1 /*-
2 * CAM IO Scheduler Interface
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2015 Netflix, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include "opt_cam.h"
31 #include "opt_ddb.h"
32
33 #include <sys/cdefs.h>
34 #include <sys/param.h>
35
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/bio.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/sbuf.h>
43 #include <sys/sysctl.h>
44
45 #include <cam/cam.h>
46 #include <cam/cam_ccb.h>
47 #include <cam/cam_periph.h>
48 #include <cam/cam_xpt_periph.h>
49 #include <cam/cam_xpt_internal.h>
50 #include <cam/cam_iosched.h>
51
52 #include <ddb/ddb.h>
53
54 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
55 "CAM I/O Scheduler buffers");
56
57 static SYSCTL_NODE(_kern_cam, OID_AUTO, iosched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
58 "CAM I/O Scheduler parameters");
59
60 /*
61 * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
62 * over the bioq_* interface, with notions of separate calls for normal I/O and
63 * for trims.
64 *
65 * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
66 * steer the rate of one type of traffic to help other types of traffic (eg
67 * limit writes when read latency deteriorates on SSDs).
68 */
69
70 #ifdef CAM_IOSCHED_DYNAMIC
71
72 static bool do_dynamic_iosched = true;
73 SYSCTL_BOOL(_kern_cam_iosched, OID_AUTO, dynamic, CTLFLAG_RDTUN,
74 &do_dynamic_iosched, 1,
75 "Enable Dynamic I/O scheduler optimizations.");
76
77 /*
78 * For an EMA, with an alpha of alpha, we know
79 * alpha = 2 / (N + 1)
80 * or
81 * N = 1 + (2 / alpha)
82 * where N is the number of samples that 86% of the current
83 * EMA is derived from.
84 *
85 * So we invent[*] alpha_bits:
86 * alpha_bits = -log_2(alpha)
87 * alpha = 2^-alpha_bits
88 * So
89 * N = 1 + 2^(alpha_bits + 1)
90 *
91 * The default 9 gives a 1025 lookback for 86% of the data.
92 * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
93 *
94 * [*] Steal from the load average code and many other places.
95 * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
96 */
97 static int alpha_bits = 9;
98 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, alpha_bits, CTLFLAG_RWTUN,
99 &alpha_bits, 1,
100 "Bits in EMA's alpha.");
101
102 /*
103 * Different parameters for the buckets of latency we keep track of. These are all
104 * published read-only since at present they are compile time constants.
105 *
106 * Bucket base is the upper bounds of the first latency bucket. It's currently 20us.
107 * With 20 buckets (see below), that leads to a geometric progression with a max size
108 * of 5.2s which is safeily larger than 1s to help diagnose extreme outliers better.
109 */
110 #ifndef BUCKET_BASE
111 #define BUCKET_BASE ((SBT_1S / 50000) + 1) /* 20us */
112 #endif
113 static sbintime_t bucket_base = BUCKET_BASE;
114 SYSCTL_SBINTIME_USEC(_kern_cam_iosched, OID_AUTO, bucket_base_us, CTLFLAG_RD,
115 &bucket_base,
116 "Size of the smallest latency bucket");
117
118 /*
119 * Bucket ratio is the geometric progression for the bucket. For a bucket b_n
120 * the size of bucket b_n+1 is b_n * bucket_ratio / 100.
121 */
122 static int bucket_ratio = 200; /* Rather hard coded at the moment */
123 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, bucket_ratio, CTLFLAG_RD,
124 &bucket_ratio, 200,
125 "Latency Bucket Ratio for geometric progression.");
126
127 /*
128 * Number of total buckets. Starting at BUCKET_BASE, each one is a power of 2.
129 */
130 #ifndef LAT_BUCKETS
131 #define LAT_BUCKETS 20 /* < 20us < 40us ... < 2^(n-1)*20us >= 2^(n-1)*20us */
132 #endif
133 static int lat_buckets = LAT_BUCKETS;
134 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, buckets, CTLFLAG_RD,
135 &lat_buckets, LAT_BUCKETS,
136 "Total number of latency buckets published");
137
138 /*
139 * Read bias: how many reads do we favor before scheduling a write
140 * when we have a choice.
141 */
142 static int default_read_bias = 0;
143 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, read_bias, CTLFLAG_RWTUN,
144 &default_read_bias, 0,
145 "Default read bias for new devices.");
146
147 struct iop_stats;
148 struct cam_iosched_softc;
149
150 int iosched_debug = 0;
151
152 typedef enum {
153 none = 0, /* No limits */
154 queue_depth, /* Limit how many ops we queue to SIM */
155 iops, /* Limit # of IOPS to the drive */
156 bandwidth, /* Limit bandwidth to the drive */
157 limiter_max
158 } io_limiter;
159
160 static const char *cam_iosched_limiter_names[] =
161 { "none", "queue_depth", "iops", "bandwidth" };
162
163 /*
164 * Called to initialize the bits of the iop_stats structure relevant to the
165 * limiter. Called just after the limiter is set.
166 */
167 typedef int l_init_t(struct iop_stats *);
168
169 /*
170 * Called every tick.
171 */
172 typedef int l_tick_t(struct iop_stats *);
173
174 /*
175 * Called to see if the limiter thinks this IOP can be allowed to
176 * proceed. If so, the limiter assumes that the IOP proceeded
177 * and makes any accounting of it that's needed.
178 */
179 typedef int l_iop_t(struct iop_stats *, struct bio *);
180
181 /*
182 * Called when an I/O completes so the limiter can update its
183 * accounting. Pending I/Os may complete in any order (even when
184 * sent to the hardware at the same time), so the limiter may not
185 * make any assumptions other than this I/O has completed. If it
186 * returns 1, then xpt_schedule() needs to be called again.
187 */
188 typedef int l_iodone_t(struct iop_stats *, struct bio *);
189
190 static l_iop_t cam_iosched_qd_iop;
191 static l_iop_t cam_iosched_qd_caniop;
192 static l_iodone_t cam_iosched_qd_iodone;
193
194 static l_init_t cam_iosched_iops_init;
195 static l_tick_t cam_iosched_iops_tick;
196 static l_iop_t cam_iosched_iops_caniop;
197 static l_iop_t cam_iosched_iops_iop;
198
199 static l_init_t cam_iosched_bw_init;
200 static l_tick_t cam_iosched_bw_tick;
201 static l_iop_t cam_iosched_bw_caniop;
202 static l_iop_t cam_iosched_bw_iop;
203
204 struct limswitch {
205 l_init_t *l_init;
206 l_tick_t *l_tick;
207 l_iop_t *l_iop;
208 l_iop_t *l_caniop;
209 l_iodone_t *l_iodone;
210 } limsw[] =
211 {
212 { /* none */
213 .l_init = NULL,
214 .l_tick = NULL,
215 .l_iop = NULL,
216 .l_iodone= NULL,
217 },
218 { /* queue_depth */
219 .l_init = NULL,
220 .l_tick = NULL,
221 .l_caniop = cam_iosched_qd_caniop,
222 .l_iop = cam_iosched_qd_iop,
223 .l_iodone= cam_iosched_qd_iodone,
224 },
225 { /* iops */
226 .l_init = cam_iosched_iops_init,
227 .l_tick = cam_iosched_iops_tick,
228 .l_caniop = cam_iosched_iops_caniop,
229 .l_iop = cam_iosched_iops_iop,
230 .l_iodone= NULL,
231 },
232 { /* bandwidth */
233 .l_init = cam_iosched_bw_init,
234 .l_tick = cam_iosched_bw_tick,
235 .l_caniop = cam_iosched_bw_caniop,
236 .l_iop = cam_iosched_bw_iop,
237 .l_iodone= NULL,
238 },
239 };
240
241 struct iop_stats {
242 /*
243 * sysctl state for this subnode.
244 */
245 struct sysctl_ctx_list sysctl_ctx;
246 struct sysctl_oid *sysctl_tree;
247
248 /*
249 * Information about the current rate limiters, if any
250 */
251 io_limiter limiter; /* How are I/Os being limited */
252 int min; /* Low range of limit */
253 int max; /* High range of limit */
254 int current; /* Current rate limiter */
255 int l_value1; /* per-limiter scratch value 1. */
256 int l_value2; /* per-limiter scratch value 2. */
257
258 /*
259 * Debug information about counts of I/Os that have gone through the
260 * scheduler.
261 */
262 int pending; /* I/Os pending in the hardware */
263 int queued; /* number currently in the queue */
264 int total; /* Total for all time -- wraps */
265 int in; /* number queued all time -- wraps */
266 int out; /* number completed all time -- wraps */
267 int errs; /* Number of I/Os completed with error -- wraps */
268
269 /*
270 * Statistics on different bits of the process.
