xref: /freebsd-13.1/sys/kern/vfs_subr.c (revision 4e8fa94f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/lockf.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/namei.h>
73 #include <sys/pctrie.h>
74 #include <sys/priv.h>
75 #include <sys/reboot.h>
76 #include <sys/refcount.h>
77 #include <sys/rwlock.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smr.h>
81 #include <sys/smp.h>
82 #include <sys/stat.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 #include <sys/watchdog.h>
88 
89 #include <machine/stdarg.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_kern.h>
100 #include <vm/uma.h>
101 
102 #ifdef DDB
103 #include <ddb/ddb.h>
104 #endif
105 
106 static void	delmntque(struct vnode *vp);
107 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 		    int slpflag, int slptimeo);
109 static void	syncer_shutdown(void *arg, int howto);
110 static int	vtryrecycle(struct vnode *vp);
111 static void	v_init_counters(struct vnode *);
112 static void	vn_seqc_init(struct vnode *);
113 static void	vn_seqc_write_end_free(struct vnode *vp);
114 static void	vgonel(struct vnode *);
115 static bool	vhold_recycle_free(struct vnode *);
116 static void	vdropl_recycle(struct vnode *vp);
117 static void	vdrop_recycle(struct vnode *vp);
118 static void	vfs_knllock(void *arg);
119 static void	vfs_knlunlock(void *arg);
120 static void	vfs_knl_assert_lock(void *arg, int what);
121 static void	destroy_vpollinfo(struct vpollinfo *vi);
122 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
123 		    daddr_t startlbn, daddr_t endlbn);
124 static void	vnlru_recalc(void);
125 
126 /*
127  * Number of vnodes in existence.  Increased whenever getnewvnode()
128  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
129  */
130 static u_long __exclusive_cache_line numvnodes;
131 
132 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
133     "Number of vnodes in existence");
134 
135 static counter_u64_t vnodes_created;
136 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
137     "Number of vnodes created by getnewvnode");
138 
139 /*
140  * Conversion tables for conversion from vnode types to inode formats
141  * and back.
142  */
143 enum vtype iftovt_tab[16] = {
144 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
145 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
146 };
147 int vttoif_tab[10] = {
148 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
149 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
150 };
151 
152 /*
153  * List of allocates vnodes in the system.
154  */
155 static TAILQ_HEAD(freelst, vnode) vnode_list;
156 static struct vnode *vnode_list_free_marker;
157 static struct vnode *vnode_list_reclaim_marker;
158 
159 /*
160  * "Free" vnode target.  Free vnodes are rarely completely free, but are
161  * just ones that are cheap to recycle.  Usually they are for files which
162  * have been stat'd but not read; these usually have inode and namecache
163  * data attached to them.  This target is the preferred minimum size of a
164  * sub-cache consisting mostly of such files. The system balances the size
165  * of this sub-cache with its complement to try to prevent either from
166  * thrashing while the other is relatively inactive.  The targets express
167  * a preference for the best balance.
168  *
169  * "Above" this target there are 2 further targets (watermarks) related
170  * to recyling of free vnodes.  In the best-operating case, the cache is
171  * exactly full, the free list has size between vlowat and vhiwat above the
172  * free target, and recycling from it and normal use maintains this state.
173  * Sometimes the free list is below vlowat or even empty, but this state
174  * is even better for immediate use provided the cache is not full.
175  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
176  * ones) to reach one of these states.  The watermarks are currently hard-
177  * coded as 4% and 9% of the available space higher.  These and the default
178  * of 25% for wantfreevnodes are too large if the memory size is large.
179  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
180  * whenever vnlru_proc() becomes active.
181  */
182 static long wantfreevnodes;
183 static long __exclusive_cache_line freevnodes;
184 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
185     &freevnodes, 0, "Number of \"free\" vnodes");
186 static long freevnodes_old;
187 
188 static counter_u64_t recycles_count;
189 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
190     "Number of vnodes recycled to meet vnode cache targets");
191 
192 static counter_u64_t recycles_free_count;
193 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
194     "Number of free vnodes recycled to meet vnode cache targets");
195 
196 static counter_u64_t deferred_inact;
197 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
198     "Number of times inactive processing was deferred");
199 
200 /* To keep more than one thread at a time from running vfs_getnewfsid */
201 static struct mtx mntid_mtx;
202 
203 /*
204  * Lock for any access to the following:
205  *	vnode_list
206  *	numvnodes
207  *	freevnodes
208  */
209 static struct mtx __exclusive_cache_line vnode_list_mtx;
210 
211 /* Publicly exported FS */
212 struct nfs_public nfs_pub;
213 
214 static uma_zone_t buf_trie_zone;
215 static smr_t buf_trie_smr;
216 
217 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
218 static uma_zone_t vnode_zone;
219 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
220 
221 __read_frequently smr_t vfs_smr;
222 
223 /*
224  * The workitem queue.
225  *
226  * It is useful to delay writes of file data and filesystem metadata
227  * for tens of seconds so that quickly created and deleted files need
228  * not waste disk bandwidth being created and removed. To realize this,
229  * we append vnodes to a "workitem" queue. When running with a soft
230  * updates implementation, most pending metadata dependencies should
231  * not wait for more than a few seconds. Thus, mounted on block devices
232  * are delayed only about a half the time that file data is delayed.
233  * Similarly, directory updates are more critical, so are only delayed
234  * about a third the time that file data is delayed. Thus, there are
235  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
236  * one each second (driven off the filesystem syncer process). The
237  * syncer_delayno variable indicates the next queue that is to be processed.
238  * Items that need to be processed soon are placed in this queue:
239  *
240  *	syncer_workitem_pending[syncer_delayno]
241  *
242  * A delay of fifteen seconds is done by placing the request fifteen
243  * entries later in the queue:
244  *
245  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
246  *
247  */
248 static int syncer_delayno;
249 static long syncer_mask;
250 LIST_HEAD(synclist, bufobj);
251 static struct synclist *syncer_workitem_pending;
252 /*
253  * The sync_mtx protects:
254  *	bo->bo_synclist
255  *	sync_vnode_count
256  *	syncer_delayno
257  *	syncer_state
258  *	syncer_workitem_pending
259  *	syncer_worklist_len
260  *	rushjob
261  */
262 static struct mtx sync_mtx;
263 static struct cv sync_wakeup;
264 
265 #define SYNCER_MAXDELAY		32
266 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
267 static int syncdelay = 30;		/* max time to delay syncing data */
268 static int filedelay = 30;		/* time to delay syncing files */
269 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
270     "Time to delay syncing files (in seconds)");
271 static int dirdelay = 29;		/* time to delay syncing directories */
272 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
273     "Time to delay syncing directories (in seconds)");
274 static int metadelay = 28;		/* time to delay syncing metadata */
275 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
276     "Time to delay syncing metadata (in seconds)");
277 static int rushjob;		/* number of slots to run ASAP */
278 static int stat_rush_requests;	/* number of times I/O speeded up */
279 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
280     "Number of times I/O speeded up (rush requests)");
281 
282 #define	VDBATCH_SIZE 8
283 struct vdbatch {
284 	u_int index;
285 	long freevnodes;
286 	struct mtx lock;
287 	struct vnode *tab[VDBATCH_SIZE];
288 };
289 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
290 
291 static void	vdbatch_dequeue(struct vnode *vp);
292 
293 /*
294  * When shutting down the syncer, run it at four times normal speed.
295  */
296 #define SYNCER_SHUTDOWN_SPEEDUP		4
297 static int sync_vnode_count;
298 static int syncer_worklist_len;
299 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
300     syncer_state;
301 
302 /* Target for maximum number of vnodes. */
303 u_long desiredvnodes;
304 static u_long gapvnodes;		/* gap between wanted and desired */
305 static u_long vhiwat;		/* enough extras after expansion */
306 static u_long vlowat;		/* minimal extras before expansion */
307 static u_long vstir;		/* nonzero to stir non-free vnodes */
308 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
309 
310 static u_long vnlru_read_freevnodes(void);
311 
312 /*
313  * Note that no attempt is made to sanitize these parameters.
314  */
315 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)316 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
317 {
318 	u_long val;
319 	int error;
320 
321 	val = desiredvnodes;
322 	error = sysctl_handle_long(oidp, &val, 0, req);
323 	if (error != 0 || req->newptr == NULL)
324 		return (error);
325 
326 	if (val == desiredvnodes)
327 		return (0);
328 	mtx_lock(&vnode_list_mtx);
329 	desiredvnodes = val;
330 	wantfreevnodes = desiredvnodes / 4;
331 	vnlru_recalc();
332 	mtx_unlock(&vnode_list_mtx);
333 	/*
334 	 * XXX There is no protection against multiple threads changing
335 	 * desiredvnodes at the same time. Locking above only helps vnlru and
336 	 * getnewvnode.
337 	 */
338 	vfs_hash_changesize(desiredvnodes);
339 	cache_changesize(desiredvnodes);
340 	return (0);
341 }
342 
343 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
344     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
345     "LU", "Target for maximum number of vnodes");
346 
347 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)348 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = wantfreevnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == wantfreevnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	wantfreevnodes = val;
362 	vnlru_recalc();
363 	mtx_unlock(&vnode_list_mtx);
364 	return (0);
365 }
366 
367 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
369     "LU", "Target for minimum number of \"free\" vnodes");
370 
371 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
372     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
373 static int vnlru_nowhere;
374 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
375     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
376 
377 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)378 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
379 {
380 	struct vnode *vp;
381 	struct nameidata nd;
382 	char *buf;
383 	unsigned long ndflags;
384 	int error;
385 
386 	if (req->newptr == NULL)
387 		return (EINVAL);
388 	if (req->newlen >= PATH_MAX)
389 		return (E2BIG);
390 
391 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
392 	error = SYSCTL_IN(req, buf, req->newlen);
393 	if (error != 0)
394 		goto out;
395 
396 	buf[req->newlen] = '\0';
397 
398 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
399 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
400 	if ((error = namei(&nd)) != 0)
401 		goto out;
402 	vp = nd.ni_vp;
403 
404 	if (VN_IS_DOOMED(vp)) {
405 		/*
406 		 * This vnode is being recycled.  Return != 0 to let the caller
407 		 * know that the sysctl had no effect.  Return EAGAIN because a
408 		 * subsequent call will likely succeed (since namei will create
409 		 * a new vnode if necessary)
410 		 */
411 		error = EAGAIN;
412 		goto putvnode;
413 	}
414 
415 	counter_u64_add(recycles_count, 1);
416 	vgone(vp);
417 putvnode:
418 	NDFREE(&nd, 0);
419 out:
420 	free(buf, M_TEMP);
421 	return (error);
422 }
423 
424 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)425 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
426 {
427 	struct thread *td = curthread;
428 	struct vnode *vp;
429 	struct file *fp;
430 	int error;
431 	int fd;
432 
433 	if (req->newptr == NULL)
434 		return (EBADF);
435 
436         error = sysctl_handle_int(oidp, &fd, 0, req);
437         if (error != 0)
438                 return (error);
439 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
440 	if (error != 0)
441 		return (error);
442 	vp = fp->f_vnode;
443 
444 	error = vn_lock(vp, LK_EXCLUSIVE);
445 	if (error != 0)
446 		goto drop;
447 
448 	counter_u64_add(recycles_count, 1);
449 	vgone(vp);
450 	VOP_UNLOCK(vp);
451 drop:
452 	fdrop(fp, td);
453 	return (error);
454 }
455 
456 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
457     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
458     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
459 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
460     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
461     sysctl_ftry_reclaim_vnode, "I",
462     "Try to reclaim a vnode by its file descriptor");
463 
464 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
465 static int vnsz2log;
466 
467 /*
468  * Support for the bufobj clean & dirty pctrie.
469  */
470 static void *
buf_trie_alloc(struct pctrie * ptree)471 buf_trie_alloc(struct pctrie *ptree)
472 {
473 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
474 }
475 
476 static void
buf_trie_free(struct pctrie * ptree,void * node)477 buf_trie_free(struct pctrie *ptree, void *node)
478 {
479 	uma_zfree_smr(buf_trie_zone, node);
480 }
481 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
482     buf_trie_smr);
483 
484 /*
485  * Initialize the vnode management data structures.
486  *
487  * Reevaluate the following cap on the number of vnodes after the physical
488  * memory size exceeds 512GB.  In the limit, as the physical memory size
489  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
490  */
491 #ifndef	MAXVNODES_MAX
492 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
493 #endif
494 
495 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
496 
497 static struct vnode *
vn_alloc_marker(struct mount * mp)498 vn_alloc_marker(struct mount *mp)
499 {
500 	struct vnode *vp;
501 
502 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
503 	vp->v_type = VMARKER;
504 	vp->v_mount = mp;
505 
506 	return (vp);
507 }
508 
509 static void
vn_free_marker(struct vnode * vp)510 vn_free_marker(struct vnode *vp)
511 {
512 
513 	MPASS(vp->v_type == VMARKER);
514 	free(vp, M_VNODE_MARKER);
515 }
516 
517 #ifdef KASAN
518 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)519 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
520 {
521 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
522 	return (0);
523 }
524 
525 static void
vnode_dtor(void * mem,int size,void * arg __unused)526 vnode_dtor(void *mem, int size, void *arg __unused)
527 {
528 	size_t end1, end2, off1, off2;
529 
530 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
531 	    offsetof(struct vnode, v_dbatchcpu),
532 	    "KASAN marks require updating");
533 
534 	off1 = offsetof(struct vnode, v_vnodelist);
535 	off2 = offsetof(struct vnode, v_dbatchcpu);
536 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
537 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
538 
539 	/*
540 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
541 	 * after the vnode has been freed.  Try to get some KASAN coverage by
542 	 * marking everything except those two fields as invalid.  Because
543 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
544 	 * the same 8-byte aligned word must also be marked valid.
545 	 */
546 
547 	/* Handle the area from the start until v_vnodelist... */
548 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
549 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
550 
551 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
552 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
553 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
554 	if (off2 > off1)
555 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
556 		    off2 - off1, KASAN_UMA_FREED);
557 
558 	/* ... and finally the area from v_dbatchcpu to the end. */
559 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
560 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
561 	    KASAN_UMA_FREED);
562 }
563 #endif /* KASAN */
564 
565 /*
566  * Initialize a vnode as it first enters the zone.
567  */
568 static int
vnode_init(void * mem,int size,int flags)569 vnode_init(void *mem, int size, int flags)
570 {
571 	struct vnode *vp;
572 
573 	vp = mem;
574 	bzero(vp, size);
575 	/*
576 	 * Setup locks.
577 	 */
578 	vp->v_vnlock = &vp->v_lock;
579 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
580 	/*
581 	 * By default, don't allow shared locks unless filesystems opt-in.
582 	 */
583 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
584 	    LK_NOSHARE | LK_IS_VNODE);
585 	/*
586 	 * Initialize bufobj.
587 	 */
588 	bufobj_init(&vp->v_bufobj, vp);
589 	/*
590 	 * Initialize namecache.
591 	 */
592 	cache_vnode_init(vp);
593 	/*
594 	 * Initialize rangelocks.
595 	 */
596 	rangelock_init(&vp->v_rl);
597 
598 	vp->v_dbatchcpu = NOCPU;
599 
600 	/*
601 	 * Check vhold_recycle_free for an explanation.
602 	 */
603 	vp->v_holdcnt = VHOLD_NO_SMR;
604 	vp->v_type = VNON;
605 	mtx_lock(&vnode_list_mtx);
606 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
607 	mtx_unlock(&vnode_list_mtx);
608 	return (0);
609 }
610 
611 /*
612  * Free a vnode when it is cleared from the zone.
613  */
614 static void
vnode_fini(void * mem,int size)615 vnode_fini(void *mem, int size)
616 {
617 	struct vnode *vp;
618 	struct bufobj *bo;
619 
620 	vp = mem;
621 	vdbatch_dequeue(vp);
622 	mtx_lock(&vnode_list_mtx);
623 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
624 	mtx_unlock(&vnode_list_mtx);
625 	rangelock_destroy(&vp->v_rl);
626 	lockdestroy(vp->v_vnlock);
627 	mtx_destroy(&vp->v_interlock);
628 	bo = &vp->v_bufobj;
629 	rw_destroy(BO_LOCKPTR(bo));
630 
631 	kasan_mark(mem, size, size, 0);
632 }
633 
634 /*
635  * Provide the size of NFS nclnode and NFS fh for calculation of the
636  * vnode memory consumption.  The size is specified directly to
637  * eliminate dependency on NFS-private header.
638  *
639  * Other filesystems may use bigger or smaller (like UFS and ZFS)
640  * private inode data, but the NFS-based estimation is ample enough.
641  * Still, we care about differences in the size between 64- and 32-bit
642  * platforms.
643  *
644  * Namecache structure size is heuristically
645  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
646  */
647 #ifdef _LP64
648 #define	NFS_NCLNODE_SZ	(528 + 64)
649 #define	NC_SZ		148
650 #else
651 #define	NFS_NCLNODE_SZ	(360 + 32)
652 #define	NC_SZ		92
653 #endif
654 
655 static void
vntblinit(void * dummy __unused)656 vntblinit(void *dummy __unused)
657 {
658 	struct vdbatch *vd;
659 	uma_ctor ctor;
660 	uma_dtor dtor;
661 	int cpu, physvnodes, virtvnodes;
662 	u_int i;
663 
664 	/*
665 	 * Desiredvnodes is a function of the physical memory size and the
666 	 * kernel's heap size.  Generally speaking, it scales with the
667 	 * physical memory size.  The ratio of desiredvnodes to the physical
668 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
669 	 * Thereafter, the
670 	 * marginal ratio of desiredvnodes to the physical memory size is
671 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
672 	 * size.  The memory required by desiredvnodes vnodes and vm objects
673 	 * must not exceed 1/10th of the kernel's heap size.
674 	 */
675 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
676 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
677 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
678 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
679 	desiredvnodes = min(physvnodes, virtvnodes);
680 	if (desiredvnodes > MAXVNODES_MAX) {
681 		if (bootverbose)
682 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
683 			    desiredvnodes, MAXVNODES_MAX);
684 		desiredvnodes = MAXVNODES_MAX;
685 	}
686 	wantfreevnodes = desiredvnodes / 4;
687 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
688 	TAILQ_INIT(&vnode_list);
689 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
690 	/*
691 	 * The lock is taken to appease WITNESS.
692 	 */
693 	mtx_lock(&vnode_list_mtx);
694 	vnlru_recalc();
695 	mtx_unlock(&vnode_list_mtx);
696 	vnode_list_free_marker = vn_alloc_marker(NULL);
697 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
698 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
699 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
700 
701 #ifdef KASAN
702 	ctor = vnode_ctor;
703 	dtor = vnode_dtor;
704 #else
705 	ctor = NULL;
706 	dtor = NULL;
707 #endif
708 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
709 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
710 	uma_zone_set_smr(vnode_zone, vfs_smr);
711 
712 	/*
713 	 * Preallocate enough nodes to support one-per buf so that
714 	 * we can not fail an insert.  reassignbuf() callers can not
715 	 * tolerate the insertion failure.
716 	 */
717 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
718 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
719 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
720 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
721 	uma_prealloc(buf_trie_zone, nbuf);
722 
723 	vnodes_created = counter_u64_alloc(M_WAITOK);
724 	recycles_count = counter_u64_alloc(M_WAITOK);
725 	recycles_free_count = counter_u64_alloc(M_WAITOK);
726 	deferred_inact = counter_u64_alloc(M_WAITOK);
727 
728 	/*
729 	 * Initialize the filesystem syncer.
730 	 */
731 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
732 	    &syncer_mask);
733 	syncer_maxdelay = syncer_mask + 1;
734 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
735 	cv_init(&sync_wakeup, "syncer");
736 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
737 		vnsz2log++;
738 	vnsz2log--;
739 
740 	CPU_FOREACH(cpu) {
741 		vd = DPCPU_ID_PTR((cpu), vd);
742 		bzero(vd, sizeof(*vd));
743 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
744 	}
745 }
746 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
747 
748 /*
749  * Mark a mount point as busy. Used to synchronize access and to delay
750  * unmounting. Eventually, mountlist_mtx is not released on failure.
751  *
752  * vfs_busy() is a custom lock, it can block the caller.
753  * vfs_busy() only sleeps if the unmount is active on the mount point.
754  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
755  * vnode belonging to mp.
756  *
757  * Lookup uses vfs_busy() to traverse mount points.
758  * root fs			var fs
759  * / vnode lock		A	/ vnode lock (/var)		D
760  * /var vnode lock	B	/log vnode lock(/var/log)	E
761  * vfs_busy lock	C	vfs_busy lock			F
762  *
763  * Within each file system, the lock order is C->A->B and F->D->E.
764  *
765  * When traversing across mounts, the system follows that lock order:
766  *
767  *        C->A->B
768  *              |
769  *              +->F->D->E
770  *
771  * The lookup() process for namei("/var") illustrates the process:
772  *  VOP_LOOKUP() obtains B while A is held
773  *  vfs_busy() obtains a shared lock on F while A and B are held
774  *  vput() releases lock on B
775  *  vput() releases lock on A
776  *  VFS_ROOT() obtains lock on D while shared lock on F is held
777  *  vfs_unbusy() releases shared lock on F
778  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
779  *    Attempt to lock A (instead of vp_crossmp) while D is held would
780  *    violate the global order, causing deadlocks.
781  *
782  * dounmount() locks B while F is drained.
783  */
784 int
vfs_busy(struct mount * mp,int flags)785 vfs_busy(struct mount *mp, int flags)
786 {
787 	struct mount_pcpu *mpcpu;
788 
789 	MPASS((flags & ~MBF_MASK) == 0);
790 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
791 
792 	if (vfs_op_thread_enter(mp, mpcpu)) {
793 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
794 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
795 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
796 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
797 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
798 		vfs_op_thread_exit(mp, mpcpu);
799 		if (flags & MBF_MNTLSTLOCK)
800 			mtx_unlock(&mountlist_mtx);
801 		return (0);
802 	}
803 
804 	MNT_ILOCK(mp);
805 	vfs_assert_mount_counters(mp);
806 	MNT_REF(mp);
807 	/*
808 	 * If mount point is currently being unmounted, sleep until the
809 	 * mount point fate is decided.  If thread doing the unmounting fails,
810 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
811 	 * that this mount point has survived the unmount attempt and vfs_busy
812 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
813 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
814 	 * about to be really destroyed.  vfs_busy needs to release its
815 	 * reference on the mount point in this case and return with ENOENT,
816 	 * telling the caller that mount mount it tried to busy is no longer
817 	 * valid.
818 	 */
819 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
820 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
821 			MNT_REL(mp);
822 			MNT_IUNLOCK(mp);
823 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
824 			    __func__);
825 			return (ENOENT);
826 		}
827 		if (flags & MBF_MNTLSTLOCK)
828 			mtx_unlock(&mountlist_mtx);
829 		mp->mnt_kern_flag |= MNTK_MWAIT;
830 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
831 		if (flags & MBF_MNTLSTLOCK)
832 			mtx_lock(&mountlist_mtx);
833 		MNT_ILOCK(mp);
834 	}
835 	if (flags & MBF_MNTLSTLOCK)
836 		mtx_unlock(&mountlist_mtx);
837 	mp->mnt_lockref++;
838 	MNT_IUNLOCK(mp);
839 	return (0);
840 }
841 
842 /*
843  * Free a busy filesystem.
844  */
845 void
vfs_unbusy(struct mount * mp)846 vfs_unbusy(struct mount *mp)
847 {
848 	struct mount_pcpu *mpcpu;
849 	int c;
850 
851 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
852 
853 	if (vfs_op_thread_enter(mp, mpcpu)) {
854 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
855 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
856 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
857 		vfs_op_thread_exit(mp, mpcpu);
858 		return;
859 	}
860 
861 	MNT_ILOCK(mp);
862 	vfs_assert_mount_counters(mp);
863 	MNT_REL(mp);
864 	c = --mp->mnt_lockref;
865 	if (mp->mnt_vfs_ops == 0) {
866 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
867 		MNT_IUNLOCK(mp);
868 		return;
869 	}
870 	if (c < 0)
871 		vfs_dump_mount_counters(mp);
872 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
873 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
874 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
875 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
876 		wakeup(&mp->mnt_lockref);
877 	}
878 	MNT_IUNLOCK(mp);
879 }
880 
881 /*
882  * Lookup a mount point by filesystem identifier.
883  */
884 struct mount *
vfs_getvfs(fsid_t * fsid)885 vfs_getvfs(fsid_t *fsid)
886 {
887 	struct mount *mp;
888 
889 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
890 	mtx_lock(&mountlist_mtx);
891 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
892 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
893 			vfs_ref(mp);
894 			mtx_unlock(&mountlist_mtx);
895 			return (mp);
896 		}
897 	}
898 	mtx_unlock(&mountlist_mtx);
899 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
900 	return ((struct mount *) 0);
901 }
902 
903 /*
904  * Lookup a mount point by filesystem identifier, busying it before
905  * returning.
906  *
907  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
908  * cache for popular filesystem identifiers.  The cache is lockess, using
909  * the fact that struct mount's are never freed.  In worst case we may
910  * get pointer to unmounted or even different filesystem, so we have to
911  * check what we got, and go slow way if so.
912  */
913 struct mount *
vfs_busyfs(fsid_t * fsid)914 vfs_busyfs(fsid_t *fsid)
915 {
916 #define	FSID_CACHE_SIZE	256
917 	typedef struct mount * volatile vmp_t;
918 	static vmp_t cache[FSID_CACHE_SIZE];
919 	struct mount *mp;
920 	int error;
921 	uint32_t hash;
922 
923 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
924 	hash = fsid->val[0] ^ fsid->val[1];
925 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
926 	mp = cache[hash];
927 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
928 		goto slow;
929 	if (vfs_busy(mp, 0) != 0) {
930 		cache[hash] = NULL;
931 		goto slow;
932 	}
933 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
934 		return (mp);
935 	else
936 	    vfs_unbusy(mp);
937 
938 slow:
939 	mtx_lock(&mountlist_mtx);
940 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
941 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
942 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
943 			if (error) {
944 				cache[hash] = NULL;
945 				mtx_unlock(&mountlist_mtx);
946 				return (NULL);
947 			}
948 			cache[hash] = mp;
949 			return (mp);
950 		}
951 	}
952 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
953 	mtx_unlock(&mountlist_mtx);
954 	return ((struct mount *) 0);
955 }
956 
957 /*
958  * Check if a user can access privileged mount options.
959  */
960 int
vfs_suser(struct mount * mp,struct thread * td)961 vfs_suser(struct mount *mp, struct thread *td)
962 {
963 	int error;
964 
965 	if (jailed(td->td_ucred)) {
966 		/*
967 		 * If the jail of the calling thread lacks permission for
968 		 * this type of file system, deny immediately.
969 		 */
970 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
971 			return (EPERM);
972 
973 		/*
974 		 * If the file system was mounted outside the jail of the
975 		 * calling thread, deny immediately.
976 		 */
977 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
978 			return (EPERM);
979 	}
980 
981 	/*
982 	 * If file system supports delegated administration, we don't check
983 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
984 	 * by the file system itself.
