1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2014-2018 Chelsio Communications.
3 * All rights reserved.
4 */
5
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_memzone.h>
27 #include <rte_tailq.h>
28 #include <rte_eal.h>
29 #include <rte_alarm.h>
30 #include <rte_ether.h>
31 #include <rte_ethdev_driver.h>
32 #include <rte_malloc.h>
33 #include <rte_random.h>
34 #include <rte_dev.h>
35
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40
41 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
42 struct sge_eth_txq *txq);
43
44 /*
45 * Max number of Rx buffers we replenish at a time.
46 */
47 #define MAX_RX_REFILL 64U
48
49 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
50
51 /*
52 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
53 * into a WR.
54 */
55 #define MAX_IMM_TX_PKT_LEN 256
56
57 /*
58 * Max size of a WR sent through a control Tx queue.
59 */
60 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
61
62 /*
63 * Rx buffer sizes for "usembufs" Free List buffers (one ingress packet
64 * per mbuf buffer). We currently only support two sizes for 1500- and
65 * 9000-byte MTUs. We could easily support more but there doesn't seem to be
66 * much need for that ...
67 */
68 #define FL_MTU_SMALL 1500
69 #define FL_MTU_LARGE 9000
70
fl_mtu_bufsize(struct adapter * adapter,unsigned int mtu)71 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
72 unsigned int mtu)
73 {
74 struct sge *s = &adapter->sge;
75
76 return CXGBE_ALIGN(s->pktshift + RTE_ETHER_HDR_LEN + VLAN_HLEN + mtu,
77 s->fl_align);
78 }
79
80 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
81 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
82
83 /*
84 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
85 * these to specify the buffer size as an index into the SGE Free List Buffer
86 * Size register array. We also use bit 4, when the buffer has been unmapped
87 * for DMA, but this is of course never sent to the hardware and is only used
88 * to prevent double unmappings. All of the above requires that the Free List
89 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
90 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
91 * Free List Buffer alignment is 32 bytes, this works out for us ...
92 */
93 enum {
94 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
95 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
96 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
97
98 /*
99 * XXX We shouldn't depend on being able to use these indices.
100 * XXX Especially when some other Master PF has initialized the
101 * XXX adapter or we use the Firmware Configuration File. We
102 * XXX should really search through the Host Buffer Size register
103 * XXX array for the appropriately sized buffer indices.
104 */
105 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
106 RX_LARGE_PG_BUF = 0x1, /* buffer large page buffer */
107
108 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
109 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
110 };
111
112 /**
113 * txq_avail - return the number of available slots in a Tx queue
114 * @q: the Tx queue
115 *
116 * Returns the number of descriptors in a Tx queue available to write new
117 * packets.
118 */
txq_avail(const struct sge_txq * q)119 static inline unsigned int txq_avail(const struct sge_txq *q)
120 {
121 return q->size - 1 - q->in_use;
122 }
123
map_mbuf(struct rte_mbuf * mbuf,dma_addr_t * addr)124 static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr)
125 {
126 struct rte_mbuf *m = mbuf;
127
128 for (; m; m = m->next, addr++) {
129 *addr = m->buf_iova + rte_pktmbuf_headroom(m);
130 if (*addr == 0)
131 goto out_err;
132 }
133 return 0;
134
135 out_err:
136 return -ENOMEM;
137 }
138
139 /**
140 * free_tx_desc - reclaims Tx descriptors and their buffers
141 * @q: the Tx queue to reclaim descriptors from
142 * @n: the number of descriptors to reclaim
143 *
144 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
145 * Tx buffers. Called with the Tx queue lock held.
146 */
free_tx_desc(struct sge_txq * q,unsigned int n)147 static void free_tx_desc(struct sge_txq *q, unsigned int n)
148 {
149 struct tx_sw_desc *d;
150 unsigned int cidx = 0;
151
152 d = &q->sdesc[cidx];
153 while (n--) {
154 if (d->mbuf) { /* an SGL is present */
155 rte_pktmbuf_free(d->mbuf);
156 d->mbuf = NULL;
157 }
158 if (d->coalesce.idx) {
159 int i;
160
161 for (i = 0; i < d->coalesce.idx; i++) {
162 rte_pktmbuf_free(d->coalesce.mbuf[i]);
163 d->coalesce.mbuf[i] = NULL;
164 }
165 d->coalesce.idx = 0;
166 }
167 ++d;
168 if (++cidx == q->size) {
169 cidx = 0;
170 d = q->sdesc;
171 }
172 RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool);
173 }
174 }
175
reclaim_tx_desc(struct sge_txq * q,unsigned int n)176 static void reclaim_tx_desc(struct sge_txq *q, unsigned int n)
177 {
178 struct tx_sw_desc *d;
179 unsigned int cidx = q->cidx;
180
181 d = &q->sdesc[cidx];
182 while (n--) {
183 if (d->mbuf) { /* an SGL is present */
184 rte_pktmbuf_free(d->mbuf);
185 d->mbuf = NULL;
186 }
187 ++d;
188 if (++cidx == q->size) {
189 cidx = 0;
190 d = q->sdesc;
191 }
192 }
193 q->cidx = cidx;
194 }
195
196 /**
197 * fl_cap - return the capacity of a free-buffer list
198 * @fl: the FL
199 *
200 * Returns the capacity of a free-buffer list. The capacity is less than
201 * the size because one descriptor needs to be left unpopulated, otherwise
202 * HW will think the FL is empty.
203 */
fl_cap(const struct sge_fl * fl)204 static inline unsigned int fl_cap(const struct sge_fl *fl)
205 {
206 return fl->size - 8; /* 1 descriptor = 8 buffers */
207 }
208
209 /**
210 * fl_starving - return whether a Free List is starving.
211 * @adapter: pointer to the adapter
212 * @fl: the Free List
213 *
214 * Tests specified Free List to see whether the number of buffers
215 * available to the hardware has falled below our "starvation"
216 * threshold.
217 */
fl_starving(const struct adapter * adapter,const struct sge_fl * fl)218 static inline bool fl_starving(const struct adapter *adapter,
219 const struct sge_fl *fl)
220 {
221 const struct sge *s = &adapter->sge;
222
223 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
224 }
225
get_buf_size(struct adapter * adapter,const struct rx_sw_desc * d)226 static inline unsigned int get_buf_size(struct adapter *adapter,
227 const struct rx_sw_desc *d)
228 {
229 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
230 unsigned int buf_size = 0;
231
232 switch (rx_buf_size_idx) {
233 case RX_SMALL_MTU_BUF:
234 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
235 break;
236
237 case RX_LARGE_MTU_BUF:
238 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
239 break;
240
241 default:
242 BUG_ON(1);
243 /* NOT REACHED */
244 }
245
246 return buf_size;
247 }
248
249 /**
250 * free_rx_bufs - free the Rx buffers on an SGE free list
251 * @q: the SGE free list to free buffers from
252 * @n: how many buffers to free
253 *
254 * Release the next @n buffers on an SGE free-buffer Rx queue. The
255 * buffers must be made inaccessible to HW before calling this function.
256 */
free_rx_bufs(struct sge_fl * q,int n)257 static void free_rx_bufs(struct sge_fl *q, int n)
258 {
259 unsigned int cidx = q->cidx;
260 struct rx_sw_desc *d;
261
262 d = &q->sdesc[cidx];
263 while (n--) {
264 if (d->buf) {
265 rte_pktmbuf_free(d->buf);
266 d->buf = NULL;
267 }
268 ++d;
269 if (++cidx == q->size) {
270 cidx = 0;
271 d = q->sdesc;
272 }
273 q->avail--;
274 }
275 q->cidx = cidx;
276 }
277
278 /**
279 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
280 * @q: the SGE free list
281 *
282 * Unmap the current buffer on an SGE free-buffer Rx queue. The
283 * buffer must be made inaccessible to HW before calling this function.
284 *
285 * This is similar to @free_rx_bufs above but does not free the buffer.
286 * Do note that the FL still loses any further access to the buffer.
287 */
unmap_rx_buf(struct sge_fl * q)288 static void unmap_rx_buf(struct sge_fl *q)
289 {
290 if (++q->cidx == q->size)
291 q->cidx = 0;
292 q->avail--;
293 }
294
ring_fl_db(struct adapter * adap,struct sge_fl * q)295 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
296 {
297 if (q->pend_cred >= 64) {
298 u32 val = adap->params.arch.sge_fl_db;
299
300 if (is_t4(adap->params.chip))
301 val |= V_PIDX(q->pend_cred / 8);
302 else
303 val |= V_PIDX_T5(q->pend_cred / 8);
304
305 /*
306 * Make sure all memory writes to the Free List queue are
307 * committed before we tell the hardware about them.
308 */
309 wmb();
310
311 /*
312 * If we don't have access to the new User Doorbell (T5+), use
313 * the old doorbell mechanism; otherwise use the new BAR2
314 * mechanism.
315 */
316 if (unlikely(!q->bar2_addr)) {
317 u32 reg = is_pf4(adap) ? MYPF_REG(A_SGE_PF_KDOORBELL) :
318 T4VF_SGE_BASE_ADDR +
319 A_SGE_VF_KDOORBELL;
320
321 t4_write_reg_relaxed(adap, reg,
322 val | V_QID(q->cntxt_id));
323 } else {
324 writel_relaxed(val | V_QID(q->bar2_qid),
325 (void *)((uintptr_t)q->bar2_addr +
326 SGE_UDB_KDOORBELL));
327
328 /*
329 * This Write memory Barrier will force the write to
330 * the User Doorbell area to be flushed.
331 */
332 wmb();
333 }
334 q->pend_cred &= 7;
335 }
336 }
337
set_rx_sw_desc(struct rx_sw_desc * sd,void * buf,dma_addr_t mapping)338 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf,
339 dma_addr_t mapping)
340 {
341 sd->buf = buf;
342 sd->dma_addr = mapping; /* includes size low bits */
343 }
344
345 /**
346 * refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs
347 * @adap: the adapter
348 * @q: the ring to refill
349 * @n: the number of new buffers to allocate
350 *
351 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
352 * allocated with the supplied gfp flags. The caller must assure that
353 * @n does not exceed the queue's capacity. If afterwards the queue is
354 * found critically low mark it as starving in the bitmap of starving FLs.
355 *
356 * Returns the number of buffers allocated.
357 */
refill_fl_usembufs(struct adapter * adap,struct sge_fl * q,int n)358 static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q,
359 int n)
360 {
361 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
362 unsigned int cred = q->avail;
363 __be64 *d = &q->desc[q->pidx];
364 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
365 unsigned int buf_size_idx = RX_SMALL_MTU_BUF;
366 struct rte_mbuf *buf_bulk[n];
367 int ret, i;
368 struct rte_pktmbuf_pool_private *mbp_priv;
369 u8 jumbo_en = rxq->rspq.eth_dev->data->dev_conf.rxmode.offloads &
370 DEV_RX_OFFLOAD_JUMBO_FRAME;
371
372 /* Use jumbo mtu buffers if mbuf data room size can fit jumbo data. */
373 mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool);
374 if (jumbo_en &&
375 ((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000))
376 buf_size_idx = RX_LARGE_MTU_BUF;
377
378 ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n);
379 if (unlikely(ret != 0)) {
380 dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n",
381 __func__);
382 q->alloc_failed++;
383 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
384 goto out;
385 }
386
387 for (i = 0; i < n; i++) {
388 struct rte_mbuf *mbuf = buf_bulk[i];
389 dma_addr_t mapping;
390
391 if (!mbuf) {
392 dev_debug(adap, "%s: mbuf alloc failed\n", __func__);
393 q->alloc_failed++;
394 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
395 goto out;
396 }
397
398 rte_mbuf_refcnt_set(mbuf, 1);
399 mbuf->data_off =
400 (uint16_t)((char *)
401 RTE_PTR_ALIGN((char *)mbuf->buf_addr +
402 RTE_PKTMBUF_HEADROOM,
403 adap->sge.fl_align) -
404 (char *)mbuf->buf_addr);
405 mbuf->next = NULL;
406 mbuf->nb_segs = 1;
407 mbuf->port = rxq->rspq.port_id;
408
409 mapping = (dma_addr_t)RTE_ALIGN(mbuf->buf_iova +
410 mbuf->data_off,
411 adap->sge.fl_align);
412 mapping |= buf_size_idx;
413 *d++ = cpu_to_be64(mapping);
414 set_rx_sw_desc(sd, mbuf, mapping);
415 sd++;
416
417 q->avail++;
418 if (++q->pidx == q->size) {
419 q->pidx = 0;
420 sd = q->sdesc;
421 d = q->desc;
422 }
423 }
424
425 out: cred = q->avail - cred;
426 q->pend_cred += cred;
427 ring_fl_db(adap, q);
428
429 if (unlikely(fl_starving(adap, q))) {
430 /*
431 * Make sure data has been written to free list
432 */
433 wmb();
434 q->low++;
435 }
436
437 return cred;
438 }
439
440 /**
441 * refill_fl - refill an SGE Rx buffer ring with mbufs
442 * @adap: the adapter
443 * @q: the ring to refill
444 * @n: the number of new buffers to allocate
445 *
446 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
447 * allocated with the supplied gfp flags. The caller must assure that
448 * @n does not exceed the queue's capacity. Returns the number of buffers
449 * allocated.