271 */
272 /* Exp Moving Average, see alpha_bits for more details */
273 sbintime_t ema;
274 sbintime_t emvar;
275 sbintime_t sd; /* Last computed sd */
276
277 uint32_t state_flags;
278 #define IOP_RATE_LIMITED 1u
279
280 uint64_t latencies[LAT_BUCKETS];
281
282 struct cam_iosched_softc *softc;
283 };
284
285 typedef enum {
286 set_max = 0, /* current = max */
287 read_latency, /* Steer read latency by throttling writes */
288 cl_max /* Keep last */
289 } control_type;
290
291 static const char *cam_iosched_control_type_names[] =
292 { "set_max", "read_latency" };
293
294 struct control_loop {
295 /*
296 * sysctl state for this subnode.
297 */
298 struct sysctl_ctx_list sysctl_ctx;
299 struct sysctl_oid *sysctl_tree;
300
301 sbintime_t next_steer; /* Time of next steer */
302 sbintime_t steer_interval; /* How often do we steer? */
303 sbintime_t lolat;
304 sbintime_t hilat;
305 int alpha;
306 control_type type; /* What type of control? */
307 int last_count; /* Last I/O count */
308
309 struct cam_iosched_softc *softc;
310 };
311
312 #endif
313
314 struct cam_iosched_softc {
315 struct bio_queue_head bio_queue;
316 struct bio_queue_head trim_queue;
317 /* scheduler flags < 16, user flags >= 16 */
318 uint32_t flags;
319 int sort_io_queue;
320 int trim_goal; /* # of trims to queue before sending */
321 int trim_ticks; /* Max ticks to hold trims */
322 int last_trim_tick; /* Last 'tick' time ld a trim */
323 int queued_trims; /* Number of trims in the queue */
324 #ifdef CAM_IOSCHED_DYNAMIC
325 int read_bias; /* Read bias setting */
326 int current_read_bias; /* Current read bias state */
327 int total_ticks;
328 int load; /* EMA of 'load average' of disk / 2^16 */
329
330 struct bio_queue_head write_queue;
331 struct iop_stats read_stats, write_stats, trim_stats;
332 struct sysctl_ctx_list sysctl_ctx;
333 struct sysctl_oid *sysctl_tree;
334
335 int quanta; /* Number of quanta per second */
336 struct callout ticker; /* Callout for our quota system */
337 struct cam_periph *periph; /* cam periph associated with this device */
338 uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */
339 sbintime_t last_time; /* Last time we ticked */
340 struct control_loop cl;
341 sbintime_t max_lat; /* when != 0, if iop latency > max_lat, call max_lat_fcn */
342 cam_iosched_latfcn_t latfcn;
343 void *latarg;
344 #endif
345 };
346
347 #ifdef CAM_IOSCHED_DYNAMIC
348 /*
349 * helper functions to call the limsw functions.
350 */
351 static int
cam_iosched_limiter_init(struct iop_stats * ios)352 cam_iosched_limiter_init(struct iop_stats *ios)
353 {
354 int lim = ios->limiter;
355
356 /* maybe this should be a kassert */
357 if (lim < none || lim >= limiter_max)
358 return EINVAL;
359
360 if (limsw[lim].l_init)
361 return limsw[lim].l_init(ios);
362
363 return 0;
364 }
365
366 static int
cam_iosched_limiter_tick(struct iop_stats * ios)367 cam_iosched_limiter_tick(struct iop_stats *ios)
368 {
369 int lim = ios->limiter;
370
371 /* maybe this should be a kassert */
372 if (lim < none || lim >= limiter_max)
373 return EINVAL;
374
375 if (limsw[lim].l_tick)
376 return limsw[lim].l_tick(ios);
377
378 return 0;
379 }
380
381 static int
cam_iosched_limiter_iop(struct iop_stats * ios,struct bio * bp)382 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
383 {
384 int lim = ios->limiter;
385
386 /* maybe this should be a kassert */
387 if (lim < none || lim >= limiter_max)
388 return EINVAL;
389
390 if (limsw[lim].l_iop)
391 return limsw[lim].l_iop(ios, bp);
392
393 return 0;
394 }
395
396 static int
cam_iosched_limiter_caniop(struct iop_stats * ios,struct bio * bp)397 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
398 {
399 int lim = ios->limiter;
400
401 /* maybe this should be a kassert */
402 if (lim < none || lim >= limiter_max)
403 return EINVAL;
404
405 if (limsw[lim].l_caniop)
406 return limsw[lim].l_caniop(ios, bp);
407
408 return 0;
409 }
410
411 static int
cam_iosched_limiter_iodone(struct iop_stats * ios,struct bio * bp)412 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
413 {
414 int lim = ios->limiter;
415
416 /* maybe this should be a kassert */
417 if (lim < none || lim >= limiter_max)
418 return 0;
419
420 if (limsw[lim].l_iodone)
421 return limsw[lim].l_iodone(ios, bp);
422
423 return 0;
424 }
425
426 /*
427 * Functions to implement the different kinds of limiters
428 */
429
430 static int
cam_iosched_qd_iop(struct iop_stats * ios,struct bio * bp)431 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
432 {
433
434 if (ios->current <= 0 || ios->pending < ios->current)
435 return 0;
436
437 return EAGAIN;
438 }
439
440 static int
cam_iosched_qd_caniop(struct iop_stats * ios,struct bio * bp)441 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
442 {
443
444 if (ios->current <= 0 || ios->pending < ios->current)
445 return 0;
446
447 return EAGAIN;
448 }
449
450 static int
cam_iosched_qd_iodone(struct iop_stats * ios,struct bio * bp)451 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
452 {
453
454 if (ios->current <= 0 || ios->pending != ios->current)
455 return 0;
456
457 return 1;
458 }
459
460 static int
cam_iosched_iops_init(struct iop_stats * ios)461 cam_iosched_iops_init(struct iop_stats *ios)
462 {
463
464 ios->l_value1 = ios->current / ios->softc->quanta;
465 if (ios->l_value1 <= 0)
466 ios->l_value1 = 1;
467 ios->l_value2 = 0;
468
469 return 0;
470 }
471
472 static int
cam_iosched_iops_tick(struct iop_stats * ios)473 cam_iosched_iops_tick(struct iop_stats *ios)
474 {
475 int new_ios;
476
477 /*
478 * Allow at least one IO per tick until all
479 * the IOs for this interval have been spent.
480 */
481 new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
482 if (new_ios < 1 && ios->l_value2 < ios->current) {
483 new_ios = 1;
484 ios->l_value2++;
485 }
486
487 /*
488 * If this a new accounting interval, discard any "unspent" ios
489 * granted in the previous interval. Otherwise add the new ios to
490 * the previously granted ones that haven't been spent yet.
491 */
492 if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
493 ios->l_value1 = new_ios;
494 ios->l_value2 = 1;
495 } else {
496 ios->l_value1 += new_ios;
497 }
498
499 return 0;
500 }
501
502 static int
cam_iosched_iops_caniop(struct iop_stats * ios,struct bio * bp)503 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
504 {
505
506 /*
507 * So if we have any more IOPs left, allow it,
508 * otherwise wait. If current iops is 0, treat that
509 * as unlimited as a failsafe.
510 */
511 if (ios->current > 0 && ios->l_value1 <= 0)
512 return EAGAIN;
513 return 0;
514 }
515
516 static int
cam_iosched_iops_iop(struct iop_stats * ios,struct bio * bp)517 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
518 {
519 int rv;
520
521 rv = cam_iosched_limiter_caniop(ios, bp);
522 if (rv == 0)
523 ios->l_value1--;
524
525 return rv;
526 }
527
528 static int
cam_iosched_bw_init(struct iop_stats * ios)529 cam_iosched_bw_init(struct iop_stats *ios)
530 {
531
532 /* ios->current is in kB/s, so scale to bytes */
533 ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
534
535 return 0;
536 }
537
538 static int
cam_iosched_bw_tick(struct iop_stats * ios)539 cam_iosched_bw_tick(struct iop_stats *ios)
540 {
541 int bw;
542
543 /*
544 * If we're in the hole for available quota from
545 * the last time, then add the quantum for this.
546 * If we have any left over from last quantum,
547 * then too bad, that's lost. Also, ios->current
548 * is in kB/s, so scale.
549 *
550 * We also allow up to 4 quanta of credits to
551 * accumulate to deal with burstiness. 4 is extremely
552 * arbitrary.
553 */
554 bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
555 if (ios->l_value1 < bw * 4)
556 ios->l_value1 += bw;
557
558 return 0;
559 }
560
561 static int
cam_iosched_bw_caniop(struct iop_stats * ios,struct bio * bp)562 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
563 {
564 /*
565 * So if we have any more bw quota left, allow it,
566 * otherwise wait. Note, we'll go negative and that's
567 * OK. We'll just get a little less next quota.
568 *
569 * Note on going negative: that allows us to process
570 * requests in order better, since we won't allow
571 * shorter reads to get around the long one that we
572 * don't have the quota to do just yet. It also prevents
573 * starvation by being a little more permissive about
574 * what we let through this quantum (to prevent the
575 * starvation), at the cost of getting a little less
576 * next quantum.
