xref: /freebsd-13.1/sys/kern/vfs_bio.c (revision 61f45ca2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/asan.h>
53 #include <sys/bio.h>
54 #include <sys/bitset.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/buf.h>
58 #include <sys/devicestat.h>
59 #include <sys/eventhandler.h>
60 #include <sys/fail.h>
61 #include <sys/ktr.h>
62 #include <sys/limits.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/mount.h>
66 #include <sys/mutex.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/proc.h>
70 #include <sys/racct.h>
71 #include <sys/refcount.h>
72 #include <sys/resourcevar.h>
73 #include <sys/rwlock.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/syscallsubr.h>
77 #include <sys/vmem.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/watchdog.h>
81 #include <geom/geom.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_map.h>
91 #include <vm/swap_pager.h>
92 
93 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
94 
95 struct	bio_ops bioops;		/* I/O operation notification */
96 
97 struct	buf_ops buf_ops_bio = {
98 	.bop_name	=	"buf_ops_bio",
99 	.bop_write	=	bufwrite,
100 	.bop_strategy	=	bufstrategy,
101 	.bop_sync	=	bufsync,
102 	.bop_bdflush	=	bufbdflush,
103 };
104 
105 struct bufqueue {
106 	struct mtx_padalign	bq_lock;
107 	TAILQ_HEAD(, buf)	bq_queue;
108 	uint8_t			bq_index;
109 	uint16_t		bq_subqueue;
110 	int			bq_len;
111 } __aligned(CACHE_LINE_SIZE);
112 
113 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
114 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
115 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
116 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
117 
118 struct bufdomain {
119 	struct bufqueue	bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
120 	struct bufqueue bd_dirtyq;
121 	struct bufqueue	*bd_cleanq;
122 	struct mtx_padalign bd_run_lock;
123 	/* Constants */
124 	long		bd_maxbufspace;
125 	long		bd_hibufspace;
126 	long 		bd_lobufspace;
127 	long 		bd_bufspacethresh;
128 	int		bd_hifreebuffers;
129 	int		bd_lofreebuffers;
130 	int		bd_hidirtybuffers;
131 	int		bd_lodirtybuffers;
132 	int		bd_dirtybufthresh;
133 	int		bd_lim;
134 	/* atomics */
135 	int		bd_wanted;
136 	bool		bd_shutdown;
137 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
138 	int __aligned(CACHE_LINE_SIZE)	bd_running;
139 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
140 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
141 } __aligned(CACHE_LINE_SIZE);
142 
143 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
144 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
145 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
146 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
147 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
148 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
149 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
150 #define	BD_DOMAIN(bd)		(bd - bdomain)
151 
152 static char *buf;		/* buffer header pool */
153 static struct buf *
nbufp(unsigned i)154 nbufp(unsigned i)
155 {
156 	return ((struct buf *)(buf + (sizeof(struct buf) +
157 	    sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
158 }
159 
160 caddr_t __read_mostly unmapped_buf;
161 
162 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
163 struct proc *bufdaemonproc;
164 
165 static void vm_hold_free_pages(struct buf *bp, int newbsize);
166 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
167 		vm_offset_t to);
168 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
169 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
170 		vm_page_t m);
171 static void vfs_clean_pages_dirty_buf(struct buf *bp);
172 static void vfs_setdirty_range(struct buf *bp);
173 static void vfs_vmio_invalidate(struct buf *bp);
174 static void vfs_vmio_truncate(struct buf *bp, int npages);
175 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
176 static int vfs_bio_clcheck(struct vnode *vp, int size,
177 		daddr_t lblkno, daddr_t blkno);
178 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
179 		void (*)(struct buf *));
180 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
181 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
182 static void buf_daemon(void);
183 static __inline void bd_wakeup(void);
184 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
185 static void bufkva_reclaim(vmem_t *, int);
186 static void bufkva_free(struct buf *);
187 static int buf_import(void *, void **, int, int, int);
188 static void buf_release(void *, void **, int);
189 static void maxbcachebuf_adjust(void);
190 static inline struct bufdomain *bufdomain(struct buf *);
191 static void bq_remove(struct bufqueue *bq, struct buf *bp);
192 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
193 static int buf_recycle(struct bufdomain *, bool kva);
194 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
195 	    const char *lockname);
196 static void bd_init(struct bufdomain *bd);
197 static int bd_flushall(struct bufdomain *bd);
198 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
199 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
200 
201 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
202 int vmiodirenable = TRUE;
203 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
204     "Use the VM system for directory writes");
205 long runningbufspace;
206 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
207     "Amount of presently outstanding async buffer io");
208 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
209     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
210 static counter_u64_t bufkvaspace;
211 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
212     "Kernel virtual memory used for buffers");
213 static long maxbufspace;
214 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
215     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
216     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
217     "Maximum allowed value of bufspace (including metadata)");
218 static long bufmallocspace;
219 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
220     "Amount of malloced memory for buffers");
221 static long maxbufmallocspace;
222 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
223     0, "Maximum amount of malloced memory for buffers");
224 static long lobufspace;
225 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
226     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
227     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
228     "Minimum amount of buffers we want to have");
229 long hibufspace;
230 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
231     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
232     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
233     "Maximum allowed value of bufspace (excluding metadata)");
234 long bufspacethresh;
235 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
236     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
237     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
238     "Bufspace consumed before waking the daemon to free some");
239 static counter_u64_t buffreekvacnt;
240 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
241     "Number of times we have freed the KVA space from some buffer");
242 static counter_u64_t bufdefragcnt;
243 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
244     "Number of times we have had to repeat buffer allocation to defragment");
245 static long lorunningspace;
246 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
247     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
248     "Minimum preferred space used for in-progress I/O");
249 static long hirunningspace;
250 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
251     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
252     "Maximum amount of space to use for in-progress I/O");
253 int dirtybufferflushes;
254 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
255     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
256 int bdwriteskip;
257 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
258     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
259 int altbufferflushes;
260 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
261     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
262 static int recursiveflushes;
263 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
264     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
265 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
266 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
267     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
268     "Number of buffers that are dirty (has unwritten changes) at the moment");
269 static int lodirtybuffers;
270 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
271     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
272     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
273     "How many buffers we want to have free before bufdaemon can sleep");
274 static int hidirtybuffers;
275 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
276     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
277     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
278     "When the number of dirty buffers is considered severe");
279 int dirtybufthresh;
280 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
281     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
282     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
283     "Number of bdwrite to bawrite conversions to clear dirty buffers");
284 static int numfreebuffers;
285 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
286     "Number of free buffers");
287 static int lofreebuffers;
288 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
289     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
290     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
291    "Target number of free buffers");
292 static int hifreebuffers;
293 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
294     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
295     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
296    "Threshold for clean buffer recycling");
297 static counter_u64_t getnewbufcalls;
298 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
299    &getnewbufcalls, "Number of calls to getnewbuf");
300 static counter_u64_t getnewbufrestarts;
301 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
302     &getnewbufrestarts,
303     "Number of times getnewbuf has had to restart a buffer acquisition");
304 static counter_u64_t mappingrestarts;
305 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
306     &mappingrestarts,
307     "Number of times getblk has had to restart a buffer mapping for "
308     "unmapped buffer");
309 static counter_u64_t numbufallocfails;
310 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
311     &numbufallocfails, "Number of times buffer allocations failed");
312 static int flushbufqtarget = 100;
313 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
314     "Amount of work to do in flushbufqueues when helping bufdaemon");
315 static counter_u64_t notbufdflushes;
316 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
317     "Number of dirty buffer flushes done by the bufdaemon helpers");
318 static long barrierwrites;
319 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
320     &barrierwrites, 0, "Number of barrier writes");
321 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
322     &unmapped_buf_allowed, 0,
323     "Permit the use of the unmapped i/o");
324 int maxbcachebuf = MAXBCACHEBUF;
325 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
326     "Maximum size of a buffer cache block");
327 
328 /*
329  * This lock synchronizes access to bd_request.
330  */
331 static struct mtx_padalign __exclusive_cache_line bdlock;
332 
333 /*
334  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
335  * waitrunningbufspace().
336  */
337 static struct mtx_padalign __exclusive_cache_line rbreqlock;
338 
339 /*
340  * Lock that protects bdirtywait.
341  */
342 static struct mtx_padalign __exclusive_cache_line bdirtylock;
343 
344 /*
345  * bufdaemon shutdown request and sleep channel.
346  */
347 static bool bd_shutdown;
348 
349 /*
350  * Wakeup point for bufdaemon, as well as indicator of whether it is already
351  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
352  * is idling.
353  */
354 static int bd_request;
355 
356 /*
357  * Request for the buf daemon to write more buffers than is indicated by
358  * lodirtybuf.  This may be necessary to push out excess dependencies or
359  * defragment the address space where a simple count of the number of dirty
360  * buffers is insufficient to characterize the demand for flushing them.
361  */
362 static int bd_speedupreq;
363 
364 /*
365  * Synchronization (sleep/wakeup) variable for active buffer space requests.
366  * Set when wait starts, cleared prior to wakeup().
367  * Used in runningbufwakeup() and waitrunningbufspace().
368  */
369 static int runningbufreq;
370 
371 /*
372  * Synchronization for bwillwrite() waiters.
373  */
374 static int bdirtywait;
375 
376 /*
377  * Definitions for the buffer free lists.
378  */
379 #define QUEUE_NONE	0	/* on no queue */
380 #define QUEUE_EMPTY	1	/* empty buffer headers */
381 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
382 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
383 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
384 
385 /* Maximum number of buffer domains. */
386 #define	BUF_DOMAINS	8
387 
388 struct bufdomainset bdlodirty;		/* Domains > lodirty */
389 struct bufdomainset bdhidirty;		/* Domains > hidirty */
390 
391 /* Configured number of clean queues. */
392 static int __read_mostly buf_domains;
393 
394 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
395 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
396 struct bufqueue __exclusive_cache_line bqempty;
397 
398 /*
399  * per-cpu empty buffer cache.
400  */
401 uma_zone_t buf_zone;
402 
403 static int
sysctl_runningspace(SYSCTL_HANDLER_ARGS)404 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
405 {
406 	long value;
407 	int error;
408 
409 	value = *(long *)arg1;
410 	error = sysctl_handle_long(oidp, &value, 0, req);
411 	if (error != 0 || req->newptr == NULL)
412 		return (error);
413 	mtx_lock(&rbreqlock);
414 	if (arg1 == &hirunningspace) {
415 		if (value < lorunningspace)
416 			error = EINVAL;
417 		else
418 			hirunningspace = value;
419 	} else {
420 		KASSERT(arg1 == &lorunningspace,
421 		    ("%s: unknown arg1", __func__));
422 		if (value > hirunningspace)
423 			error = EINVAL;
424 		else
425 			lorunningspace = value;
426 	}
427 	mtx_unlock(&rbreqlock);
428 	return (error);
429 }
430 
431 static int
sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)432 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
433 {
434 	int error;
435 	int value;
436 	int i;
437 
438 	value = *(int *)arg1;
439 	error = sysctl_handle_int(oidp, &value, 0, req);
440 	if (error != 0 || req->newptr == NULL)
441 		return (error);
442 	*(int *)arg1 = value;
443 	for (i = 0; i < buf_domains; i++)
444 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
445 		    value / buf_domains;
446 
447 	return (error);
448 }
449 
450 static int
sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)451 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
452 {
453 	long value;
454 	int error;
455 	int i;
456 
457 	value = *(long *)arg1;
458 	error = sysctl_handle_long(oidp, &value, 0, req);
459 	if (error != 0 || req->newptr == NULL)
460 		return (error);
461 	*(long *)arg1 = value;
462 	for (i = 0; i < buf_domains; i++)
463 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
464 		    value / buf_domains;
465 
466 	return (error);
467 }
468 
469 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
470     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
471 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)472 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
473 {
474 	long lvalue;
475 	int ivalue;
476 	int i;
477 
478 	lvalue = 0;
479 	for (i = 0; i < buf_domains; i++)
480 		lvalue += bdomain[i].bd_bufspace;
481 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
482 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
483 	if (lvalue > INT_MAX)
484 		/* On overflow, still write out a long to trigger ENOMEM. */
485 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
486 	ivalue = lvalue;
487 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
488 }
489 #else
490 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)491 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
492 {
493 	long lvalue;
494 	int i;
495 
496 	lvalue = 0;
497 	for (i = 0; i < buf_domains; i++)
498 		lvalue += bdomain[i].bd_bufspace;
499 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
500 }
501 #endif
502 
503 static int
sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)504 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
505 {
506 	int value;
507 	int i;
508 
509 	value = 0;
510 	for (i = 0; i < buf_domains; i++)
511 		value += bdomain[i].bd_numdirtybuffers;
512 	return (sysctl_handle_int(oidp, &value, 0, req));
513 }
514 
515 /*
516  *	bdirtywakeup:
517  *
518  *	Wakeup any bwillwrite() waiters.
519  */
520 static void
bdirtywakeup(void)521 bdirtywakeup(void)
522 {
523 	mtx_lock(&bdirtylock);
524 	if (bdirtywait) {
525 		bdirtywait = 0;
526 		wakeup(&bdirtywait);
527 	}
528 	mtx_unlock(&bdirtylock);
529 }
530 
531 /*
532  *	bd_clear:
533  *
534  *	Clear a domain from the appropriate bitsets when dirtybuffers
535  *	is decremented.
536  */
537 static void
bd_clear(struct bufdomain * bd)538 bd_clear(struct bufdomain *bd)
539 {
540 
541 	mtx_lock(&bdirtylock);
542 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
543 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
544 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
545 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
546 	mtx_unlock(&bdirtylock);
547 }
548 
549 /*
550  *	bd_set:
551  *
552  *	Set a domain in the appropriate bitsets when dirtybuffers
553  *	is incremented.
554  */
555 static void
bd_set(struct bufdomain * bd)556 bd_set(struct bufdomain *bd)
557 {
558 
559 	mtx_lock(&bdirtylock);
560 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
561 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
562 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
563 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
564 	mtx_unlock(&bdirtylock);
565 }
566 
567 /*
568  *	bdirtysub:
569  *
570  *	Decrement the numdirtybuffers count by one and wakeup any
571  *	threads blocked in bwillwrite().
572  */
573 static void
bdirtysub(struct buf * bp)574 bdirtysub(struct buf *bp)
575 {
576 	struct bufdomain *bd;
577 	int num;
578 
579 	bd = bufdomain(bp);
580 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
581 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
582 		bdirtywakeup();
583 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
584 		bd_clear(bd);
585 }
586 
587 /*
588  *	bdirtyadd:
589  *
590  *	Increment the numdirtybuffers count by one and wakeup the buf
591  *	daemon if needed.
592  */
593 static void
bdirtyadd(struct buf * bp)594 bdirtyadd(struct buf *bp)
595 {
596 	struct bufdomain *bd;
597 	int num;
598 
599 	/*
600 	 * Only do the wakeup once as we cross the boundary.  The
601 	 * buf daemon will keep running until the condition clears.
602 	 */
603 	bd = bufdomain(bp);
604 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
605 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
606 		bd_wakeup();
607 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
608 		bd_set(bd);
609 }
610 
611 /*
612  *	bufspace_daemon_wakeup:
613  *
614  *	Wakeup the daemons responsible for freeing clean bufs.
615  */
616 static void
bufspace_daemon_wakeup(struct bufdomain * bd)617 bufspace_daemon_wakeup(struct bufdomain *bd)
618 {
619 
620 	/*
621 	 * avoid the lock if the daemon is running.
622 	 */
623 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
624 		BD_RUN_LOCK(bd);
625 		atomic_store_int(&bd->bd_running, 1);
626 		wakeup(&bd->bd_running);
627 		BD_RUN_UNLOCK(bd);
628 	}
629 }
630 
631 /*
632  *	bufspace_adjust:
633  *
634  *	Adjust the reported bufspace for a KVA managed buffer, possibly
635  * 	waking any waiters.
636  */
637 static void
bufspace_adjust(struct buf * bp,int bufsize)638 bufspace_adjust(struct buf *bp, int bufsize)
639 {
640 	struct bufdomain *bd;
641 	long space;
642 	int diff;
643 
644 	KASSERT((bp->b_flags & B_MALLOC) == 0,
645 	    ("bufspace_adjust: malloc buf %p", bp));
646 	bd = bufdomain(bp);
647 	diff = bufsize - bp->b_bufsize;
648 	if (diff < 0) {
649 		atomic_subtract_long(&bd->bd_bufspace, -diff);
650 	} else if (diff > 0) {
651 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
652 		/* Wake up the daemon on the transition. */
653 		if (space < bd->bd_bufspacethresh &&
654 		    space + diff >= bd->bd_bufspacethresh)
655 			bufspace_daemon_wakeup(bd);
656 	}
657 	bp->b_bufsize = bufsize;
658 }
659 
660 /*
661  *	bufspace_reserve:
662  *
663  *	Reserve bufspace before calling allocbuf().  metadata has a
664  *	different space limit than data.
665  */
666 static int
bufspace_reserve(struct bufdomain * bd,int size,bool metadata)667 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
668 {
669 	long limit, new;
670 	long space;
671 
672 	if (metadata)
673 		limit = bd->bd_maxbufspace;
674 	else
675 		limit = bd->bd_hibufspace;
676 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
677 	new = space + size;
678 	if (new > limit) {
679 		atomic_subtract_long(&bd->bd_bufspace, size);
680 		return (ENOSPC);
681 	}
682 
683 	/* Wake up the daemon on the transition. */
684 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
685 		bufspace_daemon_wakeup(bd);
686 
687 	return (0);
688 }
689 
690 /*
691  *	bufspace_release:
692  *
693  *	Release reserved bufspace after bufspace_adjust() has consumed it.
694  */
695 static void
bufspace_release(struct bufdomain * bd,int size)696 bufspace_release(struct bufdomain *bd, int size)
697 {
698 
699 	atomic_subtract_long(&bd->bd_bufspace, size);
700 }
701 
702 /*
703  *	bufspace_wait:
704  *
705  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
706  *	supplied.  bd_wanted must be set prior to polling for space.  The
707  *	operation must be re-tried on return.
708  */
709 static void
bufspace_wait(struct bufdomain * bd,struct vnode * vp,int gbflags,int slpflag,int slptimeo)710 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
711     int slpflag, int slptimeo)
712 {
713 	struct thread *td;
714 	int error, fl, norunbuf;
715 
716 	if ((gbflags & GB_NOWAIT_BD) != 0)
717 		return;
718 
719 	td = curthread;
720 	BD_LOCK(bd);
721 	while (bd->bd_wanted) {
722 		if (vp != NULL && vp->v_type != VCHR &&
723 		    (td->td_pflags & TDP_BUFNEED) == 0) {
724 			BD_UNLOCK(bd);
725 			/*
726 			 * getblk() is called with a vnode locked, and
727 			 * some majority of the dirty buffers may as
728 			 * well belong to the vnode.  Flushing the
729 			 * buffers there would make a progress that
730 			 * cannot be achieved by the buf_daemon, that
731 			 * cannot lock the vnode.
732 			 */
733 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
734 			    (td->td_pflags & TDP_NORUNNINGBUF);
735 
736 			/*
737 			 * Play bufdaemon.  The getnewbuf() function
738 			 * may be called while the thread owns lock
739 			 * for another dirty buffer for the same
740 			 * vnode, which makes it impossible to use
741 			 * VOP_FSYNC() there, due to the buffer lock
742 			 * recursion.
743 			 */
744 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
745 			fl = buf_flush(vp, bd, flushbufqtarget);
746 			td->td_pflags &= norunbuf;
747 			BD_LOCK(bd);
748 			if (fl != 0)
749 				continue;
750 			if (bd->bd_wanted == 0)
751 				break;
752 		}
753 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
754 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
755 		if (error != 0)
756 			break;
757 	}
758 	BD_UNLOCK(bd);
759 }
760 
761 static void
bufspace_daemon_shutdown(void * arg,int howto __unused)762 bufspace_daemon_shutdown(void *arg, int howto __unused)
763 {
764 	struct bufdomain *bd = arg;
765 	int error;
766 
767 	BD_RUN_LOCK(bd);
768 	bd->bd_shutdown = true;
769 	wakeup(&bd->bd_running);
770 	error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
771 	    "bufspace_shutdown", 60 * hz);
772 	BD_RUN_UNLOCK(bd);
773 	if (error != 0)
774 		printf("bufspacedaemon wait error: %d\n", error);
775 }
776 
777 /*
778  *	bufspace_daemon:
779  *
780  *	buffer space management daemon.  Tries to maintain some marginal
781  *	amount of free buffer space so that requesting processes neither
782  *	block nor work to reclaim buffers.
783  */
784 static void
bufspace_daemon(void * arg)785 bufspace_daemon(void *arg)
786 {
787 	struct bufdomain *bd = arg;
788 
789 	EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
790 	    SHUTDOWN_PRI_LAST + 100);
791 
792 	BD_RUN_LOCK(bd);
793 	while (!bd->bd_shutdown) {
794 		BD_RUN_UNLOCK(bd);
795 
796 		/*
797 		 * Free buffers from the clean queue until we meet our
798 		 * targets.
799 		 *
800 		 * Theory of operation:  The buffer cache is most efficient
801 		 * when some free buffer headers and space are always
802 		 * available to getnewbuf().  This daemon attempts to prevent
803 		 * the excessive blocking and synchronization associated
804 		 * with shortfall.  It goes through three phases according
805 		 * demand:
806 		 *
807 		 * 1)	The daemon wakes up voluntarily once per-second
808 		 *	during idle periods when the counters are below
809 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
810 		 *
811 		 * 2)	The daemon wakes up as we cross the thresholds
812 		 *	ahead of any potential blocking.  This may bounce
813 		 *	slightly according to the rate of consumption and
814 		 *	release.
815 		 *
816 		 * 3)	The daemon and consumers are starved for working
817 		 *	clean buffers.  This is the 'bufspace' sleep below
818 		 *	which will inefficiently trade bufs with bqrelse
819 		 *	until we return to condition 2.
820 		 */
821 		while (bd->bd_bufspace > bd->bd_lobufspace ||
822 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
823 			if (buf_recycle(bd, false) != 0) {
824 				if (bd_flushall(bd))
825 					continue;
826 				/*
827 				 * Speedup dirty if we've run out of clean
828 				 * buffers.  This is possible in particular
829 				 * because softdep may held many bufs locked
830 				 * pending writes to other bufs which are
831 				 * marked for delayed write, exhausting
832 				 * clean space until they are written.