450 */
refill_fl(struct adapter * adap,struct sge_fl * q,int n)451 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n)
452 {
453 return refill_fl_usembufs(adap, q, n);
454 }
455
__refill_fl(struct adapter * adap,struct sge_fl * fl)456 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
457 {
458 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail));
459 }
460
461 /*
462 * Return the number of reclaimable descriptors in a Tx queue.
463 */
reclaimable(const struct sge_txq * q)464 static inline int reclaimable(const struct sge_txq *q)
465 {
466 int hw_cidx = ntohs(q->stat->cidx);
467
468 hw_cidx -= q->cidx;
469 if (hw_cidx < 0)
470 return hw_cidx + q->size;
471 return hw_cidx;
472 }
473
474 /**
475 * reclaim_completed_tx - reclaims completed Tx descriptors
476 * @q: the Tx queue to reclaim completed descriptors from
477 *
478 * Reclaims Tx descriptors that the SGE has indicated it has processed.
479 */
reclaim_completed_tx(struct sge_txq * q)480 void reclaim_completed_tx(struct sge_txq *q)
481 {
482 unsigned int avail = reclaimable(q);
483
484 do {
485 /* reclaim as much as possible */
486 reclaim_tx_desc(q, avail);
487 q->in_use -= avail;
488 avail = reclaimable(q);
489 } while (avail);
490 }
491
492 /**
493 * sgl_len - calculates the size of an SGL of the given capacity
494 * @n: the number of SGL entries
495 *
496 * Calculates the number of flits needed for a scatter/gather list that
497 * can hold the given number of entries.
498 */
sgl_len(unsigned int n)499 static inline unsigned int sgl_len(unsigned int n)
500 {
501 /*
502 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
503 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
504 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
505 * repeated sequences of { Length[i], Length[i+1], Address[i],
506 * Address[i+1] } (this ensures that all addresses are on 64-bit
507 * boundaries). If N is even, then Length[N+1] should be set to 0 and
508 * Address[N+1] is omitted.
509 *
510 * The following calculation incorporates all of the above. It's
511 * somewhat hard to follow but, briefly: the "+2" accounts for the
512 * first two flits which include the DSGL header, Length0 and
513 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
514 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
515 * finally the "+((n-1)&1)" adds the one remaining flit needed if
516 * (n-1) is odd ...
517 */
518 n--;
519 return (3 * n) / 2 + (n & 1) + 2;
520 }
521
522 /**
523 * flits_to_desc - returns the num of Tx descriptors for the given flits
524 * @n: the number of flits
525 *
526 * Returns the number of Tx descriptors needed for the supplied number
527 * of flits.
528 */
flits_to_desc(unsigned int n)529 static inline unsigned int flits_to_desc(unsigned int n)
530 {
531 return DIV_ROUND_UP(n, 8);
532 }
533
534 /**
535 * is_eth_imm - can an Ethernet packet be sent as immediate data?
536 * @m: the packet
537 *
538 * Returns whether an Ethernet packet is small enough to fit as
539 * immediate data. Return value corresponds to the headroom required.
540 */
is_eth_imm(const struct rte_mbuf * m)541 static inline int is_eth_imm(const struct rte_mbuf *m)
542 {
543 unsigned int hdrlen = (m->ol_flags & PKT_TX_TCP_SEG) ?
544 sizeof(struct cpl_tx_pkt_lso_core) : 0;
545
546 hdrlen += sizeof(struct cpl_tx_pkt);
547 if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen)
548 return hdrlen;
549
550 return 0;
551 }
552
553 /**
554 * calc_tx_flits - calculate the number of flits for a packet Tx WR
555 * @m: the packet
556 * @adap: adapter structure pointer
557 *
558 * Returns the number of flits needed for a Tx WR for the given Ethernet
559 * packet, including the needed WR and CPL headers.
560 */
calc_tx_flits(const struct rte_mbuf * m,struct adapter * adap)561 static inline unsigned int calc_tx_flits(const struct rte_mbuf *m,
562 struct adapter *adap)
563 {
564 size_t wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkt_wr) :
565 sizeof(struct fw_eth_tx_pkt_vm_wr);
566 unsigned int flits;
567 int hdrlen;
568
569 /*
570 * If the mbuf is small enough, we can pump it out as a work request
571 * with only immediate data. In that case we just have to have the
572 * TX Packet header plus the mbuf data in the Work Request.
573 */
574
575 hdrlen = is_eth_imm(m);
576 if (hdrlen)
577 return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64));
578
579 /*
580 * Otherwise, we're going to have to construct a Scatter gather list
581 * of the mbuf body and fragments. We also include the flits necessary
582 * for the TX Packet Work Request and CPL. We always have a firmware
583 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
584 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
585 * message or, if we're doing a Large Send Offload, an LSO CPL message
586 * with an embedded TX Packet Write CPL message.
587 */
588 flits = sgl_len(m->nb_segs);
589 if (m->tso_segsz)
590 flits += (wr_size + sizeof(struct cpl_tx_pkt_lso_core) +
591 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
592 else
593 flits += (wr_size +
594 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
595 return flits;
596 }
597
598 /**
599 * write_sgl - populate a scatter/gather list for a packet
600 * @mbuf: the packet
601 * @q: the Tx queue we are writing into
602 * @sgl: starting location for writing the SGL
603 * @end: points right after the end of the SGL
604 * @start: start offset into mbuf main-body data to include in the SGL
605 * @addr: address of mapped region
606 *
607 * Generates a scatter/gather list for the buffers that make up a packet.
608 * The caller must provide adequate space for the SGL that will be written.
609 * The SGL includes all of the packet's page fragments and the data in its
610 * main body except for the first @start bytes. @sgl must be 16-byte
611 * aligned and within a Tx descriptor with available space. @end points
612 * write after the end of the SGL but does not account for any potential
613 * wrap around, i.e., @end > @sgl.
614 */
write_sgl(struct rte_mbuf * mbuf,struct sge_txq * q,struct ulptx_sgl * sgl,u64 * end,unsigned int start,const dma_addr_t * addr)615 static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q,
616 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
617 const dma_addr_t *addr)
618 {
619 unsigned int i, len;
620 struct ulptx_sge_pair *to;
621 struct rte_mbuf *m = mbuf;
622 unsigned int nfrags = m->nb_segs;
623 struct ulptx_sge_pair buf[nfrags / 2];
624
625 len = m->data_len - start;
626 sgl->len0 = htonl(len);
627 sgl->addr0 = rte_cpu_to_be_64(addr[0]);
628
629 sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
630 V_ULPTX_NSGE(nfrags));
631 if (likely(--nfrags == 0))
632 return;
633 /*
634 * Most of the complexity below deals with the possibility we hit the
635 * end of the queue in the middle of writing the SGL. For this case
636 * only we create the SGL in a temporary buffer and then copy it.
637 */
638 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
639
640 for (i = 0; nfrags >= 2; nfrags -= 2, to++) {
641 m = m->next;
642 to->len[0] = rte_cpu_to_be_32(m->data_len);
643 to->addr[0] = rte_cpu_to_be_64(addr[++i]);
644 m = m->next;
645 to->len[1] = rte_cpu_to_be_32(m->data_len);
646 to->addr[1] = rte_cpu_to_be_64(addr[++i]);
647 }
648 if (nfrags) {
649 m = m->next;
650 to->len[0] = rte_cpu_to_be_32(m->data_len);
651 to->len[1] = rte_cpu_to_be_32(0);
652 to->addr[0] = rte_cpu_to_be_64(addr[i + 1]);
653 }
654 if (unlikely((u8 *)end > (u8 *)q->stat)) {
655 unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat,
656 (u8 *)sgl->sge);
657 unsigned int part1;
658
659 if (likely(part0))
660 memcpy(sgl->sge, buf, part0);
661 part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat);
662 rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1);
663 end = RTE_PTR_ADD((void *)q->desc, part1);
664 }
665 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
666 *(u64 *)end = 0;
667 }
668
669 #define IDXDIFF(head, tail, wrap) \
670 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
671
672 #define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size)
673 #define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size)
674
675 #define PIDXDIFF(head, tail, wrap) \
676 ((tail) >= (head) ? (tail) - (head) : (wrap) - (head) + (tail))
677 #define P_IDXDIFF(q, idx) PIDXDIFF((q)->cidx, idx, (q)->size)
678
679 /**
680 * ring_tx_db - ring a Tx queue's doorbell
681 * @adap: the adapter
682 * @q: the Tx queue
683 * @n: number of new descriptors to give to HW
684 *
685 * Ring the doorbel for a Tx queue.
686 */
ring_tx_db(struct adapter * adap,struct sge_txq * q)687 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q)
688 {
689 int n = Q_IDXDIFF(q, dbidx);
690
691 /*
692 * Make sure that all writes to the TX Descriptors are committed
693 * before we tell the hardware about them.
694 */
695 rte_wmb();
696
697 /*
698 * If we don't have access to the new User Doorbell (T5+), use the old
699 * doorbell mechanism; otherwise use the new BAR2 mechanism.
700 */
701 if (unlikely(!q->bar2_addr)) {
702 u32 val = V_PIDX(n);
703
704 /*
705 * For T4 we need to participate in the Doorbell Recovery
706 * mechanism.
707 */
708 if (!q->db_disabled)
709 t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
710 V_QID(q->cntxt_id) | val);
711 else
712 q->db_pidx_inc += n;
713 q->db_pidx = q->pidx;
714 } else {
715 u32 val = V_PIDX_T5(n);
716
717 /*
718 * T4 and later chips share the same PIDX field offset within
719 * the doorbell, but T5 and later shrank the field in order to
720 * gain a bit for Doorbell Priority. The field was absurdly
721 * large in the first place (14 bits) so we just use the T5
722 * and later limits and warn if a Queue ID is too large.
723 */
724 WARN_ON(val & F_DBPRIO);
725
726 writel(val | V_QID(q->bar2_qid),
727 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL));
728
729 /*
730 * This Write Memory Barrier will force the write to the User
731 * Doorbell area to be flushed. This is needed to prevent
732 * writes on different CPUs for the same queue from hitting
733 * the adapter out of order. This is required when some Work
734 * Requests take the Write Combine Gather Buffer path (user
735 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
736 * take the traditional path where we simply increment the
737 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
738 * hardware DMA read the actual Work Request.
739 */
740 rte_wmb();
741 }
742 q->dbidx = q->pidx;
743 }
744
745 /*
746 * Figure out what HW csum a packet wants and return the appropriate control
747 * bits.
