1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * DVA-based Adjustable Replacement Cache
31  *
32  * While much of the theory of operation used here is
33  * based on the self-tuning, low overhead replacement cache
34  * presented by Megiddo and Modha at FAST 2003, there are some
35  * significant differences:
36  *
37  * 1. The Megiddo and Modha model assumes any page is evictable.
38  * Pages in its cache cannot be "locked" into memory.  This makes
39  * the eviction algorithm simple: evict the last page in the list.
40  * This also make the performance characteristics easy to reason
41  * about.  Our cache is not so simple.  At any given moment, some
42  * subset of the blocks in the cache are un-evictable because we
43  * have handed out a reference to them.  Blocks are only evictable
44  * when there are no external references active.  This makes
45  * eviction far more problematic:  we choose to evict the evictable
46  * blocks that are the "lowest" in the list.
47  *
48  * There are times when it is not possible to evict the requested
49  * space.  In these circumstances we are unable to adjust the cache
50  * size.  To prevent the cache growing unbounded at these times we
51  * implement a "cache throttle" that slows the flow of new data
52  * into the cache until we can make space available.
53  *
54  * 2. The Megiddo and Modha model assumes a fixed cache size.
55  * Pages are evicted when the cache is full and there is a cache
56  * miss.  Our model has a variable sized cache.  It grows with
57  * high use, but also tries to react to memory pressure from the
58  * operating system: decreasing its size when system memory is
59  * tight.
60  *
61  * 3. The Megiddo and Modha model assumes a fixed page size. All
62  * elements of the cache are therefore exactly the same size.  So
63  * when adjusting the cache size following a cache miss, its simply
64  * a matter of choosing a single page to evict.  In our model, we
65  * have variable sized cache blocks (rangeing from 512 bytes to
66  * 128K bytes).  We therefore choose a set of blocks to evict to make
67  * space for a cache miss that approximates as closely as possible
68  * the space used by the new block.
69  *
70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71  * by N. Megiddo & D. Modha, FAST 2003
72  */
73 
74 /*
75  * The locking model:
76  *
77  * A new reference to a cache buffer can be obtained in two
78  * ways: 1) via a hash table lookup using the DVA as a key,
79  * or 2) via one of the ARC lists.  The arc_read() interface
80  * uses method 1, while the internal ARC algorithms for
81  * adjusting the cache use method 2.  We therefore provide two
82  * types of locks: 1) the hash table lock array, and 2) the
83  * ARC list locks.
84  *
85  * Buffers do not have their own mutexes, rather they rely on the
86  * hash table mutexes for the bulk of their protection (i.e. most
87  * fields in the arc_buf_hdr_t are protected by these mutexes).
88  *
89  * buf_hash_find() returns the appropriate mutex (held) when it
90  * locates the requested buffer in the hash table.  It returns
91  * NULL for the mutex if the buffer was not in the table.
92  *
93  * buf_hash_remove() expects the appropriate hash mutex to be
94  * already held before it is invoked.
95  *
96  * Each ARC state also has a mutex which is used to protect the
97  * buffer list associated with the state.  When attempting to
98  * obtain a hash table lock while holding an ARC list lock you
99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
100  * the active state mutex must be held before the ghost state mutex.
101  *
102  * It as also possible to register a callback which is run when the
103  * arc_meta_limit is reached and no buffers can be safely evicted.  In
104  * this case the arc user should drop a reference on some arc buffers so
105  * they can be reclaimed and the arc_meta_limit honored.  For example,
106  * when using the ZPL each dentry holds a references on a znode.  These
107  * dentries must be pruned before the arc buffer holding the znode can
108  * be safely evicted.
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  *
113  * The L2ARC uses the l2ad_mtx on each vdev for the following:
114  *
115  *	- L2ARC buflist creation
116  *	- L2ARC buflist eviction
117  *	- L2ARC write completion, which walks L2ARC buflists
118  *	- ARC header destruction, as it removes from L2ARC buflists
119  *	- ARC header release, as it removes from L2ARC buflists
120  */
121 
122 /*
123  * ARC operation:
124  *
125  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126  * This structure can point either to a block that is still in the cache or to
127  * one that is only accessible in an L2 ARC device, or it can provide
128  * information about a block that was recently evicted. If a block is
129  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130  * information to retrieve it from the L2ARC device. This information is
131  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132  * that is in this state cannot access the data directly.
133  *
134  * Blocks that are actively being referenced or have not been evicted
135  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136  * the arc_buf_hdr_t that will point to the data block in memory. A block can
137  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140  *
141  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142  * ability to store the physical data (b_pabd) associated with the DVA of the
143  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144  * it will match its on-disk compression characteristics. This behavior can be
145  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146  * compressed ARC functionality is disabled, the b_pabd will point to an
147  * uncompressed version of the on-disk data.
148  *
149  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152  * consumer. The ARC will provide references to this data and will keep it
153  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154  * data block and will evict any arc_buf_t that is no longer referenced. The
155  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156  * "overhead_size" kstat.
157  *
158  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159  * compressed form. The typical case is that consumers will want uncompressed
160  * data, and when that happens a new data buffer is allocated where the data is
161  * decompressed for them to use. Currently the only consumer who wants
162  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164  * with the arc_buf_hdr_t.
165  *
166  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167  * first one is owned by a compressed send consumer (and therefore references
168  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169  * used by any other consumer (and has its own uncompressed copy of the data
170  * buffer).
171  *
172  *   arc_buf_hdr_t
173  *   +-----------+
174  *   | fields    |
175  *   | common to |
176  *   | L1- and   |
177  *   | L2ARC     |
178  *   +-----------+
179  *   | l2arc_buf_hdr_t
180  *   |           |
181  *   +-----------+
182  *   | l1arc_buf_hdr_t
183  *   |           |              arc_buf_t
184  *   | b_buf     +------------>+-----------+      arc_buf_t
185  *   | b_pabd    +-+           |b_next     +---->+-----------+
186  *   +-----------+ |           |-----------|     |b_next     +-->NULL
187  *                 |           |b_comp = T |     +-----------+
188  *                 |           |b_data     +-+   |b_comp = F |
189  *                 |           +-----------+ |   |b_data     +-+
190  *                 +->+------+               |   +-----------+ |
191  *        compressed  |      |               |                 |
192  *           data     |      |<--------------+                 | uncompressed
193  *                    +------+          compressed,            |     data
194  *                                        shared               +-->+------+
195  *                                         data                    |      |
196  *                                                                 |      |
197  *                                                                 +------+
198  *
199  * When a consumer reads a block, the ARC must first look to see if the
200  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201  * arc_buf_t and either copies uncompressed data into a new data buffer from an
202  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204  * hdr is compressed and the desired compression characteristics of the
205  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208  * be anywhere in the hdr's list.
209  *
210  * The diagram below shows an example of an uncompressed ARC hdr that is
211  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212  * the last element in the buf list):
213  *
214  *                arc_buf_hdr_t
215  *                +-----------+
216  *                |           |
217  *                |           |
218  *                |           |
219  *                +-----------+
220  * l2arc_buf_hdr_t|           |
221  *                |           |
222  *                +-----------+
223  * l1arc_buf_hdr_t|           |
224  *                |           |                 arc_buf_t    (shared)
225  *                |    b_buf  +------------>+---------+      arc_buf_t
226  *                |           |             |b_next   +---->+---------+
227  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
228  *                +-----------+ |           |         |     +---------+
229  *                              |           |b_data   +-+   |         |
230  *                              |           +---------+ |   |b_data   +-+
231  *                              +->+------+             |   +---------+ |
232  *                                 |      |             |               |
233  *                   uncompressed  |      |             |               |
234  *                        data     +------+             |               |
235  *                                    ^                 +->+------+     |
236  *                                    |       uncompressed |      |     |
237  *                                    |           data     |      |     |
238  *                                    |                    +------+     |
239  *                                    +---------------------------------+
240  *
241  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242  * since the physical block is about to be rewritten. The new data contents
243  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244  * it may compress the data before writing it to disk. The ARC will be called
245  * with the transformed data and will bcopy the transformed on-disk block into
246  * a newly allocated b_pabd. Writes are always done into buffers which have
247  * either been loaned (and hence are new and don't have other readers) or
248  * buffers which have been released (and hence have their own hdr, if there
249  * were originally other readers of the buf's original hdr). This ensures that
250  * the ARC only needs to update a single buf and its hdr after a write occurs.
251  *
252  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254  * that when compressed ARC is enabled that the L2ARC blocks are identical
255  * to the on-disk block in the main data pool. This provides a significant
256  * advantage since the ARC can leverage the bp's checksum when reading from the
257  * L2ARC to determine if the contents are valid. However, if the compressed
258  * ARC is disabled, then the L2ARC's block must be transformed to look
259  * like the physical block in the main data pool before comparing the
260  * checksum and determining its validity.
261  */
262 
263 #include <sys/spa.h>
264 #include <sys/zio.h>
265 #include <sys/spa_impl.h>
266 #include <sys/zio_compress.h>
267 #include <sys/zio_checksum.h>
268 #include <sys/zfs_context.h>
269 #include <sys/arc.h>
270 #include <sys/refcount.h>
271 #include <sys/vdev.h>
272 #include <sys/vdev_impl.h>
273 #include <sys/dsl_pool.h>
274 #include <sys/zio_checksum.h>
275 #include <sys/multilist.h>
276 #include <sys/abd.h>
277 #ifdef _KERNEL
278 #include <sys/dnlc.h>
279 #include <sys/racct.h>
280 #endif
281 #include <sys/callb.h>
282 #include <sys/kstat.h>
283 #include <sys/trim_map.h>
284 #include <sys/zthr.h>
285 #include <zfs_fletcher.h>
286 #include <sys/sdt.h>
287 #include <sys/aggsum.h>
288 #include <sys/cityhash.h>
289 
290 #include <machine/vmparam.h>
291 
292 #ifdef illumos
293 #ifndef _KERNEL
294 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
295 boolean_t arc_watch = B_FALSE;
296 int arc_procfd;
297 #endif
298 #endif /* illumos */
299 
300 /*
301  * This thread's job is to keep enough free memory in the system, by
302  * calling arc_kmem_reap_now() plus arc_shrink(), which improves
303  * arc_available_memory().
304  */
305 static zthr_t		*arc_reap_zthr;
306 
307 /*
308  * This thread's job is to keep arc_size under arc_c, by calling
309  * arc_adjust(), which improves arc_is_overflowing().
310  */
311 static zthr_t		*arc_adjust_zthr;
312 
313 static kmutex_t		arc_adjust_lock;
314 static kcondvar_t	arc_adjust_waiters_cv;
315 static boolean_t	arc_adjust_needed = B_FALSE;
316 
317 static kmutex_t		arc_dnlc_evicts_lock;
318 static kcondvar_t	arc_dnlc_evicts_cv;
319 static boolean_t	arc_dnlc_evicts_thread_exit;
320 
321 uint_t arc_reduce_dnlc_percent = 3;
322 
323 /*
324  * The number of headers to evict in arc_evict_state_impl() before
325  * dropping the sublist lock and evicting from another sublist. A lower
326  * value means we're more likely to evict the "correct" header (i.e. the
327  * oldest header in the arc state), but comes with higher overhead
328  * (i.e. more invocations of arc_evict_state_impl()).
329  */
330 int zfs_arc_evict_batch_limit = 10;
331 
332 /* number of seconds before growing cache again */
333 int arc_grow_retry = 60;
334 
335 /*
336  * Minimum time between calls to arc_kmem_reap_soon().  Note that this will
337  * be converted to ticks, so with the default hz=100, a setting of 15 ms
338  * will actually wait 2 ticks, or 20ms.
339  */
340 int arc_kmem_cache_reap_retry_ms = 1000;
341 
342 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
343 int zfs_arc_overflow_shift = 8;
344 
345 /* shift of arc_c for calculating both min and max arc_p */
346 int arc_p_min_shift = 4;
347 
348 /* log2(fraction of arc to reclaim) */
349 int arc_shrink_shift = 7;
350 
351 /*
352  * log2(fraction of ARC which must be free to allow growing).
353  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
354  * when reading a new block into the ARC, we will evict an equal-sized block
355  * from the ARC.
356  *
357  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
358  * we will still not allow it to grow.
359  */
360 int			arc_no_grow_shift = 5;
361 
362 
363 /*
364  * minimum lifespan of a prefetch block in clock ticks
365  * (initialized in arc_init())
366  */
367 static int		zfs_arc_min_prefetch_ms = 1;
368 static int		zfs_arc_min_prescient_prefetch_ms = 6;
369 
370 /*
371  * If this percent of memory is free, don't throttle.
372  */
373 int arc_lotsfree_percent = 10;
374 
375 static boolean_t arc_initialized;
376 extern boolean_t zfs_prefetch_disable;
377 
378 /*
379  * The arc has filled available memory and has now warmed up.
380  */
381 static boolean_t arc_warm;
382 
383 /*
384  * log2 fraction of the zio arena to keep free.
385  */
386 int arc_zio_arena_free_shift = 2;
387 
388 /*
389  * These tunables are for performance analysis.
390  */
391 uint64_t zfs_arc_max;
392 uint64_t zfs_arc_min;
393 uint64_t zfs_arc_meta_limit = 0;
394 uint64_t zfs_arc_meta_min = 0;
395 uint64_t zfs_arc_dnode_limit = 0;
396 uint64_t zfs_arc_dnode_reduce_percent = 10;
397 int zfs_arc_grow_retry = 0;
398 int zfs_arc_shrink_shift = 0;
399 int zfs_arc_no_grow_shift = 0;
400 int zfs_arc_p_min_shift = 0;
401 uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
402 u_int zfs_arc_free_target = 0;
403 
404 /* Absolute min for arc min / max is 16MB. */
405 static uint64_t arc_abs_min = 16 << 20;
406 
407 /*
408  * ARC dirty data constraints for arc_tempreserve_space() throttle
409  */
410 uint_t zfs_arc_dirty_limit_percent = 50;	/* total dirty data limit */
411 uint_t zfs_arc_anon_limit_percent = 25;		/* anon block dirty limit */
412 uint_t zfs_arc_pool_dirty_percent = 20;		/* each pool's anon allowance */
413 
414 boolean_t zfs_compressed_arc_enabled = B_TRUE;
415 
416 static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
417 static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
418 static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
419 static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
420 static int sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS);
421 
422 #if defined(__FreeBSD__) && defined(_KERNEL)
423 static void
arc_free_target_init(void * unused __unused)424 arc_free_target_init(void *unused __unused)
425 {
426 
427 	zfs_arc_free_target = vm_cnt.v_free_target;
428 }
429 SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
430     arc_free_target_init, NULL);
431 
432 TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
433 TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
434 TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
435 TUNABLE_INT("vfs.zfs.arc_grow_retry", &zfs_arc_grow_retry);
436 TUNABLE_INT("vfs.zfs.arc_no_grow_shift", &zfs_arc_no_grow_shift);
437 SYSCTL_DECL(_vfs_zfs);
438 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
439     0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
440 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
441     0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
442 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_no_grow_shift, CTLTYPE_U32 | CTLFLAG_RWTUN,
443     0, sizeof(uint32_t), sysctl_vfs_zfs_arc_no_grow_shift, "U",
444     "log2(fraction of ARC which must be free to allow growing)");
445 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
446     &zfs_arc_average_blocksize, 0,
447     "ARC average blocksize");
448 SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
449     &arc_shrink_shift, 0,
450     "log2(fraction of arc to reclaim)");
451 SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_grow_retry, CTLFLAG_RW,
452     &arc_grow_retry, 0,
453     "Wait in seconds before considering growing ARC");
454 SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
455     &zfs_compressed_arc_enabled, 0,
456     "Enable compressed ARC");
457 SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_kmem_cache_reap_retry_ms, CTLFLAG_RWTUN,
458     &arc_kmem_cache_reap_retry_ms, 0,
459     "Interval between ARC kmem_cache reapings");
460 
461 /*
462  * We don't have a tunable for arc_free_target due to the dependency on
463  * pagedaemon initialisation.
464  */
465 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
466     CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
467     sysctl_vfs_zfs_arc_free_target, "IU",
468     "Desired number of free pages below which ARC triggers reclaim");
469 
470 static int
sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)471 sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
472 {
473 	u_int val;
474 	int err;
475 
476 	val = zfs_arc_free_target;
477 	err = sysctl_handle_int(oidp, &val, 0, req);
478 	if (err != 0 || req->newptr == NULL)
479 		return (err);
480 
481 	if (val < minfree)
482 		return (EINVAL);
483 	if (val > vm_cnt.v_page_count)
484 		return (EINVAL);
485 
486 	zfs_arc_free_target = val;
487 
488 	return (0);
489 }
490 
491 /*
492  * Must be declared here, before the definition of corresponding kstat
493  * macro which uses the same names will confuse the compiler.
494  */
495 SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
496     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
497     sysctl_vfs_zfs_arc_meta_limit, "QU",
498     "ARC metadata limit");
499 #endif
500 
501 /*
502  * Note that buffers can be in one of 6 states:
503  *	ARC_anon	- anonymous (discussed below)
504  *	ARC_mru		- recently used, currently cached
505  *	ARC_mru_ghost	- recentely used, no longer in cache
506  *	ARC_mfu		- frequently used, currently cached
507  *	ARC_mfu_ghost	- frequently used, no longer in cache
508  *	ARC_l2c_only	- exists in L2ARC but not other states
509  * When there are no active references to the buffer, they are
510  * are linked onto a list in one of these arc states.  These are
511  * the only buffers that can be evicted or deleted.  Within each
512  * state there are multiple lists, one for meta-data and one for
513  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
514  * etc.) is tracked separately so that it can be managed more
515  * explicitly: favored over data, limited explicitly.
516  *
517  * Anonymous buffers are buffers that are not associated with
518  * a DVA.  These are buffers that hold dirty block copies
519  * before they are written to stable storage.  By definition,
520  * they are "ref'd" and are considered part of arc_mru
521  * that cannot be freed.  Generally, they will aquire a DVA
522  * as they are written and migrate onto the arc_mru list.
523  *
524  * The ARC_l2c_only state is for buffers that are in the second
525  * level ARC but no longer in any of the ARC_m* lists.  The second
526  * level ARC itself may also contain buffers that are in any of
527  * the ARC_m* states - meaning that a buffer can exist in two
528  * places.  The reason for the ARC_l2c_only state is to keep the
529  * buffer header in the hash table, so that reads that hit the
530  * second level ARC benefit from these fast lookups.
531  */
532 
533 typedef struct arc_state {
534 	/*
535 	 * list of evictable buffers
536 	 */
537 	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
538 	/*
539 	 * total amount of evictable data in this state
540 	 */
541 	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
542 	/*
543 	 * total amount of data in this state; this includes: evictable,
544 	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
545 	 */
546 	refcount_t arcs_size;
547 	/*
548 	 * supports the "dbufs" kstat
549 	 */
550 	arc_state_type_t arcs_state;
551 } arc_state_t;
552 
553 /*
554  * Percentage that can be consumed by dnodes of ARC meta buffers.
555  */
556 int zfs_arc_meta_prune = 10000;
557 unsigned long zfs_arc_dnode_limit_percent = 10;
558 int zfs_arc_meta_strategy = ARC_STRATEGY_META_ONLY;
559 int zfs_arc_meta_adjust_restarts = 4096;
560 
561 SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_meta_strategy, CTLFLAG_RWTUN,
562     &zfs_arc_meta_strategy, 0,
563     "ARC metadata reclamation strategy "
564     "(0 = metadata only, 1 = balance data and metadata)");
565 
566 /* The 6 states: */
567 static arc_state_t ARC_anon;
568 static arc_state_t ARC_mru;
569 static arc_state_t ARC_mru_ghost;
570 static arc_state_t ARC_mfu;
571 static arc_state_t ARC_mfu_ghost;
572 static arc_state_t ARC_l2c_only;
573 
574 typedef struct arc_stats {
575 	kstat_named_t arcstat_hits;
576 	kstat_named_t arcstat_misses;
577 	kstat_named_t arcstat_demand_data_hits;
578 	kstat_named_t arcstat_demand_data_misses;
579 	kstat_named_t arcstat_demand_metadata_hits;
580 	kstat_named_t arcstat_demand_metadata_misses;
581 	kstat_named_t arcstat_prefetch_data_hits;
582 	kstat_named_t arcstat_prefetch_data_misses;
583 	kstat_named_t arcstat_prefetch_metadata_hits;
584 	kstat_named_t arcstat_prefetch_metadata_misses;
585 	kstat_named_t arcstat_mru_hits;
586 	kstat_named_t arcstat_mru_ghost_hits;
587 	kstat_named_t arcstat_mfu_hits;
588 	kstat_named_t arcstat_mfu_ghost_hits;
589 	kstat_named_t arcstat_allocated;
590 	kstat_named_t arcstat_deleted;
591 	/*
592 	 * Number of buffers that could not be evicted because the hash lock
593 	 * was held by another thread.  The lock may not necessarily be held
594 	 * by something using the same buffer, since hash locks are shared
595 	 * by multiple buffers.
596 	 */
597 	kstat_named_t arcstat_mutex_miss;
598 	/*
599 	 * Number of buffers skipped when updating the access state due to the
600 	 * header having already been released after acquiring the hash lock.
601 	 */
602 	kstat_named_t arcstat_access_skip;
603 	/*
604 	 * Number of buffers skipped because they have I/O in progress, are
605 	 * indirect prefetch buffers that have not lived long enough, or are
606 	 * not from the spa we're trying to evict from.
607 	 */
608 	kstat_named_t arcstat_evict_skip;
609 	/*
610 	 * Number of times arc_evict_state() was unable to evict enough
611 	 * buffers to reach it's target amount.
612 	 */
613 	kstat_named_t arcstat_evict_not_enough;
614 	kstat_named_t arcstat_evict_l2_cached;
615 	kstat_named_t arcstat_evict_l2_eligible;
616 	kstat_named_t arcstat_evict_l2_ineligible;
617 	kstat_named_t arcstat_evict_l2_skip;
618 	kstat_named_t arcstat_hash_elements;
619 	kstat_named_t arcstat_hash_elements_max;
620 	kstat_named_t arcstat_hash_collisions;
621 	kstat_named_t arcstat_hash_chains;
622 	kstat_named_t arcstat_hash_chain_max;
623 	kstat_named_t arcstat_p;
624 	kstat_named_t arcstat_c;
625 	kstat_named_t arcstat_c_min;
626 	kstat_named_t arcstat_c_max;
627 	/* Not updated directly; only synced in arc_kstat_update. */
628 	kstat_named_t arcstat_size;
629 	/*
630 	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
631 	 * Note that the compressed bytes may match the uncompressed bytes
632 	 * if the block is either not compressed or compressed arc is disabled.
633 	 */
634 	kstat_named_t arcstat_compressed_size;
635 	/*
636 	 * Uncompressed size of the data stored in b_pabd. If compressed
637 	 * arc is disabled then this value will be identical to the stat
638 	 * above.
639 	 */
640 	kstat_named_t arcstat_uncompressed_size;
641 	/*
642 	 * Number of bytes stored in all the arc_buf_t's. This is classified
643 	 * as "overhead" since this data is typically short-lived and will
644 	 * be evicted from the arc when it becomes unreferenced unless the
645 	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
646 	 * values have been set (see comment in dbuf.c for more information).
647 	 */
648 	kstat_named_t arcstat_overhead_size;
649 	/*
650 	 * Number of bytes consumed by internal ARC structures necessary
651 	 * for tracking purposes; these structures are not actually
652 	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
653 	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
654 	 * caches), and arc_buf_t structures (allocated via arc_buf_t
655 	 * cache).
656 	 * Not updated directly; only synced in arc_kstat_update.
657 	 */
658 	kstat_named_t arcstat_hdr_size;
659 	/*
660 	 * Number of bytes consumed by ARC buffers of type equal to
661 	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
662 	 * on disk user data (e.g. plain file contents).
663 	 * Not updated directly; only synced in arc_kstat_update.
664 	 */
665 	kstat_named_t arcstat_data_size;
666 	/*
667 	 * Number of bytes consumed by ARC buffers of type equal to
668 	 * ARC_BUFC_METADATA. This is generally consumed by buffers
669 	 * backing on disk data that is used for internal ZFS
670 	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
671 	 * Not updated directly; only synced in arc_kstat_update.
672 	 */
673 	kstat_named_t arcstat_metadata_size;
674 	/*
675 	 * Number of bytes consumed by dmu_buf_impl_t objects.
676 	 */
677 	kstat_named_t arcstat_dbuf_size;
678 	/*
679 	 * Number of bytes consumed by dnode_t objects.
680 	 */
681 	kstat_named_t arcstat_dnode_size;
682 	/*
683 	 * Number of bytes consumed by bonus buffers.
684 	 */
685 	kstat_named_t arcstat_bonus_size;
686 #if defined(__FreeBSD__) && defined(COMPAT_FREEBSD11)
687 	/*
688 	 * Sum of the previous three counters, provided for compatibility.
689 	 */
690 	kstat_named_t arcstat_other_size;
691 #endif
692 	/*
693 	 * Total number of bytes consumed by ARC buffers residing in the
694 	 * arc_anon state. This includes *all* buffers in the arc_anon
695 	 * state; e.g. data, metadata, evictable, and unevictable buffers
696 	 * are all included in this value.
697 	 * Not updated directly; only synced in arc_kstat_update.
698 	 */
699 	kstat_named_t arcstat_anon_size;
700 	/*
701 	 * Number of bytes consumed by ARC buffers that meet the
702 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
703 	 * residing in the arc_anon state, and are eligible for eviction
704 	 * (e.g. have no outstanding holds on the buffer).
705 	 * Not updated directly; only synced in arc_kstat_update.
706 	 */
707 	kstat_named_t arcstat_anon_evictable_data;
708 	/*
709 	 * Number of bytes consumed by ARC buffers that meet the
710 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
711 	 * residing in the arc_anon state, and are eligible for eviction
712 	 * (e.g. have no outstanding holds on the buffer).
713 	 * Not updated directly; only synced in arc_kstat_update.
714 	 */
715 	kstat_named_t arcstat_anon_evictable_metadata;
716 	/*
717 	 * Total number of bytes consumed by ARC buffers residing in the
718 	 * arc_mru state. This includes *all* buffers in the arc_mru
719 	 * state; e.g. data, metadata, evictable, and unevictable buffers
720 	 * are all included in this value.
721 	 * Not updated directly; only synced in arc_kstat_update.
722 	 */
723 	kstat_named_t arcstat_mru_size;
724 	/*
725 	 * Number of bytes consumed by ARC buffers that meet the
726 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
727 	 * residing in the arc_mru state, and are eligible for eviction
728 	 * (e.g. have no outstanding holds on the buffer).
729 	 * Not updated directly; only synced in arc_kstat_update.
730 	 */
731 	kstat_named_t arcstat_mru_evictable_data;
732 	/*
733 	 * Number of bytes consumed by ARC buffers that meet the
734 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
735 	 * residing in the arc_mru state, and are eligible for eviction
736 	 * (e.g. have no outstanding holds on the buffer).
737 	 * Not updated directly; only synced in arc_kstat_update.
738 	 */
739 	kstat_named_t arcstat_mru_evictable_metadata;
740 	/*
741 	 * Total number of bytes that *would have been* consumed by ARC
742 	 * buffers in the arc_mru_ghost state. The key thing to note
743 	 * here, is the fact that this size doesn't actually indicate
744 	 * RAM consumption. The ghost lists only consist of headers and
745 	 * don't actually have ARC buffers linked off of these headers.
746 	 * Thus, *if* the headers had associated ARC buffers, these
747 	 * buffers *would have* consumed this number of bytes.
748 	 * Not updated directly; only synced in arc_kstat_update.
749 	 */
750 	kstat_named_t arcstat_mru_ghost_size;
751 	/*
752 	 * Number of bytes that *would have been* consumed by ARC
753 	 * buffers that are eligible for eviction, of type
754 	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
755 	 * Not updated directly; only synced in arc_kstat_update.
756 	 */
757 	kstat_named_t arcstat_mru_ghost_evictable_data;
758 	/*
759 	 * Number of bytes that *would have been* consumed by ARC
760 	 * buffers that are eligible for eviction, of type
761 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
762 	 * Not updated directly; only synced in arc_kstat_update.
763 	 */
764 	kstat_named_t arcstat_mru_ghost_evictable_metadata;
765 	/*
766 	 * Total number of bytes consumed by ARC buffers residing in the
767 	 * arc_mfu state. This includes *all* buffers in the arc_mfu
768 	 * state; e.g. data, metadata, evictable, and unevictable buffers
769 	 * are all included in this value.
770 	 * Not updated directly; only synced in arc_kstat_update.
771 	 */
772 	kstat_named_t arcstat_mfu_size;
773 	/*
774 	 * Number of bytes consumed by ARC buffers that are eligible for
775 	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
776 	 * state.
777 	 * Not updated directly; only synced in arc_kstat_update.
778 	 */
779 	kstat_named_t arcstat_mfu_evictable_data;
780 	/*
781 	 * Number of bytes consumed by ARC buffers that are eligible for
782 	 * eviction, of type ARC_BUFC_METADATA, and reside in the
783 	 * arc_mfu state.
784 	 * Not updated directly; only synced in arc_kstat_update.
785 	 */
786 	kstat_named_t arcstat_mfu_evictable_metadata;
787 	/*
788 	 * Total number of bytes that *would have been* consumed by ARC
789 	 * buffers in the arc_mfu_ghost state. See the comment above
790 	 * arcstat_mru_ghost_size for more details.
791 	 * Not updated directly; only synced in arc_kstat_update.
792 	 */
793 	kstat_named_t arcstat_mfu_ghost_size;
794 	/*
795 	 * Number of bytes that *would have been* consumed by ARC
796 	 * buffers that are eligible for eviction, of type
797 	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
798 	 * Not updated directly; only synced in arc_kstat_update.
799 	 */
800 	kstat_named_t arcstat_mfu_ghost_evictable_data;
801 	/*
802 	 * Number of bytes that *would have been* consumed by ARC
803 	 * buffers that are eligible for eviction, of type
804 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
805 	 * Not updated directly; only synced in arc_kstat_update.
806 	 */
807 	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
808 	kstat_named_t arcstat_l2_hits;
809 	kstat_named_t arcstat_l2_misses;
810 	kstat_named_t arcstat_l2_feeds;
811 	kstat_named_t arcstat_l2_rw_clash;
812 	kstat_named_t arcstat_l2_read_bytes;
813 	kstat_named_t arcstat_l2_write_bytes;
814 	kstat_named_t arcstat_l2_writes_sent;
815 	kstat_named_t arcstat_l2_writes_done;
816 	kstat_named_t arcstat_l2_writes_error;
817 	kstat_named_t arcstat_l2_writes_lock_retry;
818 	kstat_named_t arcstat_l2_evict_lock_retry;
819 	kstat_named_t arcstat_l2_evict_reading;
820 	kstat_named_t arcstat_l2_evict_l1cached;
821 	kstat_named_t arcstat_l2_free_on_write;
822 	kstat_named_t arcstat_l2_abort_lowmem;
823 	kstat_named_t arcstat_l2_cksum_bad;
824 	kstat_named_t arcstat_l2_io_error;
825 	kstat_named_t arcstat_l2_lsize;
826 	kstat_named_t arcstat_l2_psize;
827 	/* Not updated directly; only synced in arc_kstat_update. */
828 	kstat_named_t arcstat_l2_hdr_size;
829 	kstat_named_t arcstat_l2_write_trylock_fail;
830 	kstat_named_t arcstat_l2_write_passed_headroom;
831 	kstat_named_t arcstat_l2_write_spa_mismatch;
832 	kstat_named_t arcstat_l2_write_in_l2;
833 	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
834 	kstat_named_t arcstat_l2_write_not_cacheable;
835 	kstat_named_t arcstat_l2_write_full;
836 	kstat_named_t arcstat_l2_write_buffer_iter;
837 	kstat_named_t arcstat_l2_write_pios;
838 	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
839 	kstat_named_t arcstat_l2_write_buffer_list_iter;
840 	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
841 	kstat_named_t arcstat_memory_throttle_count;
842 	kstat_named_t arcstat_memory_direct_count;
843 	kstat_named_t arcstat_memory_indirect_count;
844 	kstat_named_t arcstat_memory_all_bytes;
845 	kstat_named_t arcstat_memory_free_bytes;
846 	kstat_named_t arcstat_memory_available_bytes;
847 	kstat_named_t arcstat_no_grow;
848 	kstat_named_t arcstat_tempreserve;
849 	kstat_named_t arcstat_loaned_bytes;
850 	kstat_named_t arcstat_prune;
851 	/* Not updated directly; only synced in arc_kstat_update. */
852 	kstat_named_t arcstat_meta_used;
853 	kstat_named_t arcstat_meta_limit;
854 	kstat_named_t arcstat_dnode_limit;
855 	kstat_named_t arcstat_meta_max;
856 	kstat_named_t arcstat_meta_min;
857 	kstat_named_t arcstat_async_upgrade_sync;
858 	kstat_named_t arcstat_demand_hit_predictive_prefetch;
859 	kstat_named_t arcstat_demand_hit_prescient_prefetch;
860 } arc_stats_t;
861 
862 static arc_stats_t arc_stats = {
863 	{ "hits",			KSTAT_DATA_UINT64 },
864 	{ "misses",			KSTAT_DATA_UINT64 },
865 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
866 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
867 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
868 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
869 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
870 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
871 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
872 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
873 	{ "mru_hits",			KSTAT_DATA_UINT64 },
874 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
875 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
876 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
877 	{ "allocated",			KSTAT_DATA_UINT64 },
878 	{ "deleted",			KSTAT_DATA_UINT64 },
879 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
880 	{ "access_skip",		KSTAT_DATA_UINT64 },
881 	{ "evict_skip",			KSTAT_DATA_UINT64 },
882 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
883 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
884 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
885 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
886 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
887 	{ "hash_elements",		KSTAT_DATA_UINT64 },
888 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
889 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
890 	{ "hash_chains",		KSTAT_DATA_UINT64 },
891 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
892 	{ "p",				KSTAT_DATA_UINT64 },
893 	{ "c",				KSTAT_DATA_UINT64 },
894 	{ "c_min",			KSTAT_DATA_UINT64 },
895 	{ "c_max",			KSTAT_DATA_UINT64 },
896 	{ "size",			KSTAT_DATA_UINT64 },
897 	{ "compressed_size",		KSTAT_DATA_UINT64 },
898 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
899 	{ "overhead_size",		KSTAT_DATA_UINT64 },
900 	{ "hdr_size",			KSTAT_DATA_UINT64 },
901 	{ "data_size",			KSTAT_DATA_UINT64 },
902 	{ "metadata_size",		KSTAT_DATA_UINT64 },
903 	{ "dbuf_size",			KSTAT_DATA_UINT64 },
904 	{ "dnode_size",			KSTAT_DATA_UINT64 },
905 	{ "bonus_size",			KSTAT_DATA_UINT64 },
906 #if defined(__FreeBSD__) && defined(COMPAT_FREEBSD11)
907 	{ "other_size",			KSTAT_DATA_UINT64 },
908 #endif
909 	{ "anon_size",			KSTAT_DATA_UINT64 },
910 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
911 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
912 	{ "mru_size",			KSTAT_DATA_UINT64 },
913 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
914 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
915 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
916 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
917 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
918 	{ "mfu_size",			KSTAT_DATA_UINT64 },
919 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
920 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
921 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
922 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
923 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
924 	{ "l2_hits",			KSTAT_DATA_UINT64 },
925 	{ "l2_misses",			KSTAT_DATA_UINT64 },
926 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
927 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
928 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
929 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
930 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
931 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
932 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
933 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
934 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
935 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
936 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
937 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
938 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
939 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
940 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
941 	{ "l2_size",			KSTAT_DATA_UINT64 },
942 	{ "l2_asize",			KSTAT_DATA_UINT64 },
943 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
944 	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
945 	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
946 	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
947 	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
948 	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
949 	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
950 	{ "l2_write_full",		KSTAT_DATA_UINT64 },
951 	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
952 	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
953 	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
954 	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
955 	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
956 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
957 	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
958 	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
959 	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
960 	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
961 	{ "memory_available_bytes",	KSTAT_DATA_UINT64 },
962 	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
963 	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
964 	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
965 	{ "arc_prune",			KSTAT_DATA_UINT64 },
966 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
967 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
968 	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
969 	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
970 	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
971 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
972 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
973 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
974 };
975 
976 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
977 
978 #define	ARCSTAT_INCR(stat, val) \
979 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
980 
981 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
982 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
983 
984 #define	ARCSTAT_MAX(stat, val) {					\
985 	uint64_t m;							\
986 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
987 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
988 		continue;						\
989 }
990 
991 #define	ARCSTAT_MAXSTAT(stat) \
992 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
993 
994 /*
995  * We define a macro to allow ARC hits/misses to be easily broken down by
996  * two separate conditions, giving a total of four different subtypes for
997  * each of hits and misses (so eight statistics total).