985 	 * If this is not the user that did original mount, we check for
986 	 * the PRIV_VFS_MOUNT_OWNER privilege.
987 	 */
988 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
989 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
990 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
991 			return (error);
992 	}
993 	return (0);
994 }
995 
996 /*
997  * Get a new unique fsid.  Try to make its val[0] unique, since this value
998  * will be used to create fake device numbers for stat().  Also try (but
999  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1000  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1001  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1002  *
1003  * Keep in mind that several mounts may be running in parallel.  Starting
1004  * the search one past where the previous search terminated is both a
1005  * micro-optimization and a defense against returning the same fsid to
1006  * different mounts.
1007  */
1008 void
vfs_getnewfsid(struct mount * mp)1009 vfs_getnewfsid(struct mount *mp)
1010 {
1011 	static uint16_t mntid_base;
1012 	struct mount *nmp;
1013 	fsid_t tfsid;
1014 	int mtype;
1015 
1016 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1017 	mtx_lock(&mntid_mtx);
1018 	mtype = mp->mnt_vfc->vfc_typenum;
1019 	tfsid.val[1] = mtype;
1020 	mtype = (mtype & 0xFF) << 24;
1021 	for (;;) {
1022 		tfsid.val[0] = makedev(255,
1023 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1024 		mntid_base++;
1025 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1026 			break;
1027 		vfs_rel(nmp);
1028 	}
1029 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1030 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1031 	mtx_unlock(&mntid_mtx);
1032 }
1033 
1034 /*
1035  * Knob to control the precision of file timestamps:
1036  *
1037  *   0 = seconds only; nanoseconds zeroed.
1038  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1039  *   2 = seconds and nanoseconds, truncated to microseconds.
1040  * >=3 = seconds and nanoseconds, maximum precision.
1041  */
1042 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1043 
1044 static int timestamp_precision = TSP_USEC;
1045 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1046     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1047     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1048     "3+: sec + ns (max. precision))");
1049 
1050 /*
1051  * Get a current timestamp.
1052  */
1053 void
vfs_timestamp(struct timespec * tsp)1054 vfs_timestamp(struct timespec *tsp)
1055 {
1056 	struct timeval tv;
1057 
1058 	switch (timestamp_precision) {
1059 	case TSP_SEC:
1060 		tsp->tv_sec = time_second;
1061 		tsp->tv_nsec = 0;
1062 		break;
1063 	case TSP_HZ:
1064 		getnanotime(tsp);
1065 		break;
1066 	case TSP_USEC:
1067 		microtime(&tv);
1068 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1069 		break;
1070 	case TSP_NSEC:
1071 	default:
1072 		nanotime(tsp);
1073 		break;
1074 	}
1075 }
1076 
1077 /*
1078  * Set vnode attributes to VNOVAL
1079  */
1080 void
vattr_null(struct vattr * vap)1081 vattr_null(struct vattr *vap)
1082 {
1083 
1084 	vap->va_type = VNON;
1085 	vap->va_size = VNOVAL;
1086 	vap->va_bytes = VNOVAL;
1087 	vap->va_mode = VNOVAL;
1088 	vap->va_nlink = VNOVAL;
1089 	vap->va_uid = VNOVAL;
1090 	vap->va_gid = VNOVAL;
1091 	vap->va_fsid = VNOVAL;
1092 	vap->va_fileid = VNOVAL;
1093 	vap->va_blocksize = VNOVAL;
1094 	vap->va_rdev = VNOVAL;
1095 	vap->va_atime.tv_sec = VNOVAL;
1096 	vap->va_atime.tv_nsec = VNOVAL;
1097 	vap->va_mtime.tv_sec = VNOVAL;
1098 	vap->va_mtime.tv_nsec = VNOVAL;
1099 	vap->va_ctime.tv_sec = VNOVAL;
1100 	vap->va_ctime.tv_nsec = VNOVAL;
1101 	vap->va_birthtime.tv_sec = VNOVAL;
1102 	vap->va_birthtime.tv_nsec = VNOVAL;
1103 	vap->va_flags = VNOVAL;
1104 	vap->va_gen = VNOVAL;
1105 	vap->va_vaflags = 0;
1106 }
1107 
1108 /*
1109  * Try to reduce the total number of vnodes.
1110  *
1111  * This routine (and its user) are buggy in at least the following ways:
1112  * - all parameters were picked years ago when RAM sizes were significantly
1113  *   smaller
1114  * - it can pick vnodes based on pages used by the vm object, but filesystems
1115  *   like ZFS don't use it making the pick broken
1116  * - since ZFS has its own aging policy it gets partially combated by this one
1117  * - a dedicated method should be provided for filesystems to let them decide
1118  *   whether the vnode should be recycled
1119  *
1120  * This routine is called when we have too many vnodes.  It attempts
1121  * to free <count> vnodes and will potentially free vnodes that still
1122  * have VM backing store (VM backing store is typically the cause
1123  * of a vnode blowout so we want to do this).  Therefore, this operation
1124  * is not considered cheap.
1125  *
1126  * A number of conditions may prevent a vnode from being reclaimed.
1127  * the buffer cache may have references on the vnode, a directory
1128  * vnode may still have references due to the namei cache representing
1129  * underlying files, or the vnode may be in active use.   It is not
1130  * desirable to reuse such vnodes.  These conditions may cause the
1131  * number of vnodes to reach some minimum value regardless of what
1132  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1133  *
1134  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1135  * 			 entries if this argument is strue
1136  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1137  *			 pages.
1138  * @param target	 How many vnodes to reclaim.
1139  * @return		 The number of vnodes that were reclaimed.
1140  */
1141 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1142 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1143 {
1144 	struct vnode *vp, *mvp;
1145 	struct mount *mp;
1146 	struct vm_object *object;
1147 	u_long done;
1148 	bool retried;
1149 
1150 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1151 
1152 	retried = false;
1153 	done = 0;
1154 
1155 	mvp = vnode_list_reclaim_marker;
1156 restart:
1157 	vp = mvp;
1158 	while (done < target) {
1159 		vp = TAILQ_NEXT(vp, v_vnodelist);
1160 		if (__predict_false(vp == NULL))
1161 			break;
1162 
1163 		if (__predict_false(vp->v_type == VMARKER))
1164 			continue;
1165 
1166 		/*
1167 		 * If it's been deconstructed already, it's still
1168 		 * referenced, or it exceeds the trigger, skip it.
1169 		 * Also skip free vnodes.  We are trying to make space
1170 		 * to expand the free list, not reduce it.
1171 		 */
1172 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1173 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1174 			goto next_iter;
1175 
1176 		if (vp->v_type == VBAD || vp->v_type == VNON)
1177 			goto next_iter;
1178 
1179 		object = atomic_load_ptr(&vp->v_object);
1180 		if (object == NULL || object->resident_page_count > trigger) {
1181 			goto next_iter;
1182 		}
1183 
1184 		/*
1185 		 * Handle races against vnode allocation. Filesystems lock the
1186 		 * vnode some time after it gets returned from getnewvnode,
1187 		 * despite type and hold count being manipulated earlier.
1188 		 * Resorting to checking v_mount restores guarantees present
1189 		 * before the global list was reworked to contain all vnodes.
1190 		 */
1191 		if (!VI_TRYLOCK(vp))
1192 			goto next_iter;
1193 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1194 			VI_UNLOCK(vp);
1195 			goto next_iter;
1196 		}
1197 		if (vp->v_mount == NULL) {
1198 			VI_UNLOCK(vp);
1199 			goto next_iter;
1200 		}
1201 		vholdl(vp);
1202 		VI_UNLOCK(vp);
1203 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1204 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1205 		mtx_unlock(&vnode_list_mtx);
1206 
1207 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1208 			vdrop_recycle(vp);
1209 			goto next_iter_unlocked;
1210 		}
1211 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1212 			vdrop_recycle(vp);
1213 			vn_finished_write(mp);
1214 			goto next_iter_unlocked;
1215 		}
1216 
1217 		VI_LOCK(vp);
1218 		if (vp->v_usecount > 0 ||
1219 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1220 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1221 		    vp->v_object->resident_page_count > trigger)) {
1222 			VOP_UNLOCK(vp);
1223 			vdropl_recycle(vp);
1224 			vn_finished_write(mp);
1225 			goto next_iter_unlocked;
1226 		}
1227 		counter_u64_add(recycles_count, 1);
1228 		vgonel(vp);
1229 		VOP_UNLOCK(vp);
1230 		vdropl_recycle(vp);
1231 		vn_finished_write(mp);
1232 		done++;
1233 next_iter_unlocked:
1234 		if (should_yield())
1235 			kern_yield(PRI_USER);
1236 		mtx_lock(&vnode_list_mtx);
1237 		goto restart;
1238 next_iter:
1239 		MPASS(vp->v_type != VMARKER);
1240 		if (!should_yield())
1241 			continue;
1242 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1243 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1244 		mtx_unlock(&vnode_list_mtx);
1245 		kern_yield(PRI_USER);
1246 		mtx_lock(&vnode_list_mtx);
1247 		goto restart;
1248 	}
1249 	if (done == 0 && !retried) {
1250 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1251 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1252 		retried = true;
1253 		goto restart;
1254 	}
1255 	return (done);
1256 }
1257 
1258 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1259 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1260     0,
1261     "limit on vnode free requests per call to the vnlru_free routine");
1262 
1263 /*
1264  * Attempt to reduce the free list by the requested amount.
1265  */
1266 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp)1267 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1268 {
1269 	struct vnode *vp;
1270 	struct mount *mp;
1271 	int ocount;
1272 
1273 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1274 	if (count > max_vnlru_free)
1275 		count = max_vnlru_free;
1276 	ocount = count;
1277 	vp = mvp;
1278 	for (;;) {
1279 		if (count == 0) {
1280 			break;
1281 		}
1282 		vp = TAILQ_NEXT(vp, v_vnodelist);
1283 		if (__predict_false(vp == NULL)) {
1284 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1285 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1286 			break;
1287 		}
1288 		if (__predict_false(vp->v_type == VMARKER))
1289 			continue;
1290 		if (vp->v_holdcnt > 0)
1291 			continue;
1292 		/*
1293 		 * Don't recycle if our vnode is from different type
1294 		 * of mount point.  Note that mp is type-safe, the
1295 		 * check does not reach unmapped address even if
1296 		 * vnode is reclaimed.
1297 		 */
1298 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1299 		    mp->mnt_op != mnt_op) {
1300 			continue;
1301 		}
1302 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1303 			continue;
1304 		}
1305 		if (!vhold_recycle_free(vp))
1306 			continue;
1307 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1308 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1309 		mtx_unlock(&vnode_list_mtx);
1310 		/*
1311 		 * FIXME: ignores the return value, meaning it may be nothing
1312 		 * got recycled but it claims otherwise to the caller.
1313 		 *
1314 		 * Originally the value started being ignored in 2005 with
1315 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1316 		 *
1317 		 * Respecting the value can run into significant stalls if most
1318 		 * vnodes belong to one file system and it has writes
1319 		 * suspended.  In presence of many threads and millions of
1320 		 * vnodes they keep contending on the vnode_list_mtx lock only
1321 		 * to find vnodes they can't recycle.
1322 		 *
1323 		 * The solution would be to pre-check if the vnode is likely to
1324 		 * be recycle-able, but it needs to happen with the
1325 		 * vnode_list_mtx lock held. This runs into a problem where
1326 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1327 		 * writes are frozen) can take locks which LOR against it.
1328 		 *
1329 		 * Check nullfs for one example (null_getwritemount).
1330 		 */
1331 		vtryrecycle(vp);
1332 		count--;
1333 		mtx_lock(&vnode_list_mtx);
1334 		vp = mvp;
1335 	}
1336 	return (ocount - count);
1337 }
1338 
1339 static int
vnlru_free_locked(int count)1340 vnlru_free_locked(int count)
1341 {
1342 
1343 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1344 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1345 }
1346 
1347 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1348 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1349 {
1350 
1351 	MPASS(mnt_op != NULL);
1352 	MPASS(mvp != NULL);
1353 	VNPASS(mvp->v_type == VMARKER, mvp);
1354 	mtx_lock(&vnode_list_mtx);
1355 	vnlru_free_impl(count, mnt_op, mvp);
1356 	mtx_unlock(&vnode_list_mtx);
1357 }
1358 
1359 /*
1360  * Temporary binary compat, don't use. Call vnlru_free_vfsops instead.
1361  */
1362 void
vnlru_free(int count,struct vfsops * mnt_op)1363 vnlru_free(int count, struct vfsops *mnt_op)
1364 {
1365 	struct vnode *mvp;
1366 
1367 	if (count == 0)
1368 		return;
1369 	mtx_lock(&vnode_list_mtx);
1370 	mvp = vnode_list_free_marker;
1371 	if (vnlru_free_impl(count, mnt_op, mvp) == 0) {
1372 		/*
1373 		 * It is possible the marker was moved over eligible vnodes by
1374 		 * callers which filtered by different ops. If so, start from
1375 		 * scratch.
1376 		 */
1377 		if (vnlru_read_freevnodes() > 0) {
1378 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1379 			TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1380 		}
1381 		vnlru_free_impl(count, mnt_op, mvp);
1382 	}
1383 	mtx_unlock(&vnode_list_mtx);
1384 }
1385 
1386 struct vnode *
vnlru_alloc_marker(void)1387 vnlru_alloc_marker(void)
1388 {
1389 	struct vnode *mvp;
1390 
1391 	mvp = vn_alloc_marker(NULL);
1392 	mtx_lock(&vnode_list_mtx);
1393 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1394 	mtx_unlock(&vnode_list_mtx);
1395 	return (mvp);
1396 }
1397 
1398 void
vnlru_free_marker(struct vnode * mvp)1399 vnlru_free_marker(struct vnode *mvp)
1400 {
1401 	mtx_lock(&vnode_list_mtx);
1402 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1403 	mtx_unlock(&vnode_list_mtx);
1404 	vn_free_marker(mvp);
1405 }
1406 
1407 static void
vnlru_recalc(void)1408 vnlru_recalc(void)
1409 {
1410 
1411 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1412 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1413 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1414 	vlowat = vhiwat / 2;
1415 }
1416 
1417 /*
1418  * Attempt to recycle vnodes in a context that is always safe to block.
1419  * Calling vlrurecycle() from the bowels of filesystem code has some
1420  * interesting deadlock problems.
1421  */
1422 static struct proc *vnlruproc;
1423 static int vnlruproc_sig;
1424 
1425 /*
1426  * The main freevnodes counter is only updated when threads requeue their vnode
1427  * batches. CPUs are conditionally walked to compute a more accurate total.
1428  *
1429  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1430  * at any given moment can still exceed slop, but it should not be by significant
1431  * margin in practice.
1432  */
1433 #define VNLRU_FREEVNODES_SLOP 128
1434 
1435 static __inline void
vfs_freevnodes_inc(void)1436 vfs_freevnodes_inc(void)
1437 {
1438 	struct vdbatch *vd;
1439 
1440 	critical_enter();
1441 	vd = DPCPU_PTR(vd);
1442 	vd->freevnodes++;
1443 	critical_exit();
1444 }
1445 
1446 static __inline void
vfs_freevnodes_dec(void)1447 vfs_freevnodes_dec(void)
1448 {
1449 	struct vdbatch *vd;
1450 
1451 	critical_enter();
1452 	vd = DPCPU_PTR(vd);
1453 	vd->freevnodes--;
1454 	critical_exit();
1455 }
1456 
1457 static u_long
vnlru_read_freevnodes(void)1458 vnlru_read_freevnodes(void)
1459 {
1460 	struct vdbatch *vd;
1461 	long slop;
1462 	int cpu;
1463 
1464 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1465 	if (freevnodes > freevnodes_old)
1466 		slop = freevnodes - freevnodes_old;
1467 	else
1468 		slop = freevnodes_old - freevnodes;
1469 	if (slop < VNLRU_FREEVNODES_SLOP)
1470 		return (freevnodes >= 0 ? freevnodes : 0);
1471 	freevnodes_old = freevnodes;
1472 	CPU_FOREACH(cpu) {
1473 		vd = DPCPU_ID_PTR((cpu), vd);
1474 		freevnodes_old += vd->freevnodes;
1475 	}
1476 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1477 }
1478 
1479 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1480 vnlru_under(u_long rnumvnodes, u_long limit)
1481 {
1482 	u_long rfreevnodes, space;
1483 
1484 	if (__predict_false(rnumvnodes > desiredvnodes))
1485 		return (true);
1486 
1487 	space = desiredvnodes - rnumvnodes;
1488 	if (space < limit) {
1489 		rfreevnodes = vnlru_read_freevnodes();
1490 		if (rfreevnodes > wantfreevnodes)
1491 			space += rfreevnodes - wantfreevnodes;
1492 	}
1493 	return (space < limit);
1494 }
1495 
1496 static bool
vnlru_under_unlocked(u_long rnumvnodes,u_long limit)1497 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1498 {
1499 	long rfreevnodes, space;
1500 
1501 	if (__predict_false(rnumvnodes > desiredvnodes))
1502 		return (true);
1503 
1504 	space = desiredvnodes - rnumvnodes;
1505 	if (space < limit) {
1506 		rfreevnodes = atomic_load_long(&freevnodes);
1507 		if (rfreevnodes > wantfreevnodes)
1508 			space += rfreevnodes - wantfreevnodes;
1509 	}
1510 	return (space < limit);
1511 }
1512 
1513 static void
vnlru_kick(void)1514 vnlru_kick(void)
1515 {
1516 
1517 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1518 	if (vnlruproc_sig == 0) {
1519 		vnlruproc_sig = 1;
1520 		wakeup(vnlruproc);
1521 	}
1522 }
1523 
1524 static void
vnlru_proc(void)1525 vnlru_proc(void)
1526 {
1527 	u_long rnumvnodes, rfreevnodes, target;
1528 	unsigned long onumvnodes;
1529 	int done, force, trigger, usevnodes;
1530 	bool reclaim_nc_src, want_reread;
1531 
1532 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1533 	    SHUTDOWN_PRI_FIRST);
1534 
1535 	force = 0;
1536 	want_reread = false;
1537 	for (;;) {
1538 		kproc_suspend_check(vnlruproc);
1539 		mtx_lock(&vnode_list_mtx);
1540 		rnumvnodes = atomic_load_long(&numvnodes);
1541 
1542 		if (want_reread) {
1543 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1544 			want_reread = false;
1545 		}
1546 
1547 		/*
1548 		 * If numvnodes is too large (due to desiredvnodes being
1549 		 * adjusted using its sysctl, or emergency growth), first
1550 		 * try to reduce it by discarding from the free list.
1551 		 */
1552 		if (rnumvnodes > desiredvnodes) {
1553 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1554 			rnumvnodes = atomic_load_long(&numvnodes);
1555 		}
1556 		/*
1557 		 * Sleep if the vnode cache is in a good state.  This is
1558 		 * when it is not over-full and has space for about a 4%
1559 		 * or 9% expansion (by growing its size or inexcessively
1560 		 * reducing its free list).  Otherwise, try to reclaim
1561 		 * space for a 10% expansion.
1562 		 */
1563 		if (vstir && force == 0) {
1564 			force = 1;
1565 			vstir = 0;
1566 		}
1567 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1568 			vnlruproc_sig = 0;
1569 			wakeup(&vnlruproc_sig);
1570 			msleep(vnlruproc, &vnode_list_mtx,
1571 			    PVFS|PDROP, "vlruwt", hz);
1572 			continue;
1573 		}
1574 		rfreevnodes = vnlru_read_freevnodes();
1575 
1576 		onumvnodes = rnumvnodes;
1577 		/*
1578 		 * Calculate parameters for recycling.  These are the same
1579 		 * throughout the loop to give some semblance of fairness.
1580 		 * The trigger point is to avoid recycling vnodes with lots
1581 		 * of resident pages.  We aren't trying to free memory; we
1582 		 * are trying to recycle or at least free vnodes.
1583 		 */
1584 		if (rnumvnodes <= desiredvnodes)
1585 			usevnodes = rnumvnodes - rfreevnodes;
1586 		else
1587 			usevnodes = rnumvnodes;
1588 		if (usevnodes <= 0)
1589 			usevnodes = 1;
1590 		/*
1591 		 * The trigger value is is chosen to give a conservatively
1592 		 * large value to ensure that it alone doesn't prevent
1593 		 * making progress.  The value can easily be so large that
1594 		 * it is effectively infinite in some congested and
1595 		 * misconfigured cases, and this is necessary.  Normally
1596 		 * it is about 8 to 100 (pages), which is quite large.
1597 		 */
1598 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1599 		if (force < 2)
1600 			trigger = vsmalltrigger;
1601 		reclaim_nc_src = force >= 3;
1602 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1603 		target = target / 10 + 1;
1604 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1605 		mtx_unlock(&vnode_list_mtx);
1606 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1607 			uma_reclaim(UMA_RECLAIM_DRAIN);
1608 		if (done == 0) {
1609 			if (force == 0 || force == 1) {
1610 				force = 2;
1611 				continue;
1612 			}
1613 			if (force == 2) {
1614 				force = 3;
1615 				continue;
1616 			}
1617 			want_reread = true;
1618 			force = 0;
1619 			vnlru_nowhere++;
1620 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1621 		} else {
1622 			want_reread = true;
1623 			kern_yield(PRI_USER);
1624 		}
1625 	}
1626 }
1627 
1628 static struct kproc_desc vnlru_kp = {
1629 	"vnlru",
1630 	vnlru_proc,
1631 	&vnlruproc
1632 };
1633 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1634     &vnlru_kp);
1635 
1636 /*
1637  * Routines having to do with the management of the vnode table.
1638  */
1639 
1640 /*
1641  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1642  * before we actually vgone().  This function must be called with the vnode
1643  * held to prevent the vnode from being returned to the free list midway
1644  * through vgone().
1645  */
1646 static int
vtryrecycle(struct vnode * vp)1647 vtryrecycle(struct vnode *vp)
1648 {
1649 	struct mount *vnmp;
1650 
1651 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1652 	VNASSERT(vp->v_holdcnt, vp,
1653 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1654 	/*
1655 	 * This vnode may found and locked via some other list, if so we
1656 	 * can't recycle it yet.
1657 	 */
1658 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1659 		CTR2(KTR_VFS,
1660 		    "%s: impossible to recycle, vp %p lock is already held",
1661 		    __func__, vp);
1662 		vdrop_recycle(vp);
1663 		return (EWOULDBLOCK);
1664 	}
1665 	/*
1666 	 * Don't recycle if its filesystem is being suspended.
1667 	 */
1668 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1669 		VOP_UNLOCK(vp);
1670 		CTR2(KTR_VFS,
1671 		    "%s: impossible to recycle, cannot start the write for %p",
1672 		    __func__, vp);
1673 		vdrop_recycle(vp);
1674 		return (EBUSY);
1675 	}
1676 	/*
1677 	 * If we got this far, we need to acquire the interlock and see if
1678 	 * anyone picked up this vnode from another list.  If not, we will
1679 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1680 	 * will skip over it.
1681 	 */
1682 	VI_LOCK(vp);
1683 	if (vp->v_usecount) {
1684 		VOP_UNLOCK(vp);
1685 		vdropl_recycle(vp);
1686 		vn_finished_write(vnmp);
1687 		CTR2(KTR_VFS,
1688 		    "%s: impossible to recycle, %p is already referenced",
1689 		    __func__, vp);
1690 		return (EBUSY);
1691 	}
1692 	if (!VN_IS_DOOMED(vp)) {
1693 		counter_u64_add(recycles_free_count, 1);
1694 		vgonel(vp);
1695 	}
1696 	VOP_UNLOCK(vp);
1697 	vdropl_recycle(vp);
1698 	vn_finished_write(vnmp);
1699 	return (0);
1700 }
1701 
1702 /*
1703  * Allocate a new vnode.
1704  *
1705  * The operation never returns an error. Returning an error was disabled
1706  * in r145385 (dated 2005) with the following comment:
1707  *
1708  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1709  *
1710  * Given the age of this commit (almost 15 years at the time of writing this
1711  * comment) restoring the ability to fail requires a significant audit of
1712  * all codepaths.
1713  *
1714  * The routine can try to free a vnode or stall for up to 1 second waiting for
1715  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1716  */
1717 static u_long vn_alloc_cyclecount;
1718 
1719 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp)1720 vn_alloc_hard(struct mount *mp)
1721 {
1722 	u_long rnumvnodes, rfreevnodes;
1723 
1724 	mtx_lock(&vnode_list_mtx);
1725 	rnumvnodes = atomic_load_long(&numvnodes);
1726 	if (rnumvnodes + 1 < desiredvnodes) {
1727 		vn_alloc_cyclecount = 0;
1728 		goto alloc;
1729 	}
1730 	rfreevnodes = vnlru_read_freevnodes();
1731 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1732 		vn_alloc_cyclecount = 0;
1733 		vstir = 1;
1734 	}
1735 	/*
1736 	 * Grow the vnode cache if it will not be above its target max
1737 	 * after growing.  Otherwise, if the free list is nonempty, try
1738 	 * to reclaim 1 item from it before growing the cache (possibly
1739 	 * above its target max if the reclamation failed or is delayed).
1740 	 * Otherwise, wait for some space.  In all cases, schedule
1741 	 * vnlru_proc() if we are getting short of space.  The watermarks
1742 	 * should be chosen so that we never wait or even reclaim from
1743 	 * the free list to below its target minimum.
1744 	 */
1745 	if (vnlru_free_locked(1) > 0)
1746 		goto alloc;
1747 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1748 		/*
1749 		 * Wait for space for a new vnode.
1750 		 */
1751 		vnlru_kick();
1752 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1753 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1754 		    vnlru_read_freevnodes() > 1)
1755 			vnlru_free_locked(1);
1756 	}
1757 alloc:
1758 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1759 	if (vnlru_under(rnumvnodes, vlowat))
1760 		vnlru_kick();
1761 	mtx_unlock(&vnode_list_mtx);
1762 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1763 }
1764 
1765 static struct vnode *
vn_alloc(struct mount * mp)1766 vn_alloc(struct mount *mp)
1767 {
1768 	u_long rnumvnodes;
1769 
1770 	if (__predict_false(vn_alloc_cyclecount != 0))
1771 		return (vn_alloc_hard(mp));
1772 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1773 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1774 		atomic_subtract_long(&numvnodes, 1);
1775 		return (vn_alloc_hard(mp));
1776 	}
1777 
1778 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1779 }
1780 
1781 static void
vn_free(struct vnode * vp)1782 vn_free(struct vnode *vp)
1783 {
1784 
1785 	atomic_subtract_long(&numvnodes, 1);
1786 	uma_zfree_smr(vnode_zone, vp);
1787 }
1788 
1789 /*
1790  * Return the next vnode from the free list.
1791  */
1792 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)1793 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1794     struct vnode **vpp)
1795 {
1796 	struct vnode *vp;
1797 	struct thread *td;
1798 	struct lock_object *lo;
1799 
1800 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1801 
1802 	KASSERT(vops->registered,
1803 	    ("%s: not registered vector op %p\n", __func__, vops));
1804 
1805 	td = curthread;
1806 	if (td->td_vp_reserved != NULL) {
1807 		vp = td->td_vp_reserved;
1808 		td->td_vp_reserved = NULL;
1809 	} else {
1810 		vp = vn_alloc(mp);
1811 	}
1812 	counter_u64_add(vnodes_created, 1);
1813 	/*
1814 	 * Locks are given the generic name "vnode" when created.