833 				 */
834 				bd_speedup();
835 				BD_LOCK(bd);
836 				if (bd->bd_wanted) {
837 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
838 					    PRIBIO|PDROP, "bufspace", hz/10);
839 				} else
840 					BD_UNLOCK(bd);
841 			}
842 			maybe_yield();
843 		}
844 
845 		/*
846 		 * Re-check our limits and sleep.  bd_running must be
847 		 * cleared prior to checking the limits to avoid missed
848 		 * wakeups.  The waker will adjust one of bufspace or
849 		 * freebuffers prior to checking bd_running.
850 		 */
851 		BD_RUN_LOCK(bd);
852 		if (bd->bd_shutdown)
853 			break;
854 		atomic_store_int(&bd->bd_running, 0);
855 		if (bd->bd_bufspace < bd->bd_bufspacethresh &&
856 		    bd->bd_freebuffers > bd->bd_lofreebuffers) {
857 			msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
858 			    PRIBIO, "-", hz);
859 		} else {
860 			/* Avoid spurious wakeups while running. */
861 			atomic_store_int(&bd->bd_running, 1);
862 		}
863 	}
864 	wakeup(&bd->bd_shutdown);
865 	BD_RUN_UNLOCK(bd);
866 	kthread_exit();
867 }
868 
869 /*
870  *	bufmallocadjust:
871  *
872  *	Adjust the reported bufspace for a malloc managed buffer, possibly
873  *	waking any waiters.
874  */
875 static void
bufmallocadjust(struct buf * bp,int bufsize)876 bufmallocadjust(struct buf *bp, int bufsize)
877 {
878 	int diff;
879 
880 	KASSERT((bp->b_flags & B_MALLOC) != 0,
881 	    ("bufmallocadjust: non-malloc buf %p", bp));
882 	diff = bufsize - bp->b_bufsize;
883 	if (diff < 0)
884 		atomic_subtract_long(&bufmallocspace, -diff);
885 	else
886 		atomic_add_long(&bufmallocspace, diff);
887 	bp->b_bufsize = bufsize;
888 }
889 
890 /*
891  *	runningwakeup:
892  *
893  *	Wake up processes that are waiting on asynchronous writes to fall
894  *	below lorunningspace.
895  */
896 static void
runningwakeup(void)897 runningwakeup(void)
898 {
899 
900 	mtx_lock(&rbreqlock);
901 	if (runningbufreq) {
902 		runningbufreq = 0;
903 		wakeup(&runningbufreq);
904 	}
905 	mtx_unlock(&rbreqlock);
906 }
907 
908 /*
909  *	runningbufwakeup:
910  *
911  *	Decrement the outstanding write count according.
912  */
913 void
runningbufwakeup(struct buf * bp)914 runningbufwakeup(struct buf *bp)
915 {
916 	long space, bspace;
917 
918 	bspace = bp->b_runningbufspace;
919 	if (bspace == 0)
920 		return;
921 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
922 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
923 	    space, bspace));
924 	bp->b_runningbufspace = 0;
925 	/*
926 	 * Only acquire the lock and wakeup on the transition from exceeding
927 	 * the threshold to falling below it.
928 	 */
929 	if (space < lorunningspace)
930 		return;
931 	if (space - bspace > lorunningspace)
932 		return;
933 	runningwakeup();
934 }
935 
936 /*
937  *	waitrunningbufspace()
938  *
939  *	runningbufspace is a measure of the amount of I/O currently
940  *	running.  This routine is used in async-write situations to
941  *	prevent creating huge backups of pending writes to a device.
942  *	Only asynchronous writes are governed by this function.
943  *
944  *	This does NOT turn an async write into a sync write.  It waits
945  *	for earlier writes to complete and generally returns before the
946  *	caller's write has reached the device.
947  */
948 void
waitrunningbufspace(void)949 waitrunningbufspace(void)
950 {
951 
952 	mtx_lock(&rbreqlock);
953 	while (runningbufspace > hirunningspace) {
954 		runningbufreq = 1;
955 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
956 	}
957 	mtx_unlock(&rbreqlock);
958 }
959 
960 /*
961  *	vfs_buf_test_cache:
962  *
963  *	Called when a buffer is extended.  This function clears the B_CACHE
964  *	bit if the newly extended portion of the buffer does not contain
965  *	valid data.
966  */
967 static __inline void
vfs_buf_test_cache(struct buf * bp,vm_ooffset_t foff,vm_offset_t off,vm_offset_t size,vm_page_t m)968 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
969     vm_offset_t size, vm_page_t m)
970 {
971 
972 	/*
973 	 * This function and its results are protected by higher level
974 	 * synchronization requiring vnode and buf locks to page in and
975 	 * validate pages.
976 	 */
977 	if (bp->b_flags & B_CACHE) {
978 		int base = (foff + off) & PAGE_MASK;
979 		if (vm_page_is_valid(m, base, size) == 0)
980 			bp->b_flags &= ~B_CACHE;
981 	}
982 }
983 
984 /* Wake up the buffer daemon if necessary */
985 static void
bd_wakeup(void)986 bd_wakeup(void)
987 {
988 
989 	mtx_lock(&bdlock);
990 	if (bd_request == 0) {
991 		bd_request = 1;
992 		wakeup(&bd_request);
993 	}
994 	mtx_unlock(&bdlock);
995 }
996 
997 /*
998  * Adjust the maxbcachbuf tunable.
999  */
1000 static void
maxbcachebuf_adjust(void)1001 maxbcachebuf_adjust(void)
1002 {
1003 	int i;
1004 
1005 	/*
1006 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
1007 	 */
1008 	i = 2;
1009 	while (i * 2 <= maxbcachebuf)
1010 		i *= 2;
1011 	maxbcachebuf = i;
1012 	if (maxbcachebuf < MAXBSIZE)
1013 		maxbcachebuf = MAXBSIZE;
1014 	if (maxbcachebuf > maxphys)
1015 		maxbcachebuf = maxphys;
1016 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1017 		printf("maxbcachebuf=%d\n", maxbcachebuf);
1018 }
1019 
1020 /*
1021  * bd_speedup - speedup the buffer cache flushing code
1022  */
1023 void
bd_speedup(void)1024 bd_speedup(void)
1025 {
1026 	int needwake;
1027 
1028 	mtx_lock(&bdlock);
1029 	needwake = 0;
1030 	if (bd_speedupreq == 0 || bd_request == 0)
1031 		needwake = 1;
1032 	bd_speedupreq = 1;
1033 	bd_request = 1;
1034 	if (needwake)
1035 		wakeup(&bd_request);
1036 	mtx_unlock(&bdlock);
1037 }
1038 
1039 #ifdef __i386__
1040 #define	TRANSIENT_DENOM	5
1041 #else
1042 #define	TRANSIENT_DENOM 10
1043 #endif
1044 
1045 /*
1046  * Calculating buffer cache scaling values and reserve space for buffer
1047  * headers.  This is called during low level kernel initialization and
1048  * may be called more then once.  We CANNOT write to the memory area
1049  * being reserved at this time.
1050  */
1051 caddr_t
kern_vfs_bio_buffer_alloc(caddr_t v,long physmem_est)1052 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1053 {
1054 	int tuned_nbuf;
1055 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1056 
1057 #ifdef KASAN
1058 	/*
1059 	 * With KASAN enabled, the kernel map is shadowed.  Account for this
1060 	 * when sizing maps based on the amount of physical memory available.
1061 	 */
1062 	physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1063 	    (KASAN_SHADOW_SCALE + 1);
1064 #endif
1065 
1066 	/*
1067 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1068 	 * PAGE_SIZE is >= 1K)
1069 	 */
1070 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1071 
1072 	maxbcachebuf_adjust();
1073 	/*
1074 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1075 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1076 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1077 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1078 	 * the buffer cache we limit the eventual kva reservation to
1079 	 * maxbcache bytes.
1080 	 *
1081 	 * factor represents the 1/4 x ram conversion.
1082 	 */
1083 	if (nbuf == 0) {
1084 		int factor = 4 * BKVASIZE / 1024;
1085 
1086 		nbuf = 50;
1087 		if (physmem_est > 4096)
1088 			nbuf += min((physmem_est - 4096) / factor,
1089 			    65536 / factor);
1090 		if (physmem_est > 65536)
1091 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1092 			    32 * 1024 * 1024 / (factor * 5));
1093 
1094 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1095 			nbuf = maxbcache / BKVASIZE;
1096 		tuned_nbuf = 1;
1097 	} else
1098 		tuned_nbuf = 0;
1099 
1100 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1101 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1102 	if (nbuf > maxbuf) {
1103 		if (!tuned_nbuf)
1104 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1105 			    maxbuf);
1106 		nbuf = maxbuf;
1107 	}
1108 
1109 	/*
1110 	 * Ideal allocation size for the transient bio submap is 10%
1111 	 * of the maximal space buffer map.  This roughly corresponds
1112 	 * to the amount of the buffer mapped for typical UFS load.
1113 	 *
1114 	 * Clip the buffer map to reserve space for the transient
1115 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1116 	 * maximum buffer map extent on the platform.
1117 	 *
1118 	 * The fall-back to the maxbuf in case of maxbcache unset,
1119 	 * allows to not trim the buffer KVA for the architectures
1120 	 * with ample KVA space.
1121 	 */
1122 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1123 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1124 		buf_sz = (long)nbuf * BKVASIZE;
1125 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1126 		    (TRANSIENT_DENOM - 1)) {
1127 			/*
1128 			 * There is more KVA than memory.  Do not
1129 			 * adjust buffer map size, and assign the rest
1130 			 * of maxbuf to transient map.
1131 			 */
1132 			biotmap_sz = maxbuf_sz - buf_sz;
1133 		} else {
1134 			/*
1135 			 * Buffer map spans all KVA we could afford on
1136 			 * this platform.  Give 10% (20% on i386) of
1137 			 * the buffer map to the transient bio map.
1138 			 */
1139 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1140 			buf_sz -= biotmap_sz;
1141 		}
1142 		if (biotmap_sz / INT_MAX > maxphys)
1143 			bio_transient_maxcnt = INT_MAX;
1144 		else
1145 			bio_transient_maxcnt = biotmap_sz / maxphys;
1146 		/*
1147 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1148 		 * using the transient mapping.
1149 		 */
1150 		if (bio_transient_maxcnt > 1024)
1151 			bio_transient_maxcnt = 1024;
1152 		if (tuned_nbuf)
1153 			nbuf = buf_sz / BKVASIZE;
1154 	}
1155 
1156 	if (nswbuf == 0) {
1157 		nswbuf = min(nbuf / 4, 256);
1158 		if (nswbuf < NSWBUF_MIN)
1159 			nswbuf = NSWBUF_MIN;
1160 	}
1161 
1162 	/*
1163 	 * Reserve space for the buffer cache buffers
1164 	 */
1165 	buf = (char *)v;
1166 	v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1167 	    atop(maxbcachebuf)) * nbuf;
1168 
1169 	return (v);
1170 }
1171 
1172 /*
1173  * Single global constant for BUF_WMESG, to avoid getting multiple
1174  * references.
1175  */
1176 static const char buf_wmesg[] = "bufwait";
1177 
1178 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1179 void
bufinit(void)1180 bufinit(void)
1181 {
1182 	struct buf *bp;
1183 	int i;
1184 
1185 	KASSERT(maxbcachebuf >= MAXBSIZE,
1186 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1187 	    MAXBSIZE));
1188 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1189 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1190 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1191 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1192 
1193 	unmapped_buf = (caddr_t)kva_alloc(maxphys);
1194 
1195 	/* finally, initialize each buffer header and stick on empty q */
1196 	for (i = 0; i < nbuf; i++) {
1197 		bp = nbufp(i);
1198 		bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1199 		bp->b_flags = B_INVAL;
1200 		bp->b_rcred = NOCRED;
1201 		bp->b_wcred = NOCRED;
1202 		bp->b_qindex = QUEUE_NONE;
1203 		bp->b_domain = -1;
1204 		bp->b_subqueue = mp_maxid + 1;
1205 		bp->b_xflags = 0;
1206 		bp->b_data = bp->b_kvabase = unmapped_buf;
1207 		LIST_INIT(&bp->b_dep);
1208 		BUF_LOCKINIT(bp, buf_wmesg);
1209 		bq_insert(&bqempty, bp, false);
1210 	}
1211 
1212 	/*
1213 	 * maxbufspace is the absolute maximum amount of buffer space we are
1214 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1215 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1216 	 * used by most other requests.  The differential is required to
1217 	 * ensure that metadata deadlocks don't occur.
1218 	 *
1219 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1220 	 * this may result in KVM fragmentation which is not handled optimally
1221 	 * by the system. XXX This is less true with vmem.  We could use
1222 	 * PAGE_SIZE.
1223 	 */
1224 	maxbufspace = (long)nbuf * BKVASIZE;
1225 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1226 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1227 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1228 
1229 	/*
1230 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1231 	 * arbitrarily and may need further tuning. It corresponds to
1232 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1233 	 * which fits with many RAID controllers' tagged queuing limits.
1234 	 * The lower 1 MiB limit is the historical upper limit for
1235 	 * hirunningspace.
1236 	 */
1237 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1238 	    16 * 1024 * 1024), 1024 * 1024);
1239 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1240 
1241 	/*
1242 	 * Limit the amount of malloc memory since it is wired permanently into
1243 	 * the kernel space.  Even though this is accounted for in the buffer
1244 	 * allocation, we don't want the malloced region to grow uncontrolled.
1245 	 * The malloc scheme improves memory utilization significantly on
1246 	 * average (small) directories.
1247 	 */
1248 	maxbufmallocspace = hibufspace / 20;
1249 
1250 	/*
1251 	 * Reduce the chance of a deadlock occurring by limiting the number
1252 	 * of delayed-write dirty buffers we allow to stack up.
1253 	 */
1254 	hidirtybuffers = nbuf / 4 + 20;
1255 	dirtybufthresh = hidirtybuffers * 9 / 10;
1256 	/*
1257 	 * To support extreme low-memory systems, make sure hidirtybuffers
1258 	 * cannot eat up all available buffer space.  This occurs when our
1259 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1260 	 * buffer space assuming BKVASIZE'd buffers.
1261 	 */
1262 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1263 		hidirtybuffers >>= 1;
1264 	}
1265 	lodirtybuffers = hidirtybuffers / 2;
1266 
1267 	/*
1268 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1269 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1270 	 * are counted as free but will be unavailable to threads executing
1271 	 * on other cpus.
1272 	 *
1273 	 * hifreebuffers is the free target for the bufspace daemon.  This
1274 	 * should be set appropriately to limit work per-iteration.
1275 	 */
1276 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1277 	hifreebuffers = (3 * lofreebuffers) / 2;
1278 	numfreebuffers = nbuf;
1279 
1280 	/* Setup the kva and free list allocators. */
1281 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1282 	buf_zone = uma_zcache_create("buf free cache",
1283 	    sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1284 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1285 
1286 	/*
1287 	 * Size the clean queue according to the amount of buffer space.
1288 	 * One queue per-256mb up to the max.  More queues gives better
1289 	 * concurrency but less accurate LRU.
1290 	 */
1291 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1292 	for (i = 0 ; i < buf_domains; i++) {
1293 		struct bufdomain *bd;
1294 
1295 		bd = &bdomain[i];
1296 		bd_init(bd);
1297 		bd->bd_freebuffers = nbuf / buf_domains;
1298 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1299 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1300 		bd->bd_bufspace = 0;
1301 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1302 		bd->bd_hibufspace = hibufspace / buf_domains;
1303 		bd->bd_lobufspace = lobufspace / buf_domains;
1304 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1305 		bd->bd_numdirtybuffers = 0;
1306 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1307 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1308 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1309 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1310 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1311 	}
1312 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1313 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1314 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1315 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1316 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1317 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1318 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1319 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1320 }
1321 
1322 #ifdef INVARIANTS
1323 static inline void
vfs_buf_check_mapped(struct buf * bp)1324 vfs_buf_check_mapped(struct buf *bp)
1325 {
1326 
1327 	KASSERT(bp->b_kvabase != unmapped_buf,
1328 	    ("mapped buf: b_kvabase was not updated %p", bp));
1329 	KASSERT(bp->b_data != unmapped_buf,
1330 	    ("mapped buf: b_data was not updated %p", bp));
1331 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1332 	    maxphys, ("b_data + b_offset unmapped %p", bp));
1333 }
1334 
1335 static inline void
vfs_buf_check_unmapped(struct buf * bp)1336 vfs_buf_check_unmapped(struct buf *bp)
1337 {
1338 
1339 	KASSERT(bp->b_data == unmapped_buf,
1340 	    ("unmapped buf: corrupted b_data %p", bp));
1341 }
1342 
1343 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1344 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1345 #else
1346 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1347 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1348 #endif
1349 
1350 static int
isbufbusy(struct buf * bp)1351 isbufbusy(struct buf *bp)
1352 {
1353 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1354 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1355 		return (1);
1356 	return (0);
1357 }
1358 
1359 /*
1360  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1361  */
1362 void
bufshutdown(int show_busybufs)1363 bufshutdown(int show_busybufs)
1364 {
1365 	static int first_buf_printf = 1;
1366 	struct buf *bp;
1367 	int i, iter, nbusy, pbusy;
1368 #ifndef PREEMPTION
1369 	int subiter;
1370 #endif
1371 
1372 	/*
1373 	 * Sync filesystems for shutdown
1374 	 */
1375 	wdog_kern_pat(WD_LASTVAL);
1376 	kern_sync(curthread);
1377 
1378 	/*
1379 	 * With soft updates, some buffers that are
1380 	 * written will be remarked as dirty until other
1381 	 * buffers are written.
1382 	 */
1383 	for (iter = pbusy = 0; iter < 20; iter++) {
1384 		nbusy = 0;
1385 		for (i = nbuf - 1; i >= 0; i--) {
1386 			bp = nbufp(i);
1387 			if (isbufbusy(bp))
1388 				nbusy++;
1389 		}
1390 		if (nbusy == 0) {
1391 			if (first_buf_printf)
1392 				printf("All buffers synced.");
1393 			break;
1394 		}
1395 		if (first_buf_printf) {
1396 			printf("Syncing disks, buffers remaining... ");
1397 			first_buf_printf = 0;
1398 		}
1399 		printf("%d ", nbusy);
1400 		if (nbusy < pbusy)
1401 			iter = 0;
1402 		pbusy = nbusy;
1403 
1404 		wdog_kern_pat(WD_LASTVAL);
1405 		kern_sync(curthread);
1406 
1407 #ifdef PREEMPTION
1408 		/*
1409 		 * Spin for a while to allow interrupt threads to run.
1410 		 */
1411 		DELAY(50000 * iter);
1412 #else
1413 		/*
1414 		 * Context switch several times to allow interrupt
1415 		 * threads to run.
1416 		 */
1417 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1418 			thread_lock(curthread);
1419 			mi_switch(SW_VOL);
1420 			DELAY(1000);
1421 		}
1422 #endif
1423 	}
1424 	printf("\n");
1425 	/*
1426 	 * Count only busy local buffers to prevent forcing
1427 	 * a fsck if we're just a client of a wedged NFS server
1428 	 */
1429 	nbusy = 0;
1430 	for (i = nbuf - 1; i >= 0; i--) {
1431 		bp = nbufp(i);
1432 		if (isbufbusy(bp)) {
1433 #if 0
1434 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1435 			if (bp->b_dev == NULL) {
1436 				TAILQ_REMOVE(&mountlist,
1437 				    bp->b_vp->v_mount, mnt_list);
1438 				continue;
1439 			}
1440 #endif
1441 			nbusy++;
1442 			if (show_busybufs > 0) {
1443 				printf(
1444 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1445 				    nbusy, bp, bp->b_vp, bp->b_flags,
1446 				    (intmax_t)bp->b_blkno,
1447 				    (intmax_t)bp->b_lblkno);
1448 				BUF_LOCKPRINTINFO(bp);
1449 				if (show_busybufs > 1)
1450 					vn_printf(bp->b_vp,
1451 					    "vnode content: ");
1452 			}
1453 		}
1454 	}
1455 	if (nbusy) {
1456 		/*
1457 		 * Failed to sync all blocks. Indicate this and don't
1458 		 * unmount filesystems (thus forcing an fsck on reboot).
1459 		 */
1460 		printf("Giving up on %d buffers\n", nbusy);
1461 		DELAY(5000000);	/* 5 seconds */
1462 		swapoff_all();
1463 	} else {
1464 		if (!first_buf_printf)
1465 			printf("Final sync complete\n");
1466 
1467 		/*
1468 		 * Unmount filesystems and perform swapoff, to quiesce
1469 		 * the system as much as possible.  In particular, no
1470 		 * I/O should be initiated from top levels since it
1471 		 * might be abruptly terminated by reset, or otherwise
1472 		 * erronously handled because other parts of the
1473 		 * system are disabled.
1474 		 *
1475 		 * Swapoff before unmount, because file-backed swap is
1476 		 * non-operational after unmount of the underlying
1477 		 * filesystem.
1478 		 */
1479 		if (!KERNEL_PANICKED()) {
1480 			swapoff_all();
1481 			vfs_unmountall();
1482 		}
1483 	}
1484 	DELAY(100000);		/* wait for console output to finish */
1485 }
1486 
1487 static void
bpmap_qenter(struct buf * bp)1488 bpmap_qenter(struct buf *bp)
1489 {
1490 
1491 	BUF_CHECK_MAPPED(bp);
1492 
1493 	/*
1494 	 * bp->b_data is relative to bp->b_offset, but
1495 	 * bp->b_offset may be offset into the first page.
1496 	 */
1497 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1498 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1499 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1500 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1501 }
1502 
1503 static inline struct bufdomain *
bufdomain(struct buf * bp)1504 bufdomain(struct buf *bp)
1505 {
1506 
1507 	return (&bdomain[bp->b_domain]);
1508 }
1509 
1510 static struct bufqueue *
bufqueue(struct buf * bp)1511 bufqueue(struct buf *bp)
1512 {
1513 
1514 	switch (bp->b_qindex) {
1515 	case QUEUE_NONE:
1516 		/* FALLTHROUGH */
1517 	case QUEUE_SENTINEL:
1518 		return (NULL);
1519 	case QUEUE_EMPTY:
1520 		return (&bqempty);
1521 	case QUEUE_DIRTY:
1522 		return (&bufdomain(bp)->bd_dirtyq);
1523 	case QUEUE_CLEAN:
1524 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1525 	default:
1526 		break;
1527 	}
1528 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1529 }
1530 
1531 /*
1532  * Return the locked bufqueue that bp is a member of.
