xref: /dpdk/drivers/net/bnx2x/bnx2x.c (revision 7be78d02)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <[email protected]>
5  * David Christensen <[email protected]>
6  * Gary Zambrano     <[email protected]>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  */
13 
14 #define BNX2X_DRIVER_VERSION "1.78.18"
15 
16 #include "bnx2x.h"
17 #include "bnx2x_vfpf.h"
18 #include "ecore_sp.h"
19 #include "ecore_init.h"
20 #include "ecore_init_ops.h"
21 
22 #include "rte_version.h"
23 
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <arpa/inet.h>
27 #include <fcntl.h>
28 #include <zlib.h>
29 
30 #include <rte_bitops.h>
31 #include <rte_string_fns.h>
32 
33 #include "eal_firmware.h"
34 
35 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
36 #define BNX2X_PMD_VERSION_MAJOR 1
37 #define BNX2X_PMD_VERSION_MINOR 1
38 #define BNX2X_PMD_VERSION_REVISION 0
39 #define BNX2X_PMD_VERSION_PATCH 1
40 
41 static inline const char *
bnx2x_pmd_version(void)42 bnx2x_pmd_version(void)
43 {
44 	static char version[32];
45 
46 	snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
47 			BNX2X_PMD_VER_PREFIX,
48 			BNX2X_DRIVER_VERSION,
49 			BNX2X_PMD_VERSION_MAJOR,
50 			BNX2X_PMD_VERSION_MINOR,
51 			BNX2X_PMD_VERSION_REVISION,
52 			BNX2X_PMD_VERSION_PATCH);
53 
54 	return version;
55 }
56 
57 static z_stream zlib_stream;
58 
59 #define EVL_VLID_MASK 0x0FFF
60 
61 #define BNX2X_DEF_SB_ATT_IDX 0x0001
62 #define BNX2X_DEF_SB_IDX     0x0002
63 
64 /*
65  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
66  * function HW initialization.
67  */
68 #define FLR_WAIT_USEC     10000	/* 10 msecs */
69 #define FLR_WAIT_INTERVAL 50	/* usecs */
70 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)	/* 200 */
71 
72 struct pbf_pN_buf_regs {
73 	int pN;
74 	uint32_t init_crd;
75 	uint32_t crd;
76 	uint32_t crd_freed;
77 };
78 
79 struct pbf_pN_cmd_regs {
80 	int pN;
81 	uint32_t lines_occup;
82 	uint32_t lines_freed;
83 };
84 
85 /* resources needed for unloading a previously loaded device */
86 
87 #define BNX2X_PREV_WAIT_NEEDED 1
88 rte_spinlock_t bnx2x_prev_mtx;
89 struct bnx2x_prev_list_node {
90 	LIST_ENTRY(bnx2x_prev_list_node) node;
91 	uint8_t bus;
92 	uint8_t slot;
93 	uint8_t path;
94 	uint8_t aer;
95 	uint8_t undi;
96 };
97 
98 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
99 	= LIST_HEAD_INITIALIZER(bnx2x_prev_list);
100 
101 static int load_count[2][3] = { { 0 } };
102 	/* per-path: 0-common, 1-port0, 2-port1 */
103 
104 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
105 				uint8_t cmng_type);
106 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
107 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
108 			      uint8_t port);
109 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
110 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
111 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
112 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
113 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
114 				     uint8_t print);
115 static void bnx2x_int_disable(struct bnx2x_softc *sc);
116 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
117 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
118 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
119 				 struct bnx2x_fastpath *fp,
120 				 uint16_t rx_bd_prod, uint16_t rx_cq_prod);
121 static void bnx2x_link_report_locked(struct bnx2x_softc *sc);
122 static void bnx2x_link_report(struct bnx2x_softc *sc);
123 void bnx2x_link_status_update(struct bnx2x_softc *sc);
124 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
125 static void bnx2x_free_mem(struct bnx2x_softc *sc);
126 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
127 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
128 static __rte_noinline
129 int bnx2x_nic_load(struct bnx2x_softc *sc);
130 
131 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
132 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp);
133 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
134 			 uint8_t storm, uint16_t index, uint8_t op,
135 			 uint8_t update);
136 
bnx2x_cmpxchg(volatile int * addr,int old,int new)137 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
138 {
139 	return __sync_val_compare_and_swap(addr, old, new);
140 }
141 
142 int
bnx2x_dma_alloc(struct bnx2x_softc * sc,size_t size,struct bnx2x_dma * dma,const char * msg,uint32_t align)143 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
144 	      const char *msg, uint32_t align)
145 {
146 	char mz_name[RTE_MEMZONE_NAMESIZE];
147 	const struct rte_memzone *z;
148 
149 	dma->sc = sc;
150 	if (IS_PF(sc))
151 		snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
152 			rte_get_timer_cycles());
153 	else
154 		snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
155 			rte_get_timer_cycles());
156 
157 	/* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
158 	z = rte_memzone_reserve_aligned(mz_name, (uint64_t)size,
159 					SOCKET_ID_ANY,
160 					RTE_MEMZONE_IOVA_CONTIG, align);
161 	if (z == NULL) {
162 		PMD_DRV_LOG(ERR, sc, "DMA alloc failed for %s", msg);
163 		return -ENOMEM;
164 	}
165 	dma->paddr = (uint64_t) z->iova;
166 	dma->vaddr = z->addr;
167 	dma->mzone = (const void *)z;
168 
169 	PMD_DRV_LOG(DEBUG, sc,
170 		    "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
171 
172 	return 0;
173 }
174 
bnx2x_dma_free(struct bnx2x_dma * dma)175 void bnx2x_dma_free(struct bnx2x_dma *dma)
176 {
177 	if (dma->mzone == NULL)
178 		return;
179 
180 	rte_memzone_free((const struct rte_memzone *)dma->mzone);
181 	dma->sc = NULL;
182 	dma->paddr = 0;
183 	dma->vaddr = NULL;
184 	dma->nseg = 0;
185 	dma->mzone = NULL;
186 }
187 
bnx2x_acquire_hw_lock(struct bnx2x_softc * sc,uint32_t resource)188 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
189 {
190 	uint32_t lock_status;
191 	uint32_t resource_bit = (1 << resource);
192 	int func = SC_FUNC(sc);
193 	uint32_t hw_lock_control_reg;
194 	int cnt;
195 
196 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
197 	if (resource)
198 		PMD_INIT_FUNC_TRACE(sc);
199 #else
200 	PMD_INIT_FUNC_TRACE(sc);
201 #endif
202 
203 	/* validate the resource is within range */
204 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
205 		PMD_DRV_LOG(NOTICE, sc,
206 			    "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
207 			    resource);
208 		return -1;
209 	}
210 
211 	if (func <= 5) {
212 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
213 	} else {
214 		hw_lock_control_reg =
215 		    (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
216 	}
217 
218 	/* validate the resource is not already taken */
219 	lock_status = REG_RD(sc, hw_lock_control_reg);
220 	if (lock_status & resource_bit) {
221 		PMD_DRV_LOG(NOTICE, sc,
222 			    "resource in use (status 0x%x bit 0x%x)",
223 			    lock_status, resource_bit);
224 		return -1;
225 	}
226 
227 	/* try every 5ms for 5 seconds */
228 	for (cnt = 0; cnt < 1000; cnt++) {
229 		REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
230 		lock_status = REG_RD(sc, hw_lock_control_reg);
231 		if (lock_status & resource_bit) {
232 			return 0;
233 		}
234 		DELAY(5000);
235 	}
236 
237 	PMD_DRV_LOG(NOTICE, sc, "Resource 0x%x resource_bit 0x%x lock timeout!",
238 		    resource, resource_bit);
239 	return -1;
240 }
241 
bnx2x_release_hw_lock(struct bnx2x_softc * sc,uint32_t resource)242 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
243 {
244 	uint32_t lock_status;
245 	uint32_t resource_bit = (1 << resource);
246 	int func = SC_FUNC(sc);
247 	uint32_t hw_lock_control_reg;
248 
249 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
250 	if (resource)
251 		PMD_INIT_FUNC_TRACE(sc);
252 #else
253 	PMD_INIT_FUNC_TRACE(sc);
254 #endif
255 
256 	/* validate the resource is within range */
257 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
258 		PMD_DRV_LOG(NOTICE, sc,
259 			    "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
260 			    " resource_bit 0x%x", resource, resource_bit);
261 		return -1;
262 	}
263 
264 	if (func <= 5) {
265 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
266 	} else {
267 		hw_lock_control_reg =
268 		    (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
269 	}
270 
271 	/* validate the resource is currently taken */
272 	lock_status = REG_RD(sc, hw_lock_control_reg);
273 	if (!(lock_status & resource_bit)) {
274 		PMD_DRV_LOG(NOTICE, sc,
275 			    "resource not in use (status 0x%x bit 0x%x)",
276 			    lock_status, resource_bit);
277 		return -1;
278 	}
279 
280 	REG_WR(sc, hw_lock_control_reg, resource_bit);
281 	return 0;
282 }
283 
bnx2x_acquire_phy_lock(struct bnx2x_softc * sc)284 static void bnx2x_acquire_phy_lock(struct bnx2x_softc *sc)
285 {
286 	BNX2X_PHY_LOCK(sc);
287 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
288 }
289 
bnx2x_release_phy_lock(struct bnx2x_softc * sc)290 static void bnx2x_release_phy_lock(struct bnx2x_softc *sc)
291 {
292 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
293 	BNX2X_PHY_UNLOCK(sc);
294 }
295 
296 /* copy command into DMAE command memory and set DMAE command Go */
bnx2x_post_dmae(struct bnx2x_softc * sc,struct dmae_command * dmae,int idx)297 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
298 {
299 	uint32_t cmd_offset;
300 	uint32_t i;
301 
302 	cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
303 	for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
304 		REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
305 	}
306 
307 	REG_WR(sc, dmae_reg_go_c[idx], 1);
308 }
309 
bnx2x_dmae_opcode_add_comp(uint32_t opcode,uint8_t comp_type)310 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
311 {
312 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
313 			  DMAE_COMMAND_C_TYPE_ENABLE);
314 }
315 
bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)316 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
317 {
318 	return opcode & ~DMAE_COMMAND_SRC_RESET;
319 }
320 
321 uint32_t
bnx2x_dmae_opcode(struct bnx2x_softc * sc,uint8_t src_type,uint8_t dst_type,uint8_t with_comp,uint8_t comp_type)322 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
323 		uint8_t with_comp, uint8_t comp_type)
324 {
325 	uint32_t opcode = 0;
326 
327 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
328 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
329 
330 	opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
331 
332 	opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
333 
334 	opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
335 		   (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
336 
337 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
338 
339 #ifdef __BIG_ENDIAN
340 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
341 #else
342 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
343 #endif
344 
345 	if (with_comp) {
346 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
347 	}
348 
349 	return opcode;
350 }
351 
352 static void
bnx2x_prep_dmae_with_comp(struct bnx2x_softc * sc,struct dmae_command * dmae,uint8_t src_type,uint8_t dst_type)353 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
354 			uint8_t src_type, uint8_t dst_type)
355 {
356 	memset(dmae, 0, sizeof(struct dmae_command));
357 
358 	/* set the opcode */
359 	dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
360 				       TRUE, DMAE_COMP_PCI);
361 
362 	/* fill in the completion parameters */
363 	dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
364 	dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
365 	dmae->comp_val = DMAE_COMP_VAL;
366 }
367 
368 /* issue a DMAE command over the init channel and wait for completion */
369 static int
bnx2x_issue_dmae_with_comp(struct bnx2x_softc * sc,struct dmae_command * dmae)370 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
371 {
372 	uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
373 	int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
374 
375 	/* reset completion */
376 	*wb_comp = 0;
377 
378 	/* post the command on the channel used for initializations */
379 	bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
380 
381 	/* wait for completion */
382 	DELAY(500);
383 
384 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
385 		if (!timeout ||
386 		    (sc->recovery_state != BNX2X_RECOVERY_DONE &&
387 		     sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
388 			PMD_DRV_LOG(INFO, sc, "DMAE timeout!");
389 			return DMAE_TIMEOUT;
390 		}
391 
392 		timeout--;
393 		DELAY(50);
394 	}
395 
396 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
397 		PMD_DRV_LOG(INFO, sc, "DMAE PCI error!");
398 		return DMAE_PCI_ERROR;
399 	}
400 
401 	return 0;
402 }
403 
bnx2x_read_dmae(struct bnx2x_softc * sc,uint32_t src_addr,uint32_t len32)404 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
405 {
406 	struct dmae_command dmae;
407 	uint32_t *data;
408 	uint32_t i;
409 	int rc;
410 
411 	if (!sc->dmae_ready) {
412 		data = BNX2X_SP(sc, wb_data[0]);
413 
414 		for (i = 0; i < len32; i++) {
415 			data[i] = REG_RD(sc, (src_addr + (i * 4)));
416 		}
417 
418 		return;
419 	}
420 
421 	/* set opcode and fixed command fields */
422 	bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
423 
424 	/* fill in addresses and len */
425 	dmae.src_addr_lo = (src_addr >> 2);	/* GRC addr has dword resolution */
426 	dmae.src_addr_hi = 0;
427 	dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
428 	dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
429 	dmae.len = len32;
430 
431 	/* issue the command and wait for completion */
432 	if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
433 		rte_panic("DMAE failed (%d)", rc);
434 	};
435 }
436 
437 void
bnx2x_write_dmae(struct bnx2x_softc * sc,rte_iova_t dma_addr,uint32_t dst_addr,uint32_t len32)438 bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
439 	       uint32_t len32)
440 {
441 	struct dmae_command dmae;
442 	int rc;
443 
444 	if (!sc->dmae_ready) {
445 		ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
446 		return;
447 	}
448 
449 	/* set opcode and fixed command fields */
450 	bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
451 
452 	/* fill in addresses and len */
453 	dmae.src_addr_lo = U64_LO(dma_addr);
454 	dmae.src_addr_hi = U64_HI(dma_addr);
455 	dmae.dst_addr_lo = (dst_addr >> 2);	/* GRC addr has dword resolution */
456 	dmae.dst_addr_hi = 0;
457 	dmae.len = len32;
458 
459 	/* issue the command and wait for completion */
460 	if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
461 		rte_panic("DMAE failed (%d)", rc);
462 	}
463 }
464 
465 static void
bnx2x_write_dmae_phys_len(struct bnx2x_softc * sc,rte_iova_t phys_addr,uint32_t addr,uint32_t len)466 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
467 			uint32_t addr, uint32_t len)
468 {
469 	uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
470 	uint32_t offset = 0;
471 
472 	while (len > dmae_wr_max) {
473 		bnx2x_write_dmae(sc, (phys_addr + offset),	/* src DMA address */
474 			       (addr + offset),	/* dst GRC address */
475 			       dmae_wr_max);
476 		offset += (dmae_wr_max * 4);
477 		len -= dmae_wr_max;
478 	}
479 
480 	bnx2x_write_dmae(sc, (phys_addr + offset),	/* src DMA address */
481 		       (addr + offset),	/* dst GRC address */
482 		       len);
483 }
484 
485 void
bnx2x_set_ctx_validation(struct bnx2x_softc * sc,struct eth_context * cxt,uint32_t cid)486 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
487 		       uint32_t cid)
488 {
489 	/* ustorm cxt validation */
490 	cxt->ustorm_ag_context.cdu_usage =
491 	    CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
492 				   CDU_REGION_NUMBER_UCM_AG,
493 				   ETH_CONNECTION_TYPE);
494 	/* xcontext validation */
495 	cxt->xstorm_ag_context.cdu_reserved =
496 	    CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
497 				   CDU_REGION_NUMBER_XCM_AG,
498 				   ETH_CONNECTION_TYPE);
499 }
500 
501 static void
bnx2x_storm_memset_hc_timeout(struct bnx2x_softc * sc,uint8_t fw_sb_id,uint8_t sb_index,uint8_t ticks)502 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
503 			    uint8_t sb_index, uint8_t ticks)
504 {
505 	uint32_t addr =
506 	    (BAR_CSTRORM_INTMEM +
507 	     CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
508 
509 	REG_WR8(sc, addr, ticks);
510 }
511 
512 static void
bnx2x_storm_memset_hc_disable(struct bnx2x_softc * sc,uint16_t fw_sb_id,uint8_t sb_index,uint8_t disable)513 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
514 			    uint8_t sb_index, uint8_t disable)
515 {
516 	uint32_t enable_flag =
517 	    (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
518 	uint32_t addr =
519 	    (BAR_CSTRORM_INTMEM +
520 	     CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
521 	uint8_t flags;
522 
523 	/* clear and set */
524 	flags = REG_RD8(sc, addr);
525 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
526 	flags |= enable_flag;
527 	REG_WR8(sc, addr, flags);
528 }
529 
530 void
bnx2x_update_coalesce_sb_index(struct bnx2x_softc * sc,uint8_t fw_sb_id,uint8_t sb_index,uint8_t disable,uint16_t usec)531 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
532 			     uint8_t sb_index, uint8_t disable, uint16_t usec)
533 {
534 	uint8_t ticks = (usec / 4);
535 
536 	bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
537 
538 	disable = (disable) ? 1 : ((usec) ? 0 : 1);
539 	bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
540 }
541 
elink_cb_reg_read(struct bnx2x_softc * sc,uint32_t reg_addr)542 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
543 {
544 	return REG_RD(sc, reg_addr);
545 }
546 
elink_cb_reg_write(struct bnx2x_softc * sc,uint32_t reg_addr,uint32_t val)547 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
548 {
549 	REG_WR(sc, reg_addr, val);
550 }
551 
552 void
elink_cb_event_log(__rte_unused struct bnx2x_softc * sc,__rte_unused const elink_log_id_t elink_log_id,...)553 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
554 		   __rte_unused const elink_log_id_t elink_log_id, ...)
555 {
556 	PMD_DRV_LOG(DEBUG, sc, "ELINK EVENT LOG (%d)", elink_log_id);
557 }
558 
bnx2x_set_spio(struct bnx2x_softc * sc,int spio,uint32_t mode)559 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
560 {
561 	uint32_t spio_reg;
562 
563 	/* Only 2 SPIOs are configurable */
564 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
565 		PMD_DRV_LOG(NOTICE, sc, "Invalid SPIO 0x%x", spio);
566 		return -1;
567 	}
568 
569 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
570 
571 	/* read SPIO and mask except the float bits */
572 	spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
573 
574 	switch (mode) {
575 	case MISC_SPIO_OUTPUT_LOW:
576 		/* clear FLOAT and set CLR */
577 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
578 		spio_reg |= (spio << MISC_SPIO_CLR_POS);
579 		break;
580 
581 	case MISC_SPIO_OUTPUT_HIGH:
582 		/* clear FLOAT and set SET */
583 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
584 		spio_reg |= (spio << MISC_SPIO_SET_POS);
585 		break;
586 
587 	case MISC_SPIO_INPUT_HI_Z:
588 		/* set FLOAT */
589 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
590 		break;
591 
592 	default:
593 		break;
594 	}
595 
596 	REG_WR(sc, MISC_REG_SPIO, spio_reg);
597 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
598 
599 	return 0;
600 }
601 
bnx2x_gpio_read(struct bnx2x_softc * sc,int gpio_num,uint8_t port)602 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
603 {
604 	/* The GPIO should be swapped if swap register is set and active */
605 	int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
606 			  REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
607 	int gpio_shift = gpio_num;
608 	if (gpio_port)
609 		gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
610 
611 	uint32_t gpio_mask = (1 << gpio_shift);
612 	uint32_t gpio_reg;
613 
614 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
615 		PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
616 		return -1;
617 	}
618 
619 	/* read GPIO value */
620 	gpio_reg = REG_RD(sc, MISC_REG_GPIO);
621 
622 	/* get the requested pin value */
623 	return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
624 }
625 
626 static int
bnx2x_gpio_write(struct bnx2x_softc * sc,int gpio_num,uint32_t mode,uint8_t port)627 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
628 {
629 	/* The GPIO should be swapped if swap register is set and active */
630 	int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
631 			  REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
632 	int gpio_shift = gpio_num;
633 	if (gpio_port)
634 		gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
635 
636 	uint32_t gpio_mask = (1 << gpio_shift);
637 	uint32_t gpio_reg;
638 
639 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
640 		PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
641 		return -1;
642 	}
643 
644 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
645 
646 	/* read GPIO and mask except the float bits */
647 	gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
648 
649 	switch (mode) {
650 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
651 		/* clear FLOAT and set CLR */
652 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
653 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
654 		break;
655 
656 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
657 		/* clear FLOAT and set SET */
658 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
659 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
660 		break;
661 
662 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
663 		/* set FLOAT */
664 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
665 		break;
666 
667 	default:
668 		break;
669 	}
670 
671 	REG_WR(sc, MISC_REG_GPIO, gpio_reg);
672 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
673 
674 	return 0;
675 }
676 
677 static int
bnx2x_gpio_mult_write(struct bnx2x_softc * sc,uint8_t pins,uint32_t mode)678 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
679 {
680 	uint32_t gpio_reg;
681 
682 	/* any port swapping should be handled by caller */
683 
684 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
685 
686 	/* read GPIO and mask except the float bits */
687 	gpio_reg = REG_RD(sc, MISC_REG_GPIO);
688 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
689 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
690 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
691 
692 	switch (mode) {
693 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
694 		/* set CLR */
695 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
696 		break;
697 
698 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
699 		/* set SET */
700 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
701 		break;
702 
703 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
704 		/* set FLOAT */
705 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
706 		break;
707 
708 	default:
709 		PMD_DRV_LOG(NOTICE, sc,
710 			    "Invalid GPIO mode assignment %d", mode);
711 		bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
712 		return -1;
713 	}
714 
715 	REG_WR(sc, MISC_REG_GPIO, gpio_reg);
716 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
717 
718 	return 0;
719 }
720 
721 static int
bnx2x_gpio_int_write(struct bnx2x_softc * sc,int gpio_num,uint32_t mode,uint8_t port)722 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
723 		   uint8_t port)
724 {
725 	/* The GPIO should be swapped if swap register is set and active */
726 	int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
727 			  REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
728 	int gpio_shift = gpio_num;
729 	if (gpio_port)
730 		gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
731 
732 	uint32_t gpio_mask = (1 << gpio_shift);
733 	uint32_t gpio_reg;
734 
735 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
736 		PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
737 		return -1;
738 	}
739 
740 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
741 
742 	/* read GPIO int */
743 	gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
744 
745 	switch (mode) {
746 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
747 		/* clear SET and set CLR */
748 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
749 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
750 		break;
751 
752 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
753 		/* clear CLR and set SET */
754 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
755 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
756 		break;
757 
758 	default:
759 		break;
760 	}
761 
762 	REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
763 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
764 
765 	return 0;
766 }
767 
768 uint32_t
elink_cb_gpio_read(struct bnx2x_softc * sc,uint16_t gpio_num,uint8_t port)769 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
770 {
771 	return bnx2x_gpio_read(sc, gpio_num, port);
772 }
773 
elink_cb_gpio_write(struct bnx2x_softc * sc,uint16_t gpio_num,uint8_t mode,uint8_t port)774 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,	/* 0=low 1=high */
775 			    uint8_t port)
776 {
777 	return bnx2x_gpio_write(sc, gpio_num, mode, port);
778 }
779 
780 uint8_t
elink_cb_gpio_mult_write(struct bnx2x_softc * sc,uint8_t pins,uint8_t mode)781 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
782 			 uint8_t mode /* 0=low 1=high */ )
783 {
784 	return bnx2x_gpio_mult_write(sc, pins, mode);
785 }
786 
elink_cb_gpio_int_write(struct bnx2x_softc * sc,uint16_t gpio_num,uint8_t mode,uint8_t port)787 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,	/* 0=low 1=high */
788 				uint8_t port)
789 {
790 	return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
791 }
792 
elink_cb_notify_link_changed(struct bnx2x_softc * sc)793 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
794 {
795 	REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
796 		    (SC_FUNC(sc) * sizeof(uint32_t))), 1);
797 }
798 
799 /* send the MCP a request, block until there is a reply */
800 uint32_t
elink_cb_fw_command(struct bnx2x_softc * sc,uint32_t command,uint32_t param)801 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
802 {
803 	int mb_idx = SC_FW_MB_IDX(sc);
804 	uint32_t seq;
805 	uint32_t rc = 0;
806 	uint32_t cnt = 1;
807 	uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
808 
809 	seq = ++sc->fw_seq;
810 	SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
811 	SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
812 
813 	PMD_DRV_LOG(DEBUG, sc,
814 		    "wrote command 0x%08x to FW MB param 0x%08x",
815 		    (command | seq), param);
816 
817 	/* Let the FW do it's magic. GIve it up to 5 seconds... */
818 	do {
819 		DELAY(delay * 1000);
820 		rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
821 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
822 
823 	/* is this a reply to our command? */
824 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
825 		rc &= FW_MSG_CODE_MASK;
826 	} else {
827 		/* Ruh-roh! */
828 		PMD_DRV_LOG(NOTICE, sc, "FW failed to respond!");
829 		rc = 0;
830 	}
831 
832 	return rc;
833 }
834 
835 static uint32_t
bnx2x_fw_command(struct bnx2x_softc * sc,uint32_t command,uint32_t param)836 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
837 {
838 	return elink_cb_fw_command(sc, command, param);
839 }
840 
841 static void
__storm_memset_dma_mapping(struct bnx2x_softc * sc,uint32_t addr,rte_iova_t mapping)842 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
843 			   rte_iova_t mapping)
844 {
845 	REG_WR(sc, addr, U64_LO(mapping));
846 	REG_WR(sc, (addr + 4), U64_HI(mapping));
847 }
848 
849 static void
storm_memset_spq_addr(struct bnx2x_softc * sc,rte_iova_t mapping,uint16_t abs_fid)850 storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
851 		      uint16_t abs_fid)
852 {
853 	uint32_t addr = (XSEM_REG_FAST_MEMORY +
854 			 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
855 	__storm_memset_dma_mapping(sc, addr, mapping);
856 }
857 
858 static void
storm_memset_vf_to_pf(struct bnx2x_softc * sc,uint16_t abs_fid,uint16_t pf_id)859 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
860 {
861 	REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
862 		pf_id);
863 	REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
864 		pf_id);
865 	REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
866 		pf_id);
867 	REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
868 		pf_id);
869 }
870 
871 static void
storm_memset_func_en(struct bnx2x_softc * sc,uint16_t abs_fid,uint8_t enable)872 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
873 {
874 	REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
875 		enable);
876 	REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
877 		enable);
878 	REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
879 		enable);
880 	REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
881 		enable);
882 }
883 
884 static void
storm_memset_eq_data(struct bnx2x_softc * sc,struct event_ring_data * eq_data,uint16_t pfid)885 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
886 		     uint16_t pfid)
887 {
888 	uint32_t addr;
889 	size_t size;
890 
891 	addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
892 	size = sizeof(struct event_ring_data);
893 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
894 }
895 
896 static void
storm_memset_eq_prod(struct bnx2x_softc * sc,uint16_t eq_prod,uint16_t pfid)897 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
898 {
899 	uint32_t addr = (BAR_CSTRORM_INTMEM +
900 			 CSTORM_EVENT_RING_PROD_OFFSET(pfid));
901 	REG_WR16(sc, addr, eq_prod);
902 }
903 
904 /*
905  * Post a slowpath command.
906  *
907  * A slowpath command is used to propagate a configuration change through
908  * the controller in a controlled manner, allowing each STORM processor and
909  * other H/W blocks to phase in the change.  The commands sent on the
910  * slowpath are referred to as ramrods.  Depending on the ramrod used the
911  * completion of the ramrod will occur in different ways.  Here's a
912  * breakdown of ramrods and how they complete:
913  *
914  * RAMROD_CMD_ID_ETH_PORT_SETUP
915  *   Used to setup the leading connection on a port.  Completes on the
916  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
917  *
918  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
919  *   Used to setup an additional connection on a port.  Completes on the
920  *   RCQ of the multi-queue/RSS connection being initialized.
921  *
922  * RAMROD_CMD_ID_ETH_STAT_QUERY
923  *   Used to force the storm processors to update the statistics database
924  *   in host memory.  This ramrod is send on the leading connection CID and
925  *   completes as an index increment of the CSTORM on the default status
926  *   block.
927  *
928  * RAMROD_CMD_ID_ETH_UPDATE
929  *   Used to update the state of the leading connection, usually to update
930  *   the RSS indirection table.  Completes on the RCQ of the leading
931  *   connection. (Not currently used under FreeBSD until OS support becomes
932  *   available.)
933  *
934  * RAMROD_CMD_ID_ETH_HALT
935  *   Used when tearing down a connection prior to driver unload.  Completes
936  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
937  *   use this on the leading connection.
938  *
939  * RAMROD_CMD_ID_ETH_SET_MAC
940  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
941  *   the RCQ of the leading connection.
942  *
943  * RAMROD_CMD_ID_ETH_CFC_DEL
944  *   Used when tearing down a connection prior to driver unload.  Completes
945  *   on the RCQ of the leading connection (since the current connection
946  *   has been completely removed from controller memory).
947  *
948  * RAMROD_CMD_ID_ETH_PORT_DEL
949  *   Used to tear down the leading connection prior to driver unload,
950  *   typically fp[0].  Completes as an index increment of the CSTORM on the
951  *   default status block.
952  *
953  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
954  *   Used for connection offload.  Completes on the RCQ of the multi-queue
955  *   RSS connection that is being offloaded.  (Not currently used under
956  *   FreeBSD.)
957  *
958  * There can only be one command pending per function.
959  *
960  * Returns:
961  *   0 = Success, !0 = Failure.
962  */
963 
964 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x_softc * sc)965 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
966 {
967 	struct eth_spe *next_spe = sc->spq_prod_bd;
968 
969 	if (sc->spq_prod_bd == sc->spq_last_bd) {
970 		/* wrap back to the first eth_spq */
971 		sc->spq_prod_bd = sc->spq;
972 		sc->spq_prod_idx = 0;
973 	} else {
974 		sc->spq_prod_bd++;
975 		sc->spq_prod_idx++;
976 	}
977 
978 	return next_spe;
979 }
980 
981 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x_softc * sc)982 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
983 {
984 	int func = SC_FUNC(sc);
985 
986 	/*
987 	 * Make sure that BD data is updated before writing the producer.
988 	 * BD data is written to the memory, the producer is read from the
989 	 * memory, thus we need a full memory barrier to ensure the ordering.
990 	 */
991 	mb();
992 
993 	REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
994 		 sc->spq_prod_idx);
995 
996 	mb();
997 }
998 
999 /**
1000  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
1001  *
1002  * @cmd:      command to check
1003  * @cmd_type: command type
1004  */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)1005 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
1006 {
1007 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
1008 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
1009 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
1010 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
1011 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
1012 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
1013 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
1014 		return TRUE;
1015 	} else {
1016 		return FALSE;
1017 	}
1018 }
1019 
1020 /**
1021  * bnx2x_sp_post - place a single command on an SP ring
1022  *
1023  * @sc:         driver handle
1024  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1025  * @cid:        SW CID the command is related to
1026  * @data_hi:    command private data address (high 32 bits)
1027  * @data_lo:    command private data address (low 32 bits)
1028  * @cmd_type:   command type (e.g. NONE, ETH)
1029  *
1030  * SP data is handled as if it's always an address pair, thus data fields are
1031  * not swapped to little endian in upper functions. Instead this function swaps
1032  * data as if it's two uint32 fields.
1033  */
1034 int
bnx2x_sp_post(struct bnx2x_softc * sc,int command,int cid,uint32_t data_hi,uint32_t data_lo,int cmd_type)1035 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1036 	    uint32_t data_lo, int cmd_type)
1037 {
1038 	struct eth_spe *spe;
1039 	uint16_t type;
1040 	int common;
1041 
1042 	common = bnx2x_is_contextless_ramrod(command, cmd_type);
1043 
1044 	if (common) {
1045 		if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1046 			PMD_DRV_LOG(INFO, sc, "EQ ring is full!");
1047 			return -1;
1048 		}
1049 	} else {
1050 		if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1051 			PMD_DRV_LOG(INFO, sc, "SPQ ring is full!");
1052 			return -1;
1053 		}
1054 	}
1055 
1056 	spe = bnx2x_sp_get_next(sc);
1057 
1058 	/* CID needs port number to be encoded int it */
1059 	spe->hdr.conn_and_cmd_data =
1060 	    htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1061 
1062 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1063 
1064 	/* TBD: Check if it works for VFs */
1065 	type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1066 		 SPE_HDR_FUNCTION_ID);
1067 
1068 	spe->hdr.type = htole16(type);
1069 
1070 	spe->data.update_data_addr.hi = htole32(data_hi);
1071 	spe->data.update_data_addr.lo = htole32(data_lo);
1072 
1073 	/*
1074 	 * It's ok if the actual decrement is issued towards the memory
1075 	 * somewhere between the lock and unlock. Thus no more explicit
1076 	 * memory barrier is needed.
1077 	 */
1078 	if (common) {
1079 		atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1080 	} else {
1081 		atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1082 	}
1083 
1084 	PMD_DRV_LOG(DEBUG, sc,
1085 		    "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1086 		    "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1087 		    sc->spq_prod_idx,
1088 		    (uint32_t) U64_HI(sc->spq_dma.paddr),
1089 		    (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1090 				(uint8_t *) sc->spq_prod_bd -
1091 				(uint8_t *) sc->spq), command, common,
1092 		    HW_CID(sc, cid), data_hi, data_lo, type,
1093 		    atomic_load_acq_long(&sc->cq_spq_left),
1094 		    atomic_load_acq_long(&sc->eq_spq_left));
1095 
1096 	/* RAMROD completion is processed in bnx2x_intr_legacy()
1097 	 * which can run from different contexts.