1815 	 * Follow the historic practice of using the filesystem
1816 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1817 	 *
1818 	 * Locks live in a witness group keyed on their name. Thus,
1819 	 * when a lock is renamed, it must also move from the witness
1820 	 * group of its old name to the witness group of its new name.
1821 	 *
1822 	 * The change only needs to be made when the vnode moves
1823 	 * from one filesystem type to another. We ensure that each
1824 	 * filesystem use a single static name pointer for its tag so
1825 	 * that we can compare pointers rather than doing a strcmp().
1826 	 */
1827 	lo = &vp->v_vnlock->lock_object;
1828 #ifdef WITNESS
1829 	if (lo->lo_name != tag) {
1830 #endif
1831 		lo->lo_name = tag;
1832 #ifdef WITNESS
1833 		WITNESS_DESTROY(lo);
1834 		WITNESS_INIT(lo, tag);
1835 	}
1836 #endif
1837 	/*
1838 	 * By default, don't allow shared locks unless filesystems opt-in.
1839 	 */
1840 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1841 	/*
1842 	 * Finalize various vnode identity bits.
1843 	 */
1844 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1845 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1846 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1847 	vp->v_type = VNON;
1848 	vp->v_op = vops;
1849 	vp->v_irflag = 0;
1850 	v_init_counters(vp);
1851 	vn_seqc_init(vp);
1852 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1853 #ifdef DIAGNOSTIC
1854 	if (mp == NULL && vops != &dead_vnodeops)
1855 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1856 #endif
1857 #ifdef MAC
1858 	mac_vnode_init(vp);
1859 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1860 		mac_vnode_associate_singlelabel(mp, vp);
1861 #endif
1862 	if (mp != NULL) {
1863 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1864 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1865 			vp->v_vflag |= VV_NOKNOTE;
1866 	}
1867 
1868 	/*
1869 	 * For the filesystems which do not use vfs_hash_insert(),
1870 	 * still initialize v_hash to have vfs_hash_index() useful.
1871 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1872 	 * its own hashing.
1873 	 */
1874 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1875 
1876 	*vpp = vp;
1877 	return (0);
1878 }
1879 
1880 void
getnewvnode_reserve(void)1881 getnewvnode_reserve(void)
1882 {
1883 	struct thread *td;
1884 
1885 	td = curthread;
1886 	MPASS(td->td_vp_reserved == NULL);
1887 	td->td_vp_reserved = vn_alloc(NULL);
1888 }
1889 
1890 void
getnewvnode_drop_reserve(void)1891 getnewvnode_drop_reserve(void)
1892 {
1893 	struct thread *td;
1894 
1895 	td = curthread;
1896 	if (td->td_vp_reserved != NULL) {
1897 		vn_free(td->td_vp_reserved);
1898 		td->td_vp_reserved = NULL;
1899 	}
1900 }
1901 
1902 static void __noinline
freevnode(struct vnode * vp)1903 freevnode(struct vnode *vp)
1904 {
1905 	struct bufobj *bo;
1906 
1907 	/*
1908 	 * The vnode has been marked for destruction, so free it.
1909 	 *
1910 	 * The vnode will be returned to the zone where it will
1911 	 * normally remain until it is needed for another vnode. We
1912 	 * need to cleanup (or verify that the cleanup has already
1913 	 * been done) any residual data left from its current use
1914 	 * so as not to contaminate the freshly allocated vnode.
1915 	 */
1916 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1917 	/*
1918 	 * Paired with vgone.
1919 	 */
1920 	vn_seqc_write_end_free(vp);
1921 
1922 	bo = &vp->v_bufobj;
1923 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1924 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1925 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1926 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1927 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1928 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1929 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1930 	    ("clean blk trie not empty"));
1931 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1932 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1933 	    ("dirty blk trie not empty"));
1934 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1935 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1936 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1937 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1938 	    ("Dangling rangelock waiters"));
1939 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1940 	    ("Leaked inactivation"));
1941 	VI_UNLOCK(vp);
1942 #ifdef MAC
1943 	mac_vnode_destroy(vp);
1944 #endif
1945 	if (vp->v_pollinfo != NULL) {
1946 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1947 		destroy_vpollinfo(vp->v_pollinfo);
1948 		VOP_UNLOCK(vp);
1949 		vp->v_pollinfo = NULL;
1950 	}
1951 	vp->v_mountedhere = NULL;
1952 	vp->v_unpcb = NULL;
1953 	vp->v_rdev = NULL;
1954 	vp->v_fifoinfo = NULL;
1955 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
1956 	vp->v_iflag = 0;
1957 	vp->v_vflag = 0;
1958 	bo->bo_flag = 0;
1959 	vn_free(vp);
1960 }
1961 
1962 /*
1963  * Delete from old mount point vnode list, if on one.
1964  */
1965 static void
delmntque(struct vnode * vp)1966 delmntque(struct vnode *vp)
1967 {
1968 	struct mount *mp;
1969 
1970 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1971 
1972 	mp = vp->v_mount;
1973 	if (mp == NULL)
1974 		return;
1975 	MNT_ILOCK(mp);
1976 	VI_LOCK(vp);
1977 	vp->v_mount = NULL;
1978 	VI_UNLOCK(vp);
1979 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1980 		("bad mount point vnode list size"));
1981 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1982 	mp->mnt_nvnodelistsize--;
1983 	MNT_REL(mp);
1984 	MNT_IUNLOCK(mp);
1985 }
1986 
1987 static void
insmntque_stddtr(struct vnode * vp,void * dtr_arg)1988 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1989 {
1990 
1991 	vp->v_data = NULL;
1992 	vp->v_op = &dead_vnodeops;
1993 	vgone(vp);
1994 	vput(vp);
1995 }
1996 
1997 /*
1998  * Insert into list of vnodes for the new mount point, if available.
1999  */
2000 int
insmntque1(struct vnode * vp,struct mount * mp,void (* dtr)(struct vnode *,void *),void * dtr_arg)2001 insmntque1(struct vnode *vp, struct mount *mp,
2002 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
2003 {
2004 
2005 	KASSERT(vp->v_mount == NULL,
2006 		("insmntque: vnode already on per mount vnode list"));
2007 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2008 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2009 
2010 	/*
2011 	 * We acquire the vnode interlock early to ensure that the
2012 	 * vnode cannot be recycled by another process releasing a
2013 	 * holdcnt on it before we get it on both the vnode list
2014 	 * and the active vnode list. The mount mutex protects only
2015 	 * manipulation of the vnode list and the vnode freelist
2016 	 * mutex protects only manipulation of the active vnode list.
2017 	 * Hence the need to hold the vnode interlock throughout.
2018 	 */
2019 	MNT_ILOCK(mp);
2020 	VI_LOCK(vp);
2021 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2022 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2023 	    mp->mnt_nvnodelistsize == 0)) &&
2024 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2025 		VI_UNLOCK(vp);
2026 		MNT_IUNLOCK(mp);
2027 		if (dtr != NULL)
2028 			dtr(vp, dtr_arg);
2029 		return (EBUSY);
2030 	}
2031 	vp->v_mount = mp;
2032 	MNT_REF(mp);
2033 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2034 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2035 		("neg mount point vnode list size"));
2036 	mp->mnt_nvnodelistsize++;
2037 	VI_UNLOCK(vp);
2038 	MNT_IUNLOCK(mp);
2039 	return (0);
2040 }
2041 
2042 int
insmntque(struct vnode * vp,struct mount * mp)2043 insmntque(struct vnode *vp, struct mount *mp)
2044 {
2045 
2046 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
2047 }
2048 
2049 /*
2050  * Flush out and invalidate all buffers associated with a bufobj
2051  * Called with the underlying object locked.
2052  */
2053 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2054 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2055 {
2056 	int error;
2057 
2058 	BO_LOCK(bo);
2059 	if (flags & V_SAVE) {
2060 		error = bufobj_wwait(bo, slpflag, slptimeo);
2061 		if (error) {
2062 			BO_UNLOCK(bo);
2063 			return (error);
2064 		}
2065 		if (bo->bo_dirty.bv_cnt > 0) {
2066 			BO_UNLOCK(bo);
2067 			do {
2068 				error = BO_SYNC(bo, MNT_WAIT);
2069 			} while (error == ERELOOKUP);
2070 			if (error != 0)
2071 				return (error);
2072 			BO_LOCK(bo);
2073 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2074 				BO_UNLOCK(bo);
2075 				return (EBUSY);
2076 			}
2077 		}
2078 	}
2079 	/*
2080 	 * If you alter this loop please notice that interlock is dropped and
2081 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2082 	 * no race conditions occur from this.
2083 	 */
2084 	do {
2085 		error = flushbuflist(&bo->bo_clean,
2086 		    flags, bo, slpflag, slptimeo);
2087 		if (error == 0 && !(flags & V_CLEANONLY))
2088 			error = flushbuflist(&bo->bo_dirty,
2089 			    flags, bo, slpflag, slptimeo);
2090 		if (error != 0 && error != EAGAIN) {
2091 			BO_UNLOCK(bo);
2092 			return (error);
2093 		}
2094 	} while (error != 0);
2095 
2096 	/*
2097 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2098 	 * have write I/O in-progress but if there is a VM object then the
2099 	 * VM object can also have read-I/O in-progress.
2100 	 */
2101 	do {
2102 		bufobj_wwait(bo, 0, 0);
2103 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2104 			BO_UNLOCK(bo);
2105 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2106 			BO_LOCK(bo);
2107 		}
2108 	} while (bo->bo_numoutput > 0);
2109 	BO_UNLOCK(bo);
2110 
2111 	/*
2112 	 * Destroy the copy in the VM cache, too.
2113 	 */
2114 	if (bo->bo_object != NULL &&
2115 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2116 		VM_OBJECT_WLOCK(bo->bo_object);
2117 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2118 		    OBJPR_CLEANONLY : 0);
2119 		VM_OBJECT_WUNLOCK(bo->bo_object);
2120 	}
2121 
2122 #ifdef INVARIANTS
2123 	BO_LOCK(bo);
2124 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2125 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2126 	    bo->bo_clean.bv_cnt > 0))
2127 		panic("vinvalbuf: flush failed");
2128 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2129 	    bo->bo_dirty.bv_cnt > 0)
2130 		panic("vinvalbuf: flush dirty failed");
2131 	BO_UNLOCK(bo);
2132 #endif
2133 	return (0);
2134 }
2135 
2136 /*
2137  * Flush out and invalidate all buffers associated with a vnode.
2138  * Called with the underlying object locked.
2139  */
2140 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2141 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2142 {
2143 
2144 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2145 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2146 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2147 		return (0);
2148 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2149 }
2150 
2151 /*
2152  * Flush out buffers on the specified list.
2153  *
2154  */
2155 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2156 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2157     int slptimeo)
2158 {
2159 	struct buf *bp, *nbp;
2160 	int retval, error;
2161 	daddr_t lblkno;
2162 	b_xflags_t xflags;
2163 
2164 	ASSERT_BO_WLOCKED(bo);
2165 
2166 	retval = 0;
2167 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2168 		/*
2169 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2170 		 * do not skip any buffers. If we are flushing only V_NORMAL
2171 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2172 		 * flushing only V_ALT buffers then skip buffers not marked
2173 		 * as BX_ALTDATA.
2174 		 */
2175 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2176 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2177 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2178 			continue;
2179 		}
2180 		if (nbp != NULL) {
2181 			lblkno = nbp->b_lblkno;
2182 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2183 		}
2184 		retval = EAGAIN;
2185 		error = BUF_TIMELOCK(bp,
2186 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2187 		    "flushbuf", slpflag, slptimeo);
2188 		if (error) {
2189 			BO_LOCK(bo);
2190 			return (error != ENOLCK ? error : EAGAIN);
2191 		}
2192 		KASSERT(bp->b_bufobj == bo,
2193 		    ("bp %p wrong b_bufobj %p should be %p",
2194 		    bp, bp->b_bufobj, bo));
2195 		/*
2196 		 * XXX Since there are no node locks for NFS, I
2197 		 * believe there is a slight chance that a delayed
2198 		 * write will occur while sleeping just above, so
2199 		 * check for it.
2200 		 */
2201 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2202 		    (flags & V_SAVE)) {
2203 			bremfree(bp);
2204 			bp->b_flags |= B_ASYNC;
2205 			bwrite(bp);
2206 			BO_LOCK(bo);
2207 			return (EAGAIN);	/* XXX: why not loop ? */
2208 		}
2209 		bremfree(bp);
2210 		bp->b_flags |= (B_INVAL | B_RELBUF);
2211 		bp->b_flags &= ~B_ASYNC;
2212 		brelse(bp);
2213 		BO_LOCK(bo);
2214 		if (nbp == NULL)
2215 			break;
2216 		nbp = gbincore(bo, lblkno);
2217 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2218 		    != xflags)
2219 			break;			/* nbp invalid */
2220 	}
2221 	return (retval);
2222 }
2223 
2224 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2225 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2226 {
2227 	struct buf *bp;
2228 	int error;
2229 	daddr_t lblkno;
2230 
2231 	ASSERT_BO_LOCKED(bo);
2232 
2233 	for (lblkno = startn;;) {
2234 again:
2235 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2236 		if (bp == NULL || bp->b_lblkno >= endn ||
2237 		    bp->b_lblkno < startn)
2238 			break;
2239 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2240 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2241 		if (error != 0) {
2242 			BO_RLOCK(bo);
2243 			if (error == ENOLCK)
2244 				goto again;
2245 			return (error);
2246 		}
2247 		KASSERT(bp->b_bufobj == bo,
2248 		    ("bp %p wrong b_bufobj %p should be %p",
2249 		    bp, bp->b_bufobj, bo));
2250 		lblkno = bp->b_lblkno + 1;
2251 		if ((bp->b_flags & B_MANAGED) == 0)
2252 			bremfree(bp);
2253 		bp->b_flags |= B_RELBUF;
2254 		/*
2255 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2256 		 * pages backing each buffer in the range are unlikely to be
2257 		 * reused.  Dirty buffers will have the hint applied once
2258 		 * they've been written.
2259 		 */
2260 		if ((bp->b_flags & B_VMIO) != 0)
2261 			bp->b_flags |= B_NOREUSE;
2262 		brelse(bp);
2263 		BO_RLOCK(bo);
2264 	}
2265 	return (0);
2266 }
2267 
2268 /*
2269  * Truncate a file's buffer and pages to a specified length.  This
2270  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2271  * sync activity.
2272  */
2273 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2274 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2275 {
2276 	struct buf *bp, *nbp;
2277 	struct bufobj *bo;
2278 	daddr_t startlbn;
2279 
2280 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2281 	    vp, blksize, (uintmax_t)length);
2282 
2283 	/*
2284 	 * Round up to the *next* lbn.
2285 	 */
2286 	startlbn = howmany(length, blksize);
2287 
2288 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2289 
2290 	bo = &vp->v_bufobj;
2291 restart_unlocked:
2292 	BO_LOCK(bo);
2293 
2294 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2295 		;
2296 
2297 	if (length > 0) {
2298 restartsync:
2299 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2300 			if (bp->b_lblkno > 0)
2301 				continue;
2302 			/*
2303 			 * Since we hold the vnode lock this should only
2304 			 * fail if we're racing with the buf daemon.
2305 			 */
2306 			if (BUF_LOCK(bp,
2307 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2308 			    BO_LOCKPTR(bo)) == ENOLCK)
2309 				goto restart_unlocked;
2310 
2311 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2312 			    ("buf(%p) on dirty queue without DELWRI", bp));
2313 
2314 			bremfree(bp);
2315 			bawrite(bp);
2316 			BO_LOCK(bo);
2317 			goto restartsync;
2318 		}
2319 	}
2320 
2321 	bufobj_wwait(bo, 0, 0);
2322 	BO_UNLOCK(bo);
2323 	vnode_pager_setsize(vp, length);
2324 
2325 	return (0);
2326 }
2327 
2328 /*
2329  * Invalidate the cached pages of a file's buffer within the range of block
2330  * numbers [startlbn, endlbn).
2331  */
2332 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2333 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2334     int blksize)
2335 {
2336 	struct bufobj *bo;
2337 	off_t start, end;
2338 
2339 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2340 
2341 	start = blksize * startlbn;
2342 	end = blksize * endlbn;
2343 
2344 	bo = &vp->v_bufobj;
2345 	BO_LOCK(bo);
2346 	MPASS(blksize == bo->bo_bsize);
2347 
2348 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2349 		;
2350 
2351 	BO_UNLOCK(bo);
2352 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2353 }
2354 
2355 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2356 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2357     daddr_t startlbn, daddr_t endlbn)
2358 {
2359 	struct buf *bp, *nbp;
2360 	bool anyfreed;
2361 
2362 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2363 	ASSERT_BO_LOCKED(bo);
2364 
2365 	do {
2366 		anyfreed = false;
2367 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2368 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2369 				continue;
2370 			if (BUF_LOCK(bp,
2371 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2372 			    BO_LOCKPTR(bo)) == ENOLCK) {
2373 				BO_LOCK(bo);
2374 				return (EAGAIN);
2375 			}
2376 
2377 			bremfree(bp);
2378 			bp->b_flags |= B_INVAL | B_RELBUF;
2379 			bp->b_flags &= ~B_ASYNC;
2380 			brelse(bp);
2381 			anyfreed = true;
2382 
2383 			BO_LOCK(bo);
2384 			if (nbp != NULL &&
2385 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2386 			    nbp->b_vp != vp ||
2387 			    (nbp->b_flags & B_DELWRI) != 0))
2388 				return (EAGAIN);
2389 		}
2390 
2391 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2392 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2393 				continue;
2394 			if (BUF_LOCK(bp,
2395 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2396 			    BO_LOCKPTR(bo)) == ENOLCK) {
2397 				BO_LOCK(bo);
2398 				return (EAGAIN);
2399 			}
2400 			bremfree(bp);
2401 			bp->b_flags |= B_INVAL | B_RELBUF;
2402 			bp->b_flags &= ~B_ASYNC;
2403 			brelse(bp);
2404 			anyfreed = true;
2405 
2406 			BO_LOCK(bo);
2407 			if (nbp != NULL &&
2408 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2409 			    (nbp->b_vp != vp) ||
2410 			    (nbp->b_flags & B_DELWRI) == 0))
2411 				return (EAGAIN);
2412 		}
2413 	} while (anyfreed);
2414 	return (0);
2415 }
2416 
2417 static void
buf_vlist_remove(struct buf * bp)2418 buf_vlist_remove(struct buf *bp)
2419 {
2420 	struct bufv *bv;
2421 	b_xflags_t flags;
2422 
2423 	flags = bp->b_xflags;
2424 
2425 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2426 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2427 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2428 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2429 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2430 
2431 	if ((flags & BX_VNDIRTY) != 0)
2432 		bv = &bp->b_bufobj->bo_dirty;
2433 	else
2434 		bv = &bp->b_bufobj->bo_clean;
2435 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2436 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2437 	bv->bv_cnt--;
2438 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2439 }
2440 
2441 /*
2442  * Add the buffer to the sorted clean or dirty block list.
2443  *
2444  * NOTE: xflags is passed as a constant, optimizing this inline function!
2445  */
2446 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2447 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2448 {
2449 	struct bufv *bv;
2450 	struct buf *n;
2451 	int error;
2452 
2453 	ASSERT_BO_WLOCKED(bo);
2454 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2455 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2456 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2457 	    ("dead bo %p", bo));
2458 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2459 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2460 	bp->b_xflags |= xflags;
2461 	if (xflags & BX_VNDIRTY)
2462 		bv = &bo->bo_dirty;
2463 	else
2464 		bv = &bo->bo_clean;
2465 
2466 	/*
2467 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2468 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2469 	 * than _ge.
2470 	 */
2471 	if (bv->bv_cnt == 0 ||
2472 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2473 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2474 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2475 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2476 	else
2477 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2478 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2479 	if (error)
2480 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2481 	bv->bv_cnt++;
2482 }
2483 
2484 /*
2485  * Look up a buffer using the buffer tries.
2486  */
2487 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2488 gbincore(struct bufobj *bo, daddr_t lblkno)
2489 {
2490 	struct buf *bp;
2491 
2492 	ASSERT_BO_LOCKED(bo);
2493 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2494 	if (bp != NULL)
2495 		return (bp);
2496 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2497 }
2498 
2499 /*
2500  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2501  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2502  * stability of the result.  Like other lockless lookups, the found buf may
2503  * already be invalid by the time this function returns.
2504  */
2505 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2506 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2507 {
2508 	struct buf *bp;
2509 
2510 	ASSERT_BO_UNLOCKED(bo);
2511 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2512 	if (bp != NULL)
2513 		return (bp);
2514 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2515 }
2516 
2517 /*
2518  * Associate a buffer with a vnode.
2519  */
2520 void
bgetvp(struct vnode * vp,struct buf * bp)2521 bgetvp(struct vnode *vp, struct buf *bp)
2522 {
2523 	struct bufobj *bo;
2524 
2525 	bo = &vp->v_bufobj;
2526 	ASSERT_BO_WLOCKED(bo);
2527 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2528 
2529 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2530 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2531 	    ("bgetvp: bp already attached! %p", bp));
2532 
2533 	vhold(vp);
2534 	bp->b_vp = vp;
2535 	bp->b_bufobj = bo;
2536 	/*
2537 	 * Insert onto list for new vnode.
2538 	 */
2539 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2540 }
2541 
2542 /*
2543  * Disassociate a buffer from a vnode.
2544  */
2545 void
brelvp(struct buf * bp)2546 brelvp(struct buf *bp)
2547 {
2548 	struct bufobj *bo;
2549 	struct vnode *vp;
2550 
2551 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2552 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2553 
2554 	/*
2555 	 * Delete from old vnode list, if on one.
2556 	 */
2557 	vp = bp->b_vp;		/* XXX */
2558 	bo = bp->b_bufobj;
2559 	BO_LOCK(bo);
2560 	buf_vlist_remove(bp);
2561 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2562 		bo->bo_flag &= ~BO_ONWORKLST;
2563 		mtx_lock(&sync_mtx);
2564 		LIST_REMOVE(bo, bo_synclist);
2565 		syncer_worklist_len--;
2566 		mtx_unlock(&sync_mtx);
2567 	}
2568 	bp->b_vp = NULL;
2569 	bp->b_bufobj = NULL;
2570 	BO_UNLOCK(bo);
2571 	vdrop(vp);
2572 }
2573 
2574 /*
2575  * Add an item to the syncer work queue.
2576  */
2577 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2578 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2579 {
2580 	int slot;
2581 
2582 	ASSERT_BO_WLOCKED(bo);
2583 
2584 	mtx_lock(&sync_mtx);
2585 	if (bo->bo_flag & BO_ONWORKLST)
2586 		LIST_REMOVE(bo, bo_synclist);
2587 	else {
2588 		bo->bo_flag |= BO_ONWORKLST;
2589 		syncer_worklist_len++;
2590 	}
2591 
2592 	if (delay > syncer_maxdelay - 2)
2593 		delay = syncer_maxdelay - 2;
2594 	slot = (syncer_delayno + delay) & syncer_mask;
2595 
2596 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2597 	mtx_unlock(&sync_mtx);
2598 }
2599 
2600 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2601 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2602 {
2603 	int error, len;
2604 
2605 	mtx_lock(&sync_mtx);
2606 	len = syncer_worklist_len - sync_vnode_count;
2607 	mtx_unlock(&sync_mtx);
2608 	error = SYSCTL_OUT(req, &len, sizeof(len));
2609 	return (error);
2610 }
2611 
2612 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2613     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2614     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2615 
2616 static struct proc *updateproc;
2617 static void sched_sync(void);
2618 static struct kproc_desc up_kp = {
2619 	"syncer",
2620 	sched_sync,
2621 	&updateproc
2622 };
2623 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2624 
2625 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2626 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2627 {
2628 	struct vnode *vp;
2629 	struct mount *mp;
2630 
2631 	*bo = LIST_FIRST(slp);
2632 	if (*bo == NULL)
2633 		return (0);
2634 	vp = bo2vnode(*bo);
2635 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2636 		return (1);
2637 	/*
2638 	 * We use vhold in case the vnode does not
2639 	 * successfully sync.  vhold prevents the vnode from
2640 	 * going away when we unlock the sync_mtx so that
2641 	 * we can acquire the vnode interlock.
2642 	 */
2643 	vholdl(vp);
2644 	mtx_unlock(&sync_mtx);
2645 	VI_UNLOCK(vp);
2646 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2647 		vdrop(vp);
2648 		mtx_lock(&sync_mtx);
2649 		return (*bo == LIST_FIRST(slp));
2650 	}
2651 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2652 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2653 	VOP_UNLOCK(vp);
2654 	vn_finished_write(mp);
2655 	BO_LOCK(*bo);
2656 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2657 		/*
2658 		 * Put us back on the worklist.  The worklist
2659 		 * routine will remove us from our current
2660 		 * position and then add us back in at a later
2661 		 * position.
2662 		 */
2663 		vn_syncer_add_to_worklist(*bo, syncdelay);
2664 	}
2665 	BO_UNLOCK(*bo);
2666 	vdrop(vp);
2667 	mtx_lock(&sync_mtx);
2668 	return (0);
2669 }
2670 
2671 static int first_printf = 1;
2672 
2673 /*
2674  * System filesystem synchronizer daemon.
2675  */
2676 static void
sched_sync(void)2677 sched_sync(void)
2678 {
2679 	struct synclist *next, *slp;
2680 	struct bufobj *bo;
2681 	long starttime;
2682 	struct thread *td = curthread;
2683 	int last_work_seen;
2684 	int net_worklist_len;
2685 	int syncer_final_iter;
2686 	int error;
2687 
2688 	last_work_seen = 0;
2689 	syncer_final_iter = 0;
2690 	syncer_state = SYNCER_RUNNING;
2691 	starttime = time_uptime;
2692 	td->td_pflags |= TDP_NORUNNINGBUF;
2693 
2694 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2695 	    SHUTDOWN_PRI_LAST);
2696 
2697 	mtx_lock(&sync_mtx);
2698 	for (;;) {
2699 		if (syncer_state == SYNCER_FINAL_DELAY &&
2700 		    syncer_final_iter == 0) {
2701 			mtx_unlock(&sync_mtx);
2702 			kproc_suspend_check(td->td_proc);
2703 			mtx_lock(&sync_mtx);
2704 		}
2705 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2706 		if (syncer_state != SYNCER_RUNNING &&
2707 		    starttime != time_uptime) {
2708 			if (first_printf) {
2709 				printf("\nSyncing disks, vnodes remaining... ");
2710 				first_printf = 0;
2711 			}
2712 			printf("%d ", net_worklist_len);
2713 		}
2714 		starttime = time_uptime;
2715 
2716 		/*
2717 		 * Push files whose dirty time has expired.  Be careful
2718 		 * of interrupt race on slp queue.