748 */
hwcsum(enum chip_type chip,const struct rte_mbuf * m)749 static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m)
750 {
751 int csum_type;
752
753 if (m->ol_flags & PKT_TX_IP_CKSUM) {
754 switch (m->ol_flags & PKT_TX_L4_MASK) {
755 case PKT_TX_TCP_CKSUM:
756 csum_type = TX_CSUM_TCPIP;
757 break;
758 case PKT_TX_UDP_CKSUM:
759 csum_type = TX_CSUM_UDPIP;
760 break;
761 default:
762 goto nocsum;
763 }
764 } else {
765 goto nocsum;
766 }
767
768 if (likely(csum_type >= TX_CSUM_TCPIP)) {
769 u64 hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len);
770 int eth_hdr_len = m->l2_len;
771
772 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
773 hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len);
774 else
775 hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len);
776 return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len;
777 }
778 nocsum:
779 /*
780 * unknown protocol, disable HW csum
781 * and hope a bad packet is detected
782 */
783 return F_TXPKT_L4CSUM_DIS;
784 }
785
txq_advance(struct sge_txq * q,unsigned int n)786 static inline void txq_advance(struct sge_txq *q, unsigned int n)
787 {
788 q->in_use += n;
789 q->pidx += n;
790 if (q->pidx >= q->size)
791 q->pidx -= q->size;
792 }
793
794 #define MAX_COALESCE_LEN 64000
795
wraps_around(struct sge_txq * q,int ndesc)796 static inline int wraps_around(struct sge_txq *q, int ndesc)
797 {
798 return (q->pidx + ndesc) > q->size ? 1 : 0;
799 }
800
tx_timer_cb(void * data)801 static void tx_timer_cb(void *data)
802 {
803 struct adapter *adap = (struct adapter *)data;
804 struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
805 int i;
806 unsigned int coal_idx;
807
808 /* monitor any pending tx */
809 for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) {
810 if (t4_os_trylock(&txq->txq_lock)) {
811 coal_idx = txq->q.coalesce.idx;
812 if (coal_idx) {
813 if (coal_idx == txq->q.last_coal_idx &&
814 txq->q.pidx == txq->q.last_pidx) {
815 ship_tx_pkt_coalesce_wr(adap, txq);
816 } else {
817 txq->q.last_coal_idx = coal_idx;
818 txq->q.last_pidx = txq->q.pidx;
819 }
820 }
821 t4_os_unlock(&txq->txq_lock);
822 }
823 }
824 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
825 }
826
827 /**
828 * ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR
829 * @ adap: adapter structure
830 * @txq: tx queue
831 *
832 * writes the different fields of the pkts WR and sends it.
833 */
ship_tx_pkt_coalesce_wr(struct adapter * adap,struct sge_eth_txq * txq)834 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
835 struct sge_eth_txq *txq)
836 {
837 struct fw_eth_tx_pkts_vm_wr *vmwr;
838 const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) +
839 sizeof(vmwr->ethmacsrc) +
840 sizeof(vmwr->ethtype) +
841 sizeof(vmwr->vlantci));
842 struct fw_eth_tx_pkts_wr *wr;
843 struct sge_txq *q = &txq->q;
844 unsigned int ndesc;
845 u32 wr_mid;
846
847 /* fill the pkts WR header */
848 wr = (void *)&q->desc[q->pidx];
849 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
850 vmwr = (void *)&q->desc[q->pidx];
851
852 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2));
853 ndesc = flits_to_desc(q->coalesce.flits);
854 wr->equiq_to_len16 = htonl(wr_mid);
855 wr->plen = cpu_to_be16(q->coalesce.len);
856 wr->npkt = q->coalesce.idx;
857 wr->r3 = 0;
858 if (is_pf4(adap)) {
859 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
860 wr->type = q->coalesce.type;
861 } else {
862 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
863 vmwr->r4 = 0;
864 memcpy((void *)vmwr->ethmacdst, (void *)q->coalesce.ethmacdst,
865 fw_hdr_copy_len);
866 }
867
868 /* zero out coalesce structure members */
869 memset((void *)&q->coalesce, 0, sizeof(struct eth_coalesce));
870
871 txq_advance(q, ndesc);
872 txq->stats.coal_wr++;
873 txq->stats.coal_pkts += wr->npkt;
874
875 if (Q_IDXDIFF(q, equeidx) >= q->size / 2) {
876 q->equeidx = q->pidx;
877 wr_mid |= F_FW_WR_EQUEQ;
878 wr->equiq_to_len16 = htonl(wr_mid);
879 }
880 ring_tx_db(adap, q);
881 }
882
883 /**
884 * should_tx_packet_coalesce - decides wether to coalesce an mbuf or not
885 * @txq: tx queue where the mbuf is sent
886 * @mbuf: mbuf to be sent
887 * @nflits: return value for number of flits needed
888 * @adap: adapter structure
889 *
890 * This function decides if a packet should be coalesced or not.
891 */
should_tx_packet_coalesce(struct sge_eth_txq * txq,struct rte_mbuf * mbuf,unsigned int * nflits,struct adapter * adap)892 static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq,
893 struct rte_mbuf *mbuf,
894 unsigned int *nflits,
895 struct adapter *adap)
896 {
897 struct fw_eth_tx_pkts_vm_wr *wr;
898 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
899 sizeof(wr->ethmacsrc) +
900 sizeof(wr->ethtype) +
901 sizeof(wr->vlantci));
902 struct sge_txq *q = &txq->q;
903 unsigned int flits, ndesc;
904 unsigned char type = 0;
905 int credits, wr_size;
906
907 /* use coal WR type 1 when no frags are present */
908 type = (mbuf->nb_segs == 1) ? 1 : 0;
909 if (!is_pf4(adap)) {
910 if (!type)
911 return 0;
912
913 if (q->coalesce.idx && memcmp((void *)q->coalesce.ethmacdst,
914 rte_pktmbuf_mtod(mbuf, void *),
915 fw_hdr_copy_len))
916 ship_tx_pkt_coalesce_wr(adap, txq);
917 }
918
919 if (unlikely(type != q->coalesce.type && q->coalesce.idx))
920 ship_tx_pkt_coalesce_wr(adap, txq);
921
922 /* calculate the number of flits required for coalescing this packet
923 * without the 2 flits of the WR header. These are added further down
924 * if we are just starting in new PKTS WR. sgl_len doesn't account for
925 * the possible 16 bytes alignment ULP TX commands so we do it here.
926 */
927 flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U;
928 if (type == 0)
929 flits += (sizeof(struct ulp_txpkt) +
930 sizeof(struct ulptx_idata)) / sizeof(__be64);
931 flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64);
932 *nflits = flits;
933
934 /* If coalescing is on, the mbuf is added to a pkts WR */
935 if (q->coalesce.idx) {
936 ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8);
937 credits = txq_avail(q) - ndesc;
938
939 /* If we are wrapping or this is last mbuf then, send the
940 * already coalesced mbufs and let the non-coalesce pass
941 * handle the mbuf.
942 */
943 if (unlikely(credits < 0 || wraps_around(q, ndesc))) {
944 ship_tx_pkt_coalesce_wr(adap, txq);
945 return 0;
946 }
947
948 /* If the max coalesce len or the max WR len is reached
949 * ship the WR and keep coalescing on.
950 */
951 if (unlikely((q->coalesce.len + mbuf->pkt_len >
952 MAX_COALESCE_LEN) ||
953 (q->coalesce.flits + flits >
954 q->coalesce.max))) {
955 ship_tx_pkt_coalesce_wr(adap, txq);
956 goto new;
957 }
958 return 1;
959 }
960
961 new:
962 /* start a new pkts WR, the WR header is not filled below */
963 wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkts_wr) :
964 sizeof(struct fw_eth_tx_pkts_vm_wr);
965 flits += wr_size / sizeof(__be64);
966 ndesc = flits_to_desc(q->coalesce.flits + flits);
967 credits = txq_avail(q) - ndesc;
968
969 if (unlikely(credits < 0 || wraps_around(q, ndesc)))
970 return 0;
971 q->coalesce.flits += wr_size / sizeof(__be64);
972 q->coalesce.type = type;
973 q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] +
974 q->coalesce.flits * sizeof(__be64);
975 if (!is_pf4(adap))
976 memcpy((void *)q->coalesce.ethmacdst,
977 rte_pktmbuf_mtod(mbuf, void *), fw_hdr_copy_len);
978 return 1;
979 }
980
981 /**
982 * tx_do_packet_coalesce - add an mbuf to a coalesce WR
983 * @txq: sge_eth_txq used send the mbuf
984 * @mbuf: mbuf to be sent
985 * @flits: flits needed for this mbuf
986 * @adap: adapter structure
987 * @pi: port_info structure
988 * @addr: mapped address of the mbuf
989 *
990 * Adds an mbuf to be sent as part of a coalesce WR by filling a
991 * ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and
992 * ulp_tx_sc_dsgl command.
993 */
tx_do_packet_coalesce(struct sge_eth_txq * txq,struct rte_mbuf * mbuf,int flits,struct adapter * adap,const struct port_info * pi,dma_addr_t * addr,uint16_t nb_pkts)994 static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq,
995 struct rte_mbuf *mbuf,
996 int flits, struct adapter *adap,
997 const struct port_info *pi,
998 dma_addr_t *addr, uint16_t nb_pkts)
999 {
1000 u64 cntrl, *end;
1001 struct sge_txq *q = &txq->q;
1002 struct ulp_txpkt *mc;
1003 struct ulptx_idata *sc_imm;
1004 struct cpl_tx_pkt_core *cpl;
1005 struct tx_sw_desc *sd;
1006 unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len;
1007
1008 if (q->coalesce.type == 0) {
1009 mc = (struct ulp_txpkt *)q->coalesce.ptr;
1010 mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) |
1011 V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) |
1012 F_ULP_TXPKT_RO);
1013 mc->len = htonl(DIV_ROUND_UP(flits, 2));
1014 sc_imm = (struct ulptx_idata *)(mc + 1);
1015 sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) |
1016 F_ULP_TX_SC_MORE);
1017 sc_imm->len = htonl(sizeof(*cpl));
1018 end = (u64 *)mc + flits;
1019 cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1);
1020 } else {
1021 end = (u64 *)q->coalesce.ptr + flits;
1022 cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr;
1023 }
1024
1025 /* update coalesce structure for this txq */
1026 q->coalesce.flits += flits;
1027 q->coalesce.ptr += flits * sizeof(__be64);
1028 q->coalesce.len += mbuf->pkt_len;
1029
1030 /* fill the cpl message, same as in t4_eth_xmit, this should be kept
1031 * similar to t4_eth_xmit
1032 */
1033 if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
1034 cntrl = hwcsum(adap->params.chip, mbuf) |
1035 F_TXPKT_IPCSUM_DIS;
1036 txq->stats.tx_cso++;
1037 } else {
1038 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1039 }
1040
1041 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1042 txq->stats.vlan_ins++;
1043 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci);
1044 }
1045
1046 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT));
1047 if (is_pf4(adap))
1048 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) |
1049 V_TXPKT_PF(adap->pf));
1050 else
1051 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id));
1052 cpl->pack = htons(0);
1053 cpl->len = htons(len);
1054 cpl->ctrl1 = cpu_to_be64(cntrl);
1055 write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0, addr);
1056 txq->stats.pkts++;
1057 txq->stats.tx_bytes += len;
1058
1059 sd = &q->sdesc[q->pidx + (idx >> 1)];
1060 if (!(idx & 1)) {
1061 if (sd->coalesce.idx) {
1062 int i;
1063
1064 for (i = 0; i < sd->coalesce.idx; i++) {
1065 rte_pktmbuf_free(sd->coalesce.mbuf[i]);
1066 sd->coalesce.mbuf[i] = NULL;
1067 }
1068 }
1069 }
1070
1071 /* store pointers to the mbuf and the sgl used in free_tx_desc.
1072 * each tx desc can hold two pointers corresponding to the value
1073 * of ETH_COALESCE_PKT_PER_DESC
1074 */
1075 sd->coalesce.mbuf[idx & 1] = mbuf;
1076 sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1);
1077 sd->coalesce.idx = (idx & 1) + 1;
1078
1079 /* Send the coalesced work request, only if max reached. However,
1080 * if lower latency is preferred over throughput, then don't wait
1081 * for coalescing the next Tx burst and send the packets now.
