xref: /f-stack/app/redis-5.0.5/src/ziplist.c (revision 572c4311)
1 /* The ziplist is a specially encoded dually linked list that is designed
2  * to be very memory efficient. It stores both strings and integer values,
3  * where integers are encoded as actual integers instead of a series of
4  * characters. It allows push and pop operations on either side of the list
5  * in O(1) time. However, because every operation requires a reallocation of
6  * the memory used by the ziplist, the actual complexity is related to the
7  * amount of memory used by the ziplist.
8  *
9  * ----------------------------------------------------------------------------
10  *
11  * ZIPLIST OVERALL LAYOUT
12  * ======================
13  *
14  * The general layout of the ziplist is as follows:
15  *
16  * <zlbytes> <zltail> <zllen> <entry> <entry> ... <entry> <zlend>
17  *
18  * NOTE: all fields are stored in little endian, if not specified otherwise.
19  *
20  * <uint32_t zlbytes> is an unsigned integer to hold the number of bytes that
21  * the ziplist occupies, including the four bytes of the zlbytes field itself.
22  * This value needs to be stored to be able to resize the entire structure
23  * without the need to traverse it first.
24  *
25  * <uint32_t zltail> is the offset to the last entry in the list. This allows
26  * a pop operation on the far side of the list without the need for full
27  * traversal.
28  *
29  * <uint16_t zllen> is the number of entries. When there are more than
30  * 2^16-2 entries, this value is set to 2^16-1 and we need to traverse the
31  * entire list to know how many items it holds.
32  *
33  * <uint8_t zlend> is a special entry representing the end of the ziplist.
34  * Is encoded as a single byte equal to 255. No other normal entry starts
35  * with a byte set to the value of 255.
36  *
37  * ZIPLIST ENTRIES
38  * ===============
39  *
40  * Every entry in the ziplist is prefixed by metadata that contains two pieces
41  * of information. First, the length of the previous entry is stored to be
42  * able to traverse the list from back to front. Second, the entry encoding is
43  * provided. It represents the entry type, integer or string, and in the case
44  * of strings it also represents the length of the string payload.
45  * So a complete entry is stored like this:
46  *
47  * <prevlen> <encoding> <entry-data>
48  *
49  * Sometimes the encoding represents the entry itself, like for small integers
50  * as we'll see later. In such a case the <entry-data> part is missing, and we
51  * could have just:
52  *
53  * <prevlen> <encoding>
54  *
55  * The length of the previous entry, <prevlen>, is encoded in the following way:
56  * If this length is smaller than 254 bytes, it will only consume a single
57  * byte representing the length as an unsinged 8 bit integer. When the length
58  * is greater than or equal to 254, it will consume 5 bytes. The first byte is
59  * set to 254 (FE) to indicate a larger value is following. The remaining 4
60  * bytes take the length of the previous entry as value.
61  *
62  * So practically an entry is encoded in the following way:
63  *
64  * <prevlen from 0 to 253> <encoding> <entry>
65  *
66  * Or alternatively if the previous entry length is greater than 253 bytes
67  * the following encoding is used:
68  *
69  * 0xFE <4 bytes unsigned little endian prevlen> <encoding> <entry>
70  *
71  * The encoding field of the entry depends on the content of the
72  * entry. When the entry is a string, the first 2 bits of the encoding first
73  * byte will hold the type of encoding used to store the length of the string,
74  * followed by the actual length of the string. When the entry is an integer
75  * the first 2 bits are both set to 1. The following 2 bits are used to specify
76  * what kind of integer will be stored after this header. An overview of the
77  * different types and encodings is as follows. The first byte is always enough
78  * to determine the kind of entry.
79  *
80  * |00pppppp| - 1 byte
81  *      String value with length less than or equal to 63 bytes (6 bits).
82  *      "pppppp" represents the unsigned 6 bit length.
83  * |01pppppp|qqqqqqqq| - 2 bytes
84  *      String value with length less than or equal to 16383 bytes (14 bits).
85  *      IMPORTANT: The 14 bit number is stored in big endian.
86  * |10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| - 5 bytes
87  *      String value with length greater than or equal to 16384 bytes.
88  *      Only the 4 bytes following the first byte represents the length
89  *      up to 32^2-1. The 6 lower bits of the first byte are not used and
90  *      are set to zero.
91  *      IMPORTANT: The 32 bit number is stored in big endian.
92  * |11000000| - 3 bytes
93  *      Integer encoded as int16_t (2 bytes).
94  * |11010000| - 5 bytes
95  *      Integer encoded as int32_t (4 bytes).
96  * |11100000| - 9 bytes
97  *      Integer encoded as int64_t (8 bytes).
98  * |11110000| - 4 bytes
99  *      Integer encoded as 24 bit signed (3 bytes).
100  * |11111110| - 2 bytes
101  *      Integer encoded as 8 bit signed (1 byte).
102  * |1111xxxx| - (with xxxx between 0000 and 1101) immediate 4 bit integer.
103  *      Unsigned integer from 0 to 12. The encoded value is actually from
104  *      1 to 13 because 0000 and 1111 can not be used, so 1 should be
105  *      subtracted from the encoded 4 bit value to obtain the right value.
106  * |11111111| - End of ziplist special entry.
107  *
108  * Like for the ziplist header, all the integers are represented in little
109  * endian byte order, even when this code is compiled in big endian systems.
110  *
111  * EXAMPLES OF ACTUAL ZIPLISTS
112  * ===========================
113  *
114  * The following is a ziplist containing the two elements representing
115  * the strings "2" and "5". It is composed of 15 bytes, that we visually
116  * split into sections:
117  *
118  *  [0f 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff]
119  *        |             |          |       |       |     |
120  *     zlbytes        zltail    entries   "2"     "5"   end
121  *
122  * The first 4 bytes represent the number 15, that is the number of bytes
123  * the whole ziplist is composed of. The second 4 bytes are the offset
124  * at which the last ziplist entry is found, that is 12, in fact the
125  * last entry, that is "5", is at offset 12 inside the ziplist.
126  * The next 16 bit integer represents the number of elements inside the
127  * ziplist, its value is 2 since there are just two elements inside.
128  * Finally "00 f3" is the first entry representing the number 2. It is
129  * composed of the previous entry length, which is zero because this is
130  * our first entry, and the byte F3 which corresponds to the encoding
131  * |1111xxxx| with xxxx between 0001 and 1101. We need to remove the "F"
132  * higher order bits 1111, and subtract 1 from the "3", so the entry value
133  * is "2". The next entry has a prevlen of 02, since the first entry is
134  * composed of exactly two bytes. The entry itself, F6, is encoded exactly
135  * like the first entry, and 6-1 = 5, so the value of the entry is 5.
136  * Finally the special entry FF signals the end of the ziplist.
137  *
138  * Adding another element to the above string with the value "Hello World"
139  * allows us to show how the ziplist encodes small strings. We'll just show
140  * the hex dump of the entry itself. Imagine the bytes as following the
141  * entry that stores "5" in the ziplist above:
142  *
143  * [02] [0b] [48 65 6c 6c 6f 20 57 6f 72 6c 64]
144  *
145  * The first byte, 02, is the length of the previous entry. The next
146  * byte represents the encoding in the pattern |00pppppp| that means
147  * that the entry is a string of length <pppppp>, so 0B means that
148  * an 11 bytes string follows. From the third byte (48) to the last (64)
149  * there are just the ASCII characters for "Hello World".
150  *
151  * ----------------------------------------------------------------------------
152  *
153  * Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
154  * Copyright (c) 2009-2017, Salvatore Sanfilippo <antirez at gmail dot com>
155  * All rights reserved.
156  *
157  * Redistribution and use in source and binary forms, with or without
158  * modification, are permitted provided that the following conditions are met:
159  *
160  *   * Redistributions of source code must retain the above copyright notice,
161  *     this list of conditions and the following disclaimer.
162  *   * Redistributions in binary form must reproduce the above copyright
163  *     notice, this list of conditions and the following disclaimer in the
164  *     documentation and/or other materials provided with the distribution.
165  *   * Neither the name of Redis nor the names of its contributors may be used
166  *     to endorse or promote products derived from this software without
167  *     specific prior written permission.
168  *
169  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
170  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
171  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
172  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
173  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
174  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
175  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
176  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
177  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
178  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
179  * POSSIBILITY OF SUCH DAMAGE.
