSERT0(db->db_level);
2907 dmu_buf_will_not_fill(dbuf, tx);
2908
2909 blkptr_t bp = { { { {0} } } };
2910 BP_SET_TYPE(&bp, type);
2911 BP_SET_LEVEL(&bp, 0);
2912 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2913 BP_SET_REDACTED(&bp);
2914 BPE_SET_LSIZE(&bp, dbuf->db_size);
2915
2916 dbuf_override_impl(db, &bp, tx);
2917 }
2918
2919 /*
2920 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2921 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2922 */
2923 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx)2924 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2925 {
2926 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2927 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2928 ASSERT(db->db_level == 0);
2929 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2930 ASSERT(buf != NULL);
2931 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2932 ASSERT(tx->tx_txg != 0);
2933
2934 arc_return_buf(buf, db);
2935 ASSERT(arc_released(buf));
2936
2937 mutex_enter(&db->db_mtx);
2938
2939 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2940 cv_wait(&db->db_changed, &db->db_mtx);
2941
2942 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
2943 db->db_state == DB_NOFILL);
2944
2945 if (db->db_state == DB_CACHED &&
2946 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2947 /*
2948 * In practice, we will never have a case where we have an
2949 * encrypted arc buffer while additional holds exist on the
2950 * dbuf. We don't handle this here so we simply assert that
2951 * fact instead.
2952 */
2953 ASSERT(!arc_is_encrypted(buf));
2954 mutex_exit(&db->db_mtx);
2955 (void) dbuf_dirty(db, tx);
2956 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2957 arc_buf_destroy(buf, db);
2958 return;
2959 }
2960
2961 if (db->db_state == DB_CACHED) {
2962 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2963
2964 ASSERT(db->db_buf != NULL);
2965 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2966 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2967
2968 if (!arc_released(db->db_buf)) {
2969 ASSERT(dr->dt.dl.dr_override_state ==
2970 DR_OVERRIDDEN);
2971 arc_release(db->db_buf, db);
2972 }
2973 dr->dt.dl.dr_data = buf;
2974 arc_buf_destroy(db->db_buf, db);
2975 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2976 arc_release(db->db_buf, db);
2977 arc_buf_destroy(db->db_buf, db);
2978 }
2979 db->db_buf = NULL;
2980 } else if (db->db_state == DB_NOFILL) {
2981 /*
2982 * We will be completely replacing the cloned block. In case
2983 * it was cloned in this transaction group, let's undirty the
2984 * pending clone and mark the block as uncached. This will be
2985 * as if the clone was never done.
2986 */
2987 VERIFY(!dbuf_undirty(db, tx));
2988 db->db_state = DB_UNCACHED;
2989 }
2990 ASSERT(db->db_buf == NULL);
2991 dbuf_set_data(db, buf);
2992 db->db_state = DB_FILL;
2993 DTRACE_SET_STATE(db, "filling assigned arcbuf");
2994 mutex_exit(&db->db_mtx);
2995 (void) dbuf_dirty(db, tx);
2996 dmu_buf_fill_done(&db->db, tx, B_FALSE);
2997 }
2998
2999 void
dbuf_destroy(dmu_buf_impl_t * db)3000 dbuf_destroy(dmu_buf_impl_t *db)
3001 {
3002 dnode_t *dn;
3003 dmu_buf_impl_t *parent = db->db_parent;
3004 dmu_buf_impl_t *dndb;
3005
3006 ASSERT(MUTEX_HELD(&db->db_mtx));
3007 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3008
3009 if (db->db_buf != NULL) {
3010 arc_buf_destroy(db->db_buf, db);
3011 db->db_buf = NULL;
3012 }
3013
3014 if (db->db_blkid == DMU_BONUS_BLKID) {
3015 int slots = DB_DNODE(db)->dn_num_slots;
3016 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3017 if (db->db.db_data != NULL) {
3018 kmem_free(db->db.db_data, bonuslen);
3019 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3020 db->db_state = DB_UNCACHED;
3021 DTRACE_SET_STATE(db, "buffer cleared");
3022 }
3023 }
3024
3025 dbuf_clear_data(db);
3026
3027 if (multilist_link_active(&db->db_cache_link)) {
3028 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3029 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3030
3031 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3032 (void) zfs_refcount_remove_many(
3033 &dbuf_caches[db->db_caching_status].size,
3034 db->db.db_size, db);
3035
3036 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3037 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3038 } else {
3039 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3040 DBUF_STAT_BUMPDOWN(cache_count);
3041 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3042 db->db.db_size);
3043 }
3044 db->db_caching_status = DB_NO_CACHE;
3045 }
3046
3047 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3048 ASSERT(db->db_data_pending == NULL);
3049 ASSERT(list_is_empty(&db->db_dirty_records));
3050
3051 db->db_state = DB_EVICTING;
3052 DTRACE_SET_STATE(db, "buffer eviction started");
3053 db->db_blkptr = NULL;
3054
3055 /*
3056 * Now that db_state is DB_EVICTING, nobody else can find this via
3057 * the hash table. We can now drop db_mtx, which allows us to
3058 * acquire the dn_dbufs_mtx.
3059 */
3060 mutex_exit(&db->db_mtx);
3061
3062 DB_DNODE_ENTER(db);
3063 dn = DB_DNODE(db);
3064 dndb = dn->dn_dbuf;
3065 if (db->db_blkid != DMU_BONUS_BLKID) {
3066 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3067 if (needlock)
3068 mutex_enter_nested(&dn->dn_dbufs_mtx,
3069 NESTED_SINGLE);
3070 avl_remove(&dn->dn_dbufs, db);
3071 membar_producer();
3072 DB_DNODE_EXIT(db);
3073 if (needlock)
3074 mutex_exit(&dn->dn_dbufs_mtx);
3075 /*
3076 * Decrementing the dbuf count means that the hold corresponding
3077 * to the removed dbuf is no longer discounted in dnode_move(),
3078 * so the dnode cannot be moved until after we release the hold.
3079 * The membar_producer() ensures visibility of the decremented
3080 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3081 * release any lock.
3082 */
3083 mutex_enter(&dn->dn_mtx);
3084 dnode_rele_and_unlock(dn, db, B_TRUE);
3085 db->db_dnode_handle = NULL;
3086
3087 dbuf_hash_remove(db);
3088 } else {
3089 DB_DNODE_EXIT(db);
3090 }
3091
3092 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3093
3094 db->db_parent = NULL;
3095
3096 ASSERT(db->db_buf == NULL);
3097 ASSERT(db->db.db_data == NULL);
3098 ASSERT(db->db_hash_next == NULL);
3099 ASSERT(db->db_blkptr == NULL);
3100 ASSERT(db->db_data_pending == NULL);
3101 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3102 ASSERT(!multilist_link_active(&db->db_cache_link));
3103
3104 /*
3105 * If this dbuf is referenced from an indirect dbuf,
3106 * decrement the ref count on the indirect dbuf.
3107 */
3108 if (parent && parent != dndb) {
3109 mutex_enter(&parent->db_mtx);
3110 dbuf_rele_and_unlock(parent, db, B_TRUE);
3111 }
3112
3113 kmem_cache_free(dbuf_kmem_cache, db);
3114 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3115 }
3116
3117 /*
3118 * Note: While bpp will always be updated if the function returns success,
3119 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3120 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3121 * object.
3122 */
3123 __attribute__((always_inline))
3124 static inline int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)3125 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3126 dmu_buf_impl_t **parentp, blkptr_t **bpp)
3127 {
3128 *parentp = NULL;
3129 *bpp = NULL;
3130
3131 ASSERT(blkid != DMU_BONUS_BLKID);
3132
3133 if (blkid == DMU_SPILL_BLKID) {
3134 mutex_enter(&dn->dn_mtx);
3135 if (dn->dn_have_spill &&
3136 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3137 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3138 else
3139 *bpp = NULL;
3140 dbuf_add_ref(dn->dn_dbuf, NULL);
3141 *parentp = dn->dn_dbuf;
3142 mutex_exit(&dn->dn_mtx);
3143 return (0);
3144 }
3145
3146 int nlevels =
3147 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3148 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3149
3150 ASSERT3U(level * epbs, <, 64);
3151 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3152 /*
3153 * This assertion shouldn't trip as long as the max indirect block size
3154 * is less than 1M. The reason for this is that up to that point,
3155 * the number of levels required to address an entire object with blocks
3156 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3157 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3158 * (i.e. we can address the entire object), objects will all use at most
3159 * N-1 levels and the assertion won't overflow. However, once epbs is
3160 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3161 * enough to address an entire object, so objects will have 5 levels,
3162 * but then this assertion will overflow.
3163 *
3164 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3165 * need to redo this logic to handle overflows.