998  */
999 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
1000 	if (cond1) {							\
1001 		if (cond2) {						\
1002 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
1003 		} else {						\
1004 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
1005 		}							\
1006 	} else {							\
1007 		if (cond2) {						\
1008 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
1009 		} else {						\
1010 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
1011 		}							\
1012 	}
1013 
1014 kstat_t			*arc_ksp;
1015 static arc_state_t	*arc_anon;
1016 static arc_state_t	*arc_mru;
1017 static arc_state_t	*arc_mru_ghost;
1018 static arc_state_t	*arc_mfu;
1019 static arc_state_t	*arc_mfu_ghost;
1020 static arc_state_t	*arc_l2c_only;
1021 
1022 /*
1023  * There are several ARC variables that are critical to export as kstats --
1024  * but we don't want to have to grovel around in the kstat whenever we wish to
1025  * manipulate them.  For these variables, we therefore define them to be in
1026  * terms of the statistic variable.  This assures that we are not introducing
1027  * the possibility of inconsistency by having shadow copies of the variables,
1028  * while still allowing the code to be readable.
1029  */
1030 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
1031 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
1032 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
1033 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
1034 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
1035 #define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
1036 #define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
1037 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
1038 #define	arc_dbuf_size	ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
1039 #define	arc_dnode_size	ARCSTAT(arcstat_dnode_size) /* dnode metadata */
1040 #define	arc_bonus_size	ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
1041 
1042 /* compressed size of entire arc */
1043 #define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
1044 /* uncompressed size of entire arc */
1045 #define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
1046 /* number of bytes in the arc from arc_buf_t's */
1047 #define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
1048 
1049 /*
1050  * There are also some ARC variables that we want to export, but that are
1051  * updated so often that having the canonical representation be the statistic
1052  * variable causes a performance bottleneck. We want to use aggsum_t's for these
1053  * instead, but still be able to export the kstat in the same way as before.
1054  * The solution is to always use the aggsum version, except in the kstat update
1055  * callback.
1056  */
1057 aggsum_t arc_size;
1058 aggsum_t arc_meta_used;
1059 aggsum_t astat_data_size;
1060 aggsum_t astat_metadata_size;
1061 aggsum_t astat_hdr_size;
1062 aggsum_t astat_bonus_size;
1063 aggsum_t astat_dnode_size;
1064 aggsum_t astat_dbuf_size;
1065 aggsum_t astat_l2_hdr_size;
1066 
1067 static list_t arc_prune_list;
1068 static kmutex_t arc_prune_mtx;
1069 static taskq_t *arc_prune_taskq;
1070 
1071 static int		arc_no_grow;	/* Don't try to grow cache size */
1072 static hrtime_t		arc_growtime;
1073 static uint64_t		arc_tempreserve;
1074 static uint64_t		arc_loaned_bytes;
1075 
1076 typedef struct arc_callback arc_callback_t;
1077 
1078 struct arc_callback {
1079 	void			*acb_private;
1080 	arc_read_done_func_t	*acb_done;
1081 	arc_buf_t		*acb_buf;
1082 	boolean_t		acb_compressed;
1083 	zio_t			*acb_zio_dummy;
1084 	zio_t			*acb_zio_head;
1085 	arc_callback_t		*acb_next;
1086 };
1087 
1088 typedef struct arc_write_callback arc_write_callback_t;
1089 
1090 struct arc_write_callback {
1091 	void			*awcb_private;
1092 	arc_write_done_func_t	*awcb_ready;
1093 	arc_write_done_func_t	*awcb_children_ready;
1094 	arc_write_done_func_t	*awcb_physdone;
1095 	arc_write_done_func_t	*awcb_done;
1096 	arc_buf_t		*awcb_buf;
1097 };
1098 
1099 /*
1100  * ARC buffers are separated into multiple structs as a memory saving measure:
1101  *   - Common fields struct, always defined, and embedded within it:
1102  *       - L2-only fields, always allocated but undefined when not in L2ARC
1103  *       - L1-only fields, only allocated when in L1ARC
1104  *
1105  *           Buffer in L1                     Buffer only in L2
1106  *    +------------------------+          +------------------------+
1107  *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
1108  *    |                        |          |                        |
1109  *    |                        |          |                        |
1110  *    |                        |          |                        |
1111  *    +------------------------+          +------------------------+
1112  *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
1113  *    | (undefined if L1-only) |          |                        |
1114  *    +------------------------+          +------------------------+
1115  *    | l1arc_buf_hdr_t        |
1116  *    |                        |
1117  *    |                        |
1118  *    |                        |
1119  *    |                        |
1120  *    +------------------------+
1121  *
1122  * Because it's possible for the L2ARC to become extremely large, we can wind
1123  * up eating a lot of memory in L2ARC buffer headers, so the size of a header
1124  * is minimized by only allocating the fields necessary for an L1-cached buffer
1125  * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
1126  * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
1127  * words in pointers. arc_hdr_realloc() is used to switch a header between
1128  * these two allocation states.
1129  */
1130 typedef struct l1arc_buf_hdr {
1131 	kmutex_t		b_freeze_lock;
1132 	zio_cksum_t		*b_freeze_cksum;
1133 #ifdef ZFS_DEBUG
1134 	/*
1135 	 * Used for debugging with kmem_flags - by allocating and freeing
1136 	 * b_thawed when the buffer is thawed, we get a record of the stack
1137 	 * trace that thawed it.
1138 	 */
1139 	void			*b_thawed;
1140 #endif
1141 
1142 	arc_buf_t		*b_buf;
1143 	uint32_t		b_bufcnt;
1144 	/* for waiting on writes to complete */
1145 	kcondvar_t		b_cv;
1146 	uint8_t			b_byteswap;
1147 
1148 	/* protected by arc state mutex */
1149 	arc_state_t		*b_state;
1150 	multilist_node_t	b_arc_node;
1151 
1152 	/* updated atomically */
1153 	clock_t			b_arc_access;
1154 	uint32_t		b_mru_hits;
1155 	uint32_t		b_mru_ghost_hits;
1156 	uint32_t		b_mfu_hits;
1157 	uint32_t		b_mfu_ghost_hits;
1158 	uint32_t		b_l2_hits;
1159 
1160 	/* self protecting */
1161 	refcount_t		b_refcnt;
1162 
1163 	arc_callback_t		*b_acb;
1164 	abd_t			*b_pabd;
1165 } l1arc_buf_hdr_t;
1166 
1167 typedef struct l2arc_dev l2arc_dev_t;
1168 
1169 typedef struct l2arc_buf_hdr {
1170 	/* protected by arc_buf_hdr mutex */
1171 	l2arc_dev_t		*b_dev;		/* L2ARC device */
1172 	uint64_t		b_daddr;	/* disk address, offset byte */
1173 	uint32_t		b_hits;
1174 
1175 	list_node_t		b_l2node;
1176 } l2arc_buf_hdr_t;
1177 
1178 struct arc_buf_hdr {
1179 	/* protected by hash lock */
1180 	dva_t			b_dva;
1181 	uint64_t		b_birth;
1182 
1183 	arc_buf_contents_t	b_type;
1184 	arc_buf_hdr_t		*b_hash_next;
1185 	arc_flags_t		b_flags;
1186 
1187 	/*
1188 	 * This field stores the size of the data buffer after
1189 	 * compression, and is set in the arc's zio completion handlers.
1190 	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1191 	 *
1192 	 * While the block pointers can store up to 32MB in their psize
1193 	 * field, we can only store up to 32MB minus 512B. This is due
1194 	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1195 	 * a field of zeros represents 512B in the bp). We can't use a
1196 	 * bias of 1 since we need to reserve a psize of zero, here, to
1197 	 * represent holes and embedded blocks.
1198 	 *
1199 	 * This isn't a problem in practice, since the maximum size of a
1200 	 * buffer is limited to 16MB, so we never need to store 32MB in
1201 	 * this field. Even in the upstream illumos code base, the
1202 	 * maximum size of a buffer is limited to 16MB.
1203 	 */
1204 	uint16_t		b_psize;
1205 
1206 	/*
1207 	 * This field stores the size of the data buffer before
1208 	 * compression, and cannot change once set. It is in units
1209 	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1210 	 */
1211 	uint16_t		b_lsize;	/* immutable */
1212 	uint64_t		b_spa;		/* immutable */
1213 
1214 	/* L2ARC fields. Undefined when not in L2ARC. */
1215 	l2arc_buf_hdr_t		b_l2hdr;
1216 	/* L1ARC fields. Undefined when in l2arc_only state */
1217 	l1arc_buf_hdr_t		b_l1hdr;
1218 };
1219 
1220 #if defined(__FreeBSD__) && defined(_KERNEL)
1221 static int
sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)1222 sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1223 {
1224 	uint64_t val;
1225 	int err;
1226 
1227 	val = arc_meta_limit;
1228 	err = sysctl_handle_64(oidp, &val, 0, req);
1229 	if (err != 0 || req->newptr == NULL)
1230 		return (err);
1231 
1232         if (val <= 0 || val > arc_c_max)
1233 		return (EINVAL);
1234 
1235 	arc_meta_limit = val;
1236 
1237 	mutex_enter(&arc_adjust_lock);
1238 	arc_adjust_needed = B_TRUE;
1239 	mutex_exit(&arc_adjust_lock);
1240 	zthr_wakeup(arc_adjust_zthr);
1241 
1242 	return (0);
1243 }
1244 
1245 static int
sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS)1246 sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS)
1247 {
1248 	uint32_t val;
1249 	int err;
1250 
1251 	val = arc_no_grow_shift;
1252 	err = sysctl_handle_32(oidp, &val, 0, req);
1253 	if (err != 0 || req->newptr == NULL)
1254 		return (err);
1255 
1256         if (val >= arc_shrink_shift)
1257 		return (EINVAL);
1258 
1259 	arc_no_grow_shift = val;
1260 	return (0);
1261 }
1262 
1263 static int
sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)1264 sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1265 {
1266 	uint64_t val;
1267 	int err;
1268 
1269 	val = zfs_arc_max;
1270 	err = sysctl_handle_64(oidp, &val, 0, req);
1271 	if (err != 0 || req->newptr == NULL)
1272 		return (err);
1273 
1274 	if (zfs_arc_max == 0) {
1275 		/* Loader tunable so blindly set */
1276 		zfs_arc_max = val;
1277 		return (0);
1278 	}
1279 
1280 	if (val < arc_abs_min || val > kmem_size())
1281 		return (EINVAL);
1282 	if (val < arc_c_min)
1283 		return (EINVAL);
1284 	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1285 		return (EINVAL);
1286 
1287 	arc_c_max = val;
1288 
1289 	arc_c = arc_c_max;
1290         arc_p = (arc_c >> 1);
1291 
1292 	if (zfs_arc_meta_limit == 0) {
1293 		/* limit meta-data to 1/4 of the arc capacity */
1294 		arc_meta_limit = arc_c_max / 4;
1295 	}
1296 
1297 	/* if kmem_flags are set, lets try to use less memory */
1298 	if (kmem_debugging())
1299 		arc_c = arc_c / 2;
1300 
1301 	zfs_arc_max = arc_c;
1302 
1303 	mutex_enter(&arc_adjust_lock);
1304 	arc_adjust_needed = B_TRUE;
1305 	mutex_exit(&arc_adjust_lock);
1306 	zthr_wakeup(arc_adjust_zthr);
1307 
1308 	return (0);
1309 }
1310 
1311 static int
sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)1312 sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1313 {
1314 	uint64_t val;
1315 	int err;
1316 
1317 	val = zfs_arc_min;
1318 	err = sysctl_handle_64(oidp, &val, 0, req);
1319 	if (err != 0 || req->newptr == NULL)
1320 		return (err);
1321 
1322 	if (zfs_arc_min == 0) {
1323 		/* Loader tunable so blindly set */
1324 		zfs_arc_min = val;
1325 		return (0);
1326 	}
1327 
1328 	if (val < arc_abs_min || val > arc_c_max)
1329 		return (EINVAL);
1330 
1331 	arc_c_min = val;
1332 
1333 	if (zfs_arc_meta_min == 0)
1334                 arc_meta_min = arc_c_min / 2;
1335 
1336 	if (arc_c < arc_c_min)
1337                 arc_c = arc_c_min;
1338 
1339 	zfs_arc_min = arc_c_min;
1340 
1341 	return (0);
1342 }
1343 #endif
1344 
1345 #define	GHOST_STATE(state)	\
1346 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1347 	(state) == arc_l2c_only)
1348 
1349 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1350 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1351 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1352 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1353 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
1354 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
1355 #define	HDR_COMPRESSION_ENABLED(hdr)	\
1356 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1357 
1358 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1359 #define	HDR_L2_READING(hdr)	\
1360 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1361 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1362 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1363 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1364 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1365 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1366 
1367 #define	HDR_ISTYPE_METADATA(hdr)	\
1368 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1369 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1370 
1371 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1372 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1373 
1374 /* For storing compression mode in b_flags */
1375 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1376 
1377 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1378 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1379 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1380 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1381 
1382 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1383 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1384 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1385 
1386 /*
1387  * Other sizes
1388  */
1389 
1390 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1391 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1392 
1393 /*
1394  * Hash table routines
1395  */
1396 
1397 #define	HT_LOCK_PAD	CACHE_LINE_SIZE
1398 
1399 struct ht_lock {
1400 	kmutex_t	ht_lock;
1401 #ifdef _KERNEL
1402 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1403 #endif
1404 };
1405 
1406 #define	BUF_LOCKS 256
1407 typedef struct buf_hash_table {
1408 	uint64_t ht_mask;
1409 	arc_buf_hdr_t **ht_table;
1410 	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1411 } buf_hash_table_t;
1412 
1413 static buf_hash_table_t buf_hash_table;
1414 
1415 #define	BUF_HASH_INDEX(spa, dva, birth) \
1416 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1417 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1418 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1419 #define	HDR_LOCK(hdr) \
1420 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1421 
1422 uint64_t zfs_crc64_table[256];
1423 
1424 /*
1425  * Level 2 ARC
1426  */
1427 
1428 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1429 #define	L2ARC_HEADROOM		2			/* num of writes */
1430 /*
1431  * If we discover during ARC scan any buffers to be compressed, we boost
1432  * our headroom for the next scanning cycle by this percentage multiple.
1433  */
1434 #define	L2ARC_HEADROOM_BOOST	200
1435 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
1436 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1437 
1438 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1439 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1440 
1441 /* L2ARC Performance Tunables */
1442 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1443 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1444 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1445 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1446 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1447 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1448 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1449 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1450 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1451 
1452 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RWTUN,
1453     &l2arc_write_max, 0, "max write size");
1454 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RWTUN,
1455     &l2arc_write_boost, 0, "extra write during warmup");
1456 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RWTUN,
1457     &l2arc_headroom, 0, "number of dev writes");
1458 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RWTUN,
1459     &l2arc_feed_secs, 0, "interval seconds");
1460 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RWTUN,
1461     &l2arc_feed_min_ms, 0, "min interval milliseconds");
1462 
1463 SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RWTUN,
1464     &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1465 SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RWTUN,
1466     &l2arc_feed_again, 0, "turbo warmup");
1467 SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RWTUN,
1468     &l2arc_norw, 0, "no reads during writes");
1469 
1470 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1471     &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1472 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1473     &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1474     "size of anonymous state");
1475 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1476     &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1477     "size of anonymous state");
1478 
1479 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1480     &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1481 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1482     &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1483     "size of metadata in mru state");
1484 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1485     &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1486     "size of data in mru state");
1487 
1488 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1489     &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1490 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1491     &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1492     "size of metadata in mru ghost state");
1493 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1494     &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1495     "size of data in mru ghost state");
1496 
1497 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1498     &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1499 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1500     &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1501     "size of metadata in mfu state");
1502 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1503     &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1504     "size of data in mfu state");
1505 
1506 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1507     &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1508 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1509     &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1510     "size of metadata in mfu ghost state");
1511 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1512     &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1513     "size of data in mfu ghost state");
1514 
1515 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1516     &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1517 
1518 SYSCTL_UINT(_vfs_zfs, OID_AUTO, arc_min_prefetch_ms, CTLFLAG_RW,
1519     &zfs_arc_min_prefetch_ms, 0, "Min life of prefetch block in ms");
1520 SYSCTL_UINT(_vfs_zfs, OID_AUTO, arc_min_prescient_prefetch_ms, CTLFLAG_RW,
1521     &zfs_arc_min_prescient_prefetch_ms, 0, "Min life of prescient prefetched block in ms");
1522 
1523 /*
1524  * L2ARC Internals
1525  */
1526 struct l2arc_dev {
1527 	vdev_t			*l2ad_vdev;	/* vdev */
1528 	spa_t			*l2ad_spa;	/* spa */
1529 	uint64_t		l2ad_hand;	/* next write location */
1530 	uint64_t		l2ad_start;	/* first addr on device */
1531 	uint64_t		l2ad_end;	/* last addr on device */
1532 	boolean_t		l2ad_first;	/* first sweep through */
1533 	boolean_t		l2ad_writing;	/* currently writing */
1534 	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1535 	list_t			l2ad_buflist;	/* buffer list */
1536 	list_node_t		l2ad_node;	/* device list node */
1537 	refcount_t		l2ad_alloc;	/* allocated bytes */
1538 };
1539 
1540 static list_t L2ARC_dev_list;			/* device list */
1541 static list_t *l2arc_dev_list;			/* device list pointer */
1542 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1543 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1544 static list_t L2ARC_free_on_write;		/* free after write buf list */
1545 static list_t *l2arc_free_on_write;		/* free after write list ptr */
1546 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1547 static uint64_t l2arc_ndev;			/* number of devices */
1548 
1549 typedef struct l2arc_read_callback {
1550 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1551 	blkptr_t		l2rcb_bp;		/* original blkptr */
1552 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1553 	int			l2rcb_flags;		/* original flags */
1554 	abd_t			*l2rcb_abd;		/* temporary buffer */
1555 } l2arc_read_callback_t;
1556 
1557 typedef struct l2arc_write_callback {
1558 	l2arc_dev_t	*l2wcb_dev;		/* device info */
1559 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1560 } l2arc_write_callback_t;
1561 
1562 typedef struct l2arc_data_free {
1563 	/* protected by l2arc_free_on_write_mtx */
1564 	abd_t		*l2df_abd;
1565 	size_t		l2df_size;
1566 	arc_buf_contents_t l2df_type;
1567 	list_node_t	l2df_list_node;
1568 } l2arc_data_free_t;
1569 
1570 static kmutex_t l2arc_feed_thr_lock;
1571 static kcondvar_t l2arc_feed_thr_cv;
1572 static uint8_t l2arc_thread_exit;
1573 
1574 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
1575 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1576 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
1577 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1578 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1579 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1580 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1581 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, boolean_t);
1582 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1583 static boolean_t arc_is_overflowing();
1584 static void arc_buf_watch(arc_buf_t *);
1585 static void arc_prune_async(int64_t);
1586 
1587 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1588 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1589 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1590 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1591 
1592 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1593 static void l2arc_read_done(zio_t *);
1594 
1595 static void
l2arc_trim(const arc_buf_hdr_t * hdr)1596 l2arc_trim(const arc_buf_hdr_t *hdr)
1597 {
1598 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1599 
1600 	ASSERT(HDR_HAS_L2HDR(hdr));
1601 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1602 
1603 	if (HDR_GET_PSIZE(hdr) != 0) {
1604 		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1605 		    HDR_GET_PSIZE(hdr), 0);
1606 	}
1607 }
1608 
1609 /*
1610  * We use Cityhash for this. It's fast, and has good hash properties without
1611  * requiring any large static buffers.
1612  */
1613 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)1614 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1615 {
1616 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1617 }
1618 
1619 #define	HDR_EMPTY(hdr)						\
1620 	((hdr)->b_dva.dva_word[0] == 0 &&			\
1621 	(hdr)->b_dva.dva_word[1] == 0)
1622 
1623 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1624 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1625 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1626 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1627 
1628 static void
buf_discard_identity(arc_buf_hdr_t * hdr)1629 buf_discard_identity(arc_buf_hdr_t *hdr)
1630 {
1631 	hdr->b_dva.dva_word[0] = 0;
1632 	hdr->b_dva.dva_word[1] = 0;
1633 	hdr->b_birth = 0;
1634 }
1635 
1636 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)1637 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1638 {
1639 	const dva_t *dva = BP_IDENTITY(bp);
1640 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1641 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1642 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1643 	arc_buf_hdr_t *hdr;
1644 
1645 	mutex_enter(hash_lock);
1646 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1647 	    hdr = hdr->b_hash_next) {
1648 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1649 			*lockp = hash_lock;
1650 			return (hdr);
1651 		}
1652 	}
1653 	mutex_exit(hash_lock);
1654 	*lockp = NULL;
1655 	return (NULL);
1656 }
1657 
1658 /*
1659  * Insert an entry into the hash table.  If there is already an element
1660  * equal to elem in the hash table, then the already existing element
1661  * will be returned and the new element will not be inserted.
1662  * Otherwise returns NULL.
1663  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1664  */
1665 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1666 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1667 {
1668 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1669 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1670 	arc_buf_hdr_t *fhdr;
1671 	uint32_t i;
1672 
1673 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1674 	ASSERT(hdr->b_birth != 0);
1675 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1676 
1677 	if (lockp != NULL) {
1678 		*lockp = hash_lock;
1679 		mutex_enter(hash_lock);
1680 	} else {
1681 		ASSERT(MUTEX_HELD(hash_lock));
1682 	}
1683 
1684 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1685 	    fhdr = fhdr->b_hash_next, i++) {
1686 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1687 			return (fhdr);
1688 	}
1689 
1690 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1691 	buf_hash_table.ht_table[idx] = hdr;
1692 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1693 
1694 	/* collect some hash table performance data */
1695 	if (i > 0) {
1696 		ARCSTAT_BUMP(arcstat_hash_collisions);
1697 		if (i == 1)
1698 			ARCSTAT_BUMP(arcstat_hash_chains);
1699 
1700 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1701 	}
1702 
1703 	ARCSTAT_BUMP(arcstat_hash_elements);
1704 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1705 
1706 	return (NULL);
1707 }
1708 
1709 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1710 buf_hash_remove(arc_buf_hdr_t *hdr)
1711 {
1712 	arc_buf_hdr_t *fhdr, **hdrp;
1713 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1714 
1715 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1716 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1717 
1718 	hdrp = &buf_hash_table.ht_table[idx];
1719 	while ((fhdr = *hdrp) != hdr) {
1720 		ASSERT3P(fhdr, !=, NULL);
1721 		hdrp = &fhdr->b_hash_next;
1722 	}
1723 	*hdrp = hdr->b_hash_next;
1724 	hdr->b_hash_next = NULL;
1725 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1726 
1727 	/* collect some hash table performance data */
1728 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1729 
1730 	if (buf_hash_table.ht_table[idx] &&
1731 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1732 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1733 }
1734 
1735 /*
1736  * Global data structures and functions for the buf kmem cache.
1737  */
1738 static kmem_cache_t *hdr_full_cache;
1739 static kmem_cache_t *hdr_l2only_cache;
1740 static kmem_cache_t *buf_cache;
1741 
1742 static void
buf_fini(void)1743 buf_fini(void)
1744 {
1745 	int i;
1746 
1747 	kmem_free(buf_hash_table.ht_table,
1748 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1749 	for (i = 0; i < BUF_LOCKS; i++)
1750 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1751 	kmem_cache_destroy(hdr_full_cache);
1752 	kmem_cache_destroy(hdr_l2only_cache);
1753 	kmem_cache_destroy(buf_cache);
1754 }
1755 
1756 /*
1757  * Constructor callback - called when the cache is empty
1758  * and a new buf is requested.
1759  */
1760 /* ARGSUSED */
1761 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1762 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1763 {
1764 	arc_buf_hdr_t *hdr = vbuf;
1765 
1766 	bzero(hdr, HDR_FULL_SIZE);
1767 	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1768 	refcount_create(&hdr->b_l1hdr.b_refcnt);
1769 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1770 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1771 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1772 
1773 	return (0);
1774 }
1775 
1776 /* ARGSUSED */
1777 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1778 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1779 {
1780 	arc_buf_hdr_t *hdr = vbuf;
1781 
1782 	bzero(hdr, HDR_L2ONLY_SIZE);
1783 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1784 
1785 	return (0);
1786 }
1787 
1788 /* ARGSUSED */
1789 static int
buf_cons(void * vbuf,void * unused,int kmflag)1790 buf_cons(void *vbuf, void *unused, int kmflag)
1791 {
1792 	arc_buf_t *buf = vbuf;
1793 
1794 	bzero(buf, sizeof (arc_buf_t));
1795 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1796 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1797 
1798 	return (0);
1799 }
1800 
1801 /*
1802  * Destructor callback - called when a cached buf is
1803  * no longer required.
1804  */
1805 /* ARGSUSED */
1806 static void
hdr_full_dest(void * vbuf,void * unused)1807 hdr_full_dest(void *vbuf, void *unused)
1808 {
1809 	arc_buf_hdr_t *hdr = vbuf;
1810 
1811 	ASSERT(HDR_EMPTY(hdr));
1812 	cv_destroy(&hdr->b_l1hdr.b_cv);
1813 	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1814 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1815 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1816 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1817 }
1818 
1819 /* ARGSUSED */
1820 static void
hdr_l2only_dest(void * vbuf,void * unused)1821 hdr_l2only_dest(void *vbuf, void *unused)
1822 {
1823 	arc_buf_hdr_t *hdr = vbuf;
1824 
1825 	ASSERT(HDR_EMPTY(hdr));
1826 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1827 }
1828 
1829 /* ARGSUSED */
1830 static void
buf_dest(void * vbuf,void * unused)1831 buf_dest(void *vbuf, void *unused)
1832 {
1833 	arc_buf_t *buf = vbuf;
1834 
1835 	mutex_destroy(&buf->b_evict_lock);
1836 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1837 }
1838 
1839 /*
1840  * Reclaim callback -- invoked when memory is low.
1841  */
1842 /* ARGSUSED */
1843 static void
hdr_recl(void * unused)1844 hdr_recl(void *unused)
1845 {
1846 	dprintf("hdr_recl called\n");
1847 	/*
1848 	 * umem calls the reclaim func when we destroy the buf cache,
1849 	 * which is after we do arc_fini().
1850 	 */
1851 	if (arc_initialized)
1852 		zthr_wakeup(arc_reap_zthr);
1853 }
1854 
1855 static void
buf_init(void)1856 buf_init(void)
1857 {
1858 	uint64_t *ct;
1859 	uint64_t hsize = 1ULL << 12;
1860 	int i, j;
1861 
1862 	/*
1863 	 * The hash table is big enough to fill all of physical memory
1864 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1865 	 * By default, the table will take up
1866 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1867 	 */
1868 	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1869 		hsize <<= 1;
1870 retry:
1871 	buf_hash_table.ht_mask = hsize - 1;
1872 	buf_hash_table.ht_table =
1873 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1874 	if (buf_hash_table.ht_table == NULL) {
1875 		ASSERT(hsize > (1ULL << 8));
1876 		hsize >>= 1;
1877 		goto retry;
1878 	}
1879 
1880 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1881 	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1882 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1883 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1884 	    NULL, NULL, 0);
1885 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1886 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1887 
1888 	for (i = 0; i < 256; i++)
1889 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1890 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1891 
1892 	for (i = 0; i < BUF_LOCKS; i++) {
1893 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1894 		    NULL, MUTEX_DEFAULT, NULL);
1895 	}
1896 }
1897 
1898 /*
1899  * This is the size that the buf occupies in memory. If the buf is compressed,
1900  * it will correspond to the compressed size. You should use this method of
1901  * getting the buf size unless you explicitly need the logical size.
1902  */
1903 int32_t
arc_buf_size(arc_buf_t * buf)1904 arc_buf_size(arc_buf_t *buf)
1905 {
1906 	return (ARC_BUF_COMPRESSED(buf) ?
1907 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1908 }
1909 
1910 int32_t
arc_buf_lsize(arc_buf_t * buf)1911 arc_buf_lsize(arc_buf_t *buf)
1912 {
1913 	return (HDR_GET_LSIZE(buf->b_hdr));
1914 }
1915 
1916 enum zio_compress
arc_get_compression(arc_buf_t * buf)1917 arc_get_compression(arc_buf_t *buf)
1918 {
1919 	return (ARC_BUF_COMPRESSED(buf) ?
1920 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1921 }
1922 
1923 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1924 
1925 static inline boolean_t
arc_buf_is_shared(arc_buf_t * buf)1926 arc_buf_is_shared(arc_buf_t *buf)
1927 {
1928 	boolean_t shared = (buf->b_data != NULL &&
1929 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1930 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1931 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1932 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1933 	IMPLY(shared, ARC_BUF_SHARED(buf));
1934 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1935 
1936 	/*
1937 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1938 	 * already being shared" requirement prevents us from doing that.
1939 	 */
1940 
1941 	return (shared);
1942 }
1943 
1944 /*
1945  * Free the checksum associated with this header. If there is no checksum, this
1946  * is a no-op.
1947  */
1948 static inline void
arc_cksum_free(arc_buf_hdr_t * hdr)1949 arc_cksum_free(arc_buf_hdr_t *hdr)
1950 {
1951 	ASSERT(HDR_HAS_L1HDR(hdr));
1952 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1953 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1954 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1955 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1956 	}
1957 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1958 }
1959 
1960 /*
1961  * Return true iff at least one of the bufs on hdr is not compressed.
1962  */
1963 static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t * hdr)1964 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1965 {
1966 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1967 		if (!ARC_BUF_COMPRESSED(b)) {
1968 			return (B_TRUE);
1969 		}
1970 	}
1971 	return (B_FALSE);
1972 }
1973 
1974 /*
1975  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1976  * matches the checksum that is stored in the hdr. If there is no checksum,
1977  * or if the buf is compressed, this is a no-op.
1978  */
1979 static void
arc_cksum_verify(arc_buf_t * buf)1980 arc_cksum_verify(arc_buf_t *buf)
1981 {
1982 	arc_buf_hdr_t *hdr = buf->b_hdr;
1983 	zio_cksum_t zc;
1984 
1985 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1986 		return;
1987 
1988 	if (ARC_BUF_COMPRESSED(buf)) {
1989 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1990 		    arc_hdr_has_uncompressed_buf(hdr));
1991 		return;
1992 	}
1993 
1994 	ASSERT(HDR_HAS_L1HDR(hdr));
1995 
1996 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1997 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1998 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1999 		return;
2000 	}
2001 
2002 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
2003 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
2004 		panic("buffer modified while frozen!");
2005 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2006 }
2007 
2008 static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t * hdr,zio_t * zio)2009 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
2010 {
2011 	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
2012 	boolean_t valid_cksum;
2013 
2014 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
2015 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
2016 
2017 	/*
2018 	 * We rely on the blkptr's checksum to determine if the block
2019 	 * is valid or not. When compressed arc is enabled, the l2arc
2020 	 * writes the block to the l2arc just as it appears in the pool.
2021 	 * This allows us to use the blkptr's checksum to validate the
2022 	 * data that we just read off of the l2arc without having to store
2023 	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
2024 	 * arc is disabled, then the data written to the l2arc is always
2025 	 * uncompressed and won't match the block as it exists in the main
2026 	 * pool. When this is the case, we must first compress it if it is
2027 	 * compressed on the main pool before we can validate the checksum.
2028 	 */
2029 	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
2030 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2031 		uint64_t lsize = HDR_GET_LSIZE(hdr);
2032 		uint64_t csize;
2033 
2034 		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
2035 		csize = zio_compress_data(compress, zio->io_abd,
2036 		    abd_to_buf(cdata), lsize);
2037 
2038 		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
2039 		if (csize < HDR_GET_PSIZE(hdr)) {
2040 			/*
2041 			 * Compressed blocks are always a multiple of the
2042 			 * smallest ashift in the pool. Ideally, we would
2043 			 * like to round up the csize to the next
2044 			 * spa_min_ashift but that value may have changed
2045 			 * since the block was last written. Instead,
2046 			 * we rely on the fact that the hdr's psize
2047 			 * was set to the psize of the block when it was
2048 			 * last written. We set the csize to that value
2049 			 * and zero out any part that should not contain
2050 			 * data.
2051 			 */
2052 			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
2053 			csize = HDR_GET_PSIZE(hdr);
2054 		}
2055 		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
2056 	}
2057 
2058 	/*
2059 	 * Block pointers always store the checksum for the logical data.
2060 	 * If the block pointer has the gang bit set, then the checksum
2061 	 * it represents is for the reconstituted data and not for an
2062 	 * individual gang member. The zio pipeline, however, must be able to
2063 	 * determine the checksum of each of the gang constituents so it
2064 	 * treats the checksum comparison differently than what we need
2065 	 * for l2arc blocks. This prevents us from using the
2066 	 * zio_checksum_error() interface directly. Instead we must call the
2067 	 * zio_checksum_error_impl() so that we can ensure the checksum is
2068 	 * generated using the correct checksum algorithm and accounts for the
2069 	 * logical I/O size and not just a gang fragment.
2070 	 */
2071 	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
2072 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
2073 	    zio->io_offset, NULL) == 0);
2074 	zio_pop_transforms(zio);
2075 	return (valid_cksum);
2076 }
2077 
2078 /*
2079  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
2080  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
2081  * isn't modified later on. If buf is compressed or there is already a checksum
2082  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
2083  */
2084 static void
arc_cksum_compute(arc_buf_t * buf)2085 arc_cksum_compute(arc_buf_t *buf)
2086 {
2087 	arc_buf_hdr_t *hdr = buf->b_hdr;
2088 
2089 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
2090 		return;
2091 
2092 	ASSERT(HDR_HAS_L1HDR(hdr));
2093 
2094 	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
2095 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
2096 		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
2097 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2098 		return;
2099 	} else if (ARC_BUF_COMPRESSED(buf)) {
2100 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2101 		return;
2102 	}
2103 
2104 	ASSERT(!ARC_BUF_COMPRESSED(buf));
2105 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
2106 	    KM_SLEEP);
2107 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
2108 	    hdr->b_l1hdr.b_freeze_cksum);
2109 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2110 #ifdef illumos
2111 	arc_buf_watch(buf);
2112 #endif
2113 }
2114 
2115 #ifdef illumos
2116 #ifndef _KERNEL
2117 typedef struct procctl {
2118 	long cmd;
2119 	prwatch_t prwatch;
2120 } procctl_t;
2121 #endif
2122 
2123 /* ARGSUSED */
2124 static void
arc_buf_unwatch(arc_buf_t * buf)2125 arc_buf_unwatch(arc_buf_t *buf)
2126 {
2127 #ifndef _KERNEL
2128 	if (arc_watch) {
2129 		int result;
2130 		procctl_t ctl;
2131 		ctl.cmd = PCWATCH;
2132 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
2133 		ctl.prwatch.pr_size = 0;
2134 		ctl.prwatch.pr_wflags = 0;
2135 		result = write(arc_procfd, &ctl, sizeof (ctl));
2136 		ASSERT3U(result, ==, sizeof (ctl));
2137 	}
2138 #endif
2139 }
2140 
2141 /* ARGSUSED */
2142 static void
arc_buf_watch(arc_buf_t * buf)2143 arc_buf_watch(arc_buf_t *buf)
2144 {
2145 #ifndef _KERNEL
2146 	if (arc_watch) {
2147 		int result;
2148 		procctl_t ctl;
2149 		ctl.cmd = PCWATCH;
2150 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
2151 		ctl.prwatch.pr_size = arc_buf_size(buf);
2152 		ctl.prwatch.pr_wflags = WA_WRITE;
2153 		result = write(arc_procfd, &ctl, sizeof (ctl));
2154 		ASSERT3U(result, ==, sizeof (ctl));
2155 	}
2156 #endif
2157 }
2158 #endif /* illumos */
2159 
2160 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)2161 arc_buf_type(arc_buf_hdr_t *hdr)
2162 {
2163 	arc_buf_contents_t type;
2164 	if (HDR_ISTYPE_METADATA(hdr)) {
2165 		type = ARC_BUFC_METADATA;
2166 	} else {
2167 		type = ARC_BUFC_DATA;
2168 	}
2169 	VERIFY3U(hdr->b_type, ==, type);
2170 	return (type);
2171 }
2172 
2173 boolean_t
arc_is_metadata(arc_buf_t * buf)2174 arc_is_metadata(arc_buf_t *buf)
2175 {
2176 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
2177 }
2178 
2179 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)2180 arc_bufc_to_flags(arc_buf_contents_t type)
2181 {
2182 	switch (type) {
2183 	case ARC_BUFC_DATA:
2184 		/* metadata field is 0 if buffer contains normal data */
2185 		return (0);
2186 	case ARC_BUFC_METADATA:
2187 		return (ARC_FLAG_BUFC_METADATA);
2188 	default:
2189 		break;
2190 	}
2191 	panic("undefined ARC buffer type!");
2192 	return ((uint32_t)-1);
2193 }
2194 
2195 void
arc_buf_thaw(arc_buf_t * buf)2196 arc_buf_thaw(arc_buf_t *buf)
2197 {
2198 	arc_buf_hdr_t *hdr = buf->b_hdr;
2199 
2200 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2201 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2202 
2203 	arc_cksum_verify(buf);
2204 
2205 	/*
2206 	 * Compressed buffers do not manipulate the b_freeze_cksum or
2207 	 * allocate b_thawed.