1082 */
1083 q->coalesce.idx++;
1084 if (q->coalesce.idx == adap->params.max_tx_coalesce_num ||
1085 (adap->devargs.tx_mode_latency && q->coalesce.idx >= nb_pkts))
1086 ship_tx_pkt_coalesce_wr(adap, txq);
1087
1088 return 0;
1089 }
1090
1091 /**
1092 * t4_eth_xmit - add a packet to an Ethernet Tx queue
1093 * @txq: the egress queue
1094 * @mbuf: the packet
1095 *
1096 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1097 */
t4_eth_xmit(struct sge_eth_txq * txq,struct rte_mbuf * mbuf,uint16_t nb_pkts)1098 int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf,
1099 uint16_t nb_pkts)
1100 {
1101 const struct port_info *pi;
1102 struct cpl_tx_pkt_lso_core *lso;
1103 struct adapter *adap;
1104 struct rte_mbuf *m = mbuf;
1105 struct fw_eth_tx_pkt_wr *wr;
1106 struct fw_eth_tx_pkt_vm_wr *vmwr;
1107 struct cpl_tx_pkt_core *cpl;
1108 struct tx_sw_desc *d;
1109 dma_addr_t addr[m->nb_segs];
1110 unsigned int flits, ndesc, cflits;
1111 int l3hdr_len, l4hdr_len, eth_xtra_len;
1112 int len, last_desc;
1113 int credits;
1114 u32 wr_mid;
1115 u64 cntrl, *end;
1116 bool v6;
1117 u32 max_pkt_len = txq->data->dev_conf.rxmode.max_rx_pkt_len;
1118
1119 /* Reject xmit if queue is stopped */
1120 if (unlikely(txq->flags & EQ_STOPPED))
1121 return -(EBUSY);
1122
1123 /*
1124 * The chip min packet length is 10 octets but play safe and reject
1125 * anything shorter than an Ethernet header.
1126 */
1127 if (unlikely(m->pkt_len < RTE_ETHER_HDR_LEN)) {
1128 out_free:
1129 rte_pktmbuf_free(m);
1130 return 0;
1131 }
1132
1133 if ((!(m->ol_flags & PKT_TX_TCP_SEG)) &&
1134 (unlikely(m->pkt_len > max_pkt_len)))
1135 goto out_free;
1136
1137 pi = txq->data->dev_private;
1138 adap = pi->adapter;
1139
1140 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1141 /* align the end of coalesce WR to a 512 byte boundary */
1142 txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8;
1143
1144 if (!((m->ol_flags & PKT_TX_TCP_SEG) ||
1145 m->pkt_len > RTE_ETHER_MAX_LEN)) {
1146 if (should_tx_packet_coalesce(txq, mbuf, &cflits, adap)) {
1147 if (unlikely(map_mbuf(mbuf, addr) < 0)) {
1148 dev_warn(adap, "%s: mapping err for coalesce\n",
1149 __func__);
1150 txq->stats.mapping_err++;
1151 goto out_free;
1152 }
1153 return tx_do_packet_coalesce(txq, mbuf, cflits, adap,
1154 pi, addr, nb_pkts);
1155 } else {
1156 return -EBUSY;
1157 }
1158 }
1159
1160 if (txq->q.coalesce.idx)
1161 ship_tx_pkt_coalesce_wr(adap, txq);
1162
1163 flits = calc_tx_flits(m, adap);
1164 ndesc = flits_to_desc(flits);
1165 credits = txq_avail(&txq->q) - ndesc;
1166
1167 if (unlikely(credits < 0)) {
1168 dev_debug(adap, "%s: Tx ring %u full; credits = %d\n",
1169 __func__, txq->q.cntxt_id, credits);
1170 return -EBUSY;
1171 }
1172
1173 if (unlikely(map_mbuf(m, addr) < 0)) {
1174 txq->stats.mapping_err++;
1175 goto out_free;
1176 }
1177
1178 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1179 if (Q_IDXDIFF(&txq->q, equeidx) >= 64) {
1180 txq->q.equeidx = txq->q.pidx;
1181 wr_mid |= F_FW_WR_EQUEQ;
1182 }
1183
1184 wr = (void *)&txq->q.desc[txq->q.pidx];
1185 vmwr = (void *)&txq->q.desc[txq->q.pidx];
1186 wr->equiq_to_len16 = htonl(wr_mid);
1187 if (is_pf4(adap)) {
1188 wr->r3 = rte_cpu_to_be_64(0);
1189 end = (u64 *)wr + flits;
1190 } else {
1191 const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) +
1192 sizeof(vmwr->ethmacsrc) +
1193 sizeof(vmwr->ethtype) +
1194 sizeof(vmwr->vlantci));
1195
1196 vmwr->r3[0] = rte_cpu_to_be_32(0);
1197 vmwr->r3[1] = rte_cpu_to_be_32(0);
1198 memcpy((void *)vmwr->ethmacdst, rte_pktmbuf_mtod(m, void *),
1199 fw_hdr_copy_len);
1200 end = (u64 *)vmwr + flits;
1201 }
1202
1203 len = 0;
1204 len += sizeof(*cpl);
1205
1206 /* Coalescing skipped and we send through normal path */
1207 if (!(m->ol_flags & PKT_TX_TCP_SEG)) {
1208 wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ?
1209 FW_ETH_TX_PKT_WR :
1210 FW_ETH_TX_PKT_VM_WR) |
1211 V_FW_WR_IMMDLEN(len));
1212 if (is_pf4(adap))
1213 cpl = (void *)(wr + 1);
1214 else
1215 cpl = (void *)(vmwr + 1);
1216 if (m->ol_flags & PKT_TX_IP_CKSUM) {
1217 cntrl = hwcsum(adap->params.chip, m) |
1218 F_TXPKT_IPCSUM_DIS;
1219 txq->stats.tx_cso++;
1220 }
1221 } else {
1222 if (is_pf4(adap))
1223 lso = (void *)(wr + 1);
1224 else
1225 lso = (void *)(vmwr + 1);
1226 v6 = (m->ol_flags & PKT_TX_IPV6) != 0;
1227 l3hdr_len = m->l3_len;
1228 l4hdr_len = m->l4_len;
1229 eth_xtra_len = m->l2_len - RTE_ETHER_HDR_LEN;
1230 len += sizeof(*lso);
1231 wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ?
1232 FW_ETH_TX_PKT_WR :
1233 FW_ETH_TX_PKT_VM_WR) |
1234 V_FW_WR_IMMDLEN(len));
1235 lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) |
1236 F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
1237 V_LSO_IPV6(v6) |
1238 V_LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1239 V_LSO_IPHDR_LEN(l3hdr_len / 4) |
1240 V_LSO_TCPHDR_LEN(l4hdr_len / 4));
1241 lso->ipid_ofst = htons(0);
1242 lso->mss = htons(m->tso_segsz);
1243 lso->seqno_offset = htonl(0);
1244 if (is_t4(adap->params.chip))
1245 lso->len = htonl(m->pkt_len);
1246 else
1247 lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len));
1248 cpl = (void *)(lso + 1);
1249
1250 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1251 cntrl = V_TXPKT_ETHHDR_LEN(eth_xtra_len);
1252 else
1253 cntrl = V_T6_TXPKT_ETHHDR_LEN(eth_xtra_len);
1254
1255 cntrl |= V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 :
1256 TX_CSUM_TCPIP) |
1257 V_TXPKT_IPHDR_LEN(l3hdr_len);
1258 txq->stats.tso++;
1259 txq->stats.tx_cso += m->tso_segsz;
1260 }
1261
1262 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1263 txq->stats.vlan_ins++;
1264 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci);
1265 }
1266
1267 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT));
1268 if (is_pf4(adap))
1269 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) |
1270 V_TXPKT_PF(adap->pf));
1271 else
1272 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id) |
1273 V_TXPKT_PF(0));
1274
1275 cpl->pack = htons(0);
1276 cpl->len = htons(m->pkt_len);
1277 cpl->ctrl1 = cpu_to_be64(cntrl);
1278
1279 txq->stats.pkts++;
1280 txq->stats.tx_bytes += m->pkt_len;
1281 last_desc = txq->q.pidx + ndesc - 1;
1282 if (last_desc >= (int)txq->q.size)
1283 last_desc -= txq->q.size;
1284
1285 d = &txq->q.sdesc[last_desc];
1286 if (d->coalesce.idx) {
1287 int i;
1288
1289 for (i = 0; i < d->coalesce.idx; i++) {
1290 rte_pktmbuf_free(d->coalesce.mbuf[i]);
1291 d->coalesce.mbuf[i] = NULL;
1292 }
1293 d->coalesce.idx = 0;
1294 }
1295 write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1296 addr);
1297 txq->q.sdesc[last_desc].mbuf = m;
1298 txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1299 txq_advance(&txq->q, ndesc);
1300 ring_tx_db(adap, &txq->q);
1301 return 0;
1302 }
1303
1304 /**
1305 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1306 * @q: the SGE control Tx queue
1307 *
1308 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1309 * that send only immediate data (presently just the control queues) and
1310 * thus do not have any mbufs to release.
1311 */
reclaim_completed_tx_imm(struct sge_txq * q)1312 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1313 {
1314 int hw_cidx = ntohs(q->stat->cidx);
1315 int reclaim = hw_cidx - q->cidx;
1316
1317 if (reclaim < 0)
1318 reclaim += q->size;
1319
1320 q->in_use -= reclaim;
1321 q->cidx = hw_cidx;
1322 }
1323
1324 /**
1325 * is_imm - check whether a packet can be sent as immediate data
1326 * @mbuf: the packet
1327 *
1328 * Returns true if a packet can be sent as a WR with immediate data.
1329 */
is_imm(const struct rte_mbuf * mbuf)1330 static inline int is_imm(const struct rte_mbuf *mbuf)
1331 {
1332 return mbuf->pkt_len <= MAX_CTRL_WR_LEN;
1333 }
1334
1335 /**
1336 * inline_tx_mbuf: inline a packet's data into TX descriptors
1337 * @q: the TX queue where the packet will be inlined
1338 * @from: pointer to data portion of packet
1339 * @to: pointer after cpl where data has to be inlined
1340 * @len: length of data to inline
1341 *
1342 * Inline a packet's contents directly to TX descriptors, starting at
1343 * the given position within the TX DMA ring.
1344 * Most of the complexity of this operation is dealing with wrap arounds
1345 * in the middle of the packet we want to inline.
1346 */
inline_tx_mbuf(const struct sge_txq * q,caddr_t from,caddr_t * to,int len)1347 static void inline_tx_mbuf(const struct sge_txq *q, caddr_t from, caddr_t *to,
1348 int len)
1349 {
1350 int left = RTE_PTR_DIFF(q->stat, *to);
1351
1352 if (likely((uintptr_t)*to + len <= (uintptr_t)q->stat)) {
1353 rte_memcpy(*to, from, len);
1354 *to = RTE_PTR_ADD(*to, len);
1355 } else {
1356 rte_memcpy(*to, from, left);
1357 from = RTE_PTR_ADD(from, left);
1358 left = len - left;
1359 rte_memcpy((void *)q->desc, from, left);
1360 *to = RTE_PTR_ADD((void *)q->desc, left);
1361 }
1362 }
1363
1364 /**
1365 * ctrl_xmit - send a packet through an SGE control Tx queue
1366 * @q: the control queue
1367 * @mbuf: the packet
1368 *
1369 * Send a packet through an SGE control Tx queue. Packets sent through
1370 * a control queue must fit entirely as immediate data.
1371 */
ctrl_xmit(struct sge_ctrl_txq * q,struct rte_mbuf * mbuf)1372 static int ctrl_xmit(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf)
1373 {
1374 unsigned int ndesc;
1375 struct fw_wr_hdr *wr;
1376 caddr_t dst;
1377
1378 if (unlikely(!is_imm(mbuf))) {
1379 WARN_ON(1);
1380 rte_pktmbuf_free(mbuf);
1381 return -1;
1382 }
1383
1384 reclaim_completed_tx_imm(&q->q);
1385 ndesc = DIV_ROUND_UP(mbuf->pkt_len, sizeof(struct tx_desc));
1386 t4_os_lock(&q->ctrlq_lock);
1387
1388 q->full = txq_avail(&q->q) < ndesc ? 1 : 0;
1389 if (unlikely(q->full)) {
1390 t4_os_unlock(&q->ctrlq_lock);
1391 return -1;
1392 }
1393
1394 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1395 dst = (void *)wr;
1396 inline_tx_mbuf(&q->q, rte_pktmbuf_mtod(mbuf, caddr_t),
1397 &dst, mbuf->data_len);
1398
1399 txq_advance(&q->q, ndesc);
1400 if (unlikely(txq_avail(&q->q) < 64))
1401 wr->lo |= htonl(F_FW_WR_EQUEQ);
1402
1403 q->txp++;
1404
1405 ring_tx_db(q->adapter, &q->q);
1406 t4_os_unlock(&q->ctrlq_lock);
1407
1408 rte_pktmbuf_free(mbuf);
1409 return 0;
1410 }
1411
1412 /**
1413 * t4_mgmt_tx - send a management message
1414 * @q: the control queue
1415 * @mbuf: the packet containing the management message
1416 *
1417 * Send a management message through control queue.