3166 */
3167 ASSERT(level >= nlevels ||
3168 ((nlevels - level - 1) * epbs) +
3169 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3170 if (level >= nlevels ||
3171 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3172 ((nlevels - level - 1) * epbs)) ||
3173 (fail_sparse &&
3174 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3175 /* the buffer has no parent yet */
3176 return (SET_ERROR(ENOENT));
3177 } else if (level < nlevels-1) {
3178 /* this block is referenced from an indirect block */
3179 int err;
3180
3181 err = dbuf_hold_impl(dn, level + 1,
3182 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3183
3184 if (err)
3185 return (err);
3186 err = dbuf_read(*parentp, NULL,
3187 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3188 if (err) {
3189 dbuf_rele(*parentp, NULL);
3190 *parentp = NULL;
3191 return (err);
3192 }
3193 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3194 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3195 (blkid & ((1ULL << epbs) - 1));
3196 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3197 ASSERT(BP_IS_HOLE(*bpp));
3198 rw_exit(&(*parentp)->db_rwlock);
3199 return (0);
3200 } else {
3201 /* the block is referenced from the dnode */
3202 ASSERT3U(level, ==, nlevels-1);
3203 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3204 blkid < dn->dn_phys->dn_nblkptr);
3205 if (dn->dn_dbuf) {
3206 dbuf_add_ref(dn->dn_dbuf, NULL);
3207 *parentp = dn->dn_dbuf;
3208 }
3209 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3210 return (0);
3211 }
3212 }
3213
3214 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr,uint64_t hash)3215 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3216 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3217 {
3218 objset_t *os = dn->dn_objset;
3219 dmu_buf_impl_t *db, *odb;
3220
3221 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3222 ASSERT(dn->dn_type != DMU_OT_NONE);
3223
3224 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3225
3226 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3227 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3228
3229 db->db_objset = os;
3230 db->db.db_object = dn->dn_object;
3231 db->db_level = level;
3232 db->db_blkid = blkid;
3233 db->db_dirtycnt = 0;
3234 db->db_dnode_handle = dn->dn_handle;
3235 db->db_parent = parent;
3236 db->db_blkptr = blkptr;
3237 db->db_hash = hash;
3238
3239 db->db_user = NULL;
3240 db->db_user_immediate_evict = FALSE;
3241 db->db_freed_in_flight = FALSE;
3242 db->db_pending_evict = FALSE;
3243
3244 if (blkid == DMU_BONUS_BLKID) {
3245 ASSERT3P(parent, ==, dn->dn_dbuf);
3246 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3247 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3248 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3249 db->db.db_offset = DMU_BONUS_BLKID;
3250 db->db_state = DB_UNCACHED;
3251 DTRACE_SET_STATE(db, "bonus buffer created");
3252 db->db_caching_status = DB_NO_CACHE;
3253 /* the bonus dbuf is not placed in the hash table */
3254 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3255 return (db);
3256 } else if (blkid == DMU_SPILL_BLKID) {
3257 db->db.db_size = (blkptr != NULL) ?
3258 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3259 db->db.db_offset = 0;
3260 } else {
3261 int blocksize =
3262 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3263 db->db.db_size = blocksize;
3264 db->db.db_offset = db->db_blkid * blocksize;
3265 }
3266
3267 /*
3268 * Hold the dn_dbufs_mtx while we get the new dbuf
3269 * in the hash table *and* added to the dbufs list.
3270 * This prevents a possible deadlock with someone
3271 * trying to look up this dbuf before it's added to the
3272 * dn_dbufs list.
3273 */
3274 mutex_enter(&dn->dn_dbufs_mtx);
3275 db->db_state = DB_EVICTING; /* not worth logging this state change */
3276 if ((odb = dbuf_hash_insert(db)) != NULL) {
3277 /* someone else inserted it first */
3278 mutex_exit(&dn->dn_dbufs_mtx);
3279 kmem_cache_free(dbuf_kmem_cache, db);
3280 DBUF_STAT_BUMP(hash_insert_race);
3281 return (odb);
3282 }
3283 avl_add(&dn->dn_dbufs, db);
3284
3285 db->db_state = DB_UNCACHED;
3286 DTRACE_SET_STATE(db, "regular buffer created");
3287 db->db_caching_status = DB_NO_CACHE;
3288 mutex_exit(&dn->dn_dbufs_mtx);
3289 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3290
3291 if (parent && parent != dn->dn_dbuf)
3292 dbuf_add_ref(parent, db);
3293
3294 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3295 zfs_refcount_count(&dn->dn_holds) > 0);
3296 (void) zfs_refcount_add(&dn->dn_holds, db);
3297
3298 dprintf_dbuf(db, "db=%p\n", db);
3299
3300 return (db);
3301 }
3302
3303 /*
3304 * This function returns a block pointer and information about the object,
3305 * given a dnode and a block. This is a publicly accessible version of
3306 * dbuf_findbp that only returns some information, rather than the
3307 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3308 * should be locked as (at least) a reader.
3309 */
3310 int
dbuf_dnode_findbp(dnode_t * dn,uint64_t level,uint64_t blkid,blkptr_t * bp,uint16_t * datablkszsec,uint8_t * indblkshift)3311 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3312 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3313 {
3314 dmu_buf_impl_t *dbp = NULL;
3315 blkptr_t *bp2;
3316 int err = 0;
3317 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3318
3319 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3320 if (err == 0) {
3321 ASSERT3P(bp2, !=, NULL);
3322 *bp = *bp2;
3323 if (dbp != NULL)
3324 dbuf_rele(dbp, NULL);
3325 if (datablkszsec != NULL)
3326 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3327 if (indblkshift != NULL)
3328 *indblkshift = dn->dn_phys->dn_indblkshift;
3329 }
3330
3331 return (err);
3332 }
3333
3334 typedef struct dbuf_prefetch_arg {
3335 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3336 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3337 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3338 int dpa_curlevel; /* The current level that we're reading */
3339 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3340 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3341 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3342 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3343 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3344 void *dpa_arg; /* prefetch completion arg */
3345 } dbuf_prefetch_arg_t;
3346
3347 static void
dbuf_prefetch_fini(dbuf_prefetch_arg_t * dpa,boolean_t io_done)3348 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3349 {
3350 if (dpa->dpa_cb != NULL) {
3351 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3352 dpa->dpa_zb.zb_blkid, io_done);
3353 }
3354 kmem_free(dpa, sizeof (*dpa));
3355 }
3356
3357 static void
dbuf_issue_final_prefetch_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3358 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3359 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3360 {
3361 (void) zio, (void) zb, (void) iobp;
3362 dbuf_prefetch_arg_t *dpa = private;
3363
3364 if (abuf != NULL)
3365 arc_buf_destroy(abuf, private);
3366
3367 dbuf_prefetch_fini(dpa, B_TRUE);
3368 }
3369
3370 /*
3371 * Actually issue the prefetch read for the block given.
3372 */
3373 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)3374 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3375 {
3376 ASSERT(!BP_IS_REDACTED(bp) ||
3377 dsl_dataset_feature_is_active(
3378 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3379 SPA_FEATURE_REDACTED_DATASETS));
3380
3381 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3382 return (dbuf_prefetch_fini(dpa, B_FALSE));
3383
3384 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3385 arc_flags_t aflags =
3386 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3387 ARC_FLAG_NO_BUF;
3388
3389 /* dnodes are always read as raw and then converted later */
3390 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3391 dpa->dpa_curlevel == 0)
3392 zio_flags |= ZIO_FLAG_RAW;
3393
3394 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3395 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3396 ASSERT(dpa->dpa_zio != NULL);
3397 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3398 dbuf_issue_final_prefetch_done, dpa,
3399 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3400 }
3401
3402 /*
3403 * Called when an indirect block above our prefetch target is read in. This
3404 * will either read in the next indirect block down the tree or issue the actual
3405 * prefetch if the next block down is our target.
3406 */
3407 static void
dbuf_prefetch_indirect_done(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * iobp,arc_buf_t * abuf,void * private)3408 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3409 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3410 {
3411 (void) zb, (void) iobp;
3412 dbuf_prefetch_arg_t *dpa = private;
3413
3414 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3415 ASSERT3S(dpa->dpa_curlevel, >, 0);
3416
3417 if (abuf == NULL) {
3418 ASSERT(zio == NULL || zio->io_error != 0);
3419 dbuf_prefetch_fini(dpa, B_TRUE);
3420 return;
3421 }
3422 ASSERT(zio == NULL || zio->io_error == 0);
3423
3424 /*
3425 * The dpa_dnode is only valid if we are called with a NULL
3426 * zio. This indicates that the arc_read() returned without
3427 * first calling zio_read() to issue a physical read. Once
3428 * a physical read is made the dpa_dnode must be invalidated
3429 * as the locks guarding it may have been dropped. If the
3430 * dpa_dnode is still valid, then we want to add it to the dbuf
3431 * cache. To do so, we must hold the dbuf associated with the block
3432 * we just prefetched, read its contents so that we associate it
3433 * with an arc_buf_t, and then release it.