1098 	 * Ask bnx2x_intr_intr() to process RAMROD
1099 	 * completion whenever it gets scheduled.
1100 	 */
1101 	rte_atomic32_set(&sc->scan_fp, 1);
1102 	bnx2x_sp_prod_update(sc);
1103 
1104 	return 0;
1105 }
1106 
bnx2x_drv_pulse(struct bnx2x_softc * sc)1107 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1108 {
1109 	SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1110 		 sc->fw_drv_pulse_wr_seq);
1111 }
1112 
bnx2x_tx_queue_has_work(const struct bnx2x_fastpath * fp)1113 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1114 {
1115 	uint16_t hw_cons;
1116 	struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1117 
1118 	if (unlikely(!txq)) {
1119 		PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1120 		return 0;
1121 	}
1122 
1123 	mb();			/* status block fields can change */
1124 	hw_cons = le16toh(*fp->tx_cons_sb);
1125 	return hw_cons != txq->tx_pkt_head;
1126 }
1127 
bnx2x_has_tx_work(struct bnx2x_fastpath * fp)1128 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1129 {
1130 	/* expand this for multi-cos if ever supported */
1131 	return bnx2x_tx_queue_has_work(fp);
1132 }
1133 
bnx2x_has_rx_work(struct bnx2x_fastpath * fp)1134 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1135 {
1136 	uint16_t rx_cq_cons_sb;
1137 	struct bnx2x_rx_queue *rxq;
1138 	rxq = fp->sc->rx_queues[fp->index];
1139 	if (unlikely(!rxq)) {
1140 		PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1141 		return 0;
1142 	}
1143 
1144 	mb();			/* status block fields can change */
1145 	rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1146 	if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1147 		     MAX_RCQ_ENTRIES(rxq)))
1148 		rx_cq_cons_sb++;
1149 
1150 	PMD_RX_LOG(DEBUG, "hw CQ cons = %d, sw CQ cons = %d",
1151 		   rx_cq_cons_sb, rxq->rx_cq_head);
1152 
1153 	return rxq->rx_cq_head != rx_cq_cons_sb;
1154 }
1155 
1156 static void
bnx2x_sp_event(struct bnx2x_softc * sc,struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1157 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1158 	     union eth_rx_cqe *rr_cqe)
1159 {
1160 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1161 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1162 	enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1163 	struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1164 
1165 	PMD_DRV_LOG(DEBUG, sc,
1166 		    "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1167 		    fp->index, cid, command, sc->state,
1168 		    rr_cqe->ramrod_cqe.ramrod_type);
1169 
1170 	switch (command) {
1171 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1172 		PMD_DRV_LOG(DEBUG, sc, "got UPDATE ramrod. CID %d", cid);
1173 		drv_cmd = ECORE_Q_CMD_UPDATE;
1174 		break;
1175 
1176 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1177 		PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] setup ramrod", cid);
1178 		drv_cmd = ECORE_Q_CMD_SETUP;
1179 		break;
1180 
1181 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1182 		PMD_DRV_LOG(DEBUG, sc,
1183 			    "got MULTI[%d] tx-only setup ramrod", cid);
1184 		drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1185 		break;
1186 
1187 	case (RAMROD_CMD_ID_ETH_HALT):
1188 		PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] halt ramrod", cid);
1189 		drv_cmd = ECORE_Q_CMD_HALT;
1190 		break;
1191 
1192 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1193 		PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] terminate ramrod", cid);
1194 		drv_cmd = ECORE_Q_CMD_TERMINATE;
1195 		break;
1196 
1197 	case (RAMROD_CMD_ID_ETH_EMPTY):
1198 		PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] empty ramrod", cid);
1199 		drv_cmd = ECORE_Q_CMD_EMPTY;
1200 		break;
1201 
1202 	default:
1203 		PMD_DRV_LOG(DEBUG, sc,
1204 			    "ERROR: unexpected MC reply (%d)"
1205 			    "on fp[%d]", command, fp->index);
1206 		return;
1207 	}
1208 
1209 	if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1210 	    q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1211 		/*
1212 		 * q_obj->complete_cmd() failure means that this was
1213 		 * an unexpected completion.
1214 		 *
1215 		 * In this case we don't want to increase the sc->spq_left
1216 		 * because apparently we haven't sent this command the first
1217 		 * place.
1218 		 */
1219 		// rte_panic("Unexpected SP completion");
1220 		return;
1221 	}
1222 
1223 	atomic_add_acq_long(&sc->cq_spq_left, 1);
1224 
1225 	PMD_DRV_LOG(DEBUG, sc, "sc->cq_spq_left 0x%lx",
1226 		    atomic_load_acq_long(&sc->cq_spq_left));
1227 }
1228 
bnx2x_rxeof(struct bnx2x_softc * sc,struct bnx2x_fastpath * fp)1229 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1230 {
1231 	struct bnx2x_rx_queue *rxq;
1232 	uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1233 	uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1234 
1235 	rte_spinlock_lock(&(fp)->rx_mtx);
1236 
1237 	rxq = sc->rx_queues[fp->index];
1238 	if (!rxq) {
1239 		PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1240 		rte_spinlock_unlock(&(fp)->rx_mtx);
1241 		return 0;
1242 	}
1243 
1244 	/* CQ "next element" is of the size of the regular element */
1245 	hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1246 	if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1247 		     USABLE_RCQ_ENTRIES_PER_PAGE)) {
1248 		hw_cq_cons++;
1249 	}
1250 
1251 	bd_cons = rxq->rx_bd_head;
1252 	bd_prod = rxq->rx_bd_tail;
1253 	bd_prod_fw = bd_prod;
1254 	sw_cq_cons = rxq->rx_cq_head;
1255 	sw_cq_prod = rxq->rx_cq_tail;
1256 
1257 	/*
1258 	 * Memory barrier necessary as speculative reads of the rx
1259 	 * buffer can be ahead of the index in the status block
1260 	 */
1261 	rmb();
1262 
1263 	while (sw_cq_cons != hw_cq_cons) {
1264 		union eth_rx_cqe *cqe;
1265 		struct eth_fast_path_rx_cqe *cqe_fp;
1266 		uint8_t cqe_fp_flags;
1267 		enum eth_rx_cqe_type cqe_fp_type;
1268 
1269 		comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1270 		bd_prod = RX_BD(bd_prod, rxq);
1271 		bd_cons = RX_BD(bd_cons, rxq);
1272 
1273 		cqe = &rxq->cq_ring[comp_ring_cons];
1274 		cqe_fp = &cqe->fast_path_cqe;
1275 		cqe_fp_flags = cqe_fp->type_error_flags;
1276 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1277 
1278 		/* is this a slowpath msg? */
1279 		if (CQE_TYPE_SLOW(cqe_fp_type)) {
1280 			bnx2x_sp_event(sc, fp, cqe);
1281 			goto next_cqe;
1282 		}
1283 
1284 		/* is this an error packet? */
1285 		if (unlikely(cqe_fp_flags &
1286 			     ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1287 			PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1288 				   cqe_fp_flags, sw_cq_cons);
1289 			goto next_rx;
1290 		}
1291 
1292 		PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1293 
1294 next_rx:
1295 		bd_cons = NEXT_RX_BD(bd_cons);
1296 		bd_prod = NEXT_RX_BD(bd_prod);
1297 		bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1298 
1299 next_cqe:
1300 		sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1301 		sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1302 
1303 	}			/* while work to do */
1304 
1305 	rxq->rx_bd_head = bd_cons;
1306 	rxq->rx_bd_tail = bd_prod_fw;
1307 	rxq->rx_cq_head = sw_cq_cons;
1308 	rxq->rx_cq_tail = sw_cq_prod;
1309 
1310 	PMD_RX_LOG(DEBUG, "BD prod = %d, sw CQ prod = %d",
1311 		   bd_prod_fw, sw_cq_prod);
1312 
1313 	/* Update producers */
1314 	bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1315 
1316 	rte_spinlock_unlock(&(fp)->rx_mtx);
1317 
1318 	return sw_cq_cons != hw_cq_cons;
1319 }
1320 
1321 static uint16_t
bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath * fp,struct bnx2x_tx_queue * txq,uint16_t pkt_idx,uint16_t bd_idx)1322 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1323 		uint16_t pkt_idx, uint16_t bd_idx)
1324 {
1325 	struct eth_tx_start_bd *tx_start_bd =
1326 	    &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1327 	uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1328 	struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1329 
1330 	if (likely(tx_mbuf != NULL)) {
1331 		rte_pktmbuf_free_seg(tx_mbuf);
1332 	} else {
1333 		PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1334 			   fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1335 	}
1336 
1337 	txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1338 	txq->nb_tx_avail += nbd;
1339 
1340 	while (nbd--)
1341 		bd_idx = NEXT_TX_BD(bd_idx);
1342 
1343 	return bd_idx;
1344 }
1345 
1346 /* processes transmit completions */
bnx2x_txeof(__rte_unused struct bnx2x_softc * sc,struct bnx2x_fastpath * fp)1347 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1348 {
1349 	uint16_t bd_cons, hw_cons, sw_cons;
1350 	__rte_unused uint16_t tx_bd_avail;
1351 
1352 	struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1353 
1354 	if (unlikely(!txq)) {
1355 		PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1356 		return 0;
1357 	}
1358 
1359 	bd_cons = txq->tx_bd_head;
1360 	hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1361 	sw_cons = txq->tx_pkt_head;
1362 
1363 	while (sw_cons != hw_cons) {
1364 		bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1365 		sw_cons++;
1366 	}
1367 
1368 	txq->tx_pkt_head = sw_cons;
1369 	txq->tx_bd_head = bd_cons;
1370 
1371 	tx_bd_avail = txq->nb_tx_avail;
1372 
1373 	PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1374 		   "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1375 		   fp->index, tx_bd_avail, hw_cons,
1376 		   txq->tx_pkt_head, txq->tx_pkt_tail,
1377 		   txq->tx_bd_head, txq->tx_bd_tail);
1378 	return TRUE;
1379 }
1380 
bnx2x_drain_tx_queues(struct bnx2x_softc * sc)1381 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1382 {
1383 	struct bnx2x_fastpath *fp;
1384 	int i, count;
1385 
1386 	/* wait until all TX fastpath tasks have completed */
1387 	for (i = 0; i < sc->num_queues; i++) {
1388 		fp = &sc->fp[i];
1389 
1390 		count = 1000;
1391 
1392 		while (bnx2x_has_tx_work(fp)) {
1393 			bnx2x_txeof(sc, fp);
1394 
1395 			if (count == 0) {
1396 				PMD_TX_LOG(ERR,
1397 					   "Timeout waiting for fp[%d] "
1398 					   "transmits to complete!", i);
1399 				rte_panic("tx drain failure");
1400 				return;
1401 			}
1402 
1403 			count--;
1404 			DELAY(1000);
1405 			rmb();
1406 		}
1407 	}
1408 
1409 	return;
1410 }
1411 
1412 static int
bnx2x_del_all_macs(struct bnx2x_softc * sc,struct ecore_vlan_mac_obj * mac_obj,int mac_type,uint8_t wait_for_comp)1413 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1414 		 int mac_type, uint8_t wait_for_comp)
1415 {
1416 	uint32_t ramrod_flags = 0, vlan_mac_flags = 0;
1417 	int rc;
1418 
1419 	/* wait for completion of requested */
1420 	if (wait_for_comp) {
1421 		rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &ramrod_flags);
1422 	}
1423 
1424 	/* Set the mac type of addresses we want to clear */
1425 	rte_bit_relaxed_set32(mac_type, &vlan_mac_flags);
1426 
1427 	rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1428 	if (rc < 0)
1429 		PMD_DRV_LOG(ERR, sc, "Failed to delete MACs (%d)", rc);
1430 
1431 	return rc;
1432 }
1433 
1434 static int
bnx2x_fill_accept_flags(struct bnx2x_softc * sc,uint32_t rx_mode,uint32_t * rx_accept_flags,uint32_t * tx_accept_flags)1435 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1436 			uint32_t *rx_accept_flags, uint32_t *tx_accept_flags)
1437 {
1438 	/* Clear the flags first */
1439 	*rx_accept_flags = 0;
1440 	*tx_accept_flags = 0;
1441 
1442 	switch (rx_mode) {
1443 	case BNX2X_RX_MODE_NONE:
1444 		/*
1445 		 * 'drop all' supersedes any accept flags that may have been
1446 		 * passed to the function.
1447 		 */
1448 		break;
1449 
1450 	case BNX2X_RX_MODE_NORMAL:
1451 		rte_bit_relaxed_set32(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1452 		rte_bit_relaxed_set32(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1453 		rte_bit_relaxed_set32(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1454 
1455 		/* internal switching mode */
1456 		rte_bit_relaxed_set32(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1457 		rte_bit_relaxed_set32(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1458 		rte_bit_relaxed_set32(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1459 
1460 		break;
1461 
1462 	case BNX2X_RX_MODE_ALLMULTI:
1463 		rte_bit_relaxed_set32(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1464 		rte_bit_relaxed_set32(ECORE_ACCEPT_ALL_MULTICAST,
1465 				      rx_accept_flags);
1466 		rte_bit_relaxed_set32(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1467 
1468 		/* internal switching mode */
1469 		rte_bit_relaxed_set32(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1470 		rte_bit_relaxed_set32(ECORE_ACCEPT_ALL_MULTICAST,
1471 				      tx_accept_flags);
1472 		rte_bit_relaxed_set32(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1473 
1474 		break;
1475 
1476 	case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1477 	case BNX2X_RX_MODE_PROMISC:
1478 		/*
1479 		 * According to definition of SI mode, iface in promisc mode
1480 		 * should receive matched and unmatched (in resolution of port)
1481 		 * unicast packets.
1482 		 */
1483 		rte_bit_relaxed_set32(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1484 		rte_bit_relaxed_set32(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1485 		rte_bit_relaxed_set32(ECORE_ACCEPT_ALL_MULTICAST,
1486 				      rx_accept_flags);
1487 		rte_bit_relaxed_set32(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1488 
1489 		/* internal switching mode */
1490 		rte_bit_relaxed_set32(ECORE_ACCEPT_ALL_MULTICAST,
1491 				      tx_accept_flags);
1492 		rte_bit_relaxed_set32(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1493 
1494 		if (IS_MF_SI(sc)) {
1495 			rte_bit_relaxed_set32(ECORE_ACCEPT_ALL_UNICAST,
1496 					tx_accept_flags);
1497 		} else {
1498 			rte_bit_relaxed_set32(ECORE_ACCEPT_UNICAST,
1499 					      tx_accept_flags);
1500 		}
1501 
1502 		break;
1503 
1504 	default:
1505 		PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1506 		return -1;
1507 	}
1508 
1509 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1510 	if (rx_mode != BNX2X_RX_MODE_NONE) {
1511 		rte_bit_relaxed_set32(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1512 		rte_bit_relaxed_set32(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 static int
bnx2x_set_q_rx_mode(struct bnx2x_softc * sc,uint8_t cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)1519 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1520 		  unsigned long rx_mode_flags,
1521 		  unsigned long rx_accept_flags,
1522 		  unsigned long tx_accept_flags, unsigned long ramrod_flags)
1523 {
1524 	struct ecore_rx_mode_ramrod_params ramrod_param;
1525 	int rc;
1526 
1527 	memset(&ramrod_param, 0, sizeof(ramrod_param));
1528 
1529 	/* Prepare ramrod parameters */
1530 	ramrod_param.cid = 0;
1531 	ramrod_param.cl_id = cl_id;
1532 	ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1533 	ramrod_param.func_id = SC_FUNC(sc);
1534 
1535 	ramrod_param.pstate = &sc->sp_state;
1536 	ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1537 
1538 	ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1539 	ramrod_param.rdata_mapping =
1540 	    (rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1541 	    rte_bit_relaxed_set32(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1542 
1543 	ramrod_param.ramrod_flags = ramrod_flags;
1544 	ramrod_param.rx_mode_flags = rx_mode_flags;
1545 
1546 	ramrod_param.rx_accept_flags = rx_accept_flags;
1547 	ramrod_param.tx_accept_flags = tx_accept_flags;
1548 
1549 	rc = ecore_config_rx_mode(sc, &ramrod_param);
1550 	if (rc < 0) {
1551 		PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1552 		return rc;
1553 	}
1554 
1555 	return 0;
1556 }
1557 
bnx2x_set_storm_rx_mode(struct bnx2x_softc * sc)1558 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1559 {
1560 	uint32_t rx_mode_flags = 0, ramrod_flags = 0;
1561 	uint32_t rx_accept_flags = 0, tx_accept_flags = 0;
1562 	int rc;
1563 
1564 	rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1565 				   &tx_accept_flags);
1566 	if (rc) {
1567 		return rc;
1568 	}
1569 
1570 	rte_bit_relaxed_set32(RAMROD_RX, &ramrod_flags);
1571 	rte_bit_relaxed_set32(RAMROD_TX, &ramrod_flags);
1572 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &ramrod_flags);
1573 
1574 	return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1575 				 rx_accept_flags, tx_accept_flags,
1576 				 ramrod_flags);
1577 }
1578 
1579 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x_softc * sc)1580 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1581 {
1582 	int path = SC_PATH(sc);
1583 	int port = SC_PORT(sc);
1584 
1585 	PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1586 		    path, load_count[path][0], load_count[path][1],
1587 		    load_count[path][2]);
1588 
1589 	load_count[path][0]++;
1590 	load_count[path][1 + port]++;
1591 	PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1592 		    path, load_count[path][0], load_count[path][1],
1593 		    load_count[path][2]);
1594 	if (load_count[path][0] == 1)
1595 		return FW_MSG_CODE_DRV_LOAD_COMMON;
1596 	else if (load_count[path][1 + port] == 1)
1597 		return FW_MSG_CODE_DRV_LOAD_PORT;
1598 	else
1599 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1600 }
1601 
1602 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_unload_no_mcp(struct bnx2x_softc * sc)1603 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1604 {
1605 	int port = SC_PORT(sc);
1606 	int path = SC_PATH(sc);
1607 
1608 	PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1609 		    path, load_count[path][0], load_count[path][1],
1610 		    load_count[path][2]);
1611 	load_count[path][0]--;
1612 	load_count[path][1 + port]--;
1613 	PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1614 		    path, load_count[path][0], load_count[path][1],
1615 		    load_count[path][2]);
1616 	if (load_count[path][0] == 0) {
1617 		return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1618 	} else if (load_count[path][1 + port] == 0) {
1619 		return FW_MSG_CODE_DRV_UNLOAD_PORT;
1620 	} else {
1621 		return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1622 	}
1623 }
1624 
1625 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
bnx2x_send_unload_req(struct bnx2x_softc * sc,int unload_mode)1626 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1627 {
1628 	uint32_t reset_code = 0;
1629 
1630 	/* Select the UNLOAD request mode */
1631 	if (unload_mode == UNLOAD_NORMAL) {
1632 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1633 	} else {
1634 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1635 	}
1636 
1637 	/* Send the request to the MCP */
1638 	if (!BNX2X_NOMCP(sc)) {
1639 		reset_code = bnx2x_fw_command(sc, reset_code, 0);
1640 	} else {
1641 		reset_code = bnx2x_nic_unload_no_mcp(sc);
1642 	}
1643 
1644 	return reset_code;
1645 }
1646 
1647 /* send UNLOAD_DONE command to the MCP */
bnx2x_send_unload_done(struct bnx2x_softc * sc,uint8_t keep_link)1648 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1649 {
1650 	uint32_t reset_param =
1651 	    keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1652 
1653 	/* Report UNLOAD_DONE to MCP */
1654 	if (!BNX2X_NOMCP(sc)) {
1655 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1656 	}
1657 }
1658 
bnx2x_func_wait_started(struct bnx2x_softc * sc)1659 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1660 {
1661 	int tout = 50;
1662 
1663 	if (!sc->port.pmf) {
1664 		return 0;
1665 	}
1666 
1667 	/*
1668 	 * (assumption: No Attention from MCP at this stage)
1669 	 * PMF probably in the middle of TX disable/enable transaction
1670 	 * 1. Sync IRS for default SB
1671 	 * 2. Sync SP queue - this guarantees us that attention handling started
1672 	 * 3. Wait, that TX disable/enable transaction completes
1673 	 *
1674 	 * 1+2 guarantee that if DCBX attention was scheduled it already changed
1675 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1676 	 * received completion for the transaction the state is TX_STOPPED.
1677 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
1678 	 * transaction.
1679 	 */
1680 
1681 	while (ecore_func_get_state(sc, &sc->func_obj) !=
1682 	       ECORE_F_STATE_STARTED && tout--) {
1683 		DELAY(20000);
1684 	}
1685 
1686 	if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1687 		/*
1688 		 * Failed to complete the transaction in a "good way"
1689 		 * Force both transactions with CLR bit.
1690 		 */
1691 		struct ecore_func_state_params func_params = { NULL };
1692 
1693 		PMD_DRV_LOG(NOTICE, sc, "Unexpected function state! "
1694 			    "Forcing STARTED-->TX_STOPPED-->STARTED");
1695 
1696 		func_params.f_obj = &sc->func_obj;
1697 		rte_bit_relaxed_set32(RAMROD_DRV_CLR_ONLY,
1698 				      &func_params.ramrod_flags);
1699 
1700 		/* STARTED-->TX_STOPPED */
1701 		func_params.cmd = ECORE_F_CMD_TX_STOP;
1702 		ecore_func_state_change(sc, &func_params);
1703 
1704 		/* TX_STOPPED-->STARTED */
1705 		func_params.cmd = ECORE_F_CMD_TX_START;
1706 		return ecore_func_state_change(sc, &func_params);
1707 	}
1708 
1709 	return 0;
1710 }
1711 
bnx2x_stop_queue(struct bnx2x_softc * sc,int index)1712 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1713 {
1714 	struct bnx2x_fastpath *fp = &sc->fp[index];
1715 	struct ecore_queue_state_params q_params = { NULL };
1716 	int rc;
1717 
1718 	PMD_DRV_LOG(DEBUG, sc, "stopping queue %d cid %d", index, fp->index);
1719 
1720 	q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1721 	/* We want to wait for completion in this context */
1722 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1723 
1724 	/* Stop the primary connection: */
1725 
1726 	/* ...halt the connection */
1727 	q_params.cmd = ECORE_Q_CMD_HALT;
1728 	rc = ecore_queue_state_change(sc, &q_params);
1729 	if (rc) {
1730 		return rc;
1731 	}
1732 
1733 	/* ...terminate the connection */
1734 	q_params.cmd = ECORE_Q_CMD_TERMINATE;
1735 	memset(&q_params.params.terminate, 0,
1736 	       sizeof(q_params.params.terminate));
1737 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1738 	rc = ecore_queue_state_change(sc, &q_params);
1739 	if (rc) {
1740 		return rc;
1741 	}
1742 
1743 	/* ...delete cfc entry */
1744 	q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1745 	memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1746 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1747 	return ecore_queue_state_change(sc, &q_params);
1748 }
1749 
1750 /* wait for the outstanding SP commands */
bnx2x_wait_sp_comp(struct bnx2x_softc * sc,uint32_t mask)1751 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, uint32_t mask)
1752 {
1753 	uint32_t tmp;
1754 	int tout = 5000;	/* wait for 5 secs tops */
1755 
1756 	while (tout--) {
1757 		mb();
1758 		if (!(atomic_load_acq_int(&sc->sp_state) & mask))
1759 			return TRUE;
1760 
1761 		DELAY(1000);
1762 	}
1763 
1764 	mb();
1765 
1766 	tmp = atomic_load_acq_int(&sc->sp_state);
1767 	if (tmp & mask) {
1768 		PMD_DRV_LOG(INFO, sc, "Filtering completion timed out: "
1769 			    "sp_state 0x%x, mask 0x%x", tmp, mask);
1770 		return FALSE;
1771 	}
1772 
1773 	return FALSE;
1774 }
1775 
bnx2x_func_stop(struct bnx2x_softc * sc)1776 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1777 {
1778 	struct ecore_func_state_params func_params = { NULL };
1779 	int rc;
1780 
1781 	/* prepare parameters for function state transitions */
1782 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1783 	func_params.f_obj = &sc->func_obj;
1784 	func_params.cmd = ECORE_F_CMD_STOP;
1785 
1786 	/*
1787 	 * Try to stop the function the 'good way'. If it fails (in case
1788 	 * of a parity error during bnx2x_chip_cleanup()) and we are
1789 	 * not in a debug mode, perform a state transaction in order to
1790 	 * enable further HW_RESET transaction.
1791 	 */
1792 	rc = ecore_func_state_change(sc, &func_params);
1793 	if (rc) {
1794 		PMD_DRV_LOG(NOTICE, sc, "FUNC_STOP ramrod failed. "
1795 			    "Running a dry transaction");
1796 		rte_bit_relaxed_set32(RAMROD_DRV_CLR_ONLY,
1797 				      &func_params.ramrod_flags);
1798 		return ecore_func_state_change(sc, &func_params);
1799 	}
1800 
1801 	return 0;
1802 }
1803 
bnx2x_reset_hw(struct bnx2x_softc * sc,uint32_t load_code)1804 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1805 {
1806 	struct ecore_func_state_params func_params = { NULL };
1807 
1808 	/* Prepare parameters for function state transitions */
1809 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1810 
1811 	func_params.f_obj = &sc->func_obj;
1812 	func_params.cmd = ECORE_F_CMD_HW_RESET;
1813 
1814 	func_params.params.hw_init.load_phase = load_code;
1815 
1816 	return ecore_func_state_change(sc, &func_params);
1817 }
1818 
bnx2x_int_disable_sync(struct bnx2x_softc * sc,int disable_hw)1819 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1820 {
1821 	if (disable_hw) {
1822 		/* prevent the HW from sending interrupts */
1823 		bnx2x_int_disable(sc);
1824 	}
1825 }
1826 
1827 static void
bnx2x_chip_cleanup(struct bnx2x_softc * sc,uint32_t unload_mode,uint8_t keep_link)1828 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1829 {
1830 	int port = SC_PORT(sc);
1831 	struct ecore_mcast_ramrod_params rparam = { NULL };
1832 	uint32_t reset_code;
1833 	int i, rc = 0;
1834 
1835 	bnx2x_drain_tx_queues(sc);
1836 
1837 	/* give HW time to discard old tx messages */
1838 	DELAY(1000);
1839 
1840 	/* Clean all ETH MACs */
1841 	rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1842 			      FALSE);
1843 	if (rc < 0) {
1844 		PMD_DRV_LOG(NOTICE, sc,
1845 			    "Failed to delete all ETH MACs (%d)", rc);
1846 	}
1847 
1848 	/* Clean up UC list  */
1849 	rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1850 			      TRUE);
1851 	if (rc < 0) {
1852 		PMD_DRV_LOG(NOTICE, sc,
1853 			    "Failed to delete UC MACs list (%d)", rc);
1854 	}
1855 
1856 	/* Disable LLH */
1857 	REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1858 
1859 	/* Set "drop all" to stop Rx */
1860 
1861 	/*
1862 	 * We need to take the if_maddr_lock() here in order to prevent
1863 	 * a race between the completion code and this code.
1864 	 */
1865 
1866 	if (rte_bit_relaxed_get32(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state))
1867 		rte_bit_relaxed_set32(ECORE_FILTER_RX_MODE_SCHED,
1868 				      &sc->sp_state);
1869 	else
1870 		bnx2x_set_storm_rx_mode(sc);
1871 
1872 	/* Clean up multicast configuration */
1873 	rparam.mcast_obj = &sc->mcast_obj;
1874 	rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1875 	if (rc < 0) {
1876 		PMD_DRV_LOG(NOTICE, sc,
1877 			    "Failed to send DEL MCAST command (%d)", rc);
1878 	}
1879 
1880 	/*
1881 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
1882 	 * this function should perform FUNCTION, PORT, or COMMON HW
1883 	 * reset.
1884 	 */
1885 	reset_code = bnx2x_send_unload_req(sc, unload_mode);
1886 
1887 	/*
1888 	 * (assumption: No Attention from MCP at this stage)
1889 	 * PMF probably in the middle of TX disable/enable transaction
1890 	 */
1891 	rc = bnx2x_func_wait_started(sc);
1892 	if (rc) {
1893 		PMD_DRV_LOG(NOTICE, sc, "bnx2x_func_wait_started failed");
1894 	}
1895 
1896 	/*
1897 	 * Close multi and leading connections
1898 	 * Completions for ramrods are collected in a synchronous way
1899 	 */
1900 	for (i = 0; i < sc->num_queues; i++) {
1901 		if (bnx2x_stop_queue(sc, i)) {
1902 			goto unload_error;
1903 		}
1904 	}
1905 
1906 	/*
1907 	 * If SP settings didn't get completed so far - something
1908 	 * very wrong has happen.
1909 	 */
1910 	if (!bnx2x_wait_sp_comp(sc, ~0x0U))
1911 		PMD_DRV_LOG(NOTICE, sc, "Common slow path ramrods got stuck!");
1912 
1913 unload_error:
1914 
1915 	rc = bnx2x_func_stop(sc);
1916 	if (rc) {
1917 		PMD_DRV_LOG(NOTICE, sc, "Function stop failed!");
1918 	}
1919 
1920 	/* disable HW interrupts */
1921 	bnx2x_int_disable_sync(sc, TRUE);
1922 
1923 	/* Reset the chip */
1924 	rc = bnx2x_reset_hw(sc, reset_code);
1925 	if (rc) {
1926 		PMD_DRV_LOG(NOTICE, sc, "Hardware reset failed");
1927 	}
1928 
1929 	/* Report UNLOAD_DONE to MCP */
1930 	bnx2x_send_unload_done(sc, keep_link);
1931 }
1932 
bnx2x_disable_close_the_gate(struct bnx2x_softc * sc)1933 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1934 {
1935 	uint32_t val;
1936 
1937 	PMD_DRV_LOG(DEBUG, sc, "Disabling 'close the gates'");
1938 
1939 	val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1940 	val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1941 		 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1942 	REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1943 }
1944 
1945 /*
1946  * Cleans the object that have internal lists without sending
1947  * ramrods. Should be run when interrupts are disabled.
1948  */
bnx2x_squeeze_objects(struct bnx2x_softc * sc)1949 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1950 {
1951 	uint32_t ramrod_flags = 0, vlan_mac_flags = 0;
1952 	struct ecore_mcast_ramrod_params rparam = { NULL };
1953 	struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1954 	int rc;
1955 
1956 	/* Cleanup MACs' object first... */
1957 
1958 	/* Wait for completion of requested */
1959 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &ramrod_flags);
1960 	/* Perform a dry cleanup */
1961 	rte_bit_relaxed_set32(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1962 
1963 	/* Clean ETH primary MAC */
1964 	rte_bit_relaxed_set32(ECORE_ETH_MAC, &vlan_mac_flags);
1965 	rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1966 				 &ramrod_flags);
1967 	if (rc != 0) {
1968 		PMD_DRV_LOG(NOTICE, sc, "Failed to clean ETH MACs (%d)", rc);
1969 	}
1970 
1971 	/* Cleanup UC list */
1972 	vlan_mac_flags = 0;
1973 	rte_bit_relaxed_set32(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1974 	rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1975 	if (rc != 0) {
1976 		PMD_DRV_LOG(NOTICE, sc,
1977 			    "Failed to clean UC list MACs (%d)", rc);
1978 	}
1979 
1980 	/* Now clean mcast object... */
1981 
1982 	rparam.mcast_obj = &sc->mcast_obj;
1983 	rte_bit_relaxed_set32(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1984 
1985 	/* Add a DEL command... */
1986 	rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1987 	if (rc < 0) {
1988 		PMD_DRV_LOG(NOTICE, sc,
1989 			    "Failed to send DEL MCAST command (%d)", rc);
1990 	}
1991 
1992 	/* now wait until all pending commands are cleared */
1993 
1994 	rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1995 	while (rc != 0) {
1996 		if (rc < 0) {
1997 			PMD_DRV_LOG(NOTICE, sc,
1998 				    "Failed to clean MCAST object (%d)", rc);
1999 			return;
2000 		}
2001 
2002 		rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
2003 	}
2004 }
2005 
2006 /* stop the controller */
2007 __rte_noinline
2008 int
bnx2x_nic_unload(struct bnx2x_softc * sc,uint32_t unload_mode,uint8_t keep_link)2009 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
2010 {
2011 	uint8_t global = FALSE;
2012 	uint32_t val;
2013 
2014 	PMD_INIT_FUNC_TRACE(sc);
2015 
2016 	PMD_DRV_LOG(DEBUG, sc, "Starting NIC unload...");
2017 
2018 	/* mark driver as unloaded in shmem2 */
2019 	if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
2020 		val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
2021 		SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
2022 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2023 	}
2024 
2025 	if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
2026 	    (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
2027 		/*
2028 		 * We can get here if the driver has been unloaded
2029 		 * during parity error recovery and is either waiting for a
2030 		 * leader to complete or for other functions to unload and
2031 		 * then ifconfig down has been issued. In this case we want to
2032 		 * unload and let other functions to complete a recovery
2033 		 * process.