2719 		 *
2720 		 * Skip over empty worklist slots when shutting down.
2721 		 */
2722 		do {
2723 			slp = &syncer_workitem_pending[syncer_delayno];
2724 			syncer_delayno += 1;
2725 			if (syncer_delayno == syncer_maxdelay)
2726 				syncer_delayno = 0;
2727 			next = &syncer_workitem_pending[syncer_delayno];
2728 			/*
2729 			 * If the worklist has wrapped since the
2730 			 * it was emptied of all but syncer vnodes,
2731 			 * switch to the FINAL_DELAY state and run
2732 			 * for one more second.
2733 			 */
2734 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2735 			    net_worklist_len == 0 &&
2736 			    last_work_seen == syncer_delayno) {
2737 				syncer_state = SYNCER_FINAL_DELAY;
2738 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2739 			}
2740 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2741 		    syncer_worklist_len > 0);
2742 
2743 		/*
2744 		 * Keep track of the last time there was anything
2745 		 * on the worklist other than syncer vnodes.
2746 		 * Return to the SHUTTING_DOWN state if any
2747 		 * new work appears.
2748 		 */
2749 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2750 			last_work_seen = syncer_delayno;
2751 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2752 			syncer_state = SYNCER_SHUTTING_DOWN;
2753 		while (!LIST_EMPTY(slp)) {
2754 			error = sync_vnode(slp, &bo, td);
2755 			if (error == 1) {
2756 				LIST_REMOVE(bo, bo_synclist);
2757 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2758 				continue;
2759 			}
2760 
2761 			if (first_printf == 0) {
2762 				/*
2763 				 * Drop the sync mutex, because some watchdog
2764 				 * drivers need to sleep while patting
2765 				 */
2766 				mtx_unlock(&sync_mtx);
2767 				wdog_kern_pat(WD_LASTVAL);
2768 				mtx_lock(&sync_mtx);
2769 			}
2770 		}
2771 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2772 			syncer_final_iter--;
2773 		/*
2774 		 * The variable rushjob allows the kernel to speed up the
2775 		 * processing of the filesystem syncer process. A rushjob
2776 		 * value of N tells the filesystem syncer to process the next
2777 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2778 		 * is used by the soft update code to speed up the filesystem
2779 		 * syncer process when the incore state is getting so far
2780 		 * ahead of the disk that the kernel memory pool is being
2781 		 * threatened with exhaustion.
2782 		 */
2783 		if (rushjob > 0) {
2784 			rushjob -= 1;
2785 			continue;
2786 		}
2787 		/*
2788 		 * Just sleep for a short period of time between
2789 		 * iterations when shutting down to allow some I/O
2790 		 * to happen.
2791 		 *
2792 		 * If it has taken us less than a second to process the
2793 		 * current work, then wait. Otherwise start right over
2794 		 * again. We can still lose time if any single round
2795 		 * takes more than two seconds, but it does not really
2796 		 * matter as we are just trying to generally pace the
2797 		 * filesystem activity.
2798 		 */
2799 		if (syncer_state != SYNCER_RUNNING ||
2800 		    time_uptime == starttime) {
2801 			thread_lock(td);
2802 			sched_prio(td, PPAUSE);
2803 			thread_unlock(td);
2804 		}
2805 		if (syncer_state != SYNCER_RUNNING)
2806 			cv_timedwait(&sync_wakeup, &sync_mtx,
2807 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2808 		else if (time_uptime == starttime)
2809 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2810 	}
2811 }
2812 
2813 /*
2814  * Request the syncer daemon to speed up its work.
2815  * We never push it to speed up more than half of its
2816  * normal turn time, otherwise it could take over the cpu.
2817  */
2818 int
speedup_syncer(void)2819 speedup_syncer(void)
2820 {
2821 	int ret = 0;
2822 
2823 	mtx_lock(&sync_mtx);
2824 	if (rushjob < syncdelay / 2) {
2825 		rushjob += 1;
2826 		stat_rush_requests += 1;
2827 		ret = 1;
2828 	}
2829 	mtx_unlock(&sync_mtx);
2830 	cv_broadcast(&sync_wakeup);
2831 	return (ret);
2832 }
2833 
2834 /*
2835  * Tell the syncer to speed up its work and run though its work
2836  * list several times, then tell it to shut down.
2837  */
2838 static void
syncer_shutdown(void * arg,int howto)2839 syncer_shutdown(void *arg, int howto)
2840 {
2841 
2842 	if (howto & RB_NOSYNC)
2843 		return;
2844 	mtx_lock(&sync_mtx);
2845 	syncer_state = SYNCER_SHUTTING_DOWN;
2846 	rushjob = 0;
2847 	mtx_unlock(&sync_mtx);
2848 	cv_broadcast(&sync_wakeup);
2849 	kproc_shutdown(arg, howto);
2850 }
2851 
2852 void
syncer_suspend(void)2853 syncer_suspend(void)
2854 {
2855 
2856 	syncer_shutdown(updateproc, 0);
2857 }
2858 
2859 void
syncer_resume(void)2860 syncer_resume(void)
2861 {
2862 
2863 	mtx_lock(&sync_mtx);
2864 	first_printf = 1;
2865 	syncer_state = SYNCER_RUNNING;
2866 	mtx_unlock(&sync_mtx);
2867 	cv_broadcast(&sync_wakeup);
2868 	kproc_resume(updateproc);
2869 }
2870 
2871 /*
2872  * Move the buffer between the clean and dirty lists of its vnode.
2873  */
2874 void
reassignbuf(struct buf * bp)2875 reassignbuf(struct buf *bp)
2876 {
2877 	struct vnode *vp;
2878 	struct bufobj *bo;
2879 	int delay;
2880 #ifdef INVARIANTS
2881 	struct bufv *bv;
2882 #endif
2883 
2884 	vp = bp->b_vp;
2885 	bo = bp->b_bufobj;
2886 
2887 	KASSERT((bp->b_flags & B_PAGING) == 0,
2888 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2889 
2890 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2891 	    bp, bp->b_vp, bp->b_flags);
2892 
2893 	BO_LOCK(bo);
2894 	buf_vlist_remove(bp);
2895 
2896 	/*
2897 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2898 	 * of clean buffers.
2899 	 */
2900 	if (bp->b_flags & B_DELWRI) {
2901 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2902 			switch (vp->v_type) {
2903 			case VDIR:
2904 				delay = dirdelay;
2905 				break;
2906 			case VCHR:
2907 				delay = metadelay;
2908 				break;
2909 			default:
2910 				delay = filedelay;
2911 			}
2912 			vn_syncer_add_to_worklist(bo, delay);
2913 		}
2914 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2915 	} else {
2916 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2917 
2918 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2919 			mtx_lock(&sync_mtx);
2920 			LIST_REMOVE(bo, bo_synclist);
2921 			syncer_worklist_len--;
2922 			mtx_unlock(&sync_mtx);
2923 			bo->bo_flag &= ~BO_ONWORKLST;
2924 		}
2925 	}
2926 #ifdef INVARIANTS
2927 	bv = &bo->bo_clean;
2928 	bp = TAILQ_FIRST(&bv->bv_hd);
2929 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2930 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2931 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2932 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2933 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2934 	bv = &bo->bo_dirty;
2935 	bp = TAILQ_FIRST(&bv->bv_hd);
2936 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2937 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2938 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2939 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2940 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2941 #endif
2942 	BO_UNLOCK(bo);
2943 }
2944 
2945 static void
v_init_counters(struct vnode * vp)2946 v_init_counters(struct vnode *vp)
2947 {
2948 
2949 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2950 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2951 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2952 
2953 	refcount_init(&vp->v_holdcnt, 1);
2954 	refcount_init(&vp->v_usecount, 1);
2955 }
2956 
2957 /*
2958  * Grab a particular vnode from the free list, increment its
2959  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2960  * is being destroyed.  Only callers who specify LK_RETRY will
2961  * see doomed vnodes.  If inactive processing was delayed in
2962  * vput try to do it here.
2963  *
2964  * usecount is manipulated using atomics without holding any locks.
2965  *
2966  * holdcnt can be manipulated using atomics without holding any locks,
2967  * except when transitioning 1<->0, in which case the interlock is held.
2968  *
2969  * Consumers which don't guarantee liveness of the vnode can use SMR to
2970  * try to get a reference. Note this operation can fail since the vnode
2971  * may be awaiting getting freed by the time they get to it.
2972  */
2973 enum vgetstate
vget_prep_smr(struct vnode * vp)2974 vget_prep_smr(struct vnode *vp)
2975 {
2976 	enum vgetstate vs;
2977 
2978 	VFS_SMR_ASSERT_ENTERED();
2979 
2980 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2981 		vs = VGET_USECOUNT;
2982 	} else {
2983 		if (vhold_smr(vp))
2984 			vs = VGET_HOLDCNT;
2985 		else
2986 			vs = VGET_NONE;
2987 	}
2988 	return (vs);
2989 }
2990 
2991 enum vgetstate
vget_prep(struct vnode * vp)2992 vget_prep(struct vnode *vp)
2993 {
2994 	enum vgetstate vs;
2995 
2996 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2997 		vs = VGET_USECOUNT;
2998 	} else {
2999 		vhold(vp);
3000 		vs = VGET_HOLDCNT;
3001 	}
3002 	return (vs);
3003 }
3004 
3005 void
vget_abort(struct vnode * vp,enum vgetstate vs)3006 vget_abort(struct vnode *vp, enum vgetstate vs)
3007 {
3008 
3009 	switch (vs) {
3010 	case VGET_USECOUNT:
3011 		vrele(vp);
3012 		break;
3013 	case VGET_HOLDCNT:
3014 		vdrop(vp);
3015 		break;
3016 	default:
3017 		__assert_unreachable();
3018 	}
3019 }
3020 
3021 int
vget(struct vnode * vp,int flags)3022 vget(struct vnode *vp, int flags)
3023 {
3024 	enum vgetstate vs;
3025 
3026 	vs = vget_prep(vp);
3027 	return (vget_finish(vp, flags, vs));
3028 }
3029 
3030 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3031 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3032 {
3033 	int error;
3034 
3035 	if ((flags & LK_INTERLOCK) != 0)
3036 		ASSERT_VI_LOCKED(vp, __func__);
3037 	else
3038 		ASSERT_VI_UNLOCKED(vp, __func__);
3039 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3040 	VNPASS(vp->v_holdcnt > 0, vp);
3041 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3042 
3043 	error = vn_lock(vp, flags);
3044 	if (__predict_false(error != 0)) {
3045 		vget_abort(vp, vs);
3046 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3047 		    vp);
3048 		return (error);
3049 	}
3050 
3051 	vget_finish_ref(vp, vs);
3052 	return (0);
3053 }
3054 
3055 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3056 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3057 {
3058 	int old;
3059 
3060 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3061 	VNPASS(vp->v_holdcnt > 0, vp);
3062 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3063 
3064 	if (vs == VGET_USECOUNT)
3065 		return;
3066 
3067 	/*
3068 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3069 	 * the vnode around. Otherwise someone else lended their hold count and
3070 	 * we have to drop ours.
3071 	 */
3072 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3073 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3074 	if (old != 0) {
3075 #ifdef INVARIANTS
3076 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3077 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3078 #else
3079 		refcount_release(&vp->v_holdcnt);
3080 #endif
3081 	}
3082 }
3083 
3084 void
vref(struct vnode * vp)3085 vref(struct vnode *vp)
3086 {
3087 	enum vgetstate vs;
3088 
3089 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3090 	vs = vget_prep(vp);
3091 	vget_finish_ref(vp, vs);
3092 }
3093 
3094 void
vrefact(struct vnode * vp)3095 vrefact(struct vnode *vp)
3096 {
3097 
3098 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3099 #ifdef INVARIANTS
3100 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3101 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3102 #else
3103 	refcount_acquire(&vp->v_usecount);
3104 #endif
3105 }
3106 
3107 void
vlazy(struct vnode * vp)3108 vlazy(struct vnode *vp)
3109 {
3110 	struct mount *mp;
3111 
3112 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3113 
3114 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3115 		return;
3116 	/*
3117 	 * We may get here for inactive routines after the vnode got doomed.
3118 	 */
3119 	if (VN_IS_DOOMED(vp))
3120 		return;
3121 	mp = vp->v_mount;
3122 	mtx_lock(&mp->mnt_listmtx);
3123 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3124 		vp->v_mflag |= VMP_LAZYLIST;
3125 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3126 		mp->mnt_lazyvnodelistsize++;
3127 	}
3128 	mtx_unlock(&mp->mnt_listmtx);
3129 }
3130 
3131 static void
vunlazy(struct vnode * vp)3132 vunlazy(struct vnode *vp)
3133 {
3134 	struct mount *mp;
3135 
3136 	ASSERT_VI_LOCKED(vp, __func__);
3137 	VNPASS(!VN_IS_DOOMED(vp), vp);
3138 
3139 	mp = vp->v_mount;
3140 	mtx_lock(&mp->mnt_listmtx);
3141 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3142 	/*
3143 	 * Don't remove the vnode from the lazy list if another thread
3144 	 * has increased the hold count. It may have re-enqueued the
3145 	 * vnode to the lazy list and is now responsible for its
3146 	 * removal.
3147 	 */
3148 	if (vp->v_holdcnt == 0) {
3149 		vp->v_mflag &= ~VMP_LAZYLIST;
3150 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3151 		mp->mnt_lazyvnodelistsize--;
3152 	}
3153 	mtx_unlock(&mp->mnt_listmtx);
3154 }
3155 
3156 /*
3157  * This routine is only meant to be called from vgonel prior to dooming
3158  * the vnode.
3159  */
3160 static void
vunlazy_gone(struct vnode * vp)3161 vunlazy_gone(struct vnode *vp)
3162 {
3163 	struct mount *mp;
3164 
3165 	ASSERT_VOP_ELOCKED(vp, __func__);
3166 	ASSERT_VI_LOCKED(vp, __func__);
3167 	VNPASS(!VN_IS_DOOMED(vp), vp);
3168 
3169 	if (vp->v_mflag & VMP_LAZYLIST) {
3170 		mp = vp->v_mount;
3171 		mtx_lock(&mp->mnt_listmtx);
3172 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3173 		vp->v_mflag &= ~VMP_LAZYLIST;
3174 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3175 		mp->mnt_lazyvnodelistsize--;
3176 		mtx_unlock(&mp->mnt_listmtx);
3177 	}
3178 }
3179 
3180 static void
vdefer_inactive(struct vnode * vp)3181 vdefer_inactive(struct vnode *vp)
3182 {
3183 
3184 	ASSERT_VI_LOCKED(vp, __func__);
3185 	VNASSERT(vp->v_holdcnt > 0, vp,
3186 	    ("%s: vnode without hold count", __func__));
3187 	if (VN_IS_DOOMED(vp)) {
3188 		vdropl(vp);
3189 		return;
3190 	}
3191 	if (vp->v_iflag & VI_DEFINACT) {
3192 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3193 		vdropl(vp);
3194 		return;
3195 	}
3196 	if (vp->v_usecount > 0) {
3197 		vp->v_iflag &= ~VI_OWEINACT;
3198 		vdropl(vp);
3199 		return;
3200 	}
3201 	vlazy(vp);
3202 	vp->v_iflag |= VI_DEFINACT;
3203 	VI_UNLOCK(vp);
3204 	counter_u64_add(deferred_inact, 1);
3205 }
3206 
3207 static void
vdefer_inactive_unlocked(struct vnode * vp)3208 vdefer_inactive_unlocked(struct vnode *vp)
3209 {
3210 
3211 	VI_LOCK(vp);
3212 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3213 		vdropl(vp);
3214 		return;
3215 	}
3216 	vdefer_inactive(vp);
3217 }
3218 
3219 enum vput_op { VRELE, VPUT, VUNREF };
3220 
3221 /*
3222  * Handle ->v_usecount transitioning to 0.
3223  *
3224  * By releasing the last usecount we take ownership of the hold count which
3225  * provides liveness of the vnode, meaning we have to vdrop.
3226  *
3227  * For all vnodes we may need to perform inactive processing. It requires an
3228  * exclusive lock on the vnode, while it is legal to call here with only a
3229  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3230  * inactive processing gets deferred to the syncer.
3231  *
3232  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3233  * on the lock being held all the way until VOP_INACTIVE. This in particular
3234  * happens with UFS which adds half-constructed vnodes to the hash, where they
3235  * can be found by other code.
3236  */
3237 static void
vput_final(struct vnode * vp,enum vput_op func)3238 vput_final(struct vnode *vp, enum vput_op func)
3239 {
3240 	int error;
3241 	bool want_unlock;
3242 
3243 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3244 	VNPASS(vp->v_holdcnt > 0, vp);
3245 
3246 	VI_LOCK(vp);
3247 
3248 	/*
3249 	 * By the time we got here someone else might have transitioned
3250 	 * the count back to > 0.
3251 	 */
3252 	if (vp->v_usecount > 0)
3253 		goto out;
3254 
3255 	/*
3256 	 * If the vnode is doomed vgone already performed inactive processing
3257 	 * (if needed).
3258 	 */
3259 	if (VN_IS_DOOMED(vp))
3260 		goto out;
3261 
3262 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3263 		goto out;
3264 
3265 	if (vp->v_iflag & VI_DOINGINACT)
3266 		goto out;
3267 
3268 	/*
3269 	 * Locking operations here will drop the interlock and possibly the
3270 	 * vnode lock, opening a window where the vnode can get doomed all the
3271 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3272 	 * perform inactive.
3273 	 */
3274 	vp->v_iflag |= VI_OWEINACT;
3275 	want_unlock = false;
3276 	error = 0;
3277 	switch (func) {
3278 	case VRELE:
3279 		switch (VOP_ISLOCKED(vp)) {
3280 		case LK_EXCLUSIVE:
3281 			break;
3282 		case LK_EXCLOTHER:
3283 		case 0:
3284 			want_unlock = true;
3285 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3286 			VI_LOCK(vp);
3287 			break;
3288 		default:
3289 			/*
3290 			 * The lock has at least one sharer, but we have no way
3291 			 * to conclude whether this is us. Play it safe and
3292 			 * defer processing.
3293 			 */
3294 			error = EAGAIN;
3295 			break;
3296 		}
3297 		break;
3298 	case VPUT:
3299 		want_unlock = true;
3300 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3301 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3302 			    LK_NOWAIT);
3303 			VI_LOCK(vp);
3304 		}
3305 		break;
3306 	case VUNREF:
3307 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3308 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3309 			VI_LOCK(vp);
3310 		}
3311 		break;
3312 	}
3313 	if (error == 0) {
3314 		if (func == VUNREF) {
3315 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3316 			    ("recursive vunref"));
3317 			vp->v_vflag |= VV_UNREF;
3318 		}
3319 		for (;;) {
3320 			error = vinactive(vp);
3321 			if (want_unlock)
3322 				VOP_UNLOCK(vp);
3323 			if (error != ERELOOKUP || !want_unlock)
3324 				break;
3325 			VOP_LOCK(vp, LK_EXCLUSIVE);
3326 		}
3327 		if (func == VUNREF)
3328 			vp->v_vflag &= ~VV_UNREF;
3329 		vdropl(vp);
3330 	} else {
3331 		vdefer_inactive(vp);
3332 	}
3333 	return;
3334 out:
3335 	if (func == VPUT)
3336 		VOP_UNLOCK(vp);
3337 	vdropl(vp);
3338 }
3339 
3340 /*
3341  * Decrement ->v_usecount for a vnode.
3342  *
3343  * Releasing the last use count requires additional processing, see vput_final
3344  * above for details.
3345  *
3346  * Comment above each variant denotes lock state on entry and exit.
3347  */
3348 
3349 /*
3350  * in: any
3351  * out: same as passed in
3352  */
3353 void
vrele(struct vnode * vp)3354 vrele(struct vnode *vp)
3355 {
3356 
3357 	ASSERT_VI_UNLOCKED(vp, __func__);
3358 	if (!refcount_release(&vp->v_usecount))
3359 		return;
3360 	vput_final(vp, VRELE);
3361 }
3362 
3363 /*
3364  * in: locked
3365  * out: unlocked
3366  */
3367 void
vput(struct vnode * vp)3368 vput(struct vnode *vp)
3369 {
3370 
3371 	ASSERT_VOP_LOCKED(vp, __func__);
3372 	ASSERT_VI_UNLOCKED(vp, __func__);
3373 	if (!refcount_release(&vp->v_usecount)) {
3374 		VOP_UNLOCK(vp);
3375 		return;
3376 	}
3377 	vput_final(vp, VPUT);
3378 }
3379 
3380 /*
3381  * in: locked
3382  * out: locked
3383  */
3384 void
vunref(struct vnode * vp)3385 vunref(struct vnode *vp)
3386 {
3387 
3388 	ASSERT_VOP_LOCKED(vp, __func__);
3389 	ASSERT_VI_UNLOCKED(vp, __func__);
3390 	if (!refcount_release(&vp->v_usecount))
3391 		return;
3392 	vput_final(vp, VUNREF);
3393 }
3394 
3395 void
vhold(struct vnode * vp)3396 vhold(struct vnode *vp)
3397 {
3398 	int old;
3399 
3400 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3401 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3402 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3403 	    ("%s: wrong hold count %d", __func__, old));
3404 	if (old == 0)
3405 		vfs_freevnodes_dec();
3406 }
3407 
3408 void
vholdnz(struct vnode * vp)3409 vholdnz(struct vnode *vp)
3410 {
3411 
3412 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3413 #ifdef INVARIANTS
3414 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3415 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3416 	    ("%s: wrong hold count %d", __func__, old));
3417 #else
3418 	atomic_add_int(&vp->v_holdcnt, 1);
3419 #endif
3420 }
3421 
3422 /*
3423  * Grab a hold count unless the vnode is freed.
3424  *
3425  * Only use this routine if vfs smr is the only protection you have against
3426  * freeing the vnode.
3427  *
3428  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3429  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3430  * the thread which managed to set the flag.
3431  *
3432  * It may be tempting to replace the loop with:
3433  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3434  * if (count & VHOLD_NO_SMR) {
3435  *     backpedal and error out;
3436  * }
3437  *
3438  * However, while this is more performant, it hinders debugging by eliminating
3439  * the previously mentioned invariant.
3440  */
3441 bool
vhold_smr(struct vnode * vp)3442 vhold_smr(struct vnode *vp)
3443 {
3444 	int count;
3445 
3446 	VFS_SMR_ASSERT_ENTERED();
3447 
3448 	count = atomic_load_int(&vp->v_holdcnt);
3449 	for (;;) {
3450 		if (count & VHOLD_NO_SMR) {
3451 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3452 			    ("non-zero hold count with flags %d\n", count));
3453 			return (false);
3454 		}
3455 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3456 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3457 			if (count == 0)
3458 				vfs_freevnodes_dec();
3459 			return (true);
3460 		}
3461 	}
3462 }
3463 
3464 /*
3465  * Hold a free vnode for recycling.
3466  *
3467  * Note: vnode_init references this comment.
3468  *
3469  * Attempts to recycle only need the global vnode list lock and have no use for
3470  * SMR.
3471  *
3472  * However, vnodes get inserted into the global list before they get fully
3473  * initialized and stay there until UMA decides to free the memory. This in
3474  * particular means the target can be found before it becomes usable and after
3475  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3476  * VHOLD_NO_SMR.
3477  *
3478  * Note: the vnode may gain more references after we transition the count 0->1.
3479  */
3480 static bool
vhold_recycle_free(struct vnode * vp)3481 vhold_recycle_free(struct vnode *vp)
3482 {
3483 	int count;
3484 
3485 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3486 
3487 	count = atomic_load_int(&vp->v_holdcnt);
3488 	for (;;) {
3489 		if (count & VHOLD_NO_SMR) {
3490 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3491 			    ("non-zero hold count with flags %d\n", count));
3492 			return (false);
3493 		}
3494 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3495 		if (count > 0) {
3496 			return (false);
3497 		}
3498 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3499 			vfs_freevnodes_dec();
3500 			return (true);
3501 		}
3502 	}
3503 }
3504 
3505 static void __noinline
vdbatch_process(struct vdbatch * vd)3506 vdbatch_process(struct vdbatch *vd)
3507 {
3508 	struct vnode *vp;
3509 	int i;
3510 
3511 	mtx_assert(&vd->lock, MA_OWNED);
3512 	MPASS(curthread->td_pinned > 0);
3513 	MPASS(vd->index == VDBATCH_SIZE);
3514 
3515 	mtx_lock(&vnode_list_mtx);
3516 	critical_enter();
3517 	freevnodes += vd->freevnodes;
3518 	for (i = 0; i < VDBATCH_SIZE; i++) {
3519 		vp = vd->tab[i];
3520 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3521 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3522 		MPASS(vp->v_dbatchcpu != NOCPU);
3523 		vp->v_dbatchcpu = NOCPU;
3524 	}
3525 	mtx_unlock(&vnode_list_mtx);
3526 	vd->freevnodes = 0;
3527 	bzero(vd->tab, sizeof(vd->tab));
3528 	vd->index = 0;
3529 	critical_exit();
3530 }
3531 
3532 static void
vdbatch_enqueue(struct vnode * vp)3533 vdbatch_enqueue(struct vnode *vp)
3534 {
3535 	struct vdbatch *vd;
3536 
3537 	ASSERT_VI_LOCKED(vp, __func__);
3538 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3539 	    ("%s: deferring requeue of a doomed vnode", __func__));
3540 
3541 	if (vp->v_dbatchcpu != NOCPU) {
3542 		VI_UNLOCK(vp);
3543 		return;
3544 	}
3545 
3546 	sched_pin();
3547 	vd = DPCPU_PTR(vd);
3548 	mtx_lock(&vd->lock);
3549 	MPASS(vd->index < VDBATCH_SIZE);
3550 	MPASS(vd->tab[vd->index] == NULL);
3551 	/*
3552 	 * A hack: we depend on being pinned so that we know what to put in
3553 	 * ->v_dbatchcpu.
3554 	 */
3555 	vp->v_dbatchcpu = curcpu;
3556 	vd->tab[vd->index] = vp;
3557 	vd->index++;
3558 	VI_UNLOCK(vp);
3559 	if (vd->index == VDBATCH_SIZE)
3560 		vdbatch_process(vd);
3561 	mtx_unlock(&vd->lock);
3562 	sched_unpin();
3563 }
3564 
3565 /*
3566  * This routine must only be called for vnodes which are about to be
3567  * deallocated. Supporting dequeue for arbitrary vndoes would require
3568  * validating that the locked batch matches.