1533  */
1534 static struct bufqueue *
bufqueue_acquire(struct buf * bp)1535 bufqueue_acquire(struct buf *bp)
1536 {
1537 	struct bufqueue *bq, *nbq;
1538 
1539 	/*
1540 	 * bp can be pushed from a per-cpu queue to the
1541 	 * cleanq while we're waiting on the lock.  Retry
1542 	 * if the queues don't match.
1543 	 */
1544 	bq = bufqueue(bp);
1545 	BQ_LOCK(bq);
1546 	for (;;) {
1547 		nbq = bufqueue(bp);
1548 		if (bq == nbq)
1549 			break;
1550 		BQ_UNLOCK(bq);
1551 		BQ_LOCK(nbq);
1552 		bq = nbq;
1553 	}
1554 	return (bq);
1555 }
1556 
1557 /*
1558  *	binsfree:
1559  *
1560  *	Insert the buffer into the appropriate free list.  Requires a
1561  *	locked buffer on entry and buffer is unlocked before return.
1562  */
1563 static void
binsfree(struct buf * bp,int qindex)1564 binsfree(struct buf *bp, int qindex)
1565 {
1566 	struct bufdomain *bd;
1567 	struct bufqueue *bq;
1568 
1569 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1570 	    ("binsfree: Invalid qindex %d", qindex));
1571 	BUF_ASSERT_XLOCKED(bp);
1572 
1573 	/*
1574 	 * Handle delayed bremfree() processing.
1575 	 */
1576 	if (bp->b_flags & B_REMFREE) {
1577 		if (bp->b_qindex == qindex) {
1578 			bp->b_flags |= B_REUSE;
1579 			bp->b_flags &= ~B_REMFREE;
1580 			BUF_UNLOCK(bp);
1581 			return;
1582 		}
1583 		bq = bufqueue_acquire(bp);
1584 		bq_remove(bq, bp);
1585 		BQ_UNLOCK(bq);
1586 	}
1587 	bd = bufdomain(bp);
1588 	if (qindex == QUEUE_CLEAN) {
1589 		if (bd->bd_lim != 0)
1590 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1591 		else
1592 			bq = bd->bd_cleanq;
1593 	} else
1594 		bq = &bd->bd_dirtyq;
1595 	bq_insert(bq, bp, true);
1596 }
1597 
1598 /*
1599  * buf_free:
1600  *
1601  *	Free a buffer to the buf zone once it no longer has valid contents.
1602  */
1603 static void
buf_free(struct buf * bp)1604 buf_free(struct buf *bp)
1605 {
1606 
1607 	if (bp->b_flags & B_REMFREE)
1608 		bremfreef(bp);
1609 	if (bp->b_vflags & BV_BKGRDINPROG)
1610 		panic("losing buffer 1");
1611 	if (bp->b_rcred != NOCRED) {
1612 		crfree(bp->b_rcred);
1613 		bp->b_rcred = NOCRED;
1614 	}
1615 	if (bp->b_wcred != NOCRED) {
1616 		crfree(bp->b_wcred);
1617 		bp->b_wcred = NOCRED;
1618 	}
1619 	if (!LIST_EMPTY(&bp->b_dep))
1620 		buf_deallocate(bp);
1621 	bufkva_free(bp);
1622 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1623 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1624 	BUF_UNLOCK(bp);
1625 	uma_zfree(buf_zone, bp);
1626 }
1627 
1628 /*
1629  * buf_import:
1630  *
1631  *	Import bufs into the uma cache from the buf list.  The system still
1632  *	expects a static array of bufs and much of the synchronization
1633  *	around bufs assumes type stable storage.  As a result, UMA is used
1634  *	only as a per-cpu cache of bufs still maintained on a global list.
1635  */
1636 static int
buf_import(void * arg,void ** store,int cnt,int domain,int flags)1637 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1638 {
1639 	struct buf *bp;
1640 	int i;
1641 
1642 	BQ_LOCK(&bqempty);
1643 	for (i = 0; i < cnt; i++) {
1644 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1645 		if (bp == NULL)
1646 			break;
1647 		bq_remove(&bqempty, bp);
1648 		store[i] = bp;
1649 	}
1650 	BQ_UNLOCK(&bqempty);
1651 
1652 	return (i);
1653 }
1654 
1655 /*
1656  * buf_release:
1657  *
1658  *	Release bufs from the uma cache back to the buffer queues.
1659  */
1660 static void
buf_release(void * arg,void ** store,int cnt)1661 buf_release(void *arg, void **store, int cnt)
1662 {
1663 	struct bufqueue *bq;
1664 	struct buf *bp;
1665         int i;
1666 
1667 	bq = &bqempty;
1668 	BQ_LOCK(bq);
1669         for (i = 0; i < cnt; i++) {
1670 		bp = store[i];
1671 		/* Inline bq_insert() to batch locking. */
1672 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1673 		bp->b_flags &= ~(B_AGE | B_REUSE);
1674 		bq->bq_len++;
1675 		bp->b_qindex = bq->bq_index;
1676 	}
1677 	BQ_UNLOCK(bq);
1678 }
1679 
1680 /*
1681  * buf_alloc:
1682  *
1683  *	Allocate an empty buffer header.
1684  */
1685 static struct buf *
buf_alloc(struct bufdomain * bd)1686 buf_alloc(struct bufdomain *bd)
1687 {
1688 	struct buf *bp;
1689 	int freebufs, error;
1690 
1691 	/*
1692 	 * We can only run out of bufs in the buf zone if the average buf
1693 	 * is less than BKVASIZE.  In this case the actual wait/block will
1694 	 * come from buf_reycle() failing to flush one of these small bufs.
1695 	 */
1696 	bp = NULL;
1697 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1698 	if (freebufs > 0)
1699 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1700 	if (bp == NULL) {
1701 		atomic_add_int(&bd->bd_freebuffers, 1);
1702 		bufspace_daemon_wakeup(bd);
1703 		counter_u64_add(numbufallocfails, 1);
1704 		return (NULL);
1705 	}
1706 	/*
1707 	 * Wake-up the bufspace daemon on transition below threshold.
1708 	 */
1709 	if (freebufs == bd->bd_lofreebuffers)
1710 		bufspace_daemon_wakeup(bd);
1711 
1712 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1713 	KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1714 	    error));
1715 	(void)error;
1716 
1717 	KASSERT(bp->b_vp == NULL,
1718 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1719 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1720 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1721 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1722 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1723 	KASSERT(bp->b_npages == 0,
1724 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1725 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1726 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1727 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1728 
1729 	bp->b_domain = BD_DOMAIN(bd);
1730 	bp->b_flags = 0;
1731 	bp->b_ioflags = 0;
1732 	bp->b_xflags = 0;
1733 	bp->b_vflags = 0;
1734 	bp->b_vp = NULL;
1735 	bp->b_blkno = bp->b_lblkno = 0;
1736 	bp->b_offset = NOOFFSET;
1737 	bp->b_iodone = 0;
1738 	bp->b_error = 0;
1739 	bp->b_resid = 0;
1740 	bp->b_bcount = 0;
1741 	bp->b_npages = 0;
1742 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1743 	bp->b_bufobj = NULL;
1744 	bp->b_data = bp->b_kvabase = unmapped_buf;
1745 	bp->b_fsprivate1 = NULL;
1746 	bp->b_fsprivate2 = NULL;
1747 	bp->b_fsprivate3 = NULL;
1748 	LIST_INIT(&bp->b_dep);
1749 
1750 	return (bp);
1751 }
1752 
1753 /*
1754  *	buf_recycle:
1755  *
1756  *	Free a buffer from the given bufqueue.  kva controls whether the
1757  *	freed buf must own some kva resources.  This is used for
1758  *	defragmenting.
1759  */
1760 static int
buf_recycle(struct bufdomain * bd,bool kva)1761 buf_recycle(struct bufdomain *bd, bool kva)
1762 {
1763 	struct bufqueue *bq;
1764 	struct buf *bp, *nbp;
1765 
1766 	if (kva)
1767 		counter_u64_add(bufdefragcnt, 1);
1768 	nbp = NULL;
1769 	bq = bd->bd_cleanq;
1770 	BQ_LOCK(bq);
1771 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1772 	    ("buf_recycle: Locks don't match"));
1773 	nbp = TAILQ_FIRST(&bq->bq_queue);
1774 
1775 	/*
1776 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1777 	 * depending.
1778 	 */
1779 	while ((bp = nbp) != NULL) {
1780 		/*
1781 		 * Calculate next bp (we can only use it if we do not
1782 		 * release the bqlock).
1783 		 */
1784 		nbp = TAILQ_NEXT(bp, b_freelist);
1785 
1786 		/*
1787 		 * If we are defragging then we need a buffer with
1788 		 * some kva to reclaim.
1789 		 */
1790 		if (kva && bp->b_kvasize == 0)
1791 			continue;
1792 
1793 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1794 			continue;
1795 
1796 		/*
1797 		 * Implement a second chance algorithm for frequently
1798 		 * accessed buffers.
1799 		 */
1800 		if ((bp->b_flags & B_REUSE) != 0) {
1801 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1802 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1803 			bp->b_flags &= ~B_REUSE;
1804 			BUF_UNLOCK(bp);
1805 			continue;
1806 		}
1807 
1808 		/*
1809 		 * Skip buffers with background writes in progress.
1810 		 */
1811 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1812 			BUF_UNLOCK(bp);
1813 			continue;
1814 		}
1815 
1816 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1817 		    ("buf_recycle: inconsistent queue %d bp %p",
1818 		    bp->b_qindex, bp));
1819 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1820 		    ("getnewbuf: queue domain %d doesn't match request %d",
1821 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1822 		/*
1823 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1824 		 * the scan from this point on.
1825 		 */
1826 		bq_remove(bq, bp);
1827 		BQ_UNLOCK(bq);
1828 
1829 		/*
1830 		 * Requeue the background write buffer with error and
1831 		 * restart the scan.
1832 		 */
1833 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1834 			bqrelse(bp);
1835 			BQ_LOCK(bq);
1836 			nbp = TAILQ_FIRST(&bq->bq_queue);
1837 			continue;
1838 		}
1839 		bp->b_flags |= B_INVAL;
1840 		brelse(bp);
1841 		return (0);
1842 	}
1843 	bd->bd_wanted = 1;
1844 	BQ_UNLOCK(bq);
1845 
1846 	return (ENOBUFS);
1847 }
1848 
1849 /*
1850  *	bremfree:
1851  *
1852  *	Mark the buffer for removal from the appropriate free list.
1853  *
1854  */
1855 void
bremfree(struct buf * bp)1856 bremfree(struct buf *bp)
1857 {
1858 
1859 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1860 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1861 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1862 	KASSERT(bp->b_qindex != QUEUE_NONE,
1863 	    ("bremfree: buffer %p not on a queue.", bp));
1864 	BUF_ASSERT_XLOCKED(bp);
1865 
1866 	bp->b_flags |= B_REMFREE;
1867 }
1868 
1869 /*
1870  *	bremfreef:
1871  *
1872  *	Force an immediate removal from a free list.  Used only in nfs when
1873  *	it abuses the b_freelist pointer.
1874  */
1875 void
bremfreef(struct buf * bp)1876 bremfreef(struct buf *bp)
1877 {
1878 	struct bufqueue *bq;
1879 
1880 	bq = bufqueue_acquire(bp);
1881 	bq_remove(bq, bp);
1882 	BQ_UNLOCK(bq);
1883 }
1884 
1885 static void
bq_init(struct bufqueue * bq,int qindex,int subqueue,const char * lockname)1886 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1887 {
1888 
1889 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1890 	TAILQ_INIT(&bq->bq_queue);
1891 	bq->bq_len = 0;
1892 	bq->bq_index = qindex;
1893 	bq->bq_subqueue = subqueue;
1894 }
1895 
1896 static void
bd_init(struct bufdomain * bd)1897 bd_init(struct bufdomain *bd)
1898 {
1899 	int i;
1900 
1901 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1902 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1903 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1904 	for (i = 0; i <= mp_maxid; i++)
1905 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1906 		    "bufq clean subqueue lock");
1907 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1908 }
1909 
1910 /*
1911  *	bq_remove:
1912  *
1913  *	Removes a buffer from the free list, must be called with the
1914  *	correct qlock held.
1915  */
1916 static void
bq_remove(struct bufqueue * bq,struct buf * bp)1917 bq_remove(struct bufqueue *bq, struct buf *bp)
1918 {
1919 
1920 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1921 	    bp, bp->b_vp, bp->b_flags);
1922 	KASSERT(bp->b_qindex != QUEUE_NONE,
1923 	    ("bq_remove: buffer %p not on a queue.", bp));
1924 	KASSERT(bufqueue(bp) == bq,
1925 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1926 
1927 	BQ_ASSERT_LOCKED(bq);
1928 	if (bp->b_qindex != QUEUE_EMPTY) {
1929 		BUF_ASSERT_XLOCKED(bp);
1930 	}
1931 	KASSERT(bq->bq_len >= 1,
1932 	    ("queue %d underflow", bp->b_qindex));
1933 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1934 	bq->bq_len--;
1935 	bp->b_qindex = QUEUE_NONE;
1936 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1937 }
1938 
1939 static void
bd_flush(struct bufdomain * bd,struct bufqueue * bq)1940 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1941 {
1942 	struct buf *bp;
1943 
1944 	BQ_ASSERT_LOCKED(bq);
1945 	if (bq != bd->bd_cleanq) {
1946 		BD_LOCK(bd);
1947 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1948 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1949 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1950 			    b_freelist);
1951 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1952 		}
1953 		bd->bd_cleanq->bq_len += bq->bq_len;
1954 		bq->bq_len = 0;
1955 	}
1956 	if (bd->bd_wanted) {
1957 		bd->bd_wanted = 0;
1958 		wakeup(&bd->bd_wanted);
1959 	}
1960 	if (bq != bd->bd_cleanq)
1961 		BD_UNLOCK(bd);
1962 }
1963 
1964 static int
bd_flushall(struct bufdomain * bd)1965 bd_flushall(struct bufdomain *bd)
1966 {
1967 	struct bufqueue *bq;
1968 	int flushed;
1969 	int i;
1970 
1971 	if (bd->bd_lim == 0)
1972 		return (0);
1973 	flushed = 0;
1974 	for (i = 0; i <= mp_maxid; i++) {
1975 		bq = &bd->bd_subq[i];
1976 		if (bq->bq_len == 0)
1977 			continue;
1978 		BQ_LOCK(bq);
1979 		bd_flush(bd, bq);
1980 		BQ_UNLOCK(bq);
1981 		flushed++;
1982 	}
1983 
1984 	return (flushed);
1985 }
1986 
1987 static void
bq_insert(struct bufqueue * bq,struct buf * bp,bool unlock)1988 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1989 {
1990 	struct bufdomain *bd;
1991 
1992 	if (bp->b_qindex != QUEUE_NONE)
1993 		panic("bq_insert: free buffer %p onto another queue?", bp);
1994 
1995 	bd = bufdomain(bp);
1996 	if (bp->b_flags & B_AGE) {
1997 		/* Place this buf directly on the real queue. */
1998 		if (bq->bq_index == QUEUE_CLEAN)
1999 			bq = bd->bd_cleanq;
2000 		BQ_LOCK(bq);
2001 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
2002 	} else {
2003 		BQ_LOCK(bq);
2004 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
2005 	}
2006 	bp->b_flags &= ~(B_AGE | B_REUSE);
2007 	bq->bq_len++;
2008 	bp->b_qindex = bq->bq_index;
2009 	bp->b_subqueue = bq->bq_subqueue;
2010 
2011 	/*
2012 	 * Unlock before we notify so that we don't wakeup a waiter that
2013 	 * fails a trylock on the buf and sleeps again.
2014 	 */
2015 	if (unlock)
2016 		BUF_UNLOCK(bp);
2017 
2018 	if (bp->b_qindex == QUEUE_CLEAN) {
2019 		/*
2020 		 * Flush the per-cpu queue and notify any waiters.
2021 		 */
2022 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2023 		    bq->bq_len >= bd->bd_lim))
2024 			bd_flush(bd, bq);
2025 	}
2026 	BQ_UNLOCK(bq);
2027 }
2028 
2029 /*
2030  *	bufkva_free:
2031  *
2032  *	Free the kva allocation for a buffer.
2033  *
2034  */
2035 static void
bufkva_free(struct buf * bp)2036 bufkva_free(struct buf *bp)
2037 {
2038 
2039 #ifdef INVARIANTS
2040 	if (bp->b_kvasize == 0) {
2041 		KASSERT(bp->b_kvabase == unmapped_buf &&
2042 		    bp->b_data == unmapped_buf,
2043 		    ("Leaked KVA space on %p", bp));
2044 	} else if (buf_mapped(bp))
2045 		BUF_CHECK_MAPPED(bp);
2046 	else
2047 		BUF_CHECK_UNMAPPED(bp);
2048 #endif
2049 	if (bp->b_kvasize == 0)
2050 		return;
2051 
2052 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2053 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2054 	counter_u64_add(buffreekvacnt, 1);
2055 	bp->b_data = bp->b_kvabase = unmapped_buf;
2056 	bp->b_kvasize = 0;
2057 }
2058 
2059 /*
2060  *	bufkva_alloc:
2061  *
2062  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2063  */
2064 static int
bufkva_alloc(struct buf * bp,int maxsize,int gbflags)2065 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2066 {
2067 	vm_offset_t addr;
2068 	int error;
2069 
2070 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2071 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2072 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
2073 	KASSERT(maxsize <= maxbcachebuf,
2074 	    ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2075 
2076 	bufkva_free(bp);
2077 
2078 	addr = 0;
2079 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2080 	if (error != 0) {
2081 		/*
2082 		 * Buffer map is too fragmented.  Request the caller
2083 		 * to defragment the map.
2084 		 */
2085 		return (error);
2086 	}
2087 	bp->b_kvabase = (caddr_t)addr;
2088 	bp->b_kvasize = maxsize;
2089 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2090 	if ((gbflags & GB_UNMAPPED) != 0) {
2091 		bp->b_data = unmapped_buf;
2092 		BUF_CHECK_UNMAPPED(bp);
2093 	} else {
2094 		bp->b_data = bp->b_kvabase;
2095 		BUF_CHECK_MAPPED(bp);
2096 	}
2097 	return (0);
2098 }
2099 
2100 /*
2101  *	bufkva_reclaim:
2102  *
2103  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2104  *	callback that fires to avoid returning failure.
2105  */
2106 static void
bufkva_reclaim(vmem_t * vmem,int flags)2107 bufkva_reclaim(vmem_t *vmem, int flags)
2108 {
2109 	bool done;
2110 	int q;
2111 	int i;
2112 
2113 	done = false;
2114 	for (i = 0; i < 5; i++) {
2115 		for (q = 0; q < buf_domains; q++)
2116 			if (buf_recycle(&bdomain[q], true) != 0)
2117 				done = true;
2118 		if (done)
2119 			break;
2120 	}
2121 	return;
2122 }
2123 
2124 /*
2125  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2126  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2127  * the buffer is valid and we do not have to do anything.
2128  */
2129 static void
breada(struct vnode * vp,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *))2130 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2131     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2132 {
2133 	struct buf *rabp;
2134 	struct thread *td;
2135 	int i;
2136 
2137 	td = curthread;
2138 
2139 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2140 		if (inmem(vp, *rablkno))
2141 			continue;
2142 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2143 		if ((rabp->b_flags & B_CACHE) != 0) {
2144 			brelse(rabp);
2145 			continue;
2146 		}
2147 #ifdef RACCT
2148 		if (racct_enable) {
2149 			PROC_LOCK(curproc);
2150 			racct_add_buf(curproc, rabp, 0);
2151 			PROC_UNLOCK(curproc);
2152 		}
2153 #endif /* RACCT */
2154 		td->td_ru.ru_inblock++;
2155 		rabp->b_flags |= B_ASYNC;
2156 		rabp->b_flags &= ~B_INVAL;
2157 		if ((flags & GB_CKHASH) != 0) {
2158 			rabp->b_flags |= B_CKHASH;
2159 			rabp->b_ckhashcalc = ckhashfunc;
2160 		}
2161 		rabp->b_ioflags &= ~BIO_ERROR;
2162 		rabp->b_iocmd = BIO_READ;
2163 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2164 			rabp->b_rcred = crhold(cred);
2165 		vfs_busy_pages(rabp, 0);
2166 		BUF_KERNPROC(rabp);
2167 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2168 		bstrategy(rabp);
2169 	}
2170 }
2171 
2172 /*
2173  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2174  *
2175  * Get a buffer with the specified data.  Look in the cache first.  We
2176  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2177  * is set, the buffer is valid and we do not have to do anything, see
2178  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2179  *
2180  * Always return a NULL buffer pointer (in bpp) when returning an error.
2181  *
2182  * The blkno parameter is the logical block being requested. Normally
2183  * the mapping of logical block number to disk block address is done
2184  * by calling VOP_BMAP(). However, if the mapping is already known, the
2185  * disk block address can be passed using the dblkno parameter. If the
2186  * disk block address is not known, then the same value should be passed
2187  * for blkno and dblkno.
2188  */
2189 int
breadn_flags(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *),struct buf ** bpp)2190 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2191     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2192     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2193 {
2194 	struct buf *bp;
2195 	struct thread *td;
2196 	int error, readwait, rv;
2197 
2198 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2199 	td = curthread;
2200 	/*
2201 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2202 	 * are specified.