180  */
181 
182 #include <stdio.h>
183 #include <stdlib.h>
184 #include <string.h>
185 #include <stdint.h>
186 #include <limits.h>
187 #include "zmalloc.h"
188 #include "util.h"
189 #include "ziplist.h"
190 #include "endianconv.h"
191 #include "redisassert.h"
192 
193 #define ZIP_END 255         /* Special "end of ziplist" entry. */
194 #define ZIP_BIG_PREVLEN 254 /* Max number of bytes of the previous entry, for
195                                the "prevlen" field prefixing each entry, to be
196                                represented with just a single byte. Otherwise
197                                it is represented as FF AA BB CC DD, where
198                                AA BB CC DD are a 4 bytes unsigned integer
199                                representing the previous entry len. */
200 
201 /* Different encoding/length possibilities */
202 #define ZIP_STR_MASK 0xc0
203 #define ZIP_INT_MASK 0x30
204 #define ZIP_STR_06B (0 << 6)
205 #define ZIP_STR_14B (1 << 6)
206 #define ZIP_STR_32B (2 << 6)
207 #define ZIP_INT_16B (0xc0 | 0<<4)
208 #define ZIP_INT_32B (0xc0 | 1<<4)
209 #define ZIP_INT_64B (0xc0 | 2<<4)
210 #define ZIP_INT_24B (0xc0 | 3<<4)
211 #define ZIP_INT_8B 0xfe
212 
213 /* 4 bit integer immediate encoding |1111xxxx| with xxxx between
214  * 0001 and 1101. */
215 #define ZIP_INT_IMM_MASK 0x0f   /* Mask to extract the 4 bits value. To add
216                                    one is needed to reconstruct the value. */
217 #define ZIP_INT_IMM_MIN 0xf1    /* 11110001 */
218 #define ZIP_INT_IMM_MAX 0xfd    /* 11111101 */
219 
220 #define INT24_MAX 0x7fffff
221 #define INT24_MIN (-INT24_MAX - 1)
222 
223 /* Macro to determine if the entry is a string. String entries never start
224  * with "11" as most significant bits of the first byte. */
225 #define ZIP_IS_STR(enc) (((enc) & ZIP_STR_MASK) < ZIP_STR_MASK)
226 
227 /* Utility macros.*/
228 
229 /* Return total bytes a ziplist is composed of. */
230 #define ZIPLIST_BYTES(zl)       (*((uint32_t*)(zl)))
231 
232 /* Return the offset of the last item inside the ziplist. */
233 #define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
234 
235 /* Return the length of a ziplist, or UINT16_MAX if the length cannot be
236  * determined without scanning the whole ziplist. */
237 #define ZIPLIST_LENGTH(zl)      (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
238 
239 /* The size of a ziplist header: two 32 bit integers for the total
240  * bytes count and last item offset. One 16 bit integer for the number
241  * of items field. */
242 #define ZIPLIST_HEADER_SIZE     (sizeof(uint32_t)*2+sizeof(uint16_t))
243 
244 /* Size of the "end of ziplist" entry. Just one byte. */
245 #define ZIPLIST_END_SIZE        (sizeof(uint8_t))
246 
247 /* Return the pointer to the first entry of a ziplist. */
248 #define ZIPLIST_ENTRY_HEAD(zl)  ((zl)+ZIPLIST_HEADER_SIZE)
249 
250 /* Return the pointer to the last entry of a ziplist, using the
251  * last entry offset inside the ziplist header. */
252 #define ZIPLIST_ENTRY_TAIL(zl)  ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
253 
254 /* Return the pointer to the last byte of a ziplist, which is, the
255  * end of ziplist FF entry. */
256 #define ZIPLIST_ENTRY_END(zl)   ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)
257 
258 /* Increment the number of items field in the ziplist header. Note that this
259  * macro should never overflow the unsigned 16 bit integer, since entries are
260  * always pushed one at a time. When UINT16_MAX is reached we want the count
261  * to stay there to signal that a full scan is needed to get the number of
262  * items inside the ziplist. */
263 #define ZIPLIST_INCR_LENGTH(zl,incr) { \
264     if (ZIPLIST_LENGTH(zl) < UINT16_MAX) \
265         ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \
266 }
267 
268 /* We use this function to receive information about a ziplist entry.
269  * Note that this is not how the data is actually encoded, is just what we
270  * get filled by a function in order to operate more easily. */
271 typedef struct zlentry {
272     unsigned int prevrawlensize; /* Bytes used to encode the previous entry len*/
273     unsigned int prevrawlen;     /* Previous entry len. */
274     unsigned int lensize;        /* Bytes used to encode this entry type/len.
275                                     For example strings have a 1, 2 or 5 bytes
276                                     header. Integers always use a single byte.*/
277     unsigned int len;            /* Bytes used to represent the actual entry.
278                                     For strings this is just the string length
279                                     while for integers it is 1, 2, 3, 4, 8 or
280                                     0 (for 4 bit immediate) depending on the
281                                     number range. */
282     unsigned int headersize;     /* prevrawlensize + lensize. */
283     unsigned char encoding;      /* Set to ZIP_STR_* or ZIP_INT_* depending on
284                                     the entry encoding. However for 4 bits
285                                     immediate integers this can assume a range
286                                     of values and must be range-checked. */
287     unsigned char *p;            /* Pointer to the very start of the entry, that
288                                     is, this points to prev-entry-len field. */
289 } zlentry;
290 
291 #define ZIPLIST_ENTRY_ZERO(zle) { \
292     (zle)->prevrawlensize = (zle)->prevrawlen = 0; \
293     (zle)->lensize = (zle)->len = (zle)->headersize = 0; \
294     (zle)->encoding = 0; \
295     (zle)->p = NULL; \
296 }
297 
298 /* Extract the encoding from the byte pointed by 'ptr' and set it into
299  * 'encoding' field of the zlentry structure. */
300 #define ZIP_ENTRY_ENCODING(ptr, encoding) do {  \
301     (encoding) = (ptr[0]); \
302     if ((encoding) < ZIP_STR_MASK) (encoding) &= ZIP_STR_MASK; \
303 } while(0)
304 
305 /* Return bytes needed to store integer encoded by 'encoding'. */
zipIntSize(unsigned char encoding)306 unsigned int zipIntSize(unsigned char encoding) {
307     switch(encoding) {
308     case ZIP_INT_8B:  return 1;
309     case ZIP_INT_16B: return 2;
310     case ZIP_INT_24B: return 3;
311     case ZIP_INT_32B: return 4;
312     case ZIP_INT_64B: return 8;
313     }
314     if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX)
315         return 0; /* 4 bit immediate */
316     panic("Invalid integer encoding 0x%02X", encoding);
317     return 0;
318 }
319 
320 /* Write the encoidng header of the entry in 'p'. If p is NULL it just returns
321  * the amount of bytes required to encode such a length. Arguments:
322  *
323  * 'encoding' is the encoding we are using for the entry. It could be
324  * ZIP_INT_* or ZIP_STR_* or between ZIP_INT_IMM_MIN and ZIP_INT_IMM_MAX
325  * for single-byte small immediate integers.
326  *
327  * 'rawlen' is only used for ZIP_STR_* encodings and is the length of the
328  * srting that this entry represents.
329  *
330  * The function returns the number of bytes used by the encoding/length
331  * header stored in 'p'. */
zipStoreEntryEncoding(unsigned char * p,unsigned char encoding,unsigned int rawlen)332 unsigned int zipStoreEntryEncoding(unsigned char *p, unsigned char encoding, unsigned int rawlen) {
333     unsigned char len = 1, buf[5];
334 
335     if (ZIP_IS_STR(encoding)) {
336         /* Although encoding is given it may not be set for strings,
337          * so we determine it here using the raw length. */
338         if (rawlen <= 0x3f) {
339             if (!p) return len;
340             buf[0] = ZIP_STR_06B | rawlen;
341         } else if (rawlen <= 0x3fff) {
342             len += 1;
343             if (!p) return len;
344             buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
345             buf[1] = rawlen & 0xff;
346         } else {
347             len += 4;
348             if (!p) return len;
349             buf[0] = ZIP_STR_32B;
350             buf[1] = (rawlen >> 24) & 0xff;
351             buf[2] = (rawlen >> 16) & 0xff;
352             buf[3] = (rawlen >> 8) & 0xff;
353             buf[4] = rawlen & 0xff;
354         }
355     } else {
356         /* Implies integer encoding, so length is always 1. */
357         if (!p) return len;
358         buf[0] = encoding;
359     }
360 
361     /* Store this length at p. */
362     memcpy(p,buf,len);
363     return len;
364 }
365 
366 /* Decode the entry encoding type and data length (string length for strings,
367  * number of bytes used for the integer for integer entries) encoded in 'ptr'.
368  * The 'encoding' variable will hold the entry encoding, the 'lensize'
369  * variable will hold the number of bytes required to encode the entry
370  * length, and the 'len' variable will hold the entry length. */
371 #define ZIP_DECODE_LENGTH(ptr, encoding, lensize, len) do {                    \
372     ZIP_ENTRY_ENCODING((ptr), (encoding));                                     \
373     if ((encoding) < ZIP_STR_MASK) {                                           \
374         if ((encoding) == ZIP_STR_06B) {                                       \
375             (lensize) = 1;                                                     \
376             (len) = (ptr)[0] & 0x3f;                                           \
377         } else if ((encoding) == ZIP_STR_14B) {                                \
378             (lensize) = 2;                                                     \
379             (len) = (((ptr)[0] & 0x3f) << 8) | (ptr)[1];                       \
380         } else if ((encoding) == ZIP_STR_32B) {                                \
381             (lensize) = 5;                                                     \
382             (len) = ((ptr)[1] << 24) |                                         \
383                     ((ptr)[2] << 16) |                                         \
384                     ((ptr)[3] <<  8) |                                         \
385                     ((ptr)[4]);                                                \
386         } else {                                                               \
387             panic("Invalid string encoding 0x%02X", (encoding));               \
388         }                                                                      \
389     } else {                                                                   \
390         (lensize) = 1;                                                         \
391         (len) = zipIntSize(encoding);                                          \
392     }                                                                          \
393 } while(0);
394 
395 /* Encode the length of the previous entry and write it to "p". This only
396  * uses the larger encoding (required in __ziplistCascadeUpdate). */
zipStorePrevEntryLengthLarge(unsigned char * p,unsigned int len)397 int zipStorePrevEntryLengthLarge(unsigned char *p, unsigned int len) {
398     if (p != NULL) {
399         p[0] = ZIP_BIG_PREVLEN;
400         memcpy(p+1,&len,sizeof(len));
401         memrev32ifbe(p+1);
402     }
403     return 1+sizeof(len);
404 }
405 
406 /* Encode the length of the previous entry and write it to "p". Return the
407  * number of bytes needed to encode this length if "p" is NULL. */
zipStorePrevEntryLength(unsigned char * p,unsigned int len)408 unsigned int zipStorePrevEntryLength(unsigned char *p, unsigned int len) {
409     if (p == NULL) {
410         return (len < ZIP_BIG_PREVLEN) ? 1 : sizeof(len)+1;
411     } else {
412         if (len < ZIP_BIG_PREVLEN) {
413             p[0] = len;
414             return 1;
415         } else {
416             return zipStorePrevEntryLengthLarge(p,len);
417         }
418     }
419 }
420 
421 /* Return the number of bytes used to encode the length of the previous
422  * entry. The length is returned by setting the var 'prevlensize'. */
423 #define ZIP_DECODE_PREVLENSIZE(ptr, prevlensize) do {                          \
424     if ((ptr)[0] < ZIP_BIG_PREVLEN) {                                          \
425         (prevlensize) = 1;                                                     \
426     } else {                                                                   \
427         (prevlensize) = 5;                                                     \
428     }                                                                          \
429 } while(0);
430 
431 /* Return the length of the previous element, and the number of bytes that
432  * are used in order to encode the previous element length.