3569  */
3570 static void
vdbatch_dequeue(struct vnode * vp)3571 vdbatch_dequeue(struct vnode *vp)
3572 {
3573 	struct vdbatch *vd;
3574 	int i;
3575 	short cpu;
3576 
3577 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3578 	    ("%s: called for a used vnode\n", __func__));
3579 
3580 	cpu = vp->v_dbatchcpu;
3581 	if (cpu == NOCPU)
3582 		return;
3583 
3584 	vd = DPCPU_ID_PTR(cpu, vd);
3585 	mtx_lock(&vd->lock);
3586 	for (i = 0; i < vd->index; i++) {
3587 		if (vd->tab[i] != vp)
3588 			continue;
3589 		vp->v_dbatchcpu = NOCPU;
3590 		vd->index--;
3591 		vd->tab[i] = vd->tab[vd->index];
3592 		vd->tab[vd->index] = NULL;
3593 		break;
3594 	}
3595 	mtx_unlock(&vd->lock);
3596 	/*
3597 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3598 	 */
3599 	MPASS(vp->v_dbatchcpu == NOCPU);
3600 }
3601 
3602 /*
3603  * Drop the hold count of the vnode.  If this is the last reference to
3604  * the vnode we place it on the free list unless it has been vgone'd
3605  * (marked VIRF_DOOMED) in which case we will free it.
3606  *
3607  * Because the vnode vm object keeps a hold reference on the vnode if
3608  * there is at least one resident non-cached page, the vnode cannot
3609  * leave the active list without the page cleanup done.
3610  */
3611 static void __noinline
vdropl_final(struct vnode * vp)3612 vdropl_final(struct vnode *vp)
3613 {
3614 
3615 	ASSERT_VI_LOCKED(vp, __func__);
3616 	VNPASS(VN_IS_DOOMED(vp), vp);
3617 	/*
3618 	 * Set the VHOLD_NO_SMR flag.
3619 	 *
3620 	 * We may be racing against vhold_smr. If they win we can just pretend
3621 	 * we never got this far, they will vdrop later.
3622 	 */
3623 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3624 		vfs_freevnodes_inc();
3625 		VI_UNLOCK(vp);
3626 		/*
3627 		 * We lost the aforementioned race. Any subsequent access is
3628 		 * invalid as they might have managed to vdropl on their own.
3629 		 */
3630 		return;
3631 	}
3632 	/*
3633 	 * Don't bump freevnodes as this one is going away.
3634 	 */
3635 	freevnode(vp);
3636 }
3637 
3638 void
vdrop(struct vnode * vp)3639 vdrop(struct vnode *vp)
3640 {
3641 
3642 	ASSERT_VI_UNLOCKED(vp, __func__);
3643 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3644 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3645 		return;
3646 	VI_LOCK(vp);
3647 	vdropl(vp);
3648 }
3649 
3650 static void __always_inline
vdropl_impl(struct vnode * vp,bool enqueue)3651 vdropl_impl(struct vnode *vp, bool enqueue)
3652 {
3653 
3654 	ASSERT_VI_LOCKED(vp, __func__);
3655 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3656 	if (!refcount_release(&vp->v_holdcnt)) {
3657 		VI_UNLOCK(vp);
3658 		return;
3659 	}
3660 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3661 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3662 	if (VN_IS_DOOMED(vp)) {
3663 		vdropl_final(vp);
3664 		return;
3665 	}
3666 
3667 	vfs_freevnodes_inc();
3668 	if (vp->v_mflag & VMP_LAZYLIST) {
3669 		vunlazy(vp);
3670 	}
3671 
3672 	if (!enqueue) {
3673 		VI_UNLOCK(vp);
3674 		return;
3675 	}
3676 
3677 	/*
3678 	 * Also unlocks the interlock. We can't assert on it as we
3679 	 * released our hold and by now the vnode might have been
3680 	 * freed.
3681 	 */
3682 	vdbatch_enqueue(vp);
3683 }
3684 
3685 void
vdropl(struct vnode * vp)3686 vdropl(struct vnode *vp)
3687 {
3688 
3689 	vdropl_impl(vp, true);
3690 }
3691 
3692 /*
3693  * vdrop a vnode when recycling
3694  *
3695  * This is a special case routine only to be used when recycling, differs from
3696  * regular vdrop by not requeieing the vnode on LRU.
3697  *
3698  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3699  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3700  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3701  * loop which can last for as long as writes are frozen.
3702  */
3703 static void
vdropl_recycle(struct vnode * vp)3704 vdropl_recycle(struct vnode *vp)
3705 {
3706 
3707 	vdropl_impl(vp, false);
3708 }
3709 
3710 static void
vdrop_recycle(struct vnode * vp)3711 vdrop_recycle(struct vnode *vp)
3712 {
3713 
3714 	VI_LOCK(vp);
3715 	vdropl_recycle(vp);
3716 }
3717 
3718 /*
3719  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3720  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3721  */
3722 static int
vinactivef(struct vnode * vp)3723 vinactivef(struct vnode *vp)
3724 {
3725 	struct vm_object *obj;
3726 	int error;
3727 
3728 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3729 	ASSERT_VI_LOCKED(vp, "vinactive");
3730 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3731 	    ("vinactive: recursed on VI_DOINGINACT"));
3732 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3733 	vp->v_iflag |= VI_DOINGINACT;
3734 	vp->v_iflag &= ~VI_OWEINACT;
3735 	VI_UNLOCK(vp);
3736 	/*
3737 	 * Before moving off the active list, we must be sure that any
3738 	 * modified pages are converted into the vnode's dirty
3739 	 * buffers, since these will no longer be checked once the
3740 	 * vnode is on the inactive list.
3741 	 *
3742 	 * The write-out of the dirty pages is asynchronous.  At the
3743 	 * point that VOP_INACTIVE() is called, there could still be
3744 	 * pending I/O and dirty pages in the object.
3745 	 */
3746 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3747 	    vm_object_mightbedirty(obj)) {
3748 		VM_OBJECT_WLOCK(obj);
3749 		vm_object_page_clean(obj, 0, 0, 0);
3750 		VM_OBJECT_WUNLOCK(obj);
3751 	}
3752 	error = VOP_INACTIVE(vp);
3753 	VI_LOCK(vp);
3754 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3755 	    ("vinactive: lost VI_DOINGINACT"));
3756 	vp->v_iflag &= ~VI_DOINGINACT;
3757 	return (error);
3758 }
3759 
3760 int
vinactive(struct vnode * vp)3761 vinactive(struct vnode *vp)
3762 {
3763 
3764 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3765 	ASSERT_VI_LOCKED(vp, "vinactive");
3766 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3767 
3768 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3769 		return (0);
3770 	if (vp->v_iflag & VI_DOINGINACT)
3771 		return (0);
3772 	if (vp->v_usecount > 0) {
3773 		vp->v_iflag &= ~VI_OWEINACT;
3774 		return (0);
3775 	}
3776 	return (vinactivef(vp));
3777 }
3778 
3779 /*
3780  * Remove any vnodes in the vnode table belonging to mount point mp.
3781  *
3782  * If FORCECLOSE is not specified, there should not be any active ones,
3783  * return error if any are found (nb: this is a user error, not a
3784  * system error). If FORCECLOSE is specified, detach any active vnodes
3785  * that are found.
3786  *
3787  * If WRITECLOSE is set, only flush out regular file vnodes open for
3788  * writing.
3789  *
3790  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3791  *
3792  * `rootrefs' specifies the base reference count for the root vnode
3793  * of this filesystem. The root vnode is considered busy if its
3794  * v_usecount exceeds this value. On a successful return, vflush(, td)
3795  * will call vrele() on the root vnode exactly rootrefs times.
3796  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3797  * be zero.
3798  */
3799 #ifdef DIAGNOSTIC
3800 static int busyprt = 0;		/* print out busy vnodes */
3801 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3802 #endif
3803 
3804 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)3805 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3806 {
3807 	struct vnode *vp, *mvp, *rootvp = NULL;
3808 	struct vattr vattr;
3809 	int busy = 0, error;
3810 
3811 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3812 	    rootrefs, flags);
3813 	if (rootrefs > 0) {
3814 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3815 		    ("vflush: bad args"));
3816 		/*
3817 		 * Get the filesystem root vnode. We can vput() it
3818 		 * immediately, since with rootrefs > 0, it won't go away.
3819 		 */
3820 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3821 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3822 			    __func__, error);
3823 			return (error);
3824 		}
3825 		vput(rootvp);
3826 	}
3827 loop:
3828 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3829 		vholdl(vp);
3830 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3831 		if (error) {
3832 			vdrop(vp);
3833 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3834 			goto loop;
3835 		}
3836 		/*
3837 		 * Skip over a vnodes marked VV_SYSTEM.
3838 		 */
3839 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3840 			VOP_UNLOCK(vp);
3841 			vdrop(vp);
3842 			continue;
3843 		}
3844 		/*
3845 		 * If WRITECLOSE is set, flush out unlinked but still open
3846 		 * files (even if open only for reading) and regular file
3847 		 * vnodes open for writing.
3848 		 */
3849 		if (flags & WRITECLOSE) {
3850 			if (vp->v_object != NULL) {
3851 				VM_OBJECT_WLOCK(vp->v_object);
3852 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3853 				VM_OBJECT_WUNLOCK(vp->v_object);
3854 			}
3855 			do {
3856 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3857 			} while (error == ERELOOKUP);
3858 			if (error != 0) {
3859 				VOP_UNLOCK(vp);
3860 				vdrop(vp);
3861 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3862 				return (error);
3863 			}
3864 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3865 			VI_LOCK(vp);
3866 
3867 			if ((vp->v_type == VNON ||
3868 			    (error == 0 && vattr.va_nlink > 0)) &&
3869 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3870 				VOP_UNLOCK(vp);
3871 				vdropl(vp);
3872 				continue;
3873 			}
3874 		} else
3875 			VI_LOCK(vp);
3876 		/*
3877 		 * With v_usecount == 0, all we need to do is clear out the
3878 		 * vnode data structures and we are done.
3879 		 *
3880 		 * If FORCECLOSE is set, forcibly close the vnode.
3881 		 */
3882 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3883 			vgonel(vp);
3884 		} else {
3885 			busy++;
3886 #ifdef DIAGNOSTIC
3887 			if (busyprt)
3888 				vn_printf(vp, "vflush: busy vnode ");
3889 #endif
3890 		}
3891 		VOP_UNLOCK(vp);
3892 		vdropl(vp);
3893 	}
3894 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3895 		/*
3896 		 * If just the root vnode is busy, and if its refcount
3897 		 * is equal to `rootrefs', then go ahead and kill it.
3898 		 */
3899 		VI_LOCK(rootvp);
3900 		KASSERT(busy > 0, ("vflush: not busy"));
3901 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3902 		    ("vflush: usecount %d < rootrefs %d",
3903 		     rootvp->v_usecount, rootrefs));
3904 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3905 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3906 			vgone(rootvp);
3907 			VOP_UNLOCK(rootvp);
3908 			busy = 0;
3909 		} else
3910 			VI_UNLOCK(rootvp);
3911 	}
3912 	if (busy) {
3913 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3914 		    busy);
3915 		return (EBUSY);
3916 	}
3917 	for (; rootrefs > 0; rootrefs--)
3918 		vrele(rootvp);
3919 	return (0);
3920 }
3921 
3922 /*
3923  * Recycle an unused vnode to the front of the free list.
3924  */
3925 int
vrecycle(struct vnode * vp)3926 vrecycle(struct vnode *vp)
3927 {
3928 	int recycled;
3929 
3930 	VI_LOCK(vp);
3931 	recycled = vrecyclel(vp);
3932 	VI_UNLOCK(vp);
3933 	return (recycled);
3934 }
3935 
3936 /*
3937  * vrecycle, with the vp interlock held.
3938  */
3939 int
vrecyclel(struct vnode * vp)3940 vrecyclel(struct vnode *vp)
3941 {
3942 	int recycled;
3943 
3944 	ASSERT_VOP_ELOCKED(vp, __func__);
3945 	ASSERT_VI_LOCKED(vp, __func__);
3946 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3947 	recycled = 0;
3948 	if (vp->v_usecount == 0) {
3949 		recycled = 1;
3950 		vgonel(vp);
3951 	}
3952 	return (recycled);
3953 }
3954 
3955 /*
3956  * Eliminate all activity associated with a vnode
3957  * in preparation for reuse.
3958  */
3959 void
vgone(struct vnode * vp)3960 vgone(struct vnode *vp)
3961 {
3962 	VI_LOCK(vp);
3963 	vgonel(vp);
3964 	VI_UNLOCK(vp);
3965 }
3966 
3967 static void
notify_lowervp_vfs_dummy(struct mount * mp __unused,struct vnode * lowervp __unused)3968 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3969     struct vnode *lowervp __unused)
3970 {
3971 }
3972 
3973 /*
3974  * Notify upper mounts about reclaimed or unlinked vnode.
3975  */
3976 void
vfs_notify_upper(struct vnode * vp,int event)3977 vfs_notify_upper(struct vnode *vp, int event)
3978 {
3979 	static struct vfsops vgonel_vfsops = {
3980 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3981 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3982 	};
3983 	struct mount *mp, *ump, *mmp;
3984 
3985 	mp = vp->v_mount;
3986 	if (mp == NULL)
3987 		return;
3988 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3989 		return;
3990 
3991 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3992 	mmp->mnt_op = &vgonel_vfsops;
3993 	mmp->mnt_kern_flag |= MNTK_MARKER;
3994 	MNT_ILOCK(mp);
3995 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3996 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3997 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3998 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3999 			continue;
4000 		}
4001 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
4002 		MNT_IUNLOCK(mp);
4003 		switch (event) {
4004 		case VFS_NOTIFY_UPPER_RECLAIM:
4005 			VFS_RECLAIM_LOWERVP(ump, vp);
4006 			break;
4007 		case VFS_NOTIFY_UPPER_UNLINK:
4008 			VFS_UNLINK_LOWERVP(ump, vp);
4009 			break;
4010 		default:
4011 			KASSERT(0, ("invalid event %d", event));
4012 			break;
4013 		}
4014 		MNT_ILOCK(mp);
4015 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
4016 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
4017 	}
4018 	free(mmp, M_TEMP);
4019 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
4020 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
4021 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
4022 		wakeup(&mp->mnt_uppers);
4023 	}
4024 	MNT_IUNLOCK(mp);
4025 }
4026 
4027 /*
4028  * vgone, with the vp interlock held.
4029  */
4030 static void
vgonel(struct vnode * vp)4031 vgonel(struct vnode *vp)
4032 {
4033 	struct thread *td;
4034 	struct mount *mp;
4035 	vm_object_t object;
4036 	bool active, doinginact, oweinact;
4037 
4038 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4039 	ASSERT_VI_LOCKED(vp, "vgonel");
4040 	VNASSERT(vp->v_holdcnt, vp,
4041 	    ("vgonel: vp %p has no reference.", vp));
4042 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4043 	td = curthread;
4044 
4045 	/*
4046 	 * Don't vgonel if we're already doomed.
4047 	 */
4048 	if (VN_IS_DOOMED(vp))
4049 		return;
4050 	/*
4051 	 * Paired with freevnode.
4052 	 */
4053 	vn_seqc_write_begin_locked(vp);
4054 	vunlazy_gone(vp);
4055 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4056 
4057 	/*
4058 	 * Check to see if the vnode is in use.  If so, we have to
4059 	 * call VOP_CLOSE() and VOP_INACTIVE().
4060 	 *
4061 	 * It could be that VOP_INACTIVE() requested reclamation, in
4062 	 * which case we should avoid recursion, so check
4063 	 * VI_DOINGINACT.  This is not precise but good enough.
4064 	 */
4065 	active = vp->v_usecount > 0;
4066 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4067 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4068 
4069 	/*
4070 	 * If we need to do inactive VI_OWEINACT will be set.
4071 	 */
4072 	if (vp->v_iflag & VI_DEFINACT) {
4073 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4074 		vp->v_iflag &= ~VI_DEFINACT;
4075 		vdropl(vp);
4076 	} else {
4077 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4078 		VI_UNLOCK(vp);
4079 	}
4080 	cache_purge_vgone(vp);
4081 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4082 
4083 	/*
4084 	 * If purging an active vnode, it must be closed and
4085 	 * deactivated before being reclaimed.
4086 	 */
4087 	if (active)
4088 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4089 	if (!doinginact) {
4090 		do {
4091 			if (oweinact || active) {
4092 				VI_LOCK(vp);
4093 				vinactivef(vp);
4094 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4095 				VI_UNLOCK(vp);
4096 			}
4097 		} while (oweinact);
4098 	}
4099 	if (vp->v_type == VSOCK)
4100 		vfs_unp_reclaim(vp);
4101 
4102 	/*
4103 	 * Clean out any buffers associated with the vnode.
4104 	 * If the flush fails, just toss the buffers.
4105 	 */
4106 	mp = NULL;
4107 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4108 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4109 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4110 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4111 			;
4112 	}
4113 
4114 	BO_LOCK(&vp->v_bufobj);
4115 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4116 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4117 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4118 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4119 	    ("vp %p bufobj not invalidated", vp));
4120 
4121 	/*
4122 	 * For VMIO bufobj, BO_DEAD is set later, or in
4123 	 * vm_object_terminate() after the object's page queue is
4124 	 * flushed.
4125 	 */
4126 	object = vp->v_bufobj.bo_object;
4127 	if (object == NULL)
4128 		vp->v_bufobj.bo_flag |= BO_DEAD;
4129 	BO_UNLOCK(&vp->v_bufobj);
4130 
4131 	/*
4132 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4133 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4134 	 * should not touch the object borrowed from the lower vnode
4135 	 * (the handle check).
4136 	 */
4137 	if (object != NULL && object->type == OBJT_VNODE &&
4138 	    object->handle == vp)
4139 		vnode_destroy_vobject(vp);
4140 
4141 	/*
4142 	 * Reclaim the vnode.
4143 	 */
4144 	if (VOP_RECLAIM(vp))
4145 		panic("vgone: cannot reclaim");
4146 	if (mp != NULL)
4147 		vn_finished_secondary_write(mp);
4148 	VNASSERT(vp->v_object == NULL, vp,
4149 	    ("vop_reclaim left v_object vp=%p", vp));
4150 	/*
4151 	 * Clear the advisory locks and wake up waiting threads.
4152 	 */
4153 	(void)VOP_ADVLOCKPURGE(vp);
4154 	vp->v_lockf = NULL;
4155 	/*
4156 	 * Delete from old mount point vnode list.
4157 	 */
4158 	delmntque(vp);
4159 	/*
4160 	 * Done with purge, reset to the standard lock and invalidate
4161 	 * the vnode.
4162 	 */
4163 	VI_LOCK(vp);
4164 	vp->v_vnlock = &vp->v_lock;
4165 	vp->v_op = &dead_vnodeops;
4166 	vp->v_type = VBAD;
4167 }
4168 
4169 /*
4170  * Print out a description of a vnode.
4171  */
4172 static const char * const typename[] =
4173 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4174  "VMARKER"};
4175 
4176 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4177     "new hold count flag not added to vn_printf");
4178 
4179 void
vn_printf(struct vnode * vp,const char * fmt,...)4180 vn_printf(struct vnode *vp, const char *fmt, ...)
4181 {
4182 	va_list ap;
4183 	char buf[256], buf2[16];
4184 	u_long flags;
4185 	u_int holdcnt;
4186 	short irflag;
4187 
4188 	va_start(ap, fmt);
4189 	vprintf(fmt, ap);
4190 	va_end(ap);
4191 	printf("%p: ", (void *)vp);
4192 	printf("type %s\n", typename[vp->v_type]);
4193 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4194 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4195 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4196 	    vp->v_seqc_users);
4197 	switch (vp->v_type) {
4198 	case VDIR:
4199 		printf(" mountedhere %p\n", vp->v_mountedhere);
4200 		break;
4201 	case VCHR:
4202 		printf(" rdev %p\n", vp->v_rdev);
4203 		break;
4204 	case VSOCK:
4205 		printf(" socket %p\n", vp->v_unpcb);
4206 		break;
4207 	case VFIFO:
4208 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4209 		break;
4210 	default:
4211 		printf("\n");
4212 		break;
4213 	}
4214 	buf[0] = '\0';
4215 	buf[1] = '\0';
4216 	if (holdcnt & VHOLD_NO_SMR)
4217 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4218 	printf("    hold count flags (%s)\n", buf + 1);
4219 
4220 	buf[0] = '\0';
4221 	buf[1] = '\0';
4222 	irflag = vn_irflag_read(vp);
4223 	if (irflag & VIRF_DOOMED)
4224 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4225 	if (irflag & VIRF_PGREAD)
4226 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4227 	if (irflag & VIRF_MOUNTPOINT)
4228 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4229 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT);
4230 	if (flags != 0) {
4231 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4232 		strlcat(buf, buf2, sizeof(buf));
4233 	}
4234 	if (vp->v_vflag & VV_ROOT)
4235 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4236 	if (vp->v_vflag & VV_ISTTY)
4237 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4238 	if (vp->v_vflag & VV_NOSYNC)
4239 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4240 	if (vp->v_vflag & VV_ETERNALDEV)
4241 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4242 	if (vp->v_vflag & VV_CACHEDLABEL)
4243 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4244 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4245 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4246 	if (vp->v_vflag & VV_COPYONWRITE)
4247 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4248 	if (vp->v_vflag & VV_SYSTEM)
4249 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4250 	if (vp->v_vflag & VV_PROCDEP)
4251 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4252 	if (vp->v_vflag & VV_NOKNOTE)
4253 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
4254 	if (vp->v_vflag & VV_DELETED)
4255 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4256 	if (vp->v_vflag & VV_MD)
4257 		strlcat(buf, "|VV_MD", sizeof(buf));
4258 	if (vp->v_vflag & VV_FORCEINSMQ)
4259 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4260 	if (vp->v_vflag & VV_READLINK)
4261 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4262 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4263 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4264 	    VV_PROCDEP | VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ |
4265 	    VV_READLINK);
4266 	if (flags != 0) {
4267 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4268 		strlcat(buf, buf2, sizeof(buf));
4269 	}
4270 	if (vp->v_iflag & VI_TEXT_REF)
4271 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
4272 	if (vp->v_iflag & VI_MOUNT)
4273 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4274 	if (vp->v_iflag & VI_DOINGINACT)
4275 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4276 	if (vp->v_iflag & VI_OWEINACT)
4277 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4278 	if (vp->v_iflag & VI_DEFINACT)
4279 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4280 	if (vp->v_iflag & VI_FOPENING)
4281 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4282 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT |
4283 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4284 	if (flags != 0) {
4285 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4286 		strlcat(buf, buf2, sizeof(buf));
4287 	}
4288 	if (vp->v_mflag & VMP_LAZYLIST)
4289 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4290 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4291 	if (flags != 0) {
4292 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4293 		strlcat(buf, buf2, sizeof(buf));
4294 	}
4295 	printf("    flags (%s)", buf + 1);
4296 	if (mtx_owned(VI_MTX(vp)))
4297 		printf(" VI_LOCKed");
4298 	printf("\n");
4299 	if (vp->v_object != NULL)
4300 		printf("    v_object %p ref %d pages %d "
4301 		    "cleanbuf %d dirtybuf %d\n",
4302 		    vp->v_object, vp->v_object->ref_count,
4303 		    vp->v_object->resident_page_count,
4304 		    vp->v_bufobj.bo_clean.bv_cnt,
4305 		    vp->v_bufobj.bo_dirty.bv_cnt);
4306 	printf("    ");
4307 	lockmgr_printinfo(vp->v_vnlock);
4308 	if (vp->v_data != NULL)
4309 		VOP_PRINT(vp);
4310 }
4311 
4312 #ifdef DDB
4313 /*
4314  * List all of the locked vnodes in the system.
4315  * Called when debugging the kernel.
4316  */
DB_SHOW_COMMAND(lockedvnods,lockedvnodes)4317 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
4318 {
4319 	struct mount *mp;
4320 	struct vnode *vp;
4321 
4322 	/*
4323 	 * Note: because this is DDB, we can't obey the locking semantics
4324 	 * for these structures, which means we could catch an inconsistent
4325 	 * state and dereference a nasty pointer.  Not much to be done
4326 	 * about that.
4327 	 */
4328 	db_printf("Locked vnodes\n");
4329 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4330 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4331 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4332 				vn_printf(vp, "vnode ");
4333 		}
4334 	}
4335 }
4336 
4337 /*
4338  * Show details about the given vnode.
4339  */
DB_SHOW_COMMAND(vnode,db_show_vnode)4340 DB_SHOW_COMMAND(vnode, db_show_vnode)
4341 {
4342 	struct vnode *vp;
4343 
4344 	if (!have_addr)
4345 		return;
4346 	vp = (struct vnode *)addr;
4347 	vn_printf(vp, "vnode ");
4348 }
4349 
4350 /*
4351  * Show details about the given mount point.