1418 */
t4_mgmt_tx(struct sge_ctrl_txq * q,struct rte_mbuf * mbuf)1419 int t4_mgmt_tx(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf)
1420 {
1421 return ctrl_xmit(q, mbuf);
1422 }
1423
1424 /**
1425 * alloc_ring - allocate resources for an SGE descriptor ring
1426 * @dev: the port associated with the queue
1427 * @z_name: memzone's name
1428 * @queue_id: queue index
1429 * @socket_id: preferred socket id for memory allocations
1430 * @nelem: the number of descriptors
1431 * @elem_size: the size of each descriptor
1432 * @stat_size: extra space in HW ring for status information
1433 * @sw_size: the size of the SW state associated with each ring element
1434 * @phys: the physical address of the allocated ring
1435 * @metadata: address of the array holding the SW state for the ring
1436 *
1437 * Allocates resources for an SGE descriptor ring, such as Tx queues,
1438 * free buffer lists, or response queues. Each SGE ring requires
1439 * space for its HW descriptors plus, optionally, space for the SW state
1440 * associated with each HW entry (the metadata). The function returns
1441 * three values: the virtual address for the HW ring (the return value
1442 * of the function), the bus address of the HW ring, and the address
1443 * of the SW ring.
1444 */
alloc_ring(struct rte_eth_dev * dev,const char * z_name,uint16_t queue_id,int socket_id,size_t nelem,size_t elem_size,size_t stat_size,size_t sw_size,dma_addr_t * phys,void * metadata)1445 static void *alloc_ring(struct rte_eth_dev *dev, const char *z_name,
1446 uint16_t queue_id, int socket_id, size_t nelem,
1447 size_t elem_size, size_t stat_size, size_t sw_size,
1448 dma_addr_t *phys, void *metadata)
1449 {
1450 size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size;
1451 char z_name_sw[RTE_MEMZONE_NAMESIZE];
1452 const struct rte_memzone *tz;
1453 void *s = NULL;
1454
1455 snprintf(z_name_sw, sizeof(z_name_sw), "eth_p%d_q%d_%s_sw_ring",
1456 dev->data->port_id, queue_id, z_name);
1457
1458 dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; "
1459 "stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;"
1460 " z_name_sw = %s\n", __func__, nelem, elem_size, sw_size,
1461 stat_size, queue_id, socket_id, z_name, z_name_sw);
1462
1463 /*
1464 * Allocate TX/RX ring hardware descriptors. A memzone large enough to
1465 * handle the maximum ring size is allocated in order to allow for
1466 * resizing in later calls to the queue setup function.
1467 */
1468 tz = rte_eth_dma_zone_reserve(dev, z_name, queue_id, len, 4096,
1469 socket_id);
1470 if (!tz)
1471 return NULL;
1472
1473 memset(tz->addr, 0, len);
1474 if (sw_size) {
1475 s = rte_zmalloc_socket(z_name_sw, nelem * sw_size,
1476 RTE_CACHE_LINE_SIZE, socket_id);
1477
1478 if (!s) {
1479 dev_err(adapter, "%s: failed to get sw_ring memory\n",
1480 __func__);
1481 return NULL;
1482 }
1483 }
1484 if (metadata)
1485 *(void **)metadata = s;
1486
1487 *phys = (uint64_t)tz->iova;
1488 return tz->addr;
1489 }
1490
1491 #define CXGB4_MSG_AN ((void *)1)
1492
1493 /**
1494 * rspq_next - advance to the next entry in a response queue
1495 * @q: the queue
1496 *
1497 * Updates the state of a response queue to advance it to the next entry.
1498 */
rspq_next(struct sge_rspq * q)1499 static inline void rspq_next(struct sge_rspq *q)
1500 {
1501 q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len);
1502 if (unlikely(++q->cidx == q->size)) {
1503 q->cidx = 0;
1504 q->gen ^= 1;
1505 q->cur_desc = q->desc;
1506 }
1507 }
1508
cxgbe_set_mbuf_info(struct rte_mbuf * pkt,uint32_t ptype,uint64_t ol_flags)1509 static inline void cxgbe_set_mbuf_info(struct rte_mbuf *pkt, uint32_t ptype,
1510 uint64_t ol_flags)
1511 {
1512 pkt->packet_type |= ptype;
1513 pkt->ol_flags |= ol_flags;
1514 }
1515
cxgbe_fill_mbuf_info(struct adapter * adap,const struct cpl_rx_pkt * cpl,struct rte_mbuf * pkt)1516 static inline void cxgbe_fill_mbuf_info(struct adapter *adap,
1517 const struct cpl_rx_pkt *cpl,
1518 struct rte_mbuf *pkt)
1519 {
1520 bool csum_ok;
1521 u16 err_vec;
1522
1523 if (adap->params.tp.rx_pkt_encap)
1524 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
1525 else
1526 err_vec = ntohs(cpl->err_vec);
1527
1528 csum_ok = cpl->csum_calc && !err_vec;
1529
1530 if (cpl->vlan_ex)
1531 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER_VLAN,
1532 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
1533 else
1534 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER, 0);
1535
1536 if (cpl->l2info & htonl(F_RXF_IP))
1537 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV4,
1538 csum_ok ? PKT_RX_IP_CKSUM_GOOD :
1539 PKT_RX_IP_CKSUM_BAD);
1540 else if (cpl->l2info & htonl(F_RXF_IP6))
1541 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV6,
1542 csum_ok ? PKT_RX_IP_CKSUM_GOOD :
1543 PKT_RX_IP_CKSUM_BAD);
1544
1545 if (cpl->l2info & htonl(F_RXF_TCP))
1546 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_TCP,
1547 csum_ok ? PKT_RX_L4_CKSUM_GOOD :
1548 PKT_RX_L4_CKSUM_BAD);
1549 else if (cpl->l2info & htonl(F_RXF_UDP))
1550 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_UDP,
1551 csum_ok ? PKT_RX_L4_CKSUM_GOOD :
1552 PKT_RX_L4_CKSUM_BAD);
1553 }
1554
1555 /**
1556 * process_responses - process responses from an SGE response queue
1557 * @q: the ingress queue to process
1558 * @budget: how many responses can be processed in this round
1559 * @rx_pkts: mbuf to put the pkts
1560 *
1561 * Process responses from an SGE response queue up to the supplied budget.
1562 * Responses include received packets as well as control messages from FW
1563 * or HW.
1564 *
1565 * Additionally choose the interrupt holdoff time for the next interrupt
1566 * on this queue. If the system is under memory shortage use a fairly
1567 * long delay to help recovery.
1568 */
process_responses(struct sge_rspq * q,int budget,struct rte_mbuf ** rx_pkts)1569 static int process_responses(struct sge_rspq *q, int budget,
1570 struct rte_mbuf **rx_pkts)
1571 {
1572 int ret = 0, rsp_type;
1573 int budget_left = budget;
1574 const struct rsp_ctrl *rc;
1575 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1576
1577 while (likely(budget_left)) {
1578 if (q->cidx == ntohs(q->stat->pidx))
1579 break;
1580
1581 rc = (const struct rsp_ctrl *)
1582 ((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc)));
1583
1584 /*
1585 * Ensure response has been read
1586 */
1587 rmb();
1588 rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1589
1590 if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) {
1591 struct sge *s = &q->adapter->sge;
1592 unsigned int stat_pidx;
1593 int stat_pidx_diff;
1594
1595 stat_pidx = ntohs(q->stat->pidx);
1596 stat_pidx_diff = P_IDXDIFF(q, stat_pidx);
1597 while (stat_pidx_diff && budget_left) {
1598 const struct rx_sw_desc *rsd =
1599 &rxq->fl.sdesc[rxq->fl.cidx];
1600 const struct rss_header *rss_hdr =
1601 (const void *)q->cur_desc;
1602 const struct cpl_rx_pkt *cpl =
1603 (const void *)&q->cur_desc[1];
1604 struct rte_mbuf *pkt, *npkt;
1605 u32 len, bufsz;
1606
1607 rc = (const struct rsp_ctrl *)
1608 ((const char *)q->cur_desc +
1609 (q->iqe_len - sizeof(*rc)));
1610
1611 rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1612 if (unlikely(rsp_type != X_RSPD_TYPE_FLBUF))
1613 break;
1614
1615 len = ntohl(rc->pldbuflen_qid);
1616 BUG_ON(!(len & F_RSPD_NEWBUF));
1617 pkt = rsd->buf;
1618 npkt = pkt;
1619 len = G_RSPD_LEN(len);
1620 pkt->pkt_len = len;
1621
1622 /* Chain mbufs into len if necessary */
1623 while (len) {
1624 struct rte_mbuf *new_pkt = rsd->buf;
1625
1626 bufsz = min(get_buf_size(q->adapter,
1627 rsd), len);
1628 new_pkt->data_len = bufsz;
1629 unmap_rx_buf(&rxq->fl);
1630 len -= bufsz;
1631 npkt->next = new_pkt;
1632 npkt = new_pkt;
1633 pkt->nb_segs++;
1634 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1635 }
1636 npkt->next = NULL;
1637 pkt->nb_segs--;
1638
1639 cxgbe_fill_mbuf_info(q->adapter, cpl, pkt);
1640
1641 if (!rss_hdr->filter_tid &&
1642 rss_hdr->hash_type) {
1643 pkt->ol_flags |= PKT_RX_RSS_HASH;
1644 pkt->hash.rss =
1645 ntohl(rss_hdr->hash_val);
1646 }
1647
1648 if (cpl->vlan_ex)
1649 pkt->vlan_tci = ntohs(cpl->vlan);
1650
1651 rte_pktmbuf_adj(pkt, s->pktshift);
1652 rxq->stats.pkts++;
1653 rxq->stats.rx_bytes += pkt->pkt_len;
1654 rx_pkts[budget - budget_left] = pkt;
1655
1656 rspq_next(q);
1657 budget_left--;
1658 stat_pidx_diff--;
1659 }
1660 continue;
1661 } else if (likely(rsp_type == X_RSPD_TYPE_CPL)) {
1662 ret = q->handler(q, q->cur_desc, NULL);
1663 } else {
1664 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1665 }
1666
1667 if (unlikely(ret)) {
1668 /* couldn't process descriptor, back off for recovery */
1669 q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1670 break;
1671 }
1672
1673 rspq_next(q);
1674 budget_left--;
1675 }
1676
1677 /*
1678 * If this is a Response Queue with an associated Free List and
1679 * there's room for another chunk of new Free List buffer pointers,
1680 * refill the Free List.
1681 */
1682
1683 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1684 __refill_fl(q->adapter, &rxq->fl);
1685
1686 return budget - budget_left;
1687 }
1688
cxgbe_poll(struct sge_rspq * q,struct rte_mbuf ** rx_pkts,unsigned int budget,unsigned int * work_done)1689 int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts,
1690 unsigned int budget, unsigned int *work_done)
1691 {
1692 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1693 unsigned int cidx_inc;
1694 unsigned int params;
1695 u32 val;
1696
1697 if (unlikely(rxq->flags & IQ_STOPPED)) {
1698 *work_done = 0;
1699 return 0;
1700 }
1701
1702 *work_done = process_responses(q, budget, rx_pkts);
1703
1704 if (*work_done) {
1705 cidx_inc = R_IDXDIFF(q, gts_idx);
1706
1707 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1708 __refill_fl(q->adapter, &rxq->fl);
1709
1710 params = q->intr_params;
1711 q->next_intr_params = params;
1712 val = V_CIDXINC(cidx_inc) | V_SEINTARM(params);
1713
1714 if (unlikely(!q->bar2_addr)) {
1715 u32 reg = is_pf4(q->adapter) ? MYPF_REG(A_SGE_PF_GTS) :
1716 T4VF_SGE_BASE_ADDR +
1717 A_SGE_VF_GTS;
1718
1719 t4_write_reg(q->adapter, reg,
1720 val | V_INGRESSQID((u32)q->cntxt_id));
1721 } else {
1722 writel(val | V_INGRESSQID(q->bar2_qid),
1723 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_GTS));
1724 /* This Write memory Barrier will force the
1725 * write to the User Doorbell area to be
1726 * flushed.