577 *
578 * Also note that if the current limit is <= 0,
579 * we treat it as unlimited as a failsafe.
580 */
581 if (ios->current > 0 && ios->l_value1 <= 0)
582 return EAGAIN;
583
584 return 0;
585 }
586
587 static int
cam_iosched_bw_iop(struct iop_stats * ios,struct bio * bp)588 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
589 {
590 int rv;
591
592 rv = cam_iosched_limiter_caniop(ios, bp);
593 if (rv == 0)
594 ios->l_value1 -= bp->bio_length;
595
596 return rv;
597 }
598
599 static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
600
601 static void
cam_iosched_ticker(void * arg)602 cam_iosched_ticker(void *arg)
603 {
604 struct cam_iosched_softc *isc = arg;
605 sbintime_t now, delta;
606 int pending;
607
608 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
609
610 now = sbinuptime();
611 delta = now - isc->last_time;
612 isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */
613 isc->last_time = now;
614
615 cam_iosched_cl_maybe_steer(&isc->cl);
616
617 cam_iosched_limiter_tick(&isc->read_stats);
618 cam_iosched_limiter_tick(&isc->write_stats);
619 cam_iosched_limiter_tick(&isc->trim_stats);
620
621 cam_iosched_schedule(isc, isc->periph);
622
623 /*
624 * isc->load is an EMA of the pending I/Os at each tick. The number of
625 * pending I/Os is the sum of the I/Os queued to the hardware, and those
626 * in the software queue that could be queued to the hardware if there
627 * were slots.
628 *
629 * ios_stats.pending is a count of requests in the SIM right now for
630 * each of these types of I/O. So the total pending count is the sum of
631 * these I/Os and the sum of the queued I/Os still in the software queue
632 * for those operations that aren't being rate limited at the moment.
633 *
634 * The reason for the rate limiting bit is because those I/Os
635 * aren't part of the software queued load (since we could
636 * give them to hardware, but choose not to).
637 *
638 * Note: due to a bug in counting pending TRIM in the device, we
639 * don't include them in this count. We count each BIO_DELETE in
640 * the pending count, but the periph drivers collapse them down
641 * into one TRIM command. That one trim command gets the completion
642 * so the counts get off.
643 */
644 pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
645 pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
646 !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
647 !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
648 pending <<= 16;
649 pending /= isc->periph->path->device->ccbq.total_openings;
650
651 isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
652
653 isc->total_ticks++;
654 }
655
656 static void
cam_iosched_cl_init(struct control_loop * clp,struct cam_iosched_softc * isc)657 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
658 {
659
660 clp->next_steer = sbinuptime();
661 clp->softc = isc;
662 clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */
663 clp->lolat = 5 * SBT_1MS;
664 clp->hilat = 15 * SBT_1MS;
665 clp->alpha = 20; /* Alpha == gain. 20 = .2 */
666 clp->type = set_max;
667 }
668
669 static void
cam_iosched_cl_maybe_steer(struct control_loop * clp)670 cam_iosched_cl_maybe_steer(struct control_loop *clp)
671 {
672 struct cam_iosched_softc *isc;
673 sbintime_t now, lat;
674 int old;
675
676 isc = clp->softc;
677 now = isc->last_time;
678 if (now < clp->next_steer)
679 return;
680
681 clp->next_steer = now + clp->steer_interval;
682 switch (clp->type) {
683 case set_max:
684 if (isc->write_stats.current != isc->write_stats.max)
685 printf("Steering write from %d kBps to %d kBps\n",
686 isc->write_stats.current, isc->write_stats.max);
687 isc->read_stats.current = isc->read_stats.max;
688 isc->write_stats.current = isc->write_stats.max;
689 isc->trim_stats.current = isc->trim_stats.max;
690 break;
691 case read_latency:
692 old = isc->write_stats.current;
693 lat = isc->read_stats.ema;
694 /*
695 * Simple PLL-like engine. Since we're steering to a range for
696 * the SP (set point) that makes things a little more
697 * complicated. In addition, we're not directly controlling our
698 * PV (process variable), the read latency, but instead are
699 * manipulating the write bandwidth limit for our MV
700 * (manipulation variable), analysis of this code gets a bit
701 * messy. Also, the MV is a very noisy control surface for read
702 * latency since it is affected by many hidden processes inside
703 * the device which change how responsive read latency will be
704 * in reaction to changes in write bandwidth. Unlike the classic
705 * boiler control PLL. this may result in over-steering while
706 * the SSD takes its time to react to the new, lower load. This
707 * is why we use a relatively low alpha of between .1 and .25 to
708 * compensate for this effect. At .1, it takes ~22 steering
709 * intervals to back off by a factor of 10. At .2 it only takes
710 * ~10. At .25 it only takes ~8. However some preliminary data
711 * from the SSD drives suggests a reasponse time in 10's of
712 * seconds before latency drops regardless of the new write
713 * rate. Careful observation will be required to tune this
714 * effectively.
715 *
716 * Also, when there's no read traffic, we jack up the write
717 * limit too regardless of the last read latency. 10 is
718 * somewhat arbitrary.
719 */
720 if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
721 isc->write_stats.current = isc->write_stats.current *
722 (100 + clp->alpha) / 100; /* Scale up */
723 else if (lat > clp->hilat)
724 isc->write_stats.current = isc->write_stats.current *
725 (100 - clp->alpha) / 100; /* Scale down */
726 clp->last_count = isc->read_stats.total;
727
728 /*
729 * Even if we don't steer, per se, enforce the min/max limits as
730 * those may have changed.
731 */
732 if (isc->write_stats.current < isc->write_stats.min)
733 isc->write_stats.current = isc->write_stats.min;
734 if (isc->write_stats.current > isc->write_stats.max)
735 isc->write_stats.current = isc->write_stats.max;
736 if (old != isc->write_stats.current && iosched_debug)
737 printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
738 old, isc->write_stats.current,
739 (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
740 break;
741 case cl_max:
742 break;
743 }
744 }
745 #endif
746
747 /*
748 * Trim or similar currently pending completion. Should only be set for
749 * those drivers wishing only one Trim active at a time.
750 */
751 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0)
752 /* Callout active, and needs to be torn down */
753 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
754
755 /* Periph drivers set these flags to indicate work */
756 #define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16)
757
758 #ifdef CAM_IOSCHED_DYNAMIC
759 static void
760 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
761 sbintime_t sim_latency, int cmd, size_t size);
762 #endif
763
764 static inline bool
cam_iosched_has_flagged_work(struct cam_iosched_softc * isc)765 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
766 {
767 return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
768 }
769
770 static inline bool
cam_iosched_has_io(struct cam_iosched_softc * isc)771 cam_iosched_has_io(struct cam_iosched_softc *isc)
772 {
773 #ifdef CAM_IOSCHED_DYNAMIC
774 if (do_dynamic_iosched) {
775 struct bio *rbp = bioq_first(&isc->bio_queue);
776 struct bio *wbp = bioq_first(&isc->write_queue);
777 bool can_write = wbp != NULL &&
778 cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
779 bool can_read = rbp != NULL &&
780 cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
781 if (iosched_debug > 2) {
782 printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
783 printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
784 printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
785 }
786 return can_read || can_write;
787 }
788 #endif
789 return bioq_first(&isc->bio_queue) != NULL;
790 }
791
792 static inline bool
cam_iosched_has_more_trim(struct cam_iosched_softc * isc)793 cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
794 {
795 struct bio *bp;
796
797 bp = bioq_first(&isc->trim_queue);
798 #ifdef CAM_IOSCHED_DYNAMIC
799 if (do_dynamic_iosched) {
800 /*
801 * If we're limiting trims, then defer action on trims
802 * for a bit.
803 */
804 if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0)
805 return false;
806 }
807 #endif
808
809 /*
810 * If we've set a trim_goal, then if we exceed that allow trims
811 * to be passed back to the driver. If we've also set a tick timeout
812 * allow trims back to the driver. Otherwise, don't allow trims yet.