4352  */
DB_SHOW_COMMAND(mount,db_show_mount)4353 DB_SHOW_COMMAND(mount, db_show_mount)
4354 {
4355 	struct mount *mp;
4356 	struct vfsopt *opt;
4357 	struct statfs *sp;
4358 	struct vnode *vp;
4359 	char buf[512];
4360 	uint64_t mflags;
4361 	u_int flags;
4362 
4363 	if (!have_addr) {
4364 		/* No address given, print short info about all mount points. */
4365 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4366 			db_printf("%p %s on %s (%s)\n", mp,
4367 			    mp->mnt_stat.f_mntfromname,
4368 			    mp->mnt_stat.f_mntonname,
4369 			    mp->mnt_stat.f_fstypename);
4370 			if (db_pager_quit)
4371 				break;
4372 		}
4373 		db_printf("\nMore info: show mount <addr>\n");
4374 		return;
4375 	}
4376 
4377 	mp = (struct mount *)addr;
4378 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4379 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4380 
4381 	buf[0] = '\0';
4382 	mflags = mp->mnt_flag;
4383 #define	MNT_FLAG(flag)	do {						\
4384 	if (mflags & (flag)) {						\
4385 		if (buf[0] != '\0')					\
4386 			strlcat(buf, ", ", sizeof(buf));		\
4387 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4388 		mflags &= ~(flag);					\
4389 	}								\
4390 } while (0)
4391 	MNT_FLAG(MNT_RDONLY);
4392 	MNT_FLAG(MNT_SYNCHRONOUS);
4393 	MNT_FLAG(MNT_NOEXEC);
4394 	MNT_FLAG(MNT_NOSUID);
4395 	MNT_FLAG(MNT_NFS4ACLS);
4396 	MNT_FLAG(MNT_UNION);
4397 	MNT_FLAG(MNT_ASYNC);
4398 	MNT_FLAG(MNT_SUIDDIR);
4399 	MNT_FLAG(MNT_SOFTDEP);
4400 	MNT_FLAG(MNT_NOSYMFOLLOW);
4401 	MNT_FLAG(MNT_GJOURNAL);
4402 	MNT_FLAG(MNT_MULTILABEL);
4403 	MNT_FLAG(MNT_ACLS);
4404 	MNT_FLAG(MNT_NOATIME);
4405 	MNT_FLAG(MNT_NOCLUSTERR);
4406 	MNT_FLAG(MNT_NOCLUSTERW);
4407 	MNT_FLAG(MNT_SUJ);
4408 	MNT_FLAG(MNT_EXRDONLY);
4409 	MNT_FLAG(MNT_EXPORTED);
4410 	MNT_FLAG(MNT_DEFEXPORTED);
4411 	MNT_FLAG(MNT_EXPORTANON);
4412 	MNT_FLAG(MNT_EXKERB);
4413 	MNT_FLAG(MNT_EXPUBLIC);
4414 	MNT_FLAG(MNT_LOCAL);
4415 	MNT_FLAG(MNT_QUOTA);
4416 	MNT_FLAG(MNT_ROOTFS);
4417 	MNT_FLAG(MNT_USER);
4418 	MNT_FLAG(MNT_IGNORE);
4419 	MNT_FLAG(MNT_UPDATE);
4420 	MNT_FLAG(MNT_DELEXPORT);
4421 	MNT_FLAG(MNT_RELOAD);
4422 	MNT_FLAG(MNT_FORCE);
4423 	MNT_FLAG(MNT_SNAPSHOT);
4424 	MNT_FLAG(MNT_BYFSID);
4425 #undef MNT_FLAG
4426 	if (mflags != 0) {
4427 		if (buf[0] != '\0')
4428 			strlcat(buf, ", ", sizeof(buf));
4429 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4430 		    "0x%016jx", mflags);
4431 	}
4432 	db_printf("    mnt_flag = %s\n", buf);
4433 
4434 	buf[0] = '\0';
4435 	flags = mp->mnt_kern_flag;
4436 #define	MNT_KERN_FLAG(flag)	do {					\
4437 	if (flags & (flag)) {						\
4438 		if (buf[0] != '\0')					\
4439 			strlcat(buf, ", ", sizeof(buf));		\
4440 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4441 		flags &= ~(flag);					\
4442 	}								\
4443 } while (0)
4444 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4445 	MNT_KERN_FLAG(MNTK_ASYNC);
4446 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4447 	MNT_KERN_FLAG(MNTK_DRAINING);
4448 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4449 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4450 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4451 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4452 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
4453 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
4454 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4455 	MNT_KERN_FLAG(MNTK_MARKER);
4456 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4457 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4458 	MNT_KERN_FLAG(MNTK_NOASYNC);
4459 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4460 	MNT_KERN_FLAG(MNTK_MWAIT);
4461 	MNT_KERN_FLAG(MNTK_SUSPEND);
4462 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4463 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4464 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4465 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4466 #undef MNT_KERN_FLAG
4467 	if (flags != 0) {
4468 		if (buf[0] != '\0')
4469 			strlcat(buf, ", ", sizeof(buf));
4470 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4471 		    "0x%08x", flags);
4472 	}
4473 	db_printf("    mnt_kern_flag = %s\n", buf);
4474 
4475 	db_printf("    mnt_opt = ");
4476 	opt = TAILQ_FIRST(mp->mnt_opt);
4477 	if (opt != NULL) {
4478 		db_printf("%s", opt->name);
4479 		opt = TAILQ_NEXT(opt, link);
4480 		while (opt != NULL) {
4481 			db_printf(", %s", opt->name);
4482 			opt = TAILQ_NEXT(opt, link);
4483 		}
4484 	}
4485 	db_printf("\n");
4486 
4487 	sp = &mp->mnt_stat;
4488 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4489 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4490 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4491 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4492 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4493 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4494 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4495 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4496 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4497 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4498 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4499 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4500 
4501 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4502 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4503 	if (jailed(mp->mnt_cred))
4504 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4505 	db_printf(" }\n");
4506 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4507 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4508 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4509 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4510 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4511 	    mp->mnt_lazyvnodelistsize);
4512 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4513 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4514 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4515 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4516 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4517 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4518 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4519 	db_printf("    mnt_secondary_accwrites = %d\n",
4520 	    mp->mnt_secondary_accwrites);
4521 	db_printf("    mnt_gjprovider = %s\n",
4522 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4523 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4524 
4525 	db_printf("\n\nList of active vnodes\n");
4526 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4527 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4528 			vn_printf(vp, "vnode ");
4529 			if (db_pager_quit)
4530 				break;
4531 		}
4532 	}
4533 	db_printf("\n\nList of inactive vnodes\n");
4534 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4535 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4536 			vn_printf(vp, "vnode ");
4537 			if (db_pager_quit)
4538 				break;
4539 		}
4540 	}
4541 }
4542 #endif	/* DDB */
4543 
4544 /*
4545  * Fill in a struct xvfsconf based on a struct vfsconf.
4546  */
4547 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4548 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4549 {
4550 	struct xvfsconf xvfsp;
4551 
4552 	bzero(&xvfsp, sizeof(xvfsp));
4553 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4554 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4555 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4556 	xvfsp.vfc_flags = vfsp->vfc_flags;
4557 	/*
4558 	 * These are unused in userland, we keep them
4559 	 * to not break binary compatibility.
4560 	 */
4561 	xvfsp.vfc_vfsops = NULL;
4562 	xvfsp.vfc_next = NULL;
4563 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4564 }
4565 
4566 #ifdef COMPAT_FREEBSD32
4567 struct xvfsconf32 {
4568 	uint32_t	vfc_vfsops;
4569 	char		vfc_name[MFSNAMELEN];
4570 	int32_t		vfc_typenum;
4571 	int32_t		vfc_refcount;
4572 	int32_t		vfc_flags;
4573 	uint32_t	vfc_next;
4574 };
4575 
4576 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4577 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4578 {
4579 	struct xvfsconf32 xvfsp;
4580 
4581 	bzero(&xvfsp, sizeof(xvfsp));
4582 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4583 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4584 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4585 	xvfsp.vfc_flags = vfsp->vfc_flags;
4586 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4587 }
4588 #endif
4589 
4590 /*
4591  * Top level filesystem related information gathering.
4592  */
4593 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4594 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4595 {
4596 	struct vfsconf *vfsp;
4597 	int error;
4598 
4599 	error = 0;
4600 	vfsconf_slock();
4601 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4602 #ifdef COMPAT_FREEBSD32
4603 		if (req->flags & SCTL_MASK32)
4604 			error = vfsconf2x32(req, vfsp);
4605 		else
4606 #endif
4607 			error = vfsconf2x(req, vfsp);
4608 		if (error)
4609 			break;
4610 	}
4611 	vfsconf_sunlock();
4612 	return (error);
4613 }
4614 
4615 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4616     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4617     "S,xvfsconf", "List of all configured filesystems");
4618 
4619 #ifndef BURN_BRIDGES
4620 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4621 
4622 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4623 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4624 {
4625 	int *name = (int *)arg1 - 1;	/* XXX */
4626 	u_int namelen = arg2 + 1;	/* XXX */
4627 	struct vfsconf *vfsp;
4628 
4629 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4630 	    "please rebuild world\n");
4631 
4632 #if 1 || defined(COMPAT_PRELITE2)
4633 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4634 	if (namelen == 1)
4635 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4636 #endif
4637 
4638 	switch (name[1]) {
4639 	case VFS_MAXTYPENUM:
4640 		if (namelen != 2)
4641 			return (ENOTDIR);
4642 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4643 	case VFS_CONF:
4644 		if (namelen != 3)
4645 			return (ENOTDIR);	/* overloaded */
4646 		vfsconf_slock();
4647 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4648 			if (vfsp->vfc_typenum == name[2])
4649 				break;
4650 		}
4651 		vfsconf_sunlock();
4652 		if (vfsp == NULL)
4653 			return (EOPNOTSUPP);
4654 #ifdef COMPAT_FREEBSD32
4655 		if (req->flags & SCTL_MASK32)
4656 			return (vfsconf2x32(req, vfsp));
4657 		else
4658 #endif
4659 			return (vfsconf2x(req, vfsp));
4660 	}
4661 	return (EOPNOTSUPP);
4662 }
4663 
4664 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4665     CTLFLAG_MPSAFE, vfs_sysctl,
4666     "Generic filesystem");
4667 
4668 #if 1 || defined(COMPAT_PRELITE2)
4669 
4670 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)4671 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4672 {
4673 	int error;
4674 	struct vfsconf *vfsp;
4675 	struct ovfsconf ovfs;
4676 
4677 	vfsconf_slock();
4678 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4679 		bzero(&ovfs, sizeof(ovfs));
4680 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4681 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4682 		ovfs.vfc_index = vfsp->vfc_typenum;
4683 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4684 		ovfs.vfc_flags = vfsp->vfc_flags;
4685 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4686 		if (error != 0) {
4687 			vfsconf_sunlock();
4688 			return (error);
4689 		}
4690 	}
4691 	vfsconf_sunlock();
4692 	return (0);
4693 }
4694 
4695 #endif /* 1 || COMPAT_PRELITE2 */
4696 #endif /* !BURN_BRIDGES */
4697 
4698 #define KINFO_VNODESLOP		10
4699 #ifdef notyet
4700 /*
4701  * Dump vnode list (via sysctl).
4702  */
4703 /* ARGSUSED */
4704 static int
sysctl_vnode(SYSCTL_HANDLER_ARGS)4705 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4706 {
4707 	struct xvnode *xvn;
4708 	struct mount *mp;
4709 	struct vnode *vp;
4710 	int error, len, n;
4711 
4712 	/*
4713 	 * Stale numvnodes access is not fatal here.
4714 	 */
4715 	req->lock = 0;
4716 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4717 	if (!req->oldptr)
4718 		/* Make an estimate */
4719 		return (SYSCTL_OUT(req, 0, len));
4720 
4721 	error = sysctl_wire_old_buffer(req, 0);
4722 	if (error != 0)
4723 		return (error);
4724 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4725 	n = 0;
4726 	mtx_lock(&mountlist_mtx);
4727 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4728 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4729 			continue;
4730 		MNT_ILOCK(mp);
4731 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4732 			if (n == len)
4733 				break;
4734 			vref(vp);
4735 			xvn[n].xv_size = sizeof *xvn;
4736 			xvn[n].xv_vnode = vp;
4737 			xvn[n].xv_id = 0;	/* XXX compat */
4738 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4739 			XV_COPY(usecount);
4740 			XV_COPY(writecount);
4741 			XV_COPY(holdcnt);
4742 			XV_COPY(mount);
4743 			XV_COPY(numoutput);
4744 			XV_COPY(type);
4745 #undef XV_COPY
4746 			xvn[n].xv_flag = vp->v_vflag;
4747 
4748 			switch (vp->v_type) {
4749 			case VREG:
4750 			case VDIR:
4751 			case VLNK:
4752 				break;
4753 			case VBLK:
4754 			case VCHR:
4755 				if (vp->v_rdev == NULL) {
4756 					vrele(vp);
4757 					continue;
4758 				}
4759 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4760 				break;
4761 			case VSOCK:
4762 				xvn[n].xv_socket = vp->v_socket;
4763 				break;
4764 			case VFIFO:
4765 				xvn[n].xv_fifo = vp->v_fifoinfo;
4766 				break;
4767 			case VNON:
4768 			case VBAD:
4769 			default:
4770 				/* shouldn't happen? */
4771 				vrele(vp);
4772 				continue;
4773 			}
4774 			vrele(vp);
4775 			++n;
4776 		}
4777 		MNT_IUNLOCK(mp);
4778 		mtx_lock(&mountlist_mtx);
4779 		vfs_unbusy(mp);
4780 		if (n == len)
4781 			break;
4782 	}
4783 	mtx_unlock(&mountlist_mtx);
4784 
4785 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4786 	free(xvn, M_TEMP);
4787 	return (error);
4788 }
4789 
4790 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4791     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4792     "");
4793 #endif
4794 
4795 static void
unmount_or_warn(struct mount * mp)4796 unmount_or_warn(struct mount *mp)
4797 {
4798 	int error;
4799 
4800 	error = dounmount(mp, MNT_FORCE, curthread);
4801 	if (error != 0) {
4802 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4803 		if (error == EBUSY)
4804 			printf("BUSY)\n");
4805 		else
4806 			printf("%d)\n", error);
4807 	}
4808 }
4809 
4810 /*
4811  * Unmount all filesystems. The list is traversed in reverse order
4812  * of mounting to avoid dependencies.
4813  */
4814 void
vfs_unmountall(void)4815 vfs_unmountall(void)
4816 {
4817 	struct mount *mp, *tmp;
4818 
4819 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4820 
4821 	/*
4822 	 * Since this only runs when rebooting, it is not interlocked.
4823 	 */
4824 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4825 		vfs_ref(mp);
4826 
4827 		/*
4828 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4829 		 * unmount of the latter.
4830 		 */
4831 		if (mp == rootdevmp)
4832 			continue;
4833 
4834 		unmount_or_warn(mp);
4835 	}
4836 
4837 	if (rootdevmp != NULL)
4838 		unmount_or_warn(rootdevmp);
4839 }
4840 
4841 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)4842 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4843 {
4844 
4845 	ASSERT_VI_LOCKED(vp, __func__);
4846 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4847 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4848 		vdropl(vp);
4849 		return;
4850 	}
4851 	if (vn_lock(vp, lkflags) == 0) {
4852 		VI_LOCK(vp);
4853 		vinactive(vp);
4854 		VOP_UNLOCK(vp);
4855 		vdropl(vp);
4856 		return;
4857 	}
4858 	vdefer_inactive_unlocked(vp);
4859 }
4860 
4861 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)4862 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4863 {
4864 
4865 	return (vp->v_iflag & VI_DEFINACT);
4866 }
4867 
4868 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)4869 vfs_periodic_inactive(struct mount *mp, int flags)
4870 {
4871 	struct vnode *vp, *mvp;
4872 	int lkflags;
4873 
4874 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4875 	if (flags != MNT_WAIT)
4876 		lkflags |= LK_NOWAIT;
4877 
4878 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4879 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4880 			VI_UNLOCK(vp);
4881 			continue;
4882 		}
4883 		vp->v_iflag &= ~VI_DEFINACT;
4884 		vfs_deferred_inactive(vp, lkflags);
4885 	}
4886 }
4887 
4888 static inline bool
vfs_want_msync(struct vnode * vp)4889 vfs_want_msync(struct vnode *vp)
4890 {
4891 	struct vm_object *obj;
4892 
4893 	/*
4894 	 * This test may be performed without any locks held.
4895 	 * We rely on vm_object's type stability.
4896 	 */
4897 	if (vp->v_vflag & VV_NOSYNC)
4898 		return (false);
4899 	obj = vp->v_object;
4900 	return (obj != NULL && vm_object_mightbedirty(obj));
4901 }
4902 
4903 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)4904 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4905 {
4906 
4907 	if (vp->v_vflag & VV_NOSYNC)
4908 		return (false);
4909 	if (vp->v_iflag & VI_DEFINACT)
4910 		return (true);
4911 	return (vfs_want_msync(vp));
4912 }
4913 
4914 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)4915 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4916 {
4917 	struct vnode *vp, *mvp;
4918 	struct vm_object *obj;
4919 	int lkflags, objflags;
4920 	bool seen_defer;
4921 
4922 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4923 	if (flags != MNT_WAIT) {
4924 		lkflags |= LK_NOWAIT;
4925 		objflags = OBJPC_NOSYNC;
4926 	} else {
4927 		objflags = OBJPC_SYNC;
4928 	}
4929 
4930 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4931 		seen_defer = false;
4932 		if (vp->v_iflag & VI_DEFINACT) {
4933 			vp->v_iflag &= ~VI_DEFINACT;
4934 			seen_defer = true;
4935 		}
4936 		if (!vfs_want_msync(vp)) {
4937 			if (seen_defer)
4938 				vfs_deferred_inactive(vp, lkflags);
4939 			else
4940 				VI_UNLOCK(vp);
4941 			continue;
4942 		}
4943 		if (vget(vp, lkflags) == 0) {
4944 			obj = vp->v_object;
4945 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4946 				VM_OBJECT_WLOCK(obj);
4947 				vm_object_page_clean(obj, 0, 0, objflags);
4948 				VM_OBJECT_WUNLOCK(obj);
4949 			}
4950 			vput(vp);
4951 			if (seen_defer)
4952 				vdrop(vp);
4953 		} else {
4954 			if (seen_defer)
4955 				vdefer_inactive_unlocked(vp);
4956 		}
4957 	}
4958 }
4959 
4960 void
vfs_periodic(struct mount * mp,int flags)4961 vfs_periodic(struct mount *mp, int flags)
4962 {
4963 
4964 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4965 
4966 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4967 		vfs_periodic_inactive(mp, flags);
4968 	else
4969 		vfs_periodic_msync_inactive(mp, flags);
4970 }
4971 
4972 static void
destroy_vpollinfo_free(struct vpollinfo * vi)4973 destroy_vpollinfo_free(struct vpollinfo *vi)
4974 {
4975 
4976 	knlist_destroy(&vi->vpi_selinfo.si_note);
4977 	mtx_destroy(&vi->vpi_lock);
4978 	free(vi, M_VNODEPOLL);
4979 }
4980 
4981 static void
destroy_vpollinfo(struct vpollinfo * vi)4982 destroy_vpollinfo(struct vpollinfo *vi)
4983 {
4984 
4985 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4986 	seldrain(&vi->vpi_selinfo);
4987 	destroy_vpollinfo_free(vi);
4988 }
4989 
4990 /*
4991  * Initialize per-vnode helper structure to hold poll-related state.
4992  */
4993 void
v_addpollinfo(struct vnode * vp)4994 v_addpollinfo(struct vnode *vp)
4995 {
4996 	struct vpollinfo *vi;
4997 
4998 	if (vp->v_pollinfo != NULL)
4999 		return;
5000 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5001 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5002 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5003 	    vfs_knlunlock, vfs_knl_assert_lock);
5004 	VI_LOCK(vp);
5005 	if (vp->v_pollinfo != NULL) {
5006 		VI_UNLOCK(vp);
5007 		destroy_vpollinfo_free(vi);
5008 		return;
5009 	}
5010 	vp->v_pollinfo = vi;
5011 	VI_UNLOCK(vp);
5012 }
5013 
5014 /*
5015  * Record a process's interest in events which might happen to
5016  * a vnode.  Because poll uses the historic select-style interface
5017  * internally, this routine serves as both the ``check for any
5018  * pending events'' and the ``record my interest in future events''
5019  * functions.  (These are done together, while the lock is held,
5020  * to avoid race conditions.)
5021  */
5022 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5023 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5024 {
5025 
5026 	v_addpollinfo(vp);
5027 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5028 	if (vp->v_pollinfo->vpi_revents & events) {
5029 		/*
5030 		 * This leaves events we are not interested
5031 		 * in available for the other process which
5032 		 * which presumably had requested them
5033 		 * (otherwise they would never have been
5034 		 * recorded).
5035 		 */
5036 		events &= vp->v_pollinfo->vpi_revents;
5037 		vp->v_pollinfo->vpi_revents &= ~events;
5038 
5039 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5040 		return (events);
5041 	}
5042 	vp->v_pollinfo->vpi_events |= events;
5043 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5044 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5045 	return (0);
5046 }
5047 
5048 /*
5049  * Routine to create and manage a filesystem syncer vnode.
5050  */
5051 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5052 static int	sync_fsync(struct  vop_fsync_args *);
5053 static int	sync_inactive(struct  vop_inactive_args *);
5054 static int	sync_reclaim(struct  vop_reclaim_args *);
5055 
5056 static struct vop_vector sync_vnodeops = {
5057 	.vop_bypass =	VOP_EOPNOTSUPP,
5058 	.vop_close =	sync_close,		/* close */
5059 	.vop_fsync =	sync_fsync,		/* fsync */
5060 	.vop_inactive =	sync_inactive,	/* inactive */
5061 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
5062 	.vop_reclaim =	sync_reclaim,	/* reclaim */
5063 	.vop_lock1 =	vop_stdlock,	/* lock */
5064 	.vop_unlock =	vop_stdunlock,	/* unlock */
5065 	.vop_islocked =	vop_stdislocked,	/* islocked */
5066 };
5067 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5068 
5069 /*
5070  * Create a new filesystem syncer vnode for the specified mount point.
5071  */
5072 void
vfs_allocate_syncvnode(struct mount * mp)5073 vfs_allocate_syncvnode(struct mount *mp)
5074 {
5075 	struct vnode *vp;
5076 	struct bufobj *bo;
5077 	static long start, incr, next;
5078 	int error;
5079 
5080 	/* Allocate a new vnode */
5081 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5082 	if (error != 0)
5083 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5084 	vp->v_type = VNON;
5085 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5086 	vp->v_vflag |= VV_FORCEINSMQ;
5087 	error = insmntque(vp, mp);
5088 	if (error != 0)
5089 		panic("vfs_allocate_syncvnode: insmntque() failed");
5090 	vp->v_vflag &= ~VV_FORCEINSMQ;
5091 	VOP_UNLOCK(vp);
5092 	/*
5093 	 * Place the vnode onto the syncer worklist. We attempt to
5094 	 * scatter them about on the list so that they will go off
5095 	 * at evenly distributed times even if all the filesystems
5096 	 * are mounted at once.
5097 	 */
5098 	next += incr;
5099 	if (next == 0 || next > syncer_maxdelay) {
5100 		start /= 2;
5101 		incr /= 2;
5102 		if (start == 0) {
5103 			start = syncer_maxdelay / 2;
5104 			incr = syncer_maxdelay;
5105 		}
5106 		next = start;
5107 	}
5108 	bo = &vp->v_bufobj;
5109 	BO_LOCK(bo);
5110 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5111 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5112 	mtx_lock(&sync_mtx);
5113 	sync_vnode_count++;
5114 	if (mp->mnt_syncer == NULL) {
5115 		mp->mnt_syncer = vp;
5116 		vp = NULL;
5117 	}
5118 	mtx_unlock(&sync_mtx);
5119 	BO_UNLOCK(bo);
5120 	if (vp != NULL) {
5121 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5122 		vgone(vp);
5123 		vput(vp);
5124 	}
5125 }
5126 
5127 void
vfs_deallocate_syncvnode(struct mount * mp)5128 vfs_deallocate_syncvnode(struct mount *mp)
5129 {
5130 	struct vnode *vp;
5131 
5132 	mtx_lock(&sync_mtx);
5133 	vp = mp->mnt_syncer;
5134 	if (vp != NULL)
5135 		mp->mnt_syncer = NULL;
5136 	mtx_unlock(&sync_mtx);
5137 	if (vp != NULL)
5138 		vrele(vp);
5139 }
5140 
5141 /*
5142  * Do a lazy sync of the filesystem.
5143  */
5144 static int
sync_fsync(struct vop_fsync_args * ap)5145 sync_fsync(struct vop_fsync_args *ap)
5146 {
5147 	struct vnode *syncvp = ap->a_vp;
5148 	struct mount *mp = syncvp->v_mount;
5149 	int error, save;
5150 	struct bufobj *bo;
5151 
5152 	/*
5153 	 * We only need to do something if this is a lazy evaluation.
5154 	 */
5155 	if (ap->a_waitfor != MNT_LAZY)
5156 		return (0);
5157 
5158 	/*
5159 	 * Move ourselves to the back of the sync list.
5160 	 */
5161 	bo = &syncvp->v_bufobj;
5162 	BO_LOCK(bo);
5163 	vn_syncer_add_to_worklist(bo, syncdelay);
5164 	BO_UNLOCK(bo);
5165 
5166 	/*
5167 	 * Walk the list of vnodes pushing all that are dirty and
5168 	 * not already on the sync list.
5169 	 */
5170 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5171 		return (0);
5172 	VOP_UNLOCK(syncvp);
5173 	save = curthread_pflags_set(TDP_SYNCIO);
5174 	/*
5175 	 * The filesystem at hand may be idle with free vnodes stored in the
5176 	 * batch.  Return them instead of letting them stay there indefinitely.
5177 	 */
5178 	vfs_periodic(mp, MNT_NOWAIT);
5179 	error = VFS_SYNC(mp, MNT_LAZY);
5180 	curthread_pflags_restore(save);
5181 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5182 	vfs_unbusy(mp);
5183 	return (error);
5184 }
5185 
5186 /*
5187  * The syncer vnode is no referenced.
5188  */
5189 static int
sync_inactive(struct vop_inactive_args * ap)5190 sync_inactive(struct vop_inactive_args *ap)
5191 {
5192 
5193 	vgone(ap->a_vp);
5194 	return (0);
5195 }
5196 
5197 /*
5198  * The syncer vnode is no longer needed and is being decommissioned.
5199  *
5200  * Modifications to the worklist must be protected by sync_mtx.
5201  */
5202 static int
sync_reclaim(struct vop_reclaim_args * ap)5203 sync_reclaim(struct vop_reclaim_args *ap)
5204 {
5205 	struct vnode *vp = ap->a_vp;
5206 	struct bufobj *bo;
5207 
5208 	bo = &vp->v_bufobj;
5209 	BO_LOCK(bo);
5210 	mtx_lock(&sync_mtx);
5211 	if (vp->v_mount->mnt_syncer == vp)
5212 		vp->v_mount->mnt_syncer = NULL;
5213 	if (bo->bo_flag & BO_ONWORKLST) {
5214 		LIST_REMOVE(bo, bo_synclist);
5215 		syncer_worklist_len--;
5216 		sync_vnode_count--;
5217 		bo->bo_flag &= ~BO_ONWORKLST;
5218 	}
5219 	mtx_unlock(&sync_mtx);
5220 	BO_UNLOCK(bo);
5221 
5222 	return (0);
5223 }
5224 
5225 int
vn_need_pageq_flush(struct vnode * vp)5226 vn_need_pageq_flush(struct vnode *vp)
5227 {
5228 	struct vm_object *obj;
5229 
5230 	obj = vp->v_object;
5231 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5232 	    vm_object_mightbedirty(obj));
5233 }
5234 
5235 /*
5236  * Check if vnode represents a disk device
5237  */
5238 bool
vn_isdisk_error(struct vnode * vp,int * errp)5239 vn_isdisk_error(struct vnode *vp, int *errp)
5240 {
5241 	int error;
5242 
5243 	if (vp->v_type != VCHR) {
5244 		error = ENOTBLK;
5245 		goto out;
5246 	}
5247 	error = 0;
5248 	dev_lock();
5249 	if (vp->v_rdev == NULL)
5250 		error = ENXIO;
5251 	else if (vp->v_rdev->si_devsw == NULL)
5252 		error = ENXIO;
5253 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5254 		error = ENOTBLK;
5255 	dev_unlock();
5256 out:
5257 	*errp = error;
5258 	return (error == 0);
5259 }
5260 
5261 bool
vn_isdisk(struct vnode * vp)5262 vn_isdisk(struct vnode *vp)
5263 {
5264 	int error;
5265 
5266 	return (vn_isdisk_error(vp, &error));
5267 }
5268 
5269 /*
5270  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5271  * the comment above cache_fplookup for details.
5272  */
5273 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5274 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5275 {
5276 	int error;
5277 
5278 	VFS_SMR_ASSERT_ENTERED();
5279 
5280 	/* Check the owner. */
5281 	if (cred->cr_uid == file_uid) {
5282 		if (file_mode & S_IXUSR)
5283 			return (0);
5284 		goto out_error;
5285 	}
5286 
5287 	/* Otherwise, check the groups (first match) */
5288 	if (groupmember(file_gid, cred)) {
5289 		if (file_mode & S_IXGRP)
5290 			return (0);
5291 		goto out_error;
5292 	}
5293 
5294 	/* Otherwise, check everyone else. */
5295 	if (file_mode & S_IXOTH)
5296 		return (0);
5297 out_error:
5298 	/*
5299 	 * Permission check failed, but it is possible denial will get overwritten
5300 	 * (e.g., when root is traversing through a 700 directory owned by someone
5301 	 * else).