3434 */
3435 if (zio != NULL) {
3436 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3437 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3438 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3439 } else {
3440 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3441 }
3442 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3443
3444 dpa->dpa_dnode = NULL;
3445 } else if (dpa->dpa_dnode != NULL) {
3446 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3447 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3448 dpa->dpa_zb.zb_level));
3449 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3450 dpa->dpa_curlevel, curblkid, FTAG);
3451 if (db == NULL) {
3452 arc_buf_destroy(abuf, private);
3453 dbuf_prefetch_fini(dpa, B_TRUE);
3454 return;
3455 }
3456 (void) dbuf_read(db, NULL,
3457 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3458 dbuf_rele(db, FTAG);
3459 }
3460
3461 dpa->dpa_curlevel--;
3462 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3463 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3464 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3465 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3466
3467 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3468 dsl_dataset_feature_is_active(
3469 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3470 SPA_FEATURE_REDACTED_DATASETS)));
3471 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3472 arc_buf_destroy(abuf, private);
3473 dbuf_prefetch_fini(dpa, B_TRUE);
3474 return;
3475 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3476 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3477 dbuf_issue_final_prefetch(dpa, bp);
3478 } else {
3479 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3480 zbookmark_phys_t zb;
3481
3482 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3483 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3484 iter_aflags |= ARC_FLAG_L2CACHE;
3485
3486 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3487
3488 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3489 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3490
3491 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3492 bp, dbuf_prefetch_indirect_done, dpa,
3493 ZIO_PRIORITY_SYNC_READ,
3494 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3495 &iter_aflags, &zb);
3496 }
3497
3498 arc_buf_destroy(abuf, private);
3499 }
3500
3501 /*
3502 * Issue prefetch reads for the given block on the given level. If the indirect
3503 * blocks above that block are not in memory, we will read them in
3504 * asynchronously. As a result, this call never blocks waiting for a read to
3505 * complete. Note that the prefetch might fail if the dataset is encrypted and
3506 * the encryption key is unmapped before the IO completes.
3507 */
3508 int
dbuf_prefetch_impl(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags,dbuf_prefetch_fn cb,void * arg)3509 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3510 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3511 void *arg)
3512 {
3513 blkptr_t bp;
3514 int epbs, nlevels, curlevel;
3515 uint64_t curblkid;
3516
3517 ASSERT(blkid != DMU_BONUS_BLKID);
3518 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3519
3520 if (blkid > dn->dn_maxblkid)
3521 goto no_issue;
3522
3523 if (level == 0 && dnode_block_freed(dn, blkid))
3524 goto no_issue;
3525
3526 /*
3527 * This dnode hasn't been written to disk yet, so there's nothing to
3528 * prefetch.
3529 */
3530 nlevels = dn->dn_phys->dn_nlevels;
3531 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3532 goto no_issue;
3533
3534 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3535 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3536 goto no_issue;
3537
3538 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3539 level, blkid, NULL);
3540 if (db != NULL) {
3541 mutex_exit(&db->db_mtx);
3542 /*
3543 * This dbuf already exists. It is either CACHED, or
3544 * (we assume) about to be read or filled.
3545 */
3546 goto no_issue;
3547 }
3548
3549 /*
3550 * Find the closest ancestor (indirect block) of the target block
3551 * that is present in the cache. In this indirect block, we will
3552 * find the bp that is at curlevel, curblkid.
3553 */
3554 curlevel = level;
3555 curblkid = blkid;
3556 while (curlevel < nlevels - 1) {
3557 int parent_level = curlevel + 1;
3558 uint64_t parent_blkid = curblkid >> epbs;
3559 dmu_buf_impl_t *db;
3560
3561 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3562 FALSE, TRUE, FTAG, &db) == 0) {
3563 blkptr_t *bpp = db->db_buf->b_data;
3564 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3565 dbuf_rele(db, FTAG);
3566 break;
3567 }
3568
3569 curlevel = parent_level;
3570 curblkid = parent_blkid;
3571 }
3572
3573 if (curlevel == nlevels - 1) {
3574 /* No cached indirect blocks found. */
3575 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3576 bp = dn->dn_phys->dn_blkptr[curblkid];
3577 }
3578 ASSERT(!BP_IS_REDACTED(&bp) ||
3579 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3580 SPA_FEATURE_REDACTED_DATASETS));
3581 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3582 goto no_issue;
3583
3584 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3585
3586 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3587 ZIO_FLAG_CANFAIL);
3588
3589 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3590 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3591 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3592 dn->dn_object, level, blkid);
3593 dpa->dpa_curlevel = curlevel;
3594 dpa->dpa_prio = prio;
3595 dpa->dpa_aflags = aflags;
3596 dpa->dpa_spa = dn->dn_objset->os_spa;
3597 dpa->dpa_dnode = dn;
3598 dpa->dpa_epbs = epbs;
3599 dpa->dpa_zio = pio;
3600 dpa->dpa_cb = cb;
3601 dpa->dpa_arg = arg;
3602
3603 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3604 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3605 else if (dnode_level_is_l2cacheable(&bp, dn, level))
3606 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3607
3608 /*
3609 * If we have the indirect just above us, no need to do the asynchronous
3610 * prefetch chain; we'll just run the last step ourselves. If we're at
3611 * a higher level, though, we want to issue the prefetches for all the
3612 * indirect blocks asynchronously, so we can go on with whatever we were
3613 * doing.
3614 */
3615 if (curlevel == level) {
3616 ASSERT3U(curblkid, ==, blkid);
3617 dbuf_issue_final_prefetch(dpa, &bp);
3618 } else {
3619 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3620 zbookmark_phys_t zb;
3621
3622 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3623 if (dnode_level_is_l2cacheable(&bp, dn, level))
3624 iter_aflags |= ARC_FLAG_L2CACHE;
3625
3626 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3627 dn->dn_object, curlevel, curblkid);
3628 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3629 &bp, dbuf_prefetch_indirect_done, dpa,
3630 ZIO_PRIORITY_SYNC_READ,
3631 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3632 &iter_aflags, &zb);
3633 }
3634 /*
3635 * We use pio here instead of dpa_zio since it's possible that
3636 * dpa may have already been freed.
3637 */
3638 zio_nowait(pio);
3639 return (1);
3640 no_issue:
3641 if (cb != NULL)
3642 cb(arg, level, blkid, B_FALSE);
3643 return (0);
3644 }
3645
3646 int
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)3647 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3648 arc_flags_t aflags)
3649 {
3650
3651 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3652 }
3653
3654 /*
3655 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3656 * the case of encrypted, compressed and uncompressed buffers by
3657 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3658 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3659 *
3660 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3661 */
3662 noinline static void
dbuf_hold_copy(dnode_t * dn,dmu_buf_impl_t * db)3663 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3664 {
3665 dbuf_dirty_record_t *dr = db->db_data_pending;
3666 arc_buf_t *data = dr->dt.dl.dr_data;
3667 enum zio_compress compress_type = arc_get_compression(data);
3668 uint8_t complevel = arc_get_complevel(data);
3669
3670 if (arc_is_encrypted(data)) {
3671 boolean_t byteorder;
3672 uint8_t salt[ZIO_DATA_SALT_LEN];
3673 uint8_t iv[ZIO_DATA_IV_LEN];
3674 uint8_t mac[ZIO_DATA_MAC_LEN];
3675
3676 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3677 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3678 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3679 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3680 compress_type, complevel));
3681 } else if (compress_type != ZIO_COMPRESS_OFF) {
3682 dbuf_set_data(db, arc_alloc_compressed_buf(
3683 dn->dn_objset->os_spa, db, arc_buf_size(data),
3684 arc_buf_lsize(data), compress_type, complevel));
3685 } else {
3686 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3687 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3688 }
3689
3690 rw_enter(&db->db_rwlock, RW_WRITER);
3691 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3692 rw_exit(&db->db_rwlock);
3693 }
3694
3695 /*
3696 * Returns with db_holds incremented, and db_mtx not held.
3697 * Note: dn_struct_rwlock must be held.
3698 */
3699 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,const void * tag,dmu_buf_impl_t ** dbp)3700 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3701 boolean_t fail_sparse, boolean_t fail_uncached,
3702 const void *tag, dmu_buf_impl_t **dbp)
3703 {
3704 dmu_buf_impl_t *db, *parent = NULL;
3705 uint64_t hv;
3706
3707 /* If the pool has been created, verify the tx_sync_lock is not held */
3708 spa_t *spa = dn->dn_objset->os_spa;
3709 dsl_pool_t *dp = spa->spa_dsl_pool;
3710 if (dp != NULL) {
3711 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3712 }
3713
3714 ASSERT(blkid != DMU_BONUS_BLKID);
3715 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3716 ASSERT3U(dn->dn_nlevels, >, level);
3717
3718 *dbp = NULL;
3719
3720 /* dbuf_find() returns with db_mtx held */
3721 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3722
3723 if (db == NULL) {
3724 blkptr_t *bp = NULL;
3725 int err;
3726
3727 if (fail_uncached)
3728 return (SET_ERROR(ENOENT));
3729
3730 ASSERT3P(parent, ==, NULL);
3731 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3732 if (fail_sparse) {
3733 if (err == 0 && bp && BP_IS_HOLE(bp))
3734 err = SET_ERROR(ENOENT);
3735 if (err) {
3736 if (parent)
3737 dbuf_rele(parent, NULL);
3738 return (err);
3739 }
3740 }
3741 if (err && err != ENOENT)
3742 return (err);
3743 db = dbuf_create(dn, level, blkid, parent, bp, hv);
3744 }
3745
3746 if (fail_uncached && db->db_state != DB_CACHED) {
3747 mutex_exit(&db->db_mtx);
3748 return (SET_ERROR(ENOENT));
3749 }
3750
3751 if (db->db_buf != NULL) {
3752 arc_buf_access(db->db_buf);
3753 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3754 }
3755
3756 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3757
3758 /*
3759 * If this buffer is currently syncing out, and we are
3760 * still referencing it from db_data, we need to make a copy
3761 * of it in case we decide we want to dirty it again in this txg.