2208 	 */
2209 	if (ARC_BUF_COMPRESSED(buf)) {
2210 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2211 		    arc_hdr_has_uncompressed_buf(hdr));
2212 		return;
2213 	}
2214 
2215 	ASSERT(HDR_HAS_L1HDR(hdr));
2216 	arc_cksum_free(hdr);
2217 
2218 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
2219 #ifdef ZFS_DEBUG
2220 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
2221 		if (hdr->b_l1hdr.b_thawed != NULL)
2222 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2223 		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
2224 	}
2225 #endif
2226 
2227 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2228 
2229 #ifdef illumos
2230 	arc_buf_unwatch(buf);
2231 #endif
2232 }
2233 
2234 void
arc_buf_freeze(arc_buf_t * buf)2235 arc_buf_freeze(arc_buf_t *buf)
2236 {
2237 	arc_buf_hdr_t *hdr = buf->b_hdr;
2238 	kmutex_t *hash_lock;
2239 
2240 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
2241 		return;
2242 
2243 	if (ARC_BUF_COMPRESSED(buf)) {
2244 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2245 		    arc_hdr_has_uncompressed_buf(hdr));
2246 		return;
2247 	}
2248 
2249 	hash_lock = HDR_LOCK(hdr);
2250 	mutex_enter(hash_lock);
2251 
2252 	ASSERT(HDR_HAS_L1HDR(hdr));
2253 	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
2254 	    hdr->b_l1hdr.b_state == arc_anon);
2255 	arc_cksum_compute(buf);
2256 	mutex_exit(hash_lock);
2257 }
2258 
2259 /*
2260  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
2261  * the following functions should be used to ensure that the flags are
2262  * updated in a thread-safe way. When manipulating the flags either
2263  * the hash_lock must be held or the hdr must be undiscoverable. This
2264  * ensures that we're not racing with any other threads when updating
2265  * the flags.
2266  */
2267 static inline void
arc_hdr_set_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)2268 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2269 {
2270 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2271 	hdr->b_flags |= flags;
2272 }
2273 
2274 static inline void
arc_hdr_clear_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)2275 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2276 {
2277 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2278 	hdr->b_flags &= ~flags;
2279 }
2280 
2281 /*
2282  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
2283  * done in a special way since we have to clear and set bits
2284  * at the same time. Consumers that wish to set the compression bits
2285  * must use this function to ensure that the flags are updated in
2286  * thread-safe manner.
2287  */
2288 static void
arc_hdr_set_compress(arc_buf_hdr_t * hdr,enum zio_compress cmp)2289 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
2290 {
2291 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2292 
2293 	/*
2294 	 * Holes and embedded blocks will always have a psize = 0 so
2295 	 * we ignore the compression of the blkptr and set the
2296 	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
2297 	 * Holes and embedded blocks remain anonymous so we don't
2298 	 * want to uncompress them. Mark them as uncompressed.
2299 	 */
2300 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
2301 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2302 		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
2303 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
2304 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2305 	} else {
2306 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2307 		HDR_SET_COMPRESS(hdr, cmp);
2308 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
2309 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
2310 	}
2311 }
2312 
2313 /*
2314  * Looks for another buf on the same hdr which has the data decompressed, copies
2315  * from it, and returns true. If no such buf exists, returns false.
2316  */
2317 static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t * buf)2318 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
2319 {
2320 	arc_buf_hdr_t *hdr = buf->b_hdr;
2321 	boolean_t copied = B_FALSE;
2322 
2323 	ASSERT(HDR_HAS_L1HDR(hdr));
2324 	ASSERT3P(buf->b_data, !=, NULL);
2325 	ASSERT(!ARC_BUF_COMPRESSED(buf));
2326 
2327 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
2328 	    from = from->b_next) {
2329 		/* can't use our own data buffer */
2330 		if (from == buf) {
2331 			continue;
2332 		}
2333 
2334 		if (!ARC_BUF_COMPRESSED(from)) {
2335 			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
2336 			copied = B_TRUE;
2337 			break;
2338 		}
2339 	}
2340 
2341 	/*
2342 	 * There were no decompressed bufs, so there should not be a
2343 	 * checksum on the hdr either.
2344 	 */
2345 	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
2346 
2347 	return (copied);
2348 }
2349 
2350 /*
2351  * Given a buf that has a data buffer attached to it, this function will
2352  * efficiently fill the buf with data of the specified compression setting from
2353  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2354  * are already sharing a data buf, no copy is performed.
2355  *
2356  * If the buf is marked as compressed but uncompressed data was requested, this
2357  * will allocate a new data buffer for the buf, remove that flag, and fill the
2358  * buf with uncompressed data. You can't request a compressed buf on a hdr with
2359  * uncompressed data, and (since we haven't added support for it yet) if you
2360  * want compressed data your buf must already be marked as compressed and have
2361  * the correct-sized data buffer.
2362  */
2363 static int
arc_buf_fill(arc_buf_t * buf,boolean_t compressed)2364 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
2365 {
2366 	arc_buf_hdr_t *hdr = buf->b_hdr;
2367 	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2368 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2369 
2370 	ASSERT3P(buf->b_data, !=, NULL);
2371 	IMPLY(compressed, hdr_compressed);
2372 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2373 
2374 	if (hdr_compressed == compressed) {
2375 		if (!arc_buf_is_shared(buf)) {
2376 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2377 			    arc_buf_size(buf));
2378 		}
2379 	} else {
2380 		ASSERT(hdr_compressed);
2381 		ASSERT(!compressed);
2382 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2383 
2384 		/*
2385 		 * If the buf is sharing its data with the hdr, unlink it and
2386 		 * allocate a new data buffer for the buf.
2387 		 */
2388 		if (arc_buf_is_shared(buf)) {
2389 			ASSERT(ARC_BUF_COMPRESSED(buf));
2390 
2391 			/* We need to give the buf it's own b_data */
2392 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2393 			buf->b_data =
2394 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2395 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2396 
2397 			/* Previously overhead was 0; just add new overhead */
2398 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2399 		} else if (ARC_BUF_COMPRESSED(buf)) {
2400 			/* We need to reallocate the buf's b_data */
2401 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2402 			    buf);
2403 			buf->b_data =
2404 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2405 
2406 			/* We increased the size of b_data; update overhead */
2407 			ARCSTAT_INCR(arcstat_overhead_size,
2408 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2409 		}
2410 
2411 		/*
2412 		 * Regardless of the buf's previous compression settings, it
2413 		 * should not be compressed at the end of this function.
2414 		 */
2415 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2416 
2417 		/*
2418 		 * Try copying the data from another buf which already has a
2419 		 * decompressed version. If that's not possible, it's time to
2420 		 * bite the bullet and decompress the data from the hdr.
2421 		 */
2422 		if (arc_buf_try_copy_decompressed_data(buf)) {
2423 			/* Skip byteswapping and checksumming (already done) */
2424 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2425 			return (0);
2426 		} else {
2427 			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2428 			    hdr->b_l1hdr.b_pabd, buf->b_data,
2429 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2430 
2431 			/*
2432 			 * Absent hardware errors or software bugs, this should
2433 			 * be impossible, but log it anyway so we can debug it.
2434 			 */
2435 			if (error != 0) {
2436 				zfs_dbgmsg(
2437 				    "hdr %p, compress %d, psize %d, lsize %d",
2438 				    hdr, HDR_GET_COMPRESS(hdr),
2439 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2440 				return (SET_ERROR(EIO));
2441 			}
2442 		}
2443 	}
2444 
2445 	/* Byteswap the buf's data if necessary */
2446 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2447 		ASSERT(!HDR_SHARED_DATA(hdr));
2448 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2449 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2450 	}
2451 
2452 	/* Compute the hdr's checksum if necessary */
2453 	arc_cksum_compute(buf);
2454 
2455 	return (0);
2456 }
2457 
2458 int
arc_decompress(arc_buf_t * buf)2459 arc_decompress(arc_buf_t *buf)
2460 {
2461 	return (arc_buf_fill(buf, B_FALSE));
2462 }
2463 
2464 /*
2465  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2466  */
2467 static uint64_t
arc_hdr_size(arc_buf_hdr_t * hdr)2468 arc_hdr_size(arc_buf_hdr_t *hdr)
2469 {
2470 	uint64_t size;
2471 
2472 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2473 	    HDR_GET_PSIZE(hdr) > 0) {
2474 		size = HDR_GET_PSIZE(hdr);
2475 	} else {
2476 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2477 		size = HDR_GET_LSIZE(hdr);
2478 	}
2479 	return (size);
2480 }
2481 
2482 /*
2483  * Increment the amount of evictable space in the arc_state_t's refcount.
2484  * We account for the space used by the hdr and the arc buf individually
2485  * so that we can add and remove them from the refcount individually.
2486  */
2487 static void
arc_evictable_space_increment(arc_buf_hdr_t * hdr,arc_state_t * state)2488 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2489 {
2490 	arc_buf_contents_t type = arc_buf_type(hdr);
2491 
2492 	ASSERT(HDR_HAS_L1HDR(hdr));
2493 
2494 	if (GHOST_STATE(state)) {
2495 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2496 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2497 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2498 		(void) refcount_add_many(&state->arcs_esize[type],
2499 		    HDR_GET_LSIZE(hdr), hdr);
2500 		return;
2501 	}
2502 
2503 	ASSERT(!GHOST_STATE(state));
2504 	if (hdr->b_l1hdr.b_pabd != NULL) {
2505 		(void) refcount_add_many(&state->arcs_esize[type],
2506 		    arc_hdr_size(hdr), hdr);
2507 	}
2508 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2509 	    buf = buf->b_next) {
2510 		if (arc_buf_is_shared(buf))
2511 			continue;
2512 		(void) refcount_add_many(&state->arcs_esize[type],
2513 		    arc_buf_size(buf), buf);
2514 	}
2515 }
2516 
2517 /*
2518  * Decrement the amount of evictable space in the arc_state_t's refcount.
2519  * We account for the space used by the hdr and the arc buf individually
2520  * so that we can add and remove them from the refcount individually.
2521  */
2522 static void
arc_evictable_space_decrement(arc_buf_hdr_t * hdr,arc_state_t * state)2523 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2524 {
2525 	arc_buf_contents_t type = arc_buf_type(hdr);
2526 
2527 	ASSERT(HDR_HAS_L1HDR(hdr));
2528 
2529 	if (GHOST_STATE(state)) {
2530 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2531 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2532 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2533 		(void) refcount_remove_many(&state->arcs_esize[type],
2534 		    HDR_GET_LSIZE(hdr), hdr);
2535 		return;
2536 	}
2537 
2538 	ASSERT(!GHOST_STATE(state));
2539 	if (hdr->b_l1hdr.b_pabd != NULL) {
2540 		(void) refcount_remove_many(&state->arcs_esize[type],
2541 		    arc_hdr_size(hdr), hdr);
2542 	}
2543 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2544 	    buf = buf->b_next) {
2545 		if (arc_buf_is_shared(buf))
2546 			continue;
2547 		(void) refcount_remove_many(&state->arcs_esize[type],
2548 		    arc_buf_size(buf), buf);
2549 	}
2550 }
2551 
2552 /*
2553  * Add a reference to this hdr indicating that someone is actively
2554  * referencing that memory. When the refcount transitions from 0 to 1,
2555  * we remove it from the respective arc_state_t list to indicate that
2556  * it is not evictable.
2557  */
2558 static void
add_reference(arc_buf_hdr_t * hdr,void * tag)2559 add_reference(arc_buf_hdr_t *hdr, void *tag)
2560 {
2561 	ASSERT(HDR_HAS_L1HDR(hdr));
2562 	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2563 		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2564 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2565 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2566 	}
2567 
2568 	arc_state_t *state = hdr->b_l1hdr.b_state;
2569 
2570 	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2571 	    (state != arc_anon)) {
2572 		/* We don't use the L2-only state list. */
2573 		if (state != arc_l2c_only) {
2574 			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2575 			    hdr);
2576 			arc_evictable_space_decrement(hdr, state);
2577 		}
2578 		/* remove the prefetch flag if we get a reference */
2579 		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2580 	}
2581 }
2582 
2583 /*
2584  * Remove a reference from this hdr. When the reference transitions from
2585  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2586  * list making it eligible for eviction.
2587  */
2588 static int
remove_reference(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,void * tag)2589 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2590 {
2591 	int cnt;
2592 	arc_state_t *state = hdr->b_l1hdr.b_state;
2593 
2594 	ASSERT(HDR_HAS_L1HDR(hdr));
2595 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2596 	ASSERT(!GHOST_STATE(state));
2597 
2598 	/*
2599 	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2600 	 * check to prevent usage of the arc_l2c_only list.
2601 	 */
2602 	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2603 	    (state != arc_anon)) {
2604 		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2605 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2606 		arc_evictable_space_increment(hdr, state);
2607 	}
2608 	return (cnt);
2609 }
2610 
2611 /*
2612  * Returns detailed information about a specific arc buffer.  When the
2613  * state_index argument is set the function will calculate the arc header
2614  * list position for its arc state.  Since this requires a linear traversal
2615  * callers are strongly encourage not to do this.  However, it can be helpful
2616  * for targeted analysis so the functionality is provided.
2617  */
2618 void
arc_buf_info(arc_buf_t * ab,arc_buf_info_t * abi,int state_index)2619 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2620 {
2621 	arc_buf_hdr_t *hdr = ab->b_hdr;
2622 	l1arc_buf_hdr_t *l1hdr = NULL;
2623 	l2arc_buf_hdr_t *l2hdr = NULL;
2624 	arc_state_t *state = NULL;
2625 
2626 	memset(abi, 0, sizeof (arc_buf_info_t));
2627 
2628 	if (hdr == NULL)
2629 		return;
2630 
2631 	abi->abi_flags = hdr->b_flags;
2632 
2633 	if (HDR_HAS_L1HDR(hdr)) {
2634 		l1hdr = &hdr->b_l1hdr;
2635 		state = l1hdr->b_state;
2636 	}
2637 	if (HDR_HAS_L2HDR(hdr))
2638 		l2hdr = &hdr->b_l2hdr;
2639 
2640 	if (l1hdr) {
2641 		abi->abi_bufcnt = l1hdr->b_bufcnt;
2642 		abi->abi_access = l1hdr->b_arc_access;
2643 		abi->abi_mru_hits = l1hdr->b_mru_hits;
2644 		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2645 		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2646 		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2647 		abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2648 	}
2649 
2650 	if (l2hdr) {
2651 		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2652 		abi->abi_l2arc_hits = l2hdr->b_hits;
2653 	}
2654 
2655 	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2656 	abi->abi_state_contents = arc_buf_type(hdr);
2657 	abi->abi_size = arc_hdr_size(hdr);
2658 }
2659 
2660 /*
2661  * Move the supplied buffer to the indicated state. The hash lock
2662  * for the buffer must be held by the caller.
2663  */
2664 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr,kmutex_t * hash_lock)2665 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2666     kmutex_t *hash_lock)
2667 {
2668 	arc_state_t *old_state;
2669 	int64_t refcnt;
2670 	uint32_t bufcnt;
2671 	boolean_t update_old, update_new;
2672 	arc_buf_contents_t buftype = arc_buf_type(hdr);
2673 
2674 	/*
2675 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2676 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2677 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2678 	 * destroying a header, in which case reallocating to add the L1 hdr is
2679 	 * pointless.
2680 	 */
2681 	if (HDR_HAS_L1HDR(hdr)) {
2682 		old_state = hdr->b_l1hdr.b_state;
2683 		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2684 		bufcnt = hdr->b_l1hdr.b_bufcnt;
2685 		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2686 	} else {
2687 		old_state = arc_l2c_only;
2688 		refcnt = 0;
2689 		bufcnt = 0;
2690 		update_old = B_FALSE;
2691 	}
2692 	update_new = update_old;
2693 
2694 	ASSERT(MUTEX_HELD(hash_lock));
2695 	ASSERT3P(new_state, !=, old_state);
2696 	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2697 	ASSERT(old_state != arc_anon || bufcnt <= 1);
2698 
2699 	/*
2700 	 * If this buffer is evictable, transfer it from the
2701 	 * old state list to the new state list.
2702 	 */
2703 	if (refcnt == 0) {
2704 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2705 			ASSERT(HDR_HAS_L1HDR(hdr));
2706 			multilist_remove(old_state->arcs_list[buftype], hdr);
2707 
2708 			if (GHOST_STATE(old_state)) {
2709 				ASSERT0(bufcnt);
2710 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2711 				update_old = B_TRUE;
2712 			}
2713 			arc_evictable_space_decrement(hdr, old_state);
2714 		}
2715 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2716 
2717 			/*
2718 			 * An L1 header always exists here, since if we're
2719 			 * moving to some L1-cached state (i.e. not l2c_only or
2720 			 * anonymous), we realloc the header to add an L1hdr
2721 			 * beforehand.
2722 			 */
2723 			ASSERT(HDR_HAS_L1HDR(hdr));
2724 			multilist_insert(new_state->arcs_list[buftype], hdr);
2725 
2726 			if (GHOST_STATE(new_state)) {
2727 				ASSERT0(bufcnt);
2728 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2729 				update_new = B_TRUE;
2730 			}
2731 			arc_evictable_space_increment(hdr, new_state);
2732 		}
2733 	}
2734 
2735 	ASSERT(!HDR_EMPTY(hdr));
2736 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2737 		buf_hash_remove(hdr);
2738 
2739 	/* adjust state sizes (ignore arc_l2c_only) */
2740 
2741 	if (update_new && new_state != arc_l2c_only) {
2742 		ASSERT(HDR_HAS_L1HDR(hdr));
2743 		if (GHOST_STATE(new_state)) {
2744 			ASSERT0(bufcnt);
2745 
2746 			/*
2747 			 * When moving a header to a ghost state, we first
2748 			 * remove all arc buffers. Thus, we'll have a
2749 			 * bufcnt of zero, and no arc buffer to use for
2750 			 * the reference. As a result, we use the arc
2751 			 * header pointer for the reference.
2752 			 */
2753 			(void) refcount_add_many(&new_state->arcs_size,
2754 			    HDR_GET_LSIZE(hdr), hdr);
2755 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2756 		} else {
2757 			uint32_t buffers = 0;
2758 
2759 			/*
2760 			 * Each individual buffer holds a unique reference,
2761 			 * thus we must remove each of these references one
2762 			 * at a time.
2763 			 */
2764 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2765 			    buf = buf->b_next) {
2766 				ASSERT3U(bufcnt, !=, 0);
2767 				buffers++;
2768 
2769 				/*
2770 				 * When the arc_buf_t is sharing the data
2771 				 * block with the hdr, the owner of the
2772 				 * reference belongs to the hdr. Only
2773 				 * add to the refcount if the arc_buf_t is
2774 				 * not shared.
2775 				 */
2776 				if (arc_buf_is_shared(buf))
2777 					continue;
2778 
2779 				(void) refcount_add_many(&new_state->arcs_size,
2780 				    arc_buf_size(buf), buf);
2781 			}
2782 			ASSERT3U(bufcnt, ==, buffers);
2783 
2784 			if (hdr->b_l1hdr.b_pabd != NULL) {
2785 				(void) refcount_add_many(&new_state->arcs_size,
2786 				    arc_hdr_size(hdr), hdr);
2787 			} else {
2788 				ASSERT(GHOST_STATE(old_state));
2789 			}
2790 		}
2791 	}
2792 
2793 	if (update_old && old_state != arc_l2c_only) {
2794 		ASSERT(HDR_HAS_L1HDR(hdr));
2795 		if (GHOST_STATE(old_state)) {
2796 			ASSERT0(bufcnt);
2797 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2798 
2799 			/*
2800 			 * When moving a header off of a ghost state,
2801 			 * the header will not contain any arc buffers.
2802 			 * We use the arc header pointer for the reference
2803 			 * which is exactly what we did when we put the
2804 			 * header on the ghost state.
2805 			 */
2806 
2807 			(void) refcount_remove_many(&old_state->arcs_size,
2808 			    HDR_GET_LSIZE(hdr), hdr);
2809 		} else {
2810 			uint32_t buffers = 0;
2811 
2812 			/*
2813 			 * Each individual buffer holds a unique reference,
2814 			 * thus we must remove each of these references one
2815 			 * at a time.
2816 			 */
2817 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2818 			    buf = buf->b_next) {
2819 				ASSERT3U(bufcnt, !=, 0);
2820 				buffers++;
2821 
2822 				/*
2823 				 * When the arc_buf_t is sharing the data
2824 				 * block with the hdr, the owner of the
2825 				 * reference belongs to the hdr. Only
2826 				 * add to the refcount if the arc_buf_t is
2827 				 * not shared.
2828 				 */
2829 				if (arc_buf_is_shared(buf))
2830 					continue;
2831 
2832 				(void) refcount_remove_many(
2833 				    &old_state->arcs_size, arc_buf_size(buf),
2834 				    buf);
2835 			}
2836 			ASSERT3U(bufcnt, ==, buffers);
2837 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2838 			(void) refcount_remove_many(
2839 			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2840 		}
2841 	}
2842 
2843 	if (HDR_HAS_L1HDR(hdr))
2844 		hdr->b_l1hdr.b_state = new_state;
2845 
2846 	/*
2847 	 * L2 headers should never be on the L2 state list since they don't
2848 	 * have L1 headers allocated.
2849 	 */
2850 	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2851 	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2852 }
2853 
2854 void
arc_space_consume(uint64_t space,arc_space_type_t type)2855 arc_space_consume(uint64_t space, arc_space_type_t type)
2856 {
2857 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2858 
2859 	switch (type) {
2860 	case ARC_SPACE_DATA:
2861 		aggsum_add(&astat_data_size, space);
2862 		break;
2863 	case ARC_SPACE_META:
2864 		aggsum_add(&astat_metadata_size, space);
2865 		break;
2866 	case ARC_SPACE_BONUS:
2867 		aggsum_add(&astat_bonus_size, space);
2868 		break;
2869 	case ARC_SPACE_DNODE:
2870 		aggsum_add(&astat_dnode_size, space);
2871 		break;
2872 	case ARC_SPACE_DBUF:
2873 		aggsum_add(&astat_dbuf_size, space);
2874 		break;
2875 	case ARC_SPACE_HDRS:
2876 		aggsum_add(&astat_hdr_size, space);
2877 		break;
2878 	case ARC_SPACE_L2HDRS:
2879 		aggsum_add(&astat_l2_hdr_size, space);
2880 		break;
2881 	}
2882 
2883 	if (type != ARC_SPACE_DATA)
2884 		aggsum_add(&arc_meta_used, space);
2885 
2886 	aggsum_add(&arc_size, space);
2887 }
2888 
2889 void
arc_space_return(uint64_t space,arc_space_type_t type)2890 arc_space_return(uint64_t space, arc_space_type_t type)
2891 {
2892 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2893 
2894 	switch (type) {
2895 	case ARC_SPACE_DATA:
2896 		aggsum_add(&astat_data_size, -space);
2897 		break;
2898 	case ARC_SPACE_META:
2899 		aggsum_add(&astat_metadata_size, -space);
2900 		break;
2901 	case ARC_SPACE_BONUS:
2902 		aggsum_add(&astat_bonus_size, -space);
2903 		break;
2904 	case ARC_SPACE_DNODE:
2905 		aggsum_add(&astat_dnode_size, -space);
2906 		break;
2907 	case ARC_SPACE_DBUF:
2908 		aggsum_add(&astat_dbuf_size, -space);
2909 		break;
2910 	case ARC_SPACE_HDRS:
2911 		aggsum_add(&astat_hdr_size, -space);
2912 		break;
2913 	case ARC_SPACE_L2HDRS:
2914 		aggsum_add(&astat_l2_hdr_size, -space);
2915 		break;
2916 	}
2917 
2918 	if (type != ARC_SPACE_DATA) {
2919 		ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2920 		/*
2921 		 * We use the upper bound here rather than the precise value
2922 		 * because the arc_meta_max value doesn't need to be
2923 		 * precise. It's only consumed by humans via arcstats.
2924 		 */
2925 		if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2926 			arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2927 		aggsum_add(&arc_meta_used, -space);
2928 	}
2929 
2930 	ASSERT(aggsum_compare(&arc_size, space) >= 0);
2931 	aggsum_add(&arc_size, -space);
2932 }
2933 
2934 /*
2935  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2936  * with the hdr's b_pabd.
2937  */
2938 static boolean_t
arc_can_share(arc_buf_hdr_t * hdr,arc_buf_t * buf)2939 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2940 {
2941 	/*
2942 	 * The criteria for sharing a hdr's data are:
2943 	 * 1. the hdr's compression matches the buf's compression
2944 	 * 2. the hdr doesn't need to be byteswapped
2945 	 * 3. the hdr isn't already being shared
2946 	 * 4. the buf is either compressed or it is the last buf in the hdr list
2947 	 *
2948 	 * Criterion #4 maintains the invariant that shared uncompressed
2949 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2950 	 * might ask, "if a compressed buf is allocated first, won't that be the
2951 	 * last thing in the list?", but in that case it's impossible to create
2952 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2953 	 * to have the compressed buf). You might also think that #3 is
2954 	 * sufficient to make this guarantee, however it's possible
2955 	 * (specifically in the rare L2ARC write race mentioned in
2956 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2957 	 * is sharable, but wasn't at the time of its allocation. Rather than
2958 	 * allow a new shared uncompressed buf to be created and then shuffle
2959 	 * the list around to make it the last element, this simply disallows
2960 	 * sharing if the new buf isn't the first to be added.
2961 	 */
2962 	ASSERT3P(buf->b_hdr, ==, hdr);
2963 	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2964 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2965 	return (buf_compressed == hdr_compressed &&
2966 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2967 	    !HDR_SHARED_DATA(hdr) &&
2968 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2969 }
2970 
2971 /*
2972  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2973  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2974  * copy was made successfully, or an error code otherwise.
2975  */
2976 static int
arc_buf_alloc_impl(arc_buf_hdr_t * hdr,void * tag,boolean_t compressed,boolean_t fill,arc_buf_t ** ret)2977 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2978     boolean_t fill, arc_buf_t **ret)
2979 {
2980 	arc_buf_t *buf;
2981 
2982 	ASSERT(HDR_HAS_L1HDR(hdr));
2983 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2984 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2985 	    hdr->b_type == ARC_BUFC_METADATA);
2986 	ASSERT3P(ret, !=, NULL);
2987 	ASSERT3P(*ret, ==, NULL);
2988 
2989 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2990 	buf->b_hdr = hdr;
2991 	buf->b_data = NULL;
2992 	buf->b_next = hdr->b_l1hdr.b_buf;
2993 	buf->b_flags = 0;
2994 
2995 	add_reference(hdr, tag);
2996 
2997 	/*
2998 	 * We're about to change the hdr's b_flags. We must either
2999 	 * hold the hash_lock or be undiscoverable.
3000 	 */
3001 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3002 
3003 	/*
3004 	 * Only honor requests for compressed bufs if the hdr is actually
3005 	 * compressed.
3006 	 */
3007 	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
3008 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
3009 
3010 	/*
3011 	 * If the hdr's data can be shared then we share the data buffer and
3012 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
3013 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
3014 	 * buffer to store the buf's data.
3015 	 *
3016 	 * There are two additional restrictions here because we're sharing
3017 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
3018 	 * actively involved in an L2ARC write, because if this buf is used by
3019 	 * an arc_write() then the hdr's data buffer will be released when the
3020 	 * write completes, even though the L2ARC write might still be using it.
3021 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
3022 	 * need to be ABD-aware.
3023 	 */
3024 	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
3025 	    abd_is_linear(hdr->b_l1hdr.b_pabd);
3026 
3027 	/* Set up b_data and sharing */
3028 	if (can_share) {
3029 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
3030 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
3031 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3032 	} else {
3033 		buf->b_data =
3034 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
3035 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3036 	}
3037 	VERIFY3P(buf->b_data, !=, NULL);
3038 
3039 	hdr->b_l1hdr.b_buf = buf;
3040 	hdr->b_l1hdr.b_bufcnt += 1;
3041 
3042 	/*
3043 	 * If the user wants the data from the hdr, we need to either copy or
3044 	 * decompress the data.
3045 	 */
3046 	if (fill) {
3047 		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
3048 	}
3049 
3050 	return (0);
3051 }
3052 
3053 static char *arc_onloan_tag = "onloan";
3054 
3055 static inline void
arc_loaned_bytes_update(int64_t delta)3056 arc_loaned_bytes_update(int64_t delta)
3057 {
3058 	atomic_add_64(&arc_loaned_bytes, delta);
3059 
3060 	/* assert that it did not wrap around */
3061 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
3062 }
3063 
3064 /*
3065  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
3066  * flight data by arc_tempreserve_space() until they are "returned". Loaned
3067  * buffers must be returned to the arc before they can be used by the DMU or
3068  * freed.
3069  */
3070 arc_buf_t *
arc_loan_buf(spa_t * spa,boolean_t is_metadata,int size)3071 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
3072 {
3073 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
3074 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
3075 
3076 	arc_loaned_bytes_update(arc_buf_size(buf));
3077 
3078 	return (buf);
3079 }
3080 
3081 arc_buf_t *
arc_loan_compressed_buf(spa_t * spa,uint64_t psize,uint64_t lsize,enum zio_compress compression_type)3082 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
3083     enum zio_compress compression_type)
3084 {
3085 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
3086 	    psize, lsize, compression_type);
3087 
3088 	arc_loaned_bytes_update(arc_buf_size(buf));
3089 
3090 	return (buf);
3091 }
3092 
3093 
3094 /*
3095  * Return a loaned arc buffer to the arc.
3096  */
3097 void
arc_return_buf(arc_buf_t * buf,void * tag)3098 arc_return_buf(arc_buf_t *buf, void *tag)
3099 {
3100 	arc_buf_hdr_t *hdr = buf->b_hdr;
3101 
3102 	ASSERT3P(buf->b_data, !=, NULL);
3103 	ASSERT(HDR_HAS_L1HDR(hdr));
3104 	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
3105 	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
3106 
3107 	arc_loaned_bytes_update(-arc_buf_size(buf));
3108 }
3109 
3110 /* Detach an arc_buf from a dbuf (tag) */
3111 void
arc_loan_inuse_buf(arc_buf_t * buf,void * tag)3112 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
3113 {
3114 	arc_buf_hdr_t *hdr = buf->b_hdr;
3115 
3116 	ASSERT3P(buf->b_data, !=, NULL);
3117 	ASSERT(HDR_HAS_L1HDR(hdr));
3118 	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
3119 	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
3120 
3121 	arc_loaned_bytes_update(arc_buf_size(buf));
3122 }
3123 
3124 static void
l2arc_free_abd_on_write(abd_t * abd,size_t size,arc_buf_contents_t type)3125 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
3126 {
3127 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
3128 
3129 	df->l2df_abd = abd;
3130 	df->l2df_size = size;
3131 	df->l2df_type = type;
3132 	mutex_enter(&l2arc_free_on_write_mtx);
3133 	list_insert_head(l2arc_free_on_write, df);
3134 	mutex_exit(&l2arc_free_on_write_mtx);
3135 }
3136 
3137 static void
arc_hdr_free_on_write(arc_buf_hdr_t * hdr)3138 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
3139 {
3140 	arc_state_t *state = hdr->b_l1hdr.b_state;
3141 	arc_buf_contents_t type = arc_buf_type(hdr);
3142 	uint64_t size = arc_hdr_size(hdr);
3143 
3144 	/* protected by hash lock, if in the hash table */
3145 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3146 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3147 		ASSERT(state != arc_anon && state != arc_l2c_only);
3148 
3149 		(void) refcount_remove_many(&state->arcs_esize[type],
3150 		    size, hdr);
3151 	}
3152 	(void) refcount_remove_many(&state->arcs_size, size, hdr);
3153 	if (type == ARC_BUFC_METADATA) {
3154 		arc_space_return(size, ARC_SPACE_META);
3155 	} else {
3156 		ASSERT(type == ARC_BUFC_DATA);
3157 		arc_space_return(size, ARC_SPACE_DATA);
3158 	}
3159 
3160 	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
3161 }
3162 
3163 /*
3164  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3165  * data buffer, we transfer the refcount ownership to the hdr and update
3166  * the appropriate kstats.
3167  */
3168 static void
arc_share_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)3169 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3170 {
3171 	arc_state_t *state = hdr->b_l1hdr.b_state;
3172 
3173 	ASSERT(arc_can_share(hdr, buf));
3174 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3175 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3176 
3177 	/*
3178 	 * Start sharing the data buffer. We transfer the
3179 	 * refcount ownership to the hdr since it always owns
3180 	 * the refcount whenever an arc_buf_t is shared.
3181 	 */
3182 	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
3183 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3184 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3185 	    HDR_ISTYPE_METADATA(hdr));
3186 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3187 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
3188 
3189 	/*
3190 	 * Since we've transferred ownership to the hdr we need
3191 	 * to increment its compressed and uncompressed kstats and
3192 	 * decrement the overhead size.
3193 	 */
3194 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3195 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3196 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3197 }
3198 
3199 static void
arc_unshare_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)3200 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3201 {
3202 	arc_state_t *state = hdr->b_l1hdr.b_state;
3203 
3204 	ASSERT(arc_buf_is_shared(buf));
3205 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3206 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3207 
3208 	/*
3209 	 * We are no longer sharing this buffer so we need
3210 	 * to transfer its ownership to the rightful owner.
3211 	 */
3212 	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
3213 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3214 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3215 	abd_put(hdr->b_l1hdr.b_pabd);
3216 	hdr->b_l1hdr.b_pabd = NULL;
3217 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3218 
3219 	/*
3220 	 * Since the buffer is no longer shared between
3221 	 * the arc buf and the hdr, count it as overhead.
3222 	 */
3223 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3224 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3225 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3226 }
3227 
3228 /*
3229  * Remove an arc_buf_t from the hdr's buf list and return the last
3230  * arc_buf_t on the list. If no buffers remain on the list then return
3231  * NULL.
3232  */
3233 static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t * hdr,arc_buf_t * buf)3234 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3235 {
3236 	ASSERT(HDR_HAS_L1HDR(hdr));
3237 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3238 
3239 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3240 	arc_buf_t *lastbuf = NULL;
3241 
3242 	/*
3243 	 * Remove the buf from the hdr list and locate the last
3244 	 * remaining buffer on the list.
3245 	 */
3246 	while (*bufp != NULL) {
3247 		if (*bufp == buf)
3248 			*bufp = buf->b_next;
3249 
3250 		/*
3251 		 * If we've removed a buffer in the middle of
3252 		 * the list then update the lastbuf and update
3253 		 * bufp.
3254 		 */
3255 		if (*bufp != NULL) {
3256 			lastbuf = *bufp;
3257 			bufp = &(*bufp)->b_next;
3258 		}
3259 	}
3260 	buf->b_next = NULL;
3261 	ASSERT3P(lastbuf, !=, buf);
3262 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3263 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3264 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3265 
3266 	return (lastbuf);
3267 }
3268 
3269 /*
3270  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3271  * list and free it.
3272  */
3273 static void
arc_buf_destroy_impl(arc_buf_t * buf)3274 arc_buf_destroy_impl(arc_buf_t *buf)
3275 {
3276 	arc_buf_hdr_t *hdr = buf->b_hdr;
3277 
3278 	/*
3279 	 * Free up the data associated with the buf but only if we're not
3280 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3281 	 * hdr is responsible for doing the free.
3282 	 */
3283 	if (buf->b_data != NULL) {
3284 		/*
3285 		 * We're about to change the hdr's b_flags. We must either
3286 		 * hold the hash_lock or be undiscoverable.
3287 		 */
3288 		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3289 
3290 		arc_cksum_verify(buf);
3291 #ifdef illumos
3292 		arc_buf_unwatch(buf);
3293 #endif
3294 
3295 		if (arc_buf_is_shared(buf)) {
3296 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3297 		} else {
3298 			uint64_t size = arc_buf_size(buf);
3299 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3300 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3301 		}
3302 		buf->b_data = NULL;
3303 
3304 		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3305 		hdr->b_l1hdr.b_bufcnt -= 1;
3306 	}
3307 
3308 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3309 
3310 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3311 		/*
3312 		 * If the current arc_buf_t is sharing its data buffer with the
3313 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3314 		 * buffer at the end of the list. The shared buffer is always
3315 		 * the last one on the hdr's buffer list.