813 */
814 if (isc->trim_goal > 0) {
815 if (isc->queued_trims >= isc->trim_goal)
816 return true;
817 if (isc->queued_trims > 0 &&
818 isc->trim_ticks > 0 &&
819 ticks - isc->last_trim_tick > isc->trim_ticks)
820 return true;
821 return false;
822 }
823
824 /* NB: Should perhaps have a max trim active independent of I/O limiters */
825 return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL;
826 }
827
828 #define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \
829 (isc)->sort_io_queue : cam_sort_io_queues)
830
831 static inline bool
cam_iosched_has_work(struct cam_iosched_softc * isc)832 cam_iosched_has_work(struct cam_iosched_softc *isc)
833 {
834 #ifdef CAM_IOSCHED_DYNAMIC
835 if (iosched_debug > 2)
836 printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
837 cam_iosched_has_more_trim(isc),
838 cam_iosched_has_flagged_work(isc));
839 #endif
840
841 return cam_iosched_has_io(isc) ||
842 cam_iosched_has_more_trim(isc) ||
843 cam_iosched_has_flagged_work(isc);
844 }
845
846 #ifdef CAM_IOSCHED_DYNAMIC
847 static void
cam_iosched_iop_stats_init(struct cam_iosched_softc * isc,struct iop_stats * ios)848 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
849 {
850
851 ios->limiter = none;
852 ios->in = 0;
853 ios->max = ios->current = 300000;
854 ios->min = 1;
855 ios->out = 0;
856 ios->errs = 0;
857 ios->pending = 0;
858 ios->queued = 0;
859 ios->total = 0;
860 ios->ema = 0;
861 ios->emvar = 0;
862 ios->softc = isc;
863 cam_iosched_limiter_init(ios);
864 }
865
866 static int
cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)867 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
868 {
869 char buf[16];
870 struct iop_stats *ios;
871 struct cam_iosched_softc *isc;
872 int value, i, error;
873 const char *p;
874
875 ios = arg1;
876 isc = ios->softc;
877 value = ios->limiter;
878 if (value < none || value >= limiter_max)
879 p = "UNKNOWN";
880 else
881 p = cam_iosched_limiter_names[value];
882
883 strlcpy(buf, p, sizeof(buf));
884 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
885 if (error != 0 || req->newptr == NULL)
886 return error;
887
888 cam_periph_lock(isc->periph);
889
890 for (i = none; i < limiter_max; i++) {
891 if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
892 continue;
893 ios->limiter = i;
894 error = cam_iosched_limiter_init(ios);
895 if (error != 0) {
896 ios->limiter = value;
897 cam_periph_unlock(isc->periph);
898 return error;
899 }
900 /* Note: disk load averate requires ticker to be always running */
901 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
902 isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
903
904 cam_periph_unlock(isc->periph);
905 return 0;
906 }
907
908 cam_periph_unlock(isc->periph);
909 return EINVAL;
910 }
911
912 static int
cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)913 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
914 {
915 char buf[16];
916 struct control_loop *clp;
917 struct cam_iosched_softc *isc;
918 int value, i, error;
919 const char *p;
920
921 clp = arg1;
922 isc = clp->softc;
923 value = clp->type;
924 if (value < none || value >= cl_max)
925 p = "UNKNOWN";
926 else
927 p = cam_iosched_control_type_names[value];
928
929 strlcpy(buf, p, sizeof(buf));
930 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
931 if (error != 0 || req->newptr == NULL)
932 return error;
933
934 for (i = set_max; i < cl_max; i++) {
935 if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
936 continue;
937 cam_periph_lock(isc->periph);
938 clp->type = i;
939 cam_periph_unlock(isc->periph);
940 return 0;
941 }
942
943 return EINVAL;
944 }
945
946 static int
cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)947 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
948 {
949 char buf[16];
950 sbintime_t value;
951 int error;
952 uint64_t us;
953
954 value = *(sbintime_t *)arg1;
955 us = (uint64_t)value / SBT_1US;
956 snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
957 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
958 if (error != 0 || req->newptr == NULL)
959 return error;
960 us = strtoul(buf, NULL, 10);
961 if (us == 0)
962 return EINVAL;
963 *(sbintime_t *)arg1 = us * SBT_1US;
964 return 0;
965 }
966
967 static int
cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)968 cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
969 {
970 int i, error;
971 struct sbuf sb;
972 uint64_t *latencies;
973
974 latencies = arg1;
975 sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
976
977 for (i = 0; i < LAT_BUCKETS - 1; i++)
978 sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
979 sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
980 error = sbuf_finish(&sb);
981 sbuf_delete(&sb);
982
983 return (error);
984 }
985
986 static int
cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)987 cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
988 {
989 int *quanta;
990 int error, value;
991
992 quanta = (unsigned *)arg1;
993 value = *quanta;
994
995 error = sysctl_handle_int(oidp, (int *)&value, 0, req);
996 if ((error != 0) || (req->newptr == NULL))
997 return (error);
998
999 if (value < 1 || value > hz)
1000 return (EINVAL);
1001
1002 *quanta = value;
1003
1004 return (0);
1005 }
1006
1007 static void
cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc * isc,struct iop_stats * ios,char * name)1008 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
1009 {
1010 struct sysctl_oid_list *n;
1011 struct sysctl_ctx_list *ctx;
1012
1013 ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1014 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
1015 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name);
1016 n = SYSCTL_CHILDREN(ios->sysctl_tree);
1017 ctx = &ios->sysctl_ctx;
1018
1019 SYSCTL_ADD_UQUAD(ctx, n,
1020 OID_AUTO, "ema", CTLFLAG_RD,
1021 &ios->ema,
1022 "Fast Exponentially Weighted Moving Average");
1023 SYSCTL_ADD_UQUAD(ctx, n,
1024 OID_AUTO, "emvar", CTLFLAG_RD,
1025 &ios->emvar,
1026 "Fast Exponentially Weighted Moving Variance");
1027
1028 SYSCTL_ADD_INT(ctx, n,
1029 OID_AUTO, "pending", CTLFLAG_RD,
1030 &ios->pending, 0,
1031 "Instantaneous # of pending transactions");
1032 SYSCTL_ADD_INT(ctx, n,
1033 OID_AUTO, "count", CTLFLAG_RD,
1034 &ios->total, 0,
1035 "# of transactions submitted to hardware");
1036 SYSCTL_ADD_INT(ctx, n,
1037 OID_AUTO, "queued", CTLFLAG_RD,
1038 &ios->queued, 0,
1039 "# of transactions in the queue");
1040 SYSCTL_ADD_INT(ctx, n,
1041 OID_AUTO, "in", CTLFLAG_RD,
1042 &ios->in, 0,
1043 "# of transactions queued to driver");
1044 SYSCTL_ADD_INT(ctx, n,
1045 OID_AUTO, "out", CTLFLAG_RD,
1046 &ios->out, 0,
1047 "# of transactions completed (including with error)");
1048 SYSCTL_ADD_INT(ctx, n,
1049 OID_AUTO, "errs", CTLFLAG_RD,
1050 &ios->errs, 0,
1051 "# of transactions completed with an error");
1052
1053 SYSCTL_ADD_PROC(ctx, n,
1054 OID_AUTO, "limiter",
1055 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1056 ios, 0, cam_iosched_limiter_sysctl, "A",
1057 "Current limiting type.");
1058 SYSCTL_ADD_INT(ctx, n,
1059 OID_AUTO, "min", CTLFLAG_RW,
1060 &ios->min, 0,
1061 "min resource");
1062 SYSCTL_ADD_INT(ctx, n,
1063 OID_AUTO, "max", CTLFLAG_RW,
1064 &ios->max, 0,
1065 "max resource");
1066 SYSCTL_ADD_INT(ctx, n,
1067 OID_AUTO, "current", CTLFLAG_RW,
1068 &ios->current, 0,
1069 "current resource");
1070
1071 SYSCTL_ADD_PROC(ctx, n,
1072 OID_AUTO, "latencies",
1073 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1074 &ios->latencies, 0,
1075 cam_iosched_sysctl_latencies, "A",
1076 "Array of power of 2 latency from 1ms to 1.024s");
1077 }
1078
1079 static void
cam_iosched_iop_stats_fini(struct iop_stats * ios)1080 cam_iosched_iop_stats_fini(struct iop_stats *ios)
1081 {
1082 if (ios->sysctl_tree)
1083 if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
1084 printf("can't remove iosched sysctl stats context\n");
1085 }
1086
1087 static void
cam_iosched_cl_sysctl_init(struct cam_iosched_softc * isc)1088 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
1089 {
1090 struct sysctl_oid_list *n;
1091 struct sysctl_ctx_list *ctx;
1092 struct control_loop *clp;
1093
1094 clp = &isc->cl;
1095 clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1096 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
1097 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info");
1098 n = SYSCTL_CHILDREN(clp->sysctl_tree);
1099 ctx = &clp->sysctl_ctx;
1100
1101 SYSCTL_ADD_PROC(ctx, n,
1102 OID_AUTO, "type",
1103 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1104 clp, 0, cam_iosched_control_type_sysctl, "A",
1105 "Control loop algorithm");
1106 SYSCTL_ADD_PROC(ctx, n,
1107 OID_AUTO, "steer_interval",
1108 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1109 &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
1110 "How often to steer (in us)");
1111 SYSCTL_ADD_PROC(ctx, n,
1112 OID_AUTO, "lolat",
1113 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1114 &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
1115 "Low water mark for Latency (in us)");
1116 SYSCTL_ADD_PROC(ctx, n,
1117 OID_AUTO, "hilat",
1118 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1119 &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
1120 "Hi water mark for Latency (in us)");
1121 SYSCTL_ADD_INT(ctx, n,
1122 OID_AUTO, "alpha", CTLFLAG_RW,
1123 &clp->alpha, 0,
1124 "Alpha for PLL (x100) aka gain");
1125 }
1126
1127 static void
cam_iosched_cl_sysctl_fini(struct control_loop * clp)1128 cam_iosched_cl_sysctl_fini(struct control_loop *clp)
1129 {
1130 if (clp->sysctl_tree)
1131 if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
1132 printf("can't remove iosched sysctl control loop context\n");
1133 }
1134 #endif
1135
1136 /*
1137 * Allocate the iosched structure. This also insulates callers from knowing
1138 * sizeof struct cam_iosched_softc.