1727 */
1728 wmb();
1729 }
1730 q->gts_idx = q->cidx;
1731 }
1732 return 0;
1733 }
1734
1735 /**
1736 * bar2_address - return the BAR2 address for an SGE Queue's Registers
1737 * @adapter: the adapter
1738 * @qid: the SGE Queue ID
1739 * @qtype: the SGE Queue Type (Egress or Ingress)
1740 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
1741 *
1742 * Returns the BAR2 address for the SGE Queue Registers associated with
1743 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
1744 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
1745 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
1746 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
1747 */
bar2_address(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,unsigned int * pbar2_qid)1748 static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid,
1749 enum t4_bar2_qtype qtype,
1750 unsigned int *pbar2_qid)
1751 {
1752 u64 bar2_qoffset;
1753 int ret;
1754
1755 ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid);
1756 if (ret)
1757 return NULL;
1758
1759 return adapter->bar2 + bar2_qoffset;
1760 }
1761
t4_sge_eth_rxq_start(struct adapter * adap,struct sge_eth_rxq * rxq)1762 int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_eth_rxq *rxq)
1763 {
1764 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1765
1766 rxq->flags &= ~IQ_STOPPED;
1767 return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0,
1768 rxq->rspq.cntxt_id, fl_id, 0xffff);
1769 }
1770
t4_sge_eth_rxq_stop(struct adapter * adap,struct sge_eth_rxq * rxq)1771 int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_eth_rxq *rxq)
1772 {
1773 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1774
1775 rxq->flags |= IQ_STOPPED;
1776 return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0,
1777 rxq->rspq.cntxt_id, fl_id, 0xffff);
1778 }
1779
1780 /*
1781 * @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
1782 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
1783 */
t4_sge_alloc_rxq(struct adapter * adap,struct sge_rspq * iq,bool fwevtq,struct rte_eth_dev * eth_dev,int intr_idx,struct sge_fl * fl,rspq_handler_t hnd,int cong,struct rte_mempool * mp,int queue_id,int socket_id)1784 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
1785 struct rte_eth_dev *eth_dev, int intr_idx,
1786 struct sge_fl *fl, rspq_handler_t hnd, int cong,
1787 struct rte_mempool *mp, int queue_id, int socket_id)
1788 {
1789 int ret, flsz = 0;
1790 struct fw_iq_cmd c;
1791 struct sge *s = &adap->sge;
1792 struct port_info *pi = eth_dev->data->dev_private;
1793 unsigned int nb_refill;
1794 u8 pciechan;
1795
1796 /* Size needs to be multiple of 16, including status entry. */
1797 iq->size = cxgbe_roundup(iq->size, 16);
1798
1799 iq->desc = alloc_ring(eth_dev, fwevtq ? "fwq_ring" : "rx_ring",
1800 queue_id, socket_id, iq->size, iq->iqe_len,
1801 0, 0, &iq->phys_addr, NULL);
1802 if (!iq->desc)
1803 return -ENOMEM;
1804
1805 memset(&c, 0, sizeof(c));
1806 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1807 F_FW_CMD_WRITE | F_FW_CMD_EXEC);
1808
1809 if (is_pf4(adap)) {
1810 pciechan = pi->tx_chan;
1811 c.op_to_vfn |= htonl(V_FW_IQ_CMD_PFN(adap->pf) |
1812 V_FW_IQ_CMD_VFN(0));
1813 if (cong >= 0)
1814 c.iqns_to_fl0congen =
1815 htonl(F_FW_IQ_CMD_IQFLINTCONGEN |
1816 V_FW_IQ_CMD_IQTYPE(cong ?
1817 FW_IQ_IQTYPE_NIC :
1818 FW_IQ_IQTYPE_OFLD) |
1819 F_FW_IQ_CMD_IQRO);
1820 } else {
1821 pciechan = pi->port_id;
1822 }
1823
1824 c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1825 (sizeof(c) / 16));
1826 c.type_to_iqandstindex =
1827 htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1828 V_FW_IQ_CMD_IQASYNCH(fwevtq) |
1829 V_FW_IQ_CMD_VIID(pi->viid) |
1830 V_FW_IQ_CMD_IQANDST(intr_idx < 0) |
1831 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_STATUS_PAGE) |
1832 V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
1833 -intr_idx - 1));
1834 c.iqdroprss_to_iqesize =
1835 htons(V_FW_IQ_CMD_IQPCIECH(pciechan) |
1836 F_FW_IQ_CMD_IQGTSMODE |
1837 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
1838 V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
1839 c.iqsize = htons(iq->size);
1840 c.iqaddr = cpu_to_be64(iq->phys_addr);
1841
1842 if (fl) {
1843 struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq,
1844 fl);
1845 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1846
1847 /*
1848 * Allocate the ring for the hardware free list (with space
1849 * for its status page) along with the associated software
1850 * descriptor ring. The free list size needs to be a multiple
1851 * of the Egress Queue Unit and at least 2 Egress Units larger
1852 * than the SGE's Egress Congrestion Threshold
1853 * (fl_starve_thres - 1).
1854 */
1855 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
1856 fl->size = s->fl_starve_thres - 1 + 2 * 8;
1857 fl->size = cxgbe_roundup(fl->size, 8);
1858
1859 fl->desc = alloc_ring(eth_dev, "fl_ring", queue_id, socket_id,
1860 fl->size, sizeof(__be64), s->stat_len,
1861 sizeof(struct rx_sw_desc),
1862 &fl->addr, &fl->sdesc);
1863 if (!fl->desc) {
1864 ret = -ENOMEM;
1865 goto err;
1866 }
1867
1868 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
1869 c.iqns_to_fl0congen |=
1870 htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1871 (unlikely(rxq->usembufs) ?
1872 0 : F_FW_IQ_CMD_FL0PACKEN) |
1873 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1874 F_FW_IQ_CMD_FL0PADEN);
1875 if (is_pf4(adap) && cong >= 0)
1876 c.iqns_to_fl0congen |=
1877 htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1878 F_FW_IQ_CMD_FL0CONGCIF |
1879 F_FW_IQ_CMD_FL0CONGEN);
1880
1881 /* In T6, for egress queue type FL there is internal overhead
1882 * of 16B for header going into FLM module.
1883 * Hence maximum allowed burst size will be 448 bytes.
1884 */
1885 c.fl0dcaen_to_fl0cidxfthresh =
1886 htons(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ?
1887 X_FETCHBURSTMIN_128B :
1888 X_FETCHBURSTMIN_64B) |
1889 V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ?
1890 X_FETCHBURSTMAX_512B :
1891 X_FETCHBURSTMAX_256B));
1892 c.fl0size = htons(flsz);
1893 c.fl0addr = cpu_to_be64(fl->addr);
1894 }
1895
1896 if (is_pf4(adap))
1897 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
1898 else
1899 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
1900 if (ret)
1901 goto err;
1902
1903 iq->cur_desc = iq->desc;
1904 iq->cidx = 0;
1905 iq->gts_idx = 0;
1906 iq->gen = 1;
1907 iq->next_intr_params = iq->intr_params;
1908 iq->cntxt_id = ntohs(c.iqid);
1909 iq->abs_id = ntohs(c.physiqid);
1910 iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS,
1911 &iq->bar2_qid);
1912 iq->size--; /* subtract status entry */
1913 iq->stat = (void *)&iq->desc[iq->size * 8];
1914 iq->eth_dev = eth_dev;
1915 iq->handler = hnd;
1916 iq->port_id = pi->pidx;
1917 iq->mb_pool = mp;
1918
1919 /* set offset to -1 to distinguish ingress queues without FL */
1920 iq->offset = fl ? 0 : -1;
1921
1922 if (fl) {
1923 fl->cntxt_id = ntohs(c.fl0id);
1924 fl->avail = 0;
1925 fl->pend_cred = 0;
1926 fl->pidx = 0;
1927 fl->cidx = 0;
1928 fl->alloc_failed = 0;
1929
1930 /*
1931 * Note, we must initialize the BAR2 Free List User Doorbell
1932 * information before refilling the Free List!
1933 */
1934 fl->bar2_addr = bar2_address(adap, fl->cntxt_id,
1935 T4_BAR2_QTYPE_EGRESS,
1936 &fl->bar2_qid);
1937
1938 nb_refill = refill_fl(adap, fl, fl_cap(fl));
1939 if (nb_refill != fl_cap(fl)) {
1940 ret = -ENOMEM;
1941 dev_err(adap, "%s: mbuf alloc failed with error: %d\n",
1942 __func__, ret);
1943 goto refill_fl_err;
1944 }
1945 }
1946
1947 /*
1948 * For T5 and later we attempt to set up the Congestion Manager values
1949 * of the new RX Ethernet Queue. This should really be handled by
1950 * firmware because it's more complex than any host driver wants to
1951 * get involved with and it's different per chip and this is almost
1952 * certainly wrong. Formware would be wrong as well, but it would be
1953 * a lot easier to fix in one place ... For now we do something very
1954 * simple (and hopefully less wrong).
1955 */
1956 if (is_pf4(adap) && !is_t4(adap->params.chip) && cong >= 0) {
1957 u8 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
1958 u32 param, val, ch_map = 0;
1959 int i;
1960
1961 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1962 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1963 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id));
1964 if (cong == 0) {
1965 val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE);
1966 } else {
1967 val = V_CONMCTXT_CNGTPMODE(
1968 X_CONMCTXT_CNGTPMODE_CHANNEL);
1969 for (i = 0; i < 4; i++) {
1970 if (cong & (1 << i))
1971 ch_map |= 1 << (i << cng_ch_bits_log);
1972 }
1973 val |= V_CONMCTXT_CNGCHMAP(ch_map);
1974 }
1975 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1976 ¶m, &val);
1977 if (ret)
1978 dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n",
1979 iq->cntxt_id, -ret);
1980 }
1981
1982 return 0;
1983
1984 refill_fl_err:
1985 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
1986 iq->cntxt_id, fl->cntxt_id, 0xffff);
1987 err:
1988 iq->cntxt_id = 0;
1989 iq->abs_id = 0;
1990 if (iq->desc)
1991 iq->desc = NULL;
1992
1993 if (fl && fl->desc) {
1994 rte_free(fl->sdesc);
1995 fl->cntxt_id = 0;
1996 fl->sdesc = NULL;
1997 fl->desc = NULL;
1998 }
1999 return ret;
2000 }
2001
init_txq(struct adapter * adap,struct sge_txq * q,unsigned int id,unsigned int abs_id)2002 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id,
2003 unsigned int abs_id)
2004 {
2005 q->cntxt_id = id;
2006 q->abs_id = abs_id;
2007 q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS,
2008 &q->bar2_qid);
2009 q->cidx = 0;
2010 q->pidx = 0;
2011 q->dbidx = 0;
2012 q->in_use = 0;
2013 q->equeidx = 0;
2014 q->coalesce.idx = 0;
2015 q->coalesce.len = 0;
2016 q->coalesce.flits = 0;
2017 q->last_coal_idx = 0;
2018 q->last_pidx = 0;
2019 q->stat = (void *)&q->desc[q->size];
2020 }
2021
t4_sge_eth_txq_start(struct sge_eth_txq * txq)2022 int t4_sge_eth_txq_start(struct sge_eth_txq *txq)
2023 {
2024 /*
2025 * TODO: For flow-control, queue may be stopped waiting to reclaim
2026 * credits.