3316 		 *
3317 		 * There is an equivalent case for compressed bufs, but since
3318 		 * they aren't guaranteed to be the last buf in the list and
3319 		 * that is an exceedingly rare case, we just allow that space be
3320 		 * wasted temporarily.
3321 		 */
3322 		if (lastbuf != NULL) {
3323 			/* Only one buf can be shared at once */
3324 			VERIFY(!arc_buf_is_shared(lastbuf));
3325 			/* hdr is uncompressed so can't have compressed buf */
3326 			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3327 
3328 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3329 			arc_hdr_free_pabd(hdr);
3330 
3331 			/*
3332 			 * We must setup a new shared block between the
3333 			 * last buffer and the hdr. The data would have
3334 			 * been allocated by the arc buf so we need to transfer
3335 			 * ownership to the hdr since it's now being shared.
3336 			 */
3337 			arc_share_buf(hdr, lastbuf);
3338 		}
3339 	} else if (HDR_SHARED_DATA(hdr)) {
3340 		/*
3341 		 * Uncompressed shared buffers are always at the end
3342 		 * of the list. Compressed buffers don't have the
3343 		 * same requirements. This makes it hard to
3344 		 * simply assert that the lastbuf is shared so
3345 		 * we rely on the hdr's compression flags to determine
3346 		 * if we have a compressed, shared buffer.
3347 		 */
3348 		ASSERT3P(lastbuf, !=, NULL);
3349 		ASSERT(arc_buf_is_shared(lastbuf) ||
3350 		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
3351 	}
3352 
3353 	/*
3354 	 * Free the checksum if we're removing the last uncompressed buf from
3355 	 * this hdr.
3356 	 */
3357 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3358 		arc_cksum_free(hdr);
3359 	}
3360 
3361 	/* clean up the buf */
3362 	buf->b_hdr = NULL;
3363 	kmem_cache_free(buf_cache, buf);
3364 }
3365 
3366 static void
arc_hdr_alloc_pabd(arc_buf_hdr_t * hdr,boolean_t do_adapt)3367 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, boolean_t do_adapt)
3368 {
3369 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3370 	ASSERT(HDR_HAS_L1HDR(hdr));
3371 	ASSERT(!HDR_SHARED_DATA(hdr));
3372 
3373 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3374 	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, do_adapt);
3375 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3376 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3377 
3378 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3379 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3380 }
3381 
3382 static void
arc_hdr_free_pabd(arc_buf_hdr_t * hdr)3383 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
3384 {
3385 	ASSERT(HDR_HAS_L1HDR(hdr));
3386 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3387 
3388 	/*
3389 	 * If the hdr is currently being written to the l2arc then
3390 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3391 	 * list. The l2arc will free the data once it's finished
3392 	 * writing it to the l2arc device.
3393 	 */
3394 	if (HDR_L2_WRITING(hdr)) {
3395 		arc_hdr_free_on_write(hdr);
3396 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3397 	} else {
3398 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3399 		    arc_hdr_size(hdr), hdr);
3400 	}
3401 	hdr->b_l1hdr.b_pabd = NULL;
3402 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3403 
3404 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3405 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3406 }
3407 
3408 static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa,int32_t psize,int32_t lsize,enum zio_compress compression_type,arc_buf_contents_t type)3409 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3410     enum zio_compress compression_type, arc_buf_contents_t type)
3411 {
3412 	arc_buf_hdr_t *hdr;
3413 
3414 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3415 
3416 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3417 	ASSERT(HDR_EMPTY(hdr));
3418 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3419 	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3420 	HDR_SET_PSIZE(hdr, psize);
3421 	HDR_SET_LSIZE(hdr, lsize);
3422 	hdr->b_spa = spa;
3423 	hdr->b_type = type;
3424 	hdr->b_flags = 0;
3425 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3426 	arc_hdr_set_compress(hdr, compression_type);
3427 
3428 	hdr->b_l1hdr.b_state = arc_anon;
3429 	hdr->b_l1hdr.b_arc_access = 0;
3430 	hdr->b_l1hdr.b_bufcnt = 0;
3431 	hdr->b_l1hdr.b_buf = NULL;
3432 
3433 	/*
3434 	 * Allocate the hdr's buffer. This will contain either
3435 	 * the compressed or uncompressed data depending on the block
3436 	 * it references and compressed arc enablement.
3437 	 */
3438 	arc_hdr_alloc_pabd(hdr, B_TRUE);
3439 	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3440 
3441 	return (hdr);
3442 }
3443 
3444 /*
3445  * Transition between the two allocation states for the arc_buf_hdr struct.
3446  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3447  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3448  * version is used when a cache buffer is only in the L2ARC in order to reduce
3449  * memory usage.
3450  */
3451 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)3452 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3453 {
3454 	ASSERT(HDR_HAS_L2HDR(hdr));
3455 
3456 	arc_buf_hdr_t *nhdr;
3457 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3458 
3459 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3460 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3461 
3462 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3463 
3464 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3465 	buf_hash_remove(hdr);
3466 
3467 	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3468 
3469 	if (new == hdr_full_cache) {
3470 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3471 		/*
3472 		 * arc_access and arc_change_state need to be aware that a
3473 		 * header has just come out of L2ARC, so we set its state to
3474 		 * l2c_only even though it's about to change.
3475 		 */
3476 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3477 
3478 		/* Verify previous threads set to NULL before freeing */
3479 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3480 	} else {
3481 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3482 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3483 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3484 
3485 		/*
3486 		 * If we've reached here, We must have been called from
3487 		 * arc_evict_hdr(), as such we should have already been
3488 		 * removed from any ghost list we were previously on
3489 		 * (which protects us from racing with arc_evict_state),
3490 		 * thus no locking is needed during this check.
3491 		 */
3492 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3493 
3494 		/*
3495 		 * A buffer must not be moved into the arc_l2c_only
3496 		 * state if it's not finished being written out to the
3497 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3498 		 * might try to be accessed, even though it was removed.
3499 		 */
3500 		VERIFY(!HDR_L2_WRITING(hdr));
3501 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3502 
3503 #ifdef ZFS_DEBUG
3504 		if (hdr->b_l1hdr.b_thawed != NULL) {
3505 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3506 			hdr->b_l1hdr.b_thawed = NULL;
3507 		}
3508 #endif
3509 
3510 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3511 	}
3512 	/*
3513 	 * The header has been reallocated so we need to re-insert it into any
3514 	 * lists it was on.
3515 	 */
3516 	(void) buf_hash_insert(nhdr, NULL);
3517 
3518 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3519 
3520 	mutex_enter(&dev->l2ad_mtx);
3521 
3522 	/*
3523 	 * We must place the realloc'ed header back into the list at
3524 	 * the same spot. Otherwise, if it's placed earlier in the list,
3525 	 * l2arc_write_buffers() could find it during the function's
3526 	 * write phase, and try to write it out to the l2arc.
3527 	 */
3528 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3529 	list_remove(&dev->l2ad_buflist, hdr);
3530 
3531 	mutex_exit(&dev->l2ad_mtx);
3532 
3533 	/*
3534 	 * Since we're using the pointer address as the tag when
3535 	 * incrementing and decrementing the l2ad_alloc refcount, we
3536 	 * must remove the old pointer (that we're about to destroy) and
3537 	 * add the new pointer to the refcount. Otherwise we'd remove
3538 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3539 	 */
3540 
3541 	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3542 	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3543 
3544 	buf_discard_identity(hdr);
3545 	kmem_cache_free(old, hdr);
3546 
3547 	return (nhdr);
3548 }
3549 
3550 /*
3551  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3552  * The buf is returned thawed since we expect the consumer to modify it.
3553  */
3554 arc_buf_t *
arc_alloc_buf(spa_t * spa,void * tag,arc_buf_contents_t type,int32_t size)3555 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3556 {
3557 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3558 	    ZIO_COMPRESS_OFF, type);
3559 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3560 
3561 	arc_buf_t *buf = NULL;
3562 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3563 	arc_buf_thaw(buf);
3564 
3565 	return (buf);
3566 }
3567 
3568 /*
3569  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3570  * for bufs containing metadata.
3571  */
3572 arc_buf_t *
arc_alloc_compressed_buf(spa_t * spa,void * tag,uint64_t psize,uint64_t lsize,enum zio_compress compression_type)3573 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3574     enum zio_compress compression_type)
3575 {
3576 	ASSERT3U(lsize, >, 0);
3577 	ASSERT3U(lsize, >=, psize);
3578 	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3579 	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3580 
3581 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3582 	    compression_type, ARC_BUFC_DATA);
3583 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3584 
3585 	arc_buf_t *buf = NULL;
3586 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3587 	arc_buf_thaw(buf);
3588 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3589 
3590 	if (!arc_buf_is_shared(buf)) {
3591 		/*
3592 		 * To ensure that the hdr has the correct data in it if we call
3593 		 * arc_decompress() on this buf before it's been written to
3594 		 * disk, it's easiest if we just set up sharing between the
3595 		 * buf and the hdr.
3596 		 */
3597 		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3598 		arc_hdr_free_pabd(hdr);
3599 		arc_share_buf(hdr, buf);
3600 	}
3601 
3602 	return (buf);
3603 }
3604 
3605 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)3606 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3607 {
3608 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3609 	l2arc_dev_t *dev = l2hdr->b_dev;
3610 	uint64_t psize = arc_hdr_size(hdr);
3611 
3612 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3613 	ASSERT(HDR_HAS_L2HDR(hdr));
3614 
3615 	list_remove(&dev->l2ad_buflist, hdr);
3616 
3617 	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3618 	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3619 
3620 	vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3621 
3622 	(void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3623 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3624 }
3625 
3626 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)3627 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3628 {
3629 	if (HDR_HAS_L1HDR(hdr)) {
3630 		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3631 		    hdr->b_l1hdr.b_bufcnt > 0);
3632 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3633 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3634 	}
3635 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3636 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3637 
3638 	if (!HDR_EMPTY(hdr))
3639 		buf_discard_identity(hdr);
3640 
3641 	if (HDR_HAS_L2HDR(hdr)) {
3642 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3643 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3644 
3645 		if (!buflist_held)
3646 			mutex_enter(&dev->l2ad_mtx);
3647 
3648 		/*
3649 		 * Even though we checked this conditional above, we
3650 		 * need to check this again now that we have the
3651 		 * l2ad_mtx. This is because we could be racing with
3652 		 * another thread calling l2arc_evict() which might have
3653 		 * destroyed this header's L2 portion as we were waiting
3654 		 * to acquire the l2ad_mtx. If that happens, we don't
3655 		 * want to re-destroy the header's L2 portion.
3656 		 */
3657 		if (HDR_HAS_L2HDR(hdr)) {
3658 			l2arc_trim(hdr);
3659 			arc_hdr_l2hdr_destroy(hdr);
3660 		}
3661 
3662 		if (!buflist_held)
3663 			mutex_exit(&dev->l2ad_mtx);
3664 	}
3665 
3666 	if (HDR_HAS_L1HDR(hdr)) {
3667 		arc_cksum_free(hdr);
3668 
3669 		while (hdr->b_l1hdr.b_buf != NULL)
3670 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3671 
3672 #ifdef ZFS_DEBUG
3673 		if (hdr->b_l1hdr.b_thawed != NULL) {
3674 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3675 			hdr->b_l1hdr.b_thawed = NULL;
3676 		}
3677 #endif
3678 
3679 		if (hdr->b_l1hdr.b_pabd != NULL) {
3680 			arc_hdr_free_pabd(hdr);
3681 		}
3682 	}
3683 
3684 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3685 	if (HDR_HAS_L1HDR(hdr)) {
3686 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3687 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3688 		kmem_cache_free(hdr_full_cache, hdr);
3689 	} else {
3690 		kmem_cache_free(hdr_l2only_cache, hdr);
3691 	}
3692 }
3693 
3694 void
arc_buf_destroy(arc_buf_t * buf,void * tag)3695 arc_buf_destroy(arc_buf_t *buf, void* tag)
3696 {
3697 	arc_buf_hdr_t *hdr = buf->b_hdr;
3698 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3699 
3700 	if (hdr->b_l1hdr.b_state == arc_anon) {
3701 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3702 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3703 		VERIFY0(remove_reference(hdr, NULL, tag));
3704 		arc_hdr_destroy(hdr);
3705 		return;
3706 	}
3707 
3708 	mutex_enter(hash_lock);
3709 	ASSERT3P(hdr, ==, buf->b_hdr);
3710 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3711 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3712 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3713 	ASSERT3P(buf->b_data, !=, NULL);
3714 
3715 	(void) remove_reference(hdr, hash_lock, tag);
3716 	arc_buf_destroy_impl(buf);
3717 	mutex_exit(hash_lock);
3718 }
3719 
3720 /*
3721  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3722  * state of the header is dependent on its state prior to entering this
3723  * function. The following transitions are possible:
3724  *
3725  *    - arc_mru -> arc_mru_ghost
3726  *    - arc_mfu -> arc_mfu_ghost
3727  *    - arc_mru_ghost -> arc_l2c_only
3728  *    - arc_mru_ghost -> deleted
3729  *    - arc_mfu_ghost -> arc_l2c_only
3730  *    - arc_mfu_ghost -> deleted
3731  */
3732 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,kmutex_t * hash_lock)3733 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3734 {
3735 	arc_state_t *evicted_state, *state;
3736 	int64_t bytes_evicted = 0;
3737 	int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3738 	    zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
3739 
3740 	ASSERT(MUTEX_HELD(hash_lock));
3741 	ASSERT(HDR_HAS_L1HDR(hdr));
3742 
3743 	state = hdr->b_l1hdr.b_state;
3744 	if (GHOST_STATE(state)) {
3745 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3746 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3747 
3748 		/*
3749 		 * l2arc_write_buffers() relies on a header's L1 portion
3750 		 * (i.e. its b_pabd field) during it's write phase.
3751 		 * Thus, we cannot push a header onto the arc_l2c_only
3752 		 * state (removing it's L1 piece) until the header is
3753 		 * done being written to the l2arc.
3754 		 */
3755 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3756 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3757 			return (bytes_evicted);
3758 		}
3759 
3760 		ARCSTAT_BUMP(arcstat_deleted);
3761 		bytes_evicted += HDR_GET_LSIZE(hdr);
3762 
3763 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3764 
3765 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3766 		if (HDR_HAS_L2HDR(hdr)) {
3767 			/*
3768 			 * This buffer is cached on the 2nd Level ARC;
3769 			 * don't destroy the header.
3770 			 */
3771 			arc_change_state(arc_l2c_only, hdr, hash_lock);
3772 			/*
3773 			 * dropping from L1+L2 cached to L2-only,
3774 			 * realloc to remove the L1 header.
3775 			 */
3776 			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3777 			    hdr_l2only_cache);
3778 		} else {
3779 			arc_change_state(arc_anon, hdr, hash_lock);
3780 			arc_hdr_destroy(hdr);
3781 		}
3782 		return (bytes_evicted);
3783 	}
3784 
3785 	ASSERT(state == arc_mru || state == arc_mfu);
3786 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3787 
3788 	/* prefetch buffers have a minimum lifespan */
3789 	if (HDR_IO_IN_PROGRESS(hdr) ||
3790 	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3791 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
3792 		ARCSTAT_BUMP(arcstat_evict_skip);
3793 		return (bytes_evicted);
3794 	}
3795 
3796 	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3797 	while (hdr->b_l1hdr.b_buf) {
3798 		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3799 		if (!mutex_tryenter(&buf->b_evict_lock)) {
3800 			ARCSTAT_BUMP(arcstat_mutex_miss);
3801 			break;
3802 		}
3803 		if (buf->b_data != NULL)
3804 			bytes_evicted += HDR_GET_LSIZE(hdr);
3805 		mutex_exit(&buf->b_evict_lock);
3806 		arc_buf_destroy_impl(buf);
3807 	}
3808 
3809 	if (HDR_HAS_L2HDR(hdr)) {
3810 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3811 	} else {
3812 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3813 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3814 			    HDR_GET_LSIZE(hdr));
3815 		} else {
3816 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3817 			    HDR_GET_LSIZE(hdr));
3818 		}
3819 	}
3820 
3821 	if (hdr->b_l1hdr.b_bufcnt == 0) {
3822 		arc_cksum_free(hdr);
3823 
3824 		bytes_evicted += arc_hdr_size(hdr);
3825 
3826 		/*
3827 		 * If this hdr is being evicted and has a compressed
3828 		 * buffer then we discard it here before we change states.
3829 		 * This ensures that the accounting is updated correctly
3830 		 * in arc_free_data_impl().
3831 		 */
3832 		arc_hdr_free_pabd(hdr);
3833 
3834 		arc_change_state(evicted_state, hdr, hash_lock);
3835 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3836 		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3837 		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3838 	}
3839 
3840 	return (bytes_evicted);
3841 }
3842 
3843 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,int64_t bytes)3844 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3845     uint64_t spa, int64_t bytes)
3846 {
3847 	multilist_sublist_t *mls;
3848 	uint64_t bytes_evicted = 0;
3849 	arc_buf_hdr_t *hdr;
3850 	kmutex_t *hash_lock;
3851 	int evict_count = 0;
3852 
3853 	ASSERT3P(marker, !=, NULL);
3854 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3855 
3856 	mls = multilist_sublist_lock(ml, idx);
3857 
3858 	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3859 	    hdr = multilist_sublist_prev(mls, marker)) {
3860 		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3861 		    (evict_count >= zfs_arc_evict_batch_limit))
3862 			break;
3863 
3864 		/*
3865 		 * To keep our iteration location, move the marker
3866 		 * forward. Since we're not holding hdr's hash lock, we
3867 		 * must be very careful and not remove 'hdr' from the
3868 		 * sublist. Otherwise, other consumers might mistake the
3869 		 * 'hdr' as not being on a sublist when they call the
3870 		 * multilist_link_active() function (they all rely on
3871 		 * the hash lock protecting concurrent insertions and
3872 		 * removals). multilist_sublist_move_forward() was
3873 		 * specifically implemented to ensure this is the case
3874 		 * (only 'marker' will be removed and re-inserted).
3875 		 */
3876 		multilist_sublist_move_forward(mls, marker);
3877 
3878 		/*
3879 		 * The only case where the b_spa field should ever be
3880 		 * zero, is the marker headers inserted by
3881 		 * arc_evict_state(). It's possible for multiple threads
3882 		 * to be calling arc_evict_state() concurrently (e.g.
3883 		 * dsl_pool_close() and zio_inject_fault()), so we must
3884 		 * skip any markers we see from these other threads.
3885 		 */
3886 		if (hdr->b_spa == 0)
3887 			continue;
3888 
3889 		/* we're only interested in evicting buffers of a certain spa */
3890 		if (spa != 0 && hdr->b_spa != spa) {
3891 			ARCSTAT_BUMP(arcstat_evict_skip);
3892 			continue;
3893 		}
3894 
3895 		hash_lock = HDR_LOCK(hdr);
3896 
3897 		/*
3898 		 * We aren't calling this function from any code path
3899 		 * that would already be holding a hash lock, so we're
3900 		 * asserting on this assumption to be defensive in case
3901 		 * this ever changes. Without this check, it would be
3902 		 * possible to incorrectly increment arcstat_mutex_miss
3903 		 * below (e.g. if the code changed such that we called
3904 		 * this function with a hash lock held).
3905 		 */
3906 		ASSERT(!MUTEX_HELD(hash_lock));
3907 
3908 		if (mutex_tryenter(hash_lock)) {
3909 			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3910 			mutex_exit(hash_lock);
3911 
3912 			bytes_evicted += evicted;
3913 
3914 			/*
3915 			 * If evicted is zero, arc_evict_hdr() must have
3916 			 * decided to skip this header, don't increment
3917 			 * evict_count in this case.
3918 			 */
3919 			if (evicted != 0)
3920 				evict_count++;
3921 
3922 			/*
3923 			 * If arc_size isn't overflowing, signal any
3924 			 * threads that might happen to be waiting.
3925 			 *
3926 			 * For each header evicted, we wake up a single
3927 			 * thread. If we used cv_broadcast, we could
3928 			 * wake up "too many" threads causing arc_size
3929 			 * to significantly overflow arc_c; since
3930 			 * arc_get_data_impl() doesn't check for overflow
3931 			 * when it's woken up (it doesn't because it's
3932 			 * possible for the ARC to be overflowing while
3933 			 * full of un-evictable buffers, and the
3934 			 * function should proceed in this case).
3935 			 *
3936 			 * If threads are left sleeping, due to not
3937 			 * using cv_broadcast here, they will be woken
3938 			 * up via cv_broadcast in arc_adjust_cb() just
3939 			 * before arc_adjust_zthr sleeps.
3940 			 */
3941 			mutex_enter(&arc_adjust_lock);
3942 			if (!arc_is_overflowing())
3943 				cv_signal(&arc_adjust_waiters_cv);
3944 			mutex_exit(&arc_adjust_lock);
3945 		} else {
3946 			ARCSTAT_BUMP(arcstat_mutex_miss);
3947 		}
3948 	}
3949 
3950 	multilist_sublist_unlock(mls);
3951 
3952 	return (bytes_evicted);
3953 }
3954 
3955 /*
3956  * Evict buffers from the given arc state, until we've removed the
3957  * specified number of bytes. Move the removed buffers to the
3958  * appropriate evict state.
3959  *
3960  * This function makes a "best effort". It skips over any buffers
3961  * it can't get a hash_lock on, and so, may not catch all candidates.
3962  * It may also return without evicting as much space as requested.
3963  *
3964  * If bytes is specified using the special value ARC_EVICT_ALL, this
3965  * will evict all available (i.e. unlocked and evictable) buffers from
3966  * the given arc state; which is used by arc_flush().
3967  */
3968 static uint64_t
arc_evict_state(arc_state_t * state,uint64_t spa,int64_t bytes,arc_buf_contents_t type)3969 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3970     arc_buf_contents_t type)
3971 {
3972 	uint64_t total_evicted = 0;
3973 	multilist_t *ml = state->arcs_list[type];
3974 	int num_sublists;
3975 	arc_buf_hdr_t **markers;
3976 
3977 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3978 
3979 	num_sublists = multilist_get_num_sublists(ml);
3980 
3981 	/*
3982 	 * If we've tried to evict from each sublist, made some
3983 	 * progress, but still have not hit the target number of bytes
3984 	 * to evict, we want to keep trying. The markers allow us to
3985 	 * pick up where we left off for each individual sublist, rather
3986 	 * than starting from the tail each time.
3987 	 */
3988 	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3989 	for (int i = 0; i < num_sublists; i++) {
3990 		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3991 
3992 		/*
3993 		 * A b_spa of 0 is used to indicate that this header is
3994 		 * a marker. This fact is used in arc_adjust_type() and
3995 		 * arc_evict_state_impl().
3996 		 */
3997 		markers[i]->b_spa = 0;
3998 
3999 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4000 		multilist_sublist_insert_tail(mls, markers[i]);
4001 		multilist_sublist_unlock(mls);
4002 	}
4003 
4004 	/*
4005 	 * While we haven't hit our target number of bytes to evict, or
4006 	 * we're evicting all available buffers.
4007 	 */
4008 	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4009 		int sublist_idx = multilist_get_random_index(ml);
4010 		uint64_t scan_evicted = 0;
4011 
4012 		/*
4013 		 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4014 		 * Request that 10% of the LRUs be scanned by the superblock
4015 		 * shrinker.
4016 		 */
4017 		if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size,
4018 		    arc_dnode_limit) > 0) {
4019 			arc_prune_async((aggsum_upper_bound(&astat_dnode_size) -
4020 			    arc_dnode_limit) / sizeof (dnode_t) /
4021 			    zfs_arc_dnode_reduce_percent);
4022 		}
4023 
4024 		/*
4025 		 * Start eviction using a randomly selected sublist,
4026 		 * this is to try and evenly balance eviction across all
4027 		 * sublists. Always starting at the same sublist
4028 		 * (e.g. index 0) would cause evictions to favor certain
4029 		 * sublists over others.
4030 		 */
4031 		for (int i = 0; i < num_sublists; i++) {
4032 			uint64_t bytes_remaining;
4033 			uint64_t bytes_evicted;
4034 
4035 			if (bytes == ARC_EVICT_ALL)
4036 				bytes_remaining = ARC_EVICT_ALL;
4037 			else if (total_evicted < bytes)
4038 				bytes_remaining = bytes - total_evicted;
4039 			else
4040 				break;
4041 
4042 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4043 			    markers[sublist_idx], spa, bytes_remaining);
4044 
4045 			scan_evicted += bytes_evicted;
4046 			total_evicted += bytes_evicted;
4047 
4048 			/* we've reached the end, wrap to the beginning */
4049 			if (++sublist_idx >= num_sublists)
4050 				sublist_idx = 0;
4051 		}
4052 
4053 		/*
4054 		 * If we didn't evict anything during this scan, we have
4055 		 * no reason to believe we'll evict more during another
4056 		 * scan, so break the loop.
4057 		 */
4058 		if (scan_evicted == 0) {
4059 			/* This isn't possible, let's make that obvious */
4060 			ASSERT3S(bytes, !=, 0);
4061 
4062 			/*
4063 			 * When bytes is ARC_EVICT_ALL, the only way to
4064 			 * break the loop is when scan_evicted is zero.
4065 			 * In that case, we actually have evicted enough,
4066 			 * so we don't want to increment the kstat.
4067 			 */
4068 			if (bytes != ARC_EVICT_ALL) {
4069 				ASSERT3S(total_evicted, <, bytes);
4070 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4071 			}
4072 
4073 			break;
4074 		}
4075 	}
4076 
4077 	for (int i = 0; i < num_sublists; i++) {
4078 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4079 		multilist_sublist_remove(mls, markers[i]);
4080 		multilist_sublist_unlock(mls);
4081 
4082 		kmem_cache_free(hdr_full_cache, markers[i]);
4083 	}
4084 	kmem_free(markers, sizeof (*markers) * num_sublists);
4085 
4086 	return (total_evicted);
4087 }
4088 
4089 /*
4090  * Flush all "evictable" data of the given type from the arc state
4091  * specified. This will not evict any "active" buffers (i.e. referenced).
4092  *
4093  * When 'retry' is set to B_FALSE, the function will make a single pass
4094  * over the state and evict any buffers that it can. Since it doesn't
4095  * continually retry the eviction, it might end up leaving some buffers
4096  * in the ARC due to lock misses.
4097  *
4098  * When 'retry' is set to B_TRUE, the function will continually retry the
4099  * eviction until *all* evictable buffers have been removed from the
4100  * state. As a result, if concurrent insertions into the state are
4101  * allowed (e.g. if the ARC isn't shutting down), this function might
4102  * wind up in an infinite loop, continually trying to evict buffers.
4103  */
4104 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)4105 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4106     boolean_t retry)
4107 {
4108 	uint64_t evicted = 0;
4109 
4110 	while (refcount_count(&state->arcs_esize[type]) != 0) {
4111 		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4112 
4113 		if (!retry)
4114 			break;
4115 	}
4116 
4117 	return (evicted);
4118 }
4119 
4120 /*
4121  * Helper function for arc_prune_async() it is responsible for safely
4122  * handling the execution of a registered arc_prune_func_t.
4123  */
4124 static void
arc_prune_task(void * ptr)4125 arc_prune_task(void *ptr)
4126 {
4127 	arc_prune_t *ap = (arc_prune_t *)ptr;
4128 	arc_prune_func_t *func = ap->p_pfunc;
4129 
4130 	if (func != NULL)
4131 		func(ap->p_adjust, ap->p_private);
4132 
4133 	refcount_remove(&ap->p_refcnt, func);
4134 }
4135 
4136 /*
4137  * Notify registered consumers they must drop holds on a portion of the ARC
4138  * buffered they reference.  This provides a mechanism to ensure the ARC can
4139  * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers.  This
4140  * is analogous to dnlc_reduce_cache() but more generic.
4141  *
4142  * This operation is performed asynchronously so it may be safely called
4143  * in the context of the arc_reclaim_thread().  A reference is taken here
4144  * for each registered arc_prune_t and the arc_prune_task() is responsible
4145  * for releasing it once the registered arc_prune_func_t has completed.
4146  */
4147 static void
arc_prune_async(int64_t adjust)4148 arc_prune_async(int64_t adjust)
4149 {
4150 	arc_prune_t *ap;
4151 
4152 	mutex_enter(&arc_prune_mtx);
4153 	for (ap = list_head(&arc_prune_list); ap != NULL;
4154 	    ap = list_next(&arc_prune_list, ap)) {
4155 
4156 		if (refcount_count(&ap->p_refcnt) >= 2)
4157 			continue;
4158 
4159 		refcount_add(&ap->p_refcnt, ap->p_pfunc);
4160 		ap->p_adjust = adjust;
4161 		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
4162 		    ap, TQ_SLEEP) == TASKQID_INVALID) {
4163 			refcount_remove(&ap->p_refcnt, ap->p_pfunc);
4164 			continue;
4165 		}
4166 		ARCSTAT_BUMP(arcstat_prune);
4167 	}
4168 	mutex_exit(&arc_prune_mtx);
4169 }
4170 
4171 /*
4172  * Evict the specified number of bytes from the state specified,
4173  * restricting eviction to the spa and type given. This function
4174  * prevents us from trying to evict more from a state's list than
4175  * is "evictable", and to skip evicting altogether when passed a
4176  * negative value for "bytes". In contrast, arc_evict_state() will
4177  * evict everything it can, when passed a negative value for "bytes".
4178  */
4179 static uint64_t
arc_adjust_impl(arc_state_t * state,uint64_t spa,int64_t bytes,arc_buf_contents_t type)4180 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4181     arc_buf_contents_t type)
4182 {
4183 	int64_t delta;
4184 
4185 	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
4186 		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
4187 		return (arc_evict_state(state, spa, delta, type));
4188 	}
4189 
4190 	return (0);
4191 }
4192 
4193 /*
4194  * The goal of this function is to evict enough meta data buffers from the
4195  * ARC in order to enforce the arc_meta_limit.  Achieving this is slightly
4196  * more complicated than it appears because it is common for data buffers
4197  * to have holds on meta data buffers.  In addition, dnode meta data buffers
4198  * will be held by the dnodes in the block preventing them from being freed.
4199  * This means we can't simply traverse the ARC and expect to always find
4200  * enough unheld meta data buffer to release.
4201  *
4202  * Therefore, this function has been updated to make alternating passes
4203  * over the ARC releasing data buffers and then newly unheld meta data
4204  * buffers.  This ensures forward progress is maintained and meta_used
4205  * will decrease.  Normally this is sufficient, but if required the ARC
4206  * will call the registered prune callbacks causing dentry and inodes to
4207  * be dropped from the VFS cache.  This will make dnode meta data buffers
4208  * available for reclaim.
4209  */
4210 static uint64_t
arc_adjust_meta_balanced(uint64_t meta_used)4211 arc_adjust_meta_balanced(uint64_t meta_used)
4212 {
4213 	int64_t delta, prune = 0, adjustmnt;
4214 	uint64_t total_evicted = 0;
4215 	arc_buf_contents_t type = ARC_BUFC_DATA;
4216 	int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
4217 
4218 restart:
4219 	/*
4220 	 * This slightly differs than the way we evict from the mru in
4221 	 * arc_adjust because we don't have a "target" value (i.e. no
4222 	 * "meta" arc_p). As a result, I think we can completely
4223 	 * cannibalize the metadata in the MRU before we evict the
4224 	 * metadata from the MFU. I think we probably need to implement a
4225 	 * "metadata arc_p" value to do this properly.
4226 	 */
4227 	adjustmnt = meta_used - arc_meta_limit;
4228 
4229 	if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4230 		delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
4231 		    adjustmnt);
4232 		total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
4233 		adjustmnt -= delta;
4234 	}
4235 
4236 	/*
4237 	 * We can't afford to recalculate adjustmnt here. If we do,
4238 	 * new metadata buffers can sneak into the MRU or ANON lists,
4239 	 * thus penalize the MFU metadata. Although the fudge factor is
4240 	 * small, it has been empirically shown to be significant for
4241 	 * certain workloads (e.g. creating many empty directories). As
4242 	 * such, we use the original calculation for adjustmnt, and
4243 	 * simply decrement the amount of data evicted from the MRU.
4244 	 */
4245 
4246 	if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4247 		delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
4248 		    adjustmnt);
4249 		total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
4250 	}
4251 
4252 	adjustmnt = meta_used - arc_meta_limit;
4253 
4254 	if (adjustmnt > 0 &&
4255 	    refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4256 		delta = MIN(adjustmnt,
4257 		    refcount_count(&arc_mru_ghost->arcs_esize[type]));
4258 		total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
4259 		adjustmnt -= delta;
4260 	}
4261 
4262 	if (adjustmnt > 0 &&
4263 	    refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4264 		delta = MIN(adjustmnt,
4265 		    refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4266 		total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
4267 	}
4268 
4269 	/*
4270 	 * If after attempting to make the requested adjustment to the ARC
4271 	 * the meta limit is still being exceeded then request that the
4272 	 * higher layers drop some cached objects which have holds on ARC
4273 	 * meta buffers.  Requests to the upper layers will be made with
4274 	 * increasingly large scan sizes until the ARC is below the limit.
4275 	 */
4276 	if (meta_used > arc_meta_limit) {
4277 		if (type == ARC_BUFC_DATA) {
4278 			type = ARC_BUFC_METADATA;
4279 		} else {
4280 			type = ARC_BUFC_DATA;
4281 
4282 			if (zfs_arc_meta_prune) {
4283 				prune += zfs_arc_meta_prune;
4284 				arc_prune_async(prune);
4285 			}
4286 		}
4287 
4288 		if (restarts > 0) {
4289 			restarts--;
4290 			goto restart;
4291 		}
4292 	}
4293 	return (total_evicted);
4294 }
4295 
4296 /*
4297  * Evict metadata buffers from the cache, such that arc_meta_used is
4298  * capped by the arc_meta_limit tunable.
4299  */
4300 static uint64_t
arc_adjust_meta_only(uint64_t meta_used)4301 arc_adjust_meta_only(uint64_t meta_used)
4302 {
4303 	uint64_t total_evicted = 0;
4304 	int64_t target;
4305 
4306 	/*
4307 	 * If we're over the meta limit, we want to evict enough
4308 	 * metadata to get back under the meta limit. We don't want to
4309 	 * evict so much that we drop the MRU below arc_p, though. If
4310 	 * we're over the meta limit more than we're over arc_p, we
4311 	 * evict some from the MRU here, and some from the MFU below.
4312 	 */
4313 	target = MIN((int64_t)(meta_used - arc_meta_limit),
4314 	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
4315 	    refcount_count(&arc_mru->arcs_size) - arc_p));
4316 
4317 	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4318 
4319 	/*
4320 	 * Similar to the above, we want to evict enough bytes to get us
4321 	 * below the meta limit, but not so much as to drop us below the
4322 	 * space allotted to the MFU (which is defined as arc_c - arc_p).
4323 	 */
4324 	target = MIN((int64_t)(meta_used - arc_meta_limit),
4325 	    (int64_t)(refcount_count(&arc_mfu->arcs_size) -
4326 	    (arc_c - arc_p)));
4327 
4328 	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4329 
4330 	return (total_evicted);
4331 }
4332 
4333 static uint64_t
arc_adjust_meta(uint64_t meta_used)4334 arc_adjust_meta(uint64_t meta_used)
4335 {
4336 	if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4337 		return (arc_adjust_meta_only(meta_used));
4338 	else
4339 		return (arc_adjust_meta_balanced(meta_used));
4340 }
4341 
4342 /*
4343  * Return the type of the oldest buffer in the given arc state
4344  *
4345  * This function will select a random sublist of type ARC_BUFC_DATA and
4346  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4347  * is compared, and the type which contains the "older" buffer will be
4348  * returned.
4349  */
4350 static arc_buf_contents_t
arc_adjust_type(arc_state_t * state)4351 arc_adjust_type(arc_state_t *state)
4352 {
4353 	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4354 	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4355 	int data_idx = multilist_get_random_index(data_ml);
4356 	int meta_idx = multilist_get_random_index(meta_ml);
4357 	multilist_sublist_t *data_mls;
4358 	multilist_sublist_t *meta_mls;
4359 	arc_buf_contents_t type;
4360 	arc_buf_hdr_t *data_hdr;
4361 	arc_buf_hdr_t *meta_hdr;
4362 
4363 	/*
4364 	 * We keep the sublist lock until we're finished, to prevent
4365 	 * the headers from being destroyed via arc_evict_state().