1139 */
1140 int
cam_iosched_init(struct cam_iosched_softc ** iscp,struct cam_periph * periph)1141 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
1142 {
1143
1144 *iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
1145 if (*iscp == NULL)
1146 return ENOMEM;
1147 #ifdef CAM_IOSCHED_DYNAMIC
1148 if (iosched_debug)
1149 printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
1150 #endif
1151 (*iscp)->sort_io_queue = -1;
1152 bioq_init(&(*iscp)->bio_queue);
1153 bioq_init(&(*iscp)->trim_queue);
1154 #ifdef CAM_IOSCHED_DYNAMIC
1155 if (do_dynamic_iosched) {
1156 bioq_init(&(*iscp)->write_queue);
1157 (*iscp)->read_bias = default_read_bias;
1158 (*iscp)->current_read_bias = 0;
1159 (*iscp)->quanta = min(hz, 200);
1160 cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
1161 cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
1162 cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
1163 (*iscp)->trim_stats.max = 1; /* Trims are special: one at a time for now */
1164 (*iscp)->last_time = sbinuptime();
1165 callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
1166 (*iscp)->periph = periph;
1167 cam_iosched_cl_init(&(*iscp)->cl, *iscp);
1168 callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
1169 (*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1170 }
1171 #endif
1172
1173 return 0;
1174 }
1175
1176 /*
1177 * Reclaim all used resources. This assumes that other folks have
1178 * drained the requests in the hardware. Maybe an unwise assumption.
1179 */
1180 void
cam_iosched_fini(struct cam_iosched_softc * isc)1181 cam_iosched_fini(struct cam_iosched_softc *isc)
1182 {
1183 if (isc) {
1184 cam_iosched_flush(isc, NULL, ENXIO);
1185 #ifdef CAM_IOSCHED_DYNAMIC
1186 cam_iosched_iop_stats_fini(&isc->read_stats);
1187 cam_iosched_iop_stats_fini(&isc->write_stats);
1188 cam_iosched_iop_stats_fini(&isc->trim_stats);
1189 cam_iosched_cl_sysctl_fini(&isc->cl);
1190 if (isc->sysctl_tree)
1191 if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1192 printf("can't remove iosched sysctl stats context\n");
1193 if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
1194 callout_drain(&isc->ticker);
1195 isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1196 }
1197 #endif
1198 free(isc, M_CAMSCHED);
1199 }
1200 }
1201
1202 /*
1203 * After we're sure we're attaching a device, go ahead and add
1204 * hooks for any sysctl we may wish to honor.
1205 */
cam_iosched_sysctl_init(struct cam_iosched_softc * isc,struct sysctl_ctx_list * ctx,struct sysctl_oid * node)1206 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1207 struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1208 {
1209 struct sysctl_oid_list *n;
1210
1211 n = SYSCTL_CHILDREN(node);
1212 SYSCTL_ADD_INT(ctx, n,
1213 OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1214 &isc->sort_io_queue, 0,
1215 "Sort IO queue to try and optimise disk access patterns");
1216 SYSCTL_ADD_INT(ctx, n,
1217 OID_AUTO, "trim_goal", CTLFLAG_RW,
1218 &isc->trim_goal, 0,
1219 "Number of trims to try to accumulate before sending to hardware");
1220 SYSCTL_ADD_INT(ctx, n,
1221 OID_AUTO, "trim_ticks", CTLFLAG_RW,
1222 &isc->trim_goal, 0,
1223 "IO Schedul qaunta to hold back trims for when accumulating");
1224
1225 #ifdef CAM_IOSCHED_DYNAMIC
1226 if (!do_dynamic_iosched)
1227 return;
1228
1229 isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1230 SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1231 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics");
1232 n = SYSCTL_CHILDREN(isc->sysctl_tree);
1233 ctx = &isc->sysctl_ctx;
1234
1235 cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1236 cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1237 cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1238 cam_iosched_cl_sysctl_init(isc);
1239
1240 SYSCTL_ADD_INT(ctx, n,
1241 OID_AUTO, "read_bias", CTLFLAG_RW,
1242 &isc->read_bias, default_read_bias,
1243 "How biased towards read should we be independent of limits");
1244
1245 SYSCTL_ADD_PROC(ctx, n,
1246 OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1247 &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
1248 "How many quanta per second do we slice the I/O up into");
1249
1250 SYSCTL_ADD_INT(ctx, n,
1251 OID_AUTO, "total_ticks", CTLFLAG_RD,
1252 &isc->total_ticks, 0,
1253 "Total number of ticks we've done");
1254
1255 SYSCTL_ADD_INT(ctx, n,
1256 OID_AUTO, "load", CTLFLAG_RD,
1257 &isc->load, 0,
1258 "scaled load average / 100");
1259
1260 SYSCTL_ADD_U64(ctx, n,
1261 OID_AUTO, "latency_trigger", CTLFLAG_RW,
1262 &isc->max_lat, 0,
1263 "Latency treshold to trigger callbacks");
1264 #endif
1265 }
1266
1267 void
cam_iosched_set_latfcn(struct cam_iosched_softc * isc,cam_iosched_latfcn_t fnp,void * argp)1268 cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
1269 cam_iosched_latfcn_t fnp, void *argp)
1270 {
1271 #ifdef CAM_IOSCHED_DYNAMIC
1272 isc->latfcn = fnp;
1273 isc->latarg = argp;
1274 #endif
1275 }
1276
1277 /*
1278 * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
1279 * that will be queued up before iosched will "release" the trims to the client
1280 * driver to wo with what they will (usually combine as many as possible). If we
1281 * don't get this many, after trim_ticks we'll submit the I/O anyway with
1282 * whatever we have. We do need an I/O of some kind of to clock the deferred
1283 * trims out to disk. Since we will eventually get a write for the super block
1284 * or something before we shutdown, the trims will complete. To be safe, when a
1285 * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
1286 * enough in the past so we'll present the BIO_DELETEs to the client driver.
1287 * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
1288 * and then a BIO_DELETE is sent down. No know client does this, and there's
1289 * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
1290 * but no client depends on the ordering being honored.
1291 *
1292 * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
1293 * flushing on shutdown. I think there's bufs that would be dependent on the BIO
1294 * finishing to write out at least metadata, so we'll be fine. To be safe, keep
1295 * the number of ticks low (less than maybe 10s) to avoid shutdown races.
1296 */
1297
1298 void
cam_iosched_set_trim_goal(struct cam_iosched_softc * isc,int goal)1299 cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
1300 {
1301
1302 isc->trim_goal = goal;
1303 }
1304
1305 void
cam_iosched_set_trim_ticks(struct cam_iosched_softc * isc,int trim_ticks)1306 cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
1307 {
1308
1309 isc->trim_ticks = trim_ticks;
1310 }
1311
1312 /*
1313 * Flush outstanding I/O. Consumers of this library don't know all the
1314 * queues we may keep, so this allows all I/O to be flushed in one
1315 * convenient call.
1316 */
1317 void
cam_iosched_flush(struct cam_iosched_softc * isc,struct devstat * stp,int err)1318 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1319 {
1320 bioq_flush(&isc->bio_queue, stp, err);
1321 bioq_flush(&isc->trim_queue, stp, err);
1322 #ifdef CAM_IOSCHED_DYNAMIC
1323 if (do_dynamic_iosched)
1324 bioq_flush(&isc->write_queue, stp, err);
1325 #endif
1326 }
1327
1328 #ifdef CAM_IOSCHED_DYNAMIC
1329 static struct bio *
cam_iosched_get_write(struct cam_iosched_softc * isc)1330 cam_iosched_get_write(struct cam_iosched_softc *isc)
1331 {
1332 struct bio *bp;
1333
1334 /*
1335 * We control the write rate by controlling how many requests we send
1336 * down to the drive at any one time. Fewer requests limits the
1337 * effects of both starvation when the requests take a while and write
1338 * amplification when each request is causing more than one write to
1339 * the NAND media. Limiting the queue depth like this will also limit
1340 * the write throughput and give and reads that want to compete to
1341 * compete unfairly.
1342 */
1343 bp = bioq_first(&isc->write_queue);
1344 if (bp == NULL) {
1345 if (iosched_debug > 3)
1346 printf("No writes present in write_queue\n");
1347 return NULL;
1348 }
1349
1350 /*
1351 * If pending read, prefer that based on current read bias
1352 * setting.