3762 */
3763 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3764 dn->dn_object != DMU_META_DNODE_OBJECT &&
3765 db->db_state == DB_CACHED && db->db_data_pending) {
3766 dbuf_dirty_record_t *dr = db->db_data_pending;
3767 if (dr->dt.dl.dr_data == db->db_buf) {
3768 ASSERT3P(db->db_buf, !=, NULL);
3769 dbuf_hold_copy(dn, db);
3770 }
3771 }
3772
3773 if (multilist_link_active(&db->db_cache_link)) {
3774 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3775 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3776 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3777
3778 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3779 (void) zfs_refcount_remove_many(
3780 &dbuf_caches[db->db_caching_status].size,
3781 db->db.db_size, db);
3782
3783 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3784 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3785 } else {
3786 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3787 DBUF_STAT_BUMPDOWN(cache_count);
3788 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3789 db->db.db_size);
3790 }
3791 db->db_caching_status = DB_NO_CACHE;
3792 }
3793 (void) zfs_refcount_add(&db->db_holds, tag);
3794 DBUF_VERIFY(db);
3795 mutex_exit(&db->db_mtx);
3796
3797 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3798 if (parent)
3799 dbuf_rele(parent, NULL);
3800
3801 ASSERT3P(DB_DNODE(db), ==, dn);
3802 ASSERT3U(db->db_blkid, ==, blkid);
3803 ASSERT3U(db->db_level, ==, level);
3804 *dbp = db;
3805
3806 return (0);
3807 }
3808
3809 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,const void * tag)3810 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3811 {
3812 return (dbuf_hold_level(dn, 0, blkid, tag));
3813 }
3814
3815 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,const void * tag)3816 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3817 {
3818 dmu_buf_impl_t *db;
3819 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3820 return (err ? NULL : db);
3821 }
3822
3823 void
dbuf_create_bonus(dnode_t * dn)3824 dbuf_create_bonus(dnode_t *dn)
3825 {
3826 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3827
3828 ASSERT(dn->dn_bonus == NULL);
3829 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
3830 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
3831 }
3832
3833 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)3834 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3835 {
3836 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3837
3838 if (db->db_blkid != DMU_SPILL_BLKID)
3839 return (SET_ERROR(ENOTSUP));
3840 if (blksz == 0)
3841 blksz = SPA_MINBLOCKSIZE;
3842 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3843 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3844
3845 dbuf_new_size(db, blksz, tx);
3846
3847 return (0);
3848 }
3849
3850 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)3851 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3852 {
3853 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3854 }
3855
3856 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3857 void
dbuf_add_ref(dmu_buf_impl_t * db,const void * tag)3858 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3859 {
3860 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3861 VERIFY3S(holds, >, 1);
3862 }
3863
3864 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3865 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,const void * tag)3866 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3867 const void *tag)
3868 {
3869 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3870 dmu_buf_impl_t *found_db;
3871 boolean_t result = B_FALSE;
3872
3873 if (blkid == DMU_BONUS_BLKID)
3874 found_db = dbuf_find_bonus(os, obj);
3875 else
3876 found_db = dbuf_find(os, obj, 0, blkid, NULL);
3877
3878 if (found_db != NULL) {
3879 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3880 (void) zfs_refcount_add(&db->db_holds, tag);
3881 result = B_TRUE;
3882 }
3883 mutex_exit(&found_db->db_mtx);
3884 }
3885 return (result);
3886 }
3887
3888 /*
3889 * If you call dbuf_rele() you had better not be referencing the dnode handle
3890 * unless you have some other direct or indirect hold on the dnode. (An indirect
3891 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3892 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3893 * dnode's parent dbuf evicting its dnode handles.
3894 */
3895 void
dbuf_rele(dmu_buf_impl_t * db,const void * tag)3896 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3897 {
3898 mutex_enter(&db->db_mtx);
3899 dbuf_rele_and_unlock(db, tag, B_FALSE);
3900 }
3901
3902 void
dmu_buf_rele(dmu_buf_t * db,const void * tag)3903 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3904 {
3905 dbuf_rele((dmu_buf_impl_t *)db, tag);
3906 }
3907
3908 /*
3909 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3910 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3911 * argument should be set if we are already in the dbuf-evicting code
3912 * path, in which case we don't want to recursively evict. This allows us to
3913 * avoid deeply nested stacks that would have a call flow similar to this:
3914 *
3915 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3916 * ^ |
3917 * | |
3918 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3919 *
3920 */
3921 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,const void * tag,boolean_t evicting)3922 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3923 {
3924 int64_t holds;
3925 uint64_t size;
3926
3927 ASSERT(MUTEX_HELD(&db->db_mtx));
3928 DBUF_VERIFY(db);
3929
3930 /*
3931 * Remove the reference to the dbuf before removing its hold on the
3932 * dnode so we can guarantee in dnode_move() that a referenced bonus
3933 * buffer has a corresponding dnode hold.
3934 */
3935 holds = zfs_refcount_remove(&db->db_holds, tag);
3936 ASSERT(holds >= 0);
3937
3938 /*
3939 * We can't freeze indirects if there is a possibility that they
3940 * may be modified in the current syncing context.
3941 */
3942 if (db->db_buf != NULL &&
3943 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3944 arc_buf_freeze(db->db_buf);
3945 }
3946
3947 if (holds == db->db_dirtycnt &&
3948 db->db_level == 0 && db->db_user_immediate_evict)
3949 dbuf_evict_user(db);
3950
3951 if (holds == 0) {
3952 if (db->db_blkid == DMU_BONUS_BLKID) {
3953 dnode_t *dn;
3954 boolean_t evict_dbuf = db->db_pending_evict;
3955
3956 /*
3957 * If the dnode moves here, we cannot cross this
3958 * barrier until the move completes.
3959 */
3960 DB_DNODE_ENTER(db);
3961
3962 dn = DB_DNODE(db);
3963 atomic_dec_32(&dn->dn_dbufs_count);
3964
3965 /*
3966 * Decrementing the dbuf count means that the bonus
3967 * buffer's dnode hold is no longer discounted in
3968 * dnode_move(). The dnode cannot move until after
3969 * the dnode_rele() below.
3970 */
3971 DB_DNODE_EXIT(db);
3972
3973 /*
3974 * Do not reference db after its lock is dropped.
3975 * Another thread may evict it.
3976 */
3977 mutex_exit(&db->db_mtx);
3978
3979 if (evict_dbuf)
3980 dnode_evict_bonus(dn);
3981
3982 dnode_rele(dn, db);
3983 } else if (db->db_buf == NULL) {
3984 /*
3985 * This is a special case: we never associated this
3986 * dbuf with any data allocated from the ARC.
3987 */
3988 ASSERT(db->db_state == DB_UNCACHED ||
3989 db->db_state == DB_NOFILL);
3990 dbuf_destroy(db);
3991 } else if (arc_released(db->db_buf)) {
3992 /*
3993 * This dbuf has anonymous data associated with it.
3994 */
3995 dbuf_destroy(db);
3996 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
3997 db->db_pending_evict) {
3998 dbuf_destroy(db);
3999 } else if (!multilist_link_active(&db->db_cache_link)) {
4000 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4001
4002 dbuf_cached_state_t dcs =
4003 dbuf_include_in_metadata_cache(db) ?
4004 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4005 db->db_caching_status = dcs;
4006
4007 multilist_insert(&dbuf_caches[dcs].cache, db);
4008 uint64_t db_size = db->db.db_size;
4009 size = zfs_refcount_add_many(
4010 &dbuf_caches[dcs].size, db_size, db);
4011 uint8_t db_level = db->db_level;
4012 mutex_exit(&db->db_mtx);
4013
4014 if (dcs == DB_DBUF_METADATA_CACHE) {
4015 DBUF_STAT_BUMP(metadata_cache_count);
4016 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4017 size);
4018 } else {
4019 DBUF_STAT_BUMP(cache_count);
4020 DBUF_STAT_MAX(cache_size_bytes_max, size);
4021 DBUF_STAT_BUMP(cache_levels[db_level]);
4022 DBUF_STAT_INCR(cache_levels_bytes[db_level],
4023 db_size);
4024 }
4025
4026 if (dcs == DB_DBUF_CACHE && !evicting)
4027 dbuf_evict_notify(size);
4028 }
4029 } else {
4030 mutex_exit(&db->db_mtx);
4031 }
4032
4033 }
4034
4035 #pragma weak dmu_buf_refcount = dbuf_refcount
4036 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)4037 dbuf_refcount(dmu_buf_impl_t *db)
4038 {
4039 return (zfs_refcount_count(&db->db_holds));
4040 }
4041
4042 uint64_t
dmu_buf_user_refcount(dmu_buf_t * db_fake)4043 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4044 {
4045 uint64_t holds;
4046 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4047
4048 mutex_enter(&db->db_mtx);
4049 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4050 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4051 mutex_exit(&db->db_mtx);
4052
4053 return (holds);
4054 }
4055
4056 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)4057 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4058 dmu_buf_user_t *new_user)
4059 {
4060 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4061
4062 mutex_enter(&db->db_mtx);
4063 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4064 if (db->db_user == old_user)
4065 db->db_user = new_user;
4066 else
4067 old_user = db->db_user;
4068 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4069 mutex_exit(&db->db_mtx);
4070
4071 return (old_user);
4072 }
4073
4074 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4075 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4076 {
4077 return (dmu_buf_replace_user(db_fake, NULL, user));
4078 }
4079
4080 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)4081 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4082 {
4083 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4084
4085 db->db_user_immediate_evict = TRUE;
4086 return (dmu_buf_set_user(db_fake, user));
4087 }
4088
4089 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)4090 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4091 {
4092 return (dmu_buf_replace_user(db_fake, user, NULL));
4093 }
4094
4095 void *
dmu_buf_get_user(dmu_buf_t * db_fake)4096 dmu_buf_get_user(dmu_buf_t *db_fake)
4097 {
4098 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4099
4100 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4101 return (db->db_user);
4102 }
4103
4104 void
dmu_buf_user_evict_wait(void)4105 dmu_buf_user_evict_wait(void)
4106 {
4107 taskq_wait(dbu_evict_taskq);
4108 }
4109
4110 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)4111 dmu_buf_get_blkptr(dmu_buf_t *db)
4112 {
4113 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4114 return (dbi->db_blkptr);
4115 }
4116
4117 objset_t *
dmu_buf_get_objset(dmu_buf_t * db)4118 dmu_buf_get_objset(dmu_buf_t *db)
4119 {
4120 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4121 return (dbi->db_objset);
4122 }
4123
4124 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)4125 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4126 {
4127 /* ASSERT(dmu_tx_is_syncing(tx) */
4128 ASSERT(MUTEX_HELD(&db->db_mtx));
4129
4130 if (db->db_blkptr != NULL)
4131 return;
4132
4133 if (db->db_blkid == DMU_SPILL_BLKID) {
4134 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4135 BP_ZERO(db->db_blkptr);
4136 return;
4137 }
4138 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4139 /*
4140 * This buffer was allocated at a time when there was
4141 * no available blkptrs from the dnode, or it was
4142 * inappropriate to hook it in (i.e., nlevels mismatch).