2034 		 */
2035 		sc->recovery_state = BNX2X_RECOVERY_DONE;
2036 		sc->is_leader = 0;
2037 		bnx2x_release_leader_lock(sc);
2038 		mb();
2039 
2040 		PMD_DRV_LOG(NOTICE, sc, "Can't unload in closed or error state");
2041 		return -1;
2042 	}
2043 
2044 	/*
2045 	 * Nothing to do during unload if previous bnx2x_nic_load()
2046 	 * did not complete successfully - all resources are released.
2047 	 */
2048 	if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2049 		return 0;
2050 	}
2051 
2052 	sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2053 	mb();
2054 
2055 	sc->rx_mode = BNX2X_RX_MODE_NONE;
2056 	bnx2x_set_rx_mode(sc);
2057 	mb();
2058 
2059 	if (IS_PF(sc)) {
2060 		/* set ALWAYS_ALIVE bit in shmem */
2061 		sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2062 
2063 		bnx2x_drv_pulse(sc);
2064 
2065 		bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2066 		bnx2x_save_statistics(sc);
2067 	}
2068 
2069 	/* wait till consumers catch up with producers in all queues */
2070 	bnx2x_drain_tx_queues(sc);
2071 
2072 	/* if VF indicate to PF this function is going down (PF will delete sp
2073 	 * elements and clear initializations
2074 	 */
2075 	if (IS_VF(sc)) {
2076 		bnx2x_vf_unload(sc);
2077 	} else if (unload_mode != UNLOAD_RECOVERY) {
2078 		/* if this is a normal/close unload need to clean up chip */
2079 		bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2080 	} else {
2081 		/* Send the UNLOAD_REQUEST to the MCP */
2082 		bnx2x_send_unload_req(sc, unload_mode);
2083 
2084 		/*
2085 		 * Prevent transactions to host from the functions on the
2086 		 * engine that doesn't reset global blocks in case of global
2087 		 * attention once global blocks are reset and gates are opened
2088 		 * (the engine which leader will perform the recovery
2089 		 * last).
2090 		 */
2091 		if (!CHIP_IS_E1x(sc)) {
2092 			bnx2x_pf_disable(sc);
2093 		}
2094 
2095 		/* disable HW interrupts */
2096 		bnx2x_int_disable_sync(sc, TRUE);
2097 
2098 		/* Report UNLOAD_DONE to MCP */
2099 		bnx2x_send_unload_done(sc, FALSE);
2100 	}
2101 
2102 	/*
2103 	 * At this stage no more interrupts will arrive so we may safely clean
2104 	 * the queueable objects here in case they failed to get cleaned so far.
2105 	 */
2106 	if (IS_PF(sc)) {
2107 		bnx2x_squeeze_objects(sc);
2108 	}
2109 
2110 	/* There should be no more pending SP commands at this stage */
2111 	sc->sp_state = 0;
2112 
2113 	sc->port.pmf = 0;
2114 
2115 	if (IS_PF(sc)) {
2116 		bnx2x_free_mem(sc);
2117 	}
2118 
2119 	/* free the host hardware/software hsi structures */
2120 	bnx2x_free_hsi_mem(sc);
2121 
2122 	bnx2x_free_fw_stats_mem(sc);
2123 
2124 	sc->state = BNX2X_STATE_CLOSED;
2125 
2126 	/*
2127 	 * Check if there are pending parity attentions. If there are - set
2128 	 * RECOVERY_IN_PROGRESS.
2129 	 */
2130 	if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2131 		bnx2x_set_reset_in_progress(sc);
2132 
2133 		/* Set RESET_IS_GLOBAL if needed */
2134 		if (global) {
2135 			bnx2x_set_reset_global(sc);
2136 		}
2137 	}
2138 
2139 	/*
2140 	 * The last driver must disable a "close the gate" if there is no
2141 	 * parity attention or "process kill" pending.
2142 	 */
2143 	if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2144 	    bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2145 		bnx2x_disable_close_the_gate(sc);
2146 	}
2147 
2148 	PMD_DRV_LOG(DEBUG, sc, "Ended NIC unload");
2149 
2150 	return 0;
2151 }
2152 
2153 /*
2154  * Encapsulate an mbuf cluster into the Tx BD chain and makes the memory
2155  * visible to the controller.
2156  *
2157  * If an mbuf is submitted to this routine and cannot be given to the
2158  * controller (e.g. it has too many fragments) then the function may free
2159  * the mbuf and return to the caller.
2160  *
2161  * Returns:
2162  *     int: Number of TX BDs used for the mbuf
2163  *
2164  *   Note the side effect that an mbuf may be freed if it causes a problem.
2165  */
bnx2x_tx_encap(struct bnx2x_tx_queue * txq,struct rte_mbuf * m0)2166 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2167 {
2168 	struct eth_tx_start_bd *tx_start_bd;
2169 	uint16_t bd_prod, pkt_prod;
2170 	struct bnx2x_softc *sc;
2171 	uint32_t nbds = 0;
2172 
2173 	sc = txq->sc;
2174 	bd_prod = txq->tx_bd_tail;
2175 	pkt_prod = txq->tx_pkt_tail;
2176 
2177 	txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2178 
2179 	tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2180 
2181 	tx_start_bd->addr_lo =
2182 	    rte_cpu_to_le_32(U64_LO(rte_mbuf_data_iova(m0)));
2183 	tx_start_bd->addr_hi =
2184 	    rte_cpu_to_le_32(U64_HI(rte_mbuf_data_iova(m0)));
2185 	tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2186 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2187 	tx_start_bd->general_data =
2188 	    (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2189 
2190 	tx_start_bd->nbd = rte_cpu_to_le_16(2);
2191 
2192 	if (m0->ol_flags & RTE_MBUF_F_TX_VLAN) {
2193 		tx_start_bd->vlan_or_ethertype =
2194 		    rte_cpu_to_le_16(m0->vlan_tci);
2195 		tx_start_bd->bd_flags.as_bitfield |=
2196 		    (X_ETH_OUTBAND_VLAN <<
2197 		     ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2198 	} else {
2199 		if (IS_PF(sc))
2200 			tx_start_bd->vlan_or_ethertype =
2201 			    rte_cpu_to_le_16(pkt_prod);
2202 		else {
2203 			/* when transmitting in a vf, start bd
2204 			 * must hold the ethertype for fw to enforce it
2205 			 */
2206 			struct rte_ether_hdr *eh =
2207 			    rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2208 
2209 			/* Still need to consider inband vlan for enforced */
2210 			if (eh->ether_type ==
2211 					rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) {
2212 				struct rte_vlan_hdr *vh =
2213 					(struct rte_vlan_hdr *)(eh + 1);
2214 				tx_start_bd->bd_flags.as_bitfield |=
2215 					(X_ETH_INBAND_VLAN <<
2216 					ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2217 				tx_start_bd->vlan_or_ethertype =
2218 					rte_cpu_to_le_16(ntohs(vh->vlan_tci));
2219 			} else {
2220 				tx_start_bd->vlan_or_ethertype =
2221 					(rte_cpu_to_le_16
2222 					(rte_be_to_cpu_16(eh->ether_type)));
2223 			}
2224 		}
2225 	}
2226 
2227 	bd_prod = NEXT_TX_BD(bd_prod);
2228 	if (IS_VF(sc)) {
2229 		struct eth_tx_parse_bd_e2 *tx_parse_bd;
2230 		const struct rte_ether_hdr *eh =
2231 		    rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2232 		uint8_t mac_type = UNICAST_ADDRESS;
2233 
2234 		tx_parse_bd =
2235 		    &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2236 		if (rte_is_multicast_ether_addr(&eh->dst_addr)) {
2237 			if (rte_is_broadcast_ether_addr(&eh->dst_addr))
2238 				mac_type = BROADCAST_ADDRESS;
2239 			else
2240 				mac_type = MULTICAST_ADDRESS;
2241 		}
2242 		tx_parse_bd->parsing_data =
2243 		    (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2244 
2245 		rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2246 			   &eh->dst_addr.addr_bytes[0], 2);
2247 		rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2248 			   &eh->dst_addr.addr_bytes[2], 2);
2249 		rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2250 			   &eh->dst_addr.addr_bytes[4], 2);
2251 		rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2252 			   &eh->src_addr.addr_bytes[0], 2);
2253 		rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2254 			   &eh->src_addr.addr_bytes[2], 2);
2255 		rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2256 			   &eh->src_addr.addr_bytes[4], 2);
2257 
2258 		tx_parse_bd->data.mac_addr.dst_hi =
2259 		    rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2260 		tx_parse_bd->data.mac_addr.dst_mid =
2261 		    rte_cpu_to_be_16(tx_parse_bd->data.
2262 				     mac_addr.dst_mid);
2263 		tx_parse_bd->data.mac_addr.dst_lo =
2264 		    rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2265 		tx_parse_bd->data.mac_addr.src_hi =
2266 		    rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2267 		tx_parse_bd->data.mac_addr.src_mid =
2268 		    rte_cpu_to_be_16(tx_parse_bd->data.
2269 				     mac_addr.src_mid);
2270 		tx_parse_bd->data.mac_addr.src_lo =
2271 		    rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2272 
2273 		PMD_TX_LOG(DEBUG,
2274 			   "PBD dst %x %x %x src %x %x %x p_data %x",
2275 			   tx_parse_bd->data.mac_addr.dst_hi,
2276 			   tx_parse_bd->data.mac_addr.dst_mid,
2277 			   tx_parse_bd->data.mac_addr.dst_lo,
2278 			   tx_parse_bd->data.mac_addr.src_hi,
2279 			   tx_parse_bd->data.mac_addr.src_mid,
2280 			   tx_parse_bd->data.mac_addr.src_lo,
2281 			   tx_parse_bd->parsing_data);
2282 	}
2283 
2284 	PMD_TX_LOG(DEBUG,
2285 		   "start bd: nbytes %d flags %x vlan %x",
2286 		   tx_start_bd->nbytes,
2287 		   tx_start_bd->bd_flags.as_bitfield,
2288 		   tx_start_bd->vlan_or_ethertype);
2289 
2290 	bd_prod = NEXT_TX_BD(bd_prod);
2291 	pkt_prod++;
2292 
2293 	if (TX_IDX(bd_prod) < 2)
2294 		nbds++;
2295 
2296 	txq->nb_tx_avail -= 2;
2297 	txq->tx_bd_tail = bd_prod;
2298 	txq->tx_pkt_tail = pkt_prod;
2299 
2300 	return nbds + 2;
2301 }
2302 
bnx2x_cid_ilt_lines(struct bnx2x_softc * sc)2303 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2304 {
2305 	return L2_ILT_LINES(sc);
2306 }
2307 
bnx2x_ilt_set_info(struct bnx2x_softc * sc)2308 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2309 {
2310 	struct ilt_client_info *ilt_client;
2311 	struct ecore_ilt *ilt = sc->ilt;
2312 	uint16_t line = 0;
2313 
2314 	PMD_INIT_FUNC_TRACE(sc);
2315 
2316 	ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2317 
2318 	/* CDU */
2319 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2320 	ilt_client->client_num = ILT_CLIENT_CDU;
2321 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
2322 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2323 	ilt_client->start = line;
2324 	line += bnx2x_cid_ilt_lines(sc);
2325 
2326 	if (CNIC_SUPPORT(sc)) {
2327 		line += CNIC_ILT_LINES;
2328 	}
2329 
2330 	ilt_client->end = (line - 1);
2331 
2332 	/* QM */
2333 	if (QM_INIT(sc->qm_cid_count)) {
2334 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
2335 		ilt_client->client_num = ILT_CLIENT_QM;
2336 		ilt_client->page_size = QM_ILT_PAGE_SZ;
2337 		ilt_client->flags = 0;
2338 		ilt_client->start = line;
2339 
2340 		/* 4 bytes for each cid */
2341 		line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2342 				     QM_ILT_PAGE_SZ);
2343 
2344 		ilt_client->end = (line - 1);
2345 	}
2346 
2347 	if (CNIC_SUPPORT(sc)) {
2348 		/* SRC */
2349 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2350 		ilt_client->client_num = ILT_CLIENT_SRC;
2351 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
2352 		ilt_client->flags = 0;
2353 		ilt_client->start = line;
2354 		line += SRC_ILT_LINES;
2355 		ilt_client->end = (line - 1);
2356 
2357 		/* TM */
2358 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
2359 		ilt_client->client_num = ILT_CLIENT_TM;
2360 		ilt_client->page_size = TM_ILT_PAGE_SZ;
2361 		ilt_client->flags = 0;
2362 		ilt_client->start = line;
2363 		line += TM_ILT_LINES;
2364 		ilt_client->end = (line - 1);
2365 	}
2366 
2367 	assert((line <= ILT_MAX_LINES));
2368 }
2369 
bnx2x_set_fp_rx_buf_size(struct bnx2x_softc * sc)2370 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2371 {
2372 	int i;
2373 
2374 	for (i = 0; i < sc->num_queues; i++) {
2375 		/* get the Rx buffer size for RX frames */
2376 		sc->fp[i].rx_buf_size =
2377 		    (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2378 	}
2379 }
2380 
bnx2x_alloc_ilt_mem(struct bnx2x_softc * sc)2381 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2382 {
2383 
2384 	sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2385 
2386 	return sc->ilt == NULL;
2387 }
2388 
bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc * sc)2389 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2390 {
2391 	sc->ilt->lines = rte_calloc("",
2392 				    sizeof(struct ilt_line), ILT_MAX_LINES,
2393 				    RTE_CACHE_LINE_SIZE);
2394 	return sc->ilt->lines == NULL;
2395 }
2396 
bnx2x_free_ilt_mem(struct bnx2x_softc * sc)2397 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2398 {
2399 	rte_free(sc->ilt);
2400 	sc->ilt = NULL;
2401 }
2402 
bnx2x_free_ilt_lines_mem(struct bnx2x_softc * sc)2403 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2404 {
2405 	if (sc->ilt->lines != NULL) {
2406 		rte_free(sc->ilt->lines);
2407 		sc->ilt->lines = NULL;
2408 	}
2409 }
2410 
bnx2x_free_mem(struct bnx2x_softc * sc)2411 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2412 {
2413 	uint32_t i;
2414 
2415 	for (i = 0; i < L2_ILT_LINES(sc); i++) {
2416 		sc->context[i].vcxt = NULL;
2417 		sc->context[i].size = 0;
2418 	}
2419 
2420 	ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2421 
2422 	bnx2x_free_ilt_lines_mem(sc);
2423 }
2424 
bnx2x_alloc_mem(struct bnx2x_softc * sc)2425 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2426 {
2427 	int context_size;
2428 	int allocated;
2429 	int i;
2430 	char cdu_name[RTE_MEMZONE_NAMESIZE];
2431 
2432 	/*
2433 	 * Allocate memory for CDU context:
2434 	 * This memory is allocated separately and not in the generic ILT
2435 	 * functions because CDU differs in few aspects:
2436 	 * 1. There can be multiple entities allocating memory for context -
2437 	 * regular L2, CNIC, and SRIOV drivers. Each separately controls
2438 	 * its own ILT lines.
2439 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
2440 	 * for the other ILT clients), to be efficient we want to support
2441 	 * allocation of sub-page-size in the last entry.
2442 	 * 3. Context pointers are used by the driver to pass to FW / update
2443 	 * the context (for the other ILT clients the pointers are used just to
2444 	 * free the memory during unload).
2445 	 */
2446 	context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2447 	for (i = 0, allocated = 0; allocated < context_size; i++) {
2448 		sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2449 					  (context_size - allocated));
2450 
2451 		snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2452 		if (bnx2x_dma_alloc(sc, sc->context[i].size,
2453 				  &sc->context[i].vcxt_dma,
2454 				  cdu_name, BNX2X_PAGE_SIZE) != 0) {
2455 			bnx2x_free_mem(sc);
2456 			return -1;
2457 		}
2458 
2459 		sc->context[i].vcxt =
2460 		    (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2461 
2462 		allocated += sc->context[i].size;
2463 	}
2464 
2465 	bnx2x_alloc_ilt_lines_mem(sc);
2466 
2467 	if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2468 		PMD_DRV_LOG(NOTICE, sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2469 		bnx2x_free_mem(sc);
2470 		return -1;
2471 	}
2472 
2473 	return 0;
2474 }
2475 
bnx2x_free_fw_stats_mem(struct bnx2x_softc * sc)2476 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2477 {
2478 	bnx2x_dma_free(&sc->fw_stats_dma);
2479 	sc->fw_stats_num = 0;
2480 
2481 	sc->fw_stats_req_size = 0;
2482 	sc->fw_stats_req = NULL;
2483 	sc->fw_stats_req_mapping = 0;
2484 
2485 	sc->fw_stats_data_size = 0;
2486 	sc->fw_stats_data = NULL;
2487 	sc->fw_stats_data_mapping = 0;
2488 }
2489 
bnx2x_alloc_fw_stats_mem(struct bnx2x_softc * sc)2490 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2491 {
2492 	uint8_t num_queue_stats;
2493 	int num_groups, vf_headroom = 0;
2494 
2495 	/* number of queues for statistics is number of eth queues */
2496 	num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2497 
2498 	/*
2499 	 * Total number of FW statistics requests =
2500 	 *   1 for port stats + 1 for PF stats + num of queues
2501 	 */
2502 	sc->fw_stats_num = (2 + num_queue_stats);
2503 
2504 	/*
2505 	 * Request is built from stats_query_header and an array of
2506 	 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2507 	 * rules. The real number or requests is configured in the
2508 	 * stats_query_header.
2509 	 */
2510 	num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2511 	if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2512 		num_groups++;
2513 
2514 	sc->fw_stats_req_size =
2515 	    (sizeof(struct stats_query_header) +
2516 	     (num_groups * sizeof(struct stats_query_cmd_group)));
2517 
2518 	/*
2519 	 * Data for statistics requests + stats_counter.
2520 	 * stats_counter holds per-STORM counters that are incremented when
2521 	 * STORM has finished with the current request. Memory for FCoE
2522 	 * offloaded statistics are counted anyway, even if they will not be sent.
2523 	 * VF stats are not accounted for here as the data of VF stats is stored
2524 	 * in memory allocated by the VF, not here.
2525 	 */
2526 	sc->fw_stats_data_size =
2527 	    (sizeof(struct stats_counter) +
2528 	     sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2529 	     /* sizeof(struct fcoe_statistics_params) + */
2530 	     (sizeof(struct per_queue_stats) * num_queue_stats));
2531 
2532 	if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2533 			  &sc->fw_stats_dma, "fw_stats",
2534 			  RTE_CACHE_LINE_SIZE) != 0) {
2535 		bnx2x_free_fw_stats_mem(sc);
2536 		return -1;
2537 	}
2538 
2539 	/* set up the shortcuts */
2540 
2541 	sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2542 	sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2543 
2544 	sc->fw_stats_data =
2545 	    (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2546 					 sc->fw_stats_req_size);
2547 	sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2548 				     sc->fw_stats_req_size);
2549 
2550 	return 0;
2551 }
2552 
2553 /*
2554  * Bits map:
2555  * 0-7  - Engine0 load counter.
2556  * 8-15 - Engine1 load counter.
2557  * 16   - Engine0 RESET_IN_PROGRESS bit.
2558  * 17   - Engine1 RESET_IN_PROGRESS bit.
2559  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2560  *        function on the engine
2561  * 19   - Engine1 ONE_IS_LOADED.
2562  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2563  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2564  *        for just the one belonging to its engine).
2565  */
2566 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2567 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2568 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2569 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2570 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2571 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2572 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2573 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2574 
2575 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
bnx2x_set_reset_global(struct bnx2x_softc * sc)2576 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2577 {
2578 	uint32_t val;
2579 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2580 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2581 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2582 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2583 }
2584 
2585 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
bnx2x_clear_reset_global(struct bnx2x_softc * sc)2586 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2587 {
2588 	uint32_t val;
2589 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2590 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2591 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2592 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2593 }
2594 
2595 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
bnx2x_reset_is_global(struct bnx2x_softc * sc)2596 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2597 {
2598 	return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2599 }
2600 
2601 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
bnx2x_set_reset_done(struct bnx2x_softc * sc)2602 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2603 {
2604 	uint32_t val;
2605 	uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2606 	    BNX2X_PATH0_RST_IN_PROG_BIT;
2607 
2608 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2609 
2610 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2611 	/* Clear the bit */
2612 	val &= ~bit;
2613 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2614 
2615 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2616 }
2617 
2618 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
bnx2x_set_reset_in_progress(struct bnx2x_softc * sc)2619 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2620 {
2621 	uint32_t val;
2622 	uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2623 	    BNX2X_PATH0_RST_IN_PROG_BIT;
2624 
2625 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2626 
2627 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2628 	/* Set the bit */
2629 	val |= bit;
2630 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2631 
2632 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2633 }
2634 
2635 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
bnx2x_reset_is_done(struct bnx2x_softc * sc,int engine)2636 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2637 {
2638 	uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2639 	uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2640 	    BNX2X_PATH0_RST_IN_PROG_BIT;
2641 
2642 	/* return false if bit is set */
2643 	return (val & bit) ? FALSE : TRUE;
2644 }
2645 
2646 /* get the load status for an engine, should be run under rtnl lock */
bnx2x_get_load_status(struct bnx2x_softc * sc,int engine)2647 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2648 {
2649 	uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2650 	    BNX2X_PATH0_LOAD_CNT_MASK;
2651 	uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2652 	    BNX2X_PATH0_LOAD_CNT_SHIFT;
2653 	uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2654 
2655 	val = ((val & mask) >> shift);
2656 
2657 	return val != 0;
2658 }
2659 
2660 /* set pf load mark */
bnx2x_set_pf_load(struct bnx2x_softc * sc)2661 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2662 {
2663 	uint32_t val;
2664 	uint32_t val1;
2665 	uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2666 	    BNX2X_PATH0_LOAD_CNT_MASK;
2667 	uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2668 	    BNX2X_PATH0_LOAD_CNT_SHIFT;
2669 
2670 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2671 
2672 	PMD_INIT_FUNC_TRACE(sc);
2673 
2674 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2675 
2676 	/* get the current counter value */
2677 	val1 = ((val & mask) >> shift);
2678 
2679 	/* set bit of this PF */
2680 	val1 |= (1 << SC_ABS_FUNC(sc));
2681 
2682 	/* clear the old value */
2683 	val &= ~mask;
2684 
2685 	/* set the new one */
2686 	val |= ((val1 << shift) & mask);
2687 
2688 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2689 
2690 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2691 }
2692 
2693 /* clear pf load mark */
bnx2x_clear_pf_load(struct bnx2x_softc * sc)2694 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2695 {
2696 	uint32_t val1, val;
2697 	uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2698 	    BNX2X_PATH0_LOAD_CNT_MASK;
2699 	uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2700 	    BNX2X_PATH0_LOAD_CNT_SHIFT;
2701 
2702 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2703 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2704 
2705 	/* get the current counter value */
2706 	val1 = (val & mask) >> shift;
2707 
2708 	/* clear bit of that PF */
2709 	val1 &= ~(1 << SC_ABS_FUNC(sc));
2710 
2711 	/* clear the old value */
2712 	val &= ~mask;
2713 
2714 	/* set the new one */
2715 	val |= ((val1 << shift) & mask);
2716 
2717 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2718 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2719 	return val1 != 0;
2720 }
2721 
2722 /* send load request to MCP and analyze response */
bnx2x_nic_load_request(struct bnx2x_softc * sc,uint32_t * load_code)2723 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2724 {
2725 	PMD_INIT_FUNC_TRACE(sc);
2726 
2727 	/* init fw_seq */
2728 	sc->fw_seq =
2729 	    (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2730 	     DRV_MSG_SEQ_NUMBER_MASK);
2731 
2732 	PMD_DRV_LOG(DEBUG, sc, "initial fw_seq 0x%04x", sc->fw_seq);
2733 
2734 #ifdef BNX2X_PULSE
2735 	/* get the current FW pulse sequence */
2736 	sc->fw_drv_pulse_wr_seq =
2737 	    (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2738 	     DRV_PULSE_SEQ_MASK);
2739 #else
2740 	/* set ALWAYS_ALIVE bit in shmem */
2741 	sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2742 	bnx2x_drv_pulse(sc);
2743 #endif
2744 
2745 	/* load request */
2746 	(*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2747 				      DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2748 
2749 	/* if the MCP fails to respond we must abort */
2750 	if (!(*load_code)) {
2751 		PMD_DRV_LOG(NOTICE, sc, "MCP response failure!");
2752 		return -1;
2753 	}
2754 
2755 	/* if MCP refused then must abort */
2756 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2757 		PMD_DRV_LOG(NOTICE, sc, "MCP refused load request");
2758 		return -1;
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 /*
2765  * Check whether another PF has already loaded FW to chip. In virtualized
2766  * environments a pf from anoth VM may have already initialized the device
2767  * including loading FW.
2768  */
bnx2x_nic_load_analyze_req(struct bnx2x_softc * sc,uint32_t load_code)2769 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2770 {
2771 	uint32_t my_fw, loaded_fw;
2772 
2773 	/* is another pf loaded on this engine? */
2774 	if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2775 	    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2776 		/* build my FW version dword */
2777 		my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2778 			 (BNX2X_5710_FW_MINOR_VERSION << 8) +
2779 			 (BNX2X_5710_FW_REVISION_VERSION << 16) +
2780 			 (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2781 
2782 		/* read loaded FW from chip */
2783 		loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2784 		PMD_DRV_LOG(DEBUG, sc, "loaded FW 0x%08x / my FW 0x%08x",
2785 			    loaded_fw, my_fw);
2786 
2787 		/* abort nic load if version mismatch */
2788 		if (my_fw != loaded_fw) {
2789 			PMD_DRV_LOG(NOTICE, sc,
2790 				    "FW 0x%08x already loaded (mine is 0x%08x)",
2791 				    loaded_fw, my_fw);
2792 			return -1;
2793 		}
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x_softc * sc,uint32_t load_code)2800 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2801 {
2802 	uint32_t ncsi_oem_data_addr;
2803 
2804 	PMD_INIT_FUNC_TRACE(sc);
2805 
2806 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2807 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2808 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2809 		/*
2810 		 * Barrier here for ordering between the writing to sc->port.pmf here
2811 		 * and reading it from the periodic task.
2812 		 */
2813 		sc->port.pmf = 1;
2814 		mb();
2815 	} else {
2816 		sc->port.pmf = 0;
2817 	}
2818 
2819 	PMD_DRV_LOG(DEBUG, sc, "pmf %d", sc->port.pmf);
2820 
2821 	if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2822 		if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2823 			ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2824 			if (ncsi_oem_data_addr) {
2825 				REG_WR(sc,
2826 				       (ncsi_oem_data_addr +
2827 					offsetof(struct glob_ncsi_oem_data,
2828 						 driver_version)), 0);
2829 			}
2830 		}
2831 	}
2832 }
2833 
bnx2x_read_mf_cfg(struct bnx2x_softc * sc)2834 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2835 {
2836 	int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2837 	int abs_func;
2838 	int vn;
2839 
2840 	if (BNX2X_NOMCP(sc)) {
2841 		return;		/* what should be the default bvalue in this case */
2842 	}
2843 
2844 	/*
2845 	 * The formula for computing the absolute function number is...
2846 	 * For 2 port configuration (4 functions per port):
2847 	 *   abs_func = 2 * vn + SC_PORT + SC_PATH
2848 	 * For 4 port configuration (2 functions per port):
2849 	 *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2850 	 */
2851 	for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2852 		abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2853 		if (abs_func >= E1H_FUNC_MAX) {
2854 			break;
2855 		}
2856 		sc->devinfo.mf_info.mf_config[vn] =
2857 		    MFCFG_RD(sc, func_mf_config[abs_func].config);
2858 	}
2859 
2860 	if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2861 	    FUNC_MF_CFG_FUNC_DISABLED) {
2862 		PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
2863 		sc->flags |= BNX2X_MF_FUNC_DIS;
2864 	} else {
2865 		PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
2866 		sc->flags &= ~BNX2X_MF_FUNC_DIS;
2867 	}
2868 }
2869 
2870 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x_softc * sc)2871 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2872 {
2873 	uint32_t j, val;
2874 
2875 	for (j = 0; j < 1000; j++) {
2876 		val = (1UL << 31);
2877 		REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2878 		val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2879 		if (val & (1L << 31))
2880 			break;
2881 
2882 		DELAY(5000);
2883 	}
2884 
2885 	if (!(val & (1L << 31))) {
2886 		PMD_DRV_LOG(NOTICE, sc, "Cannot acquire MCP access lock register");
2887 		return -1;
2888 	}
2889 
2890 	return 0;
2891 }
2892 
2893 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x_softc * sc)2894 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2895 {
2896 	REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2897 }
2898 
bnx2x_fan_failure(struct bnx2x_softc * sc)2899 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2900 {
2901 	int port = SC_PORT(sc);
2902 	uint32_t ext_phy_config;
2903 
2904 	/* mark the failure */
2905 	ext_phy_config =
2906 	    SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2907 
2908 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2909 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2910 	SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2911 		 ext_phy_config);
2912 
2913 	/* log the failure */
2914 	PMD_DRV_LOG(INFO, sc,
2915 		    "Fan Failure has caused the driver to shutdown "
2916 		    "the card to prevent permanent damage. "
2917 		    "Please contact OEM Support for assistance");
2918 
2919 	rte_panic("Schedule task to handle fan failure");
2920 }
2921 
2922 /* this function is called upon a link interrupt */
bnx2x_link_attn(struct bnx2x_softc * sc)2923 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2924 {
2925 	uint32_t pause_enabled = 0;
2926 	struct host_port_stats *pstats;
2927 	int cmng_fns;
2928 
2929 	/* Make sure that we are synced with the current statistics */
2930 	bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2931 
2932 	elink_link_update(&sc->link_params, &sc->link_vars);
2933 
2934 	if (sc->link_vars.link_up) {
2935 
2936 		/* dropless flow control */
2937 		if (sc->dropless_fc) {
2938 			pause_enabled = 0;
2939 
2940 			if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2941 				pause_enabled = 1;
2942 			}
2943 
2944 			REG_WR(sc,
2945 			       (BAR_USTRORM_INTMEM +
2946 				USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2947 			       pause_enabled);
2948 		}
2949 
2950 		if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2951 			pstats = BNX2X_SP(sc, port_stats);
2952 			/* reset old mac stats */
2953 			memset(&(pstats->mac_stx[0]), 0,
2954 			       sizeof(struct mac_stx));
2955 		}
2956 
2957 		if (sc->state == BNX2X_STATE_OPEN) {
2958 			bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2959 		}
2960 	}
2961 
2962 	if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2963 		cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2964 
2965 		if (cmng_fns != CMNG_FNS_NONE) {
2966 			bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2967 			storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2968 		}
2969 	}
2970 
2971 	bnx2x_link_report_locked(sc);
2972 
2973 	if (IS_MF(sc)) {
2974 		bnx2x_link_sync_notify(sc);
2975 	}
2976 }
2977 
bnx2x_attn_int_asserted(struct bnx2x_softc * sc,uint32_t asserted)2978 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2979 {
2980 	int port = SC_PORT(sc);
2981 	uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2982 	    MISC_REG_AEU_MASK_ATTN_FUNC_0;
2983 	uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2984 	    NIG_REG_MASK_INTERRUPT_PORT0;
2985 	uint32_t aeu_mask;
2986 	uint32_t nig_mask = 0;
2987 	uint32_t reg_addr;
2988 	uint32_t igu_acked;
2989 	uint32_t cnt;
2990 
2991 	if (sc->attn_state & asserted) {
2992 		PMD_DRV_LOG(ERR, sc, "IGU ERROR attn=0x%08x", asserted);
2993 	}
2994 
2995 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2996 
2997 	aeu_mask = REG_RD(sc, aeu_addr);
2998 
2999 	aeu_mask &= ~(asserted & 0x3ff);
3000 
3001 	REG_WR(sc, aeu_addr, aeu_mask);
3002 
3003 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3004 
3005 	sc->attn_state |= asserted;
3006 
3007 	if (asserted & ATTN_HARD_WIRED_MASK) {
3008 		if (asserted & ATTN_NIG_FOR_FUNC) {
3009 
3010 			bnx2x_acquire_phy_lock(sc);
3011 			/* save nig interrupt mask */
3012 			nig_mask = REG_RD(sc, nig_int_mask_addr);
3013 
3014 			/* If nig_mask is not set, no need to call the update function */
3015 			if (nig_mask) {
3016 				REG_WR(sc, nig_int_mask_addr, 0);
3017 
3018 				bnx2x_link_attn(sc);
3019 			}
3020 
3021 			/* handle unicore attn? */
3022 		}
3023 
3024 		if (asserted & ATTN_SW_TIMER_4_FUNC) {
3025 			PMD_DRV_LOG(DEBUG, sc, "ATTN_SW_TIMER_4_FUNC!");
3026 		}
3027 
3028 		if (asserted & GPIO_2_FUNC) {
3029 			PMD_DRV_LOG(DEBUG, sc, "GPIO_2_FUNC!");
3030 		}
3031 
3032 		if (asserted & GPIO_3_FUNC) {
3033 			PMD_DRV_LOG(DEBUG, sc, "GPIO_3_FUNC!");
3034 		}
3035 
3036 		if (asserted & GPIO_4_FUNC) {
3037 			PMD_DRV_LOG(DEBUG, sc, "GPIO_4_FUNC!");
3038 		}
3039 
3040 		if (port == 0) {
3041 			if (asserted & ATTN_GENERAL_ATTN_1) {
3042 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_1!");
3043 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3044 			}
3045 			if (asserted & ATTN_GENERAL_ATTN_2) {
3046 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_2!");
3047 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3048 			}
3049 			if (asserted & ATTN_GENERAL_ATTN_3) {
3050 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_3!");
3051 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3052 			}
3053 		} else {
3054 			if (asserted & ATTN_GENERAL_ATTN_4) {
3055 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_4!");
3056 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3057 			}
3058 			if (asserted & ATTN_GENERAL_ATTN_5) {
3059 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_5!");
3060 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3061 			}
3062 			if (asserted & ATTN_GENERAL_ATTN_6) {
3063 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_6!");
3064 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3065 			}
3066 		}
3067 	}
3068 	/* hardwired */
3069 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
3070 		reg_addr =
3071 		    (HC_REG_COMMAND_REG + port * 32 +
3072 		     COMMAND_REG_ATTN_BITS_SET);
3073 	} else {
3074 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3075 	}
3076 
3077 	PMD_DRV_LOG(DEBUG, sc, "about to mask 0x%08x at %s addr 0x%08x",
3078 		    asserted,
3079 		    (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3080 		    reg_addr);
3081 	REG_WR(sc, reg_addr, asserted);
3082 
3083 	/* now set back the mask */
3084 	if (asserted & ATTN_NIG_FOR_FUNC) {
3085 		/*
3086 		 * Verify that IGU ack through BAR was written before restoring
3087 		 * NIG mask. This loop should exit after 2-3 iterations max.