1353 */
1354 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1355 if (iosched_debug)
1356 printf(
1357 "Reads present and current_read_bias is %d queued "
1358 "writes %d queued reads %d\n",
1359 isc->current_read_bias, isc->write_stats.queued,
1360 isc->read_stats.queued);
1361 isc->current_read_bias--;
1362 /* We're not limiting writes, per se, just doing reads first */
1363 return NULL;
1364 }
1365
1366 /*
1367 * See if our current limiter allows this I/O.
1368 */
1369 if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1370 if (iosched_debug)
1371 printf("Can't write because limiter says no.\n");
1372 isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1373 return NULL;
1374 }
1375
1376 /*
1377 * Let's do this: We've passed all the gates and we're a go
1378 * to schedule the I/O in the SIM.
1379 */
1380 isc->current_read_bias = isc->read_bias;
1381 bioq_remove(&isc->write_queue, bp);
1382 if (bp->bio_cmd == BIO_WRITE) {
1383 isc->write_stats.queued--;
1384 isc->write_stats.total++;
1385 isc->write_stats.pending++;
1386 }
1387 if (iosched_debug > 9)
1388 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1389 isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1390 return bp;
1391 }
1392 #endif
1393
1394 /*
1395 * Put back a trim that you weren't able to actually schedule this time.
1396 */
1397 void
cam_iosched_put_back_trim(struct cam_iosched_softc * isc,struct bio * bp)1398 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1399 {
1400 bioq_insert_head(&isc->trim_queue, bp);
1401 if (isc->queued_trims == 0)
1402 isc->last_trim_tick = ticks;
1403 isc->queued_trims++;
1404 #ifdef CAM_IOSCHED_DYNAMIC
1405 isc->trim_stats.queued++;
1406 isc->trim_stats.total--; /* since we put it back, don't double count */
1407 isc->trim_stats.pending--;
1408 #endif
1409 }
1410
1411 /*
1412 * gets the next trim from the trim queue.
1413 *
1414 * Assumes we're called with the periph lock held. It removes this
1415 * trim from the queue and the device must explicitly reinsert it
1416 * should the need arise.
1417 */
1418 struct bio *
cam_iosched_next_trim(struct cam_iosched_softc * isc)1419 cam_iosched_next_trim(struct cam_iosched_softc *isc)
1420 {
1421 struct bio *bp;
1422
1423 bp = bioq_first(&isc->trim_queue);
1424 if (bp == NULL)
1425 return NULL;
1426 bioq_remove(&isc->trim_queue, bp);
1427 isc->queued_trims--;
1428 isc->last_trim_tick = ticks; /* Reset the tick timer when we take trims */
1429 #ifdef CAM_IOSCHED_DYNAMIC
1430 isc->trim_stats.queued--;
1431 isc->trim_stats.total++;
1432 isc->trim_stats.pending++;
1433 #endif
1434 return bp;
1435 }
1436
1437 /*
1438 * gets an available trim from the trim queue, if there's no trim
1439 * already pending. It removes this trim from the queue and the device
1440 * must explicitly reinsert it should the need arise.
1441 *
1442 * Assumes we're called with the periph lock held.
1443 */
1444 struct bio *
cam_iosched_get_trim(struct cam_iosched_softc * isc)1445 cam_iosched_get_trim(struct cam_iosched_softc *isc)
1446 {
1447 #ifdef CAM_IOSCHED_DYNAMIC
1448 struct bio *bp;
1449 #endif
1450
1451 if (!cam_iosched_has_more_trim(isc))
1452 return NULL;
1453 #ifdef CAM_IOSCHED_DYNAMIC
1454 bp = bioq_first(&isc->trim_queue);
1455 if (bp == NULL)
1456 return NULL;
1457
1458 /*
1459 * If pending read, prefer that based on current read bias setting. The
1460 * read bias is shared for both writes and TRIMs, but on TRIMs the bias
1461 * is for a combined TRIM not a single TRIM request that's come in.
1462 */
1463 if (do_dynamic_iosched) {
1464 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1465 if (iosched_debug)
1466 printf("Reads present and current_read_bias is %d"
1467 " queued trims %d queued reads %d\n",
1468 isc->current_read_bias, isc->trim_stats.queued,
1469 isc->read_stats.queued);
1470 isc->current_read_bias--;
1471 /* We're not limiting TRIMS, per se, just doing reads first */
1472 return NULL;
1473 }
1474 /*
1475 * We're going to do a trim, so reset the bias.
1476 */
1477 isc->current_read_bias = isc->read_bias;
1478 }
1479
1480 /*
1481 * See if our current limiter allows this I/O. Because we only call this
1482 * here, and not in next_trim, the 'bandwidth' limits for trims won't
1483 * work, while the iops or max queued limits will work. It's tricky
1484 * because we want the limits to be from the perspective of the
1485 * "commands sent to the device." To make iops work, we need to check
1486 * only here (since we want all the ops we combine to count as one). To
1487 * make bw limits work, we'd need to check in next_trim, but that would
1488 * have the effect of limiting the iops as seen from the upper layers.
1489 */
1490 if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) {
1491 if (iosched_debug)
1492 printf("Can't trim because limiter says no.\n");
1493 isc->trim_stats.state_flags |= IOP_RATE_LIMITED;
1494 return NULL;
1495 }
1496 isc->current_read_bias = isc->read_bias;
1497 isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED;
1498 /* cam_iosched_next_trim below keeps proper book */
1499 #endif
1500 return cam_iosched_next_trim(isc);
1501 }
1502
1503
1504 #ifdef CAM_IOSCHED_DYNAMIC
1505 static struct bio *
bio_next(struct bio * bp)1506 bio_next(struct bio *bp)
1507 {
1508 bp = TAILQ_NEXT(bp, bio_queue);
1509 /*
1510 * After the first commands, the ordered bit terminates
1511 * our search because BIO_ORDERED acts like a barrier.
1512 */
1513 if (bp == NULL || bp->bio_flags & BIO_ORDERED)
1514 return NULL;
1515 return bp;
1516 }
1517
1518 static bool
cam_iosched_rate_limited(struct iop_stats * ios)1519 cam_iosched_rate_limited(struct iop_stats *ios)
1520 {
1521 return ios->state_flags & IOP_RATE_LIMITED;
1522 }
1523 #endif
1524
1525 /*
1526 * Determine what the next bit of work to do is for the periph. The
1527 * default implementation looks to see if we have trims to do, but no
1528 * trims outstanding. If so, we do that. Otherwise we see if we have
1529 * other work. If we do, then we do that. Otherwise why were we called?
1530 */
1531 struct bio *
cam_iosched_next_bio(struct cam_iosched_softc * isc)1532 cam_iosched_next_bio(struct cam_iosched_softc *isc)
1533 {
1534 struct bio *bp;
1535
1536 /*
1537 * See if we have a trim that can be scheduled. We can only send one
1538 * at a time down, so this takes that into account.
1539 *
1540 * XXX newer TRIM commands are queueable. Revisit this when we
1541 * implement them.
1542 */
1543 if ((bp = cam_iosched_get_trim(isc)) != NULL)
1544 return bp;
1545
1546 #ifdef CAM_IOSCHED_DYNAMIC
1547 /*
1548 * See if we have any pending writes, room in the queue for them,
1549 * and no pending reads (unless we've scheduled too many).
1550 * if so, those are next.
1551 */
1552 if (do_dynamic_iosched) {
1553 if ((bp = cam_iosched_get_write(isc)) != NULL)
1554 return bp;
1555 }
1556 #endif
1557 /*
1558 * next, see if there's other, normal I/O waiting. If so return that.
1559 */
1560 #ifdef CAM_IOSCHED_DYNAMIC
1561 if (do_dynamic_iosched) {
1562 for (bp = bioq_first(&isc->bio_queue); bp != NULL;
1563 bp = bio_next(bp)) {
1564 /*
1565 * For the dynamic scheduler with a read bias, bio_queue
1566 * is only for reads. However, without one, all
1567 * operations are queued. Enforce limits here for any
1568 * operation we find here.
1569 */
1570 if (bp->bio_cmd == BIO_READ) {
1571 if (cam_iosched_rate_limited(&isc->read_stats) ||
1572 cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
1573 isc->read_stats.state_flags |= IOP_RATE_LIMITED;
1574 continue;
1575 }
1576 isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
1577 }
1578 /*
1579 * There can only be write requests on the queue when
1580 * the read bias is 0, but we need to process them
1581 * here. We do not assert for read bias == 0, however,
1582 * since it is dynamic and we can have WRITE operations
1583 * in the queue after we transition from 0 to non-zero.
1584 */
1585 if (bp->bio_cmd == BIO_WRITE) {
1586 if (cam_iosched_rate_limited(&isc->write_stats) ||
1587 cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1588 isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1589 continue;
1590 }
1591 isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1592 }
1593 /*
1594 * here we know we have a bp that's != NULL, that's not rate limited
1595 * and can be the next I/O.