4143 */
4144 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4145 ASSERT(db->db_parent == NULL);
4146 db->db_parent = dn->dn_dbuf;
4147 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4148 DBUF_VERIFY(db);
4149 } else {
4150 dmu_buf_impl_t *parent = db->db_parent;
4151 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4152
4153 ASSERT(dn->dn_phys->dn_nlevels > 1);
4154 if (parent == NULL) {
4155 mutex_exit(&db->db_mtx);
4156 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4157 parent = dbuf_hold_level(dn, db->db_level + 1,
4158 db->db_blkid >> epbs, db);
4159 rw_exit(&dn->dn_struct_rwlock);
4160 mutex_enter(&db->db_mtx);
4161 db->db_parent = parent;
4162 }
4163 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4164 (db->db_blkid & ((1ULL << epbs) - 1));
4165 DBUF_VERIFY(db);
4166 }
4167 }
4168
4169 static void
dbuf_sync_bonus(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4170 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4171 {
4172 dmu_buf_impl_t *db = dr->dr_dbuf;
4173 void *data = dr->dt.dl.dr_data;
4174
4175 ASSERT0(db->db_level);
4176 ASSERT(MUTEX_HELD(&db->db_mtx));
4177 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4178 ASSERT(data != NULL);
4179
4180 dnode_t *dn = dr->dr_dnode;
4181 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4182 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4183 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4184
4185 dbuf_sync_leaf_verify_bonus_dnode(dr);
4186
4187 dbuf_undirty_bonus(dr);
4188 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4189 }
4190
4191 /*
4192 * When syncing out a blocks of dnodes, adjust the block to deal with
4193 * encryption. Normally, we make sure the block is decrypted before writing
4194 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4195 * from a raw receive. In this case, set the ARC buf's crypt params so
4196 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4197 */
4198 static void
dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t * dr)4199 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4200 {
4201 int err;
4202 dmu_buf_impl_t *db = dr->dr_dbuf;
4203
4204 ASSERT(MUTEX_HELD(&db->db_mtx));
4205 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4206 ASSERT3U(db->db_level, ==, 0);
4207
4208 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4209 zbookmark_phys_t zb;
4210
4211 /*
4212 * Unfortunately, there is currently no mechanism for
4213 * syncing context to handle decryption errors. An error
4214 * here is only possible if an attacker maliciously
4215 * changed a dnode block and updated the associated
4216 * checksums going up the block tree.
4217 */
4218 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4219 db->db.db_object, db->db_level, db->db_blkid);
4220 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4221 &zb, B_TRUE);
4222 if (err)
4223 panic("Invalid dnode block MAC");
4224 } else if (dr->dt.dl.dr_has_raw_params) {
4225 (void) arc_release(dr->dt.dl.dr_data, db);
4226 arc_convert_to_raw(dr->dt.dl.dr_data,
4227 dmu_objset_id(db->db_objset),
4228 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4229 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4230 }
4231 }
4232
4233 /*
4234 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4235 * is critical the we not allow the compiler to inline this function in to
4236 * dbuf_sync_list() thereby drastically bloating the stack usage.
4237 */
4238 noinline static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4239 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4240 {
4241 dmu_buf_impl_t *db = dr->dr_dbuf;
4242 dnode_t *dn = dr->dr_dnode;
4243
4244 ASSERT(dmu_tx_is_syncing(tx));
4245
4246 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4247
4248 mutex_enter(&db->db_mtx);
4249
4250 ASSERT(db->db_level > 0);
4251 DBUF_VERIFY(db);
4252
4253 /* Read the block if it hasn't been read yet. */
4254 if (db->db_buf == NULL) {
4255 mutex_exit(&db->db_mtx);
4256 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4257 mutex_enter(&db->db_mtx);
4258 }
4259 ASSERT3U(db->db_state, ==, DB_CACHED);
4260 ASSERT(db->db_buf != NULL);
4261
4262 /* Indirect block size must match what the dnode thinks it is. */
4263 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4264 dbuf_check_blkptr(dn, db);
4265
4266 /* Provide the pending dirty record to child dbufs */
4267 db->db_data_pending = dr;
4268
4269 mutex_exit(&db->db_mtx);
4270
4271 dbuf_write(dr, db->db_buf, tx);
4272
4273 zio_t *zio = dr->dr_zio;
4274 mutex_enter(&dr->dt.di.dr_mtx);
4275 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4276 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4277 mutex_exit(&dr->dt.di.dr_mtx);
4278 zio_nowait(zio);
4279 }
4280
4281 /*
4282 * Verify that the size of the data in our bonus buffer does not exceed
4283 * its recorded size.
4284 *
4285 * The purpose of this verification is to catch any cases in development
4286 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4287 * due to incorrect feature management, older pools expect to read more
4288 * data even though they didn't actually write it to begin with.
4289 *
4290 * For a example, this would catch an error in the feature logic where we
4291 * open an older pool and we expect to write the space map histogram of
4292 * a space map with size SPACE_MAP_SIZE_V0.
4293 */
4294 static void
dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t * dr)4295 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4296 {
4297 #ifdef ZFS_DEBUG
4298 dnode_t *dn = dr->dr_dnode;
4299
4300 /*
4301 * Encrypted bonus buffers can have data past their bonuslen.
4302 * Skip the verification of these blocks.
4303 */
4304 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4305 return;
4306
4307 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4308 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4309 ASSERT3U(bonuslen, <=, maxbonuslen);
4310
4311 arc_buf_t *datap = dr->dt.dl.dr_data;
4312 char *datap_end = ((char *)datap) + bonuslen;
4313 char *datap_max = ((char *)datap) + maxbonuslen;
4314
4315 /* ensure that everything is zero after our data */
4316 for (; datap_end < datap_max; datap_end++)
4317 ASSERT(*datap_end == 0);
4318 #endif
4319 }
4320
4321 static blkptr_t *
dbuf_lightweight_bp(dbuf_dirty_record_t * dr)4322 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4323 {
4324 /* This must be a lightweight dirty record. */
4325 ASSERT3P(dr->dr_dbuf, ==, NULL);
4326 dnode_t *dn = dr->dr_dnode;
4327
4328 if (dn->dn_phys->dn_nlevels == 1) {
4329 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4330 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4331 } else {
4332 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4333 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4334 VERIFY3U(parent_db->db_level, ==, 1);
4335 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4336 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4337 blkptr_t *bp = parent_db->db.db_data;
4338 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4339 }
4340 }
4341
4342 static void
dbuf_lightweight_ready(zio_t * zio)4343 dbuf_lightweight_ready(zio_t *zio)
4344 {
4345 dbuf_dirty_record_t *dr = zio->io_private;
4346 blkptr_t *bp = zio->io_bp;
4347
4348 if (zio->io_error != 0)
4349 return;
4350
4351 dnode_t *dn = dr->dr_dnode;
4352
4353 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4354 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4355 int64_t delta = bp_get_dsize_sync(spa, bp) -
4356 bp_get_dsize_sync(spa, bp_orig);
4357 dnode_diduse_space(dn, delta);
4358
4359 uint64_t blkid = dr->dt.dll.dr_blkid;
4360 mutex_enter(&dn->dn_mtx);
4361 if (blkid > dn->dn_phys->dn_maxblkid) {
4362 ASSERT0(dn->dn_objset->os_raw_receive);
4363 dn->dn_phys->dn_maxblkid = blkid;
4364 }
4365 mutex_exit(&dn->dn_mtx);
4366
4367 if (!BP_IS_EMBEDDED(bp)) {
4368 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4369 BP_SET_FILL(bp, fill);
4370 }
4371
4372 dmu_buf_impl_t *parent_db;
4373 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4374 if (dr->dr_parent == NULL) {
4375 parent_db = dn->dn_dbuf;
4376 } else {
4377 parent_db = dr->dr_parent->dr_dbuf;
4378 }
4379 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4380 *bp_orig = *bp;
4381 rw_exit(&parent_db->db_rwlock);
4382 }
4383
4384 static void
dbuf_lightweight_done(zio_t * zio)4385 dbuf_lightweight_done(zio_t *zio)
4386 {
4387 dbuf_dirty_record_t *dr = zio->io_private;
4388
4389 VERIFY0(zio->io_error);
4390
4391 objset_t *os = dr->dr_dnode->dn_objset;
4392 dmu_tx_t *tx = os->os_synctx;
4393
4394 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4395 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4396 } else {
4397 dsl_dataset_t *ds = os->os_dsl_dataset;
4398 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4399 dsl_dataset_block_born(ds, zio->io_bp, tx);
4400 }
4401
4402 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4403 zio->io_txg);
4404
4405 abd_free(dr->dt.dll.dr_abd);
4406 kmem_free(dr, sizeof (*dr));
4407 }
4408
4409 noinline static void
dbuf_sync_lightweight(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4410 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4411 {
4412 dnode_t *dn = dr->dr_dnode;
4413 zio_t *pio;
4414 if (dn->dn_phys->dn_nlevels == 1) {
4415 pio = dn->dn_zio;
4416 } else {
4417 pio = dr->dr_parent->dr_zio;
4418 }
4419
4420 zbookmark_phys_t zb = {
4421 .zb_objset = dmu_objset_id(dn->dn_objset),
4422 .zb_object = dn->dn_object,
4423 .zb_level = 0,
4424 .zb_blkid = dr->dt.dll.dr_blkid,
4425 };
4426
4427 /*
4428 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4429 * will have the old BP in dbuf_lightweight_done().