433  * 'ptr' must point to the prevlen prefix of an entry (that encodes the
434  * length of the previous entry in order to navigate the elements backward).
435  * The length of the previous entry is stored in 'prevlen', the number of
436  * bytes needed to encode the previous entry length are stored in
437  * 'prevlensize'. */
438 #define ZIP_DECODE_PREVLEN(ptr, prevlensize, prevlen) do {                     \
439     ZIP_DECODE_PREVLENSIZE(ptr, prevlensize);                                  \
440     if ((prevlensize) == 1) {                                                  \
441         (prevlen) = (ptr)[0];                                                  \
442     } else if ((prevlensize) == 5) {                                           \
443         assert(sizeof((prevlen)) == 4);                                    \
444         memcpy(&(prevlen), ((char*)(ptr)) + 1, 4);                             \
445         memrev32ifbe(&prevlen);                                                \
446     }                                                                          \
447 } while(0);
448 
449 /* Given a pointer 'p' to the prevlen info that prefixes an entry, this
450  * function returns the difference in number of bytes needed to encode
451  * the prevlen if the previous entry changes of size.
452  *
453  * So if A is the number of bytes used right now to encode the 'prevlen'
454  * field.
455  *
456  * And B is the number of bytes that are needed in order to encode the
457  * 'prevlen' if the previous element will be updated to one of size 'len'.
458  *
459  * Then the function returns B - A
460  *
461  * So the function returns a positive number if more space is needed,
462  * a negative number if less space is needed, or zero if the same space
463  * is needed. */
zipPrevLenByteDiff(unsigned char * p,unsigned int len)464 int zipPrevLenByteDiff(unsigned char *p, unsigned int len) {
465     unsigned int prevlensize;
466     ZIP_DECODE_PREVLENSIZE(p, prevlensize);
467     return zipStorePrevEntryLength(NULL, len) - prevlensize;
468 }
469 
470 /* Return the total number of bytes used by the entry pointed to by 'p'. */
zipRawEntryLength(unsigned char * p)471 unsigned int zipRawEntryLength(unsigned char *p) {
472     unsigned int prevlensize, encoding, lensize, len;
473     ZIP_DECODE_PREVLENSIZE(p, prevlensize);
474     ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
475     return prevlensize + lensize + len;
476 }
477 
478 /* Check if string pointed to by 'entry' can be encoded as an integer.
479  * Stores the integer value in 'v' and its encoding in 'encoding'. */
zipTryEncoding(unsigned char * entry,unsigned int entrylen,long long * v,unsigned char * encoding)480 int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
481     long long value;
482 
483     if (entrylen >= 32 || entrylen == 0) return 0;
484     if (string2ll((char*)entry,entrylen,&value)) {
485         /* Great, the string can be encoded. Check what's the smallest
486          * of our encoding types that can hold this value. */
487         if (value >= 0 && value <= 12) {
488             *encoding = ZIP_INT_IMM_MIN+value;
489         } else if (value >= INT8_MIN && value <= INT8_MAX) {
490             *encoding = ZIP_INT_8B;
491         } else if (value >= INT16_MIN && value <= INT16_MAX) {
492             *encoding = ZIP_INT_16B;
493         } else if (value >= INT24_MIN && value <= INT24_MAX) {
494             *encoding = ZIP_INT_24B;
495         } else if (value >= INT32_MIN && value <= INT32_MAX) {
496             *encoding = ZIP_INT_32B;
497         } else {
498             *encoding = ZIP_INT_64B;
499         }
500         *v = value;
501         return 1;
502     }
503     return 0;
504 }
505 
506 /* Store integer 'value' at 'p', encoded as 'encoding' */
zipSaveInteger(unsigned char * p,int64_t value,unsigned char encoding)507 void zipSaveInteger(unsigned char *p, int64_t value, unsigned char encoding) {
508     int16_t i16;
509     int32_t i32;
510     int64_t i64;
511     if (encoding == ZIP_INT_8B) {
512         ((int8_t*)p)[0] = (int8_t)value;
513     } else if (encoding == ZIP_INT_16B) {
514         i16 = value;
515         memcpy(p,&i16,sizeof(i16));
516         memrev16ifbe(p);
517     } else if (encoding == ZIP_INT_24B) {
518         i32 = value<<8;
519         memrev32ifbe(&i32);
520         memcpy(p,((uint8_t*)&i32)+1,sizeof(i32)-sizeof(uint8_t));
521     } else if (encoding == ZIP_INT_32B) {
522         i32 = value;
523         memcpy(p,&i32,sizeof(i32));
524         memrev32ifbe(p);
525     } else if (encoding == ZIP_INT_64B) {
526         i64 = value;
527         memcpy(p,&i64,sizeof(i64));
528         memrev64ifbe(p);
529     } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
530         /* Nothing to do, the value is stored in the encoding itself. */
531     } else {
532         assert(NULL);
533     }
534 }
535 
536 /* Read integer encoded as 'encoding' from 'p' */
zipLoadInteger(unsigned char * p,unsigned char encoding)537 int64_t zipLoadInteger(unsigned char *p, unsigned char encoding) {
538     int16_t i16;
539     int32_t i32;
540     int64_t i64, ret = 0;
541     if (encoding == ZIP_INT_8B) {
542         ret = ((int8_t*)p)[0];
543     } else if (encoding == ZIP_INT_16B) {
544         memcpy(&i16,p,sizeof(i16));
545         memrev16ifbe(&i16);
546         ret = i16;
547     } else if (encoding == ZIP_INT_32B) {
548         memcpy(&i32,p,sizeof(i32));
549         memrev32ifbe(&i32);
550         ret = i32;
551     } else if (encoding == ZIP_INT_24B) {
552         i32 = 0;
553         memcpy(((uint8_t*)&i32)+1,p,sizeof(i32)-sizeof(uint8_t));
554         memrev32ifbe(&i32);
555         ret = i32>>8;
556     } else if (encoding == ZIP_INT_64B) {
557         memcpy(&i64,p,sizeof(i64));
558         memrev64ifbe(&i64);
559         ret = i64;
560     } else if (encoding >= ZIP_INT_IMM_MIN && encoding <= ZIP_INT_IMM_MAX) {
561         ret = (encoding & ZIP_INT_IMM_MASK)-1;
562     } else {
563         assert(NULL);
564     }
565     return ret;
566 }
567 
568 /* Return a struct with all information about an entry. */
zipEntry(unsigned char * p,zlentry * e)569 void zipEntry(unsigned char *p, zlentry *e) {
570 
571     ZIP_DECODE_PREVLEN(p, e->prevrawlensize, e->prevrawlen);
572     ZIP_DECODE_LENGTH(p + e->prevrawlensize, e->encoding, e->lensize, e->len);
573     e->headersize = e->prevrawlensize + e->lensize;
574     e->p = p;
575 }
576 
577 /* Create a new empty ziplist. */
ziplistNew(void)578 unsigned char *ziplistNew(void) {
579     unsigned int bytes = ZIPLIST_HEADER_SIZE+ZIPLIST_END_SIZE;
580     unsigned char *zl = zmalloc(bytes);
581     ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
582     ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
583     ZIPLIST_LENGTH(zl) = 0;
584     zl[bytes-1] = ZIP_END;
585     return zl;
586 }
587 
588 /* Resize the ziplist. */
ziplistResize(unsigned char * zl,unsigned int len)589 unsigned char *ziplistResize(unsigned char *zl, unsigned int len) {
590     zl = zrealloc(zl,len);
591     ZIPLIST_BYTES(zl) = intrev32ifbe(len);
592     zl[len-1] = ZIP_END;
593     return zl;
594 }
595 
596 /* When an entry is inserted, we need to set the prevlen field of the next
597  * entry to equal the length of the inserted entry. It can occur that this
598  * length cannot be encoded in 1 byte and the next entry needs to be grow
599  * a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
600  * because this only happens when an entry is already being inserted (which
601  * causes a realloc and memmove). However, encoding the prevlen may require
602  * that this entry is grown as well. This effect may cascade throughout
603  * the ziplist when there are consecutive entries with a size close to
604  * ZIP_BIG_PREVLEN, so we need to check that the prevlen can be encoded in
605  * every consecutive entry.
606  *
607  * Note that this effect can also happen in reverse, where the bytes required
608  * to encode the prevlen field can shrink. This effect is deliberately ignored,
609  * because it can cause a "flapping" effect where a chain prevlen fields is
610  * first grown and then shrunk again after consecutive inserts. Rather, the
611  * field is allowed to stay larger than necessary, because a large prevlen
612  * field implies the ziplist is holding large entries anyway.