3088 		 */
3089 		if (sc->devinfo.int_block != INT_BLOCK_HC) {
3090 			cnt = 0;
3091 
3092 			do {
3093 				igu_acked =
3094 				    REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3095 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3096 				 && (++cnt < MAX_IGU_ATTN_ACK_TO));
3097 
3098 			if (!igu_acked) {
3099 				PMD_DRV_LOG(ERR, sc,
3100 					    "Failed to verify IGU ack on time");
3101 			}
3102 
3103 			mb();
3104 		}
3105 
3106 		REG_WR(sc, nig_int_mask_addr, nig_mask);
3107 
3108 		bnx2x_release_phy_lock(sc);
3109 	}
3110 }
3111 
3112 static void
bnx2x_print_next_block(__rte_unused struct bnx2x_softc * sc,__rte_unused int idx,__rte_unused const char * blk)3113 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3114 		     __rte_unused const char *blk)
3115 {
3116 	PMD_DRV_LOG(INFO, sc, "%s%s", idx ? ", " : "", blk);
3117 }
3118 
3119 static int
bnx2x_check_blocks_with_parity0(struct bnx2x_softc * sc,uint32_t sig,int par_num,uint8_t print)3120 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3121 			      uint8_t print)
3122 {
3123 	uint32_t cur_bit = 0;
3124 	int i = 0;
3125 
3126 	for (i = 0; sig; i++) {
3127 		cur_bit = ((uint32_t) 0x1 << i);
3128 		if (sig & cur_bit) {
3129 			switch (cur_bit) {
3130 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3131 				if (print)
3132 					bnx2x_print_next_block(sc, par_num++,
3133 							     "BRB");
3134 				break;
3135 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3136 				if (print)
3137 					bnx2x_print_next_block(sc, par_num++,
3138 							     "PARSER");
3139 				break;
3140 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3141 				if (print)
3142 					bnx2x_print_next_block(sc, par_num++,
3143 							     "TSDM");
3144 				break;
3145 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3146 				if (print)
3147 					bnx2x_print_next_block(sc, par_num++,
3148 							     "SEARCHER");
3149 				break;
3150 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3151 				if (print)
3152 					bnx2x_print_next_block(sc, par_num++,
3153 							     "TCM");
3154 				break;
3155 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3156 				if (print)
3157 					bnx2x_print_next_block(sc, par_num++,
3158 							     "TSEMI");
3159 				break;
3160 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3161 				if (print)
3162 					bnx2x_print_next_block(sc, par_num++,
3163 							     "XPB");
3164 				break;
3165 			}
3166 
3167 			/* Clear the bit */
3168 			sig &= ~cur_bit;
3169 		}
3170 	}
3171 
3172 	return par_num;
3173 }
3174 
3175 static int
bnx2x_check_blocks_with_parity1(struct bnx2x_softc * sc,uint32_t sig,int par_num,uint8_t * global,uint8_t print)3176 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3177 			      uint8_t * global, uint8_t print)
3178 {
3179 	int i = 0;
3180 	uint32_t cur_bit = 0;
3181 	for (i = 0; sig; i++) {
3182 		cur_bit = ((uint32_t) 0x1 << i);
3183 		if (sig & cur_bit) {
3184 			switch (cur_bit) {
3185 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3186 				if (print)
3187 					bnx2x_print_next_block(sc, par_num++,
3188 							     "PBF");
3189 				break;
3190 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3191 				if (print)
3192 					bnx2x_print_next_block(sc, par_num++,
3193 							     "QM");
3194 				break;
3195 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3196 				if (print)
3197 					bnx2x_print_next_block(sc, par_num++,
3198 							     "TM");
3199 				break;
3200 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3201 				if (print)
3202 					bnx2x_print_next_block(sc, par_num++,
3203 							     "XSDM");
3204 				break;
3205 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3206 				if (print)
3207 					bnx2x_print_next_block(sc, par_num++,
3208 							     "XCM");
3209 				break;
3210 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3211 				if (print)
3212 					bnx2x_print_next_block(sc, par_num++,
3213 							     "XSEMI");
3214 				break;
3215 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3216 				if (print)
3217 					bnx2x_print_next_block(sc, par_num++,
3218 							     "DOORBELLQ");
3219 				break;
3220 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3221 				if (print)
3222 					bnx2x_print_next_block(sc, par_num++,
3223 							     "NIG");
3224 				break;
3225 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3226 				if (print)
3227 					bnx2x_print_next_block(sc, par_num++,
3228 							     "VAUX PCI CORE");
3229 				*global = TRUE;
3230 				break;
3231 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3232 				if (print)
3233 					bnx2x_print_next_block(sc, par_num++,
3234 							     "DEBUG");
3235 				break;
3236 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3237 				if (print)
3238 					bnx2x_print_next_block(sc, par_num++,
3239 							     "USDM");
3240 				break;
3241 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3242 				if (print)
3243 					bnx2x_print_next_block(sc, par_num++,
3244 							     "UCM");
3245 				break;
3246 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3247 				if (print)
3248 					bnx2x_print_next_block(sc, par_num++,
3249 							     "USEMI");
3250 				break;
3251 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3252 				if (print)
3253 					bnx2x_print_next_block(sc, par_num++,
3254 							     "UPB");
3255 				break;
3256 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3257 				if (print)
3258 					bnx2x_print_next_block(sc, par_num++,
3259 							     "CSDM");
3260 				break;
3261 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3262 				if (print)
3263 					bnx2x_print_next_block(sc, par_num++,
3264 							     "CCM");
3265 				break;
3266 			}
3267 
3268 			/* Clear the bit */
3269 			sig &= ~cur_bit;
3270 		}
3271 	}
3272 
3273 	return par_num;
3274 }
3275 
3276 static int
bnx2x_check_blocks_with_parity2(struct bnx2x_softc * sc,uint32_t sig,int par_num,uint8_t print)3277 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3278 			      uint8_t print)
3279 {
3280 	uint32_t cur_bit = 0;
3281 	int i = 0;
3282 
3283 	for (i = 0; sig; i++) {
3284 		cur_bit = ((uint32_t) 0x1 << i);
3285 		if (sig & cur_bit) {
3286 			switch (cur_bit) {
3287 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3288 				if (print)
3289 					bnx2x_print_next_block(sc, par_num++,
3290 							     "CSEMI");
3291 				break;
3292 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3293 				if (print)
3294 					bnx2x_print_next_block(sc, par_num++,
3295 							     "PXP");
3296 				break;
3297 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3298 				if (print)
3299 					bnx2x_print_next_block(sc, par_num++,
3300 							     "PXPPCICLOCKCLIENT");
3301 				break;
3302 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3303 				if (print)
3304 					bnx2x_print_next_block(sc, par_num++,
3305 							     "CFC");
3306 				break;
3307 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3308 				if (print)
3309 					bnx2x_print_next_block(sc, par_num++,
3310 							     "CDU");
3311 				break;
3312 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3313 				if (print)
3314 					bnx2x_print_next_block(sc, par_num++,
3315 							     "DMAE");
3316 				break;
3317 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3318 				if (print)
3319 					bnx2x_print_next_block(sc, par_num++,
3320 							     "IGU");
3321 				break;
3322 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3323 				if (print)
3324 					bnx2x_print_next_block(sc, par_num++,
3325 							     "MISC");
3326 				break;
3327 			}
3328 
3329 			/* Clear the bit */
3330 			sig &= ~cur_bit;
3331 		}
3332 	}
3333 
3334 	return par_num;
3335 }
3336 
3337 static int
bnx2x_check_blocks_with_parity3(struct bnx2x_softc * sc,uint32_t sig,int par_num,uint8_t * global,uint8_t print)3338 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3339 			      uint8_t * global, uint8_t print)
3340 {
3341 	uint32_t cur_bit = 0;
3342 	int i = 0;
3343 
3344 	for (i = 0; sig; i++) {
3345 		cur_bit = ((uint32_t) 0x1 << i);
3346 		if (sig & cur_bit) {
3347 			switch (cur_bit) {
3348 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3349 				if (print)
3350 					bnx2x_print_next_block(sc, par_num++,
3351 							     "MCP ROM");
3352 				*global = TRUE;
3353 				break;
3354 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3355 				if (print)
3356 					bnx2x_print_next_block(sc, par_num++,
3357 							     "MCP UMP RX");
3358 				*global = TRUE;
3359 				break;
3360 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3361 				if (print)
3362 					bnx2x_print_next_block(sc, par_num++,
3363 							     "MCP UMP TX");
3364 				*global = TRUE;
3365 				break;
3366 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3367 				if (print)
3368 					bnx2x_print_next_block(sc, par_num++,
3369 							     "MCP SCPAD");
3370 				*global = TRUE;
3371 				break;
3372 			}
3373 
3374 			/* Clear the bit */
3375 			sig &= ~cur_bit;
3376 		}
3377 	}
3378 
3379 	return par_num;
3380 }
3381 
3382 static int
bnx2x_check_blocks_with_parity4(struct bnx2x_softc * sc,uint32_t sig,int par_num,uint8_t print)3383 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3384 			      uint8_t print)
3385 {
3386 	uint32_t cur_bit = 0;
3387 	int i = 0;
3388 
3389 	for (i = 0; sig; i++) {
3390 		cur_bit = ((uint32_t) 0x1 << i);
3391 		if (sig & cur_bit) {
3392 			switch (cur_bit) {
3393 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3394 				if (print)
3395 					bnx2x_print_next_block(sc, par_num++,
3396 							     "PGLUE_B");
3397 				break;
3398 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3399 				if (print)
3400 					bnx2x_print_next_block(sc, par_num++,
3401 							     "ATC");
3402 				break;
3403 			}
3404 
3405 			/* Clear the bit */
3406 			sig &= ~cur_bit;
3407 		}
3408 	}
3409 
3410 	return par_num;
3411 }
3412 
3413 static uint8_t
bnx2x_parity_attn(struct bnx2x_softc * sc,uint8_t * global,uint8_t print,uint32_t * sig)3414 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3415 		uint32_t * sig)
3416 {
3417 	int par_num = 0;
3418 
3419 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3420 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3421 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3422 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3423 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3424 		PMD_DRV_LOG(ERR, sc,
3425 			    "Parity error: HW block parity attention:"
3426 			    "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3427 			    (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3428 			    (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3429 			    (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3430 			    (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3431 			    (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3432 
3433 		if (print)
3434 			PMD_DRV_LOG(INFO, sc, "Parity errors detected in blocks: ");
3435 
3436 		par_num =
3437 		    bnx2x_check_blocks_with_parity0(sc, sig[0] &
3438 						  HW_PRTY_ASSERT_SET_0,
3439 						  par_num, print);
3440 		par_num =
3441 		    bnx2x_check_blocks_with_parity1(sc, sig[1] &
3442 						  HW_PRTY_ASSERT_SET_1,
3443 						  par_num, global, print);
3444 		par_num =
3445 		    bnx2x_check_blocks_with_parity2(sc, sig[2] &
3446 						  HW_PRTY_ASSERT_SET_2,
3447 						  par_num, print);
3448 		par_num =
3449 		    bnx2x_check_blocks_with_parity3(sc, sig[3] &
3450 						  HW_PRTY_ASSERT_SET_3,
3451 						  par_num, global, print);
3452 		par_num =
3453 		    bnx2x_check_blocks_with_parity4(sc, sig[4] &
3454 						  HW_PRTY_ASSERT_SET_4,
3455 						  par_num, print);
3456 
3457 		if (print)
3458 			PMD_DRV_LOG(INFO, sc, "");
3459 
3460 		return TRUE;
3461 	}
3462 
3463 	return FALSE;
3464 }
3465 
3466 static uint8_t
bnx2x_chk_parity_attn(struct bnx2x_softc * sc,uint8_t * global,uint8_t print)3467 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3468 {
3469 	struct attn_route attn = { {0} };
3470 	int port = SC_PORT(sc);
3471 
3472 	attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3473 	attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3474 	attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3475 	attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3476 
3477 	if (!CHIP_IS_E1x(sc))
3478 		attn.sig[4] =
3479 		    REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3480 
3481 	return bnx2x_parity_attn(sc, global, print, attn.sig);
3482 }
3483 
bnx2x_attn_int_deasserted4(struct bnx2x_softc * sc,uint32_t attn)3484 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3485 {
3486 	uint32_t val;
3487 
3488 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3489 		val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3490 		PMD_DRV_LOG(INFO, sc, "ERROR: PGLUE hw attention 0x%08x", val);
3491 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3492 			PMD_DRV_LOG(INFO, sc,
3493 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3494 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3495 			PMD_DRV_LOG(INFO, sc,
3496 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3497 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3498 			PMD_DRV_LOG(INFO, sc,
3499 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3500 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3501 			PMD_DRV_LOG(INFO, sc,
3502 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3503 		if (val &
3504 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3505 			PMD_DRV_LOG(INFO, sc,
3506 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3507 		if (val &
3508 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3509 			PMD_DRV_LOG(INFO, sc,
3510 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3511 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3512 			PMD_DRV_LOG(INFO, sc,
3513 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3514 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3515 			PMD_DRV_LOG(INFO, sc,
3516 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3517 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3518 			PMD_DRV_LOG(INFO, sc,
3519 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3520 	}
3521 
3522 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3523 		val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3524 		PMD_DRV_LOG(INFO, sc, "ERROR: ATC hw attention 0x%08x", val);
3525 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3526 			PMD_DRV_LOG(INFO, sc,
3527 				    "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3528 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3529 			PMD_DRV_LOG(INFO, sc,
3530 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3531 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3532 			PMD_DRV_LOG(INFO, sc,
3533 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3534 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3535 			PMD_DRV_LOG(INFO, sc,
3536 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3537 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3538 			PMD_DRV_LOG(INFO, sc,
3539 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3540 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3541 			PMD_DRV_LOG(INFO, sc,
3542 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3543 	}
3544 
3545 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3546 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3547 		PMD_DRV_LOG(INFO, sc,
3548 			    "ERROR: FATAL parity attention set4 0x%08x",
3549 			    (uint32_t) (attn &
3550 					(AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3551 					 |
3552 					 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3553 	}
3554 }
3555 
bnx2x_e1h_disable(struct bnx2x_softc * sc)3556 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3557 {
3558 	int port = SC_PORT(sc);
3559 
3560 	REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3561 }
3562 
bnx2x_e1h_enable(struct bnx2x_softc * sc)3563 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3564 {
3565 	int port = SC_PORT(sc);
3566 
3567 	REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3568 }
3569 
3570 /*
3571  * called due to MCP event (on pmf):
3572  *   reread new bandwidth configuration
3573  *   configure FW
3574  *   notify others function about the change
3575  */
bnx2x_config_mf_bw(struct bnx2x_softc * sc)3576 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3577 {
3578 	if (sc->link_vars.link_up) {
3579 		bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3580 		bnx2x_link_sync_notify(sc);
3581 	}
3582 
3583 	storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3584 }
3585 
bnx2x_set_mf_bw(struct bnx2x_softc * sc)3586 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3587 {
3588 	bnx2x_config_mf_bw(sc);
3589 	bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3590 }
3591 
bnx2x_handle_eee_event(struct bnx2x_softc * sc)3592 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3593 {
3594 	bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3595 }
3596 
3597 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3598 
bnx2x_drv_info_ether_stat(struct bnx2x_softc * sc)3599 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3600 {
3601 	struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3602 
3603 	strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3604 		ETH_STAT_INFO_VERSION_LEN);
3605 
3606 	sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3607 					      DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3608 					      ether_stat->mac_local + MAC_PAD,
3609 					      MAC_PAD, ETH_ALEN);
3610 
3611 	ether_stat->mtu_size = sc->mtu;
3612 
3613 	ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3614 	ether_stat->promiscuous_mode = 0;	// (flags & PROMISC) ? 1 : 0;
3615 
3616 	ether_stat->txq_size = sc->tx_ring_size;
3617 	ether_stat->rxq_size = sc->rx_ring_size;
3618 }
3619 
bnx2x_handle_drv_info_req(struct bnx2x_softc * sc)3620 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3621 {
3622 	enum drv_info_opcode op_code;
3623 	uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3624 
3625 	/* if drv_info version supported by MFW doesn't match - send NACK */
3626 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3627 		bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3628 		return;
3629 	}
3630 
3631 	op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3632 		   DRV_INFO_CONTROL_OP_CODE_SHIFT);
3633 
3634 	memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3635 
3636 	switch (op_code) {
3637 	case ETH_STATS_OPCODE:
3638 		bnx2x_drv_info_ether_stat(sc);
3639 		break;
3640 	case FCOE_STATS_OPCODE:
3641 	case ISCSI_STATS_OPCODE:
3642 	default:
3643 		/* if op code isn't supported - send NACK */
3644 		bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3645 		return;
3646 	}
3647 
3648 	/*
3649 	 * If we got drv_info attn from MFW then these fields are defined in
3650 	 * shmem2 for sure
3651 	 */
3652 	SHMEM2_WR(sc, drv_info_host_addr_lo,
3653 		  U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3654 	SHMEM2_WR(sc, drv_info_host_addr_hi,
3655 		  U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3656 
3657 	bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3658 }
3659 
bnx2x_dcc_event(struct bnx2x_softc * sc,uint32_t dcc_event)3660 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3661 {
3662 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3663 /*
3664  * This is the only place besides the function initialization
3665  * where the sc->flags can change so it is done without any
3666  * locks
3667  */
3668 		if (sc->devinfo.
3669 		    mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3670 			PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
3671 			sc->flags |= BNX2X_MF_FUNC_DIS;
3672 			bnx2x_e1h_disable(sc);
3673 		} else {
3674 			PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
3675 			sc->flags &= ~BNX2X_MF_FUNC_DIS;
3676 			bnx2x_e1h_enable(sc);
3677 		}
3678 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3679 	}
3680 
3681 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3682 		bnx2x_config_mf_bw(sc);
3683 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3684 	}
3685 
3686 	/* Report results to MCP */
3687 	if (dcc_event)
3688 		bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3689 	else
3690 		bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3691 }
3692 
bnx2x_pmf_update(struct bnx2x_softc * sc)3693 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3694 {
3695 	int port = SC_PORT(sc);
3696 	uint32_t val;
3697 
3698 	sc->port.pmf = 1;
3699 
3700 	/*
3701 	 * We need the mb() to ensure the ordering between the writing to
3702 	 * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3703 	 */
3704 	mb();
3705 
3706 	/* enable nig attention */
3707 	val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3708 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
3709 		REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3710 		REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3711 	} else if (!CHIP_IS_E1x(sc)) {
3712 		REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3713 		REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3714 	}
3715 
3716 	bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3717 }
3718 
bnx2x_mc_assert(struct bnx2x_softc * sc)3719 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3720 {
3721 	char last_idx;
3722 	int i, rc = 0;
3723 	__rte_unused uint32_t row0, row1, row2, row3;
3724 
3725 	/* XSTORM */
3726 	last_idx =
3727 	    REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3728 	if (last_idx)
3729 		PMD_DRV_LOG(ERR, sc, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3730 
3731 	/* print the asserts */
3732 	for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3733 
3734 		row0 =
3735 		    REG_RD(sc,
3736 			   BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3737 		row1 =
3738 		    REG_RD(sc,
3739 			   BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3740 			   4);
3741 		row2 =
3742 		    REG_RD(sc,
3743 			   BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3744 			   8);
3745 		row3 =
3746 		    REG_RD(sc,
3747 			   BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3748 			   12);
3749 
3750 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3751 			PMD_DRV_LOG(ERR, sc,
3752 				    "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3753 				    i, row3, row2, row1, row0);
3754 			rc++;
3755 		} else {
3756 			break;
3757 		}
3758 	}
3759 
3760 	/* TSTORM */
3761 	last_idx =
3762 	    REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3763 	if (last_idx) {
3764 		PMD_DRV_LOG(ERR, sc, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3765 	}
3766 
3767 	/* print the asserts */
3768 	for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3769 
3770 		row0 =
3771 		    REG_RD(sc,
3772 			   BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3773 		row1 =
3774 		    REG_RD(sc,
3775 			   BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3776 			   4);
3777 		row2 =
3778 		    REG_RD(sc,
3779 			   BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3780 			   8);
3781 		row3 =
3782 		    REG_RD(sc,
3783 			   BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3784 			   12);
3785 
3786 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3787 			PMD_DRV_LOG(ERR, sc,
3788 				    "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3789 				    i, row3, row2, row1, row0);
3790 			rc++;
3791 		} else {
3792 			break;
3793 		}
3794 	}
3795 
3796 	/* CSTORM */
3797 	last_idx =
3798 	    REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3799 	if (last_idx) {
3800 		PMD_DRV_LOG(ERR, sc, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3801 	}
3802 
3803 	/* print the asserts */
3804 	for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3805 
3806 		row0 =
3807 		    REG_RD(sc,
3808 			   BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3809 		row1 =
3810 		    REG_RD(sc,
3811 			   BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3812 			   4);
3813 		row2 =
3814 		    REG_RD(sc,
3815 			   BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3816 			   8);
3817 		row3 =
3818 		    REG_RD(sc,
3819 			   BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3820 			   12);
3821 
3822 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3823 			PMD_DRV_LOG(ERR, sc,
3824 				    "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3825 				    i, row3, row2, row1, row0);
3826 			rc++;
3827 		} else {
3828 			break;
3829 		}
3830 	}
3831 
3832 	/* USTORM */
3833 	last_idx =
3834 	    REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3835 	if (last_idx) {
3836 		PMD_DRV_LOG(ERR, sc, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3837 	}
3838 
3839 	/* print the asserts */
3840 	for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3841 
3842 		row0 =
3843 		    REG_RD(sc,
3844 			   BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3845 		row1 =
3846 		    REG_RD(sc,
3847 			   BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3848 			   4);
3849 		row2 =
3850 		    REG_RD(sc,
3851 			   BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3852 			   8);
3853 		row3 =
3854 		    REG_RD(sc,
3855 			   BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3856 			   12);
3857 
3858 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3859 			PMD_DRV_LOG(ERR, sc,
3860 				    "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3861 				    i, row3, row2, row1, row0);
3862 			rc++;
3863 		} else {
3864 			break;
3865 		}
3866 	}
3867 
3868 	return rc;
3869 }
3870 
bnx2x_attn_int_deasserted3(struct bnx2x_softc * sc,uint32_t attn)3871 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3872 {
3873 	int func = SC_FUNC(sc);
3874 	uint32_t val;
3875 
3876 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3877 
3878 		if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3879 
3880 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3881 			bnx2x_read_mf_cfg(sc);
3882 			sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3883 			    MFCFG_RD(sc,
3884 				     func_mf_config[SC_ABS_FUNC(sc)].config);
3885 			val =
3886 			    SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3887 
3888 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3889 				bnx2x_dcc_event(sc,
3890 					      (val &
3891 					       DRV_STATUS_DCC_EVENT_MASK));
3892 
3893 			if (val & DRV_STATUS_SET_MF_BW)
3894 				bnx2x_set_mf_bw(sc);
3895 
3896 			if (val & DRV_STATUS_DRV_INFO_REQ)
3897 				bnx2x_handle_drv_info_req(sc);
3898 
3899 			if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3900 				bnx2x_pmf_update(sc);
3901 
3902 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3903 				bnx2x_handle_eee_event(sc);
3904 
3905 			if (sc->link_vars.periodic_flags &
3906 			    ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3907 				/* sync with link */
3908 				bnx2x_acquire_phy_lock(sc);
3909 				sc->link_vars.periodic_flags &=
3910 				    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3911 				bnx2x_release_phy_lock(sc);
3912 				if (IS_MF(sc)) {
3913 					bnx2x_link_sync_notify(sc);
3914 				}
3915 				bnx2x_link_report(sc);
3916 			}
3917 
3918 			/*
3919 			 * Always call it here: bnx2x_link_report() will
3920 			 * prevent the link indication duplication.
3921 			 */
3922 			bnx2x_link_status_update(sc);
3923 
3924 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3925 
3926 			PMD_DRV_LOG(ERR, sc, "MC assert!");
3927 			bnx2x_mc_assert(sc);
3928 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3929 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3930 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3931 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3932 			rte_panic("MC assert!");
3933 
3934 		} else if (attn & BNX2X_MCP_ASSERT) {
3935 
3936 			PMD_DRV_LOG(ERR, sc, "MCP assert!");
3937 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3938 
3939 		} else {
3940 			PMD_DRV_LOG(ERR, sc,
3941 				    "Unknown HW assert! (attn 0x%08x)", attn);
3942 		}
3943 	}
3944 
3945 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3946 		PMD_DRV_LOG(ERR, sc, "LATCHED attention 0x%08x (masked)", attn);
3947 		if (attn & BNX2X_GRC_TIMEOUT) {
3948 			val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3949 			PMD_DRV_LOG(ERR, sc, "GRC time-out 0x%08x", val);
3950 		}
3951 		if (attn & BNX2X_GRC_RSV) {
3952 			val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3953 			PMD_DRV_LOG(ERR, sc, "GRC reserved 0x%08x", val);
3954 		}
3955 		REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3956 	}
3957 }
3958 
bnx2x_attn_int_deasserted2(struct bnx2x_softc * sc,uint32_t attn)3959 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3960 {
3961 	int port = SC_PORT(sc);
3962 	int reg_offset;
3963 	uint32_t val0, mask0, val1, mask1;
3964 	uint32_t val;
3965 
3966 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3967 		val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3968 		PMD_DRV_LOG(ERR, sc, "CFC hw attention 0x%08x", val);
3969 /* CFC error attention */
3970 		if (val & 0x2) {
3971 			PMD_DRV_LOG(ERR, sc, "FATAL error from CFC");
3972 		}
3973 	}
3974 
3975 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3976 		val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3977 		PMD_DRV_LOG(ERR, sc, "PXP hw attention-0 0x%08x", val);
3978 /* RQ_USDMDP_FIFO_OVERFLOW */
3979 		if (val & 0x18000) {
3980 			PMD_DRV_LOG(ERR, sc, "FATAL error from PXP");
3981 		}
3982 
3983 		if (!CHIP_IS_E1x(sc)) {
3984 			val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3985 			PMD_DRV_LOG(ERR, sc, "PXP hw attention-1 0x%08x", val);
3986 		}
3987 	}
3988 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3989 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3990 
3991 	if (attn & AEU_PXP2_HW_INT_BIT) {
3992 /*  CQ47854 workaround do not panic on
3993  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3994  */
3995 		if (!CHIP_IS_E1x(sc)) {
3996 			mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3997 			val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3998 			mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3999 			val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
4000 			/*
4001 			 * If the only PXP2_EOP_ERROR_BIT is set in
4002 			 * STS0 and STS1 - clear it
4003 			 *
4004 			 * probably we lose additional attentions between
4005 			 * STS0 and STS_CLR0, in this case user will not
4006 			 * be notified about them
4007 			 */
4008 			if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
4009 			    !(val1 & mask1))
4010 				val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
4011 
4012 			/* print the register, since no one can restore it */
4013 			PMD_DRV_LOG(ERR, sc,
4014 				    "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
4015 
4016 			/*
4017 			 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
4018 			 * then notify
4019 			 */
4020 			if (val0 & PXP2_EOP_ERROR_BIT) {
4021 				PMD_DRV_LOG(ERR, sc, "PXP2_WR_PGLUE_EOP_ERROR");
4022 
4023 				/*
4024 				 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
4025 				 * set then clear attention from PXP2 block without panic
4026 				 */
4027 				if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
4028 				    ((val1 & mask1) == 0))
4029 					attn &= ~AEU_PXP2_HW_INT_BIT;
4030 			}
4031 		}
4032 	}
4033 
4034 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4035 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4036 			      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4037 
4038 		val = REG_RD(sc, reg_offset);
4039 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4040 		REG_WR(sc, reg_offset, val);
4041 
4042 		PMD_DRV_LOG(ERR, sc,
4043 			    "FATAL HW block attention set2 0x%x",
4044 			    (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
4045 		rte_panic("HW block attention set2");
4046 	}
4047 }
4048 
bnx2x_attn_int_deasserted1(struct bnx2x_softc * sc,uint32_t attn)4049 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
4050 {
4051 	int port = SC_PORT(sc);
4052 	int reg_offset;
4053 	uint32_t val;
4054 
4055 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4056 		val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
4057 		PMD_DRV_LOG(ERR, sc, "DB hw attention 0x%08x", val);
4058 /* DORQ discard attention */
4059 		if (val & 0x2) {
4060 			PMD_DRV_LOG(ERR, sc, "FATAL error from DORQ");
4061 		}
4062 	}
4063 
4064 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4065 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4066 			      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4067 
4068 		val = REG_RD(sc, reg_offset);
4069 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4070 		REG_WR(sc, reg_offset, val);
4071 
4072 		PMD_DRV_LOG(ERR, sc,
4073 			    "FATAL HW block attention set1 0x%08x",
4074 			    (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4075 		rte_panic("HW block attention set1");
4076 	}
4077 }
4078 
bnx2x_attn_int_deasserted0(struct bnx2x_softc * sc,uint32_t attn)4079 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4080 {
4081 	int port = SC_PORT(sc);
4082 	int reg_offset;
4083 	uint32_t val;
4084 
4085 	reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4086 	    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4087 
4088 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4089 		val = REG_RD(sc, reg_offset);
4090 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4091 		REG_WR(sc, reg_offset, val);
4092 
4093 		PMD_DRV_LOG(WARNING, sc, "SPIO5 hw attention");
4094 
4095 /* Fan failure attention */
4096 		elink_hw_reset_phy(&sc->link_params);
4097 		bnx2x_fan_failure(sc);
4098 	}
4099 
4100 	if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4101 		bnx2x_acquire_phy_lock(sc);
4102 		elink_handle_module_detect_int(&sc->link_params);
4103 		bnx2x_release_phy_lock(sc);
4104 	}
4105 
4106 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4107 		val = REG_RD(sc, reg_offset);
4108 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4109 		REG_WR(sc, reg_offset, val);
4110 
4111 		rte_panic("FATAL HW block attention set0 0x%lx",
4112 			  (attn & (unsigned long)HW_INTERRUT_ASSERT_SET_0));
4113 	}
4114 }
4115 
bnx2x_attn_int_deasserted(struct bnx2x_softc * sc,uint32_t deasserted)4116 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4117 {
4118 	struct attn_route attn;
4119 	struct attn_route *group_mask;
4120 	int port = SC_PORT(sc);
4121 	int index;
4122 	uint32_t reg_addr;
4123 	uint32_t val;
4124 	uint32_t aeu_mask;
4125 	uint8_t global = FALSE;
4126 
4127 	/*
4128 	 * Need to take HW lock because MCP or other port might also
4129 	 * try to handle this event.
4130 	 */
4131 	bnx2x_acquire_alr(sc);
4132 
4133 	if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4134 		sc->recovery_state = BNX2X_RECOVERY_INIT;
4135 
4136 /* disable HW interrupts */
4137 		bnx2x_int_disable(sc);
4138 		bnx2x_release_alr(sc);
4139 		return;
4140 	}
4141 
4142 	attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4143 	attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4144 	attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4145 	attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4146 	if (!CHIP_IS_E1x(sc)) {
4147 		attn.sig[4] =
4148 		    REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4149 	} else {
4150 		attn.sig[4] = 0;
4151 	}
4152 
4153 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4154 		if (deasserted & (1 << index)) {
4155 			group_mask = &sc->attn_group[index];
4156 
4157 			bnx2x_attn_int_deasserted4(sc,
4158 						 attn.
4159 						 sig[4] & group_mask->sig[4]);
4160 			bnx2x_attn_int_deasserted3(sc,
4161 						 attn.
4162 						 sig[3] & group_mask->sig[3]);
4163 			bnx2x_attn_int_deasserted1(sc,
4164 						 attn.
4165 						 sig[1] & group_mask->sig[1]);
4166 			bnx2x_attn_int_deasserted2(sc,
4167 						 attn.
4168 						 sig[2] & group_mask->sig[2]);
4169 			bnx2x_attn_int_deasserted0(sc,
4170 						 attn.