4430 */
4431 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4432
4433 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4434 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4435 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4436 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4437 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4438 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4439
4440 zio_nowait(dr->dr_zio);
4441 }
4442
4443 /*
4444 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4445 * critical the we not allow the compiler to inline this function in to
4446 * dbuf_sync_list() thereby drastically bloating the stack usage.
4447 */
4448 noinline static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)4449 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4450 {
4451 arc_buf_t **datap = &dr->dt.dl.dr_data;
4452 dmu_buf_impl_t *db = dr->dr_dbuf;
4453 dnode_t *dn = dr->dr_dnode;
4454 objset_t *os;
4455 uint64_t txg = tx->tx_txg;
4456
4457 ASSERT(dmu_tx_is_syncing(tx));
4458
4459 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4460
4461 mutex_enter(&db->db_mtx);
4462 /*
4463 * To be synced, we must be dirtied. But we
4464 * might have been freed after the dirty.
4465 */
4466 if (db->db_state == DB_UNCACHED) {
4467 /* This buffer has been freed since it was dirtied */
4468 ASSERT(db->db.db_data == NULL);
4469 } else if (db->db_state == DB_FILL) {
4470 /* This buffer was freed and is now being re-filled */
4471 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4472 } else if (db->db_state == DB_READ) {
4473 /*
4474 * This buffer has a clone we need to write, and an in-flight
4475 * read on the BP we're about to clone. Its safe to issue the
4476 * write here because the read has already been issued and the
4477 * contents won't change.
4478 */
4479 ASSERT(dr->dt.dl.dr_brtwrite &&
4480 dr->dt.dl.dr_override_state == DR_OVERRIDDEN);
4481 } else {
4482 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4483 }
4484 DBUF_VERIFY(db);
4485
4486 if (db->db_blkid == DMU_SPILL_BLKID) {
4487 mutex_enter(&dn->dn_mtx);
4488 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4489 /*
4490 * In the previous transaction group, the bonus buffer
4491 * was entirely used to store the attributes for the
4492 * dnode which overrode the dn_spill field. However,
4493 * when adding more attributes to the file a spill
4494 * block was required to hold the extra attributes.
4495 *
4496 * Make sure to clear the garbage left in the dn_spill
4497 * field from the previous attributes in the bonus
4498 * buffer. Otherwise, after writing out the spill
4499 * block to the new allocated dva, it will free
4500 * the old block pointed to by the invalid dn_spill.
4501 */
4502 db->db_blkptr = NULL;
4503 }
4504 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4505 mutex_exit(&dn->dn_mtx);
4506 }
4507
4508 /*
4509 * If this is a bonus buffer, simply copy the bonus data into the
4510 * dnode. It will be written out when the dnode is synced (and it
4511 * will be synced, since it must have been dirty for dbuf_sync to
4512 * be called).
4513 */
4514 if (db->db_blkid == DMU_BONUS_BLKID) {
4515 ASSERT(dr->dr_dbuf == db);
4516 dbuf_sync_bonus(dr, tx);
4517 return;
4518 }
4519
4520 os = dn->dn_objset;
4521
4522 /*
4523 * This function may have dropped the db_mtx lock allowing a dmu_sync
4524 * operation to sneak in. As a result, we need to ensure that we
4525 * don't check the dr_override_state until we have returned from
4526 * dbuf_check_blkptr.
4527 */
4528 dbuf_check_blkptr(dn, db);
4529
4530 /*
4531 * If this buffer is in the middle of an immediate write,
4532 * wait for the synchronous IO to complete.
4533 */
4534 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4535 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4536 cv_wait(&db->db_changed, &db->db_mtx);
4537 }
4538
4539 /*
4540 * If this is a dnode block, ensure it is appropriately encrypted
4541 * or decrypted, depending on what we are writing to it this txg.
4542 */
4543 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4544 dbuf_prepare_encrypted_dnode_leaf(dr);
4545
4546 if (*datap != NULL && *datap == db->db_buf &&
4547 dn->dn_object != DMU_META_DNODE_OBJECT &&
4548 zfs_refcount_count(&db->db_holds) > 1 &&
4549 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) {
4550 /*
4551 * If this buffer is currently "in use" (i.e., there
4552 * are active holds and db_data still references it),
4553 * then make a copy before we start the write so that
4554 * any modifications from the open txg will not leak
4555 * into this write.
4556 *
4557 * NOTE: this copy does not need to be made for
4558 * objects only modified in the syncing context (e.g.
4559 * DNONE_DNODE blocks).
4560 */
4561 int psize = arc_buf_size(*datap);
4562 int lsize = arc_buf_lsize(*datap);
4563 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4564 enum zio_compress compress_type = arc_get_compression(*datap);
4565 uint8_t complevel = arc_get_complevel(*datap);
4566
4567 if (arc_is_encrypted(*datap)) {
4568 boolean_t byteorder;
4569 uint8_t salt[ZIO_DATA_SALT_LEN];
4570 uint8_t iv[ZIO_DATA_IV_LEN];
4571 uint8_t mac[ZIO_DATA_MAC_LEN];
4572
4573 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4574 *datap = arc_alloc_raw_buf(os->os_spa, db,
4575 dmu_objset_id(os), byteorder, salt, iv, mac,
4576 dn->dn_type, psize, lsize, compress_type,
4577 complevel);
4578 } else if (compress_type != ZIO_COMPRESS_OFF) {
4579 ASSERT3U(type, ==, ARC_BUFC_DATA);
4580 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4581 psize, lsize, compress_type, complevel);
4582 } else {
4583 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4584 }
4585 memcpy((*datap)->b_data, db->db.db_data, psize);
4586 }
4587 db->db_data_pending = dr;
4588
4589 mutex_exit(&db->db_mtx);
4590
4591 dbuf_write(dr, *datap, tx);
4592
4593 ASSERT(!list_link_active(&dr->dr_dirty_node));
4594 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4595 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4596 } else {
4597 zio_nowait(dr->dr_zio);
4598 }
4599 }
4600
4601 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)4602 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4603 {
4604 dbuf_dirty_record_t *dr;
4605
4606 while ((dr = list_head(list))) {
4607 if (dr->dr_zio != NULL) {
4608 /*
4609 * If we find an already initialized zio then we
4610 * are processing the meta-dnode, and we have finished.
4611 * The dbufs for all dnodes are put back on the list
4612 * during processing, so that we can zio_wait()
4613 * these IOs after initiating all child IOs.