2203 	 */
2204 	error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2205 	if (error != 0) {
2206 		*bpp = NULL;
2207 		return (error);
2208 	}
2209 	KASSERT(blkno == bp->b_lblkno,
2210 	    ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2211 	    (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2212 	flags &= ~GB_NOSPARSE;
2213 	*bpp = bp;
2214 
2215 	/*
2216 	 * If not found in cache, do some I/O
2217 	 */
2218 	readwait = 0;
2219 	if ((bp->b_flags & B_CACHE) == 0) {
2220 #ifdef RACCT
2221 		if (racct_enable) {
2222 			PROC_LOCK(td->td_proc);
2223 			racct_add_buf(td->td_proc, bp, 0);
2224 			PROC_UNLOCK(td->td_proc);
2225 		}
2226 #endif /* RACCT */
2227 		td->td_ru.ru_inblock++;
2228 		bp->b_iocmd = BIO_READ;
2229 		bp->b_flags &= ~B_INVAL;
2230 		if ((flags & GB_CKHASH) != 0) {
2231 			bp->b_flags |= B_CKHASH;
2232 			bp->b_ckhashcalc = ckhashfunc;
2233 		}
2234 		if ((flags & GB_CVTENXIO) != 0)
2235 			bp->b_xflags |= BX_CVTENXIO;
2236 		bp->b_ioflags &= ~BIO_ERROR;
2237 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2238 			bp->b_rcred = crhold(cred);
2239 		vfs_busy_pages(bp, 0);
2240 		bp->b_iooffset = dbtob(bp->b_blkno);
2241 		bstrategy(bp);
2242 		++readwait;
2243 	}
2244 
2245 	/*
2246 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2247 	 */
2248 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2249 
2250 	rv = 0;
2251 	if (readwait) {
2252 		rv = bufwait(bp);
2253 		if (rv != 0) {
2254 			brelse(bp);
2255 			*bpp = NULL;
2256 		}
2257 	}
2258 	return (rv);
2259 }
2260 
2261 /*
2262  * Write, release buffer on completion.  (Done by iodone
2263  * if async).  Do not bother writing anything if the buffer
2264  * is invalid.
2265  *
2266  * Note that we set B_CACHE here, indicating that buffer is
2267  * fully valid and thus cacheable.  This is true even of NFS
2268  * now so we set it generally.  This could be set either here
2269  * or in biodone() since the I/O is synchronous.  We put it
2270  * here.
2271  */
2272 int
bufwrite(struct buf * bp)2273 bufwrite(struct buf *bp)
2274 {
2275 	int oldflags;
2276 	struct vnode *vp;
2277 	long space;
2278 	int vp_md;
2279 
2280 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2281 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2282 		bp->b_flags |= B_INVAL | B_RELBUF;
2283 		bp->b_flags &= ~B_CACHE;
2284 		brelse(bp);
2285 		return (ENXIO);
2286 	}
2287 	if (bp->b_flags & B_INVAL) {
2288 		brelse(bp);
2289 		return (0);
2290 	}
2291 
2292 	if (bp->b_flags & B_BARRIER)
2293 		atomic_add_long(&barrierwrites, 1);
2294 
2295 	oldflags = bp->b_flags;
2296 
2297 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2298 	    ("FFS background buffer should not get here %p", bp));
2299 
2300 	vp = bp->b_vp;
2301 	if (vp)
2302 		vp_md = vp->v_vflag & VV_MD;
2303 	else
2304 		vp_md = 0;
2305 
2306 	/*
2307 	 * Mark the buffer clean.  Increment the bufobj write count
2308 	 * before bundirty() call, to prevent other thread from seeing
2309 	 * empty dirty list and zero counter for writes in progress,
2310 	 * falsely indicating that the bufobj is clean.
2311 	 */
2312 	bufobj_wref(bp->b_bufobj);
2313 	bundirty(bp);
2314 
2315 	bp->b_flags &= ~B_DONE;
2316 	bp->b_ioflags &= ~BIO_ERROR;
2317 	bp->b_flags |= B_CACHE;
2318 	bp->b_iocmd = BIO_WRITE;
2319 
2320 	vfs_busy_pages(bp, 1);
2321 
2322 	/*
2323 	 * Normal bwrites pipeline writes
2324 	 */
2325 	bp->b_runningbufspace = bp->b_bufsize;
2326 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2327 
2328 #ifdef RACCT
2329 	if (racct_enable) {
2330 		PROC_LOCK(curproc);
2331 		racct_add_buf(curproc, bp, 1);
2332 		PROC_UNLOCK(curproc);
2333 	}
2334 #endif /* RACCT */
2335 	curthread->td_ru.ru_oublock++;
2336 	if (oldflags & B_ASYNC)
2337 		BUF_KERNPROC(bp);
2338 	bp->b_iooffset = dbtob(bp->b_blkno);
2339 	buf_track(bp, __func__);
2340 	bstrategy(bp);
2341 
2342 	if ((oldflags & B_ASYNC) == 0) {
2343 		int rtval = bufwait(bp);
2344 		brelse(bp);
2345 		return (rtval);
2346 	} else if (space > hirunningspace) {
2347 		/*
2348 		 * don't allow the async write to saturate the I/O
2349 		 * system.  We will not deadlock here because
2350 		 * we are blocking waiting for I/O that is already in-progress
2351 		 * to complete. We do not block here if it is the update
2352 		 * or syncer daemon trying to clean up as that can lead
2353 		 * to deadlock.
2354 		 */
2355 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2356 			waitrunningbufspace();
2357 	}
2358 
2359 	return (0);
2360 }
2361 
2362 void
bufbdflush(struct bufobj * bo,struct buf * bp)2363 bufbdflush(struct bufobj *bo, struct buf *bp)
2364 {
2365 	struct buf *nbp;
2366 	struct bufdomain *bd;
2367 
2368 	bd = &bdomain[bo->bo_domain];
2369 	if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2370 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2371 		altbufferflushes++;
2372 	} else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2373 		BO_LOCK(bo);
2374 		/*
2375 		 * Try to find a buffer to flush.
2376 		 */
2377 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2378 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2379 			    BUF_LOCK(nbp,
2380 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2381 				continue;
2382 			if (bp == nbp)
2383 				panic("bdwrite: found ourselves");
2384 			BO_UNLOCK(bo);
2385 			/* Don't countdeps with the bo lock held. */
2386 			if (buf_countdeps(nbp, 0)) {
2387 				BO_LOCK(bo);
2388 				BUF_UNLOCK(nbp);
2389 				continue;
2390 			}
2391 			if (nbp->b_flags & B_CLUSTEROK) {
2392 				vfs_bio_awrite(nbp);
2393 			} else {
2394 				bremfree(nbp);
2395 				bawrite(nbp);
2396 			}
2397 			dirtybufferflushes++;
2398 			break;
2399 		}
2400 		if (nbp == NULL)
2401 			BO_UNLOCK(bo);
2402 	}
2403 }
2404 
2405 /*
2406  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2407  * anything if the buffer is marked invalid.
2408  *
2409  * Note that since the buffer must be completely valid, we can safely
2410  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2411  * biodone() in order to prevent getblk from writing the buffer
2412  * out synchronously.
2413  */
2414 void
bdwrite(struct buf * bp)2415 bdwrite(struct buf *bp)
2416 {
2417 	struct thread *td = curthread;
2418 	struct vnode *vp;
2419 	struct bufobj *bo;
2420 
2421 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2422 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2423 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2424 	    ("Barrier request in delayed write %p", bp));
2425 
2426 	if (bp->b_flags & B_INVAL) {
2427 		brelse(bp);
2428 		return;
2429 	}
2430 
2431 	/*
2432 	 * If we have too many dirty buffers, don't create any more.
2433 	 * If we are wildly over our limit, then force a complete
2434 	 * cleanup. Otherwise, just keep the situation from getting
2435 	 * out of control. Note that we have to avoid a recursive
2436 	 * disaster and not try to clean up after our own cleanup!
2437 	 */
2438 	vp = bp->b_vp;
2439 	bo = bp->b_bufobj;
2440 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2441 		td->td_pflags |= TDP_INBDFLUSH;
2442 		BO_BDFLUSH(bo, bp);
2443 		td->td_pflags &= ~TDP_INBDFLUSH;
2444 	} else
2445 		recursiveflushes++;
2446 
2447 	bdirty(bp);
2448 	/*
2449 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2450 	 * true even of NFS now.
2451 	 */
2452 	bp->b_flags |= B_CACHE;
2453 
2454 	/*
2455 	 * This bmap keeps the system from needing to do the bmap later,
2456 	 * perhaps when the system is attempting to do a sync.  Since it
2457 	 * is likely that the indirect block -- or whatever other datastructure
2458 	 * that the filesystem needs is still in memory now, it is a good
2459 	 * thing to do this.  Note also, that if the pageout daemon is
2460 	 * requesting a sync -- there might not be enough memory to do
2461 	 * the bmap then...  So, this is important to do.
2462 	 */
2463 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2464 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2465 	}
2466 
2467 	buf_track(bp, __func__);
2468 
2469 	/*
2470 	 * Set the *dirty* buffer range based upon the VM system dirty
2471 	 * pages.
2472 	 *
2473 	 * Mark the buffer pages as clean.  We need to do this here to
2474 	 * satisfy the vnode_pager and the pageout daemon, so that it
2475 	 * thinks that the pages have been "cleaned".  Note that since
2476 	 * the pages are in a delayed write buffer -- the VFS layer
2477 	 * "will" see that the pages get written out on the next sync,
2478 	 * or perhaps the cluster will be completed.
2479 	 */
2480 	vfs_clean_pages_dirty_buf(bp);
2481 	bqrelse(bp);
2482 
2483 	/*
2484 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2485 	 * due to the softdep code.
2486 	 */
2487 }
2488 
2489 /*
2490  *	bdirty:
2491  *
2492  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2493  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2494  *	itself to properly update it in the dirty/clean lists.  We mark it
2495  *	B_DONE to ensure that any asynchronization of the buffer properly
2496  *	clears B_DONE ( else a panic will occur later ).
2497  *
2498  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2499  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2500  *	should only be called if the buffer is known-good.
2501  *
2502  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2503  *	count.
2504  *
2505  *	The buffer must be on QUEUE_NONE.
2506  */
2507 void
bdirty(struct buf * bp)2508 bdirty(struct buf *bp)
2509 {
2510 
2511 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2512 	    bp, bp->b_vp, bp->b_flags);
2513 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2514 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2515 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2516 	bp->b_flags &= ~(B_RELBUF);
2517 	bp->b_iocmd = BIO_WRITE;
2518 
2519 	if ((bp->b_flags & B_DELWRI) == 0) {
2520 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2521 		reassignbuf(bp);
2522 		bdirtyadd(bp);
2523 	}
2524 }
2525 
2526 /*
2527  *	bundirty:
2528  *
2529  *	Clear B_DELWRI for buffer.
2530  *
2531  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2532  *	count.
2533  *
2534  *	The buffer must be on QUEUE_NONE.
2535  */
2536 
2537 void
bundirty(struct buf * bp)2538 bundirty(struct buf *bp)
2539 {
2540 
2541 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2542 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2543 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2544 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2545 
2546 	if (bp->b_flags & B_DELWRI) {
2547 		bp->b_flags &= ~B_DELWRI;
2548 		reassignbuf(bp);
2549 		bdirtysub(bp);
2550 	}
2551 	/*
2552 	 * Since it is now being written, we can clear its deferred write flag.
2553 	 */
2554 	bp->b_flags &= ~B_DEFERRED;
2555 }
2556 
2557 /*
2558  *	bawrite:
2559  *
2560  *	Asynchronous write.  Start output on a buffer, but do not wait for
2561  *	it to complete.  The buffer is released when the output completes.
2562  *
2563  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2564  *	B_INVAL buffers.  Not us.
2565  */
2566 void
bawrite(struct buf * bp)2567 bawrite(struct buf *bp)
2568 {
2569 
2570 	bp->b_flags |= B_ASYNC;
2571 	(void) bwrite(bp);
2572 }
2573 
2574 /*
2575  *	babarrierwrite:
2576  *
2577  *	Asynchronous barrier write.  Start output on a buffer, but do not
2578  *	wait for it to complete.  Place a write barrier after this write so
2579  *	that this buffer and all buffers written before it are committed to
2580  *	the disk before any buffers written after this write are committed
2581  *	to the disk.  The buffer is released when the output completes.
2582  */
2583 void
babarrierwrite(struct buf * bp)2584 babarrierwrite(struct buf *bp)
2585 {
2586 
2587 	bp->b_flags |= B_ASYNC | B_BARRIER;
2588 	(void) bwrite(bp);
2589 }
2590 
2591 /*
2592  *	bbarrierwrite:
2593  *
2594  *	Synchronous barrier write.  Start output on a buffer and wait for
2595  *	it to complete.  Place a write barrier after this write so that
2596  *	this buffer and all buffers written before it are committed to
2597  *	the disk before any buffers written after this write are committed
2598  *	to the disk.  The buffer is released when the output completes.
2599  */
2600 int
bbarrierwrite(struct buf * bp)2601 bbarrierwrite(struct buf *bp)
2602 {
2603 
2604 	bp->b_flags |= B_BARRIER;
2605 	return (bwrite(bp));
2606 }
2607 
2608 /*
2609  *	bwillwrite:
2610  *
2611  *	Called prior to the locking of any vnodes when we are expecting to
2612  *	write.  We do not want to starve the buffer cache with too many
2613  *	dirty buffers so we block here.  By blocking prior to the locking
2614  *	of any vnodes we attempt to avoid the situation where a locked vnode
2615  *	prevents the various system daemons from flushing related buffers.
2616  */
2617 void
bwillwrite(void)2618 bwillwrite(void)
2619 {
2620 
2621 	if (buf_dirty_count_severe()) {
2622 		mtx_lock(&bdirtylock);
2623 		while (buf_dirty_count_severe()) {
2624 			bdirtywait = 1;
2625 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2626 			    "flswai", 0);
2627 		}
2628 		mtx_unlock(&bdirtylock);
2629 	}
2630 }
2631 
2632 /*
2633  * Return true if we have too many dirty buffers.
2634  */
2635 int
buf_dirty_count_severe(void)2636 buf_dirty_count_severe(void)
2637 {
2638 
2639 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2640 }
2641 
2642 /*
2643  *	brelse:
2644  *
2645  *	Release a busy buffer and, if requested, free its resources.  The
2646  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2647  *	to be accessed later as a cache entity or reused for other purposes.
2648  */
2649 void
brelse(struct buf * bp)2650 brelse(struct buf *bp)
2651 {
2652 	struct mount *v_mnt;
2653 	int qindex;
2654 
2655 	/*
2656 	 * Many functions erroneously call brelse with a NULL bp under rare
2657 	 * error conditions. Simply return when called with a NULL bp.
2658 	 */
2659 	if (bp == NULL)
2660 		return;
2661 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2662 	    bp, bp->b_vp, bp->b_flags);
2663 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2664 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2665 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2666 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2667 
2668 	if (BUF_LOCKRECURSED(bp)) {
2669 		/*
2670 		 * Do not process, in particular, do not handle the
2671 		 * B_INVAL/B_RELBUF and do not release to free list.
2672 		 */
2673 		BUF_UNLOCK(bp);
2674 		return;
2675 	}
2676 
2677 	if (bp->b_flags & B_MANAGED) {
2678 		bqrelse(bp);
2679 		return;
2680 	}
2681 
2682 	if (LIST_EMPTY(&bp->b_dep)) {
2683 		bp->b_flags &= ~B_IOSTARTED;
2684 	} else {
2685 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2686 		    ("brelse: SU io not finished bp %p", bp));
2687 	}
2688 
2689 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2690 		BO_LOCK(bp->b_bufobj);
2691 		bp->b_vflags &= ~BV_BKGRDERR;
2692 		BO_UNLOCK(bp->b_bufobj);
2693 		bdirty(bp);
2694 	}
2695 
2696 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2697 	    (bp->b_flags & B_INVALONERR)) {
2698 		/*
2699 		 * Forced invalidation of dirty buffer contents, to be used
2700 		 * after a failed write in the rare case that the loss of the
2701 		 * contents is acceptable.  The buffer is invalidated and
2702 		 * freed.
2703 		 */
2704 		bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2705 		bp->b_flags &= ~(B_ASYNC | B_CACHE);
2706 	}
2707 
2708 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2709 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2710 	    !(bp->b_flags & B_INVAL)) {
2711 		/*
2712 		 * Failed write, redirty.  All errors except ENXIO (which
2713 		 * means the device is gone) are treated as being
2714 		 * transient.
2715 		 *
2716 		 * XXX Treating EIO as transient is not correct; the
2717 		 * contract with the local storage device drivers is that
2718 		 * they will only return EIO once the I/O is no longer
2719 		 * retriable.  Network I/O also respects this through the
2720 		 * guarantees of TCP and/or the internal retries of NFS.
2721 		 * ENOMEM might be transient, but we also have no way of
2722 		 * knowing when its ok to retry/reschedule.  In general,
2723 		 * this entire case should be made obsolete through better
2724 		 * error handling/recovery and resource scheduling.
2725 		 *
2726 		 * Do this also for buffers that failed with ENXIO, but have
2727 		 * non-empty dependencies - the soft updates code might need
2728 		 * to access the buffer to untangle them.
2729 		 *
2730 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2731 		 */
2732 		bp->b_ioflags &= ~BIO_ERROR;
2733 		bdirty(bp);
2734 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2735 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2736 		/*
2737 		 * Either a failed read I/O, or we were asked to free or not
2738 		 * cache the buffer, or we failed to write to a device that's
2739 		 * no longer present.
2740 		 */
2741 		bp->b_flags |= B_INVAL;
2742 		if (!LIST_EMPTY(&bp->b_dep))
2743 			buf_deallocate(bp);
2744 		if (bp->b_flags & B_DELWRI)
2745 			bdirtysub(bp);
2746 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2747 		if ((bp->b_flags & B_VMIO) == 0) {
2748 			allocbuf(bp, 0);
2749 			if (bp->b_vp)
2750 				brelvp(bp);
2751 		}
2752 	}
2753 
2754 	/*
2755 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2756 	 * is called with B_DELWRI set, the underlying pages may wind up
2757 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2758 	 * because pages associated with a B_DELWRI bp are marked clean.
2759 	 *
2760 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2761 	 * if B_DELWRI is set.
2762 	 */
2763 	if (bp->b_flags & B_DELWRI)
2764 		bp->b_flags &= ~B_RELBUF;
2765 
2766 	/*
2767 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2768 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2769 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2770 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2771 	 *
2772 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2773 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2774 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2775 	 *
2776 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2777 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2778 	 * the commit state and we cannot afford to lose the buffer. If the
2779 	 * buffer has a background write in progress, we need to keep it
2780 	 * around to prevent it from being reconstituted and starting a second
2781 	 * background write.
2782 	 */
2783 
2784 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2785 
2786 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2787 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2788 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2789 	    vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2790 		vfs_vmio_invalidate(bp);
2791 		allocbuf(bp, 0);
2792 	}
2793 
2794 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2795 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2796 		allocbuf(bp, 0);
2797 		bp->b_flags &= ~B_NOREUSE;
2798 		if (bp->b_vp != NULL)
2799 			brelvp(bp);
2800 	}
2801 
2802 	/*
2803 	 * If the buffer has junk contents signal it and eventually
2804 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2805 	 * doesn't find it.
2806 	 */
2807 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2808 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2809 		bp->b_flags |= B_INVAL;
2810 	if (bp->b_flags & B_INVAL) {
2811 		if (bp->b_flags & B_DELWRI)
2812 			bundirty(bp);
2813 		if (bp->b_vp)
2814 			brelvp(bp);
2815 	}
2816 
2817 	buf_track(bp, __func__);
2818 
2819 	/* buffers with no memory */
2820 	if (bp->b_bufsize == 0) {
2821 		buf_free(bp);
2822 		return;
2823 	}
2824 	/* buffers with junk contents */
2825 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2826 	    (bp->b_ioflags & BIO_ERROR)) {
2827 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2828 		if (bp->b_vflags & BV_BKGRDINPROG)
2829 			panic("losing buffer 2");
2830 		qindex = QUEUE_CLEAN;
2831 		bp->b_flags |= B_AGE;
2832 	/* remaining buffers */
2833 	} else if (bp->b_flags & B_DELWRI)
2834 		qindex = QUEUE_DIRTY;
2835 	else
2836 		qindex = QUEUE_CLEAN;
2837 
2838 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2839 		panic("brelse: not dirty");
2840 
2841 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2842 	bp->b_xflags &= ~(BX_CVTENXIO);
2843 	/* binsfree unlocks bp. */
2844 	binsfree(bp, qindex);
2845 }
2846 
2847 /*
2848  * Release a buffer back to the appropriate queue but do not try to free
2849  * it.  The buffer is expected to be used again soon.
2850  *
2851  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2852  * biodone() to requeue an async I/O on completion.  It is also used when
2853  * known good buffers need to be requeued but we think we may need the data
2854  * again soon.
2855  *
2856  * XXX we should be able to leave the B_RELBUF hint set on completion.
2857  */
2858 void
bqrelse(struct buf * bp)2859 bqrelse(struct buf *bp)
2860 {
2861 	int qindex;
2862 
2863 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2864 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2865 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2866 
2867 	qindex = QUEUE_NONE;
2868 	if (BUF_LOCKRECURSED(bp)) {
2869 		/* do not release to free list */
2870 		BUF_UNLOCK(bp);
2871 		return;
2872 	}
2873 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2874 	bp->b_xflags &= ~(BX_CVTENXIO);
2875 
2876 	if (LIST_EMPTY(&bp->b_dep)) {
2877 		bp->b_flags &= ~B_IOSTARTED;
2878 	} else {
2879 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2880 		    ("bqrelse: SU io not finished bp %p", bp));
2881 	}
2882 
2883 	if (bp->b_flags & B_MANAGED) {
2884 		if (bp->b_flags & B_REMFREE)
2885 			bremfreef(bp);
2886 		goto out;
2887 	}
2888 
2889 	/* buffers with stale but valid contents */
2890 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2891 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2892 		BO_LOCK(bp->b_bufobj);
2893 		bp->b_vflags &= ~BV_BKGRDERR;
2894 		BO_UNLOCK(bp->b_bufobj);
2895 		qindex = QUEUE_DIRTY;
2896 	} else {
2897 		if ((bp->b_flags & B_DELWRI) == 0 &&
2898 		    (bp->b_xflags & BX_VNDIRTY))
2899 			panic("bqrelse: not dirty");
2900 		if ((bp->b_flags & B_NOREUSE) != 0) {
2901 			brelse(bp);
2902 			return;
2903 		}
2904 		qindex = QUEUE_CLEAN;
2905 	}
2906 	buf_track(bp, __func__);
2907 	/* binsfree unlocks bp. */
2908 	binsfree(bp, qindex);
2909 	return;
2910 
2911 out:
2912 	buf_track(bp, __func__);
2913 	/* unlock */
2914 	BUF_UNLOCK(bp);
2915 }
2916 
2917 /*
2918  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2919  * restore bogus pages.