4366 	 */
4367 	data_mls = multilist_sublist_lock(data_ml, data_idx);
4368 	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4369 
4370 	/*
4371 	 * These two loops are to ensure we skip any markers that
4372 	 * might be at the tail of the lists due to arc_evict_state().
4373 	 */
4374 
4375 	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4376 	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4377 		if (data_hdr->b_spa != 0)
4378 			break;
4379 	}
4380 
4381 	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4382 	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4383 		if (meta_hdr->b_spa != 0)
4384 			break;
4385 	}
4386 
4387 	if (data_hdr == NULL && meta_hdr == NULL) {
4388 		type = ARC_BUFC_DATA;
4389 	} else if (data_hdr == NULL) {
4390 		ASSERT3P(meta_hdr, !=, NULL);
4391 		type = ARC_BUFC_METADATA;
4392 	} else if (meta_hdr == NULL) {
4393 		ASSERT3P(data_hdr, !=, NULL);
4394 		type = ARC_BUFC_DATA;
4395 	} else {
4396 		ASSERT3P(data_hdr, !=, NULL);
4397 		ASSERT3P(meta_hdr, !=, NULL);
4398 
4399 		/* The headers can't be on the sublist without an L1 header */
4400 		ASSERT(HDR_HAS_L1HDR(data_hdr));
4401 		ASSERT(HDR_HAS_L1HDR(meta_hdr));
4402 
4403 		if (data_hdr->b_l1hdr.b_arc_access <
4404 		    meta_hdr->b_l1hdr.b_arc_access) {
4405 			type = ARC_BUFC_DATA;
4406 		} else {
4407 			type = ARC_BUFC_METADATA;
4408 		}
4409 	}
4410 
4411 	multilist_sublist_unlock(meta_mls);
4412 	multilist_sublist_unlock(data_mls);
4413 
4414 	return (type);
4415 }
4416 
4417 /*
4418  * Evict buffers from the cache, such that arc_size is capped by arc_c.
4419  */
4420 static uint64_t
arc_adjust(void)4421 arc_adjust(void)
4422 {
4423 	uint64_t total_evicted = 0;
4424 	uint64_t bytes;
4425 	int64_t target;
4426 	uint64_t asize = aggsum_value(&arc_size);
4427 	uint64_t ameta = aggsum_value(&arc_meta_used);
4428 
4429 	/*
4430 	 * If we're over arc_meta_limit, we want to correct that before
4431 	 * potentially evicting data buffers below.
4432 	 */
4433 	total_evicted += arc_adjust_meta(ameta);
4434 
4435 	/*
4436 	 * Adjust MRU size
4437 	 *
4438 	 * If we're over the target cache size, we want to evict enough
4439 	 * from the list to get back to our target size. We don't want
4440 	 * to evict too much from the MRU, such that it drops below
4441 	 * arc_p. So, if we're over our target cache size more than
4442 	 * the MRU is over arc_p, we'll evict enough to get back to
4443 	 * arc_p here, and then evict more from the MFU below.
4444 	 */
4445 	target = MIN((int64_t)(asize - arc_c),
4446 	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
4447 	    refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4448 
4449 	/*
4450 	 * If we're below arc_meta_min, always prefer to evict data.
4451 	 * Otherwise, try to satisfy the requested number of bytes to
4452 	 * evict from the type which contains older buffers; in an
4453 	 * effort to keep newer buffers in the cache regardless of their
4454 	 * type. If we cannot satisfy the number of bytes from this
4455 	 * type, spill over into the next type.
4456 	 */
4457 	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4458 	    ameta > arc_meta_min) {
4459 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4460 		total_evicted += bytes;
4461 
4462 		/*
4463 		 * If we couldn't evict our target number of bytes from
4464 		 * metadata, we try to get the rest from data.
4465 		 */
4466 		target -= bytes;
4467 
4468 		total_evicted +=
4469 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4470 	} else {
4471 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4472 		total_evicted += bytes;
4473 
4474 		/*
4475 		 * If we couldn't evict our target number of bytes from
4476 		 * data, we try to get the rest from metadata.
4477 		 */
4478 		target -= bytes;
4479 
4480 		total_evicted +=
4481 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4482 	}
4483 
4484 	/*
4485 	 * Re-sum ARC stats after the first round of evictions.
4486 	 */
4487 	asize = aggsum_value(&arc_size);
4488 	ameta = aggsum_value(&arc_meta_used);
4489 
4490 	/*
4491 	 * Adjust MFU size
4492 	 *
4493 	 * Now that we've tried to evict enough from the MRU to get its
4494 	 * size back to arc_p, if we're still above the target cache
4495 	 * size, we evict the rest from the MFU.
4496 	 */
4497 	target = asize - arc_c;
4498 
4499 	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4500 	    ameta > arc_meta_min) {
4501 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4502 		total_evicted += bytes;
4503 
4504 		/*
4505 		 * If we couldn't evict our target number of bytes from
4506 		 * metadata, we try to get the rest from data.
4507 		 */
4508 		target -= bytes;
4509 
4510 		total_evicted +=
4511 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4512 	} else {
4513 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4514 		total_evicted += bytes;
4515 
4516 		/*
4517 		 * If we couldn't evict our target number of bytes from
4518 		 * data, we try to get the rest from data.
4519 		 */
4520 		target -= bytes;
4521 
4522 		total_evicted +=
4523 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4524 	}
4525 
4526 	/*
4527 	 * Adjust ghost lists
4528 	 *
4529 	 * In addition to the above, the ARC also defines target values
4530 	 * for the ghost lists. The sum of the mru list and mru ghost
4531 	 * list should never exceed the target size of the cache, and
4532 	 * the sum of the mru list, mfu list, mru ghost list, and mfu
4533 	 * ghost list should never exceed twice the target size of the
4534 	 * cache. The following logic enforces these limits on the ghost
4535 	 * caches, and evicts from them as needed.
4536 	 */
4537 	target = refcount_count(&arc_mru->arcs_size) +
4538 	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4539 
4540 	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4541 	total_evicted += bytes;
4542 
4543 	target -= bytes;
4544 
4545 	total_evicted +=
4546 	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4547 
4548 	/*
4549 	 * We assume the sum of the mru list and mfu list is less than
4550 	 * or equal to arc_c (we enforced this above), which means we
4551 	 * can use the simpler of the two equations below:
4552 	 *
4553 	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4554 	 *		    mru ghost + mfu ghost <= arc_c
4555 	 */
4556 	target = refcount_count(&arc_mru_ghost->arcs_size) +
4557 	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4558 
4559 	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4560 	total_evicted += bytes;
4561 
4562 	target -= bytes;
4563 
4564 	total_evicted +=
4565 	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4566 
4567 	return (total_evicted);
4568 }
4569 
4570 void
arc_flush(spa_t * spa,boolean_t retry)4571 arc_flush(spa_t *spa, boolean_t retry)
4572 {
4573 	uint64_t guid = 0;
4574 
4575 	/*
4576 	 * If retry is B_TRUE, a spa must not be specified since we have
4577 	 * no good way to determine if all of a spa's buffers have been
4578 	 * evicted from an arc state.
4579 	 */
4580 	ASSERT(!retry || spa == 0);
4581 
4582 	if (spa != NULL)
4583 		guid = spa_load_guid(spa);
4584 
4585 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4586 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4587 
4588 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4589 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4590 
4591 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4592 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4593 
4594 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4595 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4596 }
4597 
4598 static void
arc_reduce_target_size(int64_t to_free)4599 arc_reduce_target_size(int64_t to_free)
4600 {
4601 	uint64_t asize = aggsum_value(&arc_size);
4602 	if (arc_c > arc_c_min) {
4603 		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
4604 			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
4605 		if (arc_c > arc_c_min + to_free)
4606 			atomic_add_64(&arc_c, -to_free);
4607 		else
4608 			arc_c = arc_c_min;
4609 
4610 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4611 		if (asize < arc_c)
4612 			arc_c = MAX(asize, arc_c_min);
4613 		if (arc_p > arc_c)
4614 			arc_p = (arc_c >> 1);
4615 
4616 		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
4617 			arc_p);
4618 
4619 		ASSERT(arc_c >= arc_c_min);
4620 		ASSERT((int64_t)arc_p >= 0);
4621 	}
4622 
4623 	if (asize > arc_c) {
4624 		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, asize,
4625 			uint64_t, arc_c);
4626 		/* See comment in arc_adjust_cb_check() on why lock+flag */
4627 		mutex_enter(&arc_adjust_lock);
4628 		arc_adjust_needed = B_TRUE;
4629 		mutex_exit(&arc_adjust_lock);
4630 		zthr_wakeup(arc_adjust_zthr);
4631 	}
4632 }
4633 
4634 typedef enum free_memory_reason_t {
4635 	FMR_UNKNOWN,
4636 	FMR_NEEDFREE,
4637 	FMR_LOTSFREE,
4638 	FMR_SWAPFS_MINFREE,
4639 	FMR_PAGES_PP_MAXIMUM,
4640 	FMR_HEAP_ARENA,
4641 	FMR_ZIO_ARENA,
4642 } free_memory_reason_t;
4643 
4644 int64_t last_free_memory;
4645 free_memory_reason_t last_free_reason;
4646 
4647 /*
4648  * Additional reserve of pages for pp_reserve.
4649  */
4650 int64_t arc_pages_pp_reserve = 64;
4651 
4652 /*
4653  * Additional reserve of pages for swapfs.
4654  */
4655 int64_t arc_swapfs_reserve = 64;
4656 
4657 /*
4658  * Return the amount of memory that can be consumed before reclaim will be
4659  * needed.  Positive if there is sufficient free memory, negative indicates
4660  * the amount of memory that needs to be freed up.
4661  */
4662 static int64_t
arc_available_memory(void)4663 arc_available_memory(void)
4664 {
4665 	int64_t lowest = INT64_MAX;
4666 	int64_t n;
4667 	free_memory_reason_t r = FMR_UNKNOWN;
4668 
4669 #ifdef _KERNEL
4670 #ifdef __FreeBSD__
4671 	/*
4672 	 * Cooperate with pagedaemon when it's time for it to scan
4673 	 * and reclaim some pages.
4674 	 */
4675 	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
4676 	if (n < lowest) {
4677 		lowest = n;
4678 		r = FMR_LOTSFREE;
4679 	}
4680 
4681 #else
4682 	if (needfree > 0) {
4683 		n = PAGESIZE * (-needfree);
4684 		if (n < lowest) {
4685 			lowest = n;
4686 			r = FMR_NEEDFREE;
4687 		}
4688 	}
4689 
4690 	/*
4691 	 * check that we're out of range of the pageout scanner.  It starts to
4692 	 * schedule paging if freemem is less than lotsfree and needfree.
4693 	 * lotsfree is the high-water mark for pageout, and needfree is the
4694 	 * number of needed free pages.  We add extra pages here to make sure
4695 	 * the scanner doesn't start up while we're freeing memory.
4696 	 */
4697 	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4698 	if (n < lowest) {
4699 		lowest = n;
4700 		r = FMR_LOTSFREE;
4701 	}
4702 
4703 	/*
4704 	 * check to make sure that swapfs has enough space so that anon
4705 	 * reservations can still succeed. anon_resvmem() checks that the
4706 	 * availrmem is greater than swapfs_minfree, and the number of reserved
4707 	 * swap pages.  We also add a bit of extra here just to prevent
4708 	 * circumstances from getting really dire.
4709 	 */
4710 	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4711 	    desfree - arc_swapfs_reserve);
4712 	if (n < lowest) {
4713 		lowest = n;
4714 		r = FMR_SWAPFS_MINFREE;
4715 	}
4716 
4717 
4718 	/*
4719 	 * Check that we have enough availrmem that memory locking (e.g., via
4720 	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4721 	 * stores the number of pages that cannot be locked; when availrmem
4722 	 * drops below pages_pp_maximum, page locking mechanisms such as
4723 	 * page_pp_lock() will fail.)
4724 	 */
4725 	n = PAGESIZE * (availrmem - pages_pp_maximum -
4726 	    arc_pages_pp_reserve);
4727 	if (n < lowest) {
4728 		lowest = n;
4729 		r = FMR_PAGES_PP_MAXIMUM;
4730 	}
4731 
4732 #endif	/* __FreeBSD__ */
4733 #if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4734 	/*
4735 	 * If we're on an i386 platform, it's possible that we'll exhaust the
4736 	 * kernel heap space before we ever run out of available physical
4737 	 * memory.  Most checks of the size of the heap_area compare against
4738 	 * tune.t_minarmem, which is the minimum available real memory that we
4739 	 * can have in the system.  However, this is generally fixed at 25 pages
4740 	 * which is so low that it's useless.  In this comparison, we seek to
4741 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4742 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4743 	 * free)
4744 	 */
4745 	n = uma_avail() - (long)(uma_limit() / 4);
4746 	if (n < lowest) {
4747 		lowest = n;
4748 		r = FMR_HEAP_ARENA;
4749 	}
4750 #endif
4751 
4752 	/*
4753 	 * If zio data pages are being allocated out of a separate heap segment,
4754 	 * then enforce that the size of available vmem for this arena remains
4755 	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4756 	 *
4757 	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4758 	 * memory (in the zio_arena) free, which can avoid memory
4759 	 * fragmentation issues.
4760 	 */
4761 	if (zio_arena != NULL) {
4762 		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4763 		    (vmem_size(zio_arena, VMEM_ALLOC) >>
4764 		    arc_zio_arena_free_shift);
4765 		if (n < lowest) {
4766 			lowest = n;
4767 			r = FMR_ZIO_ARENA;
4768 		}
4769 	}
4770 
4771 #else	/* _KERNEL */
4772 	/* Every 100 calls, free a small amount */
4773 	if (spa_get_random(100) == 0)
4774 		lowest = -1024;
4775 #endif	/* _KERNEL */
4776 
4777 	last_free_memory = lowest;
4778 	last_free_reason = r;
4779 	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
4780 	return (lowest);
4781 }
4782 
4783 
4784 /*
4785  * Determine if the system is under memory pressure and is asking
4786  * to reclaim memory. A return value of B_TRUE indicates that the system
4787  * is under memory pressure and that the arc should adjust accordingly.
4788  */
4789 static boolean_t
arc_reclaim_needed(void)4790 arc_reclaim_needed(void)
4791 {
4792 	return (arc_available_memory() < 0);
4793 }
4794 
4795 extern kmem_cache_t	*zio_buf_cache[];
4796 extern kmem_cache_t	*zio_data_buf_cache[];
4797 extern kmem_cache_t	*range_seg_cache;
4798 extern kmem_cache_t	*abd_chunk_cache;
4799 
4800 static __noinline void
arc_kmem_reap_soon(void)4801 arc_kmem_reap_soon(void)
4802 {
4803 	size_t			i;
4804 	kmem_cache_t		*prev_cache = NULL;
4805 	kmem_cache_t		*prev_data_cache = NULL;
4806 
4807 	DTRACE_PROBE(arc__kmem_reap_start);
4808 #ifdef _KERNEL
4809 	if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4810 		/*
4811 		 * We are exceeding our meta-data cache limit.
4812 		 * Purge some DNLC entries to release holds on meta-data.
4813 		 */
4814 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4815 	}
4816 #if defined(__i386)
4817 	/*
4818 	 * Reclaim unused memory from all kmem caches.
4819 	 */
4820 	kmem_reap();
4821 #endif
4822 #endif
4823 
4824 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4825 		if (zio_buf_cache[i] != prev_cache) {
4826 			prev_cache = zio_buf_cache[i];
4827 			kmem_cache_reap_soon(zio_buf_cache[i]);
4828 		}
4829 		if (zio_data_buf_cache[i] != prev_data_cache) {
4830 			prev_data_cache = zio_data_buf_cache[i];
4831 			kmem_cache_reap_soon(zio_data_buf_cache[i]);
4832 		}
4833 	}
4834 	kmem_cache_reap_soon(abd_chunk_cache);
4835 	kmem_cache_reap_soon(buf_cache);
4836 	kmem_cache_reap_soon(hdr_full_cache);
4837 	kmem_cache_reap_soon(hdr_l2only_cache);
4838 	kmem_cache_reap_soon(range_seg_cache);
4839 
4840 #ifdef illumos
4841 	if (zio_arena != NULL) {
4842 		/*
4843 		 * Ask the vmem arena to reclaim unused memory from its
4844 		 * quantum caches.
4845 		 */
4846 		vmem_qcache_reap(zio_arena);
4847 	}
4848 #endif
4849 	DTRACE_PROBE(arc__kmem_reap_end);
4850 }
4851 
4852 /* ARGSUSED */
4853 static boolean_t
arc_adjust_cb_check(void * arg,zthr_t * zthr)4854 arc_adjust_cb_check(void *arg, zthr_t *zthr)
4855 {
4856 	/*
4857 	 * This is necessary in order for the mdb ::arc dcmd to
4858 	 * show up to date information. Since the ::arc command
4859 	 * does not call the kstat's update function, without
4860 	 * this call, the command may show stale stats for the
4861 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4862 	 * with this change, the data might be up to 1 second
4863 	 * out of date(the arc_adjust_zthr has a maximum sleep
4864 	 * time of 1 second); but that should suffice.  The
4865 	 * arc_state_t structures can be queried directly if more
4866 	 * accurate information is needed.
4867 	 */
4868 	if (arc_ksp != NULL)
4869 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4870 
4871 	/*
4872 	 * We have to rely on arc_get_data_impl() to tell us when to adjust,
4873 	 * rather than checking if we are overflowing here, so that we are
4874 	 * sure to not leave arc_get_data_impl() waiting on
4875 	 * arc_adjust_waiters_cv.  If we have become "not overflowing" since
4876 	 * arc_get_data_impl() checked, we need to wake it up.  We could
4877 	 * broadcast the CV here, but arc_get_data_impl() may have not yet
4878 	 * gone to sleep.  We would need to use a mutex to ensure that this
4879 	 * function doesn't broadcast until arc_get_data_impl() has gone to
4880 	 * sleep (e.g. the arc_adjust_lock).  However, the lock ordering of
4881 	 * such a lock would necessarily be incorrect with respect to the
4882 	 * zthr_lock, which is held before this function is called, and is
4883 	 * held by arc_get_data_impl() when it calls zthr_wakeup().
4884 	 */
4885 	return (arc_adjust_needed);
4886 }
4887 
4888 /*
4889  * Keep arc_size under arc_c by running arc_adjust which evicts data
4890  * from the ARC. */
4891 /* ARGSUSED */
4892 static int
arc_adjust_cb(void * arg,zthr_t * zthr)4893 arc_adjust_cb(void *arg, zthr_t *zthr)
4894 {
4895 	uint64_t evicted = 0;
4896 
4897 	/* Evict from cache */
4898 	evicted = arc_adjust();
4899 
4900 	/*
4901 	 * If evicted is zero, we couldn't evict anything
4902 	 * via arc_adjust(). This could be due to hash lock
4903 	 * collisions, but more likely due to the majority of
4904 	 * arc buffers being unevictable. Therefore, even if
4905 	 * arc_size is above arc_c, another pass is unlikely to
4906 	 * be helpful and could potentially cause us to enter an
4907 	 * infinite loop.  Additionally, zthr_iscancelled() is
4908 	 * checked here so that if the arc is shutting down, the
4909 	 * broadcast will wake any remaining arc adjust waiters.
4910 	 */
4911 	mutex_enter(&arc_adjust_lock);
4912 	arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4913 	    evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4914 	if (!arc_adjust_needed) {
4915 		/*
4916 		 * We're either no longer overflowing, or we
4917 		 * can't evict anything more, so we should wake
4918 		 * up any waiters.
4919 		 */
4920 		cv_broadcast(&arc_adjust_waiters_cv);
4921 	}
4922 	mutex_exit(&arc_adjust_lock);
4923 
4924 	return (0);
4925 }
4926 
4927 /* ARGSUSED */
4928 static boolean_t
arc_reap_cb_check(void * arg,zthr_t * zthr)4929 arc_reap_cb_check(void *arg, zthr_t *zthr)
4930 {
4931 	int64_t free_memory = arc_available_memory();
4932 
4933 	/*
4934 	 * If a kmem reap is already active, don't schedule more.  We must
4935 	 * check for this because kmem_cache_reap_soon() won't actually
4936 	 * block on the cache being reaped (this is to prevent callers from
4937 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4938 	 * on a system with many, many full magazines, can take minutes).
4939 	 */
4940 	if (!kmem_cache_reap_active() &&
4941 	    free_memory < 0) {
4942 		arc_no_grow = B_TRUE;
4943 		arc_warm = B_TRUE;
4944 		/*
4945 		 * Wait at least zfs_grow_retry (default 60) seconds
4946 		 * before considering growing.
4947 		 */
4948 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4949 		return (B_TRUE);
4950 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4951 		arc_no_grow = B_TRUE;
4952 	} else if (gethrtime() >= arc_growtime) {
4953 		arc_no_grow = B_FALSE;
4954 	}
4955 
4956 	return (B_FALSE);
4957 }
4958 
4959 /*
4960  * Keep enough free memory in the system by reaping the ARC's kmem
4961  * caches.  To cause more slabs to be reapable, we may reduce the
4962  * target size of the cache (arc_c), causing the arc_adjust_cb()
4963  * to free more buffers.
4964  */
4965 /* ARGSUSED */
4966 static int
arc_reap_cb(void * arg,zthr_t * zthr)4967 arc_reap_cb(void *arg, zthr_t *zthr)
4968 {
4969 	int64_t free_memory;
4970 
4971 	/*
4972 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4973 	 */
4974 	arc_kmem_reap_soon();
4975 
4976 	/*
4977 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4978 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4979 	 * end up in a situation where we spend lots of time reaping
4980 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4981 	 * subsequent free memory check a chance of finding that the
4982 	 * asynchronous reap has already freed enough memory, and we don't
4983 	 * need to call arc_reduce_target_size().
4984 	 */
4985 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4986 
4987 	/*
4988 	 * Reduce the target size as needed to maintain the amount of free
4989 	 * memory in the system at a fraction of the arc_size (1/128th by
4990 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4991 	 * target arc_size by the deficit amount plus the fractional
4992 	 * amount.  If free memory is positive but less then the fractional
4993 	 * amount, reduce by what is needed to hit the fractional amount.
4994 	 */
4995 	free_memory = arc_available_memory();
4996 
4997 	int64_t to_free =
4998 	    (arc_c >> arc_shrink_shift) - free_memory;
4999 	if (to_free > 0) {
5000 #ifdef _KERNEL
5001 #ifdef illumos
5002 		to_free = MAX(to_free, ptob(needfree));
5003 #endif
5004 #endif
5005 		arc_reduce_target_size(to_free);
5006 	}
5007 
5008 	return (0);
5009 }
5010 
5011 static u_int arc_dnlc_evicts_arg;
5012 extern struct vfsops zfs_vfsops;
5013 
5014 static void
arc_dnlc_evicts_thread(void * dummy __unused)5015 arc_dnlc_evicts_thread(void *dummy __unused)
5016 {
5017 	callb_cpr_t cpr;
5018 	u_int percent;
5019 
5020 	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
5021 
5022 	mutex_enter(&arc_dnlc_evicts_lock);
5023 	while (!arc_dnlc_evicts_thread_exit) {
5024 		CALLB_CPR_SAFE_BEGIN(&cpr);
5025 		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
5026 		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
5027 		if (arc_dnlc_evicts_arg != 0) {
5028 			percent = arc_dnlc_evicts_arg;
5029 			mutex_exit(&arc_dnlc_evicts_lock);
5030 #ifdef _KERNEL
5031 			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
5032 #endif
5033 			mutex_enter(&arc_dnlc_evicts_lock);
5034 			/*
5035 			 * Clear our token only after vnlru_free()
5036 			 * pass is done, to avoid false queueing of
5037 			 * the requests.
5038 			 */
5039 			arc_dnlc_evicts_arg = 0;
5040 		}
5041 	}
5042 	arc_dnlc_evicts_thread_exit = FALSE;
5043 	cv_broadcast(&arc_dnlc_evicts_cv);
5044 	CALLB_CPR_EXIT(&cpr);
5045 	thread_exit();
5046 }
5047 
5048 void
dnlc_reduce_cache(void * arg)5049 dnlc_reduce_cache(void *arg)
5050 {
5051 	u_int percent;
5052 
5053 	percent = (u_int)(uintptr_t)arg;
5054 	mutex_enter(&arc_dnlc_evicts_lock);
5055 	if (arc_dnlc_evicts_arg == 0) {
5056 		arc_dnlc_evicts_arg = percent;
5057 		cv_broadcast(&arc_dnlc_evicts_cv);
5058 	}
5059 	mutex_exit(&arc_dnlc_evicts_lock);
5060 }
5061 
5062 /*
5063  * Adapt arc info given the number of bytes we are trying to add and
5064  * the state that we are comming from.  This function is only called
5065  * when we are adding new content to the cache.
5066  */
5067 static void
arc_adapt(int bytes,arc_state_t * state)5068 arc_adapt(int bytes, arc_state_t *state)
5069 {
5070 	int mult;
5071 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5072 	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
5073 	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
5074 
5075 	if (state == arc_l2c_only)
5076 		return;
5077 
5078 	ASSERT(bytes > 0);
5079 	/*
5080 	 * Adapt the target size of the MRU list:
5081 	 *	- if we just hit in the MRU ghost list, then increase
5082 	 *	  the target size of the MRU list.
5083 	 *	- if we just hit in the MFU ghost list, then increase
5084 	 *	  the target size of the MFU list by decreasing the
5085 	 *	  target size of the MRU list.
5086 	 */
5087 	if (state == arc_mru_ghost) {
5088 		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5089 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5090 
5091 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5092 	} else if (state == arc_mfu_ghost) {
5093 		uint64_t delta;
5094 
5095 		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5096 		mult = MIN(mult, 10);
5097 
5098 		delta = MIN(bytes * mult, arc_p);
5099 		arc_p = MAX(arc_p_min, arc_p - delta);
5100 	}
5101 	ASSERT((int64_t)arc_p >= 0);
5102 
5103 	/*
5104 	 * Wake reap thread if we do not have any available memory
5105 	 */
5106 	if (arc_reclaim_needed()) {
5107 		zthr_wakeup(arc_reap_zthr);
5108 		return;
5109 	}
5110 
5111 	if (arc_no_grow)
5112 		return;
5113 
5114 	if (arc_c >= arc_c_max)
5115 		return;
5116 
5117 	/*
5118 	 * If we're within (2 * maxblocksize) bytes of the target
5119 	 * cache size, increment the target cache size
5120 	 */
5121 	if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
5122 	    0) {
5123 		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
5124 		atomic_add_64(&arc_c, (int64_t)bytes);
5125 		if (arc_c > arc_c_max)
5126 			arc_c = arc_c_max;
5127 		else if (state == arc_anon)
5128 			atomic_add_64(&arc_p, (int64_t)bytes);
5129 		if (arc_p > arc_c)
5130 			arc_p = arc_c;
5131 	}
5132 	ASSERT((int64_t)arc_p >= 0);
5133 }
5134 
5135 /*
5136  * Check if arc_size has grown past our upper threshold, determined by
5137  * zfs_arc_overflow_shift.
5138  */
5139 static boolean_t
arc_is_overflowing(void)5140 arc_is_overflowing(void)
5141 {
5142 	/* Always allow at least one block of overflow */
5143 	int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5144 	    arc_c >> zfs_arc_overflow_shift);
5145 
5146 	/*
5147 	 * We just compare the lower bound here for performance reasons. Our
5148 	 * primary goals are to make sure that the arc never grows without
5149 	 * bound, and that it can reach its maximum size. This check
5150 	 * accomplishes both goals. The maximum amount we could run over by is
5151 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5152 	 * in the ARC. In practice, that's in the tens of MB, which is low
5153 	 * enough to be safe.
5154 	 */
5155 	return (aggsum_lower_bound(&arc_size) >= (int64_t)arc_c + overflow);
5156 }
5157 
5158 static abd_t *
arc_get_data_abd(arc_buf_hdr_t * hdr,uint64_t size,void * tag,boolean_t do_adapt)5159 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, boolean_t do_adapt)
5160 {
5161 	arc_buf_contents_t type = arc_buf_type(hdr);
5162 
5163 	arc_get_data_impl(hdr, size, tag, do_adapt);
5164 	if (type == ARC_BUFC_METADATA) {
5165 		return (abd_alloc(size, B_TRUE));
5166 	} else {
5167 		ASSERT(type == ARC_BUFC_DATA);
5168 		return (abd_alloc(size, B_FALSE));
5169 	}
5170 }
5171 
5172 static void *
arc_get_data_buf(arc_buf_hdr_t * hdr,uint64_t size,void * tag)5173 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5174 {
5175 	arc_buf_contents_t type = arc_buf_type(hdr);
5176 
5177 	arc_get_data_impl(hdr, size, tag, B_TRUE);
5178 	if (type == ARC_BUFC_METADATA) {
5179 		return (zio_buf_alloc(size));
5180 	} else {
5181 		ASSERT(type == ARC_BUFC_DATA);
5182 		return (zio_data_buf_alloc(size));
5183 	}
5184 }
5185 
5186 /*
5187  * Allocate a block and return it to the caller. If we are hitting the
5188  * hard limit for the cache size, we must sleep, waiting for the eviction
5189  * thread to catch up. If we're past the target size but below the hard
5190  * limit, we'll only signal the reclaim thread and continue on.
5191  */
5192 static void
arc_get_data_impl(arc_buf_hdr_t * hdr,uint64_t size,void * tag,boolean_t do_adapt)5193 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, boolean_t do_adapt)
5194 {
5195 	arc_state_t *state = hdr->b_l1hdr.b_state;
5196 	arc_buf_contents_t type = arc_buf_type(hdr);
5197 
5198 	if (do_adapt)
5199 		arc_adapt(size, state);
5200 
5201 	/*
5202 	 * If arc_size is currently overflowing, and has grown past our
5203 	 * upper limit, we must be adding data faster than the evict
5204 	 * thread can evict. Thus, to ensure we don't compound the
5205 	 * problem by adding more data and forcing arc_size to grow even
5206 	 * further past it's target size, we halt and wait for the
5207 	 * eviction thread to catch up.
5208 	 *
5209 	 * It's also possible that the reclaim thread is unable to evict
5210 	 * enough buffers to get arc_size below the overflow limit (e.g.
5211 	 * due to buffers being un-evictable, or hash lock collisions).
5212 	 * In this case, we want to proceed regardless if we're
5213 	 * overflowing; thus we don't use a while loop here.
5214 	 */
5215 	if (arc_is_overflowing()) {
5216 		mutex_enter(&arc_adjust_lock);
5217 
5218 		/*
5219 		 * Now that we've acquired the lock, we may no longer be
5220 		 * over the overflow limit, lets check.
5221 		 *
5222 		 * We're ignoring the case of spurious wake ups. If that
5223 		 * were to happen, it'd let this thread consume an ARC
5224 		 * buffer before it should have (i.e. before we're under
5225 		 * the overflow limit and were signalled by the reclaim
5226 		 * thread). As long as that is a rare occurrence, it
5227 		 * shouldn't cause any harm.
5228 		 */
5229 		if (arc_is_overflowing()) {
5230 			arc_adjust_needed = B_TRUE;
5231 			zthr_wakeup(arc_adjust_zthr);
5232 			(void) cv_wait(&arc_adjust_waiters_cv,
5233 			    &arc_adjust_lock);
5234 		}
5235 		mutex_exit(&arc_adjust_lock);
5236 	}
5237 
5238 	VERIFY3U(hdr->b_type, ==, type);
5239 	if (type == ARC_BUFC_METADATA) {
5240 		arc_space_consume(size, ARC_SPACE_META);
5241 	} else {
5242 		arc_space_consume(size, ARC_SPACE_DATA);
5243 	}
5244 
5245 	/*
5246 	 * Update the state size.  Note that ghost states have a
5247 	 * "ghost size" and so don't need to be updated.
5248 	 */
5249 	if (!GHOST_STATE(state)) {
5250 
5251 		(void) refcount_add_many(&state->arcs_size, size, tag);
5252 
5253 		/*
5254 		 * If this is reached via arc_read, the link is
5255 		 * protected by the hash lock. If reached via
5256 		 * arc_buf_alloc, the header should not be accessed by
5257 		 * any other thread. And, if reached via arc_read_done,
5258 		 * the hash lock will protect it if it's found in the
5259 		 * hash table; otherwise no other thread should be
5260 		 * trying to [add|remove]_reference it.
5261 		 */
5262 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5263 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5264 			(void) refcount_add_many(&state->arcs_esize[type],
5265 			    size, tag);
5266 		}
5267 
5268 		/*
5269 		 * If we are growing the cache, and we are adding anonymous
5270 		 * data, and we have outgrown arc_p, update arc_p
5271 		 */
5272 		if (aggsum_upper_bound(&arc_size) < arc_c &&
5273 		    hdr->b_l1hdr.b_state == arc_anon &&
5274 		    (refcount_count(&arc_anon->arcs_size) +
5275 		    refcount_count(&arc_mru->arcs_size) > arc_p))
5276 			arc_p = MIN(arc_c, arc_p + size);
5277 	}
5278 	ARCSTAT_BUMP(arcstat_allocated);
5279 }
5280 
5281 static void
arc_free_data_abd(arc_buf_hdr_t * hdr,abd_t * abd,uint64_t size,void * tag)5282 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5283 {
5284 	arc_free_data_impl(hdr, size, tag);
5285 	abd_free(abd);
5286 }
5287 
5288 static void
arc_free_data_buf(arc_buf_hdr_t * hdr,void * buf,uint64_t size,void * tag)5289 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5290 {
5291 	arc_buf_contents_t type = arc_buf_type(hdr);
5292 
5293 	arc_free_data_impl(hdr, size, tag);
5294 	if (type == ARC_BUFC_METADATA) {
5295 		zio_buf_free(buf, size);
5296 	} else {
5297 		ASSERT(type == ARC_BUFC_DATA);
5298 		zio_data_buf_free(buf, size);
5299 	}
5300 }
5301 
5302 /*
5303  * Free the arc data buffer.
5304  */
5305 static void
arc_free_data_impl(arc_buf_hdr_t * hdr,uint64_t size,void * tag)5306 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5307 {
5308 	arc_state_t *state = hdr->b_l1hdr.b_state;
5309 	arc_buf_contents_t type = arc_buf_type(hdr);
5310 
5311 	/* protected by hash lock, if in the hash table */
5312 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5313 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5314 		ASSERT(state != arc_anon && state != arc_l2c_only);
5315 
5316 		(void) refcount_remove_many(&state->arcs_esize[type],
5317 		    size, tag);
5318 	}
5319 	(void) refcount_remove_many(&state->arcs_size, size, tag);
5320 
5321 	VERIFY3U(hdr->b_type, ==, type);
5322 	if (type == ARC_BUFC_METADATA) {
5323 		arc_space_return(size, ARC_SPACE_META);
5324 	} else {
5325 		ASSERT(type == ARC_BUFC_DATA);
5326 		arc_space_return(size, ARC_SPACE_DATA);
5327 	}
5328 }
5329 
5330 /*
5331  * This routine is called whenever a buffer is accessed.
5332  * NOTE: the hash lock is dropped in this function.
5333  */
5334 static void
arc_access(arc_buf_hdr_t * hdr,kmutex_t * hash_lock)5335 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5336 {
5337 	clock_t now;
5338 
5339 	ASSERT(MUTEX_HELD(hash_lock));
5340 	ASSERT(HDR_HAS_L1HDR(hdr));
5341 
5342 	if (hdr->b_l1hdr.b_state == arc_anon) {
5343 		/*
5344 		 * This buffer is not in the cache, and does not
5345 		 * appear in our "ghost" list.  Add the new buffer
5346 		 * to the MRU state.
5347 		 */
5348 
5349 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5350 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5351 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5352 		arc_change_state(arc_mru, hdr, hash_lock);
5353 
5354 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5355 		now = ddi_get_lbolt();
5356 
5357 		/*
5358 		 * If this buffer is here because of a prefetch, then either:
5359 		 * - clear the flag if this is a "referencing" read
5360 		 *   (any subsequent access will bump this into the MFU state).
5361 		 * or
5362 		 * - move the buffer to the head of the list if this is
5363 		 *   another prefetch (to make it less likely to be evicted).
5364 		 */
5365 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5366 			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5367 				/* link protected by hash lock */
5368 				ASSERT(multilist_link_active(
5369 				    &hdr->b_l1hdr.b_arc_node));
5370 			} else {
5371 				arc_hdr_clear_flags(hdr,
5372 				    ARC_FLAG_PREFETCH |
5373 				    ARC_FLAG_PRESCIENT_PREFETCH);
5374 				ARCSTAT_BUMP(arcstat_mru_hits);
5375 			}
5376 			hdr->b_l1hdr.b_arc_access = now;
5377 			return;
5378 		}
5379 
5380 		/*
5381 		 * This buffer has been "accessed" only once so far,
5382 		 * but it is still in the cache. Move it to the MFU
5383 		 * state.