4614 */
4615 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4616 DMU_META_DNODE_OBJECT);
4617 break;
4618 }
4619 list_remove(list, dr);
4620 if (dr->dr_dbuf == NULL) {
4621 dbuf_sync_lightweight(dr, tx);
4622 } else {
4623 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4624 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4625 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4626 }
4627 if (dr->dr_dbuf->db_level > 0)
4628 dbuf_sync_indirect(dr, tx);
4629 else
4630 dbuf_sync_leaf(dr, tx);
4631 }
4632 }
4633 }
4634
4635 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)4636 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4637 {
4638 (void) buf;
4639 dmu_buf_impl_t *db = vdb;
4640 dnode_t *dn;
4641 blkptr_t *bp = zio->io_bp;
4642 blkptr_t *bp_orig = &zio->io_bp_orig;
4643 spa_t *spa = zio->io_spa;
4644 int64_t delta;
4645 uint64_t fill = 0;
4646 int i;
4647
4648 ASSERT3P(db->db_blkptr, !=, NULL);
4649 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4650
4651 DB_DNODE_ENTER(db);
4652 dn = DB_DNODE(db);
4653 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4654 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4655 zio->io_prev_space_delta = delta;
4656
4657 if (bp->blk_birth != 0) {
4658 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4659 BP_GET_TYPE(bp) == dn->dn_type) ||
4660 (db->db_blkid == DMU_SPILL_BLKID &&
4661 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4662 BP_IS_EMBEDDED(bp));
4663 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4664 }
4665
4666 mutex_enter(&db->db_mtx);
4667
4668 #ifdef ZFS_DEBUG
4669 if (db->db_blkid == DMU_SPILL_BLKID) {
4670 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4671 ASSERT(!(BP_IS_HOLE(bp)) &&
4672 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4673 }
4674 #endif
4675
4676 if (db->db_level == 0) {
4677 mutex_enter(&dn->dn_mtx);
4678 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4679 db->db_blkid != DMU_SPILL_BLKID) {
4680 ASSERT0(db->db_objset->os_raw_receive);
4681 dn->dn_phys->dn_maxblkid = db->db_blkid;
4682 }
4683 mutex_exit(&dn->dn_mtx);
4684
4685 if (dn->dn_type == DMU_OT_DNODE) {
4686 i = 0;
4687 while (i < db->db.db_size) {
4688 dnode_phys_t *dnp =
4689 (void *)(((char *)db->db.db_data) + i);
4690
4691 i += DNODE_MIN_SIZE;
4692 if (dnp->dn_type != DMU_OT_NONE) {
4693 fill++;
4694 for (int j = 0; j < dnp->dn_nblkptr;
4695 j++) {
4696 (void) zfs_blkptr_verify(spa,
4697 &dnp->dn_blkptr[j],
4698 BLK_CONFIG_SKIP,
4699 BLK_VERIFY_HALT);
4700 }
4701 if (dnp->dn_flags &
4702 DNODE_FLAG_SPILL_BLKPTR) {
4703 (void) zfs_blkptr_verify(spa,
4704 DN_SPILL_BLKPTR(dnp),
4705 BLK_CONFIG_SKIP,
4706 BLK_VERIFY_HALT);
4707 }
4708 i += dnp->dn_extra_slots *
4709 DNODE_MIN_SIZE;
4710 }
4711 }
4712 } else {
4713 if (BP_IS_HOLE(bp)) {
4714 fill = 0;
4715 } else {
4716 fill = 1;
4717 }
4718 }
4719 } else {
4720 blkptr_t *ibp = db->db.db_data;
4721 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4722 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4723 if (BP_IS_HOLE(ibp))
4724 continue;
4725 (void) zfs_blkptr_verify(spa, ibp,
4726 BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4727 fill += BP_GET_FILL(ibp);
4728 }
4729 }
4730 DB_DNODE_EXIT(db);
4731
4732 if (!BP_IS_EMBEDDED(bp))
4733 BP_SET_FILL(bp, fill);
4734
4735 mutex_exit(&db->db_mtx);
4736
4737 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4738 *db->db_blkptr = *bp;
4739 dmu_buf_unlock_parent(db, dblt, FTAG);
4740 }
4741
4742 /*
4743 * This function gets called just prior to running through the compression
4744 * stage of the zio pipeline. If we're an indirect block comprised of only
4745 * holes, then we want this indirect to be compressed away to a hole. In
4746 * order to do that we must zero out any information about the holes that
4747 * this indirect points to prior to before we try to compress it.
4748 */
4749 static void
dbuf_write_children_ready(zio_t * zio,arc_buf_t * buf,void * vdb)4750 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4751 {
4752 (void) zio, (void) buf;
4753 dmu_buf_impl_t *db = vdb;
4754 dnode_t *dn;
4755 blkptr_t *bp;
4756 unsigned int epbs, i;
4757
4758 ASSERT3U(db->db_level, >, 0);
4759 DB_DNODE_ENTER(db);
4760 dn = DB_DNODE(db);
4761 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4762 ASSERT3U(epbs, <, 31);
4763
4764 /* Determine if all our children are holes */
4765 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4766 if (!BP_IS_HOLE(bp))
4767 break;
4768 }
4769
4770 /*
4771 * If all the children are holes, then zero them all out so that
4772 * we may get compressed away.
4773 */
4774 if (i == 1ULL << epbs) {
4775 /*
4776 * We only found holes. Grab the rwlock to prevent
4777 * anybody from reading the blocks we're about to
4778 * zero out.
4779 */
4780 rw_enter(&db->db_rwlock, RW_WRITER);
4781 memset(db->db.db_data, 0, db->db.db_size);
4782 rw_exit(&db->db_rwlock);
4783 }
4784 DB_DNODE_EXIT(db);
4785 }
4786
4787 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)4788 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4789 {
4790 (void) buf;
4791 dmu_buf_impl_t *db = vdb;
4792 blkptr_t *bp_orig = &zio->io_bp_orig;
4793 blkptr_t *bp = db->db_blkptr;
4794 objset_t *os = db->db_objset;
4795 dmu_tx_t *tx = os->os_synctx;
4796
4797 ASSERT0(zio->io_error);
4798 ASSERT(db->db_blkptr == bp);
4799
4800 /*
4801 * For nopwrites and rewrites we ensure that the bp matches our
4802 * original and bypass all the accounting.
4803 */
4804 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4805 ASSERT(BP_EQUAL(bp, bp_orig));
4806 } else {
4807 dsl_dataset_t *ds = os->os_dsl_dataset;
4808 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4809 dsl_dataset_block_born(ds, bp, tx);
4810 }
4811
4812 mutex_enter(&db->db_mtx);
4813
4814 DBUF_VERIFY(db);
4815
4816 dbuf_dirty_record_t *dr = db->db_data_pending;
4817 dnode_t *dn = dr->dr_dnode;
4818 ASSERT(!list_link_active(&dr->dr_dirty_node));
4819 ASSERT(dr->dr_dbuf == db);
4820 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4821 list_remove(&db->db_dirty_records, dr);
4822
4823 #ifdef ZFS_DEBUG
4824 if (db->db_blkid == DMU_SPILL_BLKID) {
4825 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4826 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4827 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4828 }
4829 #endif
4830
4831 if (db->db_level == 0) {
4832 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4833 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4834 if (dr->dt.dl.dr_data != NULL &&
4835 dr->dt.dl.dr_data != db->db_buf) {
4836 arc_buf_destroy(dr->dt.dl.dr_data, db);
4837 }
4838 } else {
4839 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4840 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4841 if (!BP_IS_HOLE(db->db_blkptr)) {
4842 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4843 SPA_BLKPTRSHIFT;
4844 ASSERT3U(db->db_blkid, <=,
4845 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4846 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4847 db->db.db_size);
4848 }
4849 mutex_destroy(&dr->dt.di.dr_mtx);
4850 list_destroy(&dr->dt.di.dr_children);
4851 }
4852
4853 cv_broadcast(&db->db_changed);
4854 ASSERT(db->db_dirtycnt > 0);
4855 db->db_dirtycnt -= 1;
4856 db->db_data_pending = NULL;
4857 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4858
4859 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4860 zio->io_txg);
4861
4862 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4863 }
4864
4865 static void
dbuf_write_nofill_ready(zio_t * zio)4866 dbuf_write_nofill_ready(zio_t *zio)
4867 {
4868 dbuf_write_ready(zio, NULL, zio->io_private);
4869 }
4870
4871 static void
dbuf_write_nofill_done(zio_t * zio)4872 dbuf_write_nofill_done(zio_t *zio)
4873 {
4874 dbuf_write_done(zio, NULL, zio->io_private);
4875 }
4876
4877 static void
dbuf_write_override_ready(zio_t * zio)4878 dbuf_write_override_ready(zio_t *zio)
4879 {
4880 dbuf_dirty_record_t *dr = zio->io_private;
4881 dmu_buf_impl_t *db = dr->dr_dbuf;
4882
4883 dbuf_write_ready(zio, NULL, db);
4884 }
4885
4886 static void
dbuf_write_override_done(zio_t * zio)4887 dbuf_write_override_done(zio_t *zio)
4888 {
4889 dbuf_dirty_record_t *dr = zio->io_private;
4890 dmu_buf_impl_t *db = dr->dr_dbuf;
4891 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4892
4893 mutex_enter(&db->db_mtx);
4894 if (!BP_EQUAL(zio->io_bp, obp)) {
4895 if (!BP_IS_HOLE(obp))
4896 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4897 arc_release(dr->dt.dl.dr_data, db);
4898 }
4899 mutex_exit(&db->db_mtx);
4900
4901 dbuf_write_done(zio, NULL, db);
4902
4903 if (zio->io_abd != NULL)
4904 abd_free(zio->io_abd);
4905 }
4906
4907 typedef struct dbuf_remap_impl_callback_arg {
4908 objset_t *drica_os;
4909 uint64_t drica_blk_birth;
4910 dmu_tx_t *drica_tx;
4911 } dbuf_remap_impl_callback_arg_t;
4912
4913 static void
dbuf_remap_impl_callback(uint64_t vdev,uint64_t offset,uint64_t size,void * arg)4914 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4915 void *arg)
4916 {
4917 dbuf_remap_impl_callback_arg_t *drica = arg;
4918 objset_t *os = drica->drica_os;
4919 spa_t *spa = dmu_objset_spa(os);
4920 dmu_tx_t *tx = drica->drica_tx;
4921
4922 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4923
4924 if (os == spa_meta_objset(spa)) {
4925 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4926 } else {
4927 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4928 size, drica->drica_blk_birth, tx);
4929 }
4930 }
4931
4932 static void
dbuf_remap_impl(dnode_t * dn,blkptr_t * bp,krwlock_t * rw,dmu_tx_t * tx)4933 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4934 {
4935 blkptr_t bp_copy = *bp;
4936 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4937 dbuf_remap_impl_callback_arg_t drica;
4938
4939 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4940
4941 drica.drica_os = dn->dn_objset;
4942 drica.drica_blk_birth = bp->blk_birth;
4943 drica.drica_tx = tx;
4944 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4945 &drica)) {
4946 /*
4947 * If the blkptr being remapped is tracked by a livelist,
4948 * then we need to make sure the livelist reflects the update.