2920  */
2921 static void
vfs_vmio_iodone(struct buf * bp)2922 vfs_vmio_iodone(struct buf *bp)
2923 {
2924 	vm_ooffset_t foff;
2925 	vm_page_t m;
2926 	vm_object_t obj;
2927 	struct vnode *vp __unused;
2928 	int i, iosize, resid;
2929 	bool bogus;
2930 
2931 	obj = bp->b_bufobj->bo_object;
2932 	KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2933 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2934 	    blockcount_read(&obj->paging_in_progress), bp->b_npages));
2935 
2936 	vp = bp->b_vp;
2937 	VNPASS(vp->v_holdcnt > 0, vp);
2938 	VNPASS(vp->v_object != NULL, vp);
2939 
2940 	foff = bp->b_offset;
2941 	KASSERT(bp->b_offset != NOOFFSET,
2942 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2943 
2944 	bogus = false;
2945 	iosize = bp->b_bcount - bp->b_resid;
2946 	for (i = 0; i < bp->b_npages; i++) {
2947 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2948 		if (resid > iosize)
2949 			resid = iosize;
2950 
2951 		/*
2952 		 * cleanup bogus pages, restoring the originals
2953 		 */
2954 		m = bp->b_pages[i];
2955 		if (m == bogus_page) {
2956 			bogus = true;
2957 			m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2958 			if (m == NULL)
2959 				panic("biodone: page disappeared!");
2960 			bp->b_pages[i] = m;
2961 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2962 			/*
2963 			 * In the write case, the valid and clean bits are
2964 			 * already changed correctly ( see bdwrite() ), so we
2965 			 * only need to do this here in the read case.
2966 			 */
2967 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2968 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2969 			    "has unexpected dirty bits", m));
2970 			vfs_page_set_valid(bp, foff, m);
2971 		}
2972 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2973 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2974 		    (intmax_t)foff, (uintmax_t)m->pindex));
2975 
2976 		vm_page_sunbusy(m);
2977 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2978 		iosize -= resid;
2979 	}
2980 	vm_object_pip_wakeupn(obj, bp->b_npages);
2981 	if (bogus && buf_mapped(bp)) {
2982 		BUF_CHECK_MAPPED(bp);
2983 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2984 		    bp->b_pages, bp->b_npages);
2985 	}
2986 }
2987 
2988 /*
2989  * Perform page invalidation when a buffer is released.  The fully invalid
2990  * pages will be reclaimed later in vfs_vmio_truncate().
2991  */
2992 static void
vfs_vmio_invalidate(struct buf * bp)2993 vfs_vmio_invalidate(struct buf *bp)
2994 {
2995 	vm_object_t obj;
2996 	vm_page_t m;
2997 	int flags, i, resid, poffset, presid;
2998 
2999 	if (buf_mapped(bp)) {
3000 		BUF_CHECK_MAPPED(bp);
3001 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
3002 	} else
3003 		BUF_CHECK_UNMAPPED(bp);
3004 	/*
3005 	 * Get the base offset and length of the buffer.  Note that
3006 	 * in the VMIO case if the buffer block size is not
3007 	 * page-aligned then b_data pointer may not be page-aligned.
3008 	 * But our b_pages[] array *IS* page aligned.
3009 	 *
3010 	 * block sizes less then DEV_BSIZE (usually 512) are not
3011 	 * supported due to the page granularity bits (m->valid,
3012 	 * m->dirty, etc...).
3013 	 *
3014 	 * See man buf(9) for more information
3015 	 */
3016 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3017 	obj = bp->b_bufobj->bo_object;
3018 	resid = bp->b_bufsize;
3019 	poffset = bp->b_offset & PAGE_MASK;
3020 	VM_OBJECT_WLOCK(obj);
3021 	for (i = 0; i < bp->b_npages; i++) {
3022 		m = bp->b_pages[i];
3023 		if (m == bogus_page)
3024 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
3025 		bp->b_pages[i] = NULL;
3026 
3027 		presid = resid > (PAGE_SIZE - poffset) ?
3028 		    (PAGE_SIZE - poffset) : resid;
3029 		KASSERT(presid >= 0, ("brelse: extra page"));
3030 		vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3031 		if (pmap_page_wired_mappings(m) == 0)
3032 			vm_page_set_invalid(m, poffset, presid);
3033 		vm_page_sunbusy(m);
3034 		vm_page_release_locked(m, flags);
3035 		resid -= presid;
3036 		poffset = 0;
3037 	}
3038 	VM_OBJECT_WUNLOCK(obj);
3039 	bp->b_npages = 0;
3040 }
3041 
3042 /*
3043  * Page-granular truncation of an existing VMIO buffer.
3044  */
3045 static void
vfs_vmio_truncate(struct buf * bp,int desiredpages)3046 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3047 {
3048 	vm_object_t obj;
3049 	vm_page_t m;
3050 	int flags, i;
3051 
3052 	if (bp->b_npages == desiredpages)
3053 		return;
3054 
3055 	if (buf_mapped(bp)) {
3056 		BUF_CHECK_MAPPED(bp);
3057 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3058 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3059 	} else
3060 		BUF_CHECK_UNMAPPED(bp);
3061 
3062 	/*
3063 	 * The object lock is needed only if we will attempt to free pages.
3064 	 */
3065 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3066 	if ((bp->b_flags & B_DIRECT) != 0) {
3067 		flags |= VPR_TRYFREE;
3068 		obj = bp->b_bufobj->bo_object;
3069 		VM_OBJECT_WLOCK(obj);
3070 	} else {
3071 		obj = NULL;
3072 	}
3073 	for (i = desiredpages; i < bp->b_npages; i++) {
3074 		m = bp->b_pages[i];
3075 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3076 		bp->b_pages[i] = NULL;
3077 		if (obj != NULL)
3078 			vm_page_release_locked(m, flags);
3079 		else
3080 			vm_page_release(m, flags);
3081 	}
3082 	if (obj != NULL)
3083 		VM_OBJECT_WUNLOCK(obj);
3084 	bp->b_npages = desiredpages;
3085 }
3086 
3087 /*
3088  * Byte granular extension of VMIO buffers.
3089  */
3090 static void
vfs_vmio_extend(struct buf * bp,int desiredpages,int size)3091 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3092 {
3093 	/*
3094 	 * We are growing the buffer, possibly in a
3095 	 * byte-granular fashion.
3096 	 */
3097 	vm_object_t obj;
3098 	vm_offset_t toff;
3099 	vm_offset_t tinc;
3100 	vm_page_t m;
3101 
3102 	/*
3103 	 * Step 1, bring in the VM pages from the object, allocating
3104 	 * them if necessary.  We must clear B_CACHE if these pages
3105 	 * are not valid for the range covered by the buffer.
3106 	 */
3107 	obj = bp->b_bufobj->bo_object;
3108 	if (bp->b_npages < desiredpages) {
3109 		KASSERT(desiredpages <= atop(maxbcachebuf),
3110 		    ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3111 		    bp, desiredpages, maxbcachebuf));
3112 
3113 		/*
3114 		 * We must allocate system pages since blocking
3115 		 * here could interfere with paging I/O, no
3116 		 * matter which process we are.
3117 		 *
3118 		 * Only exclusive busy can be tested here.
3119 		 * Blocking on shared busy might lead to
3120 		 * deadlocks once allocbuf() is called after
3121 		 * pages are vfs_busy_pages().
3122 		 */
3123 		(void)vm_page_grab_pages_unlocked(obj,
3124 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3125 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3126 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3127 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3128 		bp->b_npages = desiredpages;
3129 	}
3130 
3131 	/*
3132 	 * Step 2.  We've loaded the pages into the buffer,
3133 	 * we have to figure out if we can still have B_CACHE
3134 	 * set.  Note that B_CACHE is set according to the
3135 	 * byte-granular range ( bcount and size ), not the
3136 	 * aligned range ( newbsize ).
3137 	 *
3138 	 * The VM test is against m->valid, which is DEV_BSIZE
3139 	 * aligned.  Needless to say, the validity of the data
3140 	 * needs to also be DEV_BSIZE aligned.  Note that this
3141 	 * fails with NFS if the server or some other client
3142 	 * extends the file's EOF.  If our buffer is resized,
3143 	 * B_CACHE may remain set! XXX
3144 	 */
3145 	toff = bp->b_bcount;
3146 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3147 	while ((bp->b_flags & B_CACHE) && toff < size) {
3148 		vm_pindex_t pi;
3149 
3150 		if (tinc > (size - toff))
3151 			tinc = size - toff;
3152 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3153 		m = bp->b_pages[pi];
3154 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3155 		toff += tinc;
3156 		tinc = PAGE_SIZE;
3157 	}
3158 
3159 	/*
3160 	 * Step 3, fixup the KVA pmap.
3161 	 */
3162 	if (buf_mapped(bp))
3163 		bpmap_qenter(bp);
3164 	else
3165 		BUF_CHECK_UNMAPPED(bp);
3166 }
3167 
3168 /*
3169  * Check to see if a block at a particular lbn is available for a clustered
3170  * write.
3171  */
3172 static int
vfs_bio_clcheck(struct vnode * vp,int size,daddr_t lblkno,daddr_t blkno)3173 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3174 {
3175 	struct buf *bpa;
3176 	int match;
3177 
3178 	match = 0;
3179 
3180 	/* If the buf isn't in core skip it */
3181 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3182 		return (0);
3183 
3184 	/* If the buf is busy we don't want to wait for it */
3185 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3186 		return (0);
3187 
3188 	/* Only cluster with valid clusterable delayed write buffers */
3189 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3190 	    (B_DELWRI | B_CLUSTEROK))
3191 		goto done;
3192 
3193 	if (bpa->b_bufsize != size)
3194 		goto done;
3195 
3196 	/*
3197 	 * Check to see if it is in the expected place on disk and that the
3198 	 * block has been mapped.
3199 	 */
3200 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3201 		match = 1;
3202 done:
3203 	BUF_UNLOCK(bpa);
3204 	return (match);
3205 }
3206 
3207 /*
3208  *	vfs_bio_awrite:
3209  *
3210  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3211  *	This is much better then the old way of writing only one buffer at
3212  *	a time.  Note that we may not be presented with the buffers in the
3213  *	correct order, so we search for the cluster in both directions.
3214  */
3215 int
vfs_bio_awrite(struct buf * bp)3216 vfs_bio_awrite(struct buf *bp)
3217 {
3218 	struct bufobj *bo;
3219 	int i;
3220 	int j;
3221 	daddr_t lblkno = bp->b_lblkno;
3222 	struct vnode *vp = bp->b_vp;
3223 	int ncl;
3224 	int nwritten;
3225 	int size;
3226 	int maxcl;
3227 	int gbflags;
3228 
3229 	bo = &vp->v_bufobj;
3230 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3231 	/*
3232 	 * right now we support clustered writing only to regular files.  If
3233 	 * we find a clusterable block we could be in the middle of a cluster
3234 	 * rather then at the beginning.
3235 	 */
3236 	if ((vp->v_type == VREG) &&
3237 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3238 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3239 		size = vp->v_mount->mnt_stat.f_iosize;
3240 		maxcl = maxphys / size;
3241 
3242 		BO_RLOCK(bo);
3243 		for (i = 1; i < maxcl; i++)
3244 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3245 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3246 				break;
3247 
3248 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3249 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3250 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3251 				break;
3252 		BO_RUNLOCK(bo);
3253 		--j;
3254 		ncl = i + j;
3255 		/*
3256 		 * this is a possible cluster write
3257 		 */
3258 		if (ncl != 1) {
3259 			BUF_UNLOCK(bp);
3260 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3261 			    gbflags);
3262 			return (nwritten);
3263 		}
3264 	}
3265 	bremfree(bp);
3266 	bp->b_flags |= B_ASYNC;
3267 	/*
3268 	 * default (old) behavior, writing out only one block
3269 	 *
3270 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3271 	 */
3272 	nwritten = bp->b_bufsize;
3273 	(void) bwrite(bp);
3274 
3275 	return (nwritten);
3276 }
3277 
3278 /*
3279  *	getnewbuf_kva:
3280  *
3281  *	Allocate KVA for an empty buf header according to gbflags.
3282  */
3283 static int
getnewbuf_kva(struct buf * bp,int gbflags,int maxsize)3284 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3285 {
3286 
3287 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3288 		/*
3289 		 * In order to keep fragmentation sane we only allocate kva
3290 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3291 		 */
3292 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3293 
3294 		if (maxsize != bp->b_kvasize &&
3295 		    bufkva_alloc(bp, maxsize, gbflags))
3296 			return (ENOSPC);
3297 	}
3298 	return (0);
3299 }
3300 
3301 /*
3302  *	getnewbuf:
3303  *
3304  *	Find and initialize a new buffer header, freeing up existing buffers
3305  *	in the bufqueues as necessary.  The new buffer is returned locked.
3306  *
3307  *	We block if:
3308  *		We have insufficient buffer headers
3309  *		We have insufficient buffer space
3310  *		buffer_arena is too fragmented ( space reservation fails )
3311  *		If we have to flush dirty buffers ( but we try to avoid this )
3312  *
3313  *	The caller is responsible for releasing the reserved bufspace after
3314  *	allocbuf() is called.
3315  */
3316 static struct buf *
getnewbuf(struct vnode * vp,int slpflag,int slptimeo,int maxsize,int gbflags)3317 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3318 {
3319 	struct bufdomain *bd;
3320 	struct buf *bp;
3321 	bool metadata, reserved;
3322 
3323 	bp = NULL;
3324 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3325 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3326 	if (!unmapped_buf_allowed)
3327 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3328 
3329 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3330 	    vp->v_type == VCHR)
3331 		metadata = true;
3332 	else
3333 		metadata = false;
3334 	if (vp == NULL)
3335 		bd = &bdomain[0];
3336 	else
3337 		bd = &bdomain[vp->v_bufobj.bo_domain];
3338 
3339 	counter_u64_add(getnewbufcalls, 1);
3340 	reserved = false;
3341 	do {
3342 		if (reserved == false &&
3343 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3344 			counter_u64_add(getnewbufrestarts, 1);
3345 			continue;
3346 		}
3347 		reserved = true;
3348 		if ((bp = buf_alloc(bd)) == NULL) {
3349 			counter_u64_add(getnewbufrestarts, 1);
3350 			continue;
3351 		}
3352 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3353 			return (bp);
3354 		break;
3355 	} while (buf_recycle(bd, false) == 0);
3356 
3357 	if (reserved)
3358 		bufspace_release(bd, maxsize);
3359 	if (bp != NULL) {
3360 		bp->b_flags |= B_INVAL;
3361 		brelse(bp);
3362 	}
3363 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3364 
3365 	return (NULL);
3366 }
3367 
3368 /*
3369  *	buf_daemon:
3370  *
3371  *	buffer flushing daemon.  Buffers are normally flushed by the
3372  *	update daemon but if it cannot keep up this process starts to
3373  *	take the load in an attempt to prevent getnewbuf() from blocking.
3374  */
3375 static struct kproc_desc buf_kp = {
3376 	"bufdaemon",
3377 	buf_daemon,
3378 	&bufdaemonproc
3379 };
3380 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3381 
3382 static int
buf_flush(struct vnode * vp,struct bufdomain * bd,int target)3383 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3384 {
3385 	int flushed;
3386 
3387 	flushed = flushbufqueues(vp, bd, target, 0);
3388 	if (flushed == 0) {
3389 		/*
3390 		 * Could not find any buffers without rollback
3391 		 * dependencies, so just write the first one
3392 		 * in the hopes of eventually making progress.
3393 		 */
3394 		if (vp != NULL && target > 2)
3395 			target /= 2;
3396 		flushbufqueues(vp, bd, target, 1);
3397 	}
3398 	return (flushed);
3399 }
3400 
3401 static void
buf_daemon_shutdown(void * arg __unused,int howto __unused)3402 buf_daemon_shutdown(void *arg __unused, int howto __unused)
3403 {
3404 	int error;
3405 
3406 	mtx_lock(&bdlock);
3407 	bd_shutdown = true;
3408 	wakeup(&bd_request);
3409 	error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
3410 	    60 * hz);
3411 	mtx_unlock(&bdlock);
3412 	if (error != 0)
3413 		printf("bufdaemon wait error: %d\n", error);
3414 }
3415 
3416 static void
buf_daemon()3417 buf_daemon()
3418 {
3419 	struct bufdomain *bd;
3420 	int speedupreq;
3421 	int lodirty;
3422 	int i;
3423 
3424 	/*
3425 	 * This process needs to be suspended prior to shutdown sync.
3426 	 */
3427 	EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
3428 	    SHUTDOWN_PRI_LAST + 100);
3429 
3430 	/*
3431 	 * Start the buf clean daemons as children threads.
3432 	 */
3433 	for (i = 0 ; i < buf_domains; i++) {
3434 		int error;
3435 
3436 		error = kthread_add((void (*)(void *))bufspace_daemon,
3437 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3438 		if (error)
3439 			panic("error %d spawning bufspace daemon", error);
3440 	}
3441 
3442 	/*
3443 	 * This process is allowed to take the buffer cache to the limit
3444 	 */
3445 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3446 	mtx_lock(&bdlock);
3447 	while (!bd_shutdown) {
3448 		bd_request = 0;
3449 		mtx_unlock(&bdlock);
3450 
3451 		/*
3452 		 * Save speedupreq for this pass and reset to capture new
3453 		 * requests.
3454 		 */
3455 		speedupreq = bd_speedupreq;
3456 		bd_speedupreq = 0;
3457 
3458 		/*
3459 		 * Flush each domain sequentially according to its level and
3460 		 * the speedup request.
3461 		 */
3462 		for (i = 0; i < buf_domains; i++) {
3463 			bd = &bdomain[i];
3464 			if (speedupreq)
3465 				lodirty = bd->bd_numdirtybuffers / 2;
3466 			else
3467 				lodirty = bd->bd_lodirtybuffers;
3468 			while (bd->bd_numdirtybuffers > lodirty) {
3469 				if (buf_flush(NULL, bd,
3470 				    bd->bd_numdirtybuffers - lodirty) == 0)
3471 					break;
3472 				kern_yield(PRI_USER);
3473 			}
3474 		}
3475 
3476 		/*
3477 		 * Only clear bd_request if we have reached our low water
3478 		 * mark.  The buf_daemon normally waits 1 second and
3479 		 * then incrementally flushes any dirty buffers that have
3480 		 * built up, within reason.
3481 		 *
3482 		 * If we were unable to hit our low water mark and couldn't
3483 		 * find any flushable buffers, we sleep for a short period
3484 		 * to avoid endless loops on unlockable buffers.
3485 		 */
3486 		mtx_lock(&bdlock);
3487 		if (bd_shutdown)
3488 			break;
3489 		if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3490 			/*
3491 			 * We reached our low water mark, reset the
3492 			 * request and sleep until we are needed again.
3493 			 * The sleep is just so the suspend code works.
3494 			 */
3495 			bd_request = 0;
3496 			/*
3497 			 * Do an extra wakeup in case dirty threshold
3498 			 * changed via sysctl and the explicit transition
3499 			 * out of shortfall was missed.
3500 			 */
3501 			bdirtywakeup();
3502 			if (runningbufspace <= lorunningspace)
3503 				runningwakeup();
3504 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3505 		} else {
3506 			/*
3507 			 * We couldn't find any flushable dirty buffers but
3508 			 * still have too many dirty buffers, we
3509 			 * have to sleep and try again.  (rare)
3510 			 */
3511 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3512 		}
3513 	}
3514 	wakeup(&bd_shutdown);
3515 	mtx_unlock(&bdlock);
3516 	kthread_exit();
3517 }
3518 
3519 /*
3520  *	flushbufqueues:
3521  *
3522  *	Try to flush a buffer in the dirty queue.  We must be careful to
3523  *	free up B_INVAL buffers instead of write them, which NFS is
3524  *	particularly sensitive to.
3525  */
3526 static int flushwithdeps = 0;
3527 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3528     &flushwithdeps, 0,
3529     "Number of buffers flushed with dependencies that require rollbacks");
3530 
3531 static int
flushbufqueues(struct vnode * lvp,struct bufdomain * bd,int target,int flushdeps)3532 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3533     int flushdeps)
3534 {
3535 	struct bufqueue *bq;
3536 	struct buf *sentinel;
3537 	struct vnode *vp;
3538 	struct mount *mp;
3539 	struct buf *bp;
3540 	int hasdeps;
3541 	int flushed;
3542 	int error;
3543 	bool unlock;
3544 
3545 	flushed = 0;
3546 	bq = &bd->bd_dirtyq;
3547 	bp = NULL;
3548 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3549 	sentinel->b_qindex = QUEUE_SENTINEL;
3550 	BQ_LOCK(bq);
3551 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3552 	BQ_UNLOCK(bq);
3553 	while (flushed != target) {
3554 		maybe_yield();
3555 		BQ_LOCK(bq);
3556 		bp = TAILQ_NEXT(sentinel, b_freelist);
3557 		if (bp != NULL) {
3558 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3559 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3560 			    b_freelist);
3561 		} else {
3562 			BQ_UNLOCK(bq);
3563 			break;
3564 		}
3565 		/*
3566 		 * Skip sentinels inserted by other invocations of the
3567 		 * flushbufqueues(), taking care to not reorder them.
3568 		 *
3569 		 * Only flush the buffers that belong to the
3570 		 * vnode locked by the curthread.
3571 		 */
3572 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3573 		    bp->b_vp != lvp)) {
3574 			BQ_UNLOCK(bq);
3575 			continue;
3576 		}
3577 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3578 		BQ_UNLOCK(bq);
3579 		if (error != 0)
3580 			continue;
3581 
3582 		/*
3583 		 * BKGRDINPROG can only be set with the buf and bufobj
3584 		 * locks both held.  We tolerate a race to clear it here.