2027 * Ensure queue is in EQ_STOPPED state before starting it.
2028 */
2029 if (!(txq->flags & EQ_STOPPED))
2030 return -(EBUSY);
2031
2032 txq->flags &= ~EQ_STOPPED;
2033
2034 return 0;
2035 }
2036
t4_sge_eth_txq_stop(struct sge_eth_txq * txq)2037 int t4_sge_eth_txq_stop(struct sge_eth_txq *txq)
2038 {
2039 txq->flags |= EQ_STOPPED;
2040
2041 return 0;
2042 }
2043
t4_sge_alloc_eth_txq(struct adapter * adap,struct sge_eth_txq * txq,struct rte_eth_dev * eth_dev,uint16_t queue_id,unsigned int iqid,int socket_id)2044 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2045 struct rte_eth_dev *eth_dev, uint16_t queue_id,
2046 unsigned int iqid, int socket_id)
2047 {
2048 int ret, nentries;
2049 struct fw_eq_eth_cmd c;
2050 struct sge *s = &adap->sge;
2051 struct port_info *pi = eth_dev->data->dev_private;
2052 u8 pciechan;
2053
2054 /* Add status entries */
2055 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2056
2057 txq->q.desc = alloc_ring(eth_dev, "tx_ring", queue_id, socket_id,
2058 txq->q.size, sizeof(struct tx_desc),
2059 s->stat_len, sizeof(struct tx_sw_desc),
2060 &txq->q.phys_addr, &txq->q.sdesc);
2061 if (!txq->q.desc)
2062 return -ENOMEM;
2063
2064 memset(&c, 0, sizeof(c));
2065 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2066 F_FW_CMD_WRITE | F_FW_CMD_EXEC);
2067 if (is_pf4(adap)) {
2068 pciechan = pi->tx_chan;
2069 c.op_to_vfn |= htonl(V_FW_EQ_ETH_CMD_PFN(adap->pf) |
2070 V_FW_EQ_ETH_CMD_VFN(0));
2071 } else {
2072 pciechan = pi->port_id;
2073 }
2074
2075 c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC |
2076 F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16));
2077 c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE |
2078 V_FW_EQ_ETH_CMD_VIID(pi->viid));
2079 c.fetchszm_to_iqid =
2080 htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
2081 V_FW_EQ_ETH_CMD_PCIECHN(pciechan) |
2082 F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid));
2083 c.dcaen_to_eqsize =
2084 htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2085 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2086 V_FW_EQ_ETH_CMD_EQSIZE(nentries));
2087 c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr);
2088
2089 if (is_pf4(adap))
2090 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2091 else
2092 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
2093 if (ret) {
2094 rte_free(txq->q.sdesc);
2095 txq->q.sdesc = NULL;
2096 txq->q.desc = NULL;
2097 return ret;
2098 }
2099
2100 init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)),
2101 G_FW_EQ_ETH_CMD_PHYSEQID(ntohl(c.physeqid_pkd)));
2102 txq->stats.tso = 0;
2103 txq->stats.pkts = 0;
2104 txq->stats.tx_cso = 0;
2105 txq->stats.coal_wr = 0;
2106 txq->stats.vlan_ins = 0;
2107 txq->stats.tx_bytes = 0;
2108 txq->stats.coal_pkts = 0;
2109 txq->stats.mapping_err = 0;
2110 txq->flags |= EQ_STOPPED;
2111 txq->eth_dev = eth_dev;
2112 txq->data = eth_dev->data;
2113 t4_os_lock_init(&txq->txq_lock);
2114 return 0;
2115 }
2116
t4_sge_alloc_ctrl_txq(struct adapter * adap,struct sge_ctrl_txq * txq,struct rte_eth_dev * eth_dev,uint16_t queue_id,unsigned int iqid,int socket_id)2117 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2118 struct rte_eth_dev *eth_dev, uint16_t queue_id,
2119 unsigned int iqid, int socket_id)
2120 {
2121 int ret, nentries;
2122 struct fw_eq_ctrl_cmd c;
2123 struct sge *s = &adap->sge;
2124 struct port_info *pi = eth_dev->data->dev_private;
2125
2126 /* Add status entries */
2127 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2128
2129 txq->q.desc = alloc_ring(eth_dev, "ctrl_tx_ring", queue_id,
2130 socket_id, txq->q.size, sizeof(struct tx_desc),
2131 0, 0, &txq->q.phys_addr, NULL);
2132 if (!txq->q.desc)
2133 return -ENOMEM;
2134
2135 memset(&c, 0, sizeof(c));
2136 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2137 F_FW_CMD_WRITE | F_FW_CMD_EXEC |
2138 V_FW_EQ_CTRL_CMD_PFN(adap->pf) |
2139 V_FW_EQ_CTRL_CMD_VFN(0));
2140 c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_ALLOC |
2141 F_FW_EQ_CTRL_CMD_EQSTART | (sizeof(c) / 16));
2142 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(0));
2143 c.physeqid_pkd = htonl(0);
2144 c.fetchszm_to_iqid =
2145 htonl(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
2146 V_FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2147 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(iqid));
2148 c.dcaen_to_eqsize =
2149 htonl(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2150 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2151 V_FW_EQ_CTRL_CMD_EQSIZE(nentries));
2152 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2153
2154 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2155 if (ret) {
2156 txq->q.desc = NULL;
2157 return ret;
2158 }
2159
2160 init_txq(adap, &txq->q, G_FW_EQ_CTRL_CMD_EQID(ntohl(c.cmpliqid_eqid)),
2161 G_FW_EQ_CTRL_CMD_EQID(ntohl(c. physeqid_pkd)));
2162 txq->adapter = adap;
2163 txq->full = 0;
2164 return 0;
2165 }
2166
free_txq(struct sge_txq * q)2167 static void free_txq(struct sge_txq *q)
2168 {
2169 q->cntxt_id = 0;
2170 q->sdesc = NULL;
2171 q->desc = NULL;
2172 }
2173
free_rspq_fl(struct adapter * adap,struct sge_rspq * rq,struct sge_fl * fl)2174 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2175 struct sge_fl *fl)
2176 {
2177 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2178
2179 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
2180 rq->cntxt_id, fl_id, 0xffff);
2181 rq->cntxt_id = 0;
2182 rq->abs_id = 0;
2183 rq->desc = NULL;
2184
2185 if (fl) {
2186 free_rx_bufs(fl, fl->avail);
2187 rte_free(fl->sdesc);
2188 fl->sdesc = NULL;
2189 fl->cntxt_id = 0;
2190 fl->desc = NULL;
2191 }
2192 }
2193
2194 /*
2195 * Clear all queues of the port
2196 *
2197 * Note: This function must only be called after rx and tx path
2198 * of the port have been disabled.
2199 */
t4_sge_eth_clear_queues(struct port_info * pi)2200 void t4_sge_eth_clear_queues(struct port_info *pi)
2201 {
2202 struct adapter *adap = pi->adapter;
2203 struct sge_eth_rxq *rxq;
2204 struct sge_eth_txq *txq;
2205 int i;
2206
2207 rxq = &adap->sge.ethrxq[pi->first_rxqset];
2208 for (i = 0; i < pi->n_rx_qsets; i++, rxq++) {
2209 if (rxq->rspq.desc)
2210 t4_sge_eth_rxq_stop(adap, rxq);
2211 }
2212
2213 txq = &adap->sge.ethtxq[pi->first_txqset];
2214 for (i = 0; i < pi->n_tx_qsets; i++, txq++) {
2215 if (txq->q.desc) {
2216 struct sge_txq *q = &txq->q;
2217
2218 t4_sge_eth_txq_stop(txq);
2219 reclaim_completed_tx(q);
2220 free_tx_desc(q, q->size);
2221 q->equeidx = q->pidx;
2222 }
2223 }
2224 }
2225
t4_sge_eth_rxq_release(struct adapter * adap,struct sge_eth_rxq * rxq)2226 void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq)
2227 {
2228 if (rxq->rspq.desc) {
2229 t4_sge_eth_rxq_stop(adap, rxq);
2230 free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL);
2231 }
2232 }
2233
t4_sge_eth_txq_release(struct adapter * adap,struct sge_eth_txq * txq)2234 void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq)
2235 {
2236 if (txq->q.desc) {
2237 t4_sge_eth_txq_stop(txq);
2238 reclaim_completed_tx(&txq->q);
2239 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id);
2240 free_tx_desc(&txq->q, txq->q.size);
2241 rte_free(txq->q.sdesc);
2242 free_txq(&txq->q);
2243 }
2244 }
2245
t4_sge_eth_release_queues(struct port_info * pi)2246 void t4_sge_eth_release_queues(struct port_info *pi)
2247 {
2248 struct adapter *adap = pi->adapter;
2249 struct sge_eth_rxq *rxq;
2250 struct sge_eth_txq *txq;
2251 unsigned int i;
2252
2253 rxq = &adap->sge.ethrxq[pi->first_rxqset];
2254 /* clean up Ethernet Tx/Rx queues */
2255 for (i = 0; i < pi->n_rx_qsets; i++, rxq++) {
2256 /* Free only the queues allocated */
2257 if (rxq->rspq.desc) {
2258 t4_sge_eth_rxq_release(adap, rxq);
2259 rte_eth_dma_zone_free(rxq->rspq.eth_dev, "fl_ring", i);
2260 rte_eth_dma_zone_free(rxq->rspq.eth_dev, "rx_ring", i);
2261 rxq->rspq.eth_dev = NULL;
2262 }
2263 }
2264
2265 txq = &adap->sge.ethtxq[pi->first_txqset];
2266 for (i = 0; i < pi->n_tx_qsets; i++, txq++) {
2267 /* Free only the queues allocated */
2268 if (txq->q.desc) {
2269 t4_sge_eth_txq_release(adap, txq);
2270 rte_eth_dma_zone_free(txq->eth_dev, "tx_ring", i);
2271 txq->eth_dev = NULL;
2272 }
2273 }
2274 }
2275
t4_sge_tx_monitor_start(struct adapter * adap)2276 void t4_sge_tx_monitor_start(struct adapter *adap)
2277 {
2278 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
2279 }
2280
t4_sge_tx_monitor_stop(struct adapter * adap)2281 void t4_sge_tx_monitor_stop(struct adapter *adap)
2282 {
2283 rte_eal_alarm_cancel(tx_timer_cb, (void *)adap);
2284 }
2285
2286 /**
2287 * t4_free_sge_resources - free SGE resources
2288 * @adap: the adapter
2289 *
2290 * Frees resources used by the SGE queue sets.
2291 */
t4_free_sge_resources(struct adapter * adap)2292 void t4_free_sge_resources(struct adapter *adap)
2293 {
2294 unsigned int i;
2295
2296 /* clean up control Tx queues */
2297 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2298 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2299
2300 if (cq->q.desc) {
2301 reclaim_completed_tx_imm(&cq->q);
2302 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
2303 cq->q.cntxt_id);
2304 rte_eth_dma_zone_free(adap->eth_dev, "ctrl_tx_ring", i);
2305 rte_mempool_free(cq->mb_pool);
2306 free_txq(&cq->q);
2307 }
2308 }
2309
2310 /* clean up firmware event queue */
2311 if (adap->sge.fw_evtq.desc) {
2312 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2313 rte_eth_dma_zone_free(adap->eth_dev, "fwq_ring", 0);
2314 }
2315 }
2316
2317 /**
2318 * t4_sge_init - initialize SGE
2319 * @adap: the adapter
2320 *
2321 * Performs SGE initialization needed every time after a chip reset.
2322 * We do not initialize any of the queues here, instead the driver
2323 * top-level must request those individually.
2324 *
2325 * Called in two different modes:
2326 *
2327 * 1. Perform actual hardware initialization and record hard-coded
2328 * parameters which were used. This gets used when we're the
2329 * Master PF and the Firmware Configuration File support didn't
2330 * work for some reason.
2331 *
2332 * 2. We're not the Master PF or initialization was performed with
2333 * a Firmware Configuration File. In this case we need to grab
2334 * any of the SGE operating parameters that we need to have in
2335 * order to do our job and make sure we can live with them ...