4949 * First, cancel out the old blkptr by appending a 'FREE'
4950 * entry. Next, add an 'ALLOC' to track the new version. This
4951 * way we avoid trying to free an inaccurate blkptr at delete.
4952 * Note that embedded blkptrs are not tracked in livelists.
4953 */
4954 if (dn->dn_objset != spa_meta_objset(spa)) {
4955 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4956 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4957 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4958 ASSERT(!BP_IS_EMBEDDED(bp));
4959 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4960 ASSERT(spa_feature_is_enabled(spa,
4961 SPA_FEATURE_LIVELIST));
4962 bplist_append(&ds->ds_dir->dd_pending_frees,
4963 bp);
4964 bplist_append(&ds->ds_dir->dd_pending_allocs,
4965 &bp_copy);
4966 }
4967 }
4968
4969 /*
4970 * The db_rwlock prevents dbuf_read_impl() from
4971 * dereferencing the BP while we are changing it. To
4972 * avoid lock contention, only grab it when we are actually
4973 * changing the BP.
4974 */
4975 if (rw != NULL)
4976 rw_enter(rw, RW_WRITER);
4977 *bp = bp_copy;
4978 if (rw != NULL)
4979 rw_exit(rw);
4980 }
4981 }
4982
4983 /*
4984 * Remap any existing BP's to concrete vdevs, if possible.
4985 */
4986 static void
dbuf_remap(dnode_t * dn,dmu_buf_impl_t * db,dmu_tx_t * tx)4987 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4988 {
4989 spa_t *spa = dmu_objset_spa(db->db_objset);
4990 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4991
4992 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4993 return;
4994
4995 if (db->db_level > 0) {
4996 blkptr_t *bp = db->db.db_data;
4997 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4998 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4999 }
5000 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5001 dnode_phys_t *dnp = db->db.db_data;
5002 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
5003 DMU_OT_DNODE);
5004 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5005 i += dnp[i].dn_extra_slots + 1) {
5006 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5007 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5008 &dn->dn_dbuf->db_rwlock);
5009 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5010 tx);
5011 }
5012 }
5013 }
5014 }
5015
5016
5017 /* Issue I/O to commit a dirty buffer to disk. */
5018 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)5019 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5020 {
5021 dmu_buf_impl_t *db = dr->dr_dbuf;
5022 dnode_t *dn = dr->dr_dnode;
5023 objset_t *os;
5024 dmu_buf_impl_t *parent = db->db_parent;
5025 uint64_t txg = tx->tx_txg;
5026 zbookmark_phys_t zb;
5027 zio_prop_t zp;
5028 zio_t *pio; /* parent I/O */
5029 int wp_flag = 0;
5030
5031 ASSERT(dmu_tx_is_syncing(tx));
5032
5033 os = dn->dn_objset;
5034
5035 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5036 /*
5037 * Private object buffers are released here rather than in
5038 * dbuf_dirty() since they are only modified in the syncing
5039 * context and we don't want the overhead of making multiple
5040 * copies of the data.
5041 */
5042 if (BP_IS_HOLE(db->db_blkptr))
5043 arc_buf_thaw(data);
5044 else
5045 dbuf_release_bp(db);
5046 dbuf_remap(dn, db, tx);
5047 }
5048
5049 if (parent != dn->dn_dbuf) {
5050 /* Our parent is an indirect block. */
5051 /* We have a dirty parent that has been scheduled for write. */
5052 ASSERT(parent && parent->db_data_pending);
5053 /* Our parent's buffer is one level closer to the dnode. */
5054 ASSERT(db->db_level == parent->db_level-1);
5055 /*
5056 * We're about to modify our parent's db_data by modifying
5057 * our block pointer, so the parent must be released.
5058 */
5059 ASSERT(arc_released(parent->db_buf));
5060 pio = parent->db_data_pending->dr_zio;
5061 } else {
5062 /* Our parent is the dnode itself. */
5063 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5064 db->db_blkid != DMU_SPILL_BLKID) ||
5065 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5066 if (db->db_blkid != DMU_SPILL_BLKID)
5067 ASSERT3P(db->db_blkptr, ==,
5068 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5069 pio = dn->dn_zio;
5070 }
5071
5072 ASSERT(db->db_level == 0 || data == db->db_buf);
5073 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
5074 ASSERT(pio);
5075
5076 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5077 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5078 db->db.db_object, db->db_level, db->db_blkid);
5079
5080 if (db->db_blkid == DMU_SPILL_BLKID)
5081 wp_flag = WP_SPILL;
5082 wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5083
5084 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5085
5086 /*
5087 * We copy the blkptr now (rather than when we instantiate the dirty
5088 * record), because its value can change between open context and
5089 * syncing context. We do not need to hold dn_struct_rwlock to read
5090 * db_blkptr because we are in syncing context.
5091 */
5092 dr->dr_bp_copy = *db->db_blkptr;
5093
5094 if (db->db_level == 0 &&
5095 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5096 /*
5097 * The BP for this block has been provided by open context
5098 * (by dmu_sync() or dmu_buf_write_embedded()).
5099 */
5100 abd_t *contents = (data != NULL) ?
5101 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5102
5103 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5104 contents, db->db.db_size, db->db.db_size, &zp,
5105 dbuf_write_override_ready, NULL,
5106 dbuf_write_override_done,
5107 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5108 mutex_enter(&db->db_mtx);
5109 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5110 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5111 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5112 dr->dt.dl.dr_brtwrite);
5113 mutex_exit(&db->db_mtx);
5114 } else if (data == NULL) {
5115 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5116 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5117 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5118 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5119 dbuf_write_nofill_ready, NULL,
5120 dbuf_write_nofill_done, db,
5121 ZIO_PRIORITY_ASYNC_WRITE,
5122 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5123 } else {
5124 ASSERT(arc_released(data));
5125
5126 /*
5127 * For indirect blocks, we want to setup the children
5128 * ready callback so that we can properly handle an indirect
5129 * block that only contains holes.
5130 */
5131 arc_write_done_func_t *children_ready_cb = NULL;
5132 if (db->db_level != 0)
5133 children_ready_cb = dbuf_write_children_ready;
5134
5135 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5136 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5137 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
5138 children_ready_cb, dbuf_write_done, db,
5139 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5140 }
5141 }
5142
5143 EXPORT_SYMBOL(dbuf_find);
5144 EXPORT_SYMBOL(dbuf_is_metadata);
5145 EXPORT_SYMBOL(dbuf_destroy);
5146 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5147 EXPORT_SYMBOL(dbuf_whichblock);
5148 EXPORT_SYMBOL(dbuf_read);
5149 EXPORT_SYMBOL(dbuf_unoverride);
5150 EXPORT_SYMBOL(dbuf_free_range);
5151 EXPORT_SYMBOL(dbuf_new_size);
5152 EXPORT_SYMBOL(dbuf_release_bp);
5153 EXPORT_SYMBOL(dbuf_dirty);
5154 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5155 EXPORT_SYMBOL(dmu_buf_will_dirty);
5156 EXPORT_SYMBOL(dmu_buf_is_dirty);
5157 EXPORT_SYMBOL(dmu_buf_will_clone);
5158 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5159 EXPORT_SYMBOL(dmu_buf_will_fill);
5160 EXPORT_SYMBOL(dmu_buf_fill_done);
5161 EXPORT_SYMBOL(dmu_buf_rele);
5162 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5163 EXPORT_SYMBOL(dbuf_prefetch);
5164 EXPORT_SYMBOL(dbuf_hold_impl);
5165 EXPORT_SYMBOL(dbuf_hold);
5166 EXPORT_SYMBOL(dbuf_hold_level);
5167 EXPORT_SYMBOL(dbuf_create_bonus);
5168 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5169 EXPORT_SYMBOL(dbuf_rm_spill);
5170 EXPORT_SYMBOL(dbuf_add_ref);
5171 EXPORT_SYMBOL(dbuf_rele);
5172 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5173 EXPORT_SYMBOL(dbuf_refcount);
5174 EXPORT_SYMBOL(dbuf_sync_list);
5175 EXPORT_SYMBOL(dmu_buf_set_user);
5176 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5177 EXPORT_SYMBOL(dmu_buf_get_user);
5178 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5179
5180 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5181 "Maximum size in bytes of the dbuf cache.");
5182
5183 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5184 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5185
5186 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5187 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5188
5189 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5190 "Maximum size in bytes of dbuf metadata cache.");
5191
5192 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5193 "Set size of dbuf cache to log2 fraction of arc size.");
5194
5195 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5196 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5197
5198 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5199 "Set size of dbuf cache mutex array as log2 shift.");
5200