613  *
614  * The pointer "p" points to the first entry that does NOT need to be
615  * updated, i.e. consecutive fields MAY need an update. */
__ziplistCascadeUpdate(unsigned char * zl,unsigned char * p)616 unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
617     size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), rawlen, rawlensize;
618     size_t offset, noffset, extra;
619     unsigned char *np;
620     zlentry cur, next;
621 
622     while (p[0] != ZIP_END) {
623         zipEntry(p, &cur);
624         rawlen = cur.headersize + cur.len;
625         rawlensize = zipStorePrevEntryLength(NULL,rawlen);
626 
627         /* Abort if there is no next entry. */
628         if (p[rawlen] == ZIP_END) break;
629         zipEntry(p+rawlen, &next);
630 
631         /* Abort when "prevlen" has not changed. */
632         if (next.prevrawlen == rawlen) break;
633 
634         if (next.prevrawlensize < rawlensize) {
635             /* The "prevlen" field of "next" needs more bytes to hold
636              * the raw length of "cur". */
637             offset = p-zl;
638             extra = rawlensize-next.prevrawlensize;
639             zl = ziplistResize(zl,curlen+extra);
640             p = zl+offset;
641 
642             /* Current pointer and offset for next element. */
643             np = p+rawlen;
644             noffset = np-zl;
645 
646             /* Update tail offset when next element is not the tail element. */
647             if ((zl+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) != np) {
648                 ZIPLIST_TAIL_OFFSET(zl) =
649                     intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra);
650             }
651 
652             /* Move the tail to the back. */
653             memmove(np+rawlensize,
654                 np+next.prevrawlensize,
655                 curlen-noffset-next.prevrawlensize-1);
656             zipStorePrevEntryLength(np,rawlen);
657 
658             /* Advance the cursor */
659             p += rawlen;
660             curlen += extra;
661         } else {
662             if (next.prevrawlensize > rawlensize) {
663                 /* This would result in shrinking, which we want to avoid.
664                  * So, set "rawlen" in the available bytes. */
665                 zipStorePrevEntryLengthLarge(p+rawlen,rawlen);
666             } else {
667                 zipStorePrevEntryLength(p+rawlen,rawlen);
668             }
669 
670             /* Stop here, as the raw length of "next" has not changed. */
671             break;
672         }
673     }
674     return zl;
675 }
676 
677 /* Delete "num" entries, starting at "p". Returns pointer to the ziplist. */
__ziplistDelete(unsigned char * zl,unsigned char * p,unsigned int num)678 unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
679     unsigned int i, totlen, deleted = 0;
680     size_t offset;
681     int nextdiff = 0;
682     zlentry first, tail;
683 
684     zipEntry(p, &first);
685     for (i = 0; p[0] != ZIP_END && i < num; i++) {
686         p += zipRawEntryLength(p);
687         deleted++;
688     }
689 
690     totlen = p-first.p; /* Bytes taken by the element(s) to delete. */
691     if (totlen > 0) {
692         if (p[0] != ZIP_END) {
693             /* Storing `prevrawlen` in this entry may increase or decrease the
694              * number of bytes required compare to the current `prevrawlen`.
695              * There always is room to store this, because it was previously
696              * stored by an entry that is now being deleted. */
697             nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
698 
699             /* Note that there is always space when p jumps backward: if
700              * the new previous entry is large, one of the deleted elements
701              * had a 5 bytes prevlen header, so there is for sure at least
702              * 5 bytes free and we need just 4. */
703             p -= nextdiff;
704             zipStorePrevEntryLength(p,first.prevrawlen);
705 
706             /* Update offset for tail */
707             ZIPLIST_TAIL_OFFSET(zl) =
708                 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);
709 
710             /* When the tail contains more than one entry, we need to take
711              * "nextdiff" in account as well. Otherwise, a change in the
712              * size of prevlen doesn't have an effect on the *tail* offset. */
713             zipEntry(p, &tail);
714             if (p[tail.headersize+tail.len] != ZIP_END) {
715                 ZIPLIST_TAIL_OFFSET(zl) =
716                    intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
717             }
718 
719             /* Move tail to the front of the ziplist */
720             memmove(first.p,p,
721                 intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1);
722         } else {
723             /* The entire tail was deleted. No need to move memory. */
724             ZIPLIST_TAIL_OFFSET(zl) =
725                 intrev32ifbe((first.p-zl)-first.prevrawlen);
726         }
727 
728         /* Resize and update length */
729         offset = first.p-zl;
730         zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
731         ZIPLIST_INCR_LENGTH(zl,-deleted);
732         p = zl+offset;
733 
734         /* When nextdiff != 0, the raw length of the next entry has changed, so
735          * we need to cascade the update throughout the ziplist */
736         if (nextdiff != 0)
737             zl = __ziplistCascadeUpdate(zl,p);
738     }
739     return zl;
740 }
741 
742 /* Insert item at "p". */
__ziplistInsert(unsigned char * zl,unsigned char * p,unsigned char * s,unsigned int slen)743 unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
744     size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;
745     unsigned int prevlensize, prevlen = 0;
746     size_t offset;
747     int nextdiff = 0;
748     unsigned char encoding = 0;
749     long long value = 123456789; /* initialized to avoid warning. Using a value
750                                     that is easy to see if for some reason
751                                     we use it uninitialized. */
752     zlentry tail;
753 
754     /* Find out prevlen for the entry that is inserted. */
755     if (p[0] != ZIP_END) {
756         ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
757     } else {
758         unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
759         if (ptail[0] != ZIP_END) {
760             prevlen = zipRawEntryLength(ptail);
761         }
762     }
763 
764     /* See if the entry can be encoded */
765     if (zipTryEncoding(s,slen,&value,&encoding)) {
766         /* 'encoding' is set to the appropriate integer encoding */
767         reqlen = zipIntSize(encoding);
768     } else {
769         /* 'encoding' is untouched, however zipStoreEntryEncoding will use the
770          * string length to figure out how to encode it. */
771         reqlen = slen;
772     }
773     /* We need space for both the length of the previous entry and
774      * the length of the payload. */
775     reqlen += zipStorePrevEntryLength(NULL,prevlen);
776     reqlen += zipStoreEntryEncoding(NULL,encoding,slen);
777 
778     /* When the insert position is not equal to the tail, we need to
779      * make sure that the next entry can hold this entry's length in
780      * its prevlen field. */
781     int forcelarge = 0;
782     nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
783     if (nextdiff == -4 && reqlen < 4) {
784         nextdiff = 0;
785         forcelarge = 1;
786     }
787 
788     /* Store offset because a realloc may change the address of zl. */
789     offset = p-zl;
790     zl = ziplistResize(zl,curlen+reqlen+nextdiff);
791     p = zl+offset;
792 
793     /* Apply memory move when necessary and update tail offset. */
794     if (p[0] != ZIP_END) {
795         /* Subtract one because of the ZIP_END bytes */
796         memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
797 
798         /* Encode this entry's raw length in the next entry. */
799         if (forcelarge)
800             zipStorePrevEntryLengthLarge(p+reqlen,reqlen);
801         else
802             zipStorePrevEntryLength(p+reqlen,reqlen);
803 
804         /* Update offset for tail */
805         ZIPLIST_TAIL_OFFSET(zl) =
806             intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
807 
808         /* When the tail contains more than one entry, we need to take
809          * "nextdiff" in account as well. Otherwise, a change in the
810          * size of prevlen doesn't have an effect on the *tail* offset. */
811         zipEntry(p+reqlen, &tail);
812         if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
813             ZIPLIST_TAIL_OFFSET(zl) =
814                 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
815         }
816     } else {
817         /* This element will be the new tail. */
818         ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
819     }
820 
821     /* When nextdiff != 0, the raw length of the next entry has changed, so
822      * we need to cascade the update throughout the ziplist */
823     if (nextdiff != 0) {
824         offset = p-zl;
825         zl = __ziplistCascadeUpdate(zl,p+reqlen);
826         p = zl+offset;
827     }
828 
829     /* Write the entry */
830     p += zipStorePrevEntryLength(p,prevlen);
831     p += zipStoreEntryEncoding(p,encoding,slen);
832     if (ZIP_IS_STR(encoding)) {
833         memcpy(p,s,slen);
834     } else {
835         zipSaveInteger(p,value,encoding);
836     }
837     ZIPLIST_INCR_LENGTH(zl,1);
838     return zl;
839 }
840 
841 /* Merge ziplists 'first' and 'second' by appending 'second' to 'first'.
842  *
843  * NOTE: The larger ziplist is reallocated to contain the new merged ziplist.
844  * Either 'first' or 'second' can be used for the result.  The parameter not
845  * used will be free'd and set to NULL.
846  *
847  * After calling this function, the input parameters are no longer valid since
848  * they are changed and free'd in-place.
849  *
850  * The result ziplist is the contents of 'first' followed by 'second'.
851  *
852  * On failure: returns NULL if the merge is impossible.
853  * On success: returns the merged ziplist (which is expanded version of either
854  * 'first' or 'second', also frees the other unused input ziplist, and sets the
855  * input ziplist argument equal to newly reallocated ziplist return value. */
ziplistMerge(unsigned char ** first,unsigned char ** second)856 unsigned char *ziplistMerge(unsigned char **first, unsigned char **second) {
857     /* If any params are null, we can't merge, so NULL. */
858     if (first == NULL || *first == NULL || second == NULL || *second == NULL)
859         return NULL;
860 
861     /* Can't merge same list into itself. */
862     if (*first == *second)
863         return NULL;
864 
865     size_t first_bytes = intrev32ifbe(ZIPLIST_BYTES(*first));
866     size_t first_len = intrev16ifbe(ZIPLIST_LENGTH(*first));
867 
868     size_t second_bytes = intrev32ifbe(ZIPLIST_BYTES(*second));
869     size_t second_len = intrev16ifbe(ZIPLIST_LENGTH(*second));
870 
871     int append;
872     unsigned char *source, *target;
873     size_t target_bytes, source_bytes;
874     /* Pick the largest ziplist so we can resize easily in-place.