3585 		 */
3586 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3587 		    (bp->b_flags & B_DELWRI) == 0) {
3588 			BUF_UNLOCK(bp);
3589 			continue;
3590 		}
3591 		if (bp->b_flags & B_INVAL) {
3592 			bremfreef(bp);
3593 			brelse(bp);
3594 			flushed++;
3595 			continue;
3596 		}
3597 
3598 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3599 			if (flushdeps == 0) {
3600 				BUF_UNLOCK(bp);
3601 				continue;
3602 			}
3603 			hasdeps = 1;
3604 		} else
3605 			hasdeps = 0;
3606 		/*
3607 		 * We must hold the lock on a vnode before writing
3608 		 * one of its buffers. Otherwise we may confuse, or
3609 		 * in the case of a snapshot vnode, deadlock the
3610 		 * system.
3611 		 *
3612 		 * The lock order here is the reverse of the normal
3613 		 * of vnode followed by buf lock.  This is ok because
3614 		 * the NOWAIT will prevent deadlock.
3615 		 */
3616 		vp = bp->b_vp;
3617 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3618 			BUF_UNLOCK(bp);
3619 			continue;
3620 		}
3621 		if (lvp == NULL) {
3622 			unlock = true;
3623 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3624 		} else {
3625 			ASSERT_VOP_LOCKED(vp, "getbuf");
3626 			unlock = false;
3627 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3628 			    vn_lock(vp, LK_TRYUPGRADE);
3629 		}
3630 		if (error == 0) {
3631 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3632 			    bp, bp->b_vp, bp->b_flags);
3633 			if (curproc == bufdaemonproc) {
3634 				vfs_bio_awrite(bp);
3635 			} else {
3636 				bremfree(bp);
3637 				bwrite(bp);
3638 				counter_u64_add(notbufdflushes, 1);
3639 			}
3640 			vn_finished_write(mp);
3641 			if (unlock)
3642 				VOP_UNLOCK(vp);
3643 			flushwithdeps += hasdeps;
3644 			flushed++;
3645 
3646 			/*
3647 			 * Sleeping on runningbufspace while holding
3648 			 * vnode lock leads to deadlock.
3649 			 */
3650 			if (curproc == bufdaemonproc &&
3651 			    runningbufspace > hirunningspace)
3652 				waitrunningbufspace();
3653 			continue;
3654 		}
3655 		vn_finished_write(mp);
3656 		BUF_UNLOCK(bp);
3657 	}
3658 	BQ_LOCK(bq);
3659 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3660 	BQ_UNLOCK(bq);
3661 	free(sentinel, M_TEMP);
3662 	return (flushed);
3663 }
3664 
3665 /*
3666  * Check to see if a block is currently memory resident.
3667  */
3668 struct buf *
incore(struct bufobj * bo,daddr_t blkno)3669 incore(struct bufobj *bo, daddr_t blkno)
3670 {
3671 	return (gbincore_unlocked(bo, blkno));
3672 }
3673 
3674 /*
3675  * Returns true if no I/O is needed to access the
3676  * associated VM object.  This is like incore except
3677  * it also hunts around in the VM system for the data.
3678  */
3679 bool
inmem(struct vnode * vp,daddr_t blkno)3680 inmem(struct vnode * vp, daddr_t blkno)
3681 {
3682 	vm_object_t obj;
3683 	vm_offset_t toff, tinc, size;
3684 	vm_page_t m, n;
3685 	vm_ooffset_t off;
3686 	int valid;
3687 
3688 	ASSERT_VOP_LOCKED(vp, "inmem");
3689 
3690 	if (incore(&vp->v_bufobj, blkno))
3691 		return (true);
3692 	if (vp->v_mount == NULL)
3693 		return (false);
3694 	obj = vp->v_object;
3695 	if (obj == NULL)
3696 		return (false);
3697 
3698 	size = PAGE_SIZE;
3699 	if (size > vp->v_mount->mnt_stat.f_iosize)
3700 		size = vp->v_mount->mnt_stat.f_iosize;
3701 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3702 
3703 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3704 		m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3705 recheck:
3706 		if (m == NULL)
3707 			return (false);
3708 
3709 		tinc = size;
3710 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3711 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3712 		/*
3713 		 * Consider page validity only if page mapping didn't change
3714 		 * during the check.
3715 		 */
3716 		valid = vm_page_is_valid(m,
3717 		    (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3718 		n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3719 		if (m != n) {
3720 			m = n;
3721 			goto recheck;
3722 		}
3723 		if (!valid)
3724 			return (false);
3725 	}
3726 	return (true);
3727 }
3728 
3729 /*
3730  * Set the dirty range for a buffer based on the status of the dirty
3731  * bits in the pages comprising the buffer.  The range is limited
3732  * to the size of the buffer.
3733  *
3734  * Tell the VM system that the pages associated with this buffer
3735  * are clean.  This is used for delayed writes where the data is
3736  * going to go to disk eventually without additional VM intevention.
3737  *
3738  * Note that while we only really need to clean through to b_bcount, we
3739  * just go ahead and clean through to b_bufsize.
3740  */
3741 static void
vfs_clean_pages_dirty_buf(struct buf * bp)3742 vfs_clean_pages_dirty_buf(struct buf *bp)
3743 {
3744 	vm_ooffset_t foff, noff, eoff;
3745 	vm_page_t m;
3746 	int i;
3747 
3748 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3749 		return;
3750 
3751 	foff = bp->b_offset;
3752 	KASSERT(bp->b_offset != NOOFFSET,
3753 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3754 
3755 	vfs_busy_pages_acquire(bp);
3756 	vfs_setdirty_range(bp);
3757 	for (i = 0; i < bp->b_npages; i++) {
3758 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3759 		eoff = noff;
3760 		if (eoff > bp->b_offset + bp->b_bufsize)
3761 			eoff = bp->b_offset + bp->b_bufsize;
3762 		m = bp->b_pages[i];
3763 		vfs_page_set_validclean(bp, foff, m);
3764 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3765 		foff = noff;
3766 	}
3767 	vfs_busy_pages_release(bp);
3768 }
3769 
3770 static void
vfs_setdirty_range(struct buf * bp)3771 vfs_setdirty_range(struct buf *bp)
3772 {
3773 	vm_offset_t boffset;
3774 	vm_offset_t eoffset;
3775 	int i;
3776 
3777 	/*
3778 	 * test the pages to see if they have been modified directly
3779 	 * by users through the VM system.
3780 	 */
3781 	for (i = 0; i < bp->b_npages; i++)
3782 		vm_page_test_dirty(bp->b_pages[i]);
3783 
3784 	/*
3785 	 * Calculate the encompassing dirty range, boffset and eoffset,
3786 	 * (eoffset - boffset) bytes.
3787 	 */
3788 
3789 	for (i = 0; i < bp->b_npages; i++) {
3790 		if (bp->b_pages[i]->dirty)
3791 			break;
3792 	}
3793 	boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3794 
3795 	for (i = bp->b_npages - 1; i >= 0; --i) {
3796 		if (bp->b_pages[i]->dirty) {
3797 			break;
3798 		}
3799 	}
3800 	eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3801 
3802 	/*
3803 	 * Fit it to the buffer.
3804 	 */
3805 
3806 	if (eoffset > bp->b_bcount)
3807 		eoffset = bp->b_bcount;
3808 
3809 	/*
3810 	 * If we have a good dirty range, merge with the existing
3811 	 * dirty range.
3812 	 */
3813 
3814 	if (boffset < eoffset) {
3815 		if (bp->b_dirtyoff > boffset)
3816 			bp->b_dirtyoff = boffset;
3817 		if (bp->b_dirtyend < eoffset)
3818 			bp->b_dirtyend = eoffset;
3819 	}
3820 }
3821 
3822 /*
3823  * Allocate the KVA mapping for an existing buffer.
3824  * If an unmapped buffer is provided but a mapped buffer is requested, take
3825  * also care to properly setup mappings between pages and KVA.
3826  */
3827 static void
bp_unmapped_get_kva(struct buf * bp,daddr_t blkno,int size,int gbflags)3828 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3829 {
3830 	int bsize, maxsize, need_mapping, need_kva;
3831 	off_t offset;
3832 
3833 	need_mapping = bp->b_data == unmapped_buf &&
3834 	    (gbflags & GB_UNMAPPED) == 0;
3835 	need_kva = bp->b_kvabase == unmapped_buf &&
3836 	    bp->b_data == unmapped_buf &&
3837 	    (gbflags & GB_KVAALLOC) != 0;
3838 	if (!need_mapping && !need_kva)
3839 		return;
3840 
3841 	BUF_CHECK_UNMAPPED(bp);
3842 
3843 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3844 		/*
3845 		 * Buffer is not mapped, but the KVA was already
3846 		 * reserved at the time of the instantiation.  Use the
3847 		 * allocated space.
3848 		 */
3849 		goto has_addr;
3850 	}
3851 
3852 	/*
3853 	 * Calculate the amount of the address space we would reserve
3854 	 * if the buffer was mapped.
3855 	 */
3856 	bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3857 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3858 	offset = blkno * bsize;
3859 	maxsize = size + (offset & PAGE_MASK);
3860 	maxsize = imax(maxsize, bsize);
3861 
3862 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3863 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3864 			/*
3865 			 * XXXKIB: defragmentation cannot
3866 			 * succeed, not sure what else to do.
3867 			 */
3868 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3869 		}
3870 		counter_u64_add(mappingrestarts, 1);
3871 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3872 	}
3873 has_addr:
3874 	if (need_mapping) {
3875 		/* b_offset is handled by bpmap_qenter. */
3876 		bp->b_data = bp->b_kvabase;
3877 		BUF_CHECK_MAPPED(bp);
3878 		bpmap_qenter(bp);
3879 	}
3880 }
3881 
3882 struct buf *
getblk(struct vnode * vp,daddr_t blkno,int size,int slpflag,int slptimeo,int flags)3883 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3884     int flags)
3885 {
3886 	struct buf *bp;
3887 	int error;
3888 
3889 	error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3890 	if (error != 0)
3891 		return (NULL);
3892 	return (bp);
3893 }
3894 
3895 /*
3896  *	getblkx:
3897  *
3898  *	Get a block given a specified block and offset into a file/device.
3899  *	The buffers B_DONE bit will be cleared on return, making it almost
3900  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3901  *	return.  The caller should clear B_INVAL prior to initiating a
3902  *	READ.
3903  *
3904  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3905  *	an existing buffer.
3906  *
3907  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3908  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3909  *	and then cleared based on the backing VM.  If the previous buffer is
3910  *	non-0-sized but invalid, B_CACHE will be cleared.
3911  *
3912  *	If getblk() must create a new buffer, the new buffer is returned with
3913  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3914  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3915  *	backing VM.
3916  *
3917  *	getblk() also forces a bwrite() for any B_DELWRI buffer whose
3918  *	B_CACHE bit is clear.
3919  *
3920  *	What this means, basically, is that the caller should use B_CACHE to
3921  *	determine whether the buffer is fully valid or not and should clear
3922  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3923  *	the buffer by loading its data area with something, the caller needs
3924  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3925  *	the caller should set B_CACHE ( as an optimization ), else the caller
3926  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3927  *	a write attempt or if it was a successful read.  If the caller
3928  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3929  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3930  *
3931  *	The blkno parameter is the logical block being requested. Normally
3932  *	the mapping of logical block number to disk block address is done
3933  *	by calling VOP_BMAP(). However, if the mapping is already known, the
3934  *	disk block address can be passed using the dblkno parameter. If the
3935  *	disk block address is not known, then the same value should be passed
3936  *	for blkno and dblkno.
3937  */
3938 int
getblkx(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,int slpflag,int slptimeo,int flags,struct buf ** bpp)3939 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3940     int slptimeo, int flags, struct buf **bpp)
3941 {
3942 	struct buf *bp;
3943 	struct bufobj *bo;
3944 	daddr_t d_blkno;
3945 	int bsize, error, maxsize, vmio;
3946 	off_t offset;
3947 
3948 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3949 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3950 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3951 	if (vp->v_type != VCHR)
3952 		ASSERT_VOP_LOCKED(vp, "getblk");
3953 	if (size > maxbcachebuf)
3954 		panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3955 		    maxbcachebuf);
3956 	if (!unmapped_buf_allowed)
3957 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3958 
3959 	bo = &vp->v_bufobj;
3960 	d_blkno = dblkno;
3961 
3962 	/* Attempt lockless lookup first. */
3963 	bp = gbincore_unlocked(bo, blkno);
3964 	if (bp == NULL)
3965 		goto newbuf_unlocked;
3966 
3967 	error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
3968 	    0);
3969 	if (error != 0)
3970 		goto loop;
3971 
3972 	/* Verify buf identify has not changed since lookup. */
3973 	if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
3974 		goto foundbuf_fastpath;
3975 
3976 	/* It changed, fallback to locked lookup. */
3977 	BUF_UNLOCK_RAW(bp);
3978 
3979 loop:
3980 	BO_RLOCK(bo);
3981 	bp = gbincore(bo, blkno);
3982 	if (bp != NULL) {
3983 		int lockflags;
3984 
3985 		/*
3986 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3987 		 * it must be on a queue.
3988 		 */
3989 		lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
3990 		    ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
3991 #ifdef WITNESS
3992 		lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
3993 #endif
3994 
3995 		error = BUF_TIMELOCK(bp, lockflags,
3996 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3997 
3998 		/*
3999 		 * If we slept and got the lock we have to restart in case
4000 		 * the buffer changed identities.
4001 		 */
4002 		if (error == ENOLCK)
4003 			goto loop;
4004 		/* We timed out or were interrupted. */
4005 		else if (error != 0)
4006 			return (error);
4007 
4008 foundbuf_fastpath:
4009 		/* If recursed, assume caller knows the rules. */
4010 		if (BUF_LOCKRECURSED(bp))
4011 			goto end;
4012 
4013 		/*
4014 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
4015 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
4016 		 * and for a VMIO buffer B_CACHE is adjusted according to the
4017 		 * backing VM cache.
4018 		 */
4019 		if (bp->b_flags & B_INVAL)
4020 			bp->b_flags &= ~B_CACHE;
4021 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
4022 			bp->b_flags |= B_CACHE;
4023 		if (bp->b_flags & B_MANAGED)
4024 			MPASS(bp->b_qindex == QUEUE_NONE);
4025 		else
4026 			bremfree(bp);
4027 
4028 		/*
4029 		 * check for size inconsistencies for non-VMIO case.
4030 		 */
4031 		if (bp->b_bcount != size) {
4032 			if ((bp->b_flags & B_VMIO) == 0 ||
4033 			    (size > bp->b_kvasize)) {
4034 				if (bp->b_flags & B_DELWRI) {
4035 					bp->b_flags |= B_NOCACHE;
4036 					bwrite(bp);
4037 				} else {
4038 					if (LIST_EMPTY(&bp->b_dep)) {
4039 						bp->b_flags |= B_RELBUF;
4040 						brelse(bp);
4041 					} else {
4042 						bp->b_flags |= B_NOCACHE;
4043 						bwrite(bp);
4044 					}
4045 				}
4046 				goto loop;
4047 			}
4048 		}
4049 
4050 		/*
4051 		 * Handle the case of unmapped buffer which should
4052 		 * become mapped, or the buffer for which KVA
4053 		 * reservation is requested.
4054 		 */
4055 		bp_unmapped_get_kva(bp, blkno, size, flags);
4056 
4057 		/*
4058 		 * If the size is inconsistent in the VMIO case, we can resize
4059 		 * the buffer.  This might lead to B_CACHE getting set or
4060 		 * cleared.  If the size has not changed, B_CACHE remains
4061 		 * unchanged from its previous state.
4062 		 */
4063 		allocbuf(bp, size);
4064 
4065 		KASSERT(bp->b_offset != NOOFFSET,
4066 		    ("getblk: no buffer offset"));
4067 
4068 		/*
4069 		 * A buffer with B_DELWRI set and B_CACHE clear must
4070 		 * be committed before we can return the buffer in
4071 		 * order to prevent the caller from issuing a read
4072 		 * ( due to B_CACHE not being set ) and overwriting
4073 		 * it.
4074 		 *
4075 		 * Most callers, including NFS and FFS, need this to
4076 		 * operate properly either because they assume they
4077 		 * can issue a read if B_CACHE is not set, or because
4078 		 * ( for example ) an uncached B_DELWRI might loop due
4079 		 * to softupdates re-dirtying the buffer.  In the latter
4080 		 * case, B_CACHE is set after the first write completes,
4081 		 * preventing further loops.
4082 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
4083 		 * above while extending the buffer, we cannot allow the
4084 		 * buffer to remain with B_CACHE set after the write
4085 		 * completes or it will represent a corrupt state.  To
4086 		 * deal with this we set B_NOCACHE to scrap the buffer
4087 		 * after the write.
4088 		 *
4089 		 * We might be able to do something fancy, like setting
4090 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
4091 		 * so the below call doesn't set B_CACHE, but that gets real
4092 		 * confusing.  This is much easier.
4093 		 */
4094 
4095 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4096 			bp->b_flags |= B_NOCACHE;
4097 			bwrite(bp);
4098 			goto loop;
4099 		}
4100 		bp->b_flags &= ~B_DONE;
4101 	} else {
4102 		/*
4103 		 * Buffer is not in-core, create new buffer.  The buffer
4104 		 * returned by getnewbuf() is locked.  Note that the returned
4105 		 * buffer is also considered valid (not marked B_INVAL).
4106 		 */
4107 		BO_RUNLOCK(bo);
4108 newbuf_unlocked:
4109 		/*
4110 		 * If the user does not want us to create the buffer, bail out
4111 		 * here.
4112 		 */
4113 		if (flags & GB_NOCREAT)
4114 			return (EEXIST);
4115 
4116 		bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4117 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4118 		offset = blkno * bsize;
4119 		vmio = vp->v_object != NULL;
4120 		if (vmio) {
4121 			maxsize = size + (offset & PAGE_MASK);
4122 		} else {
4123 			maxsize = size;
4124 			/* Do not allow non-VMIO notmapped buffers. */
4125 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4126 		}
4127 		maxsize = imax(maxsize, bsize);
4128 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
4129 		    !vn_isdisk(vp)) {
4130 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4131 			KASSERT(error != EOPNOTSUPP,
4132 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4133 			    vp));
4134 			if (error != 0)
4135 				return (error);
4136 			if (d_blkno == -1)
4137 				return (EJUSTRETURN);
4138 		}
4139 
4140 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4141 		if (bp == NULL) {
4142 			if (slpflag || slptimeo)
4143 				return (ETIMEDOUT);
4144 			/*
4145 			 * XXX This is here until the sleep path is diagnosed
4146 			 * enough to work under very low memory conditions.
4147 			 *
4148 			 * There's an issue on low memory, 4BSD+non-preempt
4149 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4150 			 * exhaustion occurs without sleeping for buffer
4151 			 * reclaimation.  This just sticks in a loop and
4152 			 * constantly attempts to allocate a buffer, which
4153 			 * hits exhaustion and tries to wakeup bufdaemon.
4154 			 * This never happens because we never yield.
4155 			 *
4156 			 * The real solution is to identify and fix these cases
4157 			 * so we aren't effectively busy-waiting in a loop
4158 			 * until the reclaimation path has cycles to run.
4159 			 */
4160 			kern_yield(PRI_USER);
4161 			goto loop;
4162 		}
4163 
4164 		/*
4165 		 * This code is used to make sure that a buffer is not
4166 		 * created while the getnewbuf routine is blocked.
4167 		 * This can be a problem whether the vnode is locked or not.
4168 		 * If the buffer is created out from under us, we have to
4169 		 * throw away the one we just created.
4170 		 *
4171 		 * Note: this must occur before we associate the buffer
4172 		 * with the vp especially considering limitations in
4173 		 * the splay tree implementation when dealing with duplicate
4174 		 * lblkno's.
4175 		 */
4176 		BO_LOCK(bo);
4177 		if (gbincore(bo, blkno)) {
4178 			BO_UNLOCK(bo);
4179 			bp->b_flags |= B_INVAL;
4180 			bufspace_release(bufdomain(bp), maxsize);
4181 			brelse(bp);
4182 			goto loop;
4183 		}
4184 
4185 		/*
4186 		 * Insert the buffer into the hash, so that it can
4187 		 * be found by incore.
4188 		 */
4189 		bp->b_lblkno = blkno;
4190 		bp->b_blkno = d_blkno;
4191 		bp->b_offset = offset;
4192 		bgetvp(vp, bp);
4193 		BO_UNLOCK(bo);
4194 
4195 		/*
4196 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4197 		 * buffer size starts out as 0, B_CACHE will be set by
4198 		 * allocbuf() for the VMIO case prior to it testing the
4199 		 * backing store for validity.
4200 		 */
4201 
4202 		if (vmio) {
4203 			bp->b_flags |= B_VMIO;
4204 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4205 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4206 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4207 		} else {
4208 			bp->b_flags &= ~B_VMIO;
4209 			KASSERT(bp->b_bufobj->bo_object == NULL,
4210 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4211 			    bp, bp->b_bufobj->bo_object));
4212 			BUF_CHECK_MAPPED(bp);
4213 		}
4214 
4215 		allocbuf(bp, size);
4216 		bufspace_release(bufdomain(bp), maxsize);
4217 		bp->b_flags &= ~B_DONE;
4218 	}
4219 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4220 end:
4221 	buf_track(bp, __func__);
4222 	KASSERT(bp->b_bufobj == bo,
4223 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4224 	*bpp = bp;
4225 	return (0);
4226 }
4227 
4228 /*
4229  * Get an empty, disassociated buffer of given size.  The buffer is initially
4230  * set to B_INVAL.
4231  */
4232 struct buf *
geteblk(int size,int flags)4233 geteblk(int size, int flags)
4234 {
4235 	struct buf *bp;
4236 	int maxsize;
4237 
4238 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4239 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4240 		if ((flags & GB_NOWAIT_BD) &&
4241 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4242 			return (NULL);
4243 	}
4244 	allocbuf(bp, size);
4245 	bufspace_release(bufdomain(bp), maxsize);
4246 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4247 	return (bp);
4248 }
4249 
4250 /*
4251  * Truncate the backing store for a non-vmio buffer.
4252  */
4253 static void
vfs_nonvmio_truncate(struct buf * bp,int newbsize)4254 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4255 {
4256 
4257 	if (bp->b_flags & B_MALLOC) {
4258 		/*
4259 		 * malloced buffers are not shrunk
4260 		 */
4261 		if (newbsize == 0) {
4262 			bufmallocadjust(bp, 0);
4263 			free(bp->b_data, M_BIOBUF);
4264 			bp->b_data = bp->b_kvabase;
4265 			bp->b_flags &= ~B_MALLOC;
4266 		}
4267 		return;
4268 	}
4269 	vm_hold_free_pages(bp, newbsize);
4270 	bufspace_adjust(bp, newbsize);
4271 }
4272 
4273 /*
4274  * Extend the backing for a non-VMIO buffer.