5384 		 */
5385 		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5386 			/*
5387 			 * More than 125ms have passed since we
5388 			 * instantiated this buffer.  Move it to the
5389 			 * most frequently used state.
5390 			 */
5391 			hdr->b_l1hdr.b_arc_access = now;
5392 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5393 			arc_change_state(arc_mfu, hdr, hash_lock);
5394 		}
5395 		atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5396 		ARCSTAT_BUMP(arcstat_mru_hits);
5397 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5398 		arc_state_t	*new_state;
5399 		/*
5400 		 * This buffer has been "accessed" recently, but
5401 		 * was evicted from the cache.  Move it to the
5402 		 * MFU state.
5403 		 */
5404 
5405 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5406 			new_state = arc_mru;
5407 			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5408 				arc_hdr_clear_flags(hdr,
5409 				    ARC_FLAG_PREFETCH |
5410 				    ARC_FLAG_PRESCIENT_PREFETCH);
5411 			}
5412 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5413 		} else {
5414 			new_state = arc_mfu;
5415 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5416 		}
5417 
5418 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5419 		arc_change_state(new_state, hdr, hash_lock);
5420 
5421 		atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
5422 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5423 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5424 		/*
5425 		 * This buffer has been accessed more than once and is
5426 		 * still in the cache.  Keep it in the MFU state.
5427 		 *
5428 		 * NOTE: an add_reference() that occurred when we did
5429 		 * the arc_read() will have kicked this off the list.
5430 		 * If it was a prefetch, we will explicitly move it to
5431 		 * the head of the list now.
5432 		 */
5433 
5434 		atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
5435 		ARCSTAT_BUMP(arcstat_mfu_hits);
5436 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5437 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5438 		arc_state_t	*new_state = arc_mfu;
5439 		/*
5440 		 * This buffer has been accessed more than once but has
5441 		 * been evicted from the cache.  Move it back to the
5442 		 * MFU state.
5443 		 */
5444 
5445 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5446 			/*
5447 			 * This is a prefetch access...
5448 			 * move this block back to the MRU state.
5449 			 */
5450 			new_state = arc_mru;
5451 		}
5452 
5453 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5454 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5455 		arc_change_state(new_state, hdr, hash_lock);
5456 
5457 		atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
5458 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5459 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5460 		/*
5461 		 * This buffer is on the 2nd Level ARC.
5462 		 */
5463 
5464 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5465 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5466 		arc_change_state(arc_mfu, hdr, hash_lock);
5467 	} else {
5468 		ASSERT(!"invalid arc state");
5469 	}
5470 }
5471 
5472 /*
5473  * This routine is called by dbuf_hold() to update the arc_access() state
5474  * which otherwise would be skipped for entries in the dbuf cache.
5475  */
5476 void
arc_buf_access(arc_buf_t * buf)5477 arc_buf_access(arc_buf_t *buf)
5478 {
5479 	mutex_enter(&buf->b_evict_lock);
5480 	arc_buf_hdr_t *hdr = buf->b_hdr;
5481 
5482 	/*
5483 	 * Avoid taking the hash_lock when possible as an optimization.
5484 	 * The header must be checked again under the hash_lock in order
5485 	 * to handle the case where it is concurrently being released.
5486 	 */
5487 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5488 		mutex_exit(&buf->b_evict_lock);
5489 		ARCSTAT_BUMP(arcstat_access_skip);
5490 		return;
5491 	}
5492 
5493 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5494 	mutex_enter(hash_lock);
5495 
5496 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5497 		mutex_exit(hash_lock);
5498 		mutex_exit(&buf->b_evict_lock);
5499 		ARCSTAT_BUMP(arcstat_access_skip);
5500 		return;
5501 	}
5502 
5503 	mutex_exit(&buf->b_evict_lock);
5504 
5505 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5506 	    hdr->b_l1hdr.b_state == arc_mfu);
5507 
5508 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5509 	arc_access(hdr, hash_lock);
5510 	mutex_exit(hash_lock);
5511 
5512 	ARCSTAT_BUMP(arcstat_hits);
5513 	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5514 	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5515 }
5516 
5517 /* a generic arc_read_done_func_t which you can use */
5518 /* ARGSUSED */
5519 void
arc_bcopy_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5520 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5521     arc_buf_t *buf, void *arg)
5522 {
5523 	if (buf == NULL)
5524 		return;
5525 
5526 	bcopy(buf->b_data, arg, arc_buf_size(buf));
5527 	arc_buf_destroy(buf, arg);
5528 }
5529 
5530 /* a generic arc_read_done_func_t */
5531 /* ARGSUSED */
5532 void
arc_getbuf_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5533 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5534     arc_buf_t *buf, void *arg)
5535 {
5536 	arc_buf_t **bufp = arg;
5537 	if (buf == NULL) {
5538 		ASSERT(zio == NULL || zio->io_error != 0);
5539 		*bufp = NULL;
5540 	} else {
5541 		ASSERT(zio == NULL || zio->io_error == 0);
5542 		*bufp = buf;
5543 		ASSERT(buf->b_data != NULL);
5544 	}
5545 }
5546 
5547 static void
arc_hdr_verify(arc_buf_hdr_t * hdr,blkptr_t * bp)5548 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5549 {
5550 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5551 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5552 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
5553 	} else {
5554 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5555 			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
5556 			    BP_GET_COMPRESS(bp));
5557 		}
5558 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5559 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5560 	}
5561 }
5562 
5563 static void
arc_read_done(zio_t * zio)5564 arc_read_done(zio_t *zio)
5565 {
5566 	arc_buf_hdr_t	*hdr = zio->io_private;
5567 	kmutex_t	*hash_lock = NULL;
5568 	arc_callback_t	*callback_list;
5569 	arc_callback_t	*acb;
5570 	boolean_t	freeable = B_FALSE;
5571 	boolean_t	no_zio_error = (zio->io_error == 0);
5572 
5573 	/*
5574 	 * The hdr was inserted into hash-table and removed from lists
5575 	 * prior to starting I/O.  We should find this header, since
5576 	 * it's in the hash table, and it should be legit since it's
5577 	 * not possible to evict it during the I/O.  The only possible
5578 	 * reason for it not to be found is if we were freed during the
5579 	 * read.
5580 	 */
5581 	if (HDR_IN_HASH_TABLE(hdr)) {
5582 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5583 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5584 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5585 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5586 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5587 
5588 		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5589 		    &hash_lock);
5590 
5591 		ASSERT((found == hdr &&
5592 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5593 		    (found == hdr && HDR_L2_READING(hdr)));
5594 		ASSERT3P(hash_lock, !=, NULL);
5595 	}
5596 
5597 	if (no_zio_error) {
5598 		/* byteswap if necessary */
5599 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5600 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5601 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5602 			} else {
5603 				hdr->b_l1hdr.b_byteswap =
5604 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5605 			}
5606 		} else {
5607 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5608 		}
5609 	}
5610 
5611 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5612 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5613 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5614 
5615 	callback_list = hdr->b_l1hdr.b_acb;
5616 	ASSERT3P(callback_list, !=, NULL);
5617 
5618 	if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
5619 		/*
5620 		 * Only call arc_access on anonymous buffers.  This is because
5621 		 * if we've issued an I/O for an evicted buffer, we've already
5622 		 * called arc_access (to prevent any simultaneous readers from
5623 		 * getting confused).
5624 		 */
5625 		arc_access(hdr, hash_lock);
5626 	}
5627 
5628 	/*
5629 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5630 	 * make a buf containing the data according to the parameters which were
5631 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5632 	 * aren't needlessly decompressing the data multiple times.
5633 	 */
5634 	int callback_cnt = 0;
5635 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5636 		if (!acb->acb_done)
5637 			continue;
5638 
5639 		callback_cnt++;
5640 
5641 		if (no_zio_error) {
5642 			int error = arc_buf_alloc_impl(hdr, acb->acb_private,
5643 			    acb->acb_compressed, zio->io_error == 0,
5644 			    &acb->acb_buf);
5645 			if (error != 0) {
5646 				/*
5647 				 * Decompression failed.  Set io_error
5648 				 * so that when we call acb_done (below),
5649 				 * we will indicate that the read failed.
5650 				 * Note that in the unusual case where one
5651 				 * callback is compressed and another
5652 				 * uncompressed, we will mark all of them
5653 				 * as failed, even though the uncompressed
5654 				 * one can't actually fail.  In this case,
5655 				 * the hdr will not be anonymous, because
5656 				 * if there are multiple callbacks, it's
5657 				 * because multiple threads found the same
5658 				 * arc buf in the hash table.
5659 				 */
5660 				zio->io_error = error;
5661 			}
5662 		}
5663 	}
5664 	/*
5665 	 * If there are multiple callbacks, we must have the hash lock,
5666 	 * because the only way for multiple threads to find this hdr is
5667 	 * in the hash table.  This ensures that if there are multiple
5668 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5669 	 * we couldn't use arc_buf_destroy() in the error case below.
5670 	 */
5671 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5672 
5673 	hdr->b_l1hdr.b_acb = NULL;
5674 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5675 	if (callback_cnt == 0) {
5676 		ASSERT(HDR_PREFETCH(hdr));
5677 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
5678 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5679 	}
5680 
5681 	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5682 	    callback_list != NULL);
5683 
5684 	if (no_zio_error) {
5685 		arc_hdr_verify(hdr, zio->io_bp);
5686 	} else {
5687 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5688 		if (hdr->b_l1hdr.b_state != arc_anon)
5689 			arc_change_state(arc_anon, hdr, hash_lock);
5690 		if (HDR_IN_HASH_TABLE(hdr))
5691 			buf_hash_remove(hdr);
5692 		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5693 	}
5694 
5695 	/*
5696 	 * Broadcast before we drop the hash_lock to avoid the possibility
5697 	 * that the hdr (and hence the cv) might be freed before we get to
5698 	 * the cv_broadcast().
5699 	 */
5700 	cv_broadcast(&hdr->b_l1hdr.b_cv);
5701 
5702 	if (hash_lock != NULL) {
5703 		mutex_exit(hash_lock);
5704 	} else {
5705 		/*
5706 		 * This block was freed while we waited for the read to
5707 		 * complete.  It has been removed from the hash table and
5708 		 * moved to the anonymous state (so that it won't show up
5709 		 * in the cache).
5710 		 */
5711 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5712 		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5713 	}
5714 
5715 	/* execute each callback and free its structure */
5716 	while ((acb = callback_list) != NULL) {
5717 		if (acb->acb_done != NULL) {
5718 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5719 				/*
5720 				 * If arc_buf_alloc_impl() fails during
5721 				 * decompression, the buf will still be
5722 				 * allocated, and needs to be freed here.
5723 				 */
5724 				arc_buf_destroy(acb->acb_buf, acb->acb_private);
5725 				acb->acb_buf = NULL;
5726 			}
5727 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5728 			    acb->acb_buf, acb->acb_private);
5729 		}
5730 
5731 		if (acb->acb_zio_dummy != NULL) {
5732 			acb->acb_zio_dummy->io_error = zio->io_error;
5733 			zio_nowait(acb->acb_zio_dummy);
5734 		}
5735 
5736 		callback_list = acb->acb_next;
5737 		kmem_free(acb, sizeof (arc_callback_t));
5738 	}
5739 
5740 	if (freeable)
5741 		arc_hdr_destroy(hdr);
5742 }
5743 
5744 /*
5745  * "Read" the block at the specified DVA (in bp) via the
5746  * cache.  If the block is found in the cache, invoke the provided
5747  * callback immediately and return.  Note that the `zio' parameter
5748  * in the callback will be NULL in this case, since no IO was
5749  * required.  If the block is not in the cache pass the read request
5750  * on to the spa with a substitute callback function, so that the
5751  * requested block will be added to the cache.
5752  *
5753  * If a read request arrives for a block that has a read in-progress,
5754  * either wait for the in-progress read to complete (and return the
5755  * results); or, if this is a read with a "done" func, add a record
5756  * to the read to invoke the "done" func when the read completes,
5757  * and return; or just return.
5758  *
5759  * arc_read_done() will invoke all the requested "done" functions
5760  * for readers of this block.
5761  */
5762 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_read_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)5763 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5764     void *private, zio_priority_t priority, int zio_flags,
5765     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5766 {
5767 	arc_buf_hdr_t *hdr = NULL;
5768 	kmutex_t *hash_lock = NULL;
5769 	zio_t *rzio;
5770 	uint64_t guid = spa_load_guid(spa);
5771 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5772 	int rc = 0;
5773 
5774 	ASSERT(!BP_IS_EMBEDDED(bp) ||
5775 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5776 
5777 top:
5778 	if (!BP_IS_EMBEDDED(bp)) {
5779 		/*
5780 		 * Embedded BP's have no DVA and require no I/O to "read".
5781 		 * Create an anonymous arc buf to back it.
5782 		 */
5783 		hdr = buf_hash_find(guid, bp, &hash_lock);
5784 	}
5785 
5786 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5787 		arc_buf_t *buf = NULL;
5788 		*arc_flags |= ARC_FLAG_CACHED;
5789 
5790 		if (HDR_IO_IN_PROGRESS(hdr)) {
5791 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5792 
5793 			ASSERT3P(head_zio, !=, NULL);
5794 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5795 			    priority == ZIO_PRIORITY_SYNC_READ) {
5796 				/*
5797 				 * This is a sync read that needs to wait for
5798 				 * an in-flight async read. Request that the
5799 				 * zio have its priority upgraded.
5800 				 */
5801 				zio_change_priority(head_zio, priority);
5802 				DTRACE_PROBE1(arc__async__upgrade__sync,
5803 				    arc_buf_hdr_t *, hdr);
5804 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5805 			}
5806 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5807 				arc_hdr_clear_flags(hdr,
5808 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5809 			}
5810 
5811 			if (*arc_flags & ARC_FLAG_WAIT) {
5812 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5813 				mutex_exit(hash_lock);
5814 				goto top;
5815 			}
5816 			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5817 
5818 			if (done) {
5819 				arc_callback_t *acb = NULL;
5820 
5821 				acb = kmem_zalloc(sizeof (arc_callback_t),
5822 				    KM_SLEEP);
5823 				acb->acb_done = done;
5824 				acb->acb_private = private;
5825 				acb->acb_compressed = compressed_read;
5826 				if (pio != NULL)
5827 					acb->acb_zio_dummy = zio_null(pio,
5828 					    spa, NULL, NULL, NULL, zio_flags);
5829 
5830 				ASSERT3P(acb->acb_done, !=, NULL);
5831 				acb->acb_zio_head = head_zio;
5832 				acb->acb_next = hdr->b_l1hdr.b_acb;
5833 				hdr->b_l1hdr.b_acb = acb;
5834 				mutex_exit(hash_lock);
5835 				return (0);
5836 			}
5837 			mutex_exit(hash_lock);
5838 			return (0);
5839 		}
5840 
5841 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5842 		    hdr->b_l1hdr.b_state == arc_mfu);
5843 
5844 		if (done) {
5845 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5846 				/*
5847 				 * This is a demand read which does not have to
5848 				 * wait for i/o because we did a predictive
5849 				 * prefetch i/o for it, which has completed.
5850 				 */
5851 				DTRACE_PROBE1(
5852 				    arc__demand__hit__predictive__prefetch,
5853 				    arc_buf_hdr_t *, hdr);
5854 				ARCSTAT_BUMP(
5855 				    arcstat_demand_hit_predictive_prefetch);
5856 				arc_hdr_clear_flags(hdr,
5857 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5858 			}
5859 
5860 			if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5861 				ARCSTAT_BUMP(
5862                                     arcstat_demand_hit_prescient_prefetch);
5863 				arc_hdr_clear_flags(hdr,
5864                                     ARC_FLAG_PRESCIENT_PREFETCH);
5865 			}
5866 
5867 			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5868 			/* Get a buf with the desired data in it. */
5869 			rc = arc_buf_alloc_impl(hdr, private,
5870 			   compressed_read, B_TRUE, &buf);
5871 			if (rc != 0) {
5872 				arc_buf_destroy(buf, private);
5873 				buf = NULL;
5874 			}
5875 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5876                             rc == 0 || rc != ENOENT);
5877 		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
5878 		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5879 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5880 		}
5881 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5882 		arc_access(hdr, hash_lock);
5883 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5884                         arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5885 		if (*arc_flags & ARC_FLAG_L2CACHE)
5886 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5887 		mutex_exit(hash_lock);
5888 		ARCSTAT_BUMP(arcstat_hits);
5889 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5890 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5891 		    data, metadata, hits);
5892 
5893 		if (done)
5894 			done(NULL, zb, bp, buf, private);
5895 	} else {
5896 		uint64_t lsize = BP_GET_LSIZE(bp);
5897 		uint64_t psize = BP_GET_PSIZE(bp);
5898 		arc_callback_t *acb;
5899 		vdev_t *vd = NULL;
5900 		uint64_t addr = 0;
5901 		boolean_t devw = B_FALSE;
5902 		uint64_t size;
5903 
5904 		if (hdr == NULL) {
5905 			/* this block is not in the cache */
5906 			arc_buf_hdr_t *exists = NULL;
5907 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5908 			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5909 			    BP_GET_COMPRESS(bp), type);
5910 
5911 			if (!BP_IS_EMBEDDED(bp)) {
5912 				hdr->b_dva = *BP_IDENTITY(bp);
5913 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5914 				exists = buf_hash_insert(hdr, &hash_lock);
5915 			}
5916 			if (exists != NULL) {
5917 				/* somebody beat us to the hash insert */
5918 				mutex_exit(hash_lock);
5919 				buf_discard_identity(hdr);
5920 				arc_hdr_destroy(hdr);
5921 				goto top; /* restart the IO request */
5922 			}
5923 		} else {
5924 			/*
5925 			 * This block is in the ghost cache. If it was L2-only
5926 			 * (and thus didn't have an L1 hdr), we realloc the
5927 			 * header to add an L1 hdr.
5928 			 */
5929 			if (!HDR_HAS_L1HDR(hdr)) {
5930 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5931 				    hdr_full_cache);
5932 			}
5933 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5934 			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5935 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5936 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5937 			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5938 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5939 
5940 			/*
5941 			 * This is a delicate dance that we play here.
5942 			 * This hdr is in the ghost list so we access it
5943 			 * to move it out of the ghost list before we
5944 			 * initiate the read. If it's a prefetch then
5945 			 * it won't have a callback so we'll remove the
5946 			 * reference that arc_buf_alloc_impl() created. We
5947 			 * do this after we've called arc_access() to
5948 			 * avoid hitting an assert in remove_reference().
5949 			 */
5950 			arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
5951 			arc_access(hdr, hash_lock);
5952 			arc_hdr_alloc_pabd(hdr, B_FALSE);
5953 		}
5954 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5955 		size = arc_hdr_size(hdr);
5956 
5957 		/*
5958 		 * If compression is enabled on the hdr, then will do
5959 		 * RAW I/O and will store the compressed data in the hdr's
5960 		 * data block. Otherwise, the hdr's data block will contain
5961 		 * the uncompressed data.
5962 		 */
5963 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5964 			zio_flags |= ZIO_FLAG_RAW;
5965 		}
5966 
5967 		if (*arc_flags & ARC_FLAG_PREFETCH)
5968 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5969 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5970 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5971 
5972 		if (*arc_flags & ARC_FLAG_L2CACHE)
5973 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5974 		if (BP_GET_LEVEL(bp) > 0)
5975 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5976 		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5977 			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5978 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5979 
5980 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5981 		acb->acb_done = done;
5982 		acb->acb_private = private;
5983 		acb->acb_compressed = compressed_read;
5984 
5985 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5986 		hdr->b_l1hdr.b_acb = acb;
5987 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5988 
5989 		if (HDR_HAS_L2HDR(hdr) &&
5990 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5991 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5992 			addr = hdr->b_l2hdr.b_daddr;
5993 			/*
5994 			 * Lock out L2ARC device removal.
5995 			 */
5996 			if (vdev_is_dead(vd) ||
5997 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5998 				vd = NULL;
5999 		}
6000 
6001 		/*
6002 		 * We count both async reads and scrub IOs as asynchronous so
6003 		 * that both can be upgraded in the event of a cache hit while
6004 		 * the read IO is still in-flight.
6005 		 */
6006 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
6007 		    priority == ZIO_PRIORITY_SCRUB)
6008 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6009 		else
6010 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6011 
6012 		/*
6013 		 * At this point, we have a level 1 cache miss.  Try again in
6014 		 * L2ARC if possible.
6015 		 */
6016 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6017 
6018 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
6019 		    uint64_t, lsize, zbookmark_phys_t *, zb);
6020 		ARCSTAT_BUMP(arcstat_misses);
6021 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6022 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6023 		    data, metadata, misses);
6024 #ifdef _KERNEL
6025 #ifdef RACCT
6026 		if (racct_enable) {
6027 			PROC_LOCK(curproc);
6028 			racct_add_force(curproc, RACCT_READBPS, size);
6029 			racct_add_force(curproc, RACCT_READIOPS, 1);
6030 			PROC_UNLOCK(curproc);
6031 		}
6032 #endif /* RACCT */
6033 		curthread->td_ru.ru_inblock++;
6034 #endif
6035 
6036 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
6037 			/*
6038 			 * Read from the L2ARC if the following are true:
6039 			 * 1. The L2ARC vdev was previously cached.
6040 			 * 2. This buffer still has L2ARC metadata.
6041 			 * 3. This buffer isn't currently writing to the L2ARC.
6042 			 * 4. The L2ARC entry wasn't evicted, which may
6043 			 *    also have invalidated the vdev.
6044 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
6045 			 */
6046 			if (HDR_HAS_L2HDR(hdr) &&
6047 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6048 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6049 				l2arc_read_callback_t *cb;
6050 				abd_t *abd;
6051 				uint64_t asize;
6052 
6053 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6054 				ARCSTAT_BUMP(arcstat_l2_hits);
6055 				atomic_inc_32(&hdr->b_l2hdr.b_hits);
6056 
6057 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6058 				    KM_SLEEP);
6059 				cb->l2rcb_hdr = hdr;
6060 				cb->l2rcb_bp = *bp;
6061 				cb->l2rcb_zb = *zb;
6062 				cb->l2rcb_flags = zio_flags;
6063 
6064 				asize = vdev_psize_to_asize(vd, size);
6065 				if (asize != size) {
6066 					abd = abd_alloc_for_io(asize,
6067 					    HDR_ISTYPE_METADATA(hdr));
6068 					cb->l2rcb_abd = abd;
6069 				} else {
6070 					abd = hdr->b_l1hdr.b_pabd;
6071 				}
6072 
6073 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6074 				    addr + asize <= vd->vdev_psize -
6075 				    VDEV_LABEL_END_SIZE);
6076 
6077 				/*
6078 				 * l2arc read.  The SCL_L2ARC lock will be
6079 				 * released by l2arc_read_done().
6080 				 * Issue a null zio if the underlying buffer
6081 				 * was squashed to zero size by compression.
6082 				 */
6083 				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
6084 				    ZIO_COMPRESS_EMPTY);
6085 				rzio = zio_read_phys(pio, vd, addr,
6086 				    asize, abd,
6087 				    ZIO_CHECKSUM_OFF,
6088 				    l2arc_read_done, cb, priority,
6089 				    zio_flags | ZIO_FLAG_DONT_CACHE |
6090 				    ZIO_FLAG_CANFAIL |
6091 				    ZIO_FLAG_DONT_PROPAGATE |
6092 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
6093 				acb->acb_zio_head = rzio;
6094 
6095 				if (hash_lock != NULL)
6096 					mutex_exit(hash_lock);
6097 
6098 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6099 				    zio_t *, rzio);
6100 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
6101 
6102 				if (*arc_flags & ARC_FLAG_NOWAIT) {
6103 					zio_nowait(rzio);
6104 					return (0);
6105 				}
6106 
6107 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
6108 				if (zio_wait(rzio) == 0)
6109 					return (0);
6110 
6111 				/* l2arc read error; goto zio_read() */
6112 				if (hash_lock != NULL)
6113 					mutex_enter(hash_lock);
6114 			} else {
6115 				DTRACE_PROBE1(l2arc__miss,
6116 				    arc_buf_hdr_t *, hdr);
6117 				ARCSTAT_BUMP(arcstat_l2_misses);
6118 				if (HDR_L2_WRITING(hdr))
6119 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
6120 				spa_config_exit(spa, SCL_L2ARC, vd);
6121 			}
6122 		} else {
6123 			if (vd != NULL)
6124 				spa_config_exit(spa, SCL_L2ARC, vd);
6125 			if (l2arc_ndev != 0) {
6126 				DTRACE_PROBE1(l2arc__miss,
6127 				    arc_buf_hdr_t *, hdr);
6128 				ARCSTAT_BUMP(arcstat_l2_misses);
6129 			}
6130 		}
6131 
6132 		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
6133 		    arc_read_done, hdr, priority, zio_flags, zb);
6134 		acb->acb_zio_head = rzio;
6135 
6136 		if (hash_lock != NULL)
6137 			mutex_exit(hash_lock);
6138 
6139 		if (*arc_flags & ARC_FLAG_WAIT)
6140 			return (zio_wait(rzio));
6141 
6142 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6143 		zio_nowait(rzio);
6144 	}
6145 	return (0);
6146 }
6147 
6148 arc_prune_t *
arc_add_prune_callback(arc_prune_func_t * func,void * private)6149 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6150 {
6151 	arc_prune_t *p;
6152 
6153 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6154 	p->p_pfunc = func;
6155 	p->p_private = private;
6156 	list_link_init(&p->p_node);
6157 	refcount_create(&p->p_refcnt);
6158 
6159 	mutex_enter(&arc_prune_mtx);
6160 	refcount_add(&p->p_refcnt, &arc_prune_list);
6161 	list_insert_head(&arc_prune_list, p);
6162 	mutex_exit(&arc_prune_mtx);
6163 
6164 	return (p);
6165 }
6166 
6167 void
arc_remove_prune_callback(arc_prune_t * p)6168 arc_remove_prune_callback(arc_prune_t *p)
6169 {
6170 	boolean_t wait = B_FALSE;
6171 	mutex_enter(&arc_prune_mtx);
6172 	list_remove(&arc_prune_list, p);
6173 	if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6174 		wait = B_TRUE;
6175 	mutex_exit(&arc_prune_mtx);
6176 
6177 	/* wait for arc_prune_task to finish */
6178 	if (wait)
6179 		taskq_wait(arc_prune_taskq);
6180 	ASSERT0(refcount_count(&p->p_refcnt));
6181 	refcount_destroy(&p->p_refcnt);
6182 	kmem_free(p, sizeof (*p));
6183 }
6184 
6185 /*
6186  * Notify the arc that a block was freed, and thus will never be used again.
6187  */
6188 void
arc_freed(spa_t * spa,const blkptr_t * bp)6189 arc_freed(spa_t *spa, const blkptr_t *bp)
6190 {
6191 	arc_buf_hdr_t *hdr;
6192 	kmutex_t *hash_lock;
6193 	uint64_t guid = spa_load_guid(spa);
6194 
6195 	ASSERT(!BP_IS_EMBEDDED(bp));
6196 
6197 	hdr = buf_hash_find(guid, bp, &hash_lock);
6198 	if (hdr == NULL)
6199 		return;
6200 
6201 	/*
6202 	 * We might be trying to free a block that is still doing I/O
6203 	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6204 	 * dmu_sync-ed block). If this block is being prefetched, then it
6205 	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6206 	 * until the I/O completes. A block may also have a reference if it is
6207 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6208 	 * have written the new block to its final resting place on disk but
6209 	 * without the dedup flag set. This would have left the hdr in the MRU
6210 	 * state and discoverable. When the txg finally syncs it detects that
6211 	 * the block was overridden in open context and issues an override I/O.
6212 	 * Since this is a dedup block, the override I/O will determine if the
6213 	 * block is already in the DDT. If so, then it will replace the io_bp
6214 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6215 	 * reaches the done callback, dbuf_write_override_done, it will
6216 	 * check to see if the io_bp and io_bp_override are identical.
6217 	 * If they are not, then it indicates that the bp was replaced with
6218 	 * the bp in the DDT and the override bp is freed. This allows
6219 	 * us to arrive here with a reference on a block that is being
6220 	 * freed. So if we have an I/O in progress, or a reference to
6221 	 * this hdr, then we don't destroy the hdr.
6222 	 */
6223 	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6224 	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6225 		arc_change_state(arc_anon, hdr, hash_lock);
6226 		arc_hdr_destroy(hdr);
6227 		mutex_exit(hash_lock);
6228 	} else {
6229 		mutex_exit(hash_lock);
6230 	}
6231 
6232 }
6233 
6234 /*
6235  * Release this buffer from the cache, making it an anonymous buffer.  This
6236  * must be done after a read and prior to modifying the buffer contents.
6237  * If the buffer has more than one reference, we must make
6238  * a new hdr for the buffer.
6239  */
6240 void
arc_release(arc_buf_t * buf,void * tag)6241 arc_release(arc_buf_t *buf, void *tag)
6242 {
6243 	arc_buf_hdr_t *hdr = buf->b_hdr;
6244 
6245 	/*
6246 	 * It would be nice to assert that if it's DMU metadata (level >
6247 	 * 0 || it's the dnode file), then it must be syncing context.
6248 	 * But we don't know that information at this level.
6249 	 */
6250 
6251 	mutex_enter(&buf->b_evict_lock);
6252 
6253 	ASSERT(HDR_HAS_L1HDR(hdr));
6254 
6255 	/*
6256 	 * We don't grab the hash lock prior to this check, because if
6257 	 * the buffer's header is in the arc_anon state, it won't be
6258 	 * linked into the hash table.
6259 	 */
6260 	if (hdr->b_l1hdr.b_state == arc_anon) {
6261 		mutex_exit(&buf->b_evict_lock);
6262 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6263 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6264 		ASSERT(!HDR_HAS_L2HDR(hdr));
6265 		ASSERT(HDR_EMPTY(hdr));
6266 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6267 		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6268 		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6269 
6270 		hdr->b_l1hdr.b_arc_access = 0;
6271 
6272 		/*
6273 		 * If the buf is being overridden then it may already
6274 		 * have a hdr that is not empty.
6275 		 */
6276 		buf_discard_identity(hdr);
6277 		arc_buf_thaw(buf);
6278 
6279 		return;
6280 	}
6281 
6282 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6283 	mutex_enter(hash_lock);
6284 
6285 	/*
6286 	 * This assignment is only valid as long as the hash_lock is
6287 	 * held, we must be careful not to reference state or the
6288 	 * b_state field after dropping the lock.
6289 	 */
6290 	arc_state_t *state = hdr->b_l1hdr.b_state;
6291 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6292 	ASSERT3P(state, !=, arc_anon);
6293 
6294 	/* this buffer is not on any list */
6295 	ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6296 
6297 	if (HDR_HAS_L2HDR(hdr)) {
6298 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6299 
6300 		/*
6301 		 * We have to recheck this conditional again now that
6302 		 * we're holding the l2ad_mtx to prevent a race with
6303 		 * another thread which might be concurrently calling
6304 		 * l2arc_evict(). In that case, l2arc_evict() might have
6305 		 * destroyed the header's L2 portion as we were waiting
6306 		 * to acquire the l2ad_mtx.
6307 		 */
6308 		if (HDR_HAS_L2HDR(hdr)) {
6309 			l2arc_trim(hdr);
6310 			arc_hdr_l2hdr_destroy(hdr);
6311 		}
6312 
6313 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6314 	}
6315 
6316 	/*
6317 	 * Do we have more than one buf?
6318 	 */
6319 	if (hdr->b_l1hdr.b_bufcnt > 1) {
6320 		arc_buf_hdr_t *nhdr;
6321 		uint64_t spa = hdr->b_spa;
6322 		uint64_t psize = HDR_GET_PSIZE(hdr);
6323 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6324 		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
6325 		arc_buf_contents_t type = arc_buf_type(hdr);
6326 		VERIFY3U(hdr->b_type, ==, type);
6327 
6328 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6329 		(void) remove_reference(hdr, hash_lock, tag);
6330 
6331 		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6332 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6333 			ASSERT(ARC_BUF_LAST(buf));
6334 		}
6335 
6336 		/*
6337 		 * Pull the data off of this hdr and attach it to
6338 		 * a new anonymous hdr. Also find the last buffer
6339 		 * in the hdr's buffer list.
6340 		 */
6341 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6342 		ASSERT3P(lastbuf, !=, NULL);
6343 
6344 		/*
6345 		 * If the current arc_buf_t and the hdr are sharing their data
6346 		 * buffer, then we must stop sharing that block.
6347 		 */
6348 		if (arc_buf_is_shared(buf)) {
6349 			VERIFY(!arc_buf_is_shared(lastbuf));
6350 
6351 			/*
6352 			 * First, sever the block sharing relationship between
6353 			 * buf and the arc_buf_hdr_t.
6354 			 */
6355 			arc_unshare_buf(hdr, buf);
6356 
6357 			/*
6358 			 * Now we need to recreate the hdr's b_pabd. Since we
6359 			 * have lastbuf handy, we try to share with it, but if
6360 			 * we can't then we allocate a new b_pabd and copy the
6361 			 * data from buf into it.
6362 			 */
6363 			if (arc_can_share(hdr, lastbuf)) {
6364 				arc_share_buf(hdr, lastbuf);
6365 			} else {
6366 				arc_hdr_alloc_pabd(hdr, B_TRUE);
6367 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6368 				    buf->b_data, psize);
6369 			}
6370 			VERIFY3P(lastbuf->b_data, !=, NULL);
6371 		} else if (HDR_SHARED_DATA(hdr)) {
6372 			/*
6373 			 * Uncompressed shared buffers are always at the end
6374 			 * of the list. Compressed buffers don't have the
6375 			 * same requirements. This makes it hard to
6376 			 * simply assert that the lastbuf is shared so
6377 			 * we rely on the hdr's compression flags to determine
6378 			 * if we have a compressed, shared buffer.
6379 			 */
6380 			ASSERT(arc_buf_is_shared(lastbuf) ||
6381 			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
6382 			ASSERT(!ARC_BUF_SHARED(buf));
6383 		}
6384 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6385 		ASSERT3P(state, !=, arc_l2c_only);
6386 
6387 		(void) refcount_remove_many(&state->arcs_size,
6388 		    arc_buf_size(buf), buf);
6389 
6390 		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6391 			ASSERT3P(state, !=, arc_l2c_only);
6392 			(void) refcount_remove_many(&state->arcs_esize[type],
6393 			    arc_buf_size(buf), buf);
6394 		}
6395 
6396 		hdr->b_l1hdr.b_bufcnt -= 1;
6397 		arc_cksum_verify(buf);
6398 #ifdef illumos
6399 		arc_buf_unwatch(buf);
6400 #endif
6401 
6402 		mutex_exit(hash_lock);
6403 
6404 		/*
6405 		 * Allocate a new hdr. The new hdr will contain a b_pabd
6406 		 * buffer which will be freed in arc_write().
6407 		 */
6408 		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
6409 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6410 		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6411 		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
6412 		VERIFY3U(nhdr->b_type, ==, type);
6413 		ASSERT(!HDR_SHARED_DATA(nhdr));
6414 
6415 		nhdr->b_l1hdr.b_buf = buf;
6416 		nhdr->b_l1hdr.b_bufcnt = 1;
6417 		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6418 		buf->b_hdr = nhdr;
6419 
6420 		mutex_exit(&buf->b_evict_lock);
6421 		(void) refcount_add_many(&arc_anon->arcs_size,
6422 		    arc_buf_size(buf), buf);
6423 	} else {
6424 		mutex_exit(&buf->b_evict_lock);
6425 		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6426 		/* protected by hash lock, or hdr is on arc_anon */
6427 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6428 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6429 		arc_change_state(arc_anon, hdr, hash_lock);
6430 		hdr->b_l1hdr.b_arc_access = 0;
6431 		mutex_exit(hash_lock);
6432 
6433 		buf_discard_identity(hdr);
6434 		arc_buf_thaw(buf);
6435 	}
6436 }
6437 
6438 int
arc_released(arc_buf_t * buf)6439 arc_released(arc_buf_t *buf)
6440 {
6441 	int released;
6442 
6443 	mutex_enter(&buf->b_evict_lock);
6444 	released = (buf->b_data != NULL &&
6445 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6446 	mutex_exit(&buf->b_evict_lock);
6447 	return (released);
6448 }
6449 
6450 #ifdef ZFS_DEBUG
6451 int
arc_referenced(arc_buf_t * buf)6452 arc_referenced(arc_buf_t *buf)
6453 {
6454 	int referenced;
6455 
6456 	mutex_enter(&buf->b_evict_lock);
6457 	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6458 	mutex_exit(&buf->b_evict_lock);
6459 	return (referenced);
6460 }
6461 #endif
6462 
6463 static void
arc_write_ready(zio_t * zio)6464 arc_write_ready(zio_t *zio)
6465 {
6466 	arc_write_callback_t *callback = zio->io_private;
6467 	arc_buf_t *buf = callback->awcb_buf;
6468 	arc_buf_hdr_t *hdr = buf->b_hdr;
6469 	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
6470 
6471 	ASSERT(HDR_HAS_L1HDR(hdr));
6472 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6473 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6474 
6475 	/*
6476 	 * If we're reexecuting this zio because the pool suspended, then
6477 	 * cleanup any state that was previously set the first time the
6478 	 * callback was invoked.