5302 	 *
5303 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5304 	 * modules overriding this result. It's quite unclear what semantics
5305 	 * are allowed for them to operate, thus for safety we don't call them
5306 	 * from within the SMR section. This also means if any such modules
5307 	 * are present, we have to let the regular lookup decide.
5308 	 */
5309 	error = priv_check_cred_vfs_lookup_nomac(cred);
5310 	switch (error) {
5311 	case 0:
5312 		return (0);
5313 	case EAGAIN:
5314 		/*
5315 		 * MAC modules present.
5316 		 */
5317 		return (EAGAIN);
5318 	case EPERM:
5319 		return (EACCES);
5320 	default:
5321 		return (error);
5322 	}
5323 }
5324 
5325 /*
5326  * Common filesystem object access control check routine.  Accepts a
5327  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5328  * Returns 0 on success, or an errno on failure.
5329  */
5330 int
vaccess(enum vtype type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5331 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5332     accmode_t accmode, struct ucred *cred)
5333 {
5334 	accmode_t dac_granted;
5335 	accmode_t priv_granted;
5336 
5337 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5338 	    ("invalid bit in accmode"));
5339 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5340 	    ("VAPPEND without VWRITE"));
5341 
5342 	/*
5343 	 * Look for a normal, non-privileged way to access the file/directory
5344 	 * as requested.  If it exists, go with that.
5345 	 */
5346 
5347 	dac_granted = 0;
5348 
5349 	/* Check the owner. */
5350 	if (cred->cr_uid == file_uid) {
5351 		dac_granted |= VADMIN;
5352 		if (file_mode & S_IXUSR)
5353 			dac_granted |= VEXEC;
5354 		if (file_mode & S_IRUSR)
5355 			dac_granted |= VREAD;
5356 		if (file_mode & S_IWUSR)
5357 			dac_granted |= (VWRITE | VAPPEND);
5358 
5359 		if ((accmode & dac_granted) == accmode)
5360 			return (0);
5361 
5362 		goto privcheck;
5363 	}
5364 
5365 	/* Otherwise, check the groups (first match) */
5366 	if (groupmember(file_gid, cred)) {
5367 		if (file_mode & S_IXGRP)
5368 			dac_granted |= VEXEC;
5369 		if (file_mode & S_IRGRP)
5370 			dac_granted |= VREAD;
5371 		if (file_mode & S_IWGRP)
5372 			dac_granted |= (VWRITE | VAPPEND);
5373 
5374 		if ((accmode & dac_granted) == accmode)
5375 			return (0);
5376 
5377 		goto privcheck;
5378 	}
5379 
5380 	/* Otherwise, check everyone else. */
5381 	if (file_mode & S_IXOTH)
5382 		dac_granted |= VEXEC;
5383 	if (file_mode & S_IROTH)
5384 		dac_granted |= VREAD;
5385 	if (file_mode & S_IWOTH)
5386 		dac_granted |= (VWRITE | VAPPEND);
5387 	if ((accmode & dac_granted) == accmode)
5388 		return (0);
5389 
5390 privcheck:
5391 	/*
5392 	 * Build a privilege mask to determine if the set of privileges
5393 	 * satisfies the requirements when combined with the granted mask
5394 	 * from above.  For each privilege, if the privilege is required,
5395 	 * bitwise or the request type onto the priv_granted mask.
5396 	 */
5397 	priv_granted = 0;
5398 
5399 	if (type == VDIR) {
5400 		/*
5401 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5402 		 * requests, instead of PRIV_VFS_EXEC.
5403 		 */
5404 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5405 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5406 			priv_granted |= VEXEC;
5407 	} else {
5408 		/*
5409 		 * Ensure that at least one execute bit is on. Otherwise,
5410 		 * a privileged user will always succeed, and we don't want
5411 		 * this to happen unless the file really is executable.
5412 		 */
5413 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5414 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5415 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5416 			priv_granted |= VEXEC;
5417 	}
5418 
5419 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5420 	    !priv_check_cred(cred, PRIV_VFS_READ))
5421 		priv_granted |= VREAD;
5422 
5423 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5424 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5425 		priv_granted |= (VWRITE | VAPPEND);
5426 
5427 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5428 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5429 		priv_granted |= VADMIN;
5430 
5431 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5432 		return (0);
5433 	}
5434 
5435 	return ((accmode & VADMIN) ? EPERM : EACCES);
5436 }
5437 
5438 /*
5439  * Credential check based on process requesting service, and per-attribute
5440  * permissions.
5441  */
5442 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5443 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5444     struct thread *td, accmode_t accmode)
5445 {
5446 
5447 	/*
5448 	 * Kernel-invoked always succeeds.
5449 	 */
5450 	if (cred == NOCRED)
5451 		return (0);
5452 
5453 	/*
5454 	 * Do not allow privileged processes in jail to directly manipulate
5455 	 * system attributes.
5456 	 */
5457 	switch (attrnamespace) {
5458 	case EXTATTR_NAMESPACE_SYSTEM:
5459 		/* Potentially should be: return (EPERM); */
5460 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5461 	case EXTATTR_NAMESPACE_USER:
5462 		return (VOP_ACCESS(vp, accmode, cred, td));
5463 	default:
5464 		return (EPERM);
5465 	}
5466 }
5467 
5468 #ifdef DEBUG_VFS_LOCKS
5469 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5470 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5471     "Drop into debugger on lock violation");
5472 
5473 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5474 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5475     0, "Check for interlock across VOPs");
5476 
5477 int vfs_badlock_print = 1;	/* Print lock violations. */
5478 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5479     0, "Print lock violations");
5480 
5481 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5482 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5483     0, "Print vnode details on lock violations");
5484 
5485 #ifdef KDB
5486 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5487 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5488     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5489 #endif
5490 
5491 static void
vfs_badlock(const char * msg,const char * str,struct vnode * vp)5492 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5493 {
5494 
5495 #ifdef KDB
5496 	if (vfs_badlock_backtrace)
5497 		kdb_backtrace();
5498 #endif
5499 	if (vfs_badlock_vnode)
5500 		vn_printf(vp, "vnode ");
5501 	if (vfs_badlock_print)
5502 		printf("%s: %p %s\n", str, (void *)vp, msg);
5503 	if (vfs_badlock_ddb)
5504 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5505 }
5506 
5507 void
assert_vi_locked(struct vnode * vp,const char * str)5508 assert_vi_locked(struct vnode *vp, const char *str)
5509 {
5510 
5511 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5512 		vfs_badlock("interlock is not locked but should be", str, vp);
5513 }
5514 
5515 void
assert_vi_unlocked(struct vnode * vp,const char * str)5516 assert_vi_unlocked(struct vnode *vp, const char *str)
5517 {
5518 
5519 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5520 		vfs_badlock("interlock is locked but should not be", str, vp);
5521 }
5522 
5523 void
assert_vop_locked(struct vnode * vp,const char * str)5524 assert_vop_locked(struct vnode *vp, const char *str)
5525 {
5526 	int locked;
5527 
5528 	if (KERNEL_PANICKED() || vp == NULL)
5529 		return;
5530 
5531 	locked = VOP_ISLOCKED(vp);
5532 	if (locked == 0 || locked == LK_EXCLOTHER)
5533 		vfs_badlock("is not locked but should be", str, vp);
5534 }
5535 
5536 void
assert_vop_unlocked(struct vnode * vp,const char * str)5537 assert_vop_unlocked(struct vnode *vp, const char *str)
5538 {
5539 	if (KERNEL_PANICKED() || vp == NULL)
5540 		return;
5541 
5542 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5543 		vfs_badlock("is locked but should not be", str, vp);
5544 }
5545 
5546 void
assert_vop_elocked(struct vnode * vp,const char * str)5547 assert_vop_elocked(struct vnode *vp, const char *str)
5548 {
5549 	if (KERNEL_PANICKED() || vp == NULL)
5550 		return;
5551 
5552 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5553 		vfs_badlock("is not exclusive locked but should be", str, vp);
5554 }
5555 #endif /* DEBUG_VFS_LOCKS */
5556 
5557 void
vop_rename_fail(struct vop_rename_args * ap)5558 vop_rename_fail(struct vop_rename_args *ap)
5559 {
5560 
5561 	if (ap->a_tvp != NULL)
5562 		vput(ap->a_tvp);
5563 	if (ap->a_tdvp == ap->a_tvp)
5564 		vrele(ap->a_tdvp);
5565 	else
5566 		vput(ap->a_tdvp);
5567 	vrele(ap->a_fdvp);
5568 	vrele(ap->a_fvp);
5569 }
5570 
5571 void
vop_rename_pre(void * ap)5572 vop_rename_pre(void *ap)
5573 {
5574 	struct vop_rename_args *a = ap;
5575 
5576 #ifdef DEBUG_VFS_LOCKS
5577 	if (a->a_tvp)
5578 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5579 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5580 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5581 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5582 
5583 	/* Check the source (from). */
5584 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5585 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5586 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5587 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5588 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5589 
5590 	/* Check the target. */
5591 	if (a->a_tvp)
5592 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5593 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5594 #endif
5595 	/*
5596 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5597 	 * in vop_rename_post but that's not going to work out since some
5598 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5599 	 *
5600 	 * For now filesystems are expected to do the relevant calls after they
5601 	 * decide what vnodes to operate on.
5602 	 */
5603 	if (a->a_tdvp != a->a_fdvp)
5604 		vhold(a->a_fdvp);
5605 	if (a->a_tvp != a->a_fvp)
5606 		vhold(a->a_fvp);
5607 	vhold(a->a_tdvp);
5608 	if (a->a_tvp)
5609 		vhold(a->a_tvp);
5610 }
5611 
5612 #ifdef DEBUG_VFS_LOCKS
5613 void
vop_fplookup_vexec_debugpre(void * ap __unused)5614 vop_fplookup_vexec_debugpre(void *ap __unused)
5615 {
5616 
5617 	VFS_SMR_ASSERT_ENTERED();
5618 }
5619 
5620 void
vop_fplookup_vexec_debugpost(void * ap __unused,int rc __unused)5621 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5622 {
5623 
5624 	VFS_SMR_ASSERT_ENTERED();
5625 }
5626 
5627 void
vop_fplookup_symlink_debugpre(void * ap __unused)5628 vop_fplookup_symlink_debugpre(void *ap __unused)
5629 {
5630 
5631 	VFS_SMR_ASSERT_ENTERED();
5632 }
5633 
5634 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5635 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5636 {
5637 
5638 	VFS_SMR_ASSERT_ENTERED();
5639 }
5640 
5641 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5642 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5643 {
5644 	if (vp->v_type == VCHR)
5645 		;
5646 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5647 		ASSERT_VOP_LOCKED(vp, name);
5648 	else
5649 		ASSERT_VOP_ELOCKED(vp, name);
5650 }
5651 
5652 void
vop_fsync_debugpre(void * a)5653 vop_fsync_debugpre(void *a)
5654 {
5655 	struct vop_fsync_args *ap;
5656 
5657 	ap = a;
5658 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5659 }
5660 
5661 void
vop_fsync_debugpost(void * a,int rc __unused)5662 vop_fsync_debugpost(void *a, int rc __unused)
5663 {
5664 	struct vop_fsync_args *ap;
5665 
5666 	ap = a;
5667 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5668 }
5669 
5670 void
vop_fdatasync_debugpre(void * a)5671 vop_fdatasync_debugpre(void *a)
5672 {
5673 	struct vop_fdatasync_args *ap;
5674 
5675 	ap = a;
5676 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5677 }
5678 
5679 void
vop_fdatasync_debugpost(void * a,int rc __unused)5680 vop_fdatasync_debugpost(void *a, int rc __unused)
5681 {
5682 	struct vop_fdatasync_args *ap;
5683 
5684 	ap = a;
5685 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5686 }
5687 
5688 void
vop_strategy_debugpre(void * ap)5689 vop_strategy_debugpre(void *ap)
5690 {
5691 	struct vop_strategy_args *a;
5692 	struct buf *bp;
5693 
5694 	a = ap;
5695 	bp = a->a_bp;
5696 
5697 	/*
5698 	 * Cluster ops lock their component buffers but not the IO container.
5699 	 */
5700 	if ((bp->b_flags & B_CLUSTER) != 0)
5701 		return;
5702 
5703 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5704 		if (vfs_badlock_print)
5705 			printf(
5706 			    "VOP_STRATEGY: bp is not locked but should be\n");
5707 		if (vfs_badlock_ddb)
5708 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5709 	}
5710 }
5711 
5712 void
vop_lock_debugpre(void * ap)5713 vop_lock_debugpre(void *ap)
5714 {
5715 	struct vop_lock1_args *a = ap;
5716 
5717 	if ((a->a_flags & LK_INTERLOCK) == 0)
5718 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5719 	else
5720 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5721 }
5722 
5723 void
vop_lock_debugpost(void * ap,int rc)5724 vop_lock_debugpost(void *ap, int rc)
5725 {
5726 	struct vop_lock1_args *a = ap;
5727 
5728 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5729 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5730 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5731 }
5732 
5733 void
vop_unlock_debugpre(void * ap)5734 vop_unlock_debugpre(void *ap)
5735 {
5736 	struct vop_unlock_args *a = ap;
5737 
5738 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5739 }
5740 
5741 void
vop_need_inactive_debugpre(void * ap)5742 vop_need_inactive_debugpre(void *ap)
5743 {
5744 	struct vop_need_inactive_args *a = ap;
5745 
5746 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5747 }
5748 
5749 void
vop_need_inactive_debugpost(void * ap,int rc)5750 vop_need_inactive_debugpost(void *ap, int rc)
5751 {
5752 	struct vop_need_inactive_args *a = ap;
5753 
5754 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5755 }
5756 #endif
5757 
5758 void
vop_create_pre(void * ap)5759 vop_create_pre(void *ap)
5760 {
5761 	struct vop_create_args *a;
5762 	struct vnode *dvp;
5763 
5764 	a = ap;
5765 	dvp = a->a_dvp;
5766 	vn_seqc_write_begin(dvp);
5767 }
5768 
5769 void
vop_create_post(void * ap,int rc)5770 vop_create_post(void *ap, int rc)
5771 {
5772 	struct vop_create_args *a;
5773 	struct vnode *dvp;
5774 
5775 	a = ap;
5776 	dvp = a->a_dvp;
5777 	vn_seqc_write_end(dvp);
5778 	if (!rc)
5779 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5780 }
5781 
5782 void
vop_whiteout_pre(void * ap)5783 vop_whiteout_pre(void *ap)
5784 {
5785 	struct vop_whiteout_args *a;
5786 	struct vnode *dvp;
5787 
5788 	a = ap;
5789 	dvp = a->a_dvp;
5790 	vn_seqc_write_begin(dvp);
5791 }
5792 
5793 void
vop_whiteout_post(void * ap,int rc)5794 vop_whiteout_post(void *ap, int rc)
5795 {
5796 	struct vop_whiteout_args *a;
5797 	struct vnode *dvp;
5798 
5799 	a = ap;
5800 	dvp = a->a_dvp;
5801 	vn_seqc_write_end(dvp);
5802 }
5803 
5804 void
vop_deleteextattr_pre(void * ap)5805 vop_deleteextattr_pre(void *ap)
5806 {
5807 	struct vop_deleteextattr_args *a;
5808 	struct vnode *vp;
5809 
5810 	a = ap;
5811 	vp = a->a_vp;
5812 	vn_seqc_write_begin(vp);
5813 }
5814 
5815 void
vop_deleteextattr_post(void * ap,int rc)5816 vop_deleteextattr_post(void *ap, int rc)
5817 {
5818 	struct vop_deleteextattr_args *a;
5819 	struct vnode *vp;
5820 
5821 	a = ap;
5822 	vp = a->a_vp;
5823 	vn_seqc_write_end(vp);
5824 	if (!rc)
5825 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5826 }
5827 
5828 void
vop_link_pre(void * ap)5829 vop_link_pre(void *ap)
5830 {
5831 	struct vop_link_args *a;
5832 	struct vnode *vp, *tdvp;
5833 
5834 	a = ap;
5835 	vp = a->a_vp;
5836 	tdvp = a->a_tdvp;
5837 	vn_seqc_write_begin(vp);
5838 	vn_seqc_write_begin(tdvp);
5839 }
5840 
5841 void
vop_link_post(void * ap,int rc)5842 vop_link_post(void *ap, int rc)
5843 {
5844 	struct vop_link_args *a;
5845 	struct vnode *vp, *tdvp;
5846 
5847 	a = ap;
5848 	vp = a->a_vp;
5849 	tdvp = a->a_tdvp;
5850 	vn_seqc_write_end(vp);
5851 	vn_seqc_write_end(tdvp);
5852 	if (!rc) {
5853 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5854 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5855 	}
5856 }
5857 
5858 void
vop_mkdir_pre(void * ap)5859 vop_mkdir_pre(void *ap)
5860 {
5861 	struct vop_mkdir_args *a;
5862 	struct vnode *dvp;
5863 
5864 	a = ap;
5865 	dvp = a->a_dvp;
5866 	vn_seqc_write_begin(dvp);
5867 }
5868 
5869 void
vop_mkdir_post(void * ap,int rc)5870 vop_mkdir_post(void *ap, int rc)
5871 {
5872 	struct vop_mkdir_args *a;
5873 	struct vnode *dvp;
5874 
5875 	a = ap;
5876 	dvp = a->a_dvp;
5877 	vn_seqc_write_end(dvp);
5878 	if (!rc)
5879 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5880 }
5881 
5882 #ifdef DEBUG_VFS_LOCKS
5883 void
vop_mkdir_debugpost(void * ap,int rc)5884 vop_mkdir_debugpost(void *ap, int rc)
5885 {
5886 	struct vop_mkdir_args *a;
5887 
5888 	a = ap;
5889 	if (!rc)
5890 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5891 }
5892 #endif
5893 
5894 void
vop_mknod_pre(void * ap)5895 vop_mknod_pre(void *ap)
5896 {
5897 	struct vop_mknod_args *a;
5898 	struct vnode *dvp;
5899 
5900 	a = ap;
5901 	dvp = a->a_dvp;
5902 	vn_seqc_write_begin(dvp);
5903 }
5904 
5905 void
vop_mknod_post(void * ap,int rc)5906 vop_mknod_post(void *ap, int rc)
5907 {
5908 	struct vop_mknod_args *a;
5909 	struct vnode *dvp;
5910 
5911 	a = ap;
5912 	dvp = a->a_dvp;
5913 	vn_seqc_write_end(dvp);
5914 	if (!rc)
5915 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5916 }
5917 
5918 void
vop_reclaim_post(void * ap,int rc)5919 vop_reclaim_post(void *ap, int rc)
5920 {
5921 	struct vop_reclaim_args *a;
5922 	struct vnode *vp;
5923 
5924 	a = ap;
5925 	vp = a->a_vp;
5926 	ASSERT_VOP_IN_SEQC(vp);
5927 	if (!rc)
5928 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5929 }
5930 
5931 void
vop_remove_pre(void * ap)5932 vop_remove_pre(void *ap)
5933 {
5934 	struct vop_remove_args *a;
5935 	struct vnode *dvp, *vp;
5936 
5937 	a = ap;
5938 	dvp = a->a_dvp;
5939 	vp = a->a_vp;
5940 	vn_seqc_write_begin(dvp);
5941 	vn_seqc_write_begin(vp);
5942 }
5943 
5944 void
vop_remove_post(void * ap,int rc)5945 vop_remove_post(void *ap, int rc)
5946 {
5947 	struct vop_remove_args *a;
5948 	struct vnode *dvp, *vp;
5949 
5950 	a = ap;
5951 	dvp = a->a_dvp;
5952 	vp = a->a_vp;
5953 	vn_seqc_write_end(dvp);
5954 	vn_seqc_write_end(vp);
5955 	if (!rc) {
5956 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5957 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5958 	}
5959 }
5960 
5961 void
vop_rename_post(void * ap,int rc)5962 vop_rename_post(void *ap, int rc)
5963 {
5964 	struct vop_rename_args *a = ap;
5965 	long hint;
5966 
5967 	if (!rc) {
5968 		hint = NOTE_WRITE;
5969 		if (a->a_fdvp == a->a_tdvp) {
5970 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5971 				hint |= NOTE_LINK;
5972 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5973 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5974 		} else {
5975 			hint |= NOTE_EXTEND;
5976 			if (a->a_fvp->v_type == VDIR)
5977 				hint |= NOTE_LINK;
5978 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5979 
5980 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5981 			    a->a_tvp->v_type == VDIR)
5982 				hint &= ~NOTE_LINK;
5983 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5984 		}
5985 
5986 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5987 		if (a->a_tvp)
5988 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5989 	}
5990 	if (a->a_tdvp != a->a_fdvp)
5991 		vdrop(a->a_fdvp);
5992 	if (a->a_tvp != a->a_fvp)
5993 		vdrop(a->a_fvp);
5994 	vdrop(a->a_tdvp);
5995 	if (a->a_tvp)
5996 		vdrop(a->a_tvp);
5997 }
5998 
5999 void
vop_rmdir_pre(void * ap)6000 vop_rmdir_pre(void *ap)
6001 {
6002 	struct vop_rmdir_args *a;
6003 	struct vnode *dvp, *vp;
6004 
6005 	a = ap;
6006 	dvp = a->a_dvp;
6007 	vp = a->a_vp;
6008 	vn_seqc_write_begin(dvp);
6009 	vn_seqc_write_begin(vp);
6010 }
6011 
6012 void
vop_rmdir_post(void * ap,int rc)6013 vop_rmdir_post(void *ap, int rc)
6014 {
6015 	struct vop_rmdir_args *a;
6016 	struct vnode *dvp, *vp;
6017 
6018 	a = ap;
6019 	dvp = a->a_dvp;
6020 	vp = a->a_vp;
6021 	vn_seqc_write_end(dvp);
6022 	vn_seqc_write_end(vp);
6023 	if (!rc) {
6024 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6025 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6026 	}
6027 }
6028 
6029 void
vop_setattr_pre(void * ap)6030 vop_setattr_pre(void *ap)
6031 {
6032 	struct vop_setattr_args *a;
6033 	struct vnode *vp;
6034 
6035 	a = ap;
6036 	vp = a->a_vp;
6037 	vn_seqc_write_begin(vp);
6038 }
6039 
6040 void
vop_setattr_post(void * ap,int rc)6041 vop_setattr_post(void *ap, int rc)
6042 {
6043 	struct vop_setattr_args *a;
6044 	struct vnode *vp;
6045 
6046 	a = ap;
6047 	vp = a->a_vp;
6048 	vn_seqc_write_end(vp);
6049 	if (!rc)
6050 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6051 }
6052 
6053 void
vop_setacl_pre(void * ap)6054 vop_setacl_pre(void *ap)
6055 {
6056 	struct vop_setacl_args *a;
6057 	struct vnode *vp;
6058 
6059 	a = ap;
6060 	vp = a->a_vp;
6061 	vn_seqc_write_begin(vp);
6062 }
6063 
6064 void
vop_setacl_post(void * ap,int rc __unused)6065 vop_setacl_post(void *ap, int rc __unused)
6066 {
6067 	struct vop_setacl_args *a;
6068 	struct vnode *vp;
6069 
6070 	a = ap;
6071 	vp = a->a_vp;
6072 	vn_seqc_write_end(vp);
6073 }
6074 
6075 void
vop_setextattr_pre(void * ap)6076 vop_setextattr_pre(void *ap)
6077 {
6078 	struct vop_setextattr_args *a;
6079 	struct vnode *vp;
6080 
6081 	a = ap;
6082 	vp = a->a_vp;
6083 	vn_seqc_write_begin(vp);
6084 }
6085 
6086 void
vop_setextattr_post(void * ap,int rc)6087 vop_setextattr_post(void *ap, int rc)
6088 {
6089 	struct vop_setextattr_args *a;
6090 	struct vnode *vp;
6091 
6092 	a = ap;
6093 	vp = a->a_vp;
6094 	vn_seqc_write_end(vp);
6095 	if (!rc)
6096 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6097 }
6098 
6099 void
vop_symlink_pre(void * ap)6100 vop_symlink_pre(void *ap)
6101 {
6102 	struct vop_symlink_args *a;
6103 	struct vnode *dvp;
6104 
6105 	a = ap;
6106 	dvp = a->a_dvp;
6107 	vn_seqc_write_begin(dvp);
6108 }
6109 
6110 void
vop_symlink_post(void * ap,int rc)6111 vop_symlink_post(void *ap, int rc)
6112 {
6113 	struct vop_symlink_args *a;
6114 	struct vnode *dvp;
6115 
6116 	a = ap;
6117 	dvp = a->a_dvp;
6118 	vn_seqc_write_end(dvp);
6119 	if (!rc)
6120 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6121 }
6122 
6123 void
vop_open_post(void * ap,int rc)6124 vop_open_post(void *ap, int rc)
6125 {
6126 	struct vop_open_args *a = ap;
6127 
6128 	if (!rc)
6129 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6130 }
6131 
6132 void
vop_close_post(void * ap,int rc)6133 vop_close_post(void *ap, int rc)
6134 {
6135 	struct vop_close_args *a = ap;
6136 
6137 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6138 	    !VN_IS_DOOMED(a->a_vp))) {
6139 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6140 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6141 	}
6142 }
6143 
6144 void
vop_read_post(void * ap,int rc)6145 vop_read_post(void *ap, int rc)
6146 {
6147 	struct vop_read_args *a = ap;
6148 
6149 	if (!rc)
6150 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6151 }
6152 
6153 void
vop_read_pgcache_post(void * ap,int rc)6154 vop_read_pgcache_post(void *ap, int rc)
6155 {
6156 	struct vop_read_pgcache_args *a = ap;
6157 
6158 	if (!rc)
6159 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6160 }
6161 
6162 void
vop_readdir_post(void * ap,int rc)6163 vop_readdir_post(void *ap, int rc)
6164 {
6165 	struct vop_readdir_args *a = ap;
6166 
6167 	if (!rc)
6168 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6169 }
6170 
6171 static struct knlist fs_knlist;
6172 
6173 static void
vfs_event_init(void * arg)6174 vfs_event_init(void *arg)
6175 {
6176 	knlist_init_mtx(&fs_knlist, NULL);
6177 }
6178 /* XXX - correct order? */
6179 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6180 
6181 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6182 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6183 {
6184 
6185 	KNOTE_UNLOCKED(&fs_knlist, event);
6186 }
6187 
6188 static int	filt_fsattach(struct knote *kn);
6189 static void	filt_fsdetach(struct knote *kn);
6190 static int	filt_fsevent(struct knote *kn, long hint);
6191 
6192 struct filterops fs_filtops = {
6193 	.f_isfd = 0,
6194 	.f_attach = filt_fsattach,
6195 	.f_detach = filt_fsdetach,
6196 	.f_event = filt_fsevent
6197 };
6198 
6199 static int
filt_fsattach(struct knote * kn)6200 filt_fsattach(struct knote *kn)
6201 {
6202 
6203 	kn->kn_flags |= EV_CLEAR;
6204 	knlist_add(&fs_knlist, kn, 0);
6205 	return (0);
6206 }
6207 
6208 static void
filt_fsdetach(struct knote * kn)6209 filt_fsdetach(struct knote *kn)
6210 {
6211 
6212 	knlist_remove(&fs_knlist, kn, 0);
6213 }
6214 
6215 static int
filt_fsevent(struct knote * kn,long hint)6216 filt_fsevent(struct knote *kn, long hint)
6217 {
6218 
6219 	kn->kn_fflags |= hint;
6220 	return (kn->kn_fflags != 0);
6221 }
6222 
6223 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6224 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6225 {
6226 	struct vfsidctl vc;
6227 	int error;
6228 	struct mount *mp;
6229 
6230 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6231 	if (error)
6232 		return (error);
6233 	if (vc.vc_vers != VFS_CTL_VERS1)
6234 		return (EINVAL);
6235 	mp = vfs_getvfs(&vc.vc_fsid);
6236 	if (mp == NULL)
6237 		return (ENOENT);
6238 	/* ensure that a specific sysctl goes to the right filesystem. */
6239 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6240 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6241 		vfs_rel(mp);
6242 		return (EINVAL);
6243 	}
6244 	VCTLTOREQ(&vc, req);
6245 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6246 	vfs_rel(mp);
6247 	return (error);
6248 }
6249 
6250 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6251     NULL, 0, sysctl_vfs_ctl, "",
6252     "Sysctl by fsid");
6253 
6254 /*
6255  * Function to initialize a va_filerev field sensibly.