4171 						 sig[0] & group_mask->sig[0]);
4172 		}
4173 	}
4174 
4175 	bnx2x_release_alr(sc);
4176 
4177 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
4178 		reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4179 			    COMMAND_REG_ATTN_BITS_CLR);
4180 	} else {
4181 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4182 	}
4183 
4184 	val = ~deasserted;
4185 	PMD_DRV_LOG(DEBUG, sc,
4186 		    "about to mask 0x%08x at %s addr 0x%08x", val,
4187 		    (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4188 		    reg_addr);
4189 	REG_WR(sc, reg_addr, val);
4190 
4191 	if (~sc->attn_state & deasserted) {
4192 		PMD_DRV_LOG(ERR, sc, "IGU error");
4193 	}
4194 
4195 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4196 	    MISC_REG_AEU_MASK_ATTN_FUNC_0;
4197 
4198 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4199 
4200 	aeu_mask = REG_RD(sc, reg_addr);
4201 
4202 	aeu_mask |= (deasserted & 0x3ff);
4203 
4204 	REG_WR(sc, reg_addr, aeu_mask);
4205 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4206 
4207 	sc->attn_state &= ~deasserted;
4208 }
4209 
bnx2x_attn_int(struct bnx2x_softc * sc)4210 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4211 {
4212 	/* read local copy of bits */
4213 	uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4214 	uint32_t attn_ack =
4215 	    le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4216 	uint32_t attn_state = sc->attn_state;
4217 
4218 	/* look for changed bits */
4219 	uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4220 	uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4221 
4222 	PMD_DRV_LOG(DEBUG, sc,
4223 		    "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4224 		    attn_bits, attn_ack, asserted, deasserted);
4225 
4226 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4227 		PMD_DRV_LOG(ERR, sc, "BAD attention state");
4228 	}
4229 
4230 	/* handle bits that were raised */
4231 	if (asserted) {
4232 		bnx2x_attn_int_asserted(sc, asserted);
4233 	}
4234 
4235 	if (deasserted) {
4236 		bnx2x_attn_int_deasserted(sc, deasserted);
4237 	}
4238 }
4239 
bnx2x_update_dsb_idx(struct bnx2x_softc * sc)4240 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4241 {
4242 	struct host_sp_status_block *def_sb = sc->def_sb;
4243 	uint16_t rc = 0;
4244 
4245 	if (!def_sb)
4246 		return 0;
4247 
4248 	mb();			/* status block is written to by the chip */
4249 
4250 	if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4251 		sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4252 		rc |= BNX2X_DEF_SB_ATT_IDX;
4253 	}
4254 
4255 	if (sc->def_idx != def_sb->sp_sb.running_index) {
4256 		sc->def_idx = def_sb->sp_sb.running_index;
4257 		rc |= BNX2X_DEF_SB_IDX;
4258 	}
4259 
4260 	mb();
4261 
4262 	return rc;
4263 }
4264 
bnx2x_cid_to_q_obj(struct bnx2x_softc * sc,uint32_t cid)4265 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4266 							  uint32_t cid)
4267 {
4268 	return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4269 }
4270 
bnx2x_handle_mcast_eqe(struct bnx2x_softc * sc)4271 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4272 {
4273 	struct ecore_mcast_ramrod_params rparam;
4274 	int rc;
4275 
4276 	memset(&rparam, 0, sizeof(rparam));
4277 
4278 	rparam.mcast_obj = &sc->mcast_obj;
4279 
4280 	/* clear pending state for the last command */
4281 	sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4282 
4283 	/* if there are pending mcast commands - send them */
4284 	if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4285 		rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4286 		if (rc < 0) {
4287 			PMD_DRV_LOG(INFO, sc,
4288 				    "Failed to send pending mcast commands (%d)",
4289 				    rc);
4290 		}
4291 	}
4292 }
4293 
4294 static void
bnx2x_handle_classification_eqe(struct bnx2x_softc * sc,union event_ring_elem * elem)4295 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4296 {
4297 	uint32_t ramrod_flags = 0;
4298 	int rc = 0;
4299 	uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4300 	struct ecore_vlan_mac_obj *vlan_mac_obj;
4301 
4302 	/* always push next commands out, don't wait here */
4303 	rte_bit_relaxed_set32(RAMROD_CONT, &ramrod_flags);
4304 
4305 	switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4306 	case ECORE_FILTER_MAC_PENDING:
4307 		PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MAC completions");
4308 		vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4309 		break;
4310 
4311 	case ECORE_FILTER_MCAST_PENDING:
4312 		PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MCAST completions");
4313 		bnx2x_handle_mcast_eqe(sc);
4314 		return;
4315 
4316 	default:
4317 		PMD_DRV_LOG(NOTICE, sc, "Unsupported classification command: %d",
4318 			    elem->message.data.eth_event.echo);
4319 		return;
4320 	}
4321 
4322 	rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4323 
4324 	if (rc < 0) {
4325 		PMD_DRV_LOG(NOTICE, sc,
4326 			    "Failed to schedule new commands (%d)", rc);
4327 	} else if (rc > 0) {
4328 		PMD_DRV_LOG(DEBUG, sc, "Scheduled next pending commands...");
4329 	}
4330 }
4331 
bnx2x_handle_rx_mode_eqe(struct bnx2x_softc * sc)4332 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4333 {
4334 	rte_bit_relaxed_clear32(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4335 
4336 	/* send rx_mode command again if was requested */
4337 	if (rte_bit_relaxed_test_and_clear32(ECORE_FILTER_RX_MODE_SCHED,
4338 						&sc->sp_state))
4339 		bnx2x_set_storm_rx_mode(sc);
4340 }
4341 
bnx2x_update_eq_prod(struct bnx2x_softc * sc,uint16_t prod)4342 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4343 {
4344 	storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4345 	wmb();			/* keep prod updates ordered */
4346 }
4347 
bnx2x_eq_int(struct bnx2x_softc * sc)4348 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4349 {
4350 	uint16_t hw_cons, sw_cons, sw_prod;
4351 	union event_ring_elem *elem;
4352 	uint8_t echo;
4353 	uint32_t cid;
4354 	uint8_t opcode;
4355 	int spqe_cnt = 0;
4356 	struct ecore_queue_sp_obj *q_obj;
4357 	struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4358 	struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4359 
4360 	hw_cons = le16toh(*sc->eq_cons_sb);
4361 
4362 	/*
4363 	 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4364 	 * when we get to the next-page we need to adjust so the loop
4365 	 * condition below will be met. The next element is the size of a
4366 	 * regular element and hence incrementing by 1
4367 	 */
4368 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4369 		hw_cons++;
4370 	}
4371 
4372 	/*
4373 	 * This function may never run in parallel with itself for a
4374 	 * specific sc and no need for a read memory barrier here.
4375 	 */
4376 	sw_cons = sc->eq_cons;
4377 	sw_prod = sc->eq_prod;
4378 
4379 	for (;
4380 	     sw_cons != hw_cons;
4381 	     sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4382 
4383 		elem = &sc->eq[EQ_DESC(sw_cons)];
4384 
4385 /* elem CID originates from FW, actually LE */
4386 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4387 		opcode = elem->message.opcode;
4388 
4389 /* handle eq element */
4390 		switch (opcode) {
4391 		case EVENT_RING_OPCODE_STAT_QUERY:
4392 			PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "got statistics completion event %d",
4393 				    sc->stats_comp++);
4394 			/* nothing to do with stats comp */
4395 			goto next_spqe;
4396 
4397 		case EVENT_RING_OPCODE_CFC_DEL:
4398 			/* handle according to cid range */
4399 			/* we may want to verify here that the sc state is HALTING */
4400 			PMD_DRV_LOG(DEBUG, sc, "got delete ramrod for MULTI[%d]",
4401 				    cid);
4402 			q_obj = bnx2x_cid_to_q_obj(sc, cid);
4403 			if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4404 				break;
4405 			}
4406 			goto next_spqe;
4407 
4408 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4409 			PMD_DRV_LOG(DEBUG, sc, "got STOP TRAFFIC");
4410 			if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4411 				break;
4412 			}
4413 			goto next_spqe;
4414 
4415 		case EVENT_RING_OPCODE_START_TRAFFIC:
4416 			PMD_DRV_LOG(DEBUG, sc, "got START TRAFFIC");
4417 			if (f_obj->complete_cmd
4418 			    (sc, f_obj, ECORE_F_CMD_TX_START)) {
4419 				break;
4420 			}
4421 			goto next_spqe;
4422 
4423 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4424 			echo = elem->message.data.function_update_event.echo;
4425 			if (echo == SWITCH_UPDATE) {
4426 				PMD_DRV_LOG(DEBUG, sc,
4427 					    "got FUNC_SWITCH_UPDATE ramrod");
4428 				if (f_obj->complete_cmd(sc, f_obj,
4429 							ECORE_F_CMD_SWITCH_UPDATE))
4430 				{
4431 					break;
4432 				}
4433 			} else {
4434 				PMD_DRV_LOG(DEBUG, sc,
4435 					    "AFEX: ramrod completed FUNCTION_UPDATE");
4436 				f_obj->complete_cmd(sc, f_obj,
4437 						    ECORE_F_CMD_AFEX_UPDATE);
4438 			}
4439 			goto next_spqe;
4440 
4441 		case EVENT_RING_OPCODE_FORWARD_SETUP:
4442 			q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4443 			if (q_obj->complete_cmd(sc, q_obj,
4444 						ECORE_Q_CMD_SETUP_TX_ONLY)) {
4445 				break;
4446 			}
4447 			goto next_spqe;
4448 
4449 		case EVENT_RING_OPCODE_FUNCTION_START:
4450 			PMD_DRV_LOG(DEBUG, sc, "got FUNC_START ramrod");
4451 			if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4452 				break;
4453 			}
4454 			goto next_spqe;
4455 
4456 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4457 			PMD_DRV_LOG(DEBUG, sc, "got FUNC_STOP ramrod");
4458 			if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4459 				break;
4460 			}
4461 			goto next_spqe;
4462 		}
4463 
4464 		switch (opcode | sc->state) {
4465 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4466 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4467 			cid =
4468 			    elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4469 			PMD_DRV_LOG(DEBUG, sc, "got RSS_UPDATE ramrod. CID %d",
4470 				    cid);
4471 			rss_raw->clear_pending(rss_raw);
4472 			break;
4473 
4474 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4475 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4476 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4477 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4478 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4479 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4480 			PMD_DRV_LOG(DEBUG, sc,
4481 				    "got (un)set mac ramrod");
4482 			bnx2x_handle_classification_eqe(sc, elem);
4483 			break;
4484 
4485 		case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4486 		case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4487 		case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4488 			PMD_DRV_LOG(DEBUG, sc,
4489 				    "got mcast ramrod");
4490 			bnx2x_handle_mcast_eqe(sc);
4491 			break;
4492 
4493 		case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4494 		case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4495 		case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4496 			PMD_DRV_LOG(DEBUG, sc,
4497 				    "got rx_mode ramrod");
4498 			bnx2x_handle_rx_mode_eqe(sc);
4499 			break;
4500 
4501 		default:
4502 			/* unknown event log error and continue */
4503 			PMD_DRV_LOG(INFO, sc, "Unknown EQ event %d, sc->state 0x%x",
4504 				    elem->message.opcode, sc->state);
4505 		}
4506 
4507 next_spqe:
4508 		spqe_cnt++;
4509 	}			/* for */
4510 
4511 	mb();
4512 	atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4513 
4514 	sc->eq_cons = sw_cons;
4515 	sc->eq_prod = sw_prod;
4516 
4517 	/* make sure that above mem writes were issued towards the memory */
4518 	wmb();
4519 
4520 	/* update producer */
4521 	bnx2x_update_eq_prod(sc, sc->eq_prod);
4522 }
4523 
bnx2x_handle_sp_tq(struct bnx2x_softc * sc)4524 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4525 {
4526 	uint16_t status;
4527 	int rc = 0;
4528 
4529 	PMD_DRV_LOG(DEBUG, sc, "---> SP TASK <---");
4530 
4531 	/* what work needs to be performed? */
4532 	status = bnx2x_update_dsb_idx(sc);
4533 
4534 	PMD_DRV_LOG(DEBUG, sc, "dsb status 0x%04x", status);
4535 
4536 	/* HW attentions */
4537 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4538 		PMD_DRV_LOG(DEBUG, sc, "---> ATTN INTR <---");
4539 		bnx2x_attn_int(sc);
4540 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4541 		rc = 1;
4542 	}
4543 
4544 	/* SP events: STAT_QUERY and others */
4545 	if (status & BNX2X_DEF_SB_IDX) {
4546 /* handle EQ completions */
4547 		PMD_DRV_LOG(DEBUG, sc, "---> EQ INTR <---");
4548 		bnx2x_eq_int(sc);
4549 		bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4550 			   le16toh(sc->def_idx), IGU_INT_NOP, 1);
4551 		status &= ~BNX2X_DEF_SB_IDX;
4552 	}
4553 
4554 	/* if status is non zero then something went wrong */
4555 	if (unlikely(status)) {
4556 		PMD_DRV_LOG(INFO, sc,
4557 			    "Got an unknown SP interrupt! (0x%04x)", status);
4558 	}
4559 
4560 	/* ack status block only if something was actually handled */
4561 	bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4562 		   le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4563 
4564 	return rc;
4565 }
4566 
bnx2x_handle_fp_tq(struct bnx2x_fastpath * fp)4567 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp)
4568 {
4569 	struct bnx2x_softc *sc = fp->sc;
4570 	uint8_t more_rx = FALSE;
4571 
4572 	/* Make sure FP is initialized */
4573 	if (!fp->sb_running_index)
4574 		return;
4575 
4576 	PMD_DEBUG_PERIODIC_LOG(DEBUG, sc,
4577 			       "---> FP TASK QUEUE (%d) <--", fp->index);
4578 
4579 	/* update the fastpath index */
4580 	bnx2x_update_fp_sb_idx(fp);
4581 
4582 	if (rte_atomic32_read(&sc->scan_fp) == 1) {
4583 		if (bnx2x_has_rx_work(fp)) {
4584 			more_rx = bnx2x_rxeof(sc, fp);
4585 		}
4586 
4587 		if (more_rx) {
4588 			/* still more work to do */
4589 			bnx2x_handle_fp_tq(fp);
4590 			return;
4591 		}
4592 		/* We have completed slow path completion, clear the flag */
4593 		rte_atomic32_set(&sc->scan_fp, 0);
4594 	}
4595 
4596 	bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4597 		   le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4598 }
4599 
4600 /*
4601  * Legacy interrupt entry point.
4602  *
4603  * Verifies that the controller generated the interrupt and
4604  * then calls a separate routine to handle the various
4605  * interrupt causes: link, RX, and TX.
4606  */
bnx2x_intr_legacy(struct bnx2x_softc * sc)4607 int bnx2x_intr_legacy(struct bnx2x_softc *sc)
4608 {
4609 	struct bnx2x_fastpath *fp;
4610 	uint32_t status, mask;
4611 	int i, rc = 0;
4612 
4613 	/*
4614 	 * 0 for ustorm, 1 for cstorm
4615 	 * the bits returned from ack_int() are 0-15
4616 	 * bit 0 = attention status block
4617 	 * bit 1 = fast path status block
4618 	 * a mask of 0x2 or more = tx/rx event
4619 	 * a mask of 1 = slow path event
4620 	 */
4621 
4622 	status = bnx2x_ack_int(sc);
4623 
4624 	/* the interrupt is not for us */
4625 	if (unlikely(status == 0)) {
4626 		return 0;
4627 	}
4628 
4629 	PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "Interrupt status 0x%04x", status);
4630 	//bnx2x_dump_status_block(sc);
4631 
4632 	FOR_EACH_ETH_QUEUE(sc, i) {
4633 		fp = &sc->fp[i];
4634 		mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4635 		if (status & mask) {
4636 		/* acknowledge and disable further fastpath interrupts */
4637 			bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4638 				     0, IGU_INT_DISABLE, 0);
4639 			bnx2x_handle_fp_tq(fp);
4640 			status &= ~mask;
4641 		}
4642 	}
4643 
4644 	if (unlikely(status & 0x1)) {
4645 		/* acknowledge and disable further slowpath interrupts */
4646 		bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4647 			     0, IGU_INT_DISABLE, 0);
4648 		rc = bnx2x_handle_sp_tq(sc);
4649 		status &= ~0x1;
4650 	}
4651 
4652 	if (unlikely(status)) {
4653 		PMD_DRV_LOG(WARNING, sc,
4654 			    "Unexpected fastpath status (0x%08x)!", status);
4655 	}
4656 
4657 	return rc;
4658 }
4659 
4660 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4661 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4662 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4663 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4664 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4665 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4666 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4667 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4668 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4669 
4670 static struct
4671 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4672 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4673 	.init_hw_cmn = bnx2x_init_hw_common,
4674 	.init_hw_port = bnx2x_init_hw_port,
4675 	.init_hw_func = bnx2x_init_hw_func,
4676 
4677 	.reset_hw_cmn = bnx2x_reset_common,
4678 	.reset_hw_port = bnx2x_reset_port,
4679 	.reset_hw_func = bnx2x_reset_func,
4680 
4681 	.init_fw = bnx2x_init_firmware,
4682 	.release_fw = bnx2x_release_firmware,
4683 };
4684 
bnx2x_init_func_obj(struct bnx2x_softc * sc)4685 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4686 {
4687 	sc->dmae_ready = 0;
4688 
4689 	PMD_INIT_FUNC_TRACE(sc);
4690 
4691 	ecore_init_func_obj(sc,
4692 			    &sc->func_obj,
4693 			    BNX2X_SP(sc, func_rdata),
4694 			    (rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
4695 			    BNX2X_SP(sc, func_afex_rdata),
4696 			    (rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4697 			    &bnx2x_func_sp_drv);
4698 }
4699 
bnx2x_init_hw(struct bnx2x_softc * sc,uint32_t load_code)4700 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4701 {
4702 	struct ecore_func_state_params func_params = { NULL };
4703 	int rc;
4704 
4705 	PMD_INIT_FUNC_TRACE(sc);
4706 
4707 	/* prepare the parameters for function state transitions */
4708 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4709 
4710 	func_params.f_obj = &sc->func_obj;
4711 	func_params.cmd = ECORE_F_CMD_HW_INIT;
4712 
4713 	func_params.params.hw_init.load_phase = load_code;
4714 
4715 	/*
4716 	 * Via a plethora of function pointers, we will eventually reach
4717 	 * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4718 	 */
4719 	rc = ecore_func_state_change(sc, &func_params);
4720 
4721 	return rc;
4722 }
4723 
4724 static void
bnx2x_fill(struct bnx2x_softc * sc,uint32_t addr,int fill,uint32_t len)4725 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4726 {
4727 	uint32_t i;
4728 
4729 	if (!(len % 4) && !(addr % 4)) {
4730 		for (i = 0; i < len; i += 4) {
4731 			REG_WR(sc, (addr + i), fill);
4732 		}
4733 	} else {
4734 		for (i = 0; i < len; i++) {
4735 			REG_WR8(sc, (addr + i), fill);
4736 		}
4737 	}
4738 }
4739 
4740 /* writes FP SP data to FW - data_size in dwords */
4741 static void
bnx2x_wr_fp_sb_data(struct bnx2x_softc * sc,int fw_sb_id,uint32_t * sb_data_p,uint32_t data_size)4742 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4743 		  uint32_t data_size)
4744 {
4745 	uint32_t index;
4746 
4747 	for (index = 0; index < data_size; index++) {
4748 		REG_WR(sc,
4749 		       (BAR_CSTRORM_INTMEM +
4750 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4751 			(sizeof(uint32_t) * index)), *(sb_data_p + index));
4752 	}
4753 }
4754 
bnx2x_zero_fp_sb(struct bnx2x_softc * sc,int fw_sb_id)4755 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4756 {
4757 	struct hc_status_block_data_e2 sb_data_e2;
4758 	struct hc_status_block_data_e1x sb_data_e1x;
4759 	uint32_t *sb_data_p;
4760 	uint32_t data_size = 0;
4761 
4762 	if (!CHIP_IS_E1x(sc)) {
4763 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4764 		sb_data_e2.common.state = SB_DISABLED;
4765 		sb_data_e2.common.p_func.vf_valid = FALSE;
4766 		sb_data_p = (uint32_t *) & sb_data_e2;
4767 		data_size = (sizeof(struct hc_status_block_data_e2) /
4768 			     sizeof(uint32_t));
4769 	} else {
4770 		memset(&sb_data_e1x, 0,
4771 		       sizeof(struct hc_status_block_data_e1x));
4772 		sb_data_e1x.common.state = SB_DISABLED;
4773 		sb_data_e1x.common.p_func.vf_valid = FALSE;
4774 		sb_data_p = (uint32_t *) & sb_data_e1x;
4775 		data_size = (sizeof(struct hc_status_block_data_e1x) /
4776 			     sizeof(uint32_t));
4777 	}
4778 
4779 	bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4780 
4781 	bnx2x_fill(sc,
4782 		 (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4783 		 CSTORM_STATUS_BLOCK_SIZE);
4784 	bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4785 		 0, CSTORM_SYNC_BLOCK_SIZE);
4786 }
4787 
4788 static void
bnx2x_wr_sp_sb_data(struct bnx2x_softc * sc,struct hc_sp_status_block_data * sp_sb_data)4789 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4790 		  struct hc_sp_status_block_data *sp_sb_data)
4791 {
4792 	uint32_t i;
4793 
4794 	for (i = 0;
4795 	     i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4796 	     i++) {
4797 		REG_WR(sc,
4798 		       (BAR_CSTRORM_INTMEM +
4799 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4800 			(i * sizeof(uint32_t))),
4801 		       *((uint32_t *) sp_sb_data + i));
4802 	}
4803 }
4804 
bnx2x_zero_sp_sb(struct bnx2x_softc * sc)4805 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4806 {
4807 	struct hc_sp_status_block_data sp_sb_data;
4808 
4809 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4810 
4811 	sp_sb_data.state = SB_DISABLED;
4812 	sp_sb_data.p_func.vf_valid = FALSE;
4813 
4814 	bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4815 
4816 	bnx2x_fill(sc,
4817 		 (BAR_CSTRORM_INTMEM +
4818 		  CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4819 		 0, CSTORM_SP_STATUS_BLOCK_SIZE);
4820 	bnx2x_fill(sc,
4821 		 (BAR_CSTRORM_INTMEM +
4822 		  CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4823 		 0, CSTORM_SP_SYNC_BLOCK_SIZE);
4824 }
4825 
4826 static void
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)4827 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4828 			     int igu_seg_id)
4829 {
4830 	hc_sm->igu_sb_id = igu_sb_id;
4831 	hc_sm->igu_seg_id = igu_seg_id;
4832 	hc_sm->timer_value = 0xFF;
4833 	hc_sm->time_to_expire = 0xFFFFFFFF;
4834 }
4835 
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)4836 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4837 {
4838 	/* zero out state machine indices */
4839 
4840 	/* rx indices */
4841 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4842 
4843 	/* tx indices */
4844 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4845 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4846 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4847 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4848 
4849 	/* map indices */
4850 
4851 	/* rx indices */
4852 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4853 	    (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4854 
4855 	/* tx indices */
4856 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4857 	    (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4858 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4859 	    (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4860 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4861 	    (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4862 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4863 	    (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4864 }
4865 
4866 static void
bnx2x_init_sb(struct bnx2x_softc * sc,rte_iova_t busaddr,int vfid,uint8_t vf_valid,int fw_sb_id,int igu_sb_id)4867 bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
4868 	    uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4869 {
4870 	struct hc_status_block_data_e2 sb_data_e2;
4871 	struct hc_status_block_data_e1x sb_data_e1x;
4872 	struct hc_status_block_sm *hc_sm_p;
4873 	uint32_t *sb_data_p;
4874 	int igu_seg_id;
4875 	int data_size;
4876 
4877 	if (CHIP_INT_MODE_IS_BC(sc)) {
4878 		igu_seg_id = HC_SEG_ACCESS_NORM;
4879 	} else {
4880 		igu_seg_id = IGU_SEG_ACCESS_NORM;
4881 	}
4882 
4883 	bnx2x_zero_fp_sb(sc, fw_sb_id);
4884 
4885 	if (!CHIP_IS_E1x(sc)) {
4886 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4887 		sb_data_e2.common.state = SB_ENABLED;
4888 		sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4889 		sb_data_e2.common.p_func.vf_id = vfid;
4890 		sb_data_e2.common.p_func.vf_valid = vf_valid;
4891 		sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4892 		sb_data_e2.common.same_igu_sb_1b = TRUE;
4893 		sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4894 		sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4895 		hc_sm_p = sb_data_e2.common.state_machine;
4896 		sb_data_p = (uint32_t *) & sb_data_e2;
4897 		data_size = (sizeof(struct hc_status_block_data_e2) /
4898 			     sizeof(uint32_t));
4899 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4900 	} else {
4901 		memset(&sb_data_e1x, 0,
4902 		       sizeof(struct hc_status_block_data_e1x));
4903 		sb_data_e1x.common.state = SB_ENABLED;
4904 		sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4905 		sb_data_e1x.common.p_func.vf_id = 0xff;
4906 		sb_data_e1x.common.p_func.vf_valid = FALSE;
4907 		sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4908 		sb_data_e1x.common.same_igu_sb_1b = TRUE;
4909 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4910 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4911 		hc_sm_p = sb_data_e1x.common.state_machine;
4912 		sb_data_p = (uint32_t *) & sb_data_e1x;
4913 		data_size = (sizeof(struct hc_status_block_data_e1x) /
4914 			     sizeof(uint32_t));
4915 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4916 	}
4917 
4918 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4919 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4920 
4921 	/* write indices to HW - PCI guarantees endianity of regpairs */
4922 	bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4923 }
4924 
bnx2x_fp_qzone_id(struct bnx2x_fastpath * fp)4925 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4926 {
4927 	if (CHIP_IS_E1x(fp->sc)) {
4928 		return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4929 	} else {
4930 		return fp->cl_id;
4931 	}
4932 }
4933 
4934 static uint32_t
bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc * sc,struct bnx2x_fastpath * fp)4935 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4936 {
4937 	uint32_t offset = BAR_USTRORM_INTMEM;
4938 
4939 	if (IS_VF(sc)) {
4940 		return PXP_VF_ADDR_USDM_QUEUES_START +
4941 			(sc->acquire_resp.resc.hw_qid[fp->index] *
4942 			 sizeof(struct ustorm_queue_zone_data));
4943 	} else if (!CHIP_IS_E1x(sc)) {
4944 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4945 	} else {
4946 		offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4947 	}
4948 
4949 	return offset;
4950 }
4951 
bnx2x_init_eth_fp(struct bnx2x_softc * sc,int idx)4952 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4953 {
4954 	struct bnx2x_fastpath *fp = &sc->fp[idx];
4955 	uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4956 	uint32_t q_type = 0;
4957 	int cos;
4958 
4959 	fp->sc = sc;
4960 	fp->index = idx;
4961 
4962 	fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4963 	fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4964 
4965 	if (CHIP_IS_E1x(sc))
4966 		fp->cl_id = SC_L_ID(sc) + idx;
4967 	else
4968 /* want client ID same as IGU SB ID for non-E1 */
4969 		fp->cl_id = fp->igu_sb_id;
4970 	fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4971 
4972 	/* setup sb indices */
4973 	if (!CHIP_IS_E1x(sc)) {
4974 		fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4975 		fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4976 	} else {
4977 		fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4978 		fp->sb_running_index =
4979 		    fp->status_block.e1x_sb->sb.running_index;
4980 	}
4981 
4982 	/* init shortcut */
4983 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4984 
4985 	fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4986 
4987 	for (cos = 0; cos < sc->max_cos; cos++) {
4988 		cids[cos] = idx;
4989 	}
4990 	fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4991 
4992 	/* nothing more for a VF to do */
4993 	if (IS_VF(sc)) {
4994 		return;
4995 	}
4996 
4997 	bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4998 		    fp->fw_sb_id, fp->igu_sb_id);
4999 
5000 	bnx2x_update_fp_sb_idx(fp);
5001 
5002 	/* Configure Queue State object */
5003 	rte_bit_relaxed_set32(ECORE_Q_TYPE_HAS_RX, &q_type);
5004 	rte_bit_relaxed_set32(ECORE_Q_TYPE_HAS_TX, &q_type);
5005 
5006 	ecore_init_queue_obj(sc,
5007 			     &sc->sp_objs[idx].q_obj,
5008 			     fp->cl_id,
5009 			     cids,
5010 			     sc->max_cos,
5011 			     SC_FUNC(sc),
5012 			     BNX2X_SP(sc, q_rdata),
5013 			     (rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
5014 			     q_type);
5015 
5016 	/* configure classification DBs */
5017 	ecore_init_mac_obj(sc,
5018 			   &sc->sp_objs[idx].mac_obj,
5019 			   fp->cl_id,
5020 			   idx,
5021 			   SC_FUNC(sc),
5022 			   BNX2X_SP(sc, mac_rdata),
5023 			   (rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
5024 			   ECORE_FILTER_MAC_PENDING, &sc->sp_state,
5025 			   ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
5026 }
5027 
5028 static void
bnx2x_update_rx_prod(struct bnx2x_softc * sc,struct bnx2x_fastpath * fp,uint16_t rx_bd_prod,uint16_t rx_cq_prod)5029 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
5030 		   uint16_t rx_bd_prod, uint16_t rx_cq_prod)
5031 {
5032 	struct ustorm_eth_rx_producers rx_prods;
5033 	uint32_t i;
5034 
5035 	memset(&rx_prods, 0, sizeof(rx_prods));
5036 
5037 	/* update producers */
5038 	rx_prods.bd_prod = rx_bd_prod;
5039 	rx_prods.cqe_prod = rx_cq_prod;
5040 
5041 	/*
5042 	 * Make sure that the BD and SGE data is updated before updating the
5043 	 * producers since FW might read the BD/SGE right after the producer
5044 	 * is updated.
5045 	 * This is only applicable for weak-ordered memory model archs such
5046 	 * as IA-64. The following barrier is also mandatory since FW will
5047 	 * assumes BDs must have buffers.
5048 	 */
5049 	wmb();
5050 
5051 	for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
5052 		REG_WR(sc, (fp->ustorm_rx_prods_offset + (i * 4)),
5053 		       ((uint32_t *)&rx_prods)[i]);
5054 	}
5055 
5056 	wmb();			/* keep prod updates ordered */
5057 }
5058 
bnx2x_init_rx_rings(struct bnx2x_softc * sc)5059 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
5060 {
5061 	struct bnx2x_fastpath *fp;
5062 	int i;
5063 	struct bnx2x_rx_queue *rxq;
5064 
5065 	for (i = 0; i < sc->num_queues; i++) {
5066 		fp = &sc->fp[i];
5067 		rxq = sc->rx_queues[fp->index];
5068 		if (!rxq) {
5069 			PMD_RX_LOG(ERR, "RX queue is NULL");
5070 			return;
5071 		}
5072 
5073 		rxq->rx_bd_head = 0;
5074 		rxq->rx_bd_tail = rxq->nb_rx_desc;
5075 		rxq->rx_cq_head = 0;
5076 		rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
5077 		*fp->rx_cq_cons_sb = 0;
5078 
5079 		/*
5080 		 * Activate the BD ring...