6479 	 */
6480 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6481 		arc_cksum_free(hdr);
6482 #ifdef illumos
6483 		arc_buf_unwatch(buf);
6484 #endif
6485 		if (hdr->b_l1hdr.b_pabd != NULL) {
6486 			if (arc_buf_is_shared(buf)) {
6487 				arc_unshare_buf(hdr, buf);
6488 			} else {
6489 				arc_hdr_free_pabd(hdr);
6490 			}
6491 		}
6492 	}
6493 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6494 	ASSERT(!HDR_SHARED_DATA(hdr));
6495 	ASSERT(!arc_buf_is_shared(buf));
6496 
6497 	callback->awcb_ready(zio, buf, callback->awcb_private);
6498 
6499 	if (HDR_IO_IN_PROGRESS(hdr))
6500 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6501 
6502 	arc_cksum_compute(buf);
6503 	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6504 
6505 	enum zio_compress compress;
6506 	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6507 		compress = ZIO_COMPRESS_OFF;
6508 	} else {
6509 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
6510 		compress = BP_GET_COMPRESS(zio->io_bp);
6511 	}
6512 	HDR_SET_PSIZE(hdr, psize);
6513 	arc_hdr_set_compress(hdr, compress);
6514 
6515 
6516 	/*
6517 	 * Fill the hdr with data. If the hdr is compressed, the data we want
6518 	 * is available from the zio, otherwise we can take it from the buf.
6519 	 *
6520 	 * We might be able to share the buf's data with the hdr here. However,
6521 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6522 	 * lot of shareable data. As a compromise, we check whether scattered
6523 	 * ABDs are allowed, and assume that if they are then the user wants
6524 	 * the ARC to be primarily filled with them regardless of the data being
6525 	 * written. Therefore, if they're allowed then we allocate one and copy
6526 	 * the data into it; otherwise, we share the data directly if we can.
6527 	 */
6528 	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6529 		arc_hdr_alloc_pabd(hdr, B_TRUE);
6530 
6531 		/*
6532 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6533 		 * user may have disabled compressed ARC, thus we must check the
6534 		 * hdr's compression setting rather than the io_bp's.
6535 		 */
6536 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
6537 			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
6538 			    ZIO_COMPRESS_OFF);
6539 			ASSERT3U(psize, >, 0);
6540 
6541 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6542 		} else {
6543 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6544 
6545 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6546 			    arc_buf_size(buf));
6547 		}
6548 	} else {
6549 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6550 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6551 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6552 
6553 		arc_share_buf(hdr, buf);
6554 	}
6555 
6556 	arc_hdr_verify(hdr, zio->io_bp);
6557 }
6558 
6559 static void
arc_write_children_ready(zio_t * zio)6560 arc_write_children_ready(zio_t *zio)
6561 {
6562 	arc_write_callback_t *callback = zio->io_private;
6563 	arc_buf_t *buf = callback->awcb_buf;
6564 
6565 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6566 }
6567 
6568 /*
6569  * The SPA calls this callback for each physical write that happens on behalf
6570  * of a logical write.  See the comment in dbuf_write_physdone() for details.
6571  */
6572 static void
arc_write_physdone(zio_t * zio)6573 arc_write_physdone(zio_t *zio)
6574 {
6575 	arc_write_callback_t *cb = zio->io_private;
6576 	if (cb->awcb_physdone != NULL)
6577 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6578 }
6579 
6580 static void
arc_write_done(zio_t * zio)6581 arc_write_done(zio_t *zio)
6582 {
6583 	arc_write_callback_t *callback = zio->io_private;
6584 	arc_buf_t *buf = callback->awcb_buf;
6585 	arc_buf_hdr_t *hdr = buf->b_hdr;
6586 
6587 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6588 
6589 	if (zio->io_error == 0) {
6590 		arc_hdr_verify(hdr, zio->io_bp);
6591 
6592 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6593 			buf_discard_identity(hdr);
6594 		} else {
6595 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6596 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6597 		}
6598 	} else {
6599 		ASSERT(HDR_EMPTY(hdr));
6600 	}
6601 
6602 	/*
6603 	 * If the block to be written was all-zero or compressed enough to be
6604 	 * embedded in the BP, no write was performed so there will be no
6605 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6606 	 * (and uncached).
6607 	 */
6608 	if (!HDR_EMPTY(hdr)) {
6609 		arc_buf_hdr_t *exists;
6610 		kmutex_t *hash_lock;
6611 
6612 		ASSERT3U(zio->io_error, ==, 0);
6613 
6614 		arc_cksum_verify(buf);
6615 
6616 		exists = buf_hash_insert(hdr, &hash_lock);
6617 		if (exists != NULL) {
6618 			/*
6619 			 * This can only happen if we overwrite for
6620 			 * sync-to-convergence, because we remove
6621 			 * buffers from the hash table when we arc_free().
6622 			 */
6623 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6624 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6625 					panic("bad overwrite, hdr=%p exists=%p",
6626 					    (void *)hdr, (void *)exists);
6627 				ASSERT(refcount_is_zero(
6628 				    &exists->b_l1hdr.b_refcnt));
6629 				arc_change_state(arc_anon, exists, hash_lock);
6630 				mutex_exit(hash_lock);
6631 				arc_hdr_destroy(exists);
6632 				exists = buf_hash_insert(hdr, &hash_lock);
6633 				ASSERT3P(exists, ==, NULL);
6634 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6635 				/* nopwrite */
6636 				ASSERT(zio->io_prop.zp_nopwrite);
6637 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6638 					panic("bad nopwrite, hdr=%p exists=%p",
6639 					    (void *)hdr, (void *)exists);
6640 			} else {
6641 				/* Dedup */
6642 				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6643 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6644 				ASSERT(BP_GET_DEDUP(zio->io_bp));
6645 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6646 			}
6647 		}
6648 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6649 		/* if it's not anon, we are doing a scrub */
6650 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6651 			arc_access(hdr, hash_lock);
6652 		mutex_exit(hash_lock);
6653 	} else {
6654 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6655 	}
6656 
6657 	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6658 	callback->awcb_done(zio, buf, callback->awcb_private);
6659 
6660 	abd_put(zio->io_abd);
6661 	kmem_free(callback, sizeof (arc_write_callback_t));
6662 }
6663 
6664 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t l2arc,const zio_prop_t * zp,arc_write_done_func_t * ready,arc_write_done_func_t * children_ready,arc_write_done_func_t * physdone,arc_write_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)6665 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6666     boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
6667     arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6668     arc_write_done_func_t *done, void *private, zio_priority_t priority,
6669     int zio_flags, const zbookmark_phys_t *zb)
6670 {
6671 	arc_buf_hdr_t *hdr = buf->b_hdr;
6672 	arc_write_callback_t *callback;
6673 	zio_t *zio;
6674 	zio_prop_t localprop = *zp;
6675 
6676 	ASSERT3P(ready, !=, NULL);
6677 	ASSERT3P(done, !=, NULL);
6678 	ASSERT(!HDR_IO_ERROR(hdr));
6679 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6680 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6681 	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6682 	if (l2arc)
6683 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6684 	if (ARC_BUF_COMPRESSED(buf)) {
6685 		/*
6686 		 * We're writing a pre-compressed buffer.  Make the
6687 		 * compression algorithm requested by the zio_prop_t match
6688 		 * the pre-compressed buffer's compression algorithm.
6689 		 */
6690 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6691 
6692 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6693 		zio_flags |= ZIO_FLAG_RAW;
6694 	}
6695 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6696 	callback->awcb_ready = ready;
6697 	callback->awcb_children_ready = children_ready;
6698 	callback->awcb_physdone = physdone;
6699 	callback->awcb_done = done;
6700 	callback->awcb_private = private;
6701 	callback->awcb_buf = buf;
6702 
6703 	/*
6704 	 * The hdr's b_pabd is now stale, free it now. A new data block
6705 	 * will be allocated when the zio pipeline calls arc_write_ready().
6706 	 */
6707 	if (hdr->b_l1hdr.b_pabd != NULL) {
6708 		/*
6709 		 * If the buf is currently sharing the data block with
6710 		 * the hdr then we need to break that relationship here.
6711 		 * The hdr will remain with a NULL data pointer and the
6712 		 * buf will take sole ownership of the block.
6713 		 */
6714 		if (arc_buf_is_shared(buf)) {
6715 			arc_unshare_buf(hdr, buf);
6716 		} else {
6717 			arc_hdr_free_pabd(hdr);
6718 		}
6719 		VERIFY3P(buf->b_data, !=, NULL);
6720 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6721 	}
6722 	ASSERT(!arc_buf_is_shared(buf));
6723 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6724 
6725 	zio = zio_write(pio, spa, txg, bp,
6726 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6727 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6728 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6729 	    arc_write_physdone, arc_write_done, callback,
6730 	    priority, zio_flags, zb);
6731 
6732 	return (zio);
6733 }
6734 
6735 static int
arc_memory_throttle(spa_t * spa,uint64_t reserve,uint64_t txg)6736 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
6737 {
6738 #ifdef _KERNEL
6739 	uint64_t available_memory = ptob(freemem);
6740 
6741 #if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
6742 	available_memory = MIN(available_memory, uma_avail());
6743 #endif
6744 
6745 	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
6746 		return (0);
6747 
6748 	if (txg > spa->spa_lowmem_last_txg) {
6749 		spa->spa_lowmem_last_txg = txg;
6750 		spa->spa_lowmem_page_load = 0;
6751 	}
6752 	/*
6753 	 * If we are in pageout, we know that memory is already tight,
6754 	 * the arc is already going to be evicting, so we just want to
6755 	 * continue to let page writes occur as quickly as possible.
6756 	 */
6757 	if (curproc == pageproc) {
6758 		if (spa->spa_lowmem_page_load >
6759 		    MAX(ptob(minfree), available_memory) / 4)
6760 			return (SET_ERROR(ERESTART));
6761 		/* Note: reserve is inflated, so we deflate */
6762 		atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
6763 		return (0);
6764 	} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
6765 		/* memory is low, delay before restarting */
6766 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6767 		return (SET_ERROR(EAGAIN));
6768 	}
6769 	spa->spa_lowmem_page_load = 0;
6770 #endif /* _KERNEL */
6771 	return (0);
6772 }
6773 
6774 void
arc_tempreserve_clear(uint64_t reserve)6775 arc_tempreserve_clear(uint64_t reserve)
6776 {
6777 	atomic_add_64(&arc_tempreserve, -reserve);
6778 	ASSERT((int64_t)arc_tempreserve >= 0);
6779 }
6780 
6781 int
arc_tempreserve_space(spa_t * spa,uint64_t reserve,uint64_t txg)6782 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6783 {
6784 	int error;
6785 	uint64_t anon_size;
6786 
6787 	if (reserve > arc_c/4 && !arc_no_grow) {
6788 		arc_c = MIN(arc_c_max, reserve * 4);
6789 		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
6790 	}
6791 	if (reserve > arc_c)
6792 		return (SET_ERROR(ENOMEM));
6793 
6794 	/*
6795 	 * Don't count loaned bufs as in flight dirty data to prevent long
6796 	 * network delays from blocking transactions that are ready to be
6797 	 * assigned to a txg.
6798 	 */
6799 
6800 	/* assert that it has not wrapped around */
6801 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6802 
6803 	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6804 	    arc_loaned_bytes), 0);
6805 
6806 	/*
6807 	 * Writes will, almost always, require additional memory allocations
6808 	 * in order to compress/encrypt/etc the data.  We therefore need to
6809 	 * make sure that there is sufficient available memory for this.
6810 	 */
6811 	error = arc_memory_throttle(spa, reserve, txg);
6812 	if (error != 0)
6813 		return (error);
6814 
6815 	/*
6816 	 * Throttle writes when the amount of dirty data in the cache
6817 	 * gets too large.  We try to keep the cache less than half full
6818 	 * of dirty blocks so that our sync times don't grow too large.
6819 	 *
6820 	 * In the case of one pool being built on another pool, we want
6821 	 * to make sure we don't end up throttling the lower (backing)
6822 	 * pool when the upper pool is the majority contributor to dirty
6823 	 * data. To insure we make forward progress during throttling, we
6824 	 * also check the current pool's net dirty data and only throttle
6825 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6826 	 * data in the cache.
6827 	 *
6828 	 * Note: if two requests come in concurrently, we might let them
6829 	 * both succeed, when one of them should fail.  Not a huge deal.
6830 	 */
6831 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6832 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
6833 
6834 	if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
6835 	    anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
6836 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6837 		uint64_t meta_esize =
6838 		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6839 		uint64_t data_esize =
6840 		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6841 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6842 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6843 		    arc_tempreserve >> 10, meta_esize >> 10,
6844 		    data_esize >> 10, reserve >> 10, arc_c >> 10);
6845 		return (SET_ERROR(ERESTART));
6846 	}
6847 	atomic_add_64(&arc_tempreserve, reserve);
6848 	return (0);
6849 }
6850 
6851 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * evict_data,kstat_named_t * evict_metadata)6852 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6853     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6854 {
6855 	size->value.ui64 = refcount_count(&state->arcs_size);
6856 	evict_data->value.ui64 =
6857 	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6858 	evict_metadata->value.ui64 =
6859 	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6860 }
6861 
6862 static int
arc_kstat_update(kstat_t * ksp,int rw)6863 arc_kstat_update(kstat_t *ksp, int rw)
6864 {
6865 	arc_stats_t *as = ksp->ks_data;
6866 
6867 	if (rw == KSTAT_WRITE) {
6868 		return (EACCES);
6869 	} else {
6870 		arc_kstat_update_state(arc_anon,
6871 		    &as->arcstat_anon_size,
6872 		    &as->arcstat_anon_evictable_data,
6873 		    &as->arcstat_anon_evictable_metadata);
6874 		arc_kstat_update_state(arc_mru,
6875 		    &as->arcstat_mru_size,
6876 		    &as->arcstat_mru_evictable_data,
6877 		    &as->arcstat_mru_evictable_metadata);
6878 		arc_kstat_update_state(arc_mru_ghost,
6879 		    &as->arcstat_mru_ghost_size,
6880 		    &as->arcstat_mru_ghost_evictable_data,
6881 		    &as->arcstat_mru_ghost_evictable_metadata);
6882 		arc_kstat_update_state(arc_mfu,
6883 		    &as->arcstat_mfu_size,
6884 		    &as->arcstat_mfu_evictable_data,
6885 		    &as->arcstat_mfu_evictable_metadata);
6886 		arc_kstat_update_state(arc_mfu_ghost,
6887 		    &as->arcstat_mfu_ghost_size,
6888 		    &as->arcstat_mfu_ghost_evictable_data,
6889 		    &as->arcstat_mfu_ghost_evictable_metadata);
6890 
6891 		ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6892 		ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6893 		ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6894 		ARCSTAT(arcstat_metadata_size) =
6895 		    aggsum_value(&astat_metadata_size);
6896 		ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6897 		ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size);
6898 		ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size);
6899 		ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size);
6900 #if defined(__FreeBSD__) && defined(COMPAT_FREEBSD11)
6901 		ARCSTAT(arcstat_other_size) = aggsum_value(&astat_bonus_size) +
6902 		    aggsum_value(&astat_dnode_size) +
6903 		    aggsum_value(&astat_dbuf_size);
6904 #endif
6905 		ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6906 	}
6907 
6908 	return (0);
6909 }
6910 
6911 /*
6912  * This function *must* return indices evenly distributed between all
6913  * sublists of the multilist. This is needed due to how the ARC eviction
6914  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6915  * distributed between all sublists and uses this assumption when
6916  * deciding which sublist to evict from and how much to evict from it.
6917  */
6918 unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)6919 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6920 {
6921 	arc_buf_hdr_t *hdr = obj;
6922 
6923 	/*
6924 	 * We rely on b_dva to generate evenly distributed index
6925 	 * numbers using buf_hash below. So, as an added precaution,
6926 	 * let's make sure we never add empty buffers to the arc lists.
6927 	 */
6928 	ASSERT(!HDR_EMPTY(hdr));
6929 
6930 	/*
6931 	 * The assumption here, is the hash value for a given
6932 	 * arc_buf_hdr_t will remain constant throughout it's lifetime
6933 	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
6934 	 * Thus, we don't need to store the header's sublist index
6935 	 * on insertion, as this index can be recalculated on removal.
6936 	 *
6937 	 * Also, the low order bits of the hash value are thought to be
6938 	 * distributed evenly. Otherwise, in the case that the multilist
6939 	 * has a power of two number of sublists, each sublists' usage
6940 	 * would not be evenly distributed.
6941 	 */
6942 	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6943 	    multilist_get_num_sublists(ml));
6944 }
6945 
6946 #ifdef _KERNEL
6947 static eventhandler_tag arc_event_lowmem = NULL;
6948 
6949 static void
arc_lowmem(void * arg __unused,int howto __unused)6950 arc_lowmem(void *arg __unused, int howto __unused)
6951 {
6952 	int64_t free_memory, to_free;
6953 
6954 	arc_no_grow = B_TRUE;
6955 	arc_warm = B_TRUE;
6956 	arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
6957 	free_memory = arc_available_memory();
6958 	to_free = (arc_c >> arc_shrink_shift) - MIN(free_memory, 0);
6959 	DTRACE_PROBE2(arc__needfree, int64_t, free_memory, int64_t, to_free);
6960 	arc_reduce_target_size(to_free);
6961 
6962 	mutex_enter(&arc_adjust_lock);
6963 	arc_adjust_needed = B_TRUE;
6964 	zthr_wakeup(arc_adjust_zthr);
6965 
6966 	/*
6967 	 * It is unsafe to block here in arbitrary threads, because we can come
6968 	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
6969 	 * with ARC reclaim thread.
6970 	 */
6971 	if (curproc == pageproc)
6972 		(void) cv_wait(&arc_adjust_waiters_cv, &arc_adjust_lock);
6973 	mutex_exit(&arc_adjust_lock);
6974 }
6975 #endif
6976 
6977 static void
arc_state_init(void)6978 arc_state_init(void)
6979 {
6980 	arc_anon = &ARC_anon;
6981 	arc_mru = &ARC_mru;
6982 	arc_mru_ghost = &ARC_mru_ghost;
6983 	arc_mfu = &ARC_mfu;
6984 	arc_mfu_ghost = &ARC_mfu_ghost;
6985 	arc_l2c_only = &ARC_l2c_only;
6986 
6987 	arc_mru->arcs_list[ARC_BUFC_METADATA] =
6988 	    multilist_create(sizeof (arc_buf_hdr_t),
6989 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6990 	    arc_state_multilist_index_func);
6991 	arc_mru->arcs_list[ARC_BUFC_DATA] =
6992 	    multilist_create(sizeof (arc_buf_hdr_t),
6993 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6994 	    arc_state_multilist_index_func);
6995 	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6996 	    multilist_create(sizeof (arc_buf_hdr_t),
6997 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6998 	    arc_state_multilist_index_func);
6999 	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7000 	    multilist_create(sizeof (arc_buf_hdr_t),
7001 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7002 	    arc_state_multilist_index_func);
7003 	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7004 	    multilist_create(sizeof (arc_buf_hdr_t),
7005 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7006 	    arc_state_multilist_index_func);
7007 	arc_mfu->arcs_list[ARC_BUFC_DATA] =
7008 	    multilist_create(sizeof (arc_buf_hdr_t),
7009 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7010 	    arc_state_multilist_index_func);
7011 	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7012 	    multilist_create(sizeof (arc_buf_hdr_t),
7013 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7014 	    arc_state_multilist_index_func);
7015 	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7016 	    multilist_create(sizeof (arc_buf_hdr_t),
7017 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7018 	    arc_state_multilist_index_func);
7019 	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7020 	    multilist_create(sizeof (arc_buf_hdr_t),
7021 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7022 	    arc_state_multilist_index_func);
7023 	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7024 	    multilist_create(sizeof (arc_buf_hdr_t),
7025 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7026 	    arc_state_multilist_index_func);
7027 
7028 	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7029 	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7030 	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7031 	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7032 	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7033 	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7034 	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7035 	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7036 	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7037 	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7038 	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7039 	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7040 
7041 	refcount_create(&arc_anon->arcs_size);
7042 	refcount_create(&arc_mru->arcs_size);
7043 	refcount_create(&arc_mru_ghost->arcs_size);
7044 	refcount_create(&arc_mfu->arcs_size);
7045 	refcount_create(&arc_mfu_ghost->arcs_size);
7046 	refcount_create(&arc_l2c_only->arcs_size);
7047 
7048 	aggsum_init(&arc_meta_used, 0);
7049 	aggsum_init(&arc_size, 0);
7050 	aggsum_init(&astat_data_size, 0);
7051 	aggsum_init(&astat_metadata_size, 0);
7052 	aggsum_init(&astat_hdr_size, 0);
7053 	aggsum_init(&astat_bonus_size, 0);
7054 	aggsum_init(&astat_dnode_size, 0);
7055 	aggsum_init(&astat_dbuf_size, 0);
7056 	aggsum_init(&astat_l2_hdr_size, 0);
7057 }
7058 
7059 static void
arc_state_fini(void)7060 arc_state_fini(void)
7061 {
7062 	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7063 	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7064 	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7065 	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7066 	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7067 	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7068 	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7069 	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7070 	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7071 	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7072 	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7073 	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7074 
7075 	refcount_destroy(&arc_anon->arcs_size);
7076 	refcount_destroy(&arc_mru->arcs_size);
7077 	refcount_destroy(&arc_mru_ghost->arcs_size);
7078 	refcount_destroy(&arc_mfu->arcs_size);
7079 	refcount_destroy(&arc_mfu_ghost->arcs_size);
7080 	refcount_destroy(&arc_l2c_only->arcs_size);
7081 
7082 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7083 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7084 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7085 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7086 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7087 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7088 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7089 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7090 
7091 	aggsum_fini(&arc_meta_used);
7092 	aggsum_fini(&arc_size);
7093 	aggsum_fini(&astat_data_size);
7094 	aggsum_fini(&astat_metadata_size);
7095 	aggsum_fini(&astat_hdr_size);
7096 	aggsum_fini(&astat_bonus_size);
7097 	aggsum_fini(&astat_dnode_size);
7098 	aggsum_fini(&astat_dbuf_size);
7099 	aggsum_fini(&astat_l2_hdr_size);
7100 }
7101 
7102 uint64_t
arc_max_bytes(void)7103 arc_max_bytes(void)
7104 {
7105 	return (arc_c_max);
7106 }
7107 
7108 void
arc_init(void)7109 arc_init(void)
7110 {
7111 	int i, prefetch_tunable_set = 0;
7112 
7113 	/*
7114 	 * allmem is "all memory that we could possibly use".
7115 	 */
7116 #ifdef illumos
7117 #ifdef _KERNEL
7118 	uint64_t allmem = ptob(physmem - swapfs_minfree);
7119 #else
7120 	uint64_t allmem = (physmem * PAGESIZE) / 2;
7121 #endif
7122 #else
7123 	uint64_t allmem = kmem_size();
7124 #endif
7125 	mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
7126 	cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
7127 
7128 	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
7129 	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
7130 
7131 	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
7132 	arc_c_min = MAX(allmem / 32, arc_abs_min);
7133 	/* set max to 5/8 of all memory, or all but 1GB, whichever is more */
7134 	if (allmem >= 1 << 30)
7135 		arc_c_max = allmem - (1 << 30);
7136 	else
7137 		arc_c_max = arc_c_min;
7138 	arc_c_max = MAX(allmem * 5 / 8, arc_c_max);
7139 
7140 	/*
7141 	 * In userland, there's only the memory pressure that we artificially
7142 	 * create (see arc_available_memory()).  Don't let arc_c get too
7143 	 * small, because it can cause transactions to be larger than
7144 	 * arc_c, causing arc_tempreserve_space() to fail.
7145 	 */
7146 #ifndef _KERNEL
7147 	arc_c_min = arc_c_max / 2;
7148 #endif
7149 
7150 #ifdef _KERNEL
7151 	/*
7152 	 * Allow the tunables to override our calculations if they are
7153 	 * reasonable.
7154 	 */
7155 	if (zfs_arc_max > arc_abs_min && zfs_arc_max < allmem) {
7156 		arc_c_max = zfs_arc_max;
7157 		arc_c_min = MIN(arc_c_min, arc_c_max);
7158 	}
7159 	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
7160 		arc_c_min = zfs_arc_min;
7161 #endif
7162 
7163 	arc_c = arc_c_max;
7164 	arc_p = (arc_c >> 1);
7165 
7166 	/* limit meta-data to 1/4 of the arc capacity */
7167 	arc_meta_limit = arc_c_max / 4;
7168 
7169 #ifdef _KERNEL
7170 	/*
7171 	 * Metadata is stored in the kernel's heap.  Don't let us
7172 	 * use more than half the heap for the ARC.
7173 	 */
7174 #ifdef __FreeBSD__
7175 	arc_meta_limit = MIN(arc_meta_limit, uma_limit() / 2);
7176 	arc_dnode_limit = arc_meta_limit / 10;
7177 #else
7178 	arc_meta_limit = MIN(arc_meta_limit,
7179 	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
7180 #endif
7181 #endif
7182 
7183 	/* Allow the tunable to override if it is reasonable */
7184 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
7185 		arc_meta_limit = zfs_arc_meta_limit;
7186 
7187 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
7188 		arc_c_min = arc_meta_limit / 2;
7189 
7190 	if (zfs_arc_meta_min > 0) {
7191 		arc_meta_min = zfs_arc_meta_min;
7192 	} else {
7193 		arc_meta_min = arc_c_min / 2;
7194 	}
7195 
7196 	/* Valid range: <arc_meta_min> - <arc_c_max> */
7197 	if ((zfs_arc_dnode_limit) && (zfs_arc_dnode_limit != arc_dnode_limit) &&
7198 	    (zfs_arc_dnode_limit >= zfs_arc_meta_min) &&
7199 	    (zfs_arc_dnode_limit <= arc_c_max))
7200 		arc_dnode_limit = zfs_arc_dnode_limit;
7201 
7202 	if (zfs_arc_grow_retry > 0)
7203 		arc_grow_retry = zfs_arc_grow_retry;
7204 
7205 	if (zfs_arc_shrink_shift > 0)
7206 		arc_shrink_shift = zfs_arc_shrink_shift;
7207 
7208 	if (zfs_arc_no_grow_shift > 0)
7209 		arc_no_grow_shift = zfs_arc_no_grow_shift;
7210 	/*
7211 	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
7212 	 */
7213 	if (arc_no_grow_shift >= arc_shrink_shift)
7214 		arc_no_grow_shift = arc_shrink_shift - 1;
7215 
7216 	if (zfs_arc_p_min_shift > 0)
7217 		arc_p_min_shift = zfs_arc_p_min_shift;
7218 
7219 	/* if kmem_flags are set, lets try to use less memory */
7220 	if (kmem_debugging())
7221 		arc_c = arc_c / 2;
7222 	if (arc_c < arc_c_min)
7223 		arc_c = arc_c_min;
7224 
7225 	zfs_arc_min = arc_c_min;
7226 	zfs_arc_max = arc_c_max;
7227 
7228 	arc_state_init();
7229 
7230 	/*
7231 	 * The arc must be "uninitialized", so that hdr_recl() (which is
7232 	 * registered by buf_init()) will not access arc_reap_zthr before
7233 	 * it is created.
7234 	 */
7235 	ASSERT(!arc_initialized);
7236 	buf_init();
7237 
7238 	list_create(&arc_prune_list, sizeof (arc_prune_t),
7239 	    offsetof(arc_prune_t, p_node));
7240 	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7241 
7242 	arc_prune_taskq = taskq_create("arc_prune", max_ncpus, minclsyspri,
7243 	    max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7244 
7245 	arc_dnlc_evicts_thread_exit = FALSE;
7246 
7247 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7248 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7249 
7250 	if (arc_ksp != NULL) {
7251 		arc_ksp->ks_data = &arc_stats;
7252 		arc_ksp->ks_update = arc_kstat_update;
7253 		kstat_install(arc_ksp);
7254 	}
7255 
7256 	arc_adjust_zthr = zthr_create_timer(arc_adjust_cb_check,
7257 	    arc_adjust_cb, NULL, SEC2NSEC(1));
7258 	arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7259 	    arc_reap_cb, NULL, SEC2NSEC(1));
7260 
7261 #ifdef _KERNEL
7262 	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
7263 	    EVENTHANDLER_PRI_FIRST);
7264 #endif
7265 
7266 	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
7267 	    TS_RUN, minclsyspri);
7268 
7269 	arc_initialized = B_TRUE;
7270 	arc_warm = B_FALSE;
7271 
7272 	/*
7273 	 * Calculate maximum amount of dirty data per pool.
7274 	 *
7275 	 * If it has been set by /etc/system, take that.
7276 	 * Otherwise, use a percentage of physical memory defined by
7277 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7278 	 * zfs_dirty_data_max_max (default 4GB).
7279 	 */
7280 	if (zfs_dirty_data_max == 0) {
7281 		zfs_dirty_data_max = ptob(physmem) *
7282 		    zfs_dirty_data_max_percent / 100;
7283 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7284 		    zfs_dirty_data_max_max);
7285 	}
7286 
7287 #ifdef _KERNEL
7288 	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
7289 		prefetch_tunable_set = 1;
7290 
7291 #ifdef __i386__
7292 	if (prefetch_tunable_set == 0) {
7293 		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
7294 		    "-- to enable,\n");
7295 		printf("            add \"vfs.zfs.prefetch_disable=0\" "
7296 		    "to /boot/loader.conf.\n");
7297 		zfs_prefetch_disable = 1;
7298 	}
7299 #else
7300 	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
7301 	    prefetch_tunable_set == 0) {
7302 		printf("ZFS NOTICE: Prefetch is disabled by default if less "
7303 		    "than 4GB of RAM is present;\n"
7304 		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
7305 		    "to /boot/loader.conf.\n");
7306 		zfs_prefetch_disable = 1;
7307 	}
7308 #endif
7309 	/* Warn about ZFS memory and address space requirements. */
7310 	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
7311 		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
7312 		    "expect unstable behavior.\n");
7313 	}
7314 	if (allmem < 512 * (1 << 20)) {
7315 		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
7316 		    "expect unstable behavior.\n");
7317 		printf("             Consider tuning vm.kmem_size and "
7318 		    "vm.kmem_size_max\n");
7319 		printf("             in /boot/loader.conf.\n");
7320 	}
7321 #endif
7322 }
7323 
7324 void
arc_fini(void)7325 arc_fini(void)
7326 {
7327 	arc_prune_t *p;
7328 
7329 #ifdef _KERNEL
7330 	if (arc_event_lowmem != NULL)
7331 		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
7332 #endif
7333 
7334 	/* Use B_TRUE to ensure *all* buffers are evicted */
7335 	arc_flush(NULL, B_TRUE);
7336 
7337 	mutex_enter(&arc_dnlc_evicts_lock);
7338 	arc_dnlc_evicts_thread_exit = TRUE;
7339 	/*
7340 	 * The user evicts thread will set arc_user_evicts_thread_exit
7341 	 * to FALSE when it is finished exiting; we're waiting for that.
7342 	 */
7343 	while (arc_dnlc_evicts_thread_exit) {
7344 		cv_signal(&arc_dnlc_evicts_cv);
7345 		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
7346 	}
7347 	mutex_exit(&arc_dnlc_evicts_lock);
7348 
7349 	arc_initialized = B_FALSE;
7350 
7351 	if (arc_ksp != NULL) {
7352 		kstat_delete(arc_ksp);
7353 		arc_ksp = NULL;
7354 	}
7355 
7356 	taskq_wait(arc_prune_taskq);
7357 	taskq_destroy(arc_prune_taskq);
7358 
7359 	mutex_enter(&arc_prune_mtx);
7360 	while ((p = list_head(&arc_prune_list)) != NULL) {
7361 		list_remove(&arc_prune_list, p);
7362 		refcount_remove(&p->p_refcnt, &arc_prune_list);
7363 		refcount_destroy(&p->p_refcnt);
7364 		kmem_free(p, sizeof (*p));
7365 	}
7366 	mutex_exit(&arc_prune_mtx);
7367 
7368 	list_destroy(&arc_prune_list);
7369 	mutex_destroy(&arc_prune_mtx);
7370 
7371 	(void) zthr_cancel(arc_adjust_zthr);
7372 	zthr_destroy(arc_adjust_zthr);
7373 
7374 	mutex_destroy(&arc_dnlc_evicts_lock);
7375 	cv_destroy(&arc_dnlc_evicts_cv);
7376 
7377 	(void) zthr_cancel(arc_reap_zthr);
7378 	zthr_destroy(arc_reap_zthr);
7379 
7380 	mutex_destroy(&arc_adjust_lock);
7381 	cv_destroy(&arc_adjust_waiters_cv);
7382 
7383 	/*
7384 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7385 	 * trigger the release of kmem magazines, which can callback to
7386 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
7387 	 */
7388 	buf_fini();
7389 	arc_state_fini();
7390 
7391 	ASSERT0(arc_loaned_bytes);
7392 }
7393 
7394 /*
7395  * Level 2 ARC
7396  *
7397  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7398  * It uses dedicated storage devices to hold cached data, which are populated
7399  * using large infrequent writes.  The main role of this cache is to boost
7400  * the performance of random read workloads.  The intended L2ARC devices
7401  * include short-stroked disks, solid state disks, and other media with
7402  * substantially faster read latency than disk.
7403  *
7404  *                 +-----------------------+
7405  *                 |         ARC           |
7406  *                 +-----------------------+
7407  *                    |         ^     ^
7408  *                    |         |     |
7409  *      l2arc_feed_thread()    arc_read()
7410  *                    |         |     |
7411  *                    |  l2arc read   |
7412  *                    V         |     |
7413  *               +---------------+    |
7414  *               |     L2ARC     |    |
7415  *               +---------------+    |
7416  *                   |    ^           |
7417  *          l2arc_write() |           |
7418  *                   |    |           |
7419  *                   V    |           |
7420  *                 +-------+      +-------+
7421  *                 | vdev  |      | vdev  |
7422  *                 | cache |      | cache |
7423  *                 +-------+      +-------+
7424  *                 +=========+     .-----.
7425  *                 :  L2ARC  :    |-_____-|
7426  *                 : devices :    | Disks |
7427  *                 +=========+    `-_____-'
7428  *
7429  * Read requests are satisfied from the following sources, in order:
7430  *
7431  *	1) ARC
7432  *	2) vdev cache of L2ARC devices
7433  *	3) L2ARC devices
7434  *	4) vdev cache of disks
7435  *	5) disks
7436  *
7437  * Some L2ARC device types exhibit extremely slow write performance.
7438  * To accommodate for this there are some significant differences between
7439  * the L2ARC and traditional cache design:
7440  *
7441  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7442  * the ARC behave as usual, freeing buffers and placing headers on ghost
7443  * lists.  The ARC does not send buffers to the L2ARC during eviction as
7444  * this would add inflated write latencies for all ARC memory pressure.
7445  *
7446  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7447  * It does this by periodically scanning buffers from the eviction-end of
7448  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7449  * not already there. It scans until a headroom of buffers is satisfied,
7450  * which itself is a buffer for ARC eviction. If a compressible buffer is
7451  * found during scanning and selected for writing to an L2ARC device, we
7452  * temporarily boost scanning headroom during the next scan cycle to make
7453  * sure we adapt to compression effects (which might significantly reduce
7454  * the data volume we write to L2ARC). The thread that does this is
7455  * l2arc_feed_thread(), illustrated below; example sizes are included to
7456  * provide a better sense of ratio than this diagram:
7457  *
7458  *	       head -->                        tail
7459  *	        +---------------------+----------+
7460  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7461  *	        +---------------------+----------+   |   o L2ARC eligible
7462  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7463  *	        +---------------------+----------+   |
7464  *	             15.9 Gbytes      ^ 32 Mbytes    |
7465  *	                           headroom          |
7466  *	                                      l2arc_feed_thread()
7467  *	                                             |
7468  *	                 l2arc write hand <--[oooo]--'
7469  *	                         |           8 Mbyte
7470  *	                         |          write max
7471  *	                         V
7472  *		  +==============================+
7473  *	L2ARC dev |####|#|###|###|    |####| ... |
7474  *	          +==============================+
7475  *	                     32 Gbytes
7476  *
7477  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7478  * evicted, then the L2ARC has cached a buffer much sooner than it probably
7479  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7480  * safe to say that this is an uncommon case, since buffers at the end of
7481  * the ARC lists have moved there due to inactivity.