875      * We must also track if we are now appending or prepending to
876      * the target ziplist. */
877     if (first_len >= second_len) {
878         /* retain first, append second to first. */
879         target = *first;
880         target_bytes = first_bytes;
881         source = *second;
882         source_bytes = second_bytes;
883         append = 1;
884     } else {
885         /* else, retain second, prepend first to second. */
886         target = *second;
887         target_bytes = second_bytes;
888         source = *first;
889         source_bytes = first_bytes;
890         append = 0;
891     }
892 
893     /* Calculate final bytes (subtract one pair of metadata) */
894     size_t zlbytes = first_bytes + second_bytes -
895                      ZIPLIST_HEADER_SIZE - ZIPLIST_END_SIZE;
896     size_t zllength = first_len + second_len;
897 
898     /* Combined zl length should be limited within UINT16_MAX */
899     zllength = zllength < UINT16_MAX ? zllength : UINT16_MAX;
900 
901     /* Save offset positions before we start ripping memory apart. */
902     size_t first_offset = intrev32ifbe(ZIPLIST_TAIL_OFFSET(*first));
903     size_t second_offset = intrev32ifbe(ZIPLIST_TAIL_OFFSET(*second));
904 
905     /* Extend target to new zlbytes then append or prepend source. */
906     target = zrealloc(target, zlbytes);
907     if (append) {
908         /* append == appending to target */
909         /* Copy source after target (copying over original [END]):
910          *   [TARGET - END, SOURCE - HEADER] */
911         memcpy(target + target_bytes - ZIPLIST_END_SIZE,
912                source + ZIPLIST_HEADER_SIZE,
913                source_bytes - ZIPLIST_HEADER_SIZE);
914     } else {
915         /* !append == prepending to target */
916         /* Move target *contents* exactly size of (source - [END]),
917          * then copy source into vacataed space (source - [END]):
918          *   [SOURCE - END, TARGET - HEADER] */
919         memmove(target + source_bytes - ZIPLIST_END_SIZE,
920                 target + ZIPLIST_HEADER_SIZE,
921                 target_bytes - ZIPLIST_HEADER_SIZE);
922         memcpy(target, source, source_bytes - ZIPLIST_END_SIZE);
923     }
924 
925     /* Update header metadata. */
926     ZIPLIST_BYTES(target) = intrev32ifbe(zlbytes);
927     ZIPLIST_LENGTH(target) = intrev16ifbe(zllength);
928     /* New tail offset is:
929      *   + N bytes of first ziplist
930      *   - 1 byte for [END] of first ziplist
931      *   + M bytes for the offset of the original tail of the second ziplist
932      *   - J bytes for HEADER because second_offset keeps no header. */
933     ZIPLIST_TAIL_OFFSET(target) = intrev32ifbe(
934                                    (first_bytes - ZIPLIST_END_SIZE) +
935                                    (second_offset - ZIPLIST_HEADER_SIZE));
936 
937     /* __ziplistCascadeUpdate just fixes the prev length values until it finds a
938      * correct prev length value (then it assumes the rest of the list is okay).
939      * We tell CascadeUpdate to start at the first ziplist's tail element to fix
940      * the merge seam. */
941     target = __ziplistCascadeUpdate(target, target+first_offset);
942 
943     /* Now free and NULL out what we didn't realloc */
944     if (append) {
945         zfree(*second);
946         *second = NULL;
947         *first = target;
948     } else {
949         zfree(*first);
950         *first = NULL;
951         *second = target;
952     }
953     return target;
954 }
955 
ziplistPush(unsigned char * zl,unsigned char * s,unsigned int slen,int where)956 unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
957     unsigned char *p;
958     p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
959     return __ziplistInsert(zl,p,s,slen);
960 }
961 
962 /* Returns an offset to use for iterating with ziplistNext. When the given
963  * index is negative, the list is traversed back to front. When the list
964  * doesn't contain an element at the provided index, NULL is returned. */
ziplistIndex(unsigned char * zl,int index)965 unsigned char *ziplistIndex(unsigned char *zl, int index) {
966     unsigned char *p;
967     unsigned int prevlensize, prevlen = 0;
968     if (index < 0) {
969         index = (-index)-1;
970         p = ZIPLIST_ENTRY_TAIL(zl);
971         if (p[0] != ZIP_END) {
972             ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
973             while (prevlen > 0 && index--) {
974                 p -= prevlen;
975                 ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
976             }
977         }
978     } else {
979         p = ZIPLIST_ENTRY_HEAD(zl);
980         while (p[0] != ZIP_END && index--) {
981             p += zipRawEntryLength(p);
982         }
983     }
984     return (p[0] == ZIP_END || index > 0) ? NULL : p;
985 }
986 
987 /* Return pointer to next entry in ziplist.
988  *
989  * zl is the pointer to the ziplist
990  * p is the pointer to the current element
991  *
992  * The element after 'p' is returned, otherwise NULL if we are at the end. */
ziplistNext(unsigned char * zl,unsigned char * p)993 unsigned char *ziplistNext(unsigned char *zl, unsigned char *p) {
994     ((void) zl);
995 
996     /* "p" could be equal to ZIP_END, caused by ziplistDelete,
997      * and we should return NULL. Otherwise, we should return NULL
998      * when the *next* element is ZIP_END (there is no next entry). */
999     if (p[0] == ZIP_END) {
1000         return NULL;
1001     }
1002 
1003     p += zipRawEntryLength(p);
1004     if (p[0] == ZIP_END) {
1005         return NULL;
1006     }
1007 
1008     return p;
1009 }
1010 
1011 /* Return pointer to previous entry in ziplist. */
ziplistPrev(unsigned char * zl,unsigned char * p)1012 unsigned char *ziplistPrev(unsigned char *zl, unsigned char *p) {
1013     unsigned int prevlensize, prevlen = 0;
1014 
1015     /* Iterating backwards from ZIP_END should return the tail. When "p" is
1016      * equal to the first element of the list, we're already at the head,
1017      * and should return NULL. */
1018     if (p[0] == ZIP_END) {
1019         p = ZIPLIST_ENTRY_TAIL(zl);
1020         return (p[0] == ZIP_END) ? NULL : p;
1021     } else if (p == ZIPLIST_ENTRY_HEAD(zl)) {
1022         return NULL;
1023     } else {
1024         ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
1025         assert(prevlen > 0);
1026         return p-prevlen;
1027     }
1028 }
1029 
1030 /* Get entry pointed to by 'p' and store in either '*sstr' or 'sval' depending
1031  * on the encoding of the entry. '*sstr' is always set to NULL to be able
1032  * to find out whether the string pointer or the integer value was set.
1033  * Return 0 if 'p' points to the end of the ziplist, 1 otherwise. */
ziplistGet(unsigned char * p,unsigned char ** sstr,unsigned int * slen,long long * sval)1034 unsigned int ziplistGet(unsigned char *p, unsigned char **sstr, unsigned int *slen, long long *sval) {
1035     zlentry entry;
1036     if (p == NULL || p[0] == ZIP_END) return 0;
1037     if (sstr) *sstr = NULL;
1038 
1039     zipEntry(p, &entry);
1040     if (ZIP_IS_STR(entry.encoding)) {
1041         if (sstr) {
1042             *slen = entry.len;
1043             *sstr = p+entry.headersize;
1044         }
1045     } else {
1046         if (sval) {
1047             *sval = zipLoadInteger(p+entry.headersize,entry.encoding);
1048         }
1049     }
1050     return 1;
1051 }
1052 
1053 /* Insert an entry at "p". */
ziplistInsert(unsigned char * zl,unsigned char * p,unsigned char * s,unsigned int slen)1054 unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
1055     return __ziplistInsert(zl,p,s,slen);
1056 }
1057 
1058 /* Delete a single entry from the ziplist, pointed to by *p.
1059  * Also update *p in place, to be able to iterate over the
1060  * ziplist, while deleting entries. */
ziplistDelete(unsigned char * zl,unsigned char ** p)1061 unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
1062     size_t offset = *p-zl;
1063     zl = __ziplistDelete(zl,*p,1);
1064 
1065     /* Store pointer to current element in p, because ziplistDelete will
1066      * do a realloc which might result in a different "zl"-pointer.