1596 */
1597 break;
1598 }
1599 } else
1600 #endif
1601 bp = bioq_first(&isc->bio_queue);
1602
1603 if (bp == NULL)
1604 return (NULL);
1605 bioq_remove(&isc->bio_queue, bp);
1606 #ifdef CAM_IOSCHED_DYNAMIC
1607 if (do_dynamic_iosched) {
1608 if (bp->bio_cmd == BIO_READ) {
1609 isc->read_stats.queued--;
1610 isc->read_stats.total++;
1611 isc->read_stats.pending++;
1612 } else if (bp->bio_cmd == BIO_WRITE) {
1613 isc->write_stats.queued--;
1614 isc->write_stats.total++;
1615 isc->write_stats.pending++;
1616 }
1617 }
1618 if (iosched_debug > 9)
1619 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1620 #endif
1621 return bp;
1622 }
1623
1624 /*
1625 * Driver has been given some work to do by the block layer. Tell the
1626 * scheduler about it and have it queue the work up. The scheduler module
1627 * will then return the currently most useful bit of work later, possibly
1628 * deferring work for various reasons.
1629 */
1630 void
cam_iosched_queue_work(struct cam_iosched_softc * isc,struct bio * bp)1631 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1632 {
1633
1634 /*
1635 * A BIO_SPEEDUP from the upper layers means that they have a block
1636 * shortage. At the present, this is only sent when we're trying to
1637 * allocate blocks, but have a shortage before giving up. bio_length is
1638 * the size of their shortage. We will complete just enough BIO_DELETEs
1639 * in the queue to satisfy the need. If bio_length is 0, we'll complete
1640 * them all. This allows the scheduler to delay BIO_DELETEs to improve
1641 * read/write performance without worrying about the upper layers. When
1642 * it's possibly a problem, we respond by pretending the BIO_DELETEs
1643 * just worked. We can't do anything about the BIO_DELETEs in the
1644 * hardware, though. We have to wait for them to complete.
1645 */
1646 if (bp->bio_cmd == BIO_SPEEDUP) {
1647 off_t len;
1648 struct bio *nbp;
1649
1650 len = 0;
1651 while (bioq_first(&isc->trim_queue) &&
1652 (bp->bio_length == 0 || len < bp->bio_length)) {
1653 nbp = bioq_takefirst(&isc->trim_queue);
1654 len += nbp->bio_length;
1655 nbp->bio_error = 0;
1656 biodone(nbp);
1657 }
1658 if (bp->bio_length > 0) {
1659 if (bp->bio_length > len)
1660 bp->bio_resid = bp->bio_length - len;
1661 else
1662 bp->bio_resid = 0;
1663 }
1664 bp->bio_error = 0;
1665 biodone(bp);
1666 return;
1667 }
1668
1669 /*
1670 * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
1671 * set the last tick time to one less than the current ticks minus the
1672 * delay to force the BIO_DELETEs to be presented to the client driver.
1673 */
1674 if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
1675 isc->last_trim_tick = ticks - isc->trim_ticks - 1;
1676
1677 /*
1678 * Put all trims on the trim queue. Otherwise put the work on the bio
1679 * queue.
1680 */
1681 if (bp->bio_cmd == BIO_DELETE) {
1682 bioq_insert_tail(&isc->trim_queue, bp);
1683 if (isc->queued_trims == 0)
1684 isc->last_trim_tick = ticks;
1685 isc->queued_trims++;
1686 #ifdef CAM_IOSCHED_DYNAMIC
1687 isc->trim_stats.in++;
1688 isc->trim_stats.queued++;
1689 #endif
1690 }
1691 #ifdef CAM_IOSCHED_DYNAMIC
1692 else if (do_dynamic_iosched && isc->read_bias != 0 &&
1693 (bp->bio_cmd != BIO_READ)) {
1694 if (cam_iosched_sort_queue(isc))
1695 bioq_disksort(&isc->write_queue, bp);
1696 else
1697 bioq_insert_tail(&isc->write_queue, bp);
1698 if (iosched_debug > 9)
1699 printf("Qw : %p %#x\n", bp, bp->bio_cmd);
1700 if (bp->bio_cmd == BIO_WRITE) {
1701 isc->write_stats.in++;
1702 isc->write_stats.queued++;
1703 }
1704 }
1705 #endif
1706 else {
1707 if (cam_iosched_sort_queue(isc))
1708 bioq_disksort(&isc->bio_queue, bp);
1709 else
1710 bioq_insert_tail(&isc->bio_queue, bp);
1711 #ifdef CAM_IOSCHED_DYNAMIC
1712 if (iosched_debug > 9)
1713 printf("Qr : %p %#x\n", bp, bp->bio_cmd);
1714 if (bp->bio_cmd == BIO_READ) {
1715 isc->read_stats.in++;
1716 isc->read_stats.queued++;
1717 } else if (bp->bio_cmd == BIO_WRITE) {
1718 isc->write_stats.in++;
1719 isc->write_stats.queued++;
1720 }
1721 #endif
1722 }
1723 }
1724
1725 /*
1726 * If we have work, get it scheduled. Called with the periph lock held.
1727 */
1728 void
cam_iosched_schedule(struct cam_iosched_softc * isc,struct cam_periph * periph)1729 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1730 {
1731
1732 if (cam_iosched_has_work(isc))
1733 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1734 }
1735
1736 /*
1737 * Complete a trim request. Mark that we no longer have one in flight.
1738 */
1739 void
cam_iosched_trim_done(struct cam_iosched_softc * isc)1740 cam_iosched_trim_done(struct cam_iosched_softc *isc)
1741 {
1742
1743 isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1744 }
1745
1746 /*
1747 * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1748 * might use notes in the ccb for statistics.
1749 */
1750 int
cam_iosched_bio_complete(struct cam_iosched_softc * isc,struct bio * bp,union ccb * done_ccb)1751 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1752 union ccb *done_ccb)
1753 {
1754 int retval = 0;
1755 #ifdef CAM_IOSCHED_DYNAMIC
1756 if (!do_dynamic_iosched)
1757 return retval;
1758
1759 if (iosched_debug > 10)
1760 printf("done: %p %#x\n", bp, bp->bio_cmd);
1761 if (bp->bio_cmd == BIO_WRITE) {
1762 retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1763 if ((bp->bio_flags & BIO_ERROR) != 0)
1764 isc->write_stats.errs++;
1765 isc->write_stats.out++;
1766 isc->write_stats.pending--;
1767 } else if (bp->bio_cmd == BIO_READ) {
1768 retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1769 if ((bp->bio_flags & BIO_ERROR) != 0)
1770 isc->read_stats.errs++;
1771 isc->read_stats.out++;
1772 isc->read_stats.pending--;
1773 } else if (bp->bio_cmd == BIO_DELETE) {
1774 if ((bp->bio_flags & BIO_ERROR) != 0)
1775 isc->trim_stats.errs++;
1776 isc->trim_stats.out++;
1777 isc->trim_stats.pending--;
1778 } else if (bp->bio_cmd != BIO_FLUSH) {
1779 if (iosched_debug)
1780 printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1781 }
1782
1783 if ((bp->bio_flags & BIO_ERROR) == 0 && done_ccb != NULL &&
1784 (done_ccb->ccb_h.status & CAM_QOS_VALID) != 0) {
1785 sbintime_t sim_latency;
1786
1787 sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
1788
1789 cam_iosched_io_metric_update(isc, sim_latency,
1790 bp->bio_cmd, bp->bio_bcount);
1791 /*
1792 * Debugging code: allow callbacks to the periph driver when latency max
1793 * is exceeded. This can be useful for triggering external debugging actions.
1794 */
1795 if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
1796 isc->latfcn(isc->latarg, sim_latency, bp);
1797 }
1798
1799 #endif
1800 return retval;
1801 }
1802
1803 /*
1804 * Tell the io scheduler that you've pushed a trim down into the sim.
1805 * This also tells the I/O scheduler not to push any more trims down, so
1806 * some periphs do not call it if they can cope with multiple trims in flight.
1807 */
1808 void
cam_iosched_submit_trim(struct cam_iosched_softc * isc)1809 cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1810 {
1811
1812 isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1813 }
1814
1815 /*
1816 * Change the sorting policy hint for I/O transactions for this device.
1817 */
1818 void
cam_iosched_set_sort_queue(struct cam_iosched_softc * isc,int val)1819 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1820 {
1821
1822 isc->sort_io_queue = val;
1823 }
1824
1825 int
cam_iosched_has_work_flags(struct cam_iosched_softc * isc,uint32_t flags)1826 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1827 {
1828 return isc->flags & flags;
1829 }
1830
1831 void
cam_iosched_set_work_flags(struct cam_iosched_softc * isc,uint32_t flags)1832 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1833 {
1834 isc->flags |= flags;
1835 }
1836
1837 void
cam_iosched_clr_work_flags(struct cam_iosched_softc * isc,uint32_t flags)1838 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1839 {
1840 isc->flags &= ~flags;
1841 }
1842
1843 #ifdef CAM_IOSCHED_DYNAMIC
1844 /*
1845 * After the method presented in Jack Crenshaw's 1998 article "Integer
1846 * Square Roots," reprinted at
1847 * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1848 * and well worth the read. Briefly, we find the power of 4 that's the
1849 * largest smaller than val. We then check each smaller power of 4 to
1850 * see if val is still bigger. The right shifts at each step divide
1851 * the result by 2 which after successive application winds up
1852 * accumulating the right answer. It could also have been accumulated
1853 * using a separate root counter, but this code is smaller and faster
1854 * than that method. This method is also integer size invariant.