7482  *
7483  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7484  * then the L2ARC simply misses copying some buffers.  This serves as a
7485  * pressure valve to prevent heavy read workloads from both stalling the ARC
7486  * with waits and clogging the L2ARC with writes.  This also helps prevent
7487  * the potential for the L2ARC to churn if it attempts to cache content too
7488  * quickly, such as during backups of the entire pool.
7489  *
7490  * 5. After system boot and before the ARC has filled main memory, there are
7491  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7492  * lists can remain mostly static.  Instead of searching from tail of these
7493  * lists as pictured, the l2arc_feed_thread() will search from the list heads
7494  * for eligible buffers, greatly increasing its chance of finding them.
7495  *
7496  * The L2ARC device write speed is also boosted during this time so that
7497  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7498  * there are no L2ARC reads, and no fear of degrading read performance
7499  * through increased writes.
7500  *
7501  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7502  * the vdev queue can aggregate them into larger and fewer writes.  Each
7503  * device is written to in a rotor fashion, sweeping writes through
7504  * available space then repeating.
7505  *
7506  * 7. The L2ARC does not store dirty content.  It never needs to flush
7507  * write buffers back to disk based storage.
7508  *
7509  * 8. If an ARC buffer is written (and dirtied) which also exists in the
7510  * L2ARC, the now stale L2ARC buffer is immediately dropped.
7511  *
7512  * The performance of the L2ARC can be tweaked by a number of tunables, which
7513  * may be necessary for different workloads:
7514  *
7515  *	l2arc_write_max		max write bytes per interval
7516  *	l2arc_write_boost	extra write bytes during device warmup
7517  *	l2arc_noprefetch	skip caching prefetched buffers
7518  *	l2arc_headroom		number of max device writes to precache
7519  *	l2arc_headroom_boost	when we find compressed buffers during ARC
7520  *				scanning, we multiply headroom by this
7521  *				percentage factor for the next scan cycle,
7522  *				since more compressed buffers are likely to
7523  *				be present
7524  *	l2arc_feed_secs		seconds between L2ARC writing
7525  *
7526  * Tunables may be removed or added as future performance improvements are
7527  * integrated, and also may become zpool properties.
7528  *
7529  * There are three key functions that control how the L2ARC warms up:
7530  *
7531  *	l2arc_write_eligible()	check if a buffer is eligible to cache
7532  *	l2arc_write_size()	calculate how much to write
7533  *	l2arc_write_interval()	calculate sleep delay between writes
7534  *
7535  * These three functions determine what to write, how much, and how quickly
7536  * to send writes.
7537  */
7538 
7539 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * hdr)7540 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7541 {
7542 	/*
7543 	 * A buffer is *not* eligible for the L2ARC if it:
7544 	 * 1. belongs to a different spa.
7545 	 * 2. is already cached on the L2ARC.
7546 	 * 3. has an I/O in progress (it may be an incomplete read).
7547 	 * 4. is flagged not eligible (zfs property).
7548 	 */
7549 	if (hdr->b_spa != spa_guid) {
7550 		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
7551 		return (B_FALSE);
7552 	}
7553 	if (HDR_HAS_L2HDR(hdr)) {
7554 		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
7555 		return (B_FALSE);
7556 	}
7557 	if (HDR_IO_IN_PROGRESS(hdr)) {
7558 		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
7559 		return (B_FALSE);
7560 	}
7561 	if (!HDR_L2CACHE(hdr)) {
7562 		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
7563 		return (B_FALSE);
7564 	}
7565 
7566 	return (B_TRUE);
7567 }
7568 
7569 static uint64_t
l2arc_write_size(void)7570 l2arc_write_size(void)
7571 {
7572 	uint64_t size;
7573 
7574 	/*
7575 	 * Make sure our globals have meaningful values in case the user
7576 	 * altered them.
7577 	 */
7578 	size = l2arc_write_max;
7579 	if (size == 0) {
7580 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7581 		    "be greater than zero, resetting it to the default (%d)",
7582 		    L2ARC_WRITE_SIZE);
7583 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
7584 	}
7585 
7586 	if (arc_warm == B_FALSE)
7587 		size += l2arc_write_boost;
7588 
7589 	return (size);
7590 
7591 }
7592 
7593 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)7594 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7595 {
7596 	clock_t interval, next, now;
7597 
7598 	/*
7599 	 * If the ARC lists are busy, increase our write rate; if the
7600 	 * lists are stale, idle back.  This is achieved by checking
7601 	 * how much we previously wrote - if it was more than half of
7602 	 * what we wanted, schedule the next write much sooner.
7603 	 */
7604 	if (l2arc_feed_again && wrote > (wanted / 2))
7605 		interval = (hz * l2arc_feed_min_ms) / 1000;
7606 	else
7607 		interval = hz * l2arc_feed_secs;
7608 
7609 	now = ddi_get_lbolt();
7610 	next = MAX(now, MIN(now + interval, began + interval));
7611 
7612 	return (next);
7613 }
7614 
7615 /*
7616  * Cycle through L2ARC devices.  This is how L2ARC load balances.
7617  * If a device is returned, this also returns holding the spa config lock.
7618  */
7619 static l2arc_dev_t *
l2arc_dev_get_next(void)7620 l2arc_dev_get_next(void)
7621 {
7622 	l2arc_dev_t *first, *next = NULL;
7623 
7624 	/*
7625 	 * Lock out the removal of spas (spa_namespace_lock), then removal
7626 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7627 	 * both locks will be dropped and a spa config lock held instead.
7628 	 */
7629 	mutex_enter(&spa_namespace_lock);
7630 	mutex_enter(&l2arc_dev_mtx);
7631 
7632 	/* if there are no vdevs, there is nothing to do */
7633 	if (l2arc_ndev == 0)
7634 		goto out;
7635 
7636 	first = NULL;
7637 	next = l2arc_dev_last;
7638 	do {
7639 		/* loop around the list looking for a non-faulted vdev */
7640 		if (next == NULL) {
7641 			next = list_head(l2arc_dev_list);
7642 		} else {
7643 			next = list_next(l2arc_dev_list, next);
7644 			if (next == NULL)
7645 				next = list_head(l2arc_dev_list);
7646 		}
7647 
7648 		/* if we have come back to the start, bail out */
7649 		if (first == NULL)
7650 			first = next;
7651 		else if (next == first)
7652 			break;
7653 
7654 	} while (vdev_is_dead(next->l2ad_vdev));
7655 
7656 	/* if we were unable to find any usable vdevs, return NULL */
7657 	if (vdev_is_dead(next->l2ad_vdev))
7658 		next = NULL;
7659 
7660 	l2arc_dev_last = next;
7661 
7662 out:
7663 	mutex_exit(&l2arc_dev_mtx);
7664 
7665 	/*
7666 	 * Grab the config lock to prevent the 'next' device from being
7667 	 * removed while we are writing to it.
7668 	 */
7669 	if (next != NULL)
7670 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7671 	mutex_exit(&spa_namespace_lock);
7672 
7673 	return (next);
7674 }
7675 
7676 /*
7677  * Free buffers that were tagged for destruction.
7678  */
7679 static void
l2arc_do_free_on_write()7680 l2arc_do_free_on_write()
7681 {
7682 	list_t *buflist;
7683 	l2arc_data_free_t *df, *df_prev;
7684 
7685 	mutex_enter(&l2arc_free_on_write_mtx);
7686 	buflist = l2arc_free_on_write;
7687 
7688 	for (df = list_tail(buflist); df; df = df_prev) {
7689 		df_prev = list_prev(buflist, df);
7690 		ASSERT3P(df->l2df_abd, !=, NULL);
7691 		abd_free(df->l2df_abd);
7692 		list_remove(buflist, df);
7693 		kmem_free(df, sizeof (l2arc_data_free_t));
7694 	}
7695 
7696 	mutex_exit(&l2arc_free_on_write_mtx);
7697 }
7698 
7699 /*
7700  * A write to a cache device has completed.  Update all headers to allow
7701  * reads from these buffers to begin.
7702  */
7703 static void
l2arc_write_done(zio_t * zio)7704 l2arc_write_done(zio_t *zio)
7705 {
7706 	l2arc_write_callback_t *cb;
7707 	l2arc_dev_t *dev;
7708 	list_t *buflist;
7709 	arc_buf_hdr_t *head, *hdr, *hdr_prev;
7710 	kmutex_t *hash_lock;
7711 	int64_t bytes_dropped = 0;
7712 
7713 	cb = zio->io_private;
7714 	ASSERT3P(cb, !=, NULL);
7715 	dev = cb->l2wcb_dev;
7716 	ASSERT3P(dev, !=, NULL);
7717 	head = cb->l2wcb_head;
7718 	ASSERT3P(head, !=, NULL);
7719 	buflist = &dev->l2ad_buflist;
7720 	ASSERT3P(buflist, !=, NULL);
7721 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7722 	    l2arc_write_callback_t *, cb);
7723 
7724 	if (zio->io_error != 0)
7725 		ARCSTAT_BUMP(arcstat_l2_writes_error);
7726 
7727 	/*
7728 	 * All writes completed, or an error was hit.
7729 	 */
7730 top:
7731 	mutex_enter(&dev->l2ad_mtx);
7732 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7733 		hdr_prev = list_prev(buflist, hdr);
7734 
7735 		hash_lock = HDR_LOCK(hdr);
7736 
7737 		/*
7738 		 * We cannot use mutex_enter or else we can deadlock
7739 		 * with l2arc_write_buffers (due to swapping the order
7740 		 * the hash lock and l2ad_mtx are taken).
7741 		 */
7742 		if (!mutex_tryenter(hash_lock)) {
7743 			/*
7744 			 * Missed the hash lock. We must retry so we
7745 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
7746 			 */
7747 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7748 
7749 			/*
7750 			 * We don't want to rescan the headers we've
7751 			 * already marked as having been written out, so
7752 			 * we reinsert the head node so we can pick up
7753 			 * where we left off.
7754 			 */
7755 			list_remove(buflist, head);
7756 			list_insert_after(buflist, hdr, head);
7757 
7758 			mutex_exit(&dev->l2ad_mtx);
7759 
7760 			/*
7761 			 * We wait for the hash lock to become available
7762 			 * to try and prevent busy waiting, and increase
7763 			 * the chance we'll be able to acquire the lock
7764 			 * the next time around.
7765 			 */
7766 			mutex_enter(hash_lock);
7767 			mutex_exit(hash_lock);
7768 			goto top;
7769 		}
7770 
7771 		/*
7772 		 * We could not have been moved into the arc_l2c_only
7773 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
7774 		 * bit being set. Let's just ensure that's being enforced.
7775 		 */
7776 		ASSERT(HDR_HAS_L1HDR(hdr));
7777 
7778 		if (zio->io_error != 0) {
7779 			/*
7780 			 * Error - drop L2ARC entry.
7781 			 */
7782 			list_remove(buflist, hdr);
7783 			l2arc_trim(hdr);
7784 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7785 
7786 			ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
7787 			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7788 
7789 			bytes_dropped += arc_hdr_size(hdr);
7790 			(void) refcount_remove_many(&dev->l2ad_alloc,
7791 			    arc_hdr_size(hdr), hdr);
7792 		}
7793 
7794 		/*
7795 		 * Allow ARC to begin reads and ghost list evictions to
7796 		 * this L2ARC entry.
7797 		 */
7798 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7799 
7800 		mutex_exit(hash_lock);
7801 	}
7802 
7803 	atomic_inc_64(&l2arc_writes_done);
7804 	list_remove(buflist, head);
7805 	ASSERT(!HDR_HAS_L1HDR(head));
7806 	kmem_cache_free(hdr_l2only_cache, head);
7807 	mutex_exit(&dev->l2ad_mtx);
7808 
7809 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7810 
7811 	l2arc_do_free_on_write();
7812 
7813 	kmem_free(cb, sizeof (l2arc_write_callback_t));
7814 }
7815 
7816 /*
7817  * A read to a cache device completed.  Validate buffer contents before
7818  * handing over to the regular ARC routines.
7819  */
7820 static void
l2arc_read_done(zio_t * zio)7821 l2arc_read_done(zio_t *zio)
7822 {
7823 	l2arc_read_callback_t *cb;
7824 	arc_buf_hdr_t *hdr;
7825 	kmutex_t *hash_lock;
7826 	boolean_t valid_cksum;
7827 
7828 	ASSERT3P(zio->io_vd, !=, NULL);
7829 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7830 
7831 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7832 
7833 	cb = zio->io_private;
7834 	ASSERT3P(cb, !=, NULL);
7835 	hdr = cb->l2rcb_hdr;
7836 	ASSERT3P(hdr, !=, NULL);
7837 
7838 	hash_lock = HDR_LOCK(hdr);
7839 	mutex_enter(hash_lock);
7840 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7841 
7842 	/*
7843 	 * If the data was read into a temporary buffer,
7844 	 * move it and free the buffer.
7845 	 */
7846 	if (cb->l2rcb_abd != NULL) {
7847 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7848 		if (zio->io_error == 0) {
7849 			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
7850 			    arc_hdr_size(hdr));
7851 		}
7852 
7853 		/*
7854 		 * The following must be done regardless of whether
7855 		 * there was an error:
7856 		 * - free the temporary buffer
7857 		 * - point zio to the real ARC buffer
7858 		 * - set zio size accordingly
7859 		 * These are required because zio is either re-used for
7860 		 * an I/O of the block in the case of the error
7861 		 * or the zio is passed to arc_read_done() and it
7862 		 * needs real data.
7863 		 */
7864 		abd_free(cb->l2rcb_abd);
7865 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7866 		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7867 	}
7868 
7869 	ASSERT3P(zio->io_abd, !=, NULL);
7870 
7871 	/*
7872 	 * Check this survived the L2ARC journey.
7873 	 */
7874 	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7875 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
7876 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
7877 
7878 	valid_cksum = arc_cksum_is_equal(hdr, zio);
7879 	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7880 		mutex_exit(hash_lock);
7881 		zio->io_private = hdr;
7882 		arc_read_done(zio);
7883 	} else {
7884 		mutex_exit(hash_lock);
7885 		/*
7886 		 * Buffer didn't survive caching.  Increment stats and
7887 		 * reissue to the original storage device.
7888 		 */
7889 		if (zio->io_error != 0) {
7890 			ARCSTAT_BUMP(arcstat_l2_io_error);
7891 		} else {
7892 			zio->io_error = SET_ERROR(EIO);
7893 		}
7894 		if (!valid_cksum)
7895 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7896 
7897 		/*
7898 		 * If there's no waiter, issue an async i/o to the primary
7899 		 * storage now.  If there *is* a waiter, the caller must
7900 		 * issue the i/o in a context where it's OK to block.
7901 		 */
7902 		if (zio->io_waiter == NULL) {
7903 			zio_t *pio = zio_unique_parent(zio);
7904 
7905 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7906 
7907 			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
7908 			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7909 			    hdr, zio->io_priority, cb->l2rcb_flags,
7910 			    &cb->l2rcb_zb));
7911 		}
7912 	}
7913 
7914 	kmem_free(cb, sizeof (l2arc_read_callback_t));
7915 }
7916 
7917 /*
7918  * This is the list priority from which the L2ARC will search for pages to
7919  * cache.  This is used within loops (0..3) to cycle through lists in the
7920  * desired order.  This order can have a significant effect on cache
7921  * performance.
7922  *
7923  * Currently the metadata lists are hit first, MFU then MRU, followed by
7924  * the data lists.  This function returns a locked list, and also returns
7925  * the lock pointer.
7926  */
7927 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)7928 l2arc_sublist_lock(int list_num)
7929 {
7930 	multilist_t *ml = NULL;
7931 	unsigned int idx;
7932 
7933 	ASSERT(list_num >= 0 && list_num <= 3);
7934 
7935 	switch (list_num) {
7936 	case 0:
7937 		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7938 		break;
7939 	case 1:
7940 		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7941 		break;
7942 	case 2:
7943 		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7944 		break;
7945 	case 3:
7946 		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7947 		break;
7948 	}
7949 
7950 	/*
7951 	 * Return a randomly-selected sublist. This is acceptable
7952 	 * because the caller feeds only a little bit of data for each
7953 	 * call (8MB). Subsequent calls will result in different
7954 	 * sublists being selected.
7955 	 */
7956 	idx = multilist_get_random_index(ml);
7957 	return (multilist_sublist_lock(ml, idx));
7958 }
7959 
7960 /*
7961  * Evict buffers from the device write hand to the distance specified in
7962  * bytes.  This distance may span populated buffers, it may span nothing.
7963  * This is clearing a region on the L2ARC device ready for writing.
7964  * If the 'all' boolean is set, every buffer is evicted.
7965  */
7966 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)7967 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7968 {
7969 	list_t *buflist;
7970 	arc_buf_hdr_t *hdr, *hdr_prev;
7971 	kmutex_t *hash_lock;
7972 	uint64_t taddr;
7973 
7974 	buflist = &dev->l2ad_buflist;
7975 
7976 	if (!all && dev->l2ad_first) {
7977 		/*
7978 		 * This is the first sweep through the device.  There is
7979 		 * nothing to evict.
7980 		 */
7981 		return;
7982 	}
7983 
7984 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7985 		/*
7986 		 * When nearing the end of the device, evict to the end
7987 		 * before the device write hand jumps to the start.
7988 		 */
7989 		taddr = dev->l2ad_end;
7990 	} else {
7991 		taddr = dev->l2ad_hand + distance;
7992 	}
7993 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7994 	    uint64_t, taddr, boolean_t, all);
7995 
7996 top:
7997 	mutex_enter(&dev->l2ad_mtx);
7998 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7999 		hdr_prev = list_prev(buflist, hdr);
8000 
8001 		hash_lock = HDR_LOCK(hdr);
8002 
8003 		/*
8004 		 * We cannot use mutex_enter or else we can deadlock
8005 		 * with l2arc_write_buffers (due to swapping the order
8006 		 * the hash lock and l2ad_mtx are taken).
8007 		 */
8008 		if (!mutex_tryenter(hash_lock)) {
8009 			/*
8010 			 * Missed the hash lock.  Retry.
8011 			 */
8012 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8013 			mutex_exit(&dev->l2ad_mtx);
8014 			mutex_enter(hash_lock);
8015 			mutex_exit(hash_lock);
8016 			goto top;
8017 		}
8018 
8019 		/*
8020 		 * A header can't be on this list if it doesn't have L2 header.
8021 		 */
8022 		ASSERT(HDR_HAS_L2HDR(hdr));
8023 
8024 		/* Ensure this header has finished being written. */
8025 		ASSERT(!HDR_L2_WRITING(hdr));
8026 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8027 
8028 		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
8029 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8030 			/*
8031 			 * We've evicted to the target address,
8032 			 * or the end of the device.
8033 			 */
8034 			mutex_exit(hash_lock);
8035 			break;
8036 		}
8037 
8038 		if (!HDR_HAS_L1HDR(hdr)) {
8039 			ASSERT(!HDR_L2_READING(hdr));
8040 			/*
8041 			 * This doesn't exist in the ARC.  Destroy.
8042 			 * arc_hdr_destroy() will call list_remove()
8043 			 * and decrement arcstat_l2_lsize.
8044 			 */
8045 			arc_change_state(arc_anon, hdr, hash_lock);
8046 			arc_hdr_destroy(hdr);
8047 		} else {
8048 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8049 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8050 			/*
8051 			 * Invalidate issued or about to be issued
8052 			 * reads, since we may be about to write
8053 			 * over this location.
8054 			 */
8055 			if (HDR_L2_READING(hdr)) {
8056 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
8057 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8058 			}
8059 
8060 			arc_hdr_l2hdr_destroy(hdr);
8061 		}
8062 		mutex_exit(hash_lock);
8063 	}
8064 	mutex_exit(&dev->l2ad_mtx);
8065 }
8066 
8067 /*
8068  * Find and write ARC buffers to the L2ARC device.
8069  *
8070  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8071  * for reading until they have completed writing.
8072  * The headroom_boost is an in-out parameter used to maintain headroom boost
8073  * state between calls to this function.
8074  *
8075  * Returns the number of bytes actually written (which may be smaller than
8076  * the delta by which the device hand has changed due to alignment).
8077  */
8078 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)8079 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8080 {
8081 	arc_buf_hdr_t *hdr, *hdr_prev, *head;
8082 	uint64_t write_asize, write_psize, write_lsize, headroom;
8083 	boolean_t full;
8084 	l2arc_write_callback_t *cb;
8085 	zio_t *pio, *wzio;
8086 	uint64_t guid = spa_load_guid(spa);
8087 	int try;
8088 
8089 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
8090 
8091 	pio = NULL;
8092 	write_lsize = write_asize = write_psize = 0;
8093 	full = B_FALSE;
8094 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8095 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8096 
8097 	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
8098 	/*
8099 	 * Copy buffers for L2ARC writing.
8100 	 */
8101 	for (try = 0; try <= 3; try++) {
8102 		multilist_sublist_t *mls = l2arc_sublist_lock(try);
8103 		uint64_t passed_sz = 0;
8104 
8105 		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
8106 
8107 		/*
8108 		 * L2ARC fast warmup.
8109 		 *
8110 		 * Until the ARC is warm and starts to evict, read from the
8111 		 * head of the ARC lists rather than the tail.
8112 		 */
8113 		if (arc_warm == B_FALSE)
8114 			hdr = multilist_sublist_head(mls);
8115 		else
8116 			hdr = multilist_sublist_tail(mls);
8117 		if (hdr == NULL)
8118 			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
8119 
8120 		headroom = target_sz * l2arc_headroom;
8121 		if (zfs_compressed_arc_enabled)
8122 			headroom = (headroom * l2arc_headroom_boost) / 100;
8123 
8124 		for (; hdr; hdr = hdr_prev) {
8125 			kmutex_t *hash_lock;
8126 
8127 			if (arc_warm == B_FALSE)
8128 				hdr_prev = multilist_sublist_next(mls, hdr);
8129 			else
8130 				hdr_prev = multilist_sublist_prev(mls, hdr);
8131 			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
8132 			    HDR_GET_LSIZE(hdr));
8133 
8134 			hash_lock = HDR_LOCK(hdr);
8135 			if (!mutex_tryenter(hash_lock)) {
8136 				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
8137 				/*
8138 				 * Skip this buffer rather than waiting.
8139 				 */
8140 				continue;
8141 			}
8142 
8143 			passed_sz += HDR_GET_LSIZE(hdr);
8144 			if (passed_sz > headroom) {
8145 				/*
8146 				 * Searched too far.
8147 				 */
8148 				mutex_exit(hash_lock);
8149 				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
8150 				break;
8151 			}
8152 
8153 			if (!l2arc_write_eligible(guid, hdr)) {
8154 				mutex_exit(hash_lock);
8155 				continue;
8156 			}
8157 
8158 			/*
8159 			 * We rely on the L1 portion of the header below, so
8160 			 * it's invalid for this header to have been evicted out
8161 			 * of the ghost cache, prior to being written out. The
8162 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8163 			 */
8164 			ASSERT(HDR_HAS_L1HDR(hdr));
8165 
8166 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8167 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8168 			ASSERT3U(arc_hdr_size(hdr), >, 0);
8169 			uint64_t psize = arc_hdr_size(hdr);
8170 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8171 			    psize);
8172 
8173 			if ((write_asize + asize) > target_sz) {
8174 				full = B_TRUE;
8175 				mutex_exit(hash_lock);
8176 				ARCSTAT_BUMP(arcstat_l2_write_full);
8177 				break;
8178 			}
8179 
8180 			if (pio == NULL) {
8181 				/*
8182 				 * Insert a dummy header on the buflist so
8183 				 * l2arc_write_done() can find where the
8184 				 * write buffers begin without searching.
8185 				 */
8186 				mutex_enter(&dev->l2ad_mtx);
8187 				list_insert_head(&dev->l2ad_buflist, head);
8188 				mutex_exit(&dev->l2ad_mtx);
8189 
8190 				cb = kmem_alloc(
8191 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
8192 				cb->l2wcb_dev = dev;
8193 				cb->l2wcb_head = head;
8194 				pio = zio_root(spa, l2arc_write_done, cb,
8195 				    ZIO_FLAG_CANFAIL);
8196 				ARCSTAT_BUMP(arcstat_l2_write_pios);
8197 			}
8198 
8199 			hdr->b_l2hdr.b_dev = dev;
8200 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8201 			arc_hdr_set_flags(hdr,
8202 			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
8203 
8204 			mutex_enter(&dev->l2ad_mtx);
8205 			list_insert_head(&dev->l2ad_buflist, hdr);
8206 			mutex_exit(&dev->l2ad_mtx);
8207 
8208 			(void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
8209 
8210 			/*
8211 			 * Normally the L2ARC can use the hdr's data, but if
8212 			 * we're sharing data between the hdr and one of its
8213 			 * bufs, L2ARC needs its own copy of the data so that
8214 			 * the ZIO below can't race with the buf consumer.
8215 			 * Another case where we need to create a copy of the
8216 			 * data is when the buffer size is not device-aligned
8217 			 * and we need to pad the block to make it such.
8218 			 * That also keeps the clock hand suitably aligned.
8219 			 *
8220 			 * To ensure that the copy will be available for the
8221 			 * lifetime of the ZIO and be cleaned up afterwards, we
8222 			 * add it to the l2arc_free_on_write queue.
8223 			 */
8224 			abd_t *to_write;
8225 			if (!HDR_SHARED_DATA(hdr) && psize == asize) {
8226 				to_write = hdr->b_l1hdr.b_pabd;
8227 			} else {
8228 				to_write = abd_alloc_for_io(asize,
8229 				    HDR_ISTYPE_METADATA(hdr));
8230 				abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
8231 				if (asize != psize) {
8232 					abd_zero_off(to_write, psize,
8233 					    asize - psize);
8234 				}
8235 				l2arc_free_abd_on_write(to_write, asize,
8236 				    arc_buf_type(hdr));
8237 			}
8238 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
8239 			    hdr->b_l2hdr.b_daddr, asize, to_write,
8240 			    ZIO_CHECKSUM_OFF, NULL, hdr,
8241 			    ZIO_PRIORITY_ASYNC_WRITE,
8242 			    ZIO_FLAG_CANFAIL, B_FALSE);
8243 
8244 			write_lsize += HDR_GET_LSIZE(hdr);
8245 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8246 			    zio_t *, wzio);
8247 
8248 			write_psize += psize;
8249 			write_asize += asize;
8250 			dev->l2ad_hand += asize;
8251 
8252 			mutex_exit(hash_lock);
8253 
8254 			(void) zio_nowait(wzio);
8255 		}
8256 
8257 		multilist_sublist_unlock(mls);
8258 
8259 		if (full == B_TRUE)
8260 			break;
8261 	}
8262 
8263 	/* No buffers selected for writing? */
8264 	if (pio == NULL) {
8265 		ASSERT0(write_lsize);
8266 		ASSERT(!HDR_HAS_L1HDR(head));
8267 		kmem_cache_free(hdr_l2only_cache, head);
8268 		return (0);
8269 	}
8270 
8271 	ASSERT3U(write_psize, <=, target_sz);
8272 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
8273 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8274 	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
8275 	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
8276 	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
8277 
8278 	/*
8279 	 * Bump device hand to the device start if it is approaching the end.
8280 	 * l2arc_evict() will already have evicted ahead for this case.
8281 	 */
8282 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
8283 		dev->l2ad_hand = dev->l2ad_start;
8284 		dev->l2ad_first = B_FALSE;
8285 	}
8286 
8287 	dev->l2ad_writing = B_TRUE;
8288 	(void) zio_wait(pio);
8289 	dev->l2ad_writing = B_FALSE;
8290 
8291 	return (write_asize);
8292 }
8293 
8294 /*
8295  * This thread feeds the L2ARC at regular intervals.  This is the beating
8296  * heart of the L2ARC.
8297  */
8298 /* ARGSUSED */
8299 static void
l2arc_feed_thread(void * unused __unused)8300 l2arc_feed_thread(void *unused __unused)
8301 {
8302 	callb_cpr_t cpr;
8303 	l2arc_dev_t *dev;
8304 	spa_t *spa;
8305 	uint64_t size, wrote;
8306 	clock_t begin, next = ddi_get_lbolt();
8307 
8308 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8309 
8310 	mutex_enter(&l2arc_feed_thr_lock);
8311 
8312 	while (l2arc_thread_exit == 0) {
8313 		CALLB_CPR_SAFE_BEGIN(&cpr);
8314 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
8315 		    next - ddi_get_lbolt());
8316 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8317 		next = ddi_get_lbolt() + hz;
8318 
8319 		/*
8320 		 * Quick check for L2ARC devices.
8321 		 */
8322 		mutex_enter(&l2arc_dev_mtx);
8323 		if (l2arc_ndev == 0) {
8324 			mutex_exit(&l2arc_dev_mtx);
8325 			continue;
8326 		}
8327 		mutex_exit(&l2arc_dev_mtx);
8328 		begin = ddi_get_lbolt();
8329 
8330 		/*
8331 		 * This selects the next l2arc device to write to, and in
8332 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
8333 		 * will return NULL if there are now no l2arc devices or if
8334 		 * they are all faulted.
8335 		 *
8336 		 * If a device is returned, its spa's config lock is also
8337 		 * held to prevent device removal.  l2arc_dev_get_next()
8338 		 * will grab and release l2arc_dev_mtx.
8339 		 */
8340 		if ((dev = l2arc_dev_get_next()) == NULL)
8341 			continue;
8342 
8343 		spa = dev->l2ad_spa;
8344 		ASSERT3P(spa, !=, NULL);
8345 
8346 		/*
8347 		 * If the pool is read-only then force the feed thread to
8348 		 * sleep a little longer.
8349 		 */
8350 		if (!spa_writeable(spa)) {
8351 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8352 			spa_config_exit(spa, SCL_L2ARC, dev);
8353 			continue;
8354 		}
8355 
8356 		/*
8357 		 * Avoid contributing to memory pressure.
8358 		 */
8359 		if (arc_reclaim_needed()) {
8360 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8361 			spa_config_exit(spa, SCL_L2ARC, dev);
8362 			continue;
8363 		}
8364 
8365 		ARCSTAT_BUMP(arcstat_l2_feeds);
8366 
8367 		size = l2arc_write_size();
8368 
8369 		/*
8370 		 * Evict L2ARC buffers that will be overwritten.
8371 		 */
8372 		l2arc_evict(dev, size, B_FALSE);
8373 
8374 		/*
8375 		 * Write ARC buffers.
8376 		 */
8377 		wrote = l2arc_write_buffers(spa, dev, size);
8378 
8379 		/*
8380 		 * Calculate interval between writes.
8381 		 */
8382 		next = l2arc_write_interval(begin, size, wrote);
8383 		spa_config_exit(spa, SCL_L2ARC, dev);
8384 	}
8385 
8386 	l2arc_thread_exit = 0;
8387 	cv_broadcast(&l2arc_feed_thr_cv);
8388 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
8389 	thread_exit();
8390 }
8391 
8392 boolean_t
l2arc_vdev_present(vdev_t * vd)8393 l2arc_vdev_present(vdev_t *vd)
8394 {
8395 	l2arc_dev_t *dev;
8396 
8397 	mutex_enter(&l2arc_dev_mtx);
8398 	for (dev = list_head(l2arc_dev_list); dev != NULL;
8399 	    dev = list_next(l2arc_dev_list, dev)) {
8400 		if (dev->l2ad_vdev == vd)
8401 			break;
8402 	}
8403 	mutex_exit(&l2arc_dev_mtx);
8404 
8405 	return (dev != NULL);
8406 }
8407 
8408 /*
8409  * Add a vdev for use by the L2ARC.  By this point the spa has already
8410  * validated the vdev and opened it.
8411  */
8412 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)8413 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8414 {
8415 	l2arc_dev_t *adddev;
8416 
8417 	ASSERT(!l2arc_vdev_present(vd));
8418 
8419 	vdev_ashift_optimize(vd);
8420 
8421 	/*
8422 	 * Create a new l2arc device entry.
8423 	 */
8424 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8425 	adddev->l2ad_spa = spa;
8426 	adddev->l2ad_vdev = vd;
8427 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
8428 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
8429 	adddev->l2ad_hand = adddev->l2ad_start;
8430 	adddev->l2ad_first = B_TRUE;
8431 	adddev->l2ad_writing = B_FALSE;
8432 
8433 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
8434 	/*
8435 	 * This is a list of all ARC buffers that are still valid on the
8436 	 * device.
8437 	 */
8438 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8439 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
8440 
8441 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
8442 	refcount_create(&adddev->l2ad_alloc);
8443 
8444 	/*
8445 	 * Add device to global list
8446 	 */
8447 	mutex_enter(&l2arc_dev_mtx);
8448 	list_insert_head(l2arc_dev_list, adddev);
8449 	atomic_inc_64(&l2arc_ndev);
8450 	mutex_exit(&l2arc_dev_mtx);
8451 }
8452 
8453 /*
8454  * Remove a vdev from the L2ARC.
8455  */
8456 void
l2arc_remove_vdev(vdev_t * vd)8457 l2arc_remove_vdev(vdev_t *vd)
8458 {
8459 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
8460 
8461 	/*
8462 	 * Find the device by vdev
8463 	 */
8464 	mutex_enter(&l2arc_dev_mtx);
8465 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
8466 		nextdev = list_next(l2arc_dev_list, dev);
8467 		if (vd == dev->l2ad_vdev) {
8468 			remdev = dev;
8469 			break;
8470 		}
8471 	}
8472 	ASSERT3P(remdev, !=, NULL);
8473 
8474 	/*
8475 	 * Remove device from global list
8476 	 */
8477 	list_remove(l2arc_dev_list, remdev);
8478 	l2arc_dev_last = NULL;		/* may have been invalidated */
8479 	atomic_dec_64(&l2arc_ndev);
8480 	mutex_exit(&l2arc_dev_mtx);
8481 
8482 	/*
8483 	 * Clear all buflists and ARC references.  L2ARC device flush.
8484 	 */
8485 	l2arc_evict(remdev, 0, B_TRUE);
8486 	list_destroy(&remdev->l2ad_buflist);
8487 	mutex_destroy(&remdev->l2ad_mtx);
8488 	refcount_destroy(&remdev->l2ad_alloc);
8489 	kmem_free(remdev, sizeof (l2arc_dev_t));
8490 }
8491 
8492 void
l2arc_init(void)8493 l2arc_init(void)
8494 {
8495 	l2arc_thread_exit = 0;
8496 	l2arc_ndev = 0;
8497 	l2arc_writes_sent = 0;
8498 	l2arc_writes_done = 0;
8499 
8500 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8501 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
8502 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
8503 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
8504 
8505 	l2arc_dev_list = &L2ARC_dev_list;
8506 	l2arc_free_on_write = &L2ARC_free_on_write;
8507 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
8508 	    offsetof(l2arc_dev_t, l2ad_node));
8509 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
8510 	    offsetof(l2arc_data_free_t, l2df_list_node));
8511 }
8512 
8513 void
l2arc_fini(void)8514 l2arc_fini(void)
8515 {
8516 	/*
8517 	 * This is called from dmu_fini(), which is called from spa_fini();
8518 	 * Because of this, we can assume that all l2arc devices have
8519 	 * already been removed when the pools themselves were removed.
8520 	 */
8521 
8522 	l2arc_do_free_on_write();
8523 
8524 	mutex_destroy(&l2arc_feed_thr_lock);
8525 	cv_destroy(&l2arc_feed_thr_cv);
8526 	mutex_destroy(&l2arc_dev_mtx);
8527 	mutex_destroy(&l2arc_free_on_write_mtx);
8528 
8529 	list_destroy(l2arc_dev_list);
8530 	list_destroy(l2arc_free_on_write);
8531 }
8532 
8533 void
l2arc_start(void)8534 l2arc_start(void)
8535 {
8536 	if (!(spa_mode_global & FWRITE))
8537 		return;
8538 
8539 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
8540 	    TS_RUN, minclsyspri);
8541 }
8542 
8543 void
l2arc_stop(void)8544 l2arc_stop(void)
8545 {
8546 	if (!(spa_mode_global & FWRITE))
8547 		return;
8548 
8549 	mutex_enter(&l2arc_feed_thr_lock);
8550 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
8551 	l2arc_thread_exit = 1;
8552 	while (l2arc_thread_exit != 0)
8553 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
8554 	mutex_exit(&l2arc_feed_thr_lock);
8555 }
8556