5081 		 * Warning, this will generate an interrupt (to the TSTORM)
5082 		 * so this can only be done after the chip is initialized
5083 		 */
5084 		bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
5085 
5086 		if (i != 0) {
5087 			continue;
5088 		}
5089 	}
5090 }
5091 
bnx2x_init_tx_ring_one(struct bnx2x_fastpath * fp)5092 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5093 {
5094 	struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5095 
5096 	fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5097 	fp->tx_db.data.zero_fill1 = 0;
5098 	fp->tx_db.data.prod = 0;
5099 
5100 	if (!txq) {
5101 		PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5102 		return;
5103 	}
5104 
5105 	txq->tx_pkt_tail = 0;
5106 	txq->tx_pkt_head = 0;
5107 	txq->tx_bd_tail = 0;
5108 	txq->tx_bd_head = 0;
5109 }
5110 
bnx2x_init_tx_rings(struct bnx2x_softc * sc)5111 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5112 {
5113 	int i;
5114 
5115 	for (i = 0; i < sc->num_queues; i++) {
5116 		bnx2x_init_tx_ring_one(&sc->fp[i]);
5117 	}
5118 }
5119 
bnx2x_init_def_sb(struct bnx2x_softc * sc)5120 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5121 {
5122 	struct host_sp_status_block *def_sb = sc->def_sb;
5123 	rte_iova_t mapping = sc->def_sb_dma.paddr;
5124 	int igu_sp_sb_index;
5125 	int igu_seg_id;
5126 	int port = SC_PORT(sc);
5127 	int func = SC_FUNC(sc);
5128 	int reg_offset, reg_offset_en5;
5129 	uint64_t section;
5130 	int index, sindex;
5131 	struct hc_sp_status_block_data sp_sb_data;
5132 
5133 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5134 
5135 	if (CHIP_INT_MODE_IS_BC(sc)) {
5136 		igu_sp_sb_index = DEF_SB_IGU_ID;
5137 		igu_seg_id = HC_SEG_ACCESS_DEF;
5138 	} else {
5139 		igu_sp_sb_index = sc->igu_dsb_id;
5140 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5141 	}
5142 
5143 	/* attentions */
5144 	section = ((uint64_t) mapping +
5145 		   offsetof(struct host_sp_status_block, atten_status_block));
5146 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5147 	sc->attn_state = 0;
5148 
5149 	reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5150 	    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5151 
5152 	reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5153 	    MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5154 
5155 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5156 /* take care of sig[0]..sig[4] */
5157 		for (sindex = 0; sindex < 4; sindex++) {
5158 			sc->attn_group[index].sig[sindex] =
5159 			    REG_RD(sc,
5160 				   (reg_offset + (sindex * 0x4) +
5161 				    (0x10 * index)));
5162 		}
5163 
5164 		if (!CHIP_IS_E1x(sc)) {
5165 			/*
5166 			 * enable5 is separate from the rest of the registers,
5167 			 * and the address skip is 4 and not 16 between the
5168 			 * different groups
5169 			 */
5170 			sc->attn_group[index].sig[4] =
5171 			    REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5172 		} else {
5173 			sc->attn_group[index].sig[4] = 0;
5174 		}
5175 	}
5176 
5177 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
5178 		reg_offset =
5179 		    port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5180 		REG_WR(sc, reg_offset, U64_LO(section));
5181 		REG_WR(sc, (reg_offset + 4), U64_HI(section));
5182 	} else if (!CHIP_IS_E1x(sc)) {
5183 		REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5184 		REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5185 	}
5186 
5187 	section = ((uint64_t) mapping +
5188 		   offsetof(struct host_sp_status_block, sp_sb));
5189 
5190 	bnx2x_zero_sp_sb(sc);
5191 
5192 	/* PCI guarantees endianity of regpair */
5193 	sp_sb_data.state = SB_ENABLED;
5194 	sp_sb_data.host_sb_addr.lo = U64_LO(section);
5195 	sp_sb_data.host_sb_addr.hi = U64_HI(section);
5196 	sp_sb_data.igu_sb_id = igu_sp_sb_index;
5197 	sp_sb_data.igu_seg_id = igu_seg_id;
5198 	sp_sb_data.p_func.pf_id = func;
5199 	sp_sb_data.p_func.vnic_id = SC_VN(sc);
5200 	sp_sb_data.p_func.vf_id = 0xff;
5201 
5202 	bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5203 
5204 	bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5205 }
5206 
bnx2x_init_sp_ring(struct bnx2x_softc * sc)5207 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5208 {
5209 	atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5210 	sc->spq_prod_idx = 0;
5211 	sc->dsb_sp_prod =
5212 	    &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5213 	sc->spq_prod_bd = sc->spq;
5214 	sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5215 }
5216 
bnx2x_init_eq_ring(struct bnx2x_softc * sc)5217 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5218 {
5219 	union event_ring_elem *elem;
5220 	int i;
5221 
5222 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5223 		elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5224 
5225 		elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5226 							 BNX2X_PAGE_SIZE *
5227 							 (i % NUM_EQ_PAGES)));
5228 		elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5229 							 BNX2X_PAGE_SIZE *
5230 							 (i % NUM_EQ_PAGES)));
5231 	}
5232 
5233 	sc->eq_cons = 0;
5234 	sc->eq_prod = NUM_EQ_DESC;
5235 	sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5236 
5237 	atomic_store_rel_long(&sc->eq_spq_left,
5238 			      (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5239 				   NUM_EQ_DESC) - 1));
5240 }
5241 
bnx2x_init_internal_common(struct bnx2x_softc * sc)5242 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5243 {
5244 	int i;
5245 
5246 	/*
5247 	 * Zero this manually as its initialization is currently missing
5248 	 * in the initTool.
5249 	 */
5250 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5251 		REG_WR(sc,
5252 		       (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5253 		       0);
5254 	}
5255 
5256 	if (!CHIP_IS_E1x(sc)) {
5257 		REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5258 			CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5259 			HC_IGU_NBC_MODE);
5260 	}
5261 }
5262 
bnx2x_init_internal(struct bnx2x_softc * sc,uint32_t load_code)5263 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5264 {
5265 	switch (load_code) {
5266 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5267 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5268 		bnx2x_init_internal_common(sc);
5269 		/* no break */
5270 
5271 	case FW_MSG_CODE_DRV_LOAD_PORT:
5272 		/* nothing to do */
5273 		/* no break */
5274 
5275 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5276 		/* internal memory per function is initialized inside bnx2x_pf_init */
5277 		break;
5278 
5279 	default:
5280 		PMD_DRV_LOG(NOTICE, sc, "Unknown load_code (0x%x) from MCP",
5281 			    load_code);
5282 		break;
5283 	}
5284 }
5285 
5286 static void
storm_memset_func_cfg(struct bnx2x_softc * sc,struct tstorm_eth_function_common_config * tcfg,uint16_t abs_fid)5287 storm_memset_func_cfg(struct bnx2x_softc *sc,
5288 		      struct tstorm_eth_function_common_config *tcfg,
5289 		      uint16_t abs_fid)
5290 {
5291 	uint32_t addr;
5292 	size_t size;
5293 
5294 	addr = (BAR_TSTRORM_INTMEM +
5295 		TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5296 	size = sizeof(struct tstorm_eth_function_common_config);
5297 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5298 }
5299 
bnx2x_func_init(struct bnx2x_softc * sc,struct bnx2x_func_init_params * p)5300 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5301 {
5302 	struct tstorm_eth_function_common_config tcfg = { 0 };
5303 
5304 	if (CHIP_IS_E1x(sc)) {
5305 		storm_memset_func_cfg(sc, &tcfg, p->func_id);
5306 	}
5307 
5308 	/* Enable the function in the FW */
5309 	storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5310 	storm_memset_func_en(sc, p->func_id, 1);
5311 
5312 	/* spq */
5313 	if (p->func_flgs & FUNC_FLG_SPQ) {
5314 		storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5315 		REG_WR(sc,
5316 		       (XSEM_REG_FAST_MEMORY +
5317 			XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5318 	}
5319 }
5320 
5321 /*
5322  * Calculates the sum of vn_min_rates.
5323  * It's needed for further normalizing of the min_rates.
5324  * Returns:
5325  *   sum of vn_min_rates.
5326  *     or
5327  *   0 - if all the min_rates are 0.
5328  * In the later case fairness algorithm should be deactivated.
5329  * If all min rates are not zero then those that are zeroes will be set to 1.
5330  */
bnx2x_calc_vn_min(struct bnx2x_softc * sc,struct cmng_init_input * input)5331 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5332 {
5333 	uint32_t vn_cfg;
5334 	uint32_t vn_min_rate;
5335 	int all_zero = 1;
5336 	int vn;
5337 
5338 	for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5339 		vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5340 		vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5341 				FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5342 
5343 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5344 			/* skip hidden VNs */
5345 			vn_min_rate = 0;
5346 		} else if (!vn_min_rate) {
5347 			/* If min rate is zero - set it to 100 */
5348 			vn_min_rate = DEF_MIN_RATE;
5349 		} else {
5350 			all_zero = 0;
5351 		}
5352 
5353 		input->vnic_min_rate[vn] = vn_min_rate;
5354 	}
5355 
5356 	/* if ETS or all min rates are zeros - disable fairness */
5357 	if (all_zero) {
5358 		input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5359 	} else {
5360 		input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5361 	}
5362 }
5363 
5364 static uint16_t
bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc * sc,uint32_t mf_cfg)5365 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5366 {
5367 	uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5368 			    FUNC_MF_CFG_MAX_BW_SHIFT);
5369 
5370 	if (!max_cfg) {
5371 		PMD_DRV_LOG(DEBUG, sc,
5372 			    "Max BW configured to 0 - using 100 instead");
5373 		max_cfg = 100;
5374 	}
5375 
5376 	return max_cfg;
5377 }
5378 
5379 static void
bnx2x_calc_vn_max(struct bnx2x_softc * sc,int vn,struct cmng_init_input * input)5380 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5381 {
5382 	uint16_t vn_max_rate;
5383 	uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5384 	uint32_t max_cfg;
5385 
5386 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5387 		vn_max_rate = 0;
5388 	} else {
5389 		max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5390 
5391 		if (IS_MF_SI(sc)) {
5392 			/* max_cfg in percents of linkspeed */
5393 			vn_max_rate =
5394 			    ((sc->link_vars.line_speed * max_cfg) / 100);
5395 		} else {	/* SD modes */
5396 			/* max_cfg is absolute in 100Mb units */
5397 			vn_max_rate = (max_cfg * 100);
5398 		}
5399 	}
5400 
5401 	input->vnic_max_rate[vn] = vn_max_rate;
5402 }
5403 
5404 static void
bnx2x_cmng_fns_init(struct bnx2x_softc * sc,uint8_t read_cfg,uint8_t cmng_type)5405 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5406 {
5407 	struct cmng_init_input input;
5408 	int vn;
5409 
5410 	memset(&input, 0, sizeof(struct cmng_init_input));
5411 
5412 	input.port_rate = sc->link_vars.line_speed;
5413 
5414 	if (cmng_type == CMNG_FNS_MINMAX) {
5415 /* read mf conf from shmem */
5416 		if (read_cfg) {
5417 			bnx2x_read_mf_cfg(sc);
5418 		}
5419 
5420 /* get VN min rate and enable fairness if not 0 */
5421 		bnx2x_calc_vn_min(sc, &input);
5422 
5423 /* get VN max rate */
5424 		if (sc->port.pmf) {
5425 			for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5426 				bnx2x_calc_vn_max(sc, vn, &input);
5427 			}
5428 		}
5429 
5430 /* always enable rate shaping and fairness */
5431 		input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5432 
5433 		ecore_init_cmng(&input, &sc->cmng);
5434 		return;
5435 	}
5436 }
5437 
bnx2x_get_cmng_fns_mode(struct bnx2x_softc * sc)5438 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5439 {
5440 	if (CHIP_REV_IS_SLOW(sc)) {
5441 		return CMNG_FNS_NONE;
5442 	}
5443 
5444 	if (IS_MF(sc)) {
5445 		return CMNG_FNS_MINMAX;
5446 	}
5447 
5448 	return CMNG_FNS_NONE;
5449 }
5450 
5451 static void
storm_memset_cmng(struct bnx2x_softc * sc,struct cmng_init * cmng,uint8_t port)5452 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5453 {
5454 	int vn;
5455 	int func;
5456 	uint32_t addr;
5457 	size_t size;
5458 
5459 	addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5460 	size = sizeof(struct cmng_struct_per_port);
5461 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5462 
5463 	for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5464 		func = func_by_vn(sc, vn);
5465 
5466 		addr = (BAR_XSTRORM_INTMEM +
5467 			XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5468 		size = sizeof(struct rate_shaping_vars_per_vn);
5469 		ecore_storm_memset_struct(sc, addr, size,
5470 					  (uint32_t *) & cmng->
5471 					  vnic.vnic_max_rate[vn]);
5472 
5473 		addr = (BAR_XSTRORM_INTMEM +
5474 			XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5475 		size = sizeof(struct fairness_vars_per_vn);
5476 		ecore_storm_memset_struct(sc, addr, size,
5477 					  (uint32_t *) & cmng->
5478 					  vnic.vnic_min_rate[vn]);
5479 	}
5480 }
5481 
bnx2x_pf_init(struct bnx2x_softc * sc)5482 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5483 {
5484 	struct bnx2x_func_init_params func_init;
5485 	struct event_ring_data eq_data;
5486 	uint16_t flags;
5487 
5488 	memset(&eq_data, 0, sizeof(struct event_ring_data));
5489 	memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5490 
5491 	if (!CHIP_IS_E1x(sc)) {
5492 /* reset IGU PF statistics: MSIX + ATTN */
5493 /* PF */
5494 		REG_WR(sc,
5495 		       (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5496 			(BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5497 			((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5498 			 4)), 0);
5499 /* ATTN */
5500 		REG_WR(sc,
5501 		       (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5502 			(BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5503 			(BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5504 			((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5505 			 4)), 0);
5506 	}
5507 
5508 	/* function setup flags */
5509 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5510 
5511 	func_init.func_flgs = flags;
5512 	func_init.pf_id = SC_FUNC(sc);
5513 	func_init.func_id = SC_FUNC(sc);
5514 	func_init.spq_map = sc->spq_dma.paddr;
5515 	func_init.spq_prod = sc->spq_prod_idx;
5516 
5517 	bnx2x_func_init(sc, &func_init);
5518 
5519 	memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5520 
5521 	/*
5522 	 * Congestion management values depend on the link rate.
5523 	 * There is no active link so initial link rate is set to 10Gbps.
5524 	 * When the link comes up the congestion management values are
5525 	 * re-calculated according to the actual link rate.
5526 	 */
5527 	sc->link_vars.line_speed = SPEED_10000;
5528 	bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5529 
5530 	/* Only the PMF sets the HW */
5531 	if (sc->port.pmf) {
5532 		storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5533 	}
5534 
5535 	/* init Event Queue - PCI bus guarantees correct endainity */
5536 	eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5537 	eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5538 	eq_data.producer = sc->eq_prod;
5539 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5540 	eq_data.sb_id = DEF_SB_ID;
5541 	storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5542 }
5543 
bnx2x_hc_int_enable(struct bnx2x_softc * sc)5544 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5545 {
5546 	int port = SC_PORT(sc);
5547 	uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5548 	uint32_t val = REG_RD(sc, addr);
5549 	uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5550 	    || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5551 	uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5552 	uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5553 
5554 	if (msix) {
5555 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5556 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
5557 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5558 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5559 		if (single_msix) {
5560 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5561 		}
5562 	} else if (msi) {
5563 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5564 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5565 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5566 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5567 	} else {
5568 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5569 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5570 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
5571 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5572 
5573 		REG_WR(sc, addr, val);
5574 
5575 		val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5576 	}
5577 
5578 	REG_WR(sc, addr, val);
5579 
5580 	/* ensure that HC_CONFIG is written before leading/trailing edge config */
5581 	mb();
5582 
5583 	/* init leading/trailing edge */
5584 	if (IS_MF(sc)) {
5585 		val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5586 		if (sc->port.pmf) {
5587 			/* enable nig and gpio3 attention */
5588 			val |= 0x1100;
5589 		}
5590 	} else {
5591 		val = 0xffff;
5592 	}
5593 
5594 	REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5595 	REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5596 
5597 	/* make sure that interrupts are indeed enabled from here on */
5598 	mb();
5599 }
5600 
bnx2x_igu_int_enable(struct bnx2x_softc * sc)5601 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5602 {
5603 	uint32_t val;
5604 	uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5605 	    || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5606 	uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5607 	uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5608 
5609 	val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5610 
5611 	if (msix) {
5612 		val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5613 		val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5614 		if (single_msix) {
5615 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
5616 		}
5617 	} else if (msi) {
5618 		val &= ~IGU_PF_CONF_INT_LINE_EN;
5619 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
5620 			IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5621 	} else {
5622 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5623 		val |= (IGU_PF_CONF_INT_LINE_EN |
5624 			IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5625 	}
5626 
5627 	/* clean previous status - need to configure igu prior to ack */
5628 	if ((!msix) || single_msix) {
5629 		REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5630 		bnx2x_ack_int(sc);
5631 	}
5632 
5633 	val |= IGU_PF_CONF_FUNC_EN;
5634 
5635 	PMD_DRV_LOG(DEBUG, sc, "write 0x%x to IGU mode %s",
5636 		    val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5637 
5638 	REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5639 
5640 	mb();
5641 
5642 	/* init leading/trailing edge */
5643 	if (IS_MF(sc)) {
5644 		val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5645 		if (sc->port.pmf) {
5646 			/* enable nig and gpio3 attention */
5647 			val |= 0x1100;
5648 		}
5649 	} else {
5650 		val = 0xffff;
5651 	}
5652 
5653 	REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5654 	REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5655 
5656 	/* make sure that interrupts are indeed enabled from here on */
5657 	mb();
5658 }
5659 
bnx2x_int_enable(struct bnx2x_softc * sc)5660 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5661 {
5662 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
5663 		bnx2x_hc_int_enable(sc);
5664 	} else {
5665 		bnx2x_igu_int_enable(sc);
5666 	}
5667 }
5668 
bnx2x_hc_int_disable(struct bnx2x_softc * sc)5669 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5670 {
5671 	int port = SC_PORT(sc);
5672 	uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5673 	uint32_t val = REG_RD(sc, addr);
5674 
5675 	val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5676 		 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5677 		 HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5678 	/* flush all outstanding writes */
5679 	mb();
5680 
5681 	REG_WR(sc, addr, val);
5682 	if (REG_RD(sc, addr) != val) {
5683 		PMD_DRV_LOG(ERR, sc, "proper val not read from HC IGU!");
5684 	}
5685 }
5686 
bnx2x_igu_int_disable(struct bnx2x_softc * sc)5687 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5688 {
5689 	uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5690 
5691 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5692 		 IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5693 
5694 	PMD_DRV_LOG(DEBUG, sc, "write %x to IGU", val);
5695 
5696 	/* flush all outstanding writes */
5697 	mb();
5698 
5699 	REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5700 	if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5701 		PMD_DRV_LOG(ERR, sc, "proper val not read from IGU!");
5702 	}
5703 }
5704 
bnx2x_int_disable(struct bnx2x_softc * sc)5705 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5706 {
5707 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
5708 		bnx2x_hc_int_disable(sc);
5709 	} else {
5710 		bnx2x_igu_int_disable(sc);
5711 	}
5712 }
5713 
bnx2x_nic_init(struct bnx2x_softc * sc,int load_code)5714 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5715 {
5716 	int i;
5717 
5718 	PMD_INIT_FUNC_TRACE(sc);
5719 
5720 	for (i = 0; i < sc->num_queues; i++) {
5721 		bnx2x_init_eth_fp(sc, i);
5722 	}
5723 
5724 	rmb();			/* ensure status block indices were read */
5725 
5726 	bnx2x_init_rx_rings(sc);
5727 	bnx2x_init_tx_rings(sc);
5728 
5729 	if (IS_VF(sc)) {
5730 		bnx2x_memset_stats(sc);
5731 		return;
5732 	}
5733 
5734 	/* initialize MOD_ABS interrupts */
5735 	elink_init_mod_abs_int(sc, &sc->link_vars,
5736 			       sc->devinfo.chip_id,
5737 			       sc->devinfo.shmem_base,
5738 			       sc->devinfo.shmem2_base, SC_PORT(sc));
5739 
5740 	bnx2x_init_def_sb(sc);
5741 	bnx2x_update_dsb_idx(sc);
5742 	bnx2x_init_sp_ring(sc);
5743 	bnx2x_init_eq_ring(sc);
5744 	bnx2x_init_internal(sc, load_code);
5745 	bnx2x_pf_init(sc);
5746 	bnx2x_stats_init(sc);
5747 
5748 	/* flush all before enabling interrupts */
5749 	mb();
5750 
5751 	bnx2x_int_enable(sc);
5752 
5753 	/* check for SPIO5 */
5754 	bnx2x_attn_int_deasserted0(sc,
5755 				 REG_RD(sc,
5756 					(MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5757 					 SC_PORT(sc) * 4)) &
5758 				 AEU_INPUTS_ATTN_BITS_SPIO5);
5759 }
5760 
bnx2x_init_objs(struct bnx2x_softc * sc)5761 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5762 {
5763 	/* mcast rules must be added to tx if tx switching is enabled */
5764 	ecore_obj_type o_type;
5765 	if (sc->flags & BNX2X_TX_SWITCHING)
5766 		o_type = ECORE_OBJ_TYPE_RX_TX;
5767 	else
5768 		o_type = ECORE_OBJ_TYPE_RX;
5769 
5770 	/* RX_MODE controlling object */
5771 	ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5772 
5773 	/* multicast configuration controlling object */
5774 	ecore_init_mcast_obj(sc,
5775 			     &sc->mcast_obj,
5776 			     sc->fp[0].cl_id,
5777 			     sc->fp[0].index,
5778 			     SC_FUNC(sc),
5779 			     SC_FUNC(sc),
5780 			     BNX2X_SP(sc, mcast_rdata),
5781 			     (rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5782 			     ECORE_FILTER_MCAST_PENDING,
5783 			     &sc->sp_state, o_type);
5784 
5785 	/* Setup CAM credit pools */
5786 	ecore_init_mac_credit_pool(sc,
5787 				   &sc->macs_pool,
5788 				   SC_FUNC(sc),
5789 				   CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5790 				   VNICS_PER_PATH(sc));
5791 
5792 	ecore_init_vlan_credit_pool(sc,
5793 				    &sc->vlans_pool,
5794 				    SC_ABS_FUNC(sc) >> 1,
5795 				    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5796 				    VNICS_PER_PATH(sc));
5797 
5798 	/* RSS configuration object */
5799 	ecore_init_rss_config_obj(sc, &sc->rss_conf_obj, sc->fp->cl_id,
5800 				  sc->fp->index, SC_FUNC(sc), SC_FUNC(sc),
5801 				  BNX2X_SP(sc, rss_rdata),
5802 				  (rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5803 				  ECORE_FILTER_RSS_CONF_PENDING, &sc->sp_state,
5804 				  ECORE_OBJ_TYPE_RX);
5805 }
5806 
5807 /*
5808  * Initialize the function. This must be called before sending CLIENT_SETUP
5809  * for the first client.
5810  */
bnx2x_func_start(struct bnx2x_softc * sc)5811 static int bnx2x_func_start(struct bnx2x_softc *sc)
5812 {
5813 	struct ecore_func_state_params func_params = { NULL };
5814 	struct ecore_func_start_params *start_params =
5815 	    &func_params.params.start;
5816 
5817 	/* Prepare parameters for function state transitions */
5818 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5819 
5820 	func_params.f_obj = &sc->func_obj;
5821 	func_params.cmd = ECORE_F_CMD_START;
5822 
5823 	/* Function parameters */
5824 	start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5825 	start_params->sd_vlan_tag = OVLAN(sc);
5826 
5827 	if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5828 		start_params->network_cos_mode = STATIC_COS;
5829 	} else {		/* CHIP_IS_E1X */
5830 		start_params->network_cos_mode = FW_WRR;
5831 	}
5832 
5833 	return ecore_func_state_change(sc, &func_params);
5834 }
5835 
bnx2x_set_power_state(struct bnx2x_softc * sc,uint8_t state)5836 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5837 {
5838 	uint16_t pmcsr;
5839 
5840 	/* If there is no power capability, silently succeed */
5841 	if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5842 		PMD_DRV_LOG(INFO, sc, "No power capability");
5843 		return 0;
5844 	}
5845 
5846 	pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5847 		 2);
5848 
5849 	switch (state) {
5850 	case PCI_PM_D0:
5851 		pci_write_word(sc,
5852 			       (sc->devinfo.pcie_pm_cap_reg +
5853 				PCIR_POWER_STATUS),
5854 			       ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5855 
5856 		if (pmcsr & PCIM_PSTAT_DMASK) {
5857 			/* delay required during transition out of D3hot */
5858 			DELAY(20000);
5859 		}
5860 
5861 		break;
5862 
5863 	case PCI_PM_D3hot:
5864 		/* don't shut down the power for emulation and FPGA */
5865 		if (CHIP_REV_IS_SLOW(sc)) {
5866 			return 0;
5867 		}
5868 
5869 		pmcsr &= ~PCIM_PSTAT_DMASK;
5870 		pmcsr |= PCIM_PSTAT_D3;
5871 
5872 		if (sc->wol) {
5873 			pmcsr |= PCIM_PSTAT_PMEENABLE;
5874 		}
5875 
5876 		pci_write_long(sc,
5877 			       (sc->devinfo.pcie_pm_cap_reg +
5878 				PCIR_POWER_STATUS), pmcsr);
5879 
5880 		/*
5881 		 * No more memory access after this point until device is brought back
5882 		 * to D0 state.
5883 		 */
5884 		break;
5885 
5886 	default:
5887 		PMD_DRV_LOG(NOTICE, sc, "Can't support PCI power state = %d",
5888 			    state);
5889 		return -1;
5890 	}
5891 
5892 	return 0;
5893 }
5894 
5895 /* return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x_softc * sc,uint32_t resource)5896 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5897 {
5898 	uint32_t lock_status;
5899 	uint32_t resource_bit = (1 << resource);
5900 	int func = SC_FUNC(sc);
5901 	uint32_t hw_lock_control_reg;
5902 
5903 	/* Validating that the resource is within range */
5904 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5905 		PMD_DRV_LOG(INFO, sc,
5906 			    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5907 			    resource, HW_LOCK_MAX_RESOURCE_VALUE);
5908 		return FALSE;
5909 	}
5910 
5911 	if (func <= 5) {
5912 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5913 	} else {
5914 		hw_lock_control_reg =
5915 		    (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5916 	}
5917 
5918 	/* try to acquire the lock */
5919 	REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5920 	lock_status = REG_RD(sc, hw_lock_control_reg);
5921 	if (lock_status & resource_bit) {
5922 		return TRUE;
5923 	}
5924 
5925 	PMD_DRV_LOG(NOTICE, sc, "Failed to get a resource lock 0x%x", resource);
5926 
5927 	return FALSE;
5928 }
5929 
5930 /*
5931  * Get the recovery leader resource id according to the engine this function
5932  * belongs to. Currently only only 2 engines is supported.
5933  */
bnx2x_get_leader_lock_resource(struct bnx2x_softc * sc)5934 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5935 {
5936 	if (SC_PATH(sc)) {
5937 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5938 	} else {
5939 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5940 	}
5941 }
5942 
5943 /* try to acquire a leader lock for current engine */
bnx2x_trylock_leader_lock(struct bnx2x_softc * sc)5944 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5945 {
5946 	return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5947 }
5948 
bnx2x_release_leader_lock(struct bnx2x_softc * sc)5949 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5950 {
5951 	return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5952 }
5953 
5954 /* close gates #2, #3 and #4 */
bnx2x_set_234_gates(struct bnx2x_softc * sc,uint8_t close)5955 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5956 {
5957 	uint32_t val;
5958 
5959 	/* gates #2 and #4a are closed/opened */
5960 	/* #4 */
5961 	REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5962 	/* #2 */
5963 	REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5964 
5965 	/* #3 */
5966 	if (CHIP_IS_E1x(sc)) {
5967 /* prevent interrupts from HC on both ports */
5968 		val = REG_RD(sc, HC_REG_CONFIG_1);
5969 		if (close)
5970 			REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5971 						     HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5972 		else
5973 			REG_WR(sc, HC_REG_CONFIG_1,
5974 			       (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5975 
5976 		val = REG_RD(sc, HC_REG_CONFIG_0);
5977 		if (close)
5978 			REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5979 						     HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5980 		else
5981 			REG_WR(sc, HC_REG_CONFIG_0,
5982 			       (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5983 
5984 	} else {
5985 /* Prevent incoming interrupts in IGU */
5986 		val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5987 
5988 		if (close)
5989 			REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5990 			       (val & ~(uint32_t)
5991 				IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5992 		else
5993 			REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5994 			       (val |
5995 				IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5996 	}
5997 
5998 	wmb();
5999 }
6000 
6001 /* poll for pending writes bit, it should get cleared in no more than 1s */
bnx2x_er_poll_igu_vq(struct bnx2x_softc * sc)6002 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
6003 {
6004 	uint32_t cnt = 1000;
6005 	uint32_t pend_bits = 0;
6006 
6007 	do {
6008 		pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
6009 
6010 		if (pend_bits == 0) {
6011 			break;
6012 		}
6013 
6014 		DELAY(1000);
6015 	} while (cnt-- > 0);
6016 
6017 	if (cnt <= 0) {
6018 		PMD_DRV_LOG(NOTICE, sc, "Still pending IGU requests bits=0x%08x!",
6019 			    pend_bits);
6020 		return -1;
6021 	}
6022 
6023 	return 0;
6024 }
6025 
6026 #define SHARED_MF_CLP_MAGIC  0x80000000	/* 'magic' bit */
6027 
bnx2x_clp_reset_prep(struct bnx2x_softc * sc,uint32_t * magic_val)6028 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6029 {
6030 	/* Do some magic... */
6031 	uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6032 	*magic_val = val & SHARED_MF_CLP_MAGIC;
6033 	MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
6034 }
6035 
6036 /* restore the value of the 'magic' bit */
bnx2x_clp_reset_done(struct bnx2x_softc * sc,uint32_t magic_val)6037 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
6038 {
6039 	/* Restore the 'magic' bit value... */
6040 	uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6041 	MFCFG_WR(sc, shared_mf_config.clp_mb,
6042 		 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
6043 }
6044 
6045 /* prepare for MCP reset, takes care of CLP configurations */
bnx2x_reset_mcp_prep(struct bnx2x_softc * sc,uint32_t * magic_val)6046 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6047 {
6048 	uint32_t shmem;
6049 	uint32_t validity_offset;
6050 
6051 	/* set `magic' bit in order to save MF config */
6052 	bnx2x_clp_reset_prep(sc, magic_val);
6053 
6054 	/* get shmem offset */
6055 	shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6056 	validity_offset =
6057 	    offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
6058 
6059 	/* Clear validity map flags */
6060 	if (shmem > 0) {
6061 		REG_WR(sc, shmem + validity_offset, 0);
6062 	}
6063 }
6064 
6065 #define MCP_TIMEOUT      5000	/* 5 seconds (in ms) */
6066 #define MCP_ONE_TIMEOUT  100	/* 100 ms */
6067 
bnx2x_mcp_wait_one(struct bnx2x_softc * sc)6068 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
6069 {
6070 	/* special handling for emulation and FPGA (10 times longer) */
6071 	if (CHIP_REV_IS_SLOW(sc)) {
6072 		DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6073 	} else {
6074 		DELAY((MCP_ONE_TIMEOUT) * 1000);
6075 	}
6076 }
6077 
6078 /* initialize shmem_base and waits for validity signature to appear */
bnx2x_init_shmem(struct bnx2x_softc * sc)6079 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6080 {
6081 	int cnt = 0;
6082 	uint32_t val = 0;
6083 
6084 	do {
6085 		sc->devinfo.shmem_base =
6086 		    sc->link_params.shmem_base =
6087 		    REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6088 
6089 		if (sc->devinfo.shmem_base) {
6090 			val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6091 			if (val & SHR_MEM_VALIDITY_MB)
6092 				return 0;
6093 		}
6094 
6095 		bnx2x_mcp_wait_one(sc);
6096 
6097 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6098 
6099 	PMD_DRV_LOG(NOTICE, sc, "BAD MCP validity signature");
6100 
6101 	return -1;
6102 }
6103 
bnx2x_reset_mcp_comp(struct bnx2x_softc * sc,uint32_t magic_val)6104 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6105 {
6106 	int rc = bnx2x_init_shmem(sc);
6107 
6108 	/* Restore the `magic' bit value */
6109 	bnx2x_clp_reset_done(sc, magic_val);
6110 
6111 	return rc;
6112 }
6113 
bnx2x_pxp_prep(struct bnx2x_softc * sc)6114 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6115 {
6116 	REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6117 	REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6118 	wmb();
6119 }
6120 
6121 /*
6122  * Reset the whole chip except for:
6123  *      - PCIE core
6124  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6125  *      - IGU
6126  *      - MISC (including AEU)
6127  *      - GRC
6128  *      - RBCN, RBCP
6129  */
bnx2x_process_kill_chip_reset(struct bnx2x_softc * sc,uint8_t global)6130 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6131 {
6132 	uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6133 	uint32_t global_bits2, stay_reset2;
6134 
6135 	/*
6136 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
6137 	 * (per chip) blocks.
6138 	 */
6139 	global_bits2 =
6140 	    MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6141 	    MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6142 
6143 	/*
6144 	 * Don't reset the following blocks.
6145 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6146 	 *            reset, as in 4 port device they might still be owned
6147 	 *            by the MCP (there is only one leader per path).
6148 	 */
6149 	not_reset_mask1 =
6150 	    MISC_REGISTERS_RESET_REG_1_RST_HC |
6151 	    MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6152 	    MISC_REGISTERS_RESET_REG_1_RST_PXP;
6153 
6154 	not_reset_mask2 =
6155 	    MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6156 	    MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6157 	    MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6158 	    MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6159 	    MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6160 	    MISC_REGISTERS_RESET_REG_2_RST_GRC |
6161 	    MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6162 	    MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6163 	    MISC_REGISTERS_RESET_REG_2_RST_ATC |
6164 	    MISC_REGISTERS_RESET_REG_2_PGLC |
6165 	    MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6166 	    MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6167 	    MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6168 	    MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6169 	    MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6170 
6171 	/*
6172 	 * Keep the following blocks in reset:
6173 	 *  - all xxMACs are handled by the elink code.
6174 	 */
6175 	stay_reset2 =
6176 	    MISC_REGISTERS_RESET_REG_2_XMAC |
6177 	    MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6178 
6179 	/* Full reset masks according to the chip */
6180 	reset_mask1 = 0xffffffff;
6181 
6182 	if (CHIP_IS_E1H(sc))
6183 		reset_mask2 = 0x1ffff;
6184 	else if (CHIP_IS_E2(sc))
6185 		reset_mask2 = 0xfffff;
6186 	else			/* CHIP_IS_E3 */
6187 		reset_mask2 = 0x3ffffff;
6188 
6189 	/* Don't reset global blocks unless we need to */
6190 	if (!global)
6191 		reset_mask2 &= ~global_bits2;
6192 
6193 	/*
6194 	 * In case of attention in the QM, we need to reset PXP
6195 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6196 	 * because otherwise QM reset would release 'close the gates' shortly
6197 	 * before resetting the PXP, then the PSWRQ would send a write
6198 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
6199 	 * read the payload data from PSWWR, but PSWWR would not
6200 	 * respond. The write queue in PGLUE would stuck, dmae commands
6201 	 * would not return. Therefore it's important to reset the second
6202 	 * reset register (containing the
6203 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6204 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6205 	 * bit).