4275  */
4276 static void
vfs_nonvmio_extend(struct buf * bp,int newbsize)4277 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4278 {
4279 	caddr_t origbuf;
4280 	int origbufsize;
4281 
4282 	/*
4283 	 * We only use malloced memory on the first allocation.
4284 	 * and revert to page-allocated memory when the buffer
4285 	 * grows.
4286 	 *
4287 	 * There is a potential smp race here that could lead
4288 	 * to bufmallocspace slightly passing the max.  It
4289 	 * is probably extremely rare and not worth worrying
4290 	 * over.
4291 	 */
4292 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4293 	    bufmallocspace < maxbufmallocspace) {
4294 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4295 		bp->b_flags |= B_MALLOC;
4296 		bufmallocadjust(bp, newbsize);
4297 		return;
4298 	}
4299 
4300 	/*
4301 	 * If the buffer is growing on its other-than-first
4302 	 * allocation then we revert to the page-allocation
4303 	 * scheme.
4304 	 */
4305 	origbuf = NULL;
4306 	origbufsize = 0;
4307 	if (bp->b_flags & B_MALLOC) {
4308 		origbuf = bp->b_data;
4309 		origbufsize = bp->b_bufsize;
4310 		bp->b_data = bp->b_kvabase;
4311 		bufmallocadjust(bp, 0);
4312 		bp->b_flags &= ~B_MALLOC;
4313 		newbsize = round_page(newbsize);
4314 	}
4315 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4316 	    (vm_offset_t) bp->b_data + newbsize);
4317 	if (origbuf != NULL) {
4318 		bcopy(origbuf, bp->b_data, origbufsize);
4319 		free(origbuf, M_BIOBUF);
4320 	}
4321 	bufspace_adjust(bp, newbsize);
4322 }
4323 
4324 /*
4325  * This code constitutes the buffer memory from either anonymous system
4326  * memory (in the case of non-VMIO operations) or from an associated
4327  * VM object (in the case of VMIO operations).  This code is able to
4328  * resize a buffer up or down.
4329  *
4330  * Note that this code is tricky, and has many complications to resolve
4331  * deadlock or inconsistent data situations.  Tread lightly!!!
4332  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4333  * the caller.  Calling this code willy nilly can result in the loss of data.
4334  *
4335  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4336  * B_CACHE for the non-VMIO case.
4337  */
4338 int
allocbuf(struct buf * bp,int size)4339 allocbuf(struct buf *bp, int size)
4340 {
4341 	int newbsize;
4342 
4343 	if (bp->b_bcount == size)
4344 		return (1);
4345 
4346 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4347 		panic("allocbuf: buffer too small");
4348 
4349 	newbsize = roundup2(size, DEV_BSIZE);
4350 	if ((bp->b_flags & B_VMIO) == 0) {
4351 		if ((bp->b_flags & B_MALLOC) == 0)
4352 			newbsize = round_page(newbsize);
4353 		/*
4354 		 * Just get anonymous memory from the kernel.  Don't
4355 		 * mess with B_CACHE.
4356 		 */
4357 		if (newbsize < bp->b_bufsize)
4358 			vfs_nonvmio_truncate(bp, newbsize);
4359 		else if (newbsize > bp->b_bufsize)
4360 			vfs_nonvmio_extend(bp, newbsize);
4361 	} else {
4362 		int desiredpages;
4363 
4364 		desiredpages = (size == 0) ? 0 :
4365 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4366 
4367 		if (bp->b_flags & B_MALLOC)
4368 			panic("allocbuf: VMIO buffer can't be malloced");
4369 		/*
4370 		 * Set B_CACHE initially if buffer is 0 length or will become
4371 		 * 0-length.
4372 		 */
4373 		if (size == 0 || bp->b_bufsize == 0)
4374 			bp->b_flags |= B_CACHE;
4375 
4376 		if (newbsize < bp->b_bufsize)
4377 			vfs_vmio_truncate(bp, desiredpages);
4378 		/* XXX This looks as if it should be newbsize > b_bufsize */
4379 		else if (size > bp->b_bcount)
4380 			vfs_vmio_extend(bp, desiredpages, size);
4381 		bufspace_adjust(bp, newbsize);
4382 	}
4383 	bp->b_bcount = size;		/* requested buffer size. */
4384 	return (1);
4385 }
4386 
4387 extern int inflight_transient_maps;
4388 
4389 static struct bio_queue nondump_bios;
4390 
4391 void
biodone(struct bio * bp)4392 biodone(struct bio *bp)
4393 {
4394 	struct mtx *mtxp;
4395 	void (*done)(struct bio *);
4396 	vm_offset_t start, end;
4397 
4398 	biotrack(bp, __func__);
4399 
4400 	/*
4401 	 * Avoid completing I/O when dumping after a panic since that may
4402 	 * result in a deadlock in the filesystem or pager code.  Note that
4403 	 * this doesn't affect dumps that were started manually since we aim
4404 	 * to keep the system usable after it has been resumed.
4405 	 */
4406 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4407 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4408 		return;
4409 	}
4410 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4411 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4412 		bp->bio_flags |= BIO_UNMAPPED;
4413 		start = trunc_page((vm_offset_t)bp->bio_data);
4414 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4415 		bp->bio_data = unmapped_buf;
4416 		pmap_qremove(start, atop(end - start));
4417 		vmem_free(transient_arena, start, end - start);
4418 		atomic_add_int(&inflight_transient_maps, -1);
4419 	}
4420 	done = bp->bio_done;
4421 	if (done == NULL) {
4422 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4423 		mtx_lock(mtxp);
4424 		bp->bio_flags |= BIO_DONE;
4425 		wakeup(bp);
4426 		mtx_unlock(mtxp);
4427 	} else
4428 		done(bp);
4429 }
4430 
4431 /*
4432  * Wait for a BIO to finish.
4433  */
4434 int
biowait(struct bio * bp,const char * wmesg)4435 biowait(struct bio *bp, const char *wmesg)
4436 {
4437 	struct mtx *mtxp;
4438 
4439 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4440 	mtx_lock(mtxp);
4441 	while ((bp->bio_flags & BIO_DONE) == 0)
4442 		msleep(bp, mtxp, PRIBIO, wmesg, 0);
4443 	mtx_unlock(mtxp);
4444 	if (bp->bio_error != 0)
4445 		return (bp->bio_error);
4446 	if (!(bp->bio_flags & BIO_ERROR))
4447 		return (0);
4448 	return (EIO);
4449 }
4450 
4451 void
biofinish(struct bio * bp,struct devstat * stat,int error)4452 biofinish(struct bio *bp, struct devstat *stat, int error)
4453 {
4454 
4455 	if (error) {
4456 		bp->bio_error = error;
4457 		bp->bio_flags |= BIO_ERROR;
4458 	}
4459 	if (stat != NULL)
4460 		devstat_end_transaction_bio(stat, bp);
4461 	biodone(bp);
4462 }
4463 
4464 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4465 void
biotrack_buf(struct bio * bp,const char * location)4466 biotrack_buf(struct bio *bp, const char *location)
4467 {
4468 
4469 	buf_track(bp->bio_track_bp, location);
4470 }
4471 #endif
4472 
4473 /*
4474  *	bufwait:
4475  *
4476  *	Wait for buffer I/O completion, returning error status.  The buffer
4477  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4478  *	error and cleared.
4479  */
4480 int
bufwait(struct buf * bp)4481 bufwait(struct buf *bp)
4482 {
4483 	if (bp->b_iocmd == BIO_READ)
4484 		bwait(bp, PRIBIO, "biord");
4485 	else
4486 		bwait(bp, PRIBIO, "biowr");
4487 	if (bp->b_flags & B_EINTR) {
4488 		bp->b_flags &= ~B_EINTR;
4489 		return (EINTR);
4490 	}
4491 	if (bp->b_ioflags & BIO_ERROR) {
4492 		return (bp->b_error ? bp->b_error : EIO);
4493 	} else {
4494 		return (0);
4495 	}
4496 }
4497 
4498 /*
4499  *	bufdone:
4500  *
4501  *	Finish I/O on a buffer, optionally calling a completion function.
4502  *	This is usually called from an interrupt so process blocking is
4503  *	not allowed.
4504  *
4505  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4506  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4507  *	assuming B_INVAL is clear.
4508  *
4509  *	For the VMIO case, we set B_CACHE if the op was a read and no
4510  *	read error occurred, or if the op was a write.  B_CACHE is never
4511  *	set if the buffer is invalid or otherwise uncacheable.
4512  *
4513  *	bufdone does not mess with B_INVAL, allowing the I/O routine or the
4514  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4515  *	in the biodone routine.
4516  */
4517 void
bufdone(struct buf * bp)4518 bufdone(struct buf *bp)
4519 {
4520 	struct bufobj *dropobj;
4521 	void    (*biodone)(struct buf *);
4522 
4523 	buf_track(bp, __func__);
4524 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4525 	dropobj = NULL;
4526 
4527 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4528 
4529 	runningbufwakeup(bp);
4530 	if (bp->b_iocmd == BIO_WRITE)
4531 		dropobj = bp->b_bufobj;
4532 	/* call optional completion function if requested */
4533 	if (bp->b_iodone != NULL) {
4534 		biodone = bp->b_iodone;
4535 		bp->b_iodone = NULL;
4536 		(*biodone) (bp);
4537 		if (dropobj)
4538 			bufobj_wdrop(dropobj);
4539 		return;
4540 	}
4541 	if (bp->b_flags & B_VMIO) {
4542 		/*
4543 		 * Set B_CACHE if the op was a normal read and no error
4544 		 * occurred.  B_CACHE is set for writes in the b*write()
4545 		 * routines.
4546 		 */
4547 		if (bp->b_iocmd == BIO_READ &&
4548 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4549 		    !(bp->b_ioflags & BIO_ERROR))
4550 			bp->b_flags |= B_CACHE;
4551 		vfs_vmio_iodone(bp);
4552 	}
4553 	if (!LIST_EMPTY(&bp->b_dep))
4554 		buf_complete(bp);
4555 	if ((bp->b_flags & B_CKHASH) != 0) {
4556 		KASSERT(bp->b_iocmd == BIO_READ,
4557 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4558 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4559 		(*bp->b_ckhashcalc)(bp);
4560 	}
4561 	/*
4562 	 * For asynchronous completions, release the buffer now. The brelse
4563 	 * will do a wakeup there if necessary - so no need to do a wakeup
4564 	 * here in the async case. The sync case always needs to do a wakeup.
4565 	 */
4566 	if (bp->b_flags & B_ASYNC) {
4567 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4568 		    (bp->b_ioflags & BIO_ERROR))
4569 			brelse(bp);
4570 		else
4571 			bqrelse(bp);
4572 	} else
4573 		bdone(bp);
4574 	if (dropobj)
4575 		bufobj_wdrop(dropobj);
4576 }
4577 
4578 /*
4579  * This routine is called in lieu of iodone in the case of
4580  * incomplete I/O.  This keeps the busy status for pages
4581  * consistent.
4582  */
4583 void
vfs_unbusy_pages(struct buf * bp)4584 vfs_unbusy_pages(struct buf *bp)
4585 {
4586 	int i;
4587 	vm_object_t obj;
4588 	vm_page_t m;
4589 
4590 	runningbufwakeup(bp);
4591 	if (!(bp->b_flags & B_VMIO))
4592 		return;
4593 
4594 	obj = bp->b_bufobj->bo_object;
4595 	for (i = 0; i < bp->b_npages; i++) {
4596 		m = bp->b_pages[i];
4597 		if (m == bogus_page) {
4598 			m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4599 			if (!m)
4600 				panic("vfs_unbusy_pages: page missing\n");
4601 			bp->b_pages[i] = m;
4602 			if (buf_mapped(bp)) {
4603 				BUF_CHECK_MAPPED(bp);
4604 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4605 				    bp->b_pages, bp->b_npages);
4606 			} else
4607 				BUF_CHECK_UNMAPPED(bp);
4608 		}
4609 		vm_page_sunbusy(m);
4610 	}
4611 	vm_object_pip_wakeupn(obj, bp->b_npages);
4612 }
4613 
4614 /*
4615  * vfs_page_set_valid:
4616  *
4617  *	Set the valid bits in a page based on the supplied offset.   The
4618  *	range is restricted to the buffer's size.
4619  *
4620  *	This routine is typically called after a read completes.
4621  */
4622 static void
vfs_page_set_valid(struct buf * bp,vm_ooffset_t off,vm_page_t m)4623 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4624 {
4625 	vm_ooffset_t eoff;
4626 
4627 	/*
4628 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4629 	 * page boundary and eoff is not greater than the end of the buffer.
4630 	 * The end of the buffer, in this case, is our file EOF, not the
4631 	 * allocation size of the buffer.
4632 	 */
4633 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4634 	if (eoff > bp->b_offset + bp->b_bcount)
4635 		eoff = bp->b_offset + bp->b_bcount;
4636 
4637 	/*
4638 	 * Set valid range.  This is typically the entire buffer and thus the
4639 	 * entire page.
4640 	 */
4641 	if (eoff > off)
4642 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4643 }
4644 
4645 /*
4646  * vfs_page_set_validclean:
4647  *
4648  *	Set the valid bits and clear the dirty bits in a page based on the
4649  *	supplied offset.   The range is restricted to the buffer's size.
4650  */
4651 static void
vfs_page_set_validclean(struct buf * bp,vm_ooffset_t off,vm_page_t m)4652 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4653 {
4654 	vm_ooffset_t soff, eoff;
4655 
4656 	/*
4657 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4658 	 * page boundary or cross the end of the buffer.  The end of the
4659 	 * buffer, in this case, is our file EOF, not the allocation size
4660 	 * of the buffer.
4661 	 */
4662 	soff = off;
4663 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4664 	if (eoff > bp->b_offset + bp->b_bcount)
4665 		eoff = bp->b_offset + bp->b_bcount;
4666 
4667 	/*
4668 	 * Set valid range.  This is typically the entire buffer and thus the
4669 	 * entire page.
4670 	 */
4671 	if (eoff > soff) {
4672 		vm_page_set_validclean(
4673 		    m,
4674 		   (vm_offset_t) (soff & PAGE_MASK),
4675 		   (vm_offset_t) (eoff - soff)
4676 		);
4677 	}
4678 }
4679 
4680 /*
4681  * Acquire a shared busy on all pages in the buf.
4682  */
4683 void
vfs_busy_pages_acquire(struct buf * bp)4684 vfs_busy_pages_acquire(struct buf *bp)
4685 {
4686 	int i;
4687 
4688 	for (i = 0; i < bp->b_npages; i++)
4689 		vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4690 }
4691 
4692 void
vfs_busy_pages_release(struct buf * bp)4693 vfs_busy_pages_release(struct buf *bp)
4694 {
4695 	int i;
4696 
4697 	for (i = 0; i < bp->b_npages; i++)
4698 		vm_page_sunbusy(bp->b_pages[i]);
4699 }
4700 
4701 /*
4702  * This routine is called before a device strategy routine.
4703  * It is used to tell the VM system that paging I/O is in
4704  * progress, and treat the pages associated with the buffer
4705  * almost as being exclusive busy.  Also the object paging_in_progress
4706  * flag is handled to make sure that the object doesn't become
4707  * inconsistent.
4708  *
4709  * Since I/O has not been initiated yet, certain buffer flags
4710  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4711  * and should be ignored.
4712  */
4713 void
vfs_busy_pages(struct buf * bp,int clear_modify)4714 vfs_busy_pages(struct buf *bp, int clear_modify)
4715 {
4716 	vm_object_t obj;
4717 	vm_ooffset_t foff;
4718 	vm_page_t m;
4719 	int i;
4720 	bool bogus;
4721 
4722 	if (!(bp->b_flags & B_VMIO))
4723 		return;
4724 
4725 	obj = bp->b_bufobj->bo_object;
4726 	foff = bp->b_offset;
4727 	KASSERT(bp->b_offset != NOOFFSET,
4728 	    ("vfs_busy_pages: no buffer offset"));
4729 	if ((bp->b_flags & B_CLUSTER) == 0) {
4730 		vm_object_pip_add(obj, bp->b_npages);
4731 		vfs_busy_pages_acquire(bp);
4732 	}
4733 	if (bp->b_bufsize != 0)
4734 		vfs_setdirty_range(bp);
4735 	bogus = false;
4736 	for (i = 0; i < bp->b_npages; i++) {
4737 		m = bp->b_pages[i];
4738 		vm_page_assert_sbusied(m);
4739 
4740 		/*
4741 		 * When readying a buffer for a read ( i.e
4742 		 * clear_modify == 0 ), it is important to do
4743 		 * bogus_page replacement for valid pages in
4744 		 * partially instantiated buffers.  Partially
4745 		 * instantiated buffers can, in turn, occur when
4746 		 * reconstituting a buffer from its VM backing store
4747 		 * base.  We only have to do this if B_CACHE is
4748 		 * clear ( which causes the I/O to occur in the
4749 		 * first place ).  The replacement prevents the read
4750 		 * I/O from overwriting potentially dirty VM-backed
4751 		 * pages.  XXX bogus page replacement is, uh, bogus.
4752 		 * It may not work properly with small-block devices.
4753 		 * We need to find a better way.
4754 		 */
4755 		if (clear_modify) {
4756 			pmap_remove_write(m);
4757 			vfs_page_set_validclean(bp, foff, m);
4758 		} else if (vm_page_all_valid(m) &&
4759 		    (bp->b_flags & B_CACHE) == 0) {
4760 			bp->b_pages[i] = bogus_page;
4761 			bogus = true;
4762 		}
4763 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4764 	}
4765 	if (bogus && buf_mapped(bp)) {
4766 		BUF_CHECK_MAPPED(bp);
4767 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4768 		    bp->b_pages, bp->b_npages);
4769 	}
4770 }
4771 
4772 /*
4773  *	vfs_bio_set_valid:
4774  *
4775  *	Set the range within the buffer to valid.  The range is
4776  *	relative to the beginning of the buffer, b_offset.  Note that
4777  *	b_offset itself may be offset from the beginning of the first
4778  *	page.
4779  */
4780 void
vfs_bio_set_valid(struct buf * bp,int base,int size)4781 vfs_bio_set_valid(struct buf *bp, int base, int size)
4782 {
4783 	int i, n;
4784 	vm_page_t m;
4785 
4786 	if (!(bp->b_flags & B_VMIO))
4787 		return;
4788 
4789 	/*
4790 	 * Fixup base to be relative to beginning of first page.
4791 	 * Set initial n to be the maximum number of bytes in the
4792 	 * first page that can be validated.
4793 	 */
4794 	base += (bp->b_offset & PAGE_MASK);
4795 	n = PAGE_SIZE - (base & PAGE_MASK);
4796 
4797 	/*
4798 	 * Busy may not be strictly necessary here because the pages are
4799 	 * unlikely to be fully valid and the vnode lock will synchronize
4800 	 * their access via getpages.  It is grabbed for consistency with
4801 	 * other page validation.
4802 	 */
4803 	vfs_busy_pages_acquire(bp);
4804 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4805 		m = bp->b_pages[i];
4806 		if (n > size)
4807 			n = size;
4808 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4809 		base += n;
4810 		size -= n;
4811 		n = PAGE_SIZE;
4812 	}
4813 	vfs_busy_pages_release(bp);
4814 }
4815 
4816 /*
4817  *	vfs_bio_clrbuf:
4818  *
4819  *	If the specified buffer is a non-VMIO buffer, clear the entire
4820  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4821  *	validate only the previously invalid portions of the buffer.
4822  *	This routine essentially fakes an I/O, so we need to clear
4823  *	BIO_ERROR and B_INVAL.
4824  *
4825  *	Note that while we only theoretically need to clear through b_bcount,
4826  *	we go ahead and clear through b_bufsize.
4827  */
4828 void
vfs_bio_clrbuf(struct buf * bp)4829 vfs_bio_clrbuf(struct buf *bp)
4830 {
4831 	int i, j, mask, sa, ea, slide;
4832 
4833 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4834 		clrbuf(bp);
4835 		return;
4836 	}
4837 	bp->b_flags &= ~B_INVAL;
4838 	bp->b_ioflags &= ~BIO_ERROR;
4839 	vfs_busy_pages_acquire(bp);
4840 	sa = bp->b_offset & PAGE_MASK;
4841 	slide = 0;
4842 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4843 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4844 		ea = slide & PAGE_MASK;
4845 		if (ea == 0)
4846 			ea = PAGE_SIZE;
4847 		if (bp->b_pages[i] == bogus_page)
4848 			continue;
4849 		j = sa / DEV_BSIZE;
4850 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4851 		if ((bp->b_pages[i]->valid & mask) == mask)
4852 			continue;
4853 		if ((bp->b_pages[i]->valid & mask) == 0)
4854 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4855 		else {
4856 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4857 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4858 					pmap_zero_page_area(bp->b_pages[i],
4859 					    sa, DEV_BSIZE);
4860 				}
4861 			}
4862 		}
4863 		vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4864 		    roundup2(ea - sa, DEV_BSIZE));
4865 	}
4866 	vfs_busy_pages_release(bp);
4867 	bp->b_resid = 0;
4868 }
4869 
4870 void
vfs_bio_bzero_buf(struct buf * bp,int base,int size)4871 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4872 {
4873 	vm_page_t m;
4874 	int i, n;
4875 
4876 	if (buf_mapped(bp)) {
4877 		BUF_CHECK_MAPPED(bp);
4878 		bzero(bp->b_data + base, size);
4879 	} else {
4880 		BUF_CHECK_UNMAPPED(bp);
4881 		n = PAGE_SIZE - (base & PAGE_MASK);
4882 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4883 			m = bp->b_pages[i];
4884 			if (n > size)
4885 				n = size;
4886 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4887 			base += n;
4888 			size -= n;
4889 			n = PAGE_SIZE;
4890 		}
4891 	}
4892 }
4893 
4894 /*
4895  * Update buffer flags based on I/O request parameters, optionally releasing the
4896  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4897  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4898  * I/O).  Otherwise the buffer is released to the cache.