1855 * It returns floor(sqrt((float)val)), or the largest integer less than
1856 * or equal to the square root.
1857 */
1858 static uint64_t
isqrt64(uint64_t val)1859 isqrt64(uint64_t val)
1860 {
1861 uint64_t res = 0;
1862 uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1863
1864 /*
1865 * Find the largest power of 4 smaller than val.
1866 */
1867 while (bit > val)
1868 bit >>= 2;
1869
1870 /*
1871 * Accumulate the answer, one bit at a time (we keep moving
1872 * them over since 2 is the square root of 4 and we test
1873 * powers of 4). We accumulate where we find the bit, but
1874 * the successive shifts land the bit in the right place
1875 * by the end.
1876 */
1877 while (bit != 0) {
1878 if (val >= res + bit) {
1879 val -= res + bit;
1880 res = (res >> 1) + bit;
1881 } else
1882 res >>= 1;
1883 bit >>= 2;
1884 }
1885
1886 return res;
1887 }
1888
1889 static sbintime_t latencies[LAT_BUCKETS - 1] = {
1890 BUCKET_BASE << 0, /* 20us */
1891 BUCKET_BASE << 1,
1892 BUCKET_BASE << 2,
1893 BUCKET_BASE << 3,
1894 BUCKET_BASE << 4,
1895 BUCKET_BASE << 5,
1896 BUCKET_BASE << 6,
1897 BUCKET_BASE << 7,
1898 BUCKET_BASE << 8,
1899 BUCKET_BASE << 9,
1900 BUCKET_BASE << 10,
1901 BUCKET_BASE << 11,
1902 BUCKET_BASE << 12,
1903 BUCKET_BASE << 13,
1904 BUCKET_BASE << 14,
1905 BUCKET_BASE << 15,
1906 BUCKET_BASE << 16,
1907 BUCKET_BASE << 17,
1908 BUCKET_BASE << 18 /* 5,242,880us */
1909 };
1910
1911 static void
cam_iosched_update(struct iop_stats * iop,sbintime_t sim_latency)1912 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
1913 {
1914 sbintime_t y, deltasq, delta;
1915 int i;
1916
1917 /*
1918 * Keep counts for latency. We do it by power of two buckets.
1919 * This helps us spot outlier behavior obscured by averages.
1920 */
1921 for (i = 0; i < LAT_BUCKETS - 1; i++) {
1922 if (sim_latency < latencies[i]) {
1923 iop->latencies[i]++;
1924 break;
1925 }
1926 }
1927 if (i == LAT_BUCKETS - 1)
1928 iop->latencies[i]++; /* Put all > 8192ms values into the last bucket. */
1929
1930 /*
1931 * Classic exponentially decaying average with a tiny alpha
1932 * (2 ^ -alpha_bits). For more info see the NIST statistical
1933 * handbook.
1934 *
1935 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist]
1936 * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
1937 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
1938 * alpha = 1 / (1 << alpha_bits)
1939 * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
1940 * = y_t/b - e/b + be/b
1941 * = (y_t - e + be) / b
1942 * = (e + d) / b
1943 *
1944 * Since alpha is a power of two, we can compute this w/o any mult or
1945 * division.
1946 *
1947 * Variance can also be computed. Usually, it would be expressed as follows:
1948 * diff_t = y_t - ema_t-1
1949 * emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
1950 * = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
1951 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
1952 * = e - e/b + dd/b + dd/bb
1953 * = (bbe - be + bdd + dd) / bb
1954 * = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
1955 */
1956 /*
1957 * XXX possible numeric issues
1958 * o We assume right shifted integers do the right thing, since that's
1959 * implementation defined. You can change the right shifts to / (1LL << alpha).
1960 * o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
1961 * for emvar. This puts a ceiling of 13 bits on alpha since we need a
1962 * few tens of seconds of representation.
1963 * o We mitigate alpha issues by never setting it too high.
1964 */
1965 y = sim_latency;
1966 delta = (y - iop->ema); /* d */
1967 iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
1968
1969 /*
1970 * Were we to naively plow ahead at this point, we wind up with many numerical
1971 * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
1972 * us with microsecond level precision in the input, so the same in the
1973 * output. It means we can't overflow deltasq unless delta > 4k seconds. It
1974 * also means that emvar can be up 46 bits 40 of which are fraction, which
1975 * gives us a way to measure up to ~8s in the SD before the computation goes
1976 * unstable. Even the worst hard disk rarely has > 1s service time in the
1977 * drive. It does mean we have to shift left 12 bits after taking the
1978 * square root to compute the actual standard deviation estimate. This loss of
1979 * precision is preferable to needing int128 types to work. The above numbers
1980 * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
1981 * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
1982 */
1983 delta >>= 12;
1984 deltasq = delta * delta; /* dd */
1985 iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */
1986 ((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */
1987 deltasq) /* dd */
1988 >> (2 * alpha_bits); /* div bb */
1989 iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
1990 }
1991
1992 static void
cam_iosched_io_metric_update(struct cam_iosched_softc * isc,sbintime_t sim_latency,int cmd,size_t size)1993 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
1994 sbintime_t sim_latency, int cmd, size_t size)
1995 {
1996 /* xxx Do we need to scale based on the size of the I/O ? */
1997 switch (cmd) {
1998 case BIO_READ:
1999 cam_iosched_update(&isc->read_stats, sim_latency);
2000 break;
2001 case BIO_WRITE:
2002 cam_iosched_update(&isc->write_stats, sim_latency);
2003 break;
2004 case BIO_DELETE:
2005 cam_iosched_update(&isc->trim_stats, sim_latency);
2006 break;
2007 default:
2008 break;
2009 }
2010 }
2011
2012 #ifdef DDB
biolen(struct bio_queue_head * bq)2013 static int biolen(struct bio_queue_head *bq)
2014 {
2015 int i = 0;
2016 struct bio *bp;
2017
2018 TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
2019 i++;
2020 }
2021 return i;
2022 }
2023
2024 /*
2025 * Show the internal state of the I/O scheduler.
2026 */
DB_SHOW_COMMAND(iosched,cam_iosched_db_show)2027 DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
2028 {
2029 struct cam_iosched_softc *isc;
2030
2031 if (!have_addr) {
2032 db_printf("Need addr\n");
2033 return;
2034 }
2035 isc = (struct cam_iosched_softc *)addr;
2036 db_printf("pending_reads: %d\n", isc->read_stats.pending);
2037 db_printf("min_reads: %d\n", isc->read_stats.min);
2038 db_printf("max_reads: %d\n", isc->read_stats.max);
2039 db_printf("reads: %d\n", isc->read_stats.total);
2040 db_printf("in_reads: %d\n", isc->read_stats.in);
2041 db_printf("out_reads: %d\n", isc->read_stats.out);
2042 db_printf("queued_reads: %d\n", isc->read_stats.queued);
2043 db_printf("Read Q len %d\n", biolen(&isc->bio_queue));
2044 db_printf("pending_writes: %d\n", isc->write_stats.pending);
2045 db_printf("min_writes: %d\n", isc->write_stats.min);
2046 db_printf("max_writes: %d\n", isc->write_stats.max);
2047 db_printf("writes: %d\n", isc->write_stats.total);
2048 db_printf("in_writes: %d\n", isc->write_stats.in);
2049 db_printf("out_writes: %d\n", isc->write_stats.out);
2050 db_printf("queued_writes: %d\n", isc->write_stats.queued);
2051 db_printf("Write Q len %d\n", biolen(&isc->write_queue));
2052 db_printf("pending_trims: %d\n", isc->trim_stats.pending);
2053 db_printf("min_trims: %d\n", isc->trim_stats.min);
2054 db_printf("max_trims: %d\n", isc->trim_stats.max);
2055 db_printf("trims: %d\n", isc->trim_stats.total);
2056 db_printf("in_trims: %d\n", isc->trim_stats.in);
2057 db_printf("out_trims: %d\n", isc->trim_stats.out);
2058 db_printf("queued_trims: %d\n", isc->trim_stats.queued);
2059 db_printf("Trim Q len %d\n", biolen(&isc->trim_queue));
2060 db_printf("read_bias: %d\n", isc->read_bias);
2061 db_printf("current_read_bias: %d\n", isc->current_read_bias);
2062 db_printf("Trim active? %s\n",
2063 (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
2064 }
2065 #endif
2066 #endif
2067