6206 	 */
6207 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6208 	       reset_mask2 & (~not_reset_mask2));
6209 
6210 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6211 	       reset_mask1 & (~not_reset_mask1));
6212 
6213 	mb();
6214 	wmb();
6215 
6216 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6217 	       reset_mask2 & (~stay_reset2));
6218 
6219 	mb();
6220 	wmb();
6221 
6222 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6223 	wmb();
6224 }
6225 
bnx2x_process_kill(struct bnx2x_softc * sc,uint8_t global)6226 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6227 {
6228 	int cnt = 1000;
6229 	uint32_t val = 0;
6230 	uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6231 	uint32_t tags_63_32 = 0;
6232 
6233 	/* Empty the Tetris buffer, wait for 1s */
6234 	do {
6235 		sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6236 		blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6237 		port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6238 		port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6239 		pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6240 		if (CHIP_IS_E3(sc)) {
6241 			tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6242 		}
6243 
6244 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6245 		    ((port_is_idle_0 & 0x1) == 0x1) &&
6246 		    ((port_is_idle_1 & 0x1) == 0x1) &&
6247 		    (pgl_exp_rom2 == 0xffffffff) &&
6248 		    (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6249 			break;
6250 		DELAY(1000);
6251 	} while (cnt-- > 0);
6252 
6253 	if (cnt <= 0) {
6254 		PMD_DRV_LOG(NOTICE, sc,
6255 			    "ERROR: Tetris buffer didn't get empty or there "
6256 			    "are still outstanding read requests after 1s! "
6257 			    "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6258 			    "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6259 			    sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6260 			    pgl_exp_rom2);
6261 		return -1;
6262 	}
6263 
6264 	mb();
6265 
6266 	/* Close gates #2, #3 and #4 */
6267 	bnx2x_set_234_gates(sc, TRUE);
6268 
6269 	/* Poll for IGU VQs for 57712 and newer chips */
6270 	if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6271 		return -1;
6272 	}
6273 
6274 	/* clear "unprepared" bit */
6275 	REG_WR(sc, MISC_REG_UNPREPARED, 0);
6276 	mb();
6277 
6278 	/* Make sure all is written to the chip before the reset */
6279 	wmb();
6280 
6281 	/*
6282 	 * Wait for 1ms to empty GLUE and PCI-E core queues,
6283 	 * PSWHST, GRC and PSWRD Tetris buffer.
6284 	 */
6285 	DELAY(1000);
6286 
6287 	/* Prepare to chip reset: */
6288 	/* MCP */
6289 	if (global) {
6290 		bnx2x_reset_mcp_prep(sc, &val);
6291 	}
6292 
6293 	/* PXP */
6294 	bnx2x_pxp_prep(sc);
6295 	mb();
6296 
6297 	/* reset the chip */
6298 	bnx2x_process_kill_chip_reset(sc, global);
6299 	mb();
6300 
6301 	/* Recover after reset: */
6302 	/* MCP */
6303 	if (global && bnx2x_reset_mcp_comp(sc, val)) {
6304 		return -1;
6305 	}
6306 
6307 	/* Open the gates #2, #3 and #4 */
6308 	bnx2x_set_234_gates(sc, FALSE);
6309 
6310 	return 0;
6311 }
6312 
bnx2x_leader_reset(struct bnx2x_softc * sc)6313 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6314 {
6315 	int rc = 0;
6316 	uint8_t global = bnx2x_reset_is_global(sc);
6317 	uint32_t load_code;
6318 
6319 	/*
6320 	 * If not going to reset MCP, load "fake" driver to reset HW while
6321 	 * driver is owner of the HW.
6322 	 */
6323 	if (!global && !BNX2X_NOMCP(sc)) {
6324 		load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6325 					   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6326 		if (!load_code) {
6327 			PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6328 			rc = -1;
6329 			goto exit_leader_reset;
6330 		}
6331 
6332 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6333 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6334 			PMD_DRV_LOG(NOTICE, sc,
6335 				    "MCP unexpected response, aborting");
6336 			rc = -1;
6337 			goto exit_leader_reset2;
6338 		}
6339 
6340 		load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6341 		if (!load_code) {
6342 			PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6343 			rc = -1;
6344 			goto exit_leader_reset2;
6345 		}
6346 	}
6347 
6348 	/* try to recover after the failure */
6349 	if (bnx2x_process_kill(sc, global)) {
6350 		PMD_DRV_LOG(NOTICE, sc, "Something bad occurred on engine %d!",
6351 			    SC_PATH(sc));
6352 		rc = -1;
6353 		goto exit_leader_reset2;
6354 	}
6355 
6356 	/*
6357 	 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6358 	 * state.
6359 	 */
6360 	bnx2x_set_reset_done(sc);
6361 	if (global) {
6362 		bnx2x_clear_reset_global(sc);
6363 	}
6364 
6365 exit_leader_reset2:
6366 
6367 	/* unload "fake driver" if it was loaded */
6368 	if (!global &&!BNX2X_NOMCP(sc)) {
6369 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6370 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6371 	}
6372 
6373 exit_leader_reset:
6374 
6375 	sc->is_leader = 0;
6376 	bnx2x_release_leader_lock(sc);
6377 
6378 	mb();
6379 	return rc;
6380 }
6381 
6382 /*
6383  * prepare INIT transition, parameters configured:
6384  *   - HC configuration
6385  *   - Queue's CDU context
6386  */
6387 static void
bnx2x_pf_q_prep_init(struct bnx2x_softc * sc,struct bnx2x_fastpath * fp,struct ecore_queue_init_params * init_params)6388 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6389 		   struct ecore_queue_init_params *init_params)
6390 {
6391 	uint8_t cos;
6392 	int cxt_index, cxt_offset;
6393 
6394 	rte_bit_relaxed_set32(ECORE_Q_FLG_HC, &init_params->rx.flags);
6395 	rte_bit_relaxed_set32(ECORE_Q_FLG_HC, &init_params->tx.flags);
6396 
6397 	rte_bit_relaxed_set32(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6398 	rte_bit_relaxed_set32(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6399 
6400 	/* HC rate */
6401 	init_params->rx.hc_rate =
6402 	    sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6403 	init_params->tx.hc_rate =
6404 	    sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6405 
6406 	/* FW SB ID */
6407 	init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6408 
6409 	/* CQ index among the SB indices */
6410 	init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6411 	init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6412 
6413 	/* set maximum number of COSs supported by this queue */
6414 	init_params->max_cos = sc->max_cos;
6415 
6416 	/* set the context pointers queue object */
6417 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6418 		cxt_index = fp->index / ILT_PAGE_CIDS;
6419 		cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6420 		init_params->cxts[cos] =
6421 		    &sc->context[cxt_index].vcxt[cxt_offset].eth;
6422 	}
6423 }
6424 
6425 /* set flags that are common for the Tx-only and not normal connections */
6426 static unsigned long
bnx2x_get_common_flags(struct bnx2x_softc * sc,uint8_t zero_stats)6427 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6428 {
6429 	uint32_t flags = 0;
6430 
6431 	/* PF driver will always initialize the Queue to an ACTIVE state */
6432 	rte_bit_relaxed_set32(ECORE_Q_FLG_ACTIVE, &flags);
6433 
6434 	/*
6435 	 * tx only connections collect statistics (on the same index as the
6436 	 * parent connection). The statistics are zeroed when the parent
6437 	 * connection is initialized.
6438 	 */
6439 
6440 	rte_bit_relaxed_set32(ECORE_Q_FLG_STATS, &flags);
6441 	if (zero_stats) {
6442 		rte_bit_relaxed_set32(ECORE_Q_FLG_ZERO_STATS, &flags);
6443 	}
6444 
6445 	/*
6446 	 * tx only connections can support tx-switching, though their
6447 	 * CoS-ness doesn't survive the loopback
6448 	 */
6449 	if (sc->flags & BNX2X_TX_SWITCHING) {
6450 		rte_bit_relaxed_set32(ECORE_Q_FLG_TX_SWITCH, &flags);
6451 	}
6452 
6453 	rte_bit_relaxed_set32(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6454 
6455 	return flags;
6456 }
6457 
bnx2x_get_q_flags(struct bnx2x_softc * sc,uint8_t leading)6458 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6459 {
6460 	uint32_t flags = 0;
6461 
6462 	if (IS_MF_SD(sc)) {
6463 		rte_bit_relaxed_set32(ECORE_Q_FLG_OV, &flags);
6464 	}
6465 
6466 	if (leading) {
6467 		rte_bit_relaxed_set32(ECORE_Q_FLG_LEADING_RSS, &flags);
6468 		rte_bit_relaxed_set32(ECORE_Q_FLG_MCAST, &flags);
6469 	}
6470 
6471 	rte_bit_relaxed_set32(ECORE_Q_FLG_VLAN, &flags);
6472 
6473 	/* merge with common flags */
6474 	return flags | bnx2x_get_common_flags(sc, TRUE);
6475 }
6476 
6477 static void
bnx2x_pf_q_prep_general(struct bnx2x_softc * sc,struct bnx2x_fastpath * fp,struct ecore_general_setup_params * gen_init,uint8_t cos)6478 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6479 		      struct ecore_general_setup_params *gen_init, uint8_t cos)
6480 {
6481 	gen_init->stat_id = bnx2x_stats_id(fp);
6482 	gen_init->spcl_id = fp->cl_id;
6483 	gen_init->mtu = sc->mtu;
6484 	gen_init->cos = cos;
6485 }
6486 
6487 static void
bnx2x_pf_rx_q_prep(struct bnx2x_softc * sc,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct ecore_rxq_setup_params * rxq_init)6488 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6489 		 struct rxq_pause_params *pause,
6490 		 struct ecore_rxq_setup_params *rxq_init)
6491 {
6492 	struct bnx2x_rx_queue *rxq;
6493 
6494 	rxq = sc->rx_queues[fp->index];
6495 	if (!rxq) {
6496 		PMD_RX_LOG(ERR, "RX queue is NULL");
6497 		return;
6498 	}
6499 	/* pause */
6500 	pause->bd_th_lo = BD_TH_LO(sc);
6501 	pause->bd_th_hi = BD_TH_HI(sc);
6502 
6503 	pause->rcq_th_lo = RCQ_TH_LO(sc);
6504 	pause->rcq_th_hi = RCQ_TH_HI(sc);
6505 
6506 	/* validate rings have enough entries to cross high thresholds */
6507 	if (sc->dropless_fc &&
6508 	    pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6509 		PMD_DRV_LOG(WARNING, sc, "rx bd ring threshold limit");
6510 	}
6511 
6512 	if (sc->dropless_fc &&
6513 	    pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6514 		PMD_DRV_LOG(WARNING, sc, "rcq ring threshold limit");
6515 	}
6516 
6517 	pause->pri_map = 1;
6518 
6519 	/* rxq setup */
6520 	rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
6521 	rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
6522 	rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
6523 					      BNX2X_PAGE_SIZE);
6524 
6525 	/*
6526 	 * This should be a maximum number of data bytes that may be
6527 	 * placed on the BD (not including paddings).
6528 	 */
6529 	rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6530 
6531 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
6532 	rxq_init->rss_engine_id = SC_FUNC(sc);
6533 	rxq_init->mcast_engine_id = SC_FUNC(sc);
6534 
6535 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6536 	rxq_init->fw_sb_id = fp->fw_sb_id;
6537 
6538 	rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6539 
6540 	/*
6541 	 * configure silent vlan removal
6542 	 * if multi function mode is afex, then mask default vlan
6543 	 */
6544 	if (IS_MF_AFEX(sc)) {
6545 		rxq_init->silent_removal_value =
6546 		    sc->devinfo.mf_info.afex_def_vlan_tag;
6547 		rxq_init->silent_removal_mask = EVL_VLID_MASK;
6548 	}
6549 }
6550 
6551 static void
bnx2x_pf_tx_q_prep(struct bnx2x_softc * sc,struct bnx2x_fastpath * fp,struct ecore_txq_setup_params * txq_init,uint8_t cos)6552 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6553 		 struct ecore_txq_setup_params *txq_init, uint8_t cos)
6554 {
6555 	struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6556 
6557 	if (!txq) {
6558 		PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6559 		return;
6560 	}
6561 	txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
6562 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6563 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6564 	txq_init->fw_sb_id = fp->fw_sb_id;
6565 
6566 	/*
6567 	 * set the TSS leading client id for Tx classification to the
6568 	 * leading RSS client id
6569 	 */
6570 	txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6571 }
6572 
6573 /*
6574  * This function performs 2 steps in a queue state machine:
6575  *   1) RESET->INIT
6576  *   2) INIT->SETUP
6577  */
6578 static int
bnx2x_setup_queue(struct bnx2x_softc * sc,struct bnx2x_fastpath * fp,uint8_t leading)6579 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6580 {
6581 	struct ecore_queue_state_params q_params = { NULL };
6582 	struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6583 	int rc;
6584 
6585 	PMD_DRV_LOG(DEBUG, sc, "setting up queue %d", fp->index);
6586 
6587 	bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6588 
6589 	q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6590 
6591 	/* we want to wait for completion in this context */
6592 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6593 
6594 	/* prepare the INIT parameters */
6595 	bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6596 
6597 	/* Set the command */
6598 	q_params.cmd = ECORE_Q_CMD_INIT;
6599 
6600 	/* Change the state to INIT */
6601 	rc = ecore_queue_state_change(sc, &q_params);
6602 	if (rc) {
6603 		PMD_DRV_LOG(NOTICE, sc, "Queue(%d) INIT failed", fp->index);
6604 		return rc;
6605 	}
6606 
6607 	PMD_DRV_LOG(DEBUG, sc, "init complete");
6608 
6609 	/* now move the Queue to the SETUP state */
6610 	memset(setup_params, 0, sizeof(*setup_params));
6611 
6612 	/* set Queue flags */
6613 	setup_params->flags = bnx2x_get_q_flags(sc, leading);
6614 
6615 	/* set general SETUP parameters */
6616 	bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6617 			      FIRST_TX_COS_INDEX);
6618 
6619 	bnx2x_pf_rx_q_prep(sc, fp,
6620 			 &setup_params->pause_params,
6621 			 &setup_params->rxq_params);
6622 
6623 	bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6624 
6625 	/* Set the command */
6626 	q_params.cmd = ECORE_Q_CMD_SETUP;
6627 
6628 	/* change the state to SETUP */
6629 	rc = ecore_queue_state_change(sc, &q_params);
6630 	if (rc) {
6631 		PMD_DRV_LOG(NOTICE, sc, "Queue(%d) SETUP failed", fp->index);
6632 		return rc;
6633 	}
6634 
6635 	return rc;
6636 }
6637 
bnx2x_setup_leading(struct bnx2x_softc * sc)6638 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6639 {
6640 	if (IS_PF(sc))
6641 		return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6642 	else			/* VF */
6643 		return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6644 }
6645 
6646 static int
bnx2x_config_rss_pf(struct bnx2x_softc * sc,struct ecore_rss_config_obj * rss_obj,uint8_t config_hash)6647 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6648 		  uint8_t config_hash)
6649 {
6650 	struct ecore_config_rss_params params = { NULL };
6651 	uint32_t i;
6652 
6653 	/*
6654 	 * Although RSS is meaningless when there is a single HW queue we
6655 	 * still need it enabled in order to have HW Rx hash generated.
6656 	 */
6657 
6658 	params.rss_obj = rss_obj;
6659 
6660 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &params.ramrod_flags);
6661 
6662 	rte_bit_relaxed_set32(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6663 
6664 	/* RSS configuration */
6665 	rte_bit_relaxed_set32(ECORE_RSS_IPV4, &params.rss_flags);
6666 	rte_bit_relaxed_set32(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6667 	rte_bit_relaxed_set32(ECORE_RSS_IPV6, &params.rss_flags);
6668 	rte_bit_relaxed_set32(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6669 	if (rss_obj->udp_rss_v4) {
6670 		rte_bit_relaxed_set32(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6671 	}
6672 	if (rss_obj->udp_rss_v6) {
6673 		rte_bit_relaxed_set32(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6674 	}
6675 
6676 	/* Hash bits */
6677 	params.rss_result_mask = MULTI_MASK;
6678 
6679 	rte_memcpy(params.ind_table, rss_obj->ind_table,
6680 			 sizeof(params.ind_table));
6681 
6682 	if (config_hash) {
6683 /* RSS keys */
6684 		for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6685 			params.rss_key[i] = (uint32_t) rte_rand();
6686 		}
6687 
6688 		rte_bit_relaxed_set32(ECORE_RSS_SET_SRCH, &params.rss_flags);
6689 	}
6690 
6691 	if (IS_PF(sc))
6692 		return ecore_config_rss(sc, &params);
6693 	else
6694 		return bnx2x_vf_config_rss(sc, &params);
6695 }
6696 
bnx2x_config_rss_eth(struct bnx2x_softc * sc,uint8_t config_hash)6697 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6698 {
6699 	return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6700 }
6701 
bnx2x_init_rss_pf(struct bnx2x_softc * sc)6702 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6703 {
6704 	uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6705 	uint32_t i;
6706 
6707 	/*
6708 	 * Prepare the initial contents of the indirection table if
6709 	 * RSS is enabled
6710 	 */
6711 	for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6712 		sc->rss_conf_obj.ind_table[i] =
6713 		    (sc->fp->cl_id + (i % num_eth_queues));
6714 	}
6715 
6716 	if (sc->udp_rss) {
6717 		sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6718 	}
6719 
6720 	/*
6721 	 * For 57711 SEARCHER configuration (rss_keys) is
6722 	 * per-port, so if explicit configuration is needed, do it only
6723 	 * for a PMF.
6724 	 *
6725 	 * For 57712 and newer it's a per-function configuration.
6726 	 */
6727 	return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6728 }
6729 
6730 static int
bnx2x_set_mac_one(struct bnx2x_softc * sc,uint8_t * mac,struct ecore_vlan_mac_obj * obj,uint8_t set,int mac_type,uint32_t * ramrod_flags)6731 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6732 		struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6733 		uint32_t *ramrod_flags)
6734 {
6735 	struct ecore_vlan_mac_ramrod_params ramrod_param;
6736 	int rc;
6737 
6738 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6739 
6740 	/* fill in general parameters */
6741 	ramrod_param.vlan_mac_obj = obj;
6742 	ramrod_param.ramrod_flags = *ramrod_flags;
6743 
6744 	/* fill a user request section if needed */
6745 	if (!rte_bit_relaxed_get32(RAMROD_CONT, ramrod_flags)) {
6746 		rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6747 				 ETH_ALEN);
6748 
6749 		rte_bit_relaxed_set32(mac_type,
6750 				      &ramrod_param.user_req.vlan_mac_flags);
6751 
6752 /* Set the command: ADD or DEL */
6753 		ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6754 		    ECORE_VLAN_MAC_DEL;
6755 	}
6756 
6757 	rc = ecore_config_vlan_mac(sc, &ramrod_param);
6758 
6759 	if (rc == ECORE_EXISTS) {
6760 		PMD_DRV_LOG(INFO, sc, "Failed to schedule ADD operations (EEXIST)");
6761 /* do not treat adding same MAC as error */
6762 		rc = 0;
6763 	} else if (rc < 0) {
6764 		PMD_DRV_LOG(ERR, sc,
6765 			    "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6766 	}
6767 
6768 	return rc;
6769 }
6770 
bnx2x_set_eth_mac(struct bnx2x_softc * sc,uint8_t set)6771 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6772 {
6773 	uint32_t ramrod_flags = 0;
6774 
6775 	PMD_DRV_LOG(DEBUG, sc, "Adding Ethernet MAC");
6776 
6777 	rte_bit_relaxed_set32(RAMROD_COMP_WAIT, &ramrod_flags);
6778 
6779 	/* Eth MAC is set on RSS leading client (fp[0]) */
6780 	return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6781 			       &sc->sp_objs->mac_obj,
6782 			       set, ECORE_ETH_MAC, &ramrod_flags);
6783 }
6784 
bnx2x_get_cur_phy_idx(struct bnx2x_softc * sc)6785 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6786 {
6787 	uint32_t sel_phy_idx = 0;
6788 
6789 	if (sc->link_params.num_phys <= 1) {
6790 		return ELINK_INT_PHY;
6791 	}
6792 
6793 	if (sc->link_vars.link_up) {
6794 		sel_phy_idx = ELINK_EXT_PHY1;
6795 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6796 		if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6797 		    (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6798 		     ELINK_SUPPORTED_FIBRE))
6799 			sel_phy_idx = ELINK_EXT_PHY2;
6800 	} else {
6801 		switch (elink_phy_selection(&sc->link_params)) {
6802 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6803 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6804 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6805 			sel_phy_idx = ELINK_EXT_PHY1;
6806 			break;
6807 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6808 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6809 			sel_phy_idx = ELINK_EXT_PHY2;
6810 			break;
6811 		}
6812 	}
6813 
6814 	return sel_phy_idx;
6815 }
6816 
bnx2x_get_link_cfg_idx(struct bnx2x_softc * sc)6817 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6818 {
6819 	uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6820 
6821 	/*
6822 	 * The selected activated PHY is always after swapping (in case PHY
6823 	 * swapping is enabled). So when swapping is enabled, we need to reverse
6824 	 * the configuration
6825 	 */
6826 
6827 	if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6828 		if (sel_phy_idx == ELINK_EXT_PHY1)
6829 			sel_phy_idx = ELINK_EXT_PHY2;
6830 		else if (sel_phy_idx == ELINK_EXT_PHY2)
6831 			sel_phy_idx = ELINK_EXT_PHY1;
6832 	}
6833 
6834 	return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6835 }
6836 
bnx2x_set_requested_fc(struct bnx2x_softc * sc)6837 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6838 {
6839 	/*
6840 	 * Initialize link parameters structure variables
6841 	 * It is recommended to turn off RX FC for jumbo frames
6842 	 * for better performance
6843 	 */
6844 	if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6845 		sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6846 	} else {
6847 		sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6848 	}
6849 }
6850 
bnx2x_calc_fc_adv(struct bnx2x_softc * sc)6851 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6852 {
6853 	uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6854 	switch (sc->link_vars.ieee_fc &
6855 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6856 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6857 	default:
6858 		sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6859 						   ADVERTISED_Pause);
6860 		break;
6861 
6862 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6863 		sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6864 						  ADVERTISED_Pause);
6865 		break;
6866 
6867 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6868 		sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6869 		break;
6870 	}
6871 }
6872 
bnx2x_get_mf_speed(struct bnx2x_softc * sc)6873 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6874 {
6875 	uint16_t line_speed = sc->link_vars.line_speed;
6876 	if (IS_MF(sc)) {
6877 		uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6878 						      sc->devinfo.
6879 						      mf_info.mf_config[SC_VN
6880 									(sc)]);
6881 
6882 /* calculate the current MAX line speed limit for the MF devices */
6883 		if (IS_MF_SI(sc)) {
6884 			line_speed = (line_speed * maxCfg) / 100;
6885 		} else {	/* SD mode */
6886 			uint16_t vn_max_rate = maxCfg * 100;
6887 
6888 			if (vn_max_rate < line_speed) {
6889 				line_speed = vn_max_rate;
6890 			}
6891 		}
6892 	}
6893 
6894 	return line_speed;
6895 }
6896 
6897 static void
bnx2x_fill_report_data(struct bnx2x_softc * sc,struct bnx2x_link_report_data * data)6898 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6899 {
6900 	uint16_t line_speed = bnx2x_get_mf_speed(sc);
6901 
6902 	memset(data, 0, sizeof(*data));
6903 
6904 	/* fill the report data with the effective line speed */
6905 	data->line_speed = line_speed;
6906 
6907 	/* Link is down */
6908 	if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6909 		rte_bit_relaxed_set32(BNX2X_LINK_REPORT_LINK_DOWN,
6910 			    &data->link_report_flags);
6911 	}
6912 
6913 	/* Full DUPLEX */
6914 	if (sc->link_vars.duplex == DUPLEX_FULL) {
6915 		rte_bit_relaxed_set32(BNX2X_LINK_REPORT_FULL_DUPLEX,
6916 			    &data->link_report_flags);
6917 	}
6918 
6919 	/* Rx Flow Control is ON */
6920 	if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6921 		rte_bit_relaxed_set32(BNX2X_LINK_REPORT_RX_FC_ON,
6922 				&data->link_report_flags);
6923 	}
6924 
6925 	/* Tx Flow Control is ON */
6926 	if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6927 		rte_bit_relaxed_set32(BNX2X_LINK_REPORT_TX_FC_ON,
6928 				&data->link_report_flags);
6929 	}
6930 }
6931 
6932 /* report link status to OS, should be called under phy_lock */
bnx2x_link_report_locked(struct bnx2x_softc * sc)6933 static void bnx2x_link_report_locked(struct bnx2x_softc *sc)
6934 {
6935 	struct bnx2x_link_report_data cur_data;
6936 
6937 	/* reread mf_cfg */
6938 	if (IS_PF(sc)) {
6939 		bnx2x_read_mf_cfg(sc);
6940 	}
6941 
6942 	/* Read the current link report info */
6943 	bnx2x_fill_report_data(sc, &cur_data);
6944 
6945 	/* Don't report link down or exactly the same link status twice */
6946 	if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6947 	    (rte_bit_relaxed_get32(BNX2X_LINK_REPORT_LINK_DOWN,
6948 			  &sc->last_reported_link.link_report_flags) &&
6949 	     rte_bit_relaxed_get32(BNX2X_LINK_REPORT_LINK_DOWN,
6950 			  &cur_data.link_report_flags))) {
6951 		return;
6952 	}
6953 
6954 	ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x",
6955 		       cur_data.link_report_flags,
6956 		       sc->last_reported_link.link_report_flags);
6957 
6958 	sc->link_cnt++;
6959 
6960 	ELINK_DEBUG_P1(sc, "link status change count = %x", sc->link_cnt);
6961 	/* report new link params and remember the state for the next time */
6962 	rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6963 
6964 	if (rte_bit_relaxed_get32(BNX2X_LINK_REPORT_LINK_DOWN,
6965 			 &cur_data.link_report_flags)) {
6966 		ELINK_DEBUG_P0(sc, "NIC Link is Down");
6967 	} else {
6968 		__rte_unused const char *duplex;
6969 		__rte_unused const char *flow;
6970 
6971 		if (rte_bit_relaxed_test_and_clear32
6972 					(BNX2X_LINK_REPORT_FULL_DUPLEX,
6973 					 &cur_data.link_report_flags)) {
6974 			duplex = "full";
6975 				ELINK_DEBUG_P0(sc, "link set to full duplex");
6976 		} else {
6977 			duplex = "half";
6978 				ELINK_DEBUG_P0(sc, "link set to half duplex");
6979 		}
6980 
6981 /*
6982  * Handle the FC at the end so that only these flags would be
6983  * possibly set. This way we may easily check if there is no FC
6984  * enabled.
6985  */
6986 		if (cur_data.link_report_flags) {
6987 			if (rte_bit_relaxed_get32
6988 					(BNX2X_LINK_REPORT_RX_FC_ON,
6989 					 &cur_data.link_report_flags) &&
6990 			    rte_bit_relaxed_get32(BNX2X_LINK_REPORT_TX_FC_ON,
6991 					 &cur_data.link_report_flags)) {
6992 				flow = "ON - receive & transmit";
6993 			} else if (rte_bit_relaxed_get32
6994 						(BNX2X_LINK_REPORT_RX_FC_ON,
6995 						 &cur_data.link_report_flags) &&
6996 				   !rte_bit_relaxed_get32
6997 						(BNX2X_LINK_REPORT_TX_FC_ON,
6998 						 &cur_data.link_report_flags)) {
6999 				flow = "ON - receive";
7000 			} else if (!rte_bit_relaxed_get32
7001 						(BNX2X_LINK_REPORT_RX_FC_ON,
7002 						 &cur_data.link_report_flags) &&
7003 				   rte_bit_relaxed_get32
7004 						(BNX2X_LINK_REPORT_TX_FC_ON,
7005 						 &cur_data.link_report_flags)) {
7006 				flow = "ON - transmit";
7007 			} else {
7008 				flow = "none";	/* possible? */
7009 			}
7010 		} else {
7011 			flow = "none";
7012 		}
7013 
7014 		PMD_DRV_LOG(INFO, sc,
7015 			    "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
7016 			    cur_data.line_speed, duplex, flow);
7017 	}
7018 }
7019 
7020 static void
bnx2x_link_report(struct bnx2x_softc * sc)7021 bnx2x_link_report(struct bnx2x_softc *sc)
7022 {
7023 	bnx2x_acquire_phy_lock(sc);
7024 	bnx2x_link_report_locked(sc);
7025 	bnx2x_release_phy_lock(sc);
7026 }
7027 
bnx2x_link_status_update(struct bnx2x_softc * sc)7028 void bnx2x_link_status_update(struct bnx2x_softc *sc)
7029 {
7030 	if (sc->state != BNX2X_STATE_OPEN) {
7031 		return;
7032 	}
7033 
7034 	if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
7035 		elink_link_status_update(&sc->link_params, &sc->link_vars);
7036 	} else {
7037 		sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
7038 					  ELINK_SUPPORTED_10baseT_Full |
7039 					  ELINK_SUPPORTED_100baseT_Half |
7040 					  ELINK_SUPPORTED_100baseT_Full |
7041 					  ELINK_SUPPORTED_1000baseT_Full |
7042 					  ELINK_SUPPORTED_2500baseX_Full |
7043 					  ELINK_SUPPORTED_10000baseT_Full |
7044 					  ELINK_SUPPORTED_TP |
7045 					  ELINK_SUPPORTED_FIBRE |
7046 					  ELINK_SUPPORTED_Autoneg |
7047 					  ELINK_SUPPORTED_Pause |
7048 					  ELINK_SUPPORTED_Asym_Pause);
7049 		sc->port.advertising[0] = sc->port.supported[0];
7050 
7051 		sc->link_params.sc = sc;
7052 		sc->link_params.port = SC_PORT(sc);
7053 		sc->link_params.req_duplex[0] = DUPLEX_FULL;
7054 		sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
7055 		sc->link_params.req_line_speed[0] = SPEED_10000;
7056 		sc->link_params.speed_cap_mask[0] = 0x7f0000;
7057 		sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
7058 
7059 		if (CHIP_REV_IS_FPGA(sc)) {
7060 			sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
7061 			sc->link_vars.line_speed = ELINK_SPEED_1000;
7062 			sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7063 						     LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
7064 		} else {
7065 			sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
7066 			sc->link_vars.line_speed = ELINK_SPEED_10000;
7067 			sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7068 						     LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
7069 		}
7070 
7071 		sc->link_vars.link_up = 1;
7072 
7073 		sc->link_vars.duplex = DUPLEX_FULL;
7074 		sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
7075 
7076 		if (IS_PF(sc)) {
7077 			REG_WR(sc,
7078 			       NIG_REG_EGRESS_DRAIN0_MODE +
7079 			       sc->link_params.port * 4, 0);
7080 			bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7081 			bnx2x_link_report(sc);
7082 		}
7083 	}
7084 
7085 	if (IS_PF(sc)) {
7086 		if (sc->link_vars.link_up) {
7087 			bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7088 		} else {
7089 			bnx2x_stats_handle(sc, STATS_EVENT_STOP);
7090 		}
7091 		bnx2x_link_report(sc);
7092 	} else {
7093 		bnx2x_link_report_locked(sc);
7094 		bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7095 	}
7096 }
7097 
bnx2x_initial_phy_init(struct bnx2x_softc * sc,int load_mode)7098 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7099 {
7100 	int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7101 	uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7102 	struct elink_params *lp = &sc->link_params;
7103 
7104 	bnx2x_set_requested_fc(sc);
7105 
7106 	bnx2x_acquire_phy_lock(sc);
7107 
7108 	if (load_mode == LOAD_DIAG) {
7109 		lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7110 /* Prefer doing PHY loopback at 10G speed, if possible */
7111 		if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7112 			if (lp->speed_cap_mask[cfg_idx] &
7113 			    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7114 				lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7115 			} else {
7116 				lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7117 			}
7118 		}
7119 	}
7120 
7121 	if (load_mode == LOAD_LOOPBACK_EXT) {
7122 		lp->loopback_mode = ELINK_LOOPBACK_EXT;
7123 	}
7124 
7125 	rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7126 
7127 	bnx2x_release_phy_lock(sc);
7128 
7129 	bnx2x_calc_fc_adv(sc);
7130 
7131 	if (sc->link_vars.link_up) {
7132 		bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7133 		bnx2x_link_report(sc);
7134 	}
7135 
7136 	sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7137 	return rc;
7138 }
7139 
7140 /* update flags in shmem */
7141 static void
bnx2x_update_drv_flags(struct bnx2x_softc * sc,uint32_t flags,uint32_t set)7142 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7143 {
7144 	uint32_t drv_flags;
7145 
7146 	if (SHMEM2_HAS(sc, drv_flags)) {
7147 		bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7148 		drv_flags = SHMEM2_RD(sc, drv_flags);
7149 
7150 		if (set) {
7151 			drv_flags |= flags;
7152 		} else {
7153 			drv_flags &= ~flags;
7154 		}
7155 
7156 		SHMEM2_WR(sc, drv_flags, drv_flags);
7157 
7158 		bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7159 	}
7160 }
7161 
7162 /* periodic timer callout routine, only runs when the interface is up */
bnx2x_periodic_callout(struct bnx2x_softc * sc)7163 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7164 {
7165 	if ((sc->state != BNX2X_STATE_OPEN) ||
7166 	    (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7167 		PMD_DRV_LOG(DEBUG, sc, "periodic callout exit (state=0x%x)",
7168 			    sc->state);
7169 		return;
7170 	}
7171 	if (!CHIP_REV_IS_SLOW(sc)) {
7172 /*
7173  * This barrier is needed to ensure the ordering between the writing
7174  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7175  * the reading here.