6256  * XXX: Wouldn't a random number make a lot more sense ??
6257  */
6258 u_quad_t
init_va_filerev(void)6259 init_va_filerev(void)
6260 {
6261 	struct bintime bt;
6262 
6263 	getbinuptime(&bt);
6264 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6265 }
6266 
6267 static int	filt_vfsread(struct knote *kn, long hint);
6268 static int	filt_vfswrite(struct knote *kn, long hint);
6269 static int	filt_vfsvnode(struct knote *kn, long hint);
6270 static void	filt_vfsdetach(struct knote *kn);
6271 static struct filterops vfsread_filtops = {
6272 	.f_isfd = 1,
6273 	.f_detach = filt_vfsdetach,
6274 	.f_event = filt_vfsread
6275 };
6276 static struct filterops vfswrite_filtops = {
6277 	.f_isfd = 1,
6278 	.f_detach = filt_vfsdetach,
6279 	.f_event = filt_vfswrite
6280 };
6281 static struct filterops vfsvnode_filtops = {
6282 	.f_isfd = 1,
6283 	.f_detach = filt_vfsdetach,
6284 	.f_event = filt_vfsvnode
6285 };
6286 
6287 static void
vfs_knllock(void * arg)6288 vfs_knllock(void *arg)
6289 {
6290 	struct vnode *vp = arg;
6291 
6292 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6293 }
6294 
6295 static void
vfs_knlunlock(void * arg)6296 vfs_knlunlock(void *arg)
6297 {
6298 	struct vnode *vp = arg;
6299 
6300 	VOP_UNLOCK(vp);
6301 }
6302 
6303 static void
vfs_knl_assert_lock(void * arg,int what)6304 vfs_knl_assert_lock(void *arg, int what)
6305 {
6306 #ifdef DEBUG_VFS_LOCKS
6307 	struct vnode *vp = arg;
6308 
6309 	if (what == LA_LOCKED)
6310 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6311 	else
6312 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6313 #endif
6314 }
6315 
6316 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6317 vfs_kqfilter(struct vop_kqfilter_args *ap)
6318 {
6319 	struct vnode *vp = ap->a_vp;
6320 	struct knote *kn = ap->a_kn;
6321 	struct knlist *knl;
6322 
6323 	switch (kn->kn_filter) {
6324 	case EVFILT_READ:
6325 		kn->kn_fop = &vfsread_filtops;
6326 		break;
6327 	case EVFILT_WRITE:
6328 		kn->kn_fop = &vfswrite_filtops;
6329 		break;
6330 	case EVFILT_VNODE:
6331 		kn->kn_fop = &vfsvnode_filtops;
6332 		break;
6333 	default:
6334 		return (EINVAL);
6335 	}
6336 
6337 	kn->kn_hook = (caddr_t)vp;
6338 
6339 	v_addpollinfo(vp);
6340 	if (vp->v_pollinfo == NULL)
6341 		return (ENOMEM);
6342 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6343 	vhold(vp);
6344 	knlist_add(knl, kn, 0);
6345 
6346 	return (0);
6347 }
6348 
6349 /*
6350  * Detach knote from vnode
6351  */
6352 static void
filt_vfsdetach(struct knote * kn)6353 filt_vfsdetach(struct knote *kn)
6354 {
6355 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6356 
6357 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6358 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6359 	vdrop(vp);
6360 }
6361 
6362 /*ARGSUSED*/
6363 static int
filt_vfsread(struct knote * kn,long hint)6364 filt_vfsread(struct knote *kn, long hint)
6365 {
6366 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6367 	struct vattr va;
6368 	int res;
6369 
6370 	/*
6371 	 * filesystem is gone, so set the EOF flag and schedule
6372 	 * the knote for deletion.
6373 	 */
6374 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6375 		VI_LOCK(vp);
6376 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6377 		VI_UNLOCK(vp);
6378 		return (1);
6379 	}
6380 
6381 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6382 		return (0);
6383 
6384 	VI_LOCK(vp);
6385 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6386 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6387 	VI_UNLOCK(vp);
6388 	return (res);
6389 }
6390 
6391 /*ARGSUSED*/
6392 static int
filt_vfswrite(struct knote * kn,long hint)6393 filt_vfswrite(struct knote *kn, long hint)
6394 {
6395 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6396 
6397 	VI_LOCK(vp);
6398 
6399 	/*
6400 	 * filesystem is gone, so set the EOF flag and schedule
6401 	 * the knote for deletion.
6402 	 */
6403 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6404 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6405 
6406 	kn->kn_data = 0;
6407 	VI_UNLOCK(vp);
6408 	return (1);
6409 }
6410 
6411 static int
filt_vfsvnode(struct knote * kn,long hint)6412 filt_vfsvnode(struct knote *kn, long hint)
6413 {
6414 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6415 	int res;
6416 
6417 	VI_LOCK(vp);
6418 	if (kn->kn_sfflags & hint)
6419 		kn->kn_fflags |= hint;
6420 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6421 		kn->kn_flags |= EV_EOF;
6422 		VI_UNLOCK(vp);
6423 		return (1);
6424 	}
6425 	res = (kn->kn_fflags != 0);
6426 	VI_UNLOCK(vp);
6427 	return (res);
6428 }
6429 
6430 /*
6431  * Returns whether the directory is empty or not.
6432  * If it is empty, the return value is 0; otherwise
6433  * the return value is an error value (which may
6434  * be ENOTEMPTY).
6435  */
6436 int
vfs_emptydir(struct vnode * vp)6437 vfs_emptydir(struct vnode *vp)
6438 {
6439 	struct uio uio;
6440 	struct iovec iov;
6441 	struct dirent *dirent, *dp, *endp;
6442 	int error, eof;
6443 
6444 	error = 0;
6445 	eof = 0;
6446 
6447 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6448 	VNASSERT(vp->v_type == VDIR, vp, ("vp is not a directory"));
6449 
6450 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6451 	iov.iov_base = dirent;
6452 	iov.iov_len = sizeof(struct dirent);
6453 
6454 	uio.uio_iov = &iov;
6455 	uio.uio_iovcnt = 1;
6456 	uio.uio_offset = 0;
6457 	uio.uio_resid = sizeof(struct dirent);
6458 	uio.uio_segflg = UIO_SYSSPACE;
6459 	uio.uio_rw = UIO_READ;
6460 	uio.uio_td = curthread;
6461 
6462 	while (eof == 0 && error == 0) {
6463 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6464 		    NULL, NULL);
6465 		if (error != 0)
6466 			break;
6467 		endp = (void *)((uint8_t *)dirent +
6468 		    sizeof(struct dirent) - uio.uio_resid);
6469 		for (dp = dirent; dp < endp;
6470 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6471 			if (dp->d_type == DT_WHT)
6472 				continue;
6473 			if (dp->d_namlen == 0)
6474 				continue;
6475 			if (dp->d_type != DT_DIR &&
6476 			    dp->d_type != DT_UNKNOWN) {
6477 				error = ENOTEMPTY;
6478 				break;
6479 			}
6480 			if (dp->d_namlen > 2) {
6481 				error = ENOTEMPTY;
6482 				break;
6483 			}
6484 			if (dp->d_namlen == 1 &&
6485 			    dp->d_name[0] != '.') {
6486 				error = ENOTEMPTY;
6487 				break;
6488 			}
6489 			if (dp->d_namlen == 2 &&
6490 			    dp->d_name[1] != '.') {
6491 				error = ENOTEMPTY;
6492 				break;
6493 			}
6494 			uio.uio_resid = sizeof(struct dirent);
6495 		}
6496 	}
6497 	free(dirent, M_TEMP);
6498 	return (error);
6499 }
6500 
6501 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6502 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6503 {
6504 	int error;
6505 
6506 	if (dp->d_reclen > ap->a_uio->uio_resid)
6507 		return (ENAMETOOLONG);
6508 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6509 	if (error) {
6510 		if (ap->a_ncookies != NULL) {
6511 			if (ap->a_cookies != NULL)
6512 				free(ap->a_cookies, M_TEMP);
6513 			ap->a_cookies = NULL;
6514 			*ap->a_ncookies = 0;
6515 		}
6516 		return (error);
6517 	}
6518 	if (ap->a_ncookies == NULL)
6519 		return (0);
6520 
6521 	KASSERT(ap->a_cookies,
6522 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6523 
6524 	*ap->a_cookies = realloc(*ap->a_cookies,
6525 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
6526 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6527 	*ap->a_ncookies += 1;
6528 	return (0);
6529 }
6530 
6531 /*
6532  * The purpose of this routine is to remove granularity from accmode_t,
6533  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6534  * VADMIN and VAPPEND.
6535  *
6536  * If it returns 0, the caller is supposed to continue with the usual
6537  * access checks using 'accmode' as modified by this routine.  If it
6538  * returns nonzero value, the caller is supposed to return that value
6539  * as errno.
6540  *
6541  * Note that after this routine runs, accmode may be zero.
6542  */
6543 int
vfs_unixify_accmode(accmode_t * accmode)6544 vfs_unixify_accmode(accmode_t *accmode)
6545 {
6546 	/*
6547 	 * There is no way to specify explicit "deny" rule using
6548 	 * file mode or POSIX.1e ACLs.
6549 	 */
6550 	if (*accmode & VEXPLICIT_DENY) {
6551 		*accmode = 0;
6552 		return (0);
6553 	}
6554 
6555 	/*
6556 	 * None of these can be translated into usual access bits.
6557 	 * Also, the common case for NFSv4 ACLs is to not contain
6558 	 * either of these bits. Caller should check for VWRITE
6559 	 * on the containing directory instead.
6560 	 */
6561 	if (*accmode & (VDELETE_CHILD | VDELETE))
6562 		return (EPERM);
6563 
6564 	if (*accmode & VADMIN_PERMS) {
6565 		*accmode &= ~VADMIN_PERMS;
6566 		*accmode |= VADMIN;
6567 	}
6568 
6569 	/*
6570 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6571 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6572 	 */
6573 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6574 
6575 	return (0);
6576 }
6577 
6578 /*
6579  * Clear out a doomed vnode (if any) and replace it with a new one as long
6580  * as the fs is not being unmounted. Return the root vnode to the caller.
6581  */
6582 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6583 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6584 {
6585 	struct vnode *vp;
6586 	int error;
6587 
6588 restart:
6589 	if (mp->mnt_rootvnode != NULL) {
6590 		MNT_ILOCK(mp);
6591 		vp = mp->mnt_rootvnode;
6592 		if (vp != NULL) {
6593 			if (!VN_IS_DOOMED(vp)) {
6594 				vrefact(vp);
6595 				MNT_IUNLOCK(mp);
6596 				error = vn_lock(vp, flags);
6597 				if (error == 0) {
6598 					*vpp = vp;
6599 					return (0);
6600 				}
6601 				vrele(vp);
6602 				goto restart;
6603 			}
6604 			/*
6605 			 * Clear the old one.
6606 			 */
6607 			mp->mnt_rootvnode = NULL;
6608 		}
6609 		MNT_IUNLOCK(mp);
6610 		if (vp != NULL) {
6611 			vfs_op_barrier_wait(mp);
6612 			vrele(vp);
6613 		}
6614 	}
6615 	error = VFS_CACHEDROOT(mp, flags, vpp);
6616 	if (error != 0)
6617 		return (error);
6618 	if (mp->mnt_vfs_ops == 0) {
6619 		MNT_ILOCK(mp);
6620 		if (mp->mnt_vfs_ops != 0) {
6621 			MNT_IUNLOCK(mp);
6622 			return (0);
6623 		}
6624 		if (mp->mnt_rootvnode == NULL) {
6625 			vrefact(*vpp);
6626 			mp->mnt_rootvnode = *vpp;
6627 		} else {
6628 			if (mp->mnt_rootvnode != *vpp) {
6629 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6630 					panic("%s: mismatch between vnode returned "
6631 					    " by VFS_CACHEDROOT and the one cached "
6632 					    " (%p != %p)",
6633 					    __func__, *vpp, mp->mnt_rootvnode);
6634 				}
6635 			}
6636 		}
6637 		MNT_IUNLOCK(mp);
6638 	}
6639 	return (0);
6640 }
6641 
6642 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6643 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6644 {
6645 	struct mount_pcpu *mpcpu;
6646 	struct vnode *vp;
6647 	int error;
6648 
6649 	if (!vfs_op_thread_enter(mp, mpcpu))
6650 		return (vfs_cache_root_fallback(mp, flags, vpp));
6651 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6652 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6653 		vfs_op_thread_exit(mp, mpcpu);
6654 		return (vfs_cache_root_fallback(mp, flags, vpp));
6655 	}
6656 	vrefact(vp);
6657 	vfs_op_thread_exit(mp, mpcpu);
6658 	error = vn_lock(vp, flags);
6659 	if (error != 0) {
6660 		vrele(vp);
6661 		return (vfs_cache_root_fallback(mp, flags, vpp));
6662 	}
6663 	*vpp = vp;
6664 	return (0);
6665 }
6666 
6667 struct vnode *
vfs_cache_root_clear(struct mount * mp)6668 vfs_cache_root_clear(struct mount *mp)
6669 {
6670 	struct vnode *vp;
6671 
6672 	/*
6673 	 * ops > 0 guarantees there is nobody who can see this vnode
6674 	 */
6675 	MPASS(mp->mnt_vfs_ops > 0);
6676 	vp = mp->mnt_rootvnode;
6677 	if (vp != NULL)
6678 		vn_seqc_write_begin(vp);
6679 	mp->mnt_rootvnode = NULL;
6680 	return (vp);
6681 }
6682 
6683 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)6684 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6685 {
6686 
6687 	MPASS(mp->mnt_vfs_ops > 0);
6688 	vrefact(vp);
6689 	mp->mnt_rootvnode = vp;
6690 }
6691 
6692 /*
6693  * These are helper functions for filesystems to traverse all
6694  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6695  *
6696  * This interface replaces MNT_VNODE_FOREACH.
6697  */
6698 
6699 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)6700 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6701 {
6702 	struct vnode *vp;
6703 
6704 	if (should_yield())
6705 		kern_yield(PRI_USER);
6706 	MNT_ILOCK(mp);
6707 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6708 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6709 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6710 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6711 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6712 			continue;
6713 		VI_LOCK(vp);
6714 		if (VN_IS_DOOMED(vp)) {
6715 			VI_UNLOCK(vp);
6716 			continue;
6717 		}
6718 		break;
6719 	}
6720 	if (vp == NULL) {
6721 		__mnt_vnode_markerfree_all(mvp, mp);
6722 		/* MNT_IUNLOCK(mp); -- done in above function */
6723 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6724 		return (NULL);
6725 	}
6726 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6727 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6728 	MNT_IUNLOCK(mp);
6729 	return (vp);
6730 }
6731 
6732 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)6733 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6734 {
6735 	struct vnode *vp;
6736 
6737 	*mvp = vn_alloc_marker(mp);
6738 	MNT_ILOCK(mp);
6739 	MNT_REF(mp);
6740 
6741 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6742 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6743 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6744 			continue;
6745 		VI_LOCK(vp);
6746 		if (VN_IS_DOOMED(vp)) {
6747 			VI_UNLOCK(vp);
6748 			continue;
6749 		}
6750 		break;
6751 	}
6752 	if (vp == NULL) {
6753 		MNT_REL(mp);
6754 		MNT_IUNLOCK(mp);
6755 		vn_free_marker(*mvp);
6756 		*mvp = NULL;
6757 		return (NULL);
6758 	}
6759 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6760 	MNT_IUNLOCK(mp);
6761 	return (vp);
6762 }
6763 
6764 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)6765 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6766 {
6767 
6768 	if (*mvp == NULL) {
6769 		MNT_IUNLOCK(mp);
6770 		return;
6771 	}
6772 
6773 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6774 
6775 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6776 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6777 	MNT_REL(mp);
6778 	MNT_IUNLOCK(mp);
6779 	vn_free_marker(*mvp);
6780 	*mvp = NULL;
6781 }
6782 
6783 /*
6784  * These are helper functions for filesystems to traverse their
6785  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6786  */
6787 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)6788 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6789 {
6790 
6791 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6792 
6793 	MNT_ILOCK(mp);
6794 	MNT_REL(mp);
6795 	MNT_IUNLOCK(mp);
6796 	vn_free_marker(*mvp);
6797 	*mvp = NULL;
6798 }
6799 
6800 /*
6801  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6802  * conventional lock order during mnt_vnode_next_lazy iteration.
6803  *
6804  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6805  * The list lock is dropped and reacquired.  On success, both locks are held.
6806  * On failure, the mount vnode list lock is held but the vnode interlock is
6807  * not, and the procedure may have yielded.
6808  */
6809 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)6810 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6811     struct vnode *vp)
6812 {
6813 
6814 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6815 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6816 	    ("%s: bad marker", __func__));
6817 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6818 	    ("%s: inappropriate vnode", __func__));
6819 	ASSERT_VI_UNLOCKED(vp, __func__);
6820 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6821 
6822 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6823 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6824 
6825 	/*
6826 	 * Note we may be racing against vdrop which transitioned the hold
6827 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6828 	 * if we are the only user after we get the interlock we will just
6829 	 * vdrop.
6830 	 */
6831 	vhold(vp);
6832 	mtx_unlock(&mp->mnt_listmtx);
6833 	VI_LOCK(vp);
6834 	if (VN_IS_DOOMED(vp)) {
6835 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6836 		goto out_lost;
6837 	}
6838 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6839 	/*
6840 	 * There is nothing to do if we are the last user.
6841 	 */
6842 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6843 		goto out_lost;
6844 	mtx_lock(&mp->mnt_listmtx);
6845 	return (true);
6846 out_lost:
6847 	vdropl(vp);
6848 	maybe_yield();
6849 	mtx_lock(&mp->mnt_listmtx);
6850 	return (false);
6851 }
6852 
6853 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)6854 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6855     void *cbarg)
6856 {
6857 	struct vnode *vp;
6858 
6859 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6860 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6861 restart:
6862 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6863 	while (vp != NULL) {
6864 		if (vp->v_type == VMARKER) {
6865 			vp = TAILQ_NEXT(vp, v_lazylist);
6866 			continue;
6867 		}
6868 		/*
6869 		 * See if we want to process the vnode. Note we may encounter a
6870 		 * long string of vnodes we don't care about and hog the list
6871 		 * as a result. Check for it and requeue the marker.
6872 		 */
6873 		VNPASS(!VN_IS_DOOMED(vp), vp);
6874 		if (!cb(vp, cbarg)) {
6875 			if (!should_yield()) {
6876 				vp = TAILQ_NEXT(vp, v_lazylist);
6877 				continue;
6878 			}
6879 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6880 			    v_lazylist);
6881 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6882 			    v_lazylist);
6883 			mtx_unlock(&mp->mnt_listmtx);
6884 			kern_yield(PRI_USER);
6885 			mtx_lock(&mp->mnt_listmtx);
6886 			goto restart;
6887 		}
6888 		/*
6889 		 * Try-lock because this is the wrong lock order.
6890 		 */
6891 		if (!VI_TRYLOCK(vp) &&
6892 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6893 			goto restart;
6894 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6895 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6896 		    ("alien vnode on the lazy list %p %p", vp, mp));
6897 		VNPASS(vp->v_mount == mp, vp);
6898 		VNPASS(!VN_IS_DOOMED(vp), vp);
6899 		break;
6900 	}
6901 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6902 
6903 	/* Check if we are done */
6904 	if (vp == NULL) {
6905 		mtx_unlock(&mp->mnt_listmtx);
6906 		mnt_vnode_markerfree_lazy(mvp, mp);
6907 		return (NULL);
6908 	}
6909 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6910 	mtx_unlock(&mp->mnt_listmtx);
6911 	ASSERT_VI_LOCKED(vp, "lazy iter");
6912 	return (vp);
6913 }
6914 
6915 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)6916 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6917     void *cbarg)
6918 {
6919 
6920 	if (should_yield())
6921 		kern_yield(PRI_USER);
6922 	mtx_lock(&mp->mnt_listmtx);
6923 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6924 }
6925 
6926 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)6927 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6928     void *cbarg)
6929 {
6930 	struct vnode *vp;
6931 
6932 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6933 		return (NULL);
6934 
6935 	*mvp = vn_alloc_marker(mp);
6936 	MNT_ILOCK(mp);
6937 	MNT_REF(mp);
6938 	MNT_IUNLOCK(mp);
6939 
6940 	mtx_lock(&mp->mnt_listmtx);
6941 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6942 	if (vp == NULL) {
6943 		mtx_unlock(&mp->mnt_listmtx);
6944 		mnt_vnode_markerfree_lazy(mvp, mp);
6945 		return (NULL);
6946 	}
6947 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6948 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6949 }
6950 
6951 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)6952 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6953 {
6954 
6955 	if (*mvp == NULL)
6956 		return;
6957 
6958 	mtx_lock(&mp->mnt_listmtx);
6959 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6960 	mtx_unlock(&mp->mnt_listmtx);
6961 	mnt_vnode_markerfree_lazy(mvp, mp);
6962 }
6963 
6964 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)6965 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6966 {
6967 
6968 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6969 		cnp->cn_flags &= ~NOEXECCHECK;
6970 		return (0);
6971 	}
6972 
6973 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread));
6974 }
6975 
6976 /*
6977  * Do not use this variant unless you have means other than the hold count
6978  * to prevent the vnode from getting freed.
6979  */
6980 void
vn_seqc_write_begin_locked(struct vnode * vp)6981 vn_seqc_write_begin_locked(struct vnode *vp)
6982 {
6983 
6984 	ASSERT_VI_LOCKED(vp, __func__);
6985 	VNPASS(vp->v_holdcnt > 0, vp);
6986 	VNPASS(vp->v_seqc_users >= 0, vp);
6987 	vp->v_seqc_users++;
6988 	if (vp->v_seqc_users == 1)
6989 		seqc_sleepable_write_begin(&vp->v_seqc);
6990 }
6991 
6992 void
vn_seqc_write_begin(struct vnode * vp)6993 vn_seqc_write_begin(struct vnode *vp)
6994 {
6995 
6996 	VI_LOCK(vp);
6997 	vn_seqc_write_begin_locked(vp);
6998 	VI_UNLOCK(vp);
6999 }
7000 
7001 void
vn_seqc_write_end_locked(struct vnode * vp)7002 vn_seqc_write_end_locked(struct vnode *vp)
7003 {
7004 
7005 	ASSERT_VI_LOCKED(vp, __func__);
7006 	VNPASS(vp->v_seqc_users > 0, vp);
7007 	vp->v_seqc_users--;
7008 	if (vp->v_seqc_users == 0)
7009 		seqc_sleepable_write_end(&vp->v_seqc);
7010 }
7011 
7012 void
vn_seqc_write_end(struct vnode * vp)7013 vn_seqc_write_end(struct vnode *vp)
7014 {
7015 
7016 	VI_LOCK(vp);
7017 	vn_seqc_write_end_locked(vp);
7018 	VI_UNLOCK(vp);
7019 }
7020 
7021 /*
7022  * Special case handling for allocating and freeing vnodes.
7023  *
7024  * The counter remains unchanged on free so that a doomed vnode will
7025  * keep testing as in modify as long as it is accessible with SMR.
7026  */
7027 static void
vn_seqc_init(struct vnode * vp)7028 vn_seqc_init(struct vnode *vp)
7029 {
7030 
7031 	vp->v_seqc = 0;
7032 	vp->v_seqc_users = 0;
7033 }
7034 
7035 static void
vn_seqc_write_end_free(struct vnode * vp)7036 vn_seqc_write_end_free(struct vnode *vp)
7037 {
7038 
7039 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7040 	VNPASS(vp->v_seqc_users == 1, vp);
7041 }
7042 
7043 void
vn_irflag_set_locked(struct vnode * vp,short toset)7044 vn_irflag_set_locked(struct vnode *vp, short toset)
7045 {
7046 	short flags;
7047 
7048 	ASSERT_VI_LOCKED(vp, __func__);
7049 	flags = vn_irflag_read(vp);
7050 	VNASSERT((flags & toset) == 0, vp,
7051 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7052 	    __func__, flags, toset));
7053 	atomic_store_short(&vp->v_irflag, flags | toset);
7054 }
7055 
7056 void
vn_irflag_set(struct vnode * vp,short toset)7057 vn_irflag_set(struct vnode *vp, short toset)
7058 {
7059 
7060 	VI_LOCK(vp);
7061 	vn_irflag_set_locked(vp, toset);
7062 	VI_UNLOCK(vp);
7063 }
7064 
7065 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7066 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7067 {
7068 	short flags;
7069 
7070 	ASSERT_VI_LOCKED(vp, __func__);
7071 	flags = vn_irflag_read(vp);
7072 	atomic_store_short(&vp->v_irflag, flags | toset);
7073 }
7074 
7075 void
vn_irflag_set_cond(struct vnode * vp,short toset)7076 vn_irflag_set_cond(struct vnode *vp, short toset)
7077 {
7078 
7079 	VI_LOCK(vp);
7080 	vn_irflag_set_cond_locked(vp, toset);
7081 	VI_UNLOCK(vp);
7082 }
7083 
7084 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7085 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7086 {
7087 	short flags;
7088 
7089 	ASSERT_VI_LOCKED(vp, __func__);
7090 	flags = vn_irflag_read(vp);
7091 	VNASSERT((flags & tounset) == tounset, vp,
7092 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7093 	    __func__, flags, tounset));
7094 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7095 }
7096 
7097 void
vn_irflag_unset(struct vnode * vp,short tounset)7098 vn_irflag_unset(struct vnode *vp, short tounset)
7099 {
7100 
7101 	VI_LOCK(vp);
7102 	vn_irflag_unset_locked(vp, tounset);
7103 	VI_UNLOCK(vp);
7104 }
7105