1067      * When the delete direction is back to front, we might delete the last
1068      * entry and end up with "p" pointing to ZIP_END, so check this. */
1069     *p = zl+offset;
1070     return zl;
1071 }
1072 
1073 /* Delete a range of entries from the ziplist. */
ziplistDeleteRange(unsigned char * zl,int index,unsigned int num)1074 unsigned char *ziplistDeleteRange(unsigned char *zl, int index, unsigned int num) {
1075     unsigned char *p = ziplistIndex(zl,index);
1076     return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
1077 }
1078 
1079 /* Compare entry pointer to by 'p' with 'sstr' of length 'slen'. */
1080 /* Return 1 if equal. */
ziplistCompare(unsigned char * p,unsigned char * sstr,unsigned int slen)1081 unsigned int ziplistCompare(unsigned char *p, unsigned char *sstr, unsigned int slen) {
1082     zlentry entry;
1083     unsigned char sencoding;
1084     long long zval, sval;
1085     if (p[0] == ZIP_END) return 0;
1086 
1087     zipEntry(p, &entry);
1088     if (ZIP_IS_STR(entry.encoding)) {
1089         /* Raw compare */
1090         if (entry.len == slen) {
1091             return memcmp(p+entry.headersize,sstr,slen) == 0;
1092         } else {
1093             return 0;
1094         }
1095     } else {
1096         /* Try to compare encoded values. Don't compare encoding because
1097          * different implementations may encoded integers differently. */
1098         if (zipTryEncoding(sstr,slen,&sval,&sencoding)) {
1099           zval = zipLoadInteger(p+entry.headersize,entry.encoding);
1100           return zval == sval;
1101         }
1102     }
1103     return 0;
1104 }
1105 
1106 /* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
1107  * between every comparison. Returns NULL when the field could not be found. */
ziplistFind(unsigned char * p,unsigned char * vstr,unsigned int vlen,unsigned int skip)1108 unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
1109     int skipcnt = 0;
1110     unsigned char vencoding = 0;
1111     long long vll = 0;
1112 
1113     while (p[0] != ZIP_END) {
1114         unsigned int prevlensize, encoding, lensize, len;
1115         unsigned char *q;
1116 
1117         ZIP_DECODE_PREVLENSIZE(p, prevlensize);
1118         ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
1119         q = p + prevlensize + lensize;
1120 
1121         if (skipcnt == 0) {
1122             /* Compare current entry with specified entry */
1123             if (ZIP_IS_STR(encoding)) {
1124                 if (len == vlen && memcmp(q, vstr, vlen) == 0) {
1125                     return p;
1126                 }
1127             } else {
1128                 /* Find out if the searched field can be encoded. Note that
1129                  * we do it only the first time, once done vencoding is set
1130                  * to non-zero and vll is set to the integer value. */
1131                 if (vencoding == 0) {
1132                     if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
1133                         /* If the entry can't be encoded we set it to
1134                          * UCHAR_MAX so that we don't retry again the next
1135                          * time. */
1136                         vencoding = UCHAR_MAX;
1137                     }
1138                     /* Must be non-zero by now */
1139                     assert(vencoding);
1140                 }
1141 
1142                 /* Compare current entry with specified entry, do it only
1143                  * if vencoding != UCHAR_MAX because if there is no encoding
1144                  * possible for the field it can't be a valid integer. */
1145                 if (vencoding != UCHAR_MAX) {
1146                     long long ll = zipLoadInteger(q, encoding);
1147                     if (ll == vll) {
1148                         return p;
1149                     }
1150                 }
1151             }
1152 
1153             /* Reset skip count */
1154             skipcnt = skip;
1155         } else {
1156             /* Skip entry */
1157             skipcnt--;
1158         }
1159 
1160         /* Move to next entry */
1161         p = q + len;
1162     }
1163 
1164     return NULL;
1165 }
1166 
1167 /* Return length of ziplist. */
ziplistLen(unsigned char * zl)1168 unsigned int ziplistLen(unsigned char *zl) {
1169     unsigned int len = 0;
1170     if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) {
1171         len = intrev16ifbe(ZIPLIST_LENGTH(zl));
1172     } else {
1173         unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
1174         while (*p != ZIP_END) {
1175             p += zipRawEntryLength(p);
1176             len++;
1177         }
1178 
1179         /* Re-store length if small enough */
1180         if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = intrev16ifbe(len);
1181     }
1182     return len;
1183 }
1184 
1185 /* Return ziplist blob size in bytes. */
ziplistBlobLen(unsigned char * zl)1186 size_t ziplistBlobLen(unsigned char *zl) {
1187     return intrev32ifbe(ZIPLIST_BYTES(zl));
1188 }
1189 
ziplistRepr(unsigned char * zl)1190 void ziplistRepr(unsigned char *zl) {
1191     unsigned char *p;
1192     int index = 0;
1193     zlentry entry;
1194 
1195     printf(
1196         "{total bytes %d} "
1197         "{num entries %u}\n"
1198         "{tail offset %u}\n",
1199         intrev32ifbe(ZIPLIST_BYTES(zl)),
1200         intrev16ifbe(ZIPLIST_LENGTH(zl)),
1201         intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)));
1202     p = ZIPLIST_ENTRY_HEAD(zl);
1203     while(*p != ZIP_END) {
1204         zipEntry(p, &entry);
1205         printf(
1206             "{\n"
1207                 "\taddr 0x%08lx,\n"
1208                 "\tindex %2d,\n"
1209                 "\toffset %5ld,\n"
1210                 "\thdr+entry len: %5u,\n"
1211                 "\thdr len%2u,\n"
1212                 "\tprevrawlen: %5u,\n"
1213                 "\tprevrawlensize: %2u,\n"
1214                 "\tpayload %5u\n",
1215             (long unsigned)p,
1216             index,
1217             (unsigned long) (p-zl),
1218             entry.headersize+entry.len,
1219             entry.headersize,
1220             entry.prevrawlen,
1221             entry.prevrawlensize,
1222             entry.len);
1223         printf("\tbytes: ");
1224         for (unsigned int i = 0; i < entry.headersize+entry.len; i++) {
1225             printf("%02x|",p[i]);
1226         }
1227         printf("\n");
1228         p += entry.headersize;
1229         if (ZIP_IS_STR(entry.encoding)) {
1230             printf("\t[str]");
1231             if (entry.len > 40) {
1232                 if (fwrite(p,40,1,stdout) == 0) perror("fwrite");
1233                 printf("...");
1234             } else {
1235                 if (entry.len &&
1236                     fwrite(p,entry.len,1,stdout) == 0) perror("fwrite");
1237             }
1238         } else {
1239             printf("\t[int]%lld", (long long) zipLoadInteger(p,entry.encoding));
1240         }
1241         printf("\n}\n");
1242         p += entry.len;
1243         index++;
1244     }
1245     printf("{end}\n\n");
1246 }
1247 
1248 #ifdef REDIS_TEST
1249 #include <sys/time.h>
1250 #include "adlist.h"
1251 #include "sds.h"
1252 
1253 #define debug(f, ...) { if (DEBUG) printf(f, __VA_ARGS__); }
1254 
createList()1255 static unsigned char *createList() {
1256     unsigned char *zl = ziplistNew();
1257     zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
1258     zl = ziplistPush(zl, (unsigned char*)"quux", 4, ZIPLIST_TAIL);
1259     zl = ziplistPush(zl, (unsigned char*)"hello", 5, ZIPLIST_HEAD);
1260     zl = ziplistPush(zl, (unsigned char*)"1024", 4, ZIPLIST_TAIL);
1261     return zl;
1262 }
1263 
createIntList()1264 static unsigned char *createIntList() {
1265     unsigned char *zl = ziplistNew();
1266     char buf[32];
1267 
1268     sprintf(buf, "100");
1269     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
1270     sprintf(buf, "128000");
1271     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
1272     sprintf(buf, "-100");
1273     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
1274     sprintf(buf, "4294967296");
1275     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_HEAD);
1276     sprintf(buf, "non integer");
1277     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
1278     sprintf(buf, "much much longer non integer");
1279     zl = ziplistPush(zl, (unsigned char*)buf, strlen(buf), ZIPLIST_TAIL);
1280     return zl;
1281 }
1282 
usec(void)1283 static long long usec(void) {
1284     struct timeval tv;
1285     gettimeofday(&tv,NULL);
1286     return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
1287 }
1288 
stress(int pos,int num,int maxsize,int dnum)1289 static void stress(int pos, int num, int maxsize, int dnum) {
1290     int i,j,k;
1291     unsigned char *zl;
1292     char posstr[2][5] = { "HEAD", "TAIL" };
1293     long long start;
1294     for (i = 0; i < maxsize; i+=dnum) {
1295         zl = ziplistNew();
1296         for (j = 0; j < i; j++) {
1297             zl = ziplistPush(zl,(unsigned char*)"quux",4,ZIPLIST_TAIL);
1298         }
1299 
1300         /* Do num times a push+pop from pos */
1301         start = usec();
1302         for (k = 0; k < num; k++) {
1303             zl = ziplistPush(zl,(unsigned char*)"quux",4,pos);
1304             zl = ziplistDeleteRange(zl,0,1);
1305         }
1306         printf("List size: %8d, bytes: %8d, %dx push+pop (%s): %6lld usec\n",
1307             i,intrev32ifbe(ZIPLIST_BYTES(zl)),num,posstr[pos],usec()-start);
1308         zfree(zl);
1309     }
1310 }
1311 
pop(unsigned char * zl,int where)1312 static unsigned char *pop(unsigned char *zl, int where) {
1313     unsigned char *p, *vstr;
1314     unsigned int vlen;
1315     long long vlong;
1316 
1317     p = ziplistIndex(zl,where == ZIPLIST_HEAD ? 0 : -1);
1318     if (ziplistGet(p,&vstr,&vlen,&vlong)) {
1319         if (where == ZIPLIST_HEAD)
1320             printf("Pop head: ");