2336 */
t4_sge_init_soft(struct adapter * adap)2337 static int t4_sge_init_soft(struct adapter *adap)
2338 {
2339 struct sge *s = &adap->sge;
2340 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2341 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2342 u32 ingress_rx_threshold;
2343
2344 /*
2345 * Verify that CPL messages are going to the Ingress Queue for
2346 * process_responses() and that only packet data is going to the
2347 * Free Lists.
2348 */
2349 if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) !=
2350 V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2351 dev_err(adap, "bad SGE CPL MODE\n");
2352 return -EINVAL;
2353 }
2354
2355 /*
2356 * Validate the Host Buffer Register Array indices that we want to
2357 * use ...
2358 *
2359 * XXX Note that we should really read through the Host Buffer Size
2360 * XXX register array and find the indices of the Buffer Sizes which
2361 * XXX meet our needs!
2362 */
2363 #define READ_FL_BUF(x) \
2364 t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32))
2365
2366 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2367 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2368 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2369 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2370
2371 /*
2372 * We only bother using the Large Page logic if the Large Page Buffer
2373 * is larger than our Page Size Buffer.
2374 */
2375 if (fl_large_pg <= fl_small_pg)
2376 fl_large_pg = 0;
2377
2378 #undef READ_FL_BUF
2379
2380 /*
2381 * The Page Size Buffer must be exactly equal to our Page Size and the
2382 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2383 */
2384 if (fl_small_pg != CXGBE_PAGE_SIZE ||
2385 (fl_large_pg & (fl_large_pg - 1)) != 0) {
2386 dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n",
2387 fl_small_pg, fl_large_pg);
2388 return -EINVAL;
2389 }
2390 if (fl_large_pg)
2391 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2392
2393 if (adap->use_unpacked_mode) {
2394 int err = 0;
2395
2396 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) {
2397 dev_err(adap, "bad SGE FL small MTU %d\n",
2398 fl_small_mtu);
2399 err = -EINVAL;
2400 }
2401 if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2402 dev_err(adap, "bad SGE FL large MTU %d\n",
2403 fl_large_mtu);
2404 err = -EINVAL;
2405 }
2406 if (err)
2407 return err;
2408 }
2409
2410 /*
2411 * Retrieve our RX interrupt holdoff timer values and counter
2412 * threshold values from the SGE parameters.
2413 */
2414 timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1);
2415 timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3);
2416 timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5);
2417 s->timer_val[0] = core_ticks_to_us(adap,
2418 G_TIMERVALUE0(timer_value_0_and_1));
2419 s->timer_val[1] = core_ticks_to_us(adap,
2420 G_TIMERVALUE1(timer_value_0_and_1));
2421 s->timer_val[2] = core_ticks_to_us(adap,
2422 G_TIMERVALUE2(timer_value_2_and_3));
2423 s->timer_val[3] = core_ticks_to_us(adap,
2424 G_TIMERVALUE3(timer_value_2_and_3));
2425 s->timer_val[4] = core_ticks_to_us(adap,
2426 G_TIMERVALUE4(timer_value_4_and_5));
2427 s->timer_val[5] = core_ticks_to_us(adap,
2428 G_TIMERVALUE5(timer_value_4_and_5));
2429
2430 ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD);
2431 s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold);
2432 s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold);
2433 s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold);
2434 s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold);
2435
2436 return 0;
2437 }
2438
t4_sge_init(struct adapter * adap)2439 int t4_sge_init(struct adapter *adap)
2440 {
2441 struct sge *s = &adap->sge;
2442 u32 sge_control, sge_conm_ctrl;
2443 int ret, egress_threshold;
2444
2445 /*
2446 * Ingress Padding Boundary and Egress Status Page Size are set up by
2447 * t4_fixup_host_params().
2448 */
2449 sge_control = t4_read_reg(adap, A_SGE_CONTROL);
2450 s->pktshift = G_PKTSHIFT(sge_control);
2451 s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
2452 s->fl_align = t4_fl_pkt_align(adap);
2453 ret = t4_sge_init_soft(adap);
2454 if (ret < 0) {
2455 dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n",
2456 __func__, -ret);
2457 return ret;
2458 }
2459
2460 /*
2461 * A FL with <= fl_starve_thres buffers is starving and a periodic
2462 * timer will attempt to refill it. This needs to be larger than the
2463 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2464 * stuck waiting for new packets while the SGE is waiting for us to
2465 * give it more Free List entries. (Note that the SGE's Egress
2466 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2467 * there was only a single field to control this. For T5 there's the
2468 * original field which now only applies to Unpacked Mode Free List
2469 * buffers and a new field which only applies to Packed Mode Free List
2470 * buffers.
2471 */
2472 sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL);
2473 if (is_t4(adap->params.chip) || adap->use_unpacked_mode)
2474 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
2475 else
2476 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
2477 s->fl_starve_thres = 2 * egress_threshold + 1;
2478
2479 return 0;
2480 }
2481
t4vf_sge_init(struct adapter * adap)2482 int t4vf_sge_init(struct adapter *adap)
2483 {
2484 struct sge_params *sge_params = &adap->params.sge;
2485 u32 sge_ingress_queues_per_page;
2486 u32 sge_egress_queues_per_page;
2487 u32 sge_control, sge_control2;
2488 u32 fl_small_pg, fl_large_pg;
2489 u32 sge_ingress_rx_threshold;
2490 u32 sge_timer_value_0_and_1;
2491 u32 sge_timer_value_2_and_3;
2492 u32 sge_timer_value_4_and_5;
2493 u32 sge_congestion_control;
2494 struct sge *s = &adap->sge;
2495 unsigned int s_hps, s_qpp;
2496 u32 sge_host_page_size;
2497 u32 params[7], vals[7];
2498 int v;
2499
2500 /* query basic params from fw */
2501 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2502 V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL));
2503 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2504 V_FW_PARAMS_PARAM_XYZ(A_SGE_HOST_PAGE_SIZE));
2505 params[2] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2506 V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE0));
2507 params[3] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2508 V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE1));
2509 params[4] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2510 V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_0_AND_1));
2511 params[5] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2512 V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_2_AND_3));
2513 params[6] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2514 V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_4_AND_5));
2515 v = t4vf_query_params(adap, 7, params, vals);
2516 if (v != FW_SUCCESS)
2517 return v;
2518
2519 sge_control = vals[0];
2520 sge_host_page_size = vals[1];
2521 fl_small_pg = vals[2];
2522 fl_large_pg = vals[3];
2523 sge_timer_value_0_and_1 = vals[4];
2524 sge_timer_value_2_and_3 = vals[5];
2525 sge_timer_value_4_and_5 = vals[6];
2526
2527 /*
2528 * Start by vetting the basic SGE parameters which have been set up by
2529 * the Physical Function Driver.
2530 */
2531
2532 /* We only bother using the Large Page logic if the Large Page Buffer
2533 * is larger than our Page Size Buffer.
2534 */
2535 if (fl_large_pg <= fl_small_pg)
2536 fl_large_pg = 0;
2537
2538 /* The Page Size Buffer must be exactly equal to our Page Size and the
2539 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2540 */
2541 if (fl_small_pg != CXGBE_PAGE_SIZE ||
2542 (fl_large_pg & (fl_large_pg - 1)) != 0) {
2543 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2544 fl_small_pg, fl_large_pg);
2545 return -EINVAL;
2546 }
2547
2548 if ((sge_control & F_RXPKTCPLMODE) !=
2549 V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2550 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2551 return -EINVAL;
2552 }
2553
2554
2555 /* Grab ingress packing boundary from SGE_CONTROL2 for */
2556 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2557 V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL2));
2558 v = t4vf_query_params(adap, 1, params, vals);
2559 if (v != FW_SUCCESS) {
2560 dev_err(adapter, "Unable to get SGE Control2; "
2561 "probably old firmware.\n");
2562 return v;
2563 }
2564 sge_control2 = vals[0];
2565
2566 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2567 V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_RX_THRESHOLD));
2568 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2569 V_FW_PARAMS_PARAM_XYZ(A_SGE_CONM_CTRL));
2570 v = t4vf_query_params(adap, 2, params, vals);
2571 if (v != FW_SUCCESS)
2572 return v;
2573 sge_ingress_rx_threshold = vals[0];
2574 sge_congestion_control = vals[1];
2575 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2576 V_FW_PARAMS_PARAM_XYZ(A_SGE_EGRESS_QUEUES_PER_PAGE_VF));
2577 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2578 V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_QUEUES_PER_PAGE_VF));
2579 v = t4vf_query_params(adap, 2, params, vals);
2580 if (v != FW_SUCCESS) {
2581 dev_warn(adap, "Unable to get VF SGE Queues/Page; "
2582 "probably old firmware.\n");
2583 return v;
2584 }
2585 sge_egress_queues_per_page = vals[0];
2586 sge_ingress_queues_per_page = vals[1];
2587
2588 /*
2589 * We need the Queues/Page for our VF. This is based on the
2590 * PF from which we're instantiated and is indexed in the
2591 * register we just read.
2592 */
2593 s_hps = (S_HOSTPAGESIZEPF0 +
2594 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adap->pf);
2595 sge_params->hps =
2596 ((sge_host_page_size >> s_hps) & M_HOSTPAGESIZEPF0);
2597
2598 s_qpp = (S_QUEUESPERPAGEPF0 +
2599 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adap->pf);
2600 sge_params->eq_qpp =
2601 ((sge_egress_queues_per_page >> s_qpp)
2602 & M_QUEUESPERPAGEPF0);
2603 sge_params->iq_qpp =
2604 ((sge_ingress_queues_per_page >> s_qpp)
2605 & M_QUEUESPERPAGEPF0);
2606
2607 /*
2608 * Now translate the queried parameters into our internal forms.
2609 */
2610 if (fl_large_pg)
2611 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2612 s->stat_len = ((sge_control & F_EGRSTATUSPAGESIZE)
2613 ? 128 : 64);
2614 s->pktshift = G_PKTSHIFT(sge_control);
2615 s->fl_align = t4vf_fl_pkt_align(adap, sge_control, sge_control2);
2616
2617 /*
2618 * A FL with <= fl_starve_thres buffers is starving and a periodic
2619 * timer will attempt to refill it. This needs to be larger than the
2620 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2621 * stuck waiting for new packets while the SGE is waiting for us to
2622 * give it more Free List entries. (Note that the SGE's Egress
2623 * Congestion Threshold is in units of 2 Free List pointers.)
2624 */
2625 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
2626 case CHELSIO_T5:
2627 s->fl_starve_thres =
2628 G_EGRTHRESHOLDPACKING(sge_congestion_control);
2629 break;
2630 case CHELSIO_T6:
2631 default:
2632 s->fl_starve_thres =
2633 G_T6_EGRTHRESHOLDPACKING(sge_congestion_control);
2634 break;
2635 }
2636 s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2637
2638 /*
2639 * Save RX interrupt holdoff timer values and counter
2640 * threshold values from the SGE parameters.
2641 */
2642 s->timer_val[0] = core_ticks_to_us(adap,
2643 G_TIMERVALUE0(sge_timer_value_0_and_1));
2644 s->timer_val[1] = core_ticks_to_us(adap,
2645 G_TIMERVALUE1(sge_timer_value_0_and_1));
2646 s->timer_val[2] = core_ticks_to_us(adap,
2647 G_TIMERVALUE2(sge_timer_value_2_and_3));
2648 s->timer_val[3] = core_ticks_to_us(adap,
2649 G_TIMERVALUE3(sge_timer_value_2_and_3));
2650 s->timer_val[4] = core_ticks_to_us(adap,
2651 G_TIMERVALUE4(sge_timer_value_4_and_5));
2652 s->timer_val[5] = core_ticks_to_us(adap,
2653 G_TIMERVALUE5(sge_timer_value_4_and_5));
2654 s->counter_val[0] = G_THRESHOLD_0(sge_ingress_rx_threshold);
2655 s->counter_val[1] = G_THRESHOLD_1(sge_ingress_rx_threshold);
2656 s->counter_val[2] = G_THRESHOLD_2(sge_ingress_rx_threshold);
2657 s->counter_val[3] = G_THRESHOLD_3(sge_ingress_rx_threshold);
2658 return 0;
2659 }
2660