4899  */
4900 static void
b_io_dismiss(struct buf * bp,int ioflag,bool release)4901 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4902 {
4903 
4904 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4905 	    ("buf %p non-VMIO noreuse", bp));
4906 
4907 	if ((ioflag & IO_DIRECT) != 0)
4908 		bp->b_flags |= B_DIRECT;
4909 	if ((ioflag & IO_EXT) != 0)
4910 		bp->b_xflags |= BX_ALTDATA;
4911 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4912 		bp->b_flags |= B_RELBUF;
4913 		if ((ioflag & IO_NOREUSE) != 0)
4914 			bp->b_flags |= B_NOREUSE;
4915 		if (release)
4916 			brelse(bp);
4917 	} else if (release)
4918 		bqrelse(bp);
4919 }
4920 
4921 void
vfs_bio_brelse(struct buf * bp,int ioflag)4922 vfs_bio_brelse(struct buf *bp, int ioflag)
4923 {
4924 
4925 	b_io_dismiss(bp, ioflag, true);
4926 }
4927 
4928 void
vfs_bio_set_flags(struct buf * bp,int ioflag)4929 vfs_bio_set_flags(struct buf *bp, int ioflag)
4930 {
4931 
4932 	b_io_dismiss(bp, ioflag, false);
4933 }
4934 
4935 /*
4936  * vm_hold_load_pages and vm_hold_free_pages get pages into
4937  * a buffers address space.  The pages are anonymous and are
4938  * not associated with a file object.
4939  */
4940 static void
vm_hold_load_pages(struct buf * bp,vm_offset_t from,vm_offset_t to)4941 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4942 {
4943 	vm_offset_t pg;
4944 	vm_page_t p;
4945 	int index;
4946 
4947 	BUF_CHECK_MAPPED(bp);
4948 
4949 	to = round_page(to);
4950 	from = round_page(from);
4951 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4952 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
4953 	KASSERT(to - from <= maxbcachebuf,
4954 	    ("vm_hold_load_pages too large %p %#jx %#jx %u",
4955 	    bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
4956 
4957 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4958 		/*
4959 		 * note: must allocate system pages since blocking here
4960 		 * could interfere with paging I/O, no matter which
4961 		 * process we are.
4962 		 */
4963 		p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
4964 		    VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
4965 		pmap_qenter(pg, &p, 1);
4966 		bp->b_pages[index] = p;
4967 	}
4968 	bp->b_npages = index;
4969 }
4970 
4971 /* Return pages associated with this buf to the vm system */
4972 static void
vm_hold_free_pages(struct buf * bp,int newbsize)4973 vm_hold_free_pages(struct buf *bp, int newbsize)
4974 {
4975 	vm_offset_t from;
4976 	vm_page_t p;
4977 	int index, newnpages;
4978 
4979 	BUF_CHECK_MAPPED(bp);
4980 
4981 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4982 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4983 	if (bp->b_npages > newnpages)
4984 		pmap_qremove(from, bp->b_npages - newnpages);
4985 	for (index = newnpages; index < bp->b_npages; index++) {
4986 		p = bp->b_pages[index];
4987 		bp->b_pages[index] = NULL;
4988 		vm_page_unwire_noq(p);
4989 		vm_page_free(p);
4990 	}
4991 	bp->b_npages = newnpages;
4992 }
4993 
4994 /*
4995  * Map an IO request into kernel virtual address space.
4996  *
4997  * All requests are (re)mapped into kernel VA space.
4998  * Notice that we use b_bufsize for the size of the buffer
4999  * to be mapped.  b_bcount might be modified by the driver.
5000  *
5001  * Note that even if the caller determines that the address space should
5002  * be valid, a race or a smaller-file mapped into a larger space may
5003  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
5004  * check the return value.
5005  *
5006  * This function only works with pager buffers.
5007  */
5008 int
vmapbuf(struct buf * bp,void * uaddr,size_t len,int mapbuf)5009 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
5010 {
5011 	vm_prot_t prot;
5012 	int pidx;
5013 
5014 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
5015 	prot = VM_PROT_READ;
5016 	if (bp->b_iocmd == BIO_READ)
5017 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
5018 	pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
5019 	    (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
5020 	if (pidx < 0)
5021 		return (-1);
5022 	bp->b_bufsize = len;
5023 	bp->b_npages = pidx;
5024 	bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
5025 	if (mapbuf || !unmapped_buf_allowed) {
5026 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
5027 		bp->b_data = bp->b_kvabase + bp->b_offset;
5028 	} else
5029 		bp->b_data = unmapped_buf;
5030 	return (0);
5031 }
5032 
5033 /*
5034  * Free the io map PTEs associated with this IO operation.
5035  * We also invalidate the TLB entries and restore the original b_addr.
5036  *
5037  * This function only works with pager buffers.
5038  */
5039 void
vunmapbuf(struct buf * bp)5040 vunmapbuf(struct buf *bp)
5041 {
5042 	int npages;
5043 
5044 	npages = bp->b_npages;
5045 	if (buf_mapped(bp))
5046 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5047 	vm_page_unhold_pages(bp->b_pages, npages);
5048 
5049 	bp->b_data = unmapped_buf;
5050 }
5051 
5052 void
bdone(struct buf * bp)5053 bdone(struct buf *bp)
5054 {
5055 	struct mtx *mtxp;
5056 
5057 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5058 	mtx_lock(mtxp);
5059 	bp->b_flags |= B_DONE;
5060 	wakeup(bp);
5061 	mtx_unlock(mtxp);
5062 }
5063 
5064 void
bwait(struct buf * bp,u_char pri,const char * wchan)5065 bwait(struct buf *bp, u_char pri, const char *wchan)
5066 {
5067 	struct mtx *mtxp;
5068 
5069 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5070 	mtx_lock(mtxp);
5071 	while ((bp->b_flags & B_DONE) == 0)
5072 		msleep(bp, mtxp, pri, wchan, 0);
5073 	mtx_unlock(mtxp);
5074 }
5075 
5076 int
bufsync(struct bufobj * bo,int waitfor)5077 bufsync(struct bufobj *bo, int waitfor)
5078 {
5079 
5080 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5081 }
5082 
5083 void
bufstrategy(struct bufobj * bo,struct buf * bp)5084 bufstrategy(struct bufobj *bo, struct buf *bp)
5085 {
5086 	int i __unused;
5087 	struct vnode *vp;
5088 
5089 	vp = bp->b_vp;
5090 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5091 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5092 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5093 	i = VOP_STRATEGY(vp, bp);
5094 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5095 }
5096 
5097 /*
5098  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
5099  */
5100 void
bufobj_init(struct bufobj * bo,void * private)5101 bufobj_init(struct bufobj *bo, void *private)
5102 {
5103 	static volatile int bufobj_cleanq;
5104 
5105         bo->bo_domain =
5106             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5107         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5108         bo->bo_private = private;
5109         TAILQ_INIT(&bo->bo_clean.bv_hd);
5110         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5111 }
5112 
5113 void
bufobj_wrefl(struct bufobj * bo)5114 bufobj_wrefl(struct bufobj *bo)
5115 {
5116 
5117 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5118 	ASSERT_BO_WLOCKED(bo);
5119 	bo->bo_numoutput++;
5120 }
5121 
5122 void
bufobj_wref(struct bufobj * bo)5123 bufobj_wref(struct bufobj *bo)
5124 {
5125 
5126 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5127 	BO_LOCK(bo);
5128 	bo->bo_numoutput++;
5129 	BO_UNLOCK(bo);
5130 }
5131 
5132 void
bufobj_wdrop(struct bufobj * bo)5133 bufobj_wdrop(struct bufobj *bo)
5134 {
5135 
5136 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5137 	BO_LOCK(bo);
5138 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5139 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5140 		bo->bo_flag &= ~BO_WWAIT;
5141 		wakeup(&bo->bo_numoutput);
5142 	}
5143 	BO_UNLOCK(bo);
5144 }
5145 
5146 int
bufobj_wwait(struct bufobj * bo,int slpflag,int timeo)5147 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5148 {
5149 	int error;
5150 
5151 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5152 	ASSERT_BO_WLOCKED(bo);
5153 	error = 0;
5154 	while (bo->bo_numoutput) {
5155 		bo->bo_flag |= BO_WWAIT;
5156 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5157 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5158 		if (error)
5159 			break;
5160 	}
5161 	return (error);
5162 }
5163 
5164 /*
5165  * Set bio_data or bio_ma for struct bio from the struct buf.
5166  */
5167 void
bdata2bio(struct buf * bp,struct bio * bip)5168 bdata2bio(struct buf *bp, struct bio *bip)
5169 {
5170 
5171 	if (!buf_mapped(bp)) {
5172 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5173 		bip->bio_ma = bp->b_pages;
5174 		bip->bio_ma_n = bp->b_npages;
5175 		bip->bio_data = unmapped_buf;
5176 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5177 		bip->bio_flags |= BIO_UNMAPPED;
5178 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5179 		    PAGE_SIZE == bp->b_npages,
5180 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5181 		    (long long)bip->bio_length, bip->bio_ma_n));
5182 	} else {
5183 		bip->bio_data = bp->b_data;
5184 		bip->bio_ma = NULL;
5185 	}
5186 }
5187 
5188 /*
5189  * The MIPS pmap code currently doesn't handle aliased pages.
5190  * The VIPT caches may not handle page aliasing themselves, leading
5191  * to data corruption.
5192  *
5193  * As such, this code makes a system extremely unhappy if said
5194  * system doesn't support unaliasing the above situation in hardware.
5195  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5196  * this feature at build time, so it has to be handled in software.
5197  *
5198  * Once the MIPS pmap/cache code grows to support this function on
5199  * earlier chips, it should be flipped back off.
5200  */
5201 #ifdef	__mips__
5202 static int buf_pager_relbuf = 1;
5203 #else
5204 static int buf_pager_relbuf = 0;
5205 #endif
5206 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5207     &buf_pager_relbuf, 0,
5208     "Make buffer pager release buffers after reading");
5209 
5210 /*
5211  * The buffer pager.  It uses buffer reads to validate pages.
5212  *
5213  * In contrast to the generic local pager from vm/vnode_pager.c, this
5214  * pager correctly and easily handles volumes where the underlying
5215  * device block size is greater than the machine page size.  The
5216  * buffer cache transparently extends the requested page run to be
5217  * aligned at the block boundary, and does the necessary bogus page
5218  * replacements in the addends to avoid obliterating already valid
5219  * pages.
5220  *
5221  * The only non-trivial issue is that the exclusive busy state for
5222  * pages, which is assumed by the vm_pager_getpages() interface, is
5223  * incompatible with the VMIO buffer cache's desire to share-busy the
5224  * pages.  This function performs a trivial downgrade of the pages'
5225  * state before reading buffers, and a less trivial upgrade from the
5226  * shared-busy to excl-busy state after the read.
5227  */
5228 int
vfs_bio_getpages(struct vnode * vp,vm_page_t * ma,int count,int * rbehind,int * rahead,vbg_get_lblkno_t get_lblkno,vbg_get_blksize_t get_blksize)5229 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5230     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5231     vbg_get_blksize_t get_blksize)
5232 {
5233 	vm_page_t m;
5234 	vm_object_t object;
5235 	struct buf *bp;
5236 	struct mount *mp;
5237 	daddr_t lbn, lbnp;
5238 	vm_ooffset_t la, lb, poff, poffe;
5239 	long bo_bs, bsize;
5240 	int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5241 	bool redo, lpart;
5242 
5243 	object = vp->v_object;
5244 	mp = vp->v_mount;
5245 	error = 0;
5246 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5247 	if (la >= object->un_pager.vnp.vnp_size)
5248 		return (VM_PAGER_BAD);
5249 
5250 	/*
5251 	 * Change the meaning of la from where the last requested page starts
5252 	 * to where it ends, because that's the end of the requested region
5253 	 * and the start of the potential read-ahead region.
5254 	 */
5255 	la += PAGE_SIZE;
5256 	lpart = la > object->un_pager.vnp.vnp_size;
5257 	error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5258 	    &bo_bs);
5259 	if (error != 0)
5260 		return (VM_PAGER_ERROR);
5261 
5262 	/*
5263 	 * Calculate read-ahead, behind and total pages.
5264 	 */
5265 	pgsin = count;
5266 	lb = IDX_TO_OFF(ma[0]->pindex);
5267 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5268 	pgsin += pgsin_b;
5269 	if (rbehind != NULL)
5270 		*rbehind = pgsin_b;
5271 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5272 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5273 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5274 		    PAGE_SIZE) - la);
5275 	pgsin += pgsin_a;
5276 	if (rahead != NULL)
5277 		*rahead = pgsin_a;
5278 	VM_CNT_INC(v_vnodein);
5279 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5280 
5281 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5282 	    != 0) ? GB_UNMAPPED : 0;
5283 again:
5284 	for (i = 0; i < count; i++) {
5285 		if (ma[i] != bogus_page)
5286 			vm_page_busy_downgrade(ma[i]);
5287 	}
5288 
5289 	lbnp = -1;
5290 	for (i = 0; i < count; i++) {
5291 		m = ma[i];
5292 		if (m == bogus_page)
5293 			continue;
5294 
5295 		/*
5296 		 * Pages are shared busy and the object lock is not
5297 		 * owned, which together allow for the pages'
5298 		 * invalidation.  The racy test for validity avoids
5299 		 * useless creation of the buffer for the most typical
5300 		 * case when invalidation is not used in redo or for
5301 		 * parallel read.  The shared->excl upgrade loop at
5302 		 * the end of the function catches the race in a
5303 		 * reliable way (protected by the object lock).
5304 		 */
5305 		if (vm_page_all_valid(m))
5306 			continue;
5307 
5308 		poff = IDX_TO_OFF(m->pindex);
5309 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5310 		for (; poff < poffe; poff += bsize) {
5311 			lbn = get_lblkno(vp, poff);
5312 			if (lbn == lbnp)
5313 				goto next_page;
5314 			lbnp = lbn;
5315 
5316 			error = get_blksize(vp, lbn, &bsize);
5317 			if (error == 0)
5318 				error = bread_gb(vp, lbn, bsize,
5319 				    curthread->td_ucred, br_flags, &bp);
5320 			if (error != 0)
5321 				goto end_pages;
5322 			if (bp->b_rcred == curthread->td_ucred) {
5323 				crfree(bp->b_rcred);
5324 				bp->b_rcred = NOCRED;
5325 			}
5326 			if (LIST_EMPTY(&bp->b_dep)) {
5327 				/*
5328 				 * Invalidation clears m->valid, but
5329 				 * may leave B_CACHE flag if the
5330 				 * buffer existed at the invalidation
5331 				 * time.  In this case, recycle the
5332 				 * buffer to do real read on next
5333 				 * bread() after redo.
5334 				 *
5335 				 * Otherwise B_RELBUF is not strictly
5336 				 * necessary, enable to reduce buf
5337 				 * cache pressure.
5338 				 */
5339 				if (buf_pager_relbuf ||
5340 				    !vm_page_all_valid(m))
5341 					bp->b_flags |= B_RELBUF;
5342 
5343 				bp->b_flags &= ~B_NOCACHE;
5344 				brelse(bp);
5345 			} else {
5346 				bqrelse(bp);
5347 			}
5348 		}
5349 		KASSERT(1 /* racy, enable for debugging */ ||
5350 		    vm_page_all_valid(m) || i == count - 1,
5351 		    ("buf %d %p invalid", i, m));
5352 		if (i == count - 1 && lpart) {
5353 			if (!vm_page_none_valid(m) &&
5354 			    !vm_page_all_valid(m))
5355 				vm_page_zero_invalid(m, TRUE);
5356 		}
5357 next_page:;
5358 	}
5359 end_pages:
5360 
5361 	redo = false;
5362 	for (i = 0; i < count; i++) {
5363 		if (ma[i] == bogus_page)
5364 			continue;
5365 		if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5366 			vm_page_sunbusy(ma[i]);
5367 			ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5368 			    VM_ALLOC_NORMAL);
5369 		}
5370 
5371 		/*
5372 		 * Since the pages were only sbusy while neither the
5373 		 * buffer nor the object lock was held by us, or
5374 		 * reallocated while vm_page_grab() slept for busy
5375 		 * relinguish, they could have been invalidated.
5376 		 * Recheck the valid bits and re-read as needed.
5377 		 *
5378 		 * Note that the last page is made fully valid in the
5379 		 * read loop, and partial validity for the page at
5380 		 * index count - 1 could mean that the page was
5381 		 * invalidated or removed, so we must restart for
5382 		 * safety as well.
5383 		 */
5384 		if (!vm_page_all_valid(ma[i]))
5385 			redo = true;
5386 	}
5387 	if (redo && error == 0)
5388 		goto again;
5389 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5390 }
5391 
5392 #include "opt_ddb.h"
5393 #ifdef DDB
5394 #include <ddb/ddb.h>
5395 
5396 /* DDB command to show buffer data */
DB_SHOW_COMMAND(buffer,db_show_buffer)5397 DB_SHOW_COMMAND(buffer, db_show_buffer)
5398 {
5399 	/* get args */
5400 	struct buf *bp = (struct buf *)addr;
5401 #ifdef FULL_BUF_TRACKING
5402 	uint32_t i, j;
5403 #endif
5404 
5405 	if (!have_addr) {
5406 		db_printf("usage: show buffer <addr>\n");
5407 		return;
5408 	}
5409 
5410 	db_printf("buf at %p\n", bp);
5411 	db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
5412 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5413 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5414 	db_printf("b_vflags=0x%b b_ioflags0x%b\n",
5415 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5416 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5417 	db_printf(
5418 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5419 	    "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
5420 	    "b_vp = %p, b_dep = %p\n",
5421 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5422 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5423 	    (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5424 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5425 	    bp->b_kvabase, bp->b_kvasize);
5426 	if (bp->b_npages) {
5427 		int i;
5428 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5429 		for (i = 0; i < bp->b_npages; i++) {
5430 			vm_page_t m;
5431 			m = bp->b_pages[i];
5432 			if (m != NULL)
5433 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5434 				    (u_long)m->pindex,
5435 				    (u_long)VM_PAGE_TO_PHYS(m));
5436 			else
5437 				db_printf("( ??? )");
5438 			if ((i + 1) < bp->b_npages)
5439 				db_printf(",");
5440 		}
5441 		db_printf("\n");
5442 	}
5443 	BUF_LOCKPRINTINFO(bp);
5444 #if defined(FULL_BUF_TRACKING)
5445 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5446 
5447 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5448 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5449 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5450 			continue;
5451 		db_printf(" %2u: %s\n", j,
5452 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5453 	}
5454 #elif defined(BUF_TRACKING)
5455 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5456 #endif
5457 	db_printf(" ");
5458 }
5459 
DB_SHOW_COMMAND(bufqueues,bufqueues)5460 DB_SHOW_COMMAND(bufqueues, bufqueues)
5461 {
5462 	struct bufdomain *bd;
5463 	struct buf *bp;
5464 	long total;
5465 	int i, j, cnt;
5466 
5467 	db_printf("bqempty: %d\n", bqempty.bq_len);
5468 
5469 	for (i = 0; i < buf_domains; i++) {
5470 		bd = &bdomain[i];
5471 		db_printf("Buf domain %d\n", i);
5472 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5473 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5474 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5475 		db_printf("\n");
5476 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5477 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5478 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5479 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5480 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5481 		db_printf("\n");
5482 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5483 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5484 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5485 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5486 		db_printf("\n");
5487 		total = 0;
5488 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5489 			total += bp->b_bufsize;
5490 		db_printf("\tcleanq count\t%d (%ld)\n",
5491 		    bd->bd_cleanq->bq_len, total);
5492 		total = 0;
5493 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5494 			total += bp->b_bufsize;
5495 		db_printf("\tdirtyq count\t%d (%ld)\n",
5496 		    bd->bd_dirtyq.bq_len, total);
5497 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5498 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5499 		db_printf("\tCPU ");
5500 		for (j = 0; j <= mp_maxid; j++)
5501 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5502 		db_printf("\n");
5503 		cnt = 0;
5504 		total = 0;
5505 		for (j = 0; j < nbuf; j++) {
5506 			bp = nbufp(j);
5507 			if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5508 				cnt++;
5509 				total += bp->b_bufsize;
5510 			}
5511 		}
5512 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5513 		cnt = 0;
5514 		total = 0;
5515 		for (j = 0; j < nbuf; j++) {
5516 			bp = nbufp(j);
5517 			if (bp->b_domain == i) {
5518 				cnt++;
5519 				total += bp->b_bufsize;
5520 			}
5521 		}
5522 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5523 	}
5524 }
5525 
DB_SHOW_COMMAND(lockedbufs,lockedbufs)5526 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5527 {
5528 	struct buf *bp;
5529 	int i;
5530 
5531 	for (i = 0; i < nbuf; i++) {
5532 		bp = nbufp(i);
5533 		if (BUF_ISLOCKED(bp)) {
5534 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5535 			db_printf("\n");
5536 			if (db_pager_quit)
5537 				break;
5538 		}
5539 	}
5540 }
5541 
DB_SHOW_COMMAND(vnodebufs,db_show_vnodebufs)5542 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5543 {
5544 	struct vnode *vp;
5545 	struct buf *bp;
5546 
5547 	if (!have_addr) {
5548 		db_printf("usage: show vnodebufs <addr>\n");
5549 		return;
5550 	}
5551 	vp = (struct vnode *)addr;
5552 	db_printf("Clean buffers:\n");
5553 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5554 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5555 		db_printf("\n");
5556 	}
5557 	db_printf("Dirty buffers:\n");
5558 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5559 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5560 		db_printf("\n");
5561 	}
5562 }
5563 
DB_COMMAND(countfreebufs,db_coundfreebufs)5564 DB_COMMAND(countfreebufs, db_coundfreebufs)
5565 {
5566 	struct buf *bp;
5567 	int i, used = 0, nfree = 0;
5568 
5569 	if (have_addr) {
5570 		db_printf("usage: countfreebufs\n");
5571 		return;
5572 	}
5573 
5574 	for (i = 0; i < nbuf; i++) {
5575 		bp = nbufp(i);
5576 		if (bp->b_qindex == QUEUE_EMPTY)
5577 			nfree++;
5578 		else
5579 			used++;
5580 	}
5581 
5582 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5583 	    nfree + used);
5584 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5585 }
5586 #endif /* DDB */
5587