1321         else
1322             printf("Pop tail: ");
1323 
1324         if (vstr) {
1325             if (vlen && fwrite(vstr,vlen,1,stdout) == 0) perror("fwrite");
1326         }
1327         else {
1328             printf("%lld", vlong);
1329         }
1330 
1331         printf("\n");
1332         return ziplistDelete(zl,&p);
1333     } else {
1334         printf("ERROR: Could not pop\n");
1335         exit(1);
1336     }
1337 }
1338 
randstring(char * target,unsigned int min,unsigned int max)1339 static int randstring(char *target, unsigned int min, unsigned int max) {
1340     int p = 0;
1341     int len = min+rand()%(max-min+1);
1342     int minval, maxval;
1343     switch(rand() % 3) {
1344     case 0:
1345         minval = 0;
1346         maxval = 255;
1347     break;
1348     case 1:
1349         minval = 48;
1350         maxval = 122;
1351     break;
1352     case 2:
1353         minval = 48;
1354         maxval = 52;
1355     break;
1356     default:
1357         assert(NULL);
1358     }
1359 
1360     while(p < len)
1361         target[p++] = minval+rand()%(maxval-minval+1);
1362     return len;
1363 }
1364 
verify(unsigned char * zl,zlentry * e)1365 static void verify(unsigned char *zl, zlentry *e) {
1366     int len = ziplistLen(zl);
1367     zlentry _e;
1368 
1369     ZIPLIST_ENTRY_ZERO(&_e);
1370 
1371     for (int i = 0; i < len; i++) {
1372         memset(&e[i], 0, sizeof(zlentry));
1373         zipEntry(ziplistIndex(zl, i), &e[i]);
1374 
1375         memset(&_e, 0, sizeof(zlentry));
1376         zipEntry(ziplistIndex(zl, -len+i), &_e);
1377 
1378         assert(memcmp(&e[i], &_e, sizeof(zlentry)) == 0);
1379     }
1380 }
1381 
ziplistTest(int argc,char ** argv)1382 int ziplistTest(int argc, char **argv) {
1383     unsigned char *zl, *p;
1384     unsigned char *entry;
1385     unsigned int elen;
1386     long long value;
1387 
1388     /* If an argument is given, use it as the random seed. */
1389     if (argc == 2)
1390         srand(atoi(argv[1]));
1391 
1392     zl = createIntList();
1393     ziplistRepr(zl);
1394 
1395     zfree(zl);
1396 
1397     zl = createList();
1398     ziplistRepr(zl);
1399 
1400     zl = pop(zl,ZIPLIST_TAIL);
1401     ziplistRepr(zl);
1402 
1403     zl = pop(zl,ZIPLIST_HEAD);
1404     ziplistRepr(zl);
1405 
1406     zl = pop(zl,ZIPLIST_TAIL);
1407     ziplistRepr(zl);
1408 
1409     zl = pop(zl,ZIPLIST_TAIL);
1410     ziplistRepr(zl);
1411 
1412     zfree(zl);
1413 
1414     printf("Get element at index 3:\n");
1415     {
1416         zl = createList();
1417         p = ziplistIndex(zl, 3);
1418         if (!ziplistGet(p, &entry, &elen, &value)) {
1419             printf("ERROR: Could not access index 3\n");
1420             return 1;
1421         }
1422         if (entry) {
1423             if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1424             printf("\n");
1425         } else {
1426             printf("%lld\n", value);
1427         }
1428         printf("\n");
1429         zfree(zl);
1430     }
1431 
1432     printf("Get element at index 4 (out of range):\n");
1433     {
1434         zl = createList();
1435         p = ziplistIndex(zl, 4);
1436         if (p == NULL) {
1437             printf("No entry\n");
1438         } else {
1439             printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1440             return 1;
1441         }
1442         printf("\n");
1443         zfree(zl);
1444     }
1445 
1446     printf("Get element at index -1 (last element):\n");
1447     {
1448         zl = createList();
1449         p = ziplistIndex(zl, -1);
1450         if (!ziplistGet(p, &entry, &elen, &value)) {
1451             printf("ERROR: Could not access index -1\n");
1452             return 1;
1453         }
1454         if (entry) {
1455             if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1456             printf("\n");
1457         } else {
1458             printf("%lld\n", value);
1459         }
1460         printf("\n");
1461         zfree(zl);
1462     }
1463 
1464     printf("Get element at index -4 (first element):\n");
1465     {
1466         zl = createList();
1467         p = ziplistIndex(zl, -4);
1468         if (!ziplistGet(p, &entry, &elen, &value)) {
1469             printf("ERROR: Could not access index -4\n");
1470             return 1;
1471         }
1472         if (entry) {
1473             if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1474             printf("\n");
1475         } else {
1476             printf("%lld\n", value);
1477         }
1478         printf("\n");
1479         zfree(zl);
1480     }
1481 
1482     printf("Get element at index -5 (reverse out of range):\n");
1483     {
1484         zl = createList();
1485         p = ziplistIndex(zl, -5);
1486         if (p == NULL) {
1487             printf("No entry\n");
1488         } else {
1489             printf("ERROR: Out of range index should return NULL, returned offset: %ld\n", p-zl);
1490             return 1;
1491         }
1492         printf("\n");
1493         zfree(zl);
1494     }
1495 
1496     printf("Iterate list from 0 to end:\n");
1497     {
1498         zl = createList();
1499         p = ziplistIndex(zl, 0);
1500         while (ziplistGet(p, &entry, &elen, &value)) {
1501             printf("Entry: ");
1502             if (entry) {
1503                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1504             } else {
1505                 printf("%lld", value);
1506             }
1507             p = ziplistNext(zl,p);
1508             printf("\n");
1509         }
1510         printf("\n");
1511         zfree(zl);
1512     }
1513 
1514     printf("Iterate list from 1 to end:\n");
1515     {
1516         zl = createList();
1517         p = ziplistIndex(zl, 1);
1518         while (ziplistGet(p, &entry, &elen, &value)) {
1519             printf("Entry: ");
1520             if (entry) {
1521                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1522             } else {
1523                 printf("%lld", value);
1524             }
1525             p = ziplistNext(zl,p);
1526             printf("\n");
1527         }
1528         printf("\n");
1529         zfree(zl);
1530     }
1531 
1532     printf("Iterate list from 2 to end:\n");
1533     {
1534         zl = createList();
1535         p = ziplistIndex(zl, 2);
1536         while (ziplistGet(p, &entry, &elen, &value)) {
1537             printf("Entry: ");
1538             if (entry) {
1539                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1540             } else {
1541                 printf("%lld", value);
1542             }
1543             p = ziplistNext(zl,p);
1544             printf("\n");
1545         }
1546         printf("\n");
1547         zfree(zl);
1548     }
1549 
1550     printf("Iterate starting out of range:\n");
1551     {
1552         zl = createList();
1553         p = ziplistIndex(zl, 4);
1554         if (!ziplistGet(p, &entry, &elen, &value)) {
1555             printf("No entry\n");
1556         } else {
1557             printf("ERROR\n");
1558         }
1559         printf("\n");
1560         zfree(zl);
1561     }
1562 
1563     printf("Iterate from back to front:\n");
1564     {
1565         zl = createList();
1566         p = ziplistIndex(zl, -1);
1567         while (ziplistGet(p, &entry, &elen, &value)) {
1568             printf("Entry: ");
1569             if (entry) {
1570                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1571             } else {
1572                 printf("%lld", value);
1573             }
1574             p = ziplistPrev(zl,p);
1575             printf("\n");
1576         }
1577         printf("\n");
1578         zfree(zl);
1579     }
1580 
1581     printf("Iterate from back to front, deleting all items:\n");
1582     {
1583         zl = createList();
1584         p = ziplistIndex(zl, -1);
1585         while (ziplistGet(p, &entry, &elen, &value)) {
1586             printf("Entry: ");
1587             if (entry) {
1588                 if (elen && fwrite(entry,elen,1,stdout) == 0) perror("fwrite");
1589             } else {
1590                 printf("%lld", value);
1591             }
1592             zl = ziplistDelete(zl,&p);
1593             p = ziplistPrev(zl,p);
1594             printf("\n");
1595         }
1596         printf("\n");
1597         zfree(zl);
1598     }
1599 
1600     printf("Delete inclusive range 0,0:\n");
1601     {
1602         zl = createList();
1603         zl = ziplistDeleteRange(zl, 0, 1);
1604         ziplistRepr(zl);
1605         zfree(zl);
1606     }
1607 
1608     printf("Delete inclusive range 0,1:\n");
1609     {
1610         zl = createList();
1611         zl = ziplistDeleteRange(zl, 0, 2);
1612         ziplistRepr(zl);
1613         zfree(zl);
1614     }
1615 
1616     printf("Delete inclusive range 1,2:\n");
1617     {
1618         zl = createList();
1619         zl = ziplistDeleteRange(zl, 1, 2);
1620         ziplistRepr(zl);
1621         zfree(zl);
1622     }
1623 
1624     printf("Delete with start index out of range:\n");
1625     {
1626         zl = createList();
1627         zl = ziplistDeleteRange(zl, 5, 1);
1628         ziplistRepr(zl);
1629         zfree(zl);
1630     }
1631 
1632     printf("Delete with num overflow:\n");
1633     {
1634         zl = createList();
1635         zl = ziplistDeleteRange(zl, 1, 5);
1636         ziplistRepr(zl);
1637         zfree(zl);
1638     }
1639 
1640     printf("Delete foo while iterating:\n");
1641     {
1642         zl = createList();
1643         p = ziplistIndex(zl,0);
1644         while (ziplistGet(p,&entry,&elen,&value)) {
1645             if (entry && strncmp("foo",(char*)entry,elen) == 0) {
1646                 printf("Delete foo\n");
1647                 zl = ziplistDelete(zl,&p);
1648             } else {
1649                 printf("Entry: ");
1650                 if (entry) {
1651                     if (elen && fwrite(entry,elen,1,stdout) == 0)
1652                         perror("fwrite");
1653                 } else {
1654                     printf("%lld",value);
1655                 }
1656                 p = ziplistNext(zl,p);
1657                 printf("\n");
1658             }
1659         }
1660         printf("\n");
1661         ziplistRepr(zl);
1662         zfree(zl);
1663     }
1664 
1665     printf("Regression test for >255 byte strings:\n");
1666     {
1667         char v1[257] = {0}, v2[257] = {0};
1668         memset(v1,'x',256);
1669         memset(v2,'y',256);
1670         zl = ziplistNew();
1671         zl = ziplistPush(zl,(unsigned char*)v1,strlen(v1),ZIPLIST_TAIL);
1672         zl = ziplistPush(zl,(unsigned char*)v2,strlen(v2),ZIPLIST_TAIL);
1673 
1674         /* Pop values again and compare their value. */
1675         p = ziplistIndex(zl,0);
1676         assert(ziplistGet(p,&entry,&elen,&value));
1677         assert(strncmp(v1,(char*)entry,elen) == 0);
1678         p = ziplistIndex(zl,1);
1679         assert(ziplistGet(p,&entry,&elen,&value));
1680         assert(strncmp(v2,(char*)entry,elen) == 0);
1681         printf("SUCCESS\n\n");
1682         zfree(zl);
1683     }
1684 
1685     printf("Regression test deleting next to last entries:\n");
1686     {
1687         char v[3][257] = {{0}};
1688         zlentry e[3] = {{.prevrawlensize = 0, .prevrawlen = 0, .lensize = 0,
1689                          .len = 0, .headersize = 0, .encoding = 0, .p = NULL}};
1690         size_t i;
1691 
1692         for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
1693             memset(v[i], 'a' + i, sizeof(v[0]));
1694         }
1695 
1696         v[0][256] = '\0';
1697         v[1][  1] = '\0';
1698         v[2][256] = '\0';
1699 
1700         zl = ziplistNew();
1701         for (i = 0; i < (sizeof(v)/sizeof(v[0])); i++) {
1702             zl = ziplistPush(zl, (unsigned char *) v[i], strlen(v[i]), ZIPLIST_TAIL);
1703         }
1704 
1705         verify(zl, e);
1706 
1707         assert(e[0].prevrawlensize == 1);
1708         assert(e[1].prevrawlensize == 5);
1709         assert(e[2].prevrawlensize == 1);
1710 
1711         /* Deleting entry 1 will increase `prevrawlensize` for entry 2 */
1712         unsigned char *p = e[1].p;
1713         zl = ziplistDelete(zl, &p);
1714 
1715         verify(zl, e);
1716 
1717         assert(e[0].prevrawlensize == 1);
1718         assert(e[1].prevrawlensize == 5);
1719 
1720         printf("SUCCESS\n\n");
1721         zfree(zl);
1722     }
1723 
1724     printf("Create long list and check indices:\n");
1725     {
1726         zl = ziplistNew();
1727         char buf[32];
1728         int i,len;
1729         for (i = 0; i < 1000; i++) {
1730             len = sprintf(buf,"%d",i);
1731             zl = ziplistPush(zl,(unsigned char*)buf,len,ZIPLIST_TAIL);
1732         }
1733         for (i = 0; i < 1000; i++) {
1734             p = ziplistIndex(zl,i);
1735             assert(ziplistGet(p,NULL,NULL,&value));
1736             assert(i == value);
1737 
1738             p = ziplistIndex(zl,-i-1);
1739             assert(ziplistGet(p,NULL,NULL,&value));
1740             assert(999-i == value);
1741         }
1742         printf("SUCCESS\n\n");
1743         zfree(zl);
1744     }
1745 
1746     printf("Compare strings with ziplist entries:\n");
1747     {
1748         zl = createList();
1749         p = ziplistIndex(zl,0);
1750         if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1751             printf("ERROR: not \"hello\"\n");
1752             return 1;
1753         }
1754         if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1755             printf("ERROR: \"hella\"\n");
1756             return 1;
1757         }
1758 
1759         p = ziplistIndex(zl,3);
1760         if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1761             printf("ERROR: not \"1024\"\n");
1762             return 1;
1763         }
1764         if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1765             printf("ERROR: \"1025\"\n");
1766             return 1;
1767         }
1768         printf("SUCCESS\n\n");
1769         zfree(zl);
1770     }
1771 
1772     printf("Merge test:\n");
1773     {
1774         /* create list gives us: [hello, foo, quux, 1024] */
1775         zl = createList();
1776         unsigned char *zl2 = createList();
1777 
1778         unsigned char *zl3 = ziplistNew();
1779         unsigned char *zl4 = ziplistNew();
1780 
1781         if (ziplistMerge(&zl4, &zl4)) {
1782             printf("ERROR: Allowed merging of one ziplist into itself.\n");
1783             return 1;
1784         }
1785 
1786         /* Merge two empty ziplists, get empty result back. */
1787         zl4 = ziplistMerge(&zl3, &zl4);
1788         ziplistRepr(zl4);
1789         if (ziplistLen(zl4)) {
1790             printf("ERROR: Merging two empty ziplists created entries.\n");
1791             return 1;
1792         }
1793         zfree(zl4);
1794 
1795         zl2 = ziplistMerge(&zl, &zl2);
1796         /* merge gives us: [hello, foo, quux, 1024, hello, foo, quux, 1024] */
1797         ziplistRepr(zl2);
1798 
1799         if (ziplistLen(zl2) != 8) {
1800             printf("ERROR: Merged length not 8, but: %u\n", ziplistLen(zl2));
1801             return 1;
1802         }
1803 
1804         p = ziplistIndex(zl2,0);
1805         if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1806             printf("ERROR: not \"hello\"\n");
1807             return 1;
1808         }
1809         if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1810             printf("ERROR: \"hella\"\n");
1811             return 1;
1812         }
1813 
1814         p = ziplistIndex(zl2,3);
1815         if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1816             printf("ERROR: not \"1024\"\n");
1817             return 1;
1818         }
1819         if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1820             printf("ERROR: \"1025\"\n");
1821             return 1;
1822         }
1823 
1824         p = ziplistIndex(zl2,4);
1825         if (!ziplistCompare(p,(unsigned char*)"hello",5)) {
1826             printf("ERROR: not \"hello\"\n");
1827             return 1;
1828         }
1829         if (ziplistCompare(p,(unsigned char*)"hella",5)) {
1830             printf("ERROR: \"hella\"\n");
1831             return 1;
1832         }
1833 
1834         p = ziplistIndex(zl2,7);
1835         if (!ziplistCompare(p,(unsigned char*)"1024",4)) {
1836             printf("ERROR: not \"1024\"\n");
1837             return 1;
1838         }
1839         if (ziplistCompare(p,(unsigned char*)"1025",4)) {
1840             printf("ERROR: \"1025\"\n");
1841             return 1;
1842         }
1843         printf("SUCCESS\n\n");
1844         zfree(zl);
1845     }
1846 
1847     printf("Stress with random payloads of different encoding:\n");
1848     {
1849         int i,j,len,where;
1850         unsigned char *p;
1851         char buf[1024];
1852         int buflen;
1853         list *ref;
1854         listNode *refnode;
1855 
1856         /* Hold temp vars from ziplist */
1857         unsigned char *sstr;
1858         unsigned int slen;
1859         long long sval;
1860 
1861         for (i = 0; i < 20000; i++) {
1862             zl = ziplistNew();
1863             ref = listCreate();
1864             listSetFreeMethod(ref,(void (*)(void*))sdsfree);
1865             len = rand() % 256;
1866 
1867             /* Create lists */
1868             for (j = 0; j < len; j++) {
1869                 where = (rand() & 1) ? ZIPLIST_HEAD : ZIPLIST_TAIL;
1870                 if (rand() % 2) {
1871                     buflen = randstring(buf,1,sizeof(buf)-1);
1872                 } else {
1873                     switch(rand() % 3) {
1874                     case 0:
1875                         buflen = sprintf(buf,"%lld",(0LL + rand()) >> 20);
1876                         break;
1877                     case 1:
1878                         buflen = sprintf(buf,"%lld",(0LL + rand()));
1879                         break;
1880                     case 2:
1881                         buflen = sprintf(buf,"%lld",(0LL + rand()) << 20);
1882                         break;
1883                     default:
1884                         assert(NULL);
1885                     }
1886                 }
1887 
1888                 /* Add to ziplist */
1889                 zl = ziplistPush(zl, (unsigned char*)buf, buflen, where);
1890 
1891                 /* Add to reference list */
1892                 if (where == ZIPLIST_HEAD) {
1893                     listAddNodeHead(ref,sdsnewlen(buf, buflen));
1894                 } else if (where == ZIPLIST_TAIL) {
1895                     listAddNodeTail(ref,sdsnewlen(buf, buflen));
1896                 } else {
1897                     assert(NULL);
1898                 }
1899             }
1900 
1901             assert(listLength(ref) == ziplistLen(zl));
1902             for (j = 0; j < len; j++) {
1903                 /* Naive way to get elements, but similar to the stresser
1904                  * executed from the Tcl test suite. */
1905                 p = ziplistIndex(zl,j);
1906                 refnode = listIndex(ref,j);
1907 
1908                 assert(ziplistGet(p,&sstr,&slen,&sval));
1909                 if (sstr == NULL) {
1910                     buflen = sprintf(buf,"%lld",sval);
1911                 } else {
1912                     buflen = slen;
1913                     memcpy(buf,sstr,buflen);
1914                     buf[buflen] = '\0';
1915                 }
1916                 assert(memcmp(buf,listNodeValue(refnode),buflen) == 0);
1917             }
1918             zfree(zl);
1919             listRelease(ref);
1920         }
1921         printf("SUCCESS\n\n");
1922     }
1923 
1924     printf("Stress with variable ziplist size:\n");
1925     {
1926         stress(ZIPLIST_HEAD,100000,16384,256);
1927         stress(ZIPLIST_TAIL,100000,16384,256);
1928     }
1929 
1930     return 0;
1931 }
1932 #endif
1933