7176  */
7177 		mb();
7178 		if (sc->port.pmf) {
7179 			bnx2x_acquire_phy_lock(sc);
7180 			elink_period_func(&sc->link_params, &sc->link_vars);
7181 			bnx2x_release_phy_lock(sc);
7182 		}
7183 	}
7184 #ifdef BNX2X_PULSE
7185 	if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7186 		int mb_idx = SC_FW_MB_IDX(sc);
7187 		uint32_t drv_pulse;
7188 		uint32_t mcp_pulse;
7189 
7190 		++sc->fw_drv_pulse_wr_seq;
7191 		sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7192 
7193 		drv_pulse = sc->fw_drv_pulse_wr_seq;
7194 		bnx2x_drv_pulse(sc);
7195 
7196 		mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7197 			     MCP_PULSE_SEQ_MASK);
7198 
7199 /*
7200  * The delta between driver pulse and mcp response should
7201  * be 1 (before mcp response) or 0 (after mcp response).
7202  */
7203 		if ((drv_pulse != mcp_pulse) &&
7204 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7205 			/* someone lost a heartbeat... */
7206 			PMD_DRV_LOG(ERR, sc,
7207 				    "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7208 				    drv_pulse, mcp_pulse);
7209 		}
7210 	}
7211 #endif
7212 }
7213 
7214 /* start the controller */
7215 static __rte_noinline
bnx2x_nic_load(struct bnx2x_softc * sc)7216 int bnx2x_nic_load(struct bnx2x_softc *sc)
7217 {
7218 	uint32_t val;
7219 	uint32_t load_code = 0;
7220 	int i, rc = 0;
7221 
7222 	PMD_INIT_FUNC_TRACE(sc);
7223 
7224 	sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7225 
7226 	if (IS_PF(sc)) {
7227 /* must be called before memory allocation and HW init */
7228 		bnx2x_ilt_set_info(sc);
7229 	}
7230 
7231 	bnx2x_set_fp_rx_buf_size(sc);
7232 
7233 	if (IS_PF(sc)) {
7234 		if (bnx2x_alloc_mem(sc) != 0) {
7235 			sc->state = BNX2X_STATE_CLOSED;
7236 			rc = -ENOMEM;
7237 			goto bnx2x_nic_load_error0;
7238 		}
7239 	}
7240 
7241 	/* allocate the host hardware/software hsi structures */
7242 	if (bnx2x_alloc_hsi_mem(sc) != 0) {
7243 		PMD_DRV_LOG(ERR, sc, "bnx2x_alloc_hsi_mem was failed");
7244 		sc->state = BNX2X_STATE_CLOSED;
7245 		rc = -ENOMEM;
7246 		goto bnx2x_nic_load_error0;
7247 	}
7248 
7249 	if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7250 		sc->state = BNX2X_STATE_CLOSED;
7251 		rc = -ENOMEM;
7252 		goto bnx2x_nic_load_error0;
7253 	}
7254 
7255 	if (IS_VF(sc)) {
7256 		rc = bnx2x_vf_init(sc);
7257 		if (rc) {
7258 			sc->state = BNX2X_STATE_ERROR;
7259 			goto bnx2x_nic_load_error0;
7260 		}
7261 	}
7262 
7263 	if (IS_PF(sc)) {
7264 /* set pf load just before approaching the MCP */
7265 		bnx2x_set_pf_load(sc);
7266 
7267 /* if MCP exists send load request and analyze response */
7268 		if (!BNX2X_NOMCP(sc)) {
7269 			/* attempt to load pf */
7270 			if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7271 				sc->state = BNX2X_STATE_CLOSED;
7272 				rc = -ENXIO;
7273 				goto bnx2x_nic_load_error1;
7274 			}
7275 
7276 			/* what did the MCP say? */
7277 			if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7278 				bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7279 				sc->state = BNX2X_STATE_CLOSED;
7280 				rc = -ENXIO;
7281 				goto bnx2x_nic_load_error2;
7282 			}
7283 		} else {
7284 			PMD_DRV_LOG(INFO, sc, "Device has no MCP!");
7285 			load_code = bnx2x_nic_load_no_mcp(sc);
7286 		}
7287 
7288 /* mark PMF if applicable */
7289 		bnx2x_nic_load_pmf(sc, load_code);
7290 
7291 /* Init Function state controlling object */
7292 		bnx2x_init_func_obj(sc);
7293 
7294 /* Initialize HW */
7295 		if (bnx2x_init_hw(sc, load_code) != 0) {
7296 			PMD_DRV_LOG(NOTICE, sc, "HW init failed");
7297 			bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7298 			sc->state = BNX2X_STATE_CLOSED;
7299 			rc = -ENXIO;
7300 			goto bnx2x_nic_load_error2;
7301 		}
7302 	}
7303 
7304 	bnx2x_nic_init(sc, load_code);
7305 
7306 	/* Init per-function objects */
7307 	if (IS_PF(sc)) {
7308 		bnx2x_init_objs(sc);
7309 
7310 /* set AFEX default VLAN tag to an invalid value */
7311 		sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7312 
7313 		sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7314 		rc = bnx2x_func_start(sc);
7315 		if (rc) {
7316 			PMD_DRV_LOG(NOTICE, sc, "Function start failed!");
7317 			bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7318 			sc->state = BNX2X_STATE_ERROR;
7319 			goto bnx2x_nic_load_error3;
7320 		}
7321 
7322 /* send LOAD_DONE command to MCP */
7323 		if (!BNX2X_NOMCP(sc)) {
7324 			load_code =
7325 			    bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7326 			if (!load_code) {
7327 				PMD_DRV_LOG(NOTICE, sc,
7328 					    "MCP response failure, aborting");
7329 				sc->state = BNX2X_STATE_ERROR;
7330 				rc = -ENXIO;
7331 				goto bnx2x_nic_load_error3;
7332 			}
7333 		}
7334 	}
7335 
7336 	rc = bnx2x_setup_leading(sc);
7337 	if (rc) {
7338 		PMD_DRV_LOG(NOTICE, sc, "Setup leading failed!");
7339 		sc->state = BNX2X_STATE_ERROR;
7340 		goto bnx2x_nic_load_error3;
7341 	}
7342 
7343 	FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7344 		if (IS_PF(sc))
7345 			rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7346 		else		/* IS_VF(sc) */
7347 			rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7348 
7349 		if (rc) {
7350 			PMD_DRV_LOG(NOTICE, sc, "Queue(%d) setup failed", i);
7351 			sc->state = BNX2X_STATE_ERROR;
7352 			goto bnx2x_nic_load_error3;
7353 		}
7354 	}
7355 
7356 	rc = bnx2x_init_rss_pf(sc);
7357 	if (rc) {
7358 		PMD_DRV_LOG(NOTICE, sc, "PF RSS init failed");
7359 		sc->state = BNX2X_STATE_ERROR;
7360 		goto bnx2x_nic_load_error3;
7361 	}
7362 
7363 	/* now when Clients are configured we are ready to work */
7364 	sc->state = BNX2X_STATE_OPEN;
7365 
7366 	/* Configure a ucast MAC */
7367 	if (IS_PF(sc)) {
7368 		rc = bnx2x_set_eth_mac(sc, TRUE);
7369 	} else {		/* IS_VF(sc) */
7370 		rc = bnx2x_vf_set_mac(sc, TRUE);
7371 	}
7372 
7373 	if (rc) {
7374 		PMD_DRV_LOG(NOTICE, sc, "Setting Ethernet MAC failed");
7375 		sc->state = BNX2X_STATE_ERROR;
7376 		goto bnx2x_nic_load_error3;
7377 	}
7378 
7379 	if (sc->port.pmf) {
7380 		rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7381 		if (rc) {
7382 			sc->state = BNX2X_STATE_ERROR;
7383 			goto bnx2x_nic_load_error3;
7384 		}
7385 	}
7386 
7387 	sc->link_params.feature_config_flags &=
7388 	    ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7389 
7390 	/* start the Tx */
7391 	switch (LOAD_OPEN) {
7392 	case LOAD_NORMAL:
7393 	case LOAD_OPEN:
7394 		break;
7395 
7396 	case LOAD_DIAG:
7397 	case LOAD_LOOPBACK_EXT:
7398 		sc->state = BNX2X_STATE_DIAG;
7399 		break;
7400 
7401 	default:
7402 		break;
7403 	}
7404 
7405 	if (sc->port.pmf) {
7406 		bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7407 	} else {
7408 		bnx2x_link_status_update(sc);
7409 	}
7410 
7411 	if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7412 /* mark driver is loaded in shmem2 */
7413 		val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7414 		SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7415 			  (val |
7416 			   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7417 			   DRV_FLAGS_CAPABILITIES_LOADED_L2));
7418 	}
7419 
7420 	/* start fast path */
7421 	/* Initialize Rx filter */
7422 	bnx2x_set_rx_mode(sc);
7423 
7424 	/* wait for all pending SP commands to complete */
7425 	if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0U)) {
7426 		PMD_DRV_LOG(NOTICE, sc, "Timeout waiting for all SPs to complete!");
7427 		bnx2x_periodic_stop(sc);
7428 		bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7429 		return -ENXIO;
7430 	}
7431 
7432 	PMD_DRV_LOG(DEBUG, sc, "NIC successfully loaded");
7433 
7434 	return 0;
7435 
7436 bnx2x_nic_load_error3:
7437 
7438 	if (IS_PF(sc)) {
7439 		bnx2x_int_disable_sync(sc, 1);
7440 
7441 /* clean out queued objects */
7442 		bnx2x_squeeze_objects(sc);
7443 	}
7444 
7445 bnx2x_nic_load_error2:
7446 
7447 	if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7448 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7449 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7450 	}
7451 
7452 	sc->port.pmf = 0;
7453 
7454 bnx2x_nic_load_error1:
7455 
7456 	/* clear pf_load status, as it was already set */
7457 	if (IS_PF(sc)) {
7458 		bnx2x_clear_pf_load(sc);
7459 	}
7460 
7461 bnx2x_nic_load_error0:
7462 
7463 	bnx2x_free_fw_stats_mem(sc);
7464 	bnx2x_free_hsi_mem(sc);
7465 	bnx2x_free_mem(sc);
7466 
7467 	return rc;
7468 }
7469 
7470 /*
7471 * Handles controller initialization.
7472 */
bnx2x_init(struct bnx2x_softc * sc)7473 int bnx2x_init(struct bnx2x_softc *sc)
7474 {
7475 	int other_engine = SC_PATH(sc) ? 0 : 1;
7476 	uint8_t other_load_status, load_status;
7477 	uint8_t global = FALSE;
7478 	int rc;
7479 
7480 	/* Check if the driver is still running and bail out if it is. */
7481 	if (sc->state != BNX2X_STATE_CLOSED) {
7482 		PMD_DRV_LOG(DEBUG, sc, "Init called while driver is running!");
7483 		rc = 0;
7484 		goto bnx2x_init_done;
7485 	}
7486 
7487 	bnx2x_set_power_state(sc, PCI_PM_D0);
7488 
7489 	/*
7490 	 * If parity occurred during the unload, then attentions and/or
7491 	 * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7492 	 * loaded on the current engine to complete the recovery. Parity recovery
7493 	 * is only relevant for PF driver.
7494 	 */
7495 	if (IS_PF(sc)) {
7496 		other_load_status = bnx2x_get_load_status(sc, other_engine);
7497 		load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7498 
7499 		if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7500 		    bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7501 			do {
7502 				/*
7503 				 * If there are attentions and they are in global blocks, set
7504 				 * the GLOBAL_RESET bit regardless whether it will be this
7505 				 * function that will complete the recovery or not.
7506 				 */
7507 				if (global) {
7508 					bnx2x_set_reset_global(sc);
7509 				}
7510 
7511 				/*
7512 				 * Only the first function on the current engine should try
7513 				 * to recover in open. In case of attentions in global blocks
7514 				 * only the first in the chip should try to recover.
7515 				 */
7516 				if ((!load_status
7517 				     && (!global ||!other_load_status))
7518 				    && bnx2x_trylock_leader_lock(sc)
7519 				    && !bnx2x_leader_reset(sc)) {
7520 					PMD_DRV_LOG(INFO, sc,
7521 						    "Recovered during init");
7522 					break;
7523 				}
7524 
7525 				/* recovery has failed... */
7526 				bnx2x_set_power_state(sc, PCI_PM_D3hot);
7527 
7528 				sc->recovery_state = BNX2X_RECOVERY_FAILED;
7529 
7530 				PMD_DRV_LOG(NOTICE, sc,
7531 					    "Recovery flow hasn't properly "
7532 					    "completed yet, try again later. "
7533 					    "If you still see this message after a "
7534 					    "few retries then power cycle is required.");
7535 
7536 				rc = -ENXIO;
7537 				goto bnx2x_init_done;
7538 			} while (0);
7539 		}
7540 	}
7541 
7542 	sc->recovery_state = BNX2X_RECOVERY_DONE;
7543 
7544 	rc = bnx2x_nic_load(sc);
7545 
7546 bnx2x_init_done:
7547 
7548 	if (rc) {
7549 		PMD_DRV_LOG(NOTICE, sc, "Initialization failed, "
7550 			    "stack notified driver is NOT running!");
7551 	}
7552 
7553 	return rc;
7554 }
7555 
bnx2x_get_function_num(struct bnx2x_softc * sc)7556 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7557 {
7558 	uint32_t val = 0;
7559 
7560 	/*
7561 	 * Read the ME register to get the function number. The ME register
7562 	 * holds the relative-function number and absolute-function number. The
7563 	 * absolute-function number appears only in E2 and above. Before that
7564 	 * these bits always contained zero, therefore we cannot blindly use them.
7565 	 */
7566 
7567 	val = REG_RD(sc, BAR_ME_REGISTER);
7568 
7569 	sc->pfunc_rel =
7570 	    (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7571 	sc->path_id =
7572 	    (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7573 	    1;
7574 
7575 	if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7576 		sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7577 	} else {
7578 		sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7579 	}
7580 
7581 	PMD_DRV_LOG(DEBUG, sc,
7582 		    "Relative function %d, Absolute function %d, Path %d",
7583 		    sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7584 }
7585 
bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc * sc)7586 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7587 {
7588 	uint32_t shmem2_size;
7589 	uint32_t offset;
7590 	uint32_t mf_cfg_offset_value;
7591 
7592 	/* Non 57712 */
7593 	offset = (SHMEM_ADDR(sc, func_mb) +
7594 		  (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7595 
7596 	/* 57712 plus */
7597 	if (sc->devinfo.shmem2_base != 0) {
7598 		shmem2_size = SHMEM2_RD(sc, size);
7599 		if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7600 			mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7601 			if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7602 				offset = mf_cfg_offset_value;
7603 			}
7604 		}
7605 	}
7606 
7607 	return offset;
7608 }
7609 
bnx2x_pcie_capability_read(struct bnx2x_softc * sc,int reg)7610 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7611 {
7612 	uint32_t ret;
7613 	struct bnx2x_pci_cap *caps;
7614 
7615 	/* ensure PCIe capability is enabled */
7616 	caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7617 	if (NULL != caps) {
7618 		PMD_DRV_LOG(DEBUG, sc, "Found PCIe capability: "
7619 			    "id=0x%04X type=0x%04X addr=0x%08X",
7620 			    caps->id, caps->type, caps->addr);
7621 		pci_read(sc, (caps->addr + reg), &ret, 2);
7622 		return ret;
7623 	}
7624 
7625 	PMD_DRV_LOG(WARNING, sc, "PCIe capability NOT FOUND!!!");
7626 
7627 	return 0;
7628 }
7629 
bnx2x_is_pcie_pending(struct bnx2x_softc * sc)7630 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7631 {
7632 	return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7633 		PCIM_EXP_STA_TRANSACTION_PND;
7634 }
7635 
7636 /*
7637 * Walk the PCI capabilities list for the device to find what features are
7638 * supported. These capabilities may be enabled/disabled by firmware so it's
7639 * best to walk the list rather than make assumptions.
7640 */
bnx2x_probe_pci_caps(struct bnx2x_softc * sc)7641 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7642 {
7643 	PMD_INIT_FUNC_TRACE(sc);
7644 
7645 	struct bnx2x_pci_cap *caps;
7646 	uint16_t link_status;
7647 	int reg = 0;
7648 
7649 	/* check if PCI Power Management is enabled */
7650 	caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7651 	if (NULL != caps) {
7652 		PMD_DRV_LOG(DEBUG, sc, "Found PM capability: "
7653 			    "id=0x%04X type=0x%04X addr=0x%08X",
7654 			    caps->id, caps->type, caps->addr);
7655 
7656 		sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7657 		sc->devinfo.pcie_pm_cap_reg = caps->addr;
7658 	}
7659 
7660 	link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7661 
7662 	sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7663 	sc->devinfo.pcie_link_width =
7664 	    ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7665 
7666 	PMD_DRV_LOG(DEBUG, sc, "PCIe link speed=%d width=%d",
7667 		    sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7668 
7669 	sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7670 
7671 	/* check if MSI capability is enabled */
7672 	caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7673 	if (NULL != caps) {
7674 		PMD_DRV_LOG(DEBUG, sc, "Found MSI capability at 0x%04x", reg);
7675 
7676 		sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7677 		sc->devinfo.pcie_msi_cap_reg = caps->addr;
7678 	}
7679 
7680 	/* check if MSI-X capability is enabled */
7681 	caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7682 	if (NULL != caps) {
7683 		PMD_DRV_LOG(DEBUG, sc, "Found MSI-X capability at 0x%04x", reg);
7684 
7685 		sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7686 		sc->devinfo.pcie_msix_cap_reg = caps->addr;
7687 	}
7688 }
7689 
bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc * sc)7690 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7691 {
7692 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7693 	uint32_t val;
7694 
7695 	/* get the outer vlan if we're in switch-dependent mode */
7696 
7697 	val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7698 	mf_info->ext_id = (uint16_t) val;
7699 
7700 	mf_info->multi_vnics_mode = 1;
7701 
7702 	if (!VALID_OVLAN(mf_info->ext_id)) {
7703 		PMD_DRV_LOG(NOTICE, sc, "Invalid VLAN (%d)", mf_info->ext_id);
7704 		return 1;
7705 	}
7706 
7707 	/* get the capabilities */
7708 	if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7709 	    FUNC_MF_CFG_PROTOCOL_ISCSI) {
7710 		mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7711 	} else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7712 		   == FUNC_MF_CFG_PROTOCOL_FCOE) {
7713 		mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7714 	} else {
7715 		mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7716 	}
7717 
7718 	mf_info->vnics_per_port =
7719 	    (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7720 
7721 	return 0;
7722 }
7723 
bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc * sc)7724 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7725 {
7726 	uint32_t retval = 0;
7727 	uint32_t val;
7728 
7729 	val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7730 
7731 	if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7732 		if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7733 			retval |= MF_PROTO_SUPPORT_ETHERNET;
7734 		}
7735 		if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7736 			retval |= MF_PROTO_SUPPORT_ISCSI;
7737 		}
7738 		if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7739 			retval |= MF_PROTO_SUPPORT_FCOE;
7740 		}
7741 	}
7742 
7743 	return retval;
7744 }
7745 
bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc * sc)7746 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7747 {
7748 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7749 	uint32_t val;
7750 
7751 	/*
7752 	 * There is no outer vlan if we're in switch-independent mode.
7753 	 * If the mac is valid then assume multi-function.
7754 	 */
7755 
7756 	val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7757 
7758 	mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7759 
7760 	mf_info->mf_protos_supported =
7761 	    bnx2x_get_shmem_ext_proto_support_flags(sc);
7762 
7763 	mf_info->vnics_per_port =
7764 	    (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7765 
7766 	return 0;
7767 }
7768 
bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc * sc)7769 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7770 {
7771 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7772 	uint32_t e1hov_tag;
7773 	uint32_t func_config;
7774 	uint32_t niv_config;
7775 
7776 	mf_info->multi_vnics_mode = 1;
7777 
7778 	e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7779 	func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7780 	niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7781 
7782 	mf_info->ext_id =
7783 	    (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7784 			FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7785 
7786 	mf_info->default_vlan =
7787 	    (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7788 			FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7789 
7790 	mf_info->niv_allowed_priorities =
7791 	    (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7792 		       FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7793 
7794 	mf_info->niv_default_cos =
7795 	    (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7796 		       FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7797 
7798 	mf_info->afex_vlan_mode =
7799 	    ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7800 	     FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7801 
7802 	mf_info->niv_mba_enabled =
7803 	    ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7804 	     FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7805 
7806 	mf_info->mf_protos_supported =
7807 	    bnx2x_get_shmem_ext_proto_support_flags(sc);
7808 
7809 	mf_info->vnics_per_port =
7810 	    (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7811 
7812 	return 0;
7813 }
7814 
bnx2x_check_valid_mf_cfg(struct bnx2x_softc * sc)7815 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7816 {
7817 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7818 	uint32_t mf_cfg1;
7819 	uint32_t mf_cfg2;
7820 	uint32_t ovlan1;
7821 	uint32_t ovlan2;
7822 	uint8_t i, j;
7823 
7824 	/* various MF mode sanity checks... */
7825 
7826 	if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7827 		PMD_DRV_LOG(NOTICE, sc,
7828 			    "Enumerated function %d is marked as hidden",
7829 			    SC_PORT(sc));
7830 		return 1;
7831 	}
7832 
7833 	if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7834 		PMD_DRV_LOG(NOTICE, sc, "vnics_per_port=%d multi_vnics_mode=%d",
7835 			    mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7836 		return 1;
7837 	}
7838 
7839 	if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7840 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7841 		if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7842 			PMD_DRV_LOG(NOTICE, sc, "mf_mode=SD vnic_id=%d ovlan=%d",
7843 				    SC_VN(sc), OVLAN(sc));
7844 			return 1;
7845 		}
7846 
7847 		if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7848 			PMD_DRV_LOG(NOTICE, sc,
7849 				    "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7850 				    mf_info->multi_vnics_mode, OVLAN(sc));
7851 			return 1;
7852 		}
7853 
7854 /*
7855  * Verify all functions are either MF or SF mode. If MF, make sure
7856  * sure that all non-hidden functions have a valid ovlan. If SF,
7857  * make sure that all non-hidden functions have an invalid ovlan.
7858  */
7859 		FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7860 			mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7861 			ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7862 			if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7863 			    (((mf_info->multi_vnics_mode)
7864 			      && !VALID_OVLAN(ovlan1))
7865 			     || ((!mf_info->multi_vnics_mode)
7866 				 && VALID_OVLAN(ovlan1)))) {
7867 				PMD_DRV_LOG(NOTICE, sc,
7868 					    "mf_mode=SD function %d MF config "
7869 					    "mismatch, multi_vnics_mode=%d ovlan=%d",
7870 					    i, mf_info->multi_vnics_mode,
7871 					    ovlan1);
7872 				return 1;
7873 			}
7874 		}
7875 
7876 /* Verify all funcs on the same port each have a different ovlan. */
7877 		FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7878 			mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7879 			ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7880 			/* iterate from the next function on the port to the max func */
7881 			for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7882 				mf_cfg2 =
7883 				    MFCFG_RD(sc, func_mf_config[j].config);
7884 				ovlan2 =
7885 				    MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7886 				if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7887 				    && VALID_OVLAN(ovlan1)
7888 				    && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7889 				    && VALID_OVLAN(ovlan2)
7890 				    && (ovlan1 == ovlan2)) {
7891 					PMD_DRV_LOG(NOTICE, sc,
7892 						    "mf_mode=SD functions %d and %d "
7893 						    "have the same ovlan (%d)",
7894 						    i, j, ovlan1);
7895 					return 1;
7896 				}
7897 			}
7898 		}
7899 	}
7900 	/* MULTI_FUNCTION_SD */
7901 	return 0;
7902 }
7903 
bnx2x_get_mf_cfg_info(struct bnx2x_softc * sc)7904 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7905 {
7906 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7907 	uint32_t val, mac_upper;
7908 	uint8_t i, vnic;
7909 
7910 	/* initialize mf_info defaults */
7911 	mf_info->vnics_per_port = 1;
7912 	mf_info->multi_vnics_mode = FALSE;
7913 	mf_info->path_has_ovlan = FALSE;
7914 	mf_info->mf_mode = SINGLE_FUNCTION;
7915 
7916 	if (!CHIP_IS_MF_CAP(sc)) {
7917 		return 0;
7918 	}
7919 
7920 	if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7921 		PMD_DRV_LOG(NOTICE, sc, "Invalid mf_cfg_base!");
7922 		return 1;
7923 	}
7924 
7925 	/* get the MF mode (switch dependent / independent / single-function) */
7926 
7927 	val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7928 
7929 	switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7930 	case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7931 
7932 		mac_upper =
7933 		    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7934 
7935 		/* check for legal upper mac bytes */
7936 		if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7937 			mf_info->mf_mode = MULTI_FUNCTION_SI;
7938 		} else {
7939 			PMD_DRV_LOG(NOTICE, sc,
7940 				    "Invalid config for Switch Independent mode");
7941 		}
7942 
7943 		break;
7944 
7945 	case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7946 	case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7947 
7948 		/* get outer vlan configuration */
7949 		val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7950 
7951 		if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7952 		    FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7953 			mf_info->mf_mode = MULTI_FUNCTION_SD;
7954 		} else {
7955 			PMD_DRV_LOG(NOTICE, sc,
7956 				    "Invalid config for Switch Dependent mode");
7957 		}
7958 
7959 		break;
7960 
7961 	case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7962 
7963 		/* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7964 		return 0;
7965 
7966 	case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7967 
7968 		/*
7969 		 * Mark MF mode as NIV if MCP version includes NPAR-SD support
7970 		 * and the MAC address is valid.
7971 		 */
7972 		mac_upper =
7973 		    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7974 
7975 		if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7976 		    (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7977 			mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7978 		} else {
7979 			PMD_DRV_LOG(NOTICE, sc, "Invalid config for AFEX mode");
7980 		}
7981 
7982 		break;
7983 
7984 	default:
7985 
7986 		PMD_DRV_LOG(NOTICE, sc, "Unknown MF mode (0x%08x)",
7987 			    (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7988 
7989 		return 1;
7990 	}
7991 
7992 	/* set path mf_mode (which could be different than function mf_mode) */
7993 	if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7994 		mf_info->path_has_ovlan = TRUE;
7995 	} else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7996 /*
7997  * Decide on path multi vnics mode. If we're not in MF mode and in
7998  * 4-port mode, this is good enough to check vnic-0 of the other port
7999  * on the same path
8000  */
8001 		if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
8002 			uint8_t other_port = !(PORT_ID(sc) & 1);
8003 			uint8_t abs_func_other_port =
8004 			    (SC_PATH(sc) + (2 * other_port));
8005 
8006 			val =
8007 			    MFCFG_RD(sc,
8008 				     func_mf_config
8009 				     [abs_func_other_port].e1hov_tag);
8010 
8011 			mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
8012 		}
8013 	}
8014 
8015 	if (mf_info->mf_mode == SINGLE_FUNCTION) {
8016 /* invalid MF config */
8017 		if (SC_VN(sc) >= 1) {
8018 			PMD_DRV_LOG(NOTICE, sc, "VNIC ID >= 1 in SF mode");
8019 			return 1;
8020 		}
8021 
8022 		return 0;
8023 	}
8024 
8025 	/* get the MF configuration */
8026 	mf_info->mf_config[SC_VN(sc)] =
8027 	    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8028 
8029 	switch (mf_info->mf_mode) {
8030 	case MULTI_FUNCTION_SD:
8031 
8032 		bnx2x_get_shmem_mf_cfg_info_sd(sc);
8033 		break;
8034 
8035 	case MULTI_FUNCTION_SI:
8036 
8037 		bnx2x_get_shmem_mf_cfg_info_si(sc);
8038 		break;
8039 
8040 	case MULTI_FUNCTION_AFEX:
8041 
8042 		bnx2x_get_shmem_mf_cfg_info_niv(sc);
8043 		break;
8044 
8045 	default:
8046 
8047 		PMD_DRV_LOG(NOTICE, sc, "Get MF config failed (mf_mode=0x%08x)",
8048 			    mf_info->mf_mode);
8049 		return 1;
8050 	}
8051 
8052 	/* get the congestion management parameters */
8053 
8054 	vnic = 0;
8055 	FOREACH_ABS_FUNC_IN_PORT(sc, i) {
8056 /* get min/max bw */
8057 		val = MFCFG_RD(sc, func_mf_config[i].config);
8058 		mf_info->min_bw[vnic] =
8059 		    ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
8060 		     FUNC_MF_CFG_MIN_BW_SHIFT);
8061 		mf_info->max_bw[vnic] =
8062 		    ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
8063 		     FUNC_MF_CFG_MAX_BW_SHIFT);
8064 		vnic++;
8065 	}
8066 
8067 	return bnx2x_check_valid_mf_cfg(sc);
8068 }
8069 
bnx2x_get_shmem_info(struct bnx2x_softc * sc)8070 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8071 {
8072 	int port;
8073 	uint32_t mac_hi, mac_lo, val;
8074 
8075 	PMD_INIT_FUNC_TRACE(sc);
8076 
8077 	port = SC_PORT(sc);
8078 	mac_hi = mac_lo = 0;
8079 
8080 	sc->link_params.sc = sc;
8081 	sc->link_params.port = port;
8082 
8083 	/* get the hardware config info */
8084 	sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8085 	sc->devinfo.hw_config2 =
8086 	    SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8087 
8088 	sc->link_params.hw_led_mode =
8089 	    ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8090 	     SHARED_HW_CFG_LED_MODE_SHIFT);
8091 
8092 	/* get the port feature config */
8093 	sc->port.config =
8094 	    SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8095 
8096 	/* get the link params */
8097 	sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8098 	    SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8099 	    & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8100 	sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8101 	    SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8102 	    & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8103 
8104 	/* get the lane config */
8105 	sc->link_params.lane_config =
8106 	    SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8107 
8108 	/* get the link config */
8109 	val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8110 	sc->port.link_config[ELINK_INT_PHY] = val;
8111 	sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8112 	sc->port.link_config[ELINK_EXT_PHY1] =
8113 	    SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8114 
8115 	/* get the override preemphasis flag and enable it or turn it off */
8116 	val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8117 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8118 		sc->link_params.feature_config_flags |=
8119 		    ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8120 	} else {
8121 		sc->link_params.feature_config_flags &=
8122 		    ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8123 	}
8124 
8125 	val = sc->devinfo.bc_ver >> 8;
8126 	if (val < BNX2X_BC_VER) {
8127 		/* for now only warn later we might need to enforce this */
8128 		PMD_DRV_LOG(NOTICE, sc, "This driver needs bc_ver %X but found %X, please upgrade BC\n",
8129 			    BNX2X_BC_VER, val);
8130 	}
8131 	sc->link_params.feature_config_flags |=
8132 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8133 				ELINK_FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY :
8134 				0;
8135 
8136 	sc->link_params.feature_config_flags |=
8137 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8138 		ELINK_FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8139 	sc->link_params.feature_config_flags |=
8140 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
8141 		ELINK_FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
8142 	sc->link_params.feature_config_flags |=
8143 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8144 		ELINK_FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8145 
8146 	/* get the initial value of the link params */
8147 	sc->link_params.multi_phy_config =
8148 	    SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8149 
8150 	/* get external phy info */
8151 	sc->port.ext_phy_config =
8152 	    SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8153 
8154 	/* get the multifunction configuration */
8155 	bnx2x_get_mf_cfg_info(sc);
8156 
8157 	/* get the mac address */
8158 	if (IS_MF(sc)) {
8159 		mac_hi =
8160 		    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8161 		mac_lo =
8162 		    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8163 	} else {
8164 		mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8165 		mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8166 	}
8167 
8168 	if ((mac_lo == 0) && (mac_hi == 0)) {
8169 		*sc->mac_addr_str = 0;
8170 		PMD_DRV_LOG(NOTICE, sc, "No Ethernet address programmed!");
8171 	} else {
8172 		sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8173 		sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8174 		sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8175 		sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8176 		sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8177 		sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8178 		snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8179 			 RTE_ETHER_ADDR_PRT_FMT,
8180 			 sc->link_params.mac_addr[0],
8181 			 sc->link_params.mac_addr[1],
8182 			 sc->link_params.mac_addr[2],
8183 			 sc->link_params.mac_addr[3],
8184 			 sc->link_params.mac_addr[4],
8185 			 sc->link_params.mac_addr[5]);
8186 		PMD_DRV_LOG(DEBUG, sc,
8187 			    "Ethernet address: %s", sc->mac_addr_str);
8188 	}
8189 
8190 	return 0;
8191 }
8192 
bnx2x_media_detect(struct bnx2x_softc * sc)8193 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8194 {
8195 	uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8196 	switch (sc->link_params.phy[phy_idx].media_type) {
8197 	case ELINK_ETH_PHY_SFPP_10G_FIBER:
8198 	case ELINK_ETH_PHY_SFP_1G_FIBER:
8199 	case ELINK_ETH_PHY_XFP_FIBER:
8200 	case ELINK_ETH_PHY_KR:
8201 	case ELINK_ETH_PHY_CX4:
8202 		PMD_DRV_LOG(INFO, sc, "Found 10GBase-CX4 media.");
8203 		sc->media = IFM_10G_CX4;
8204 		break;
8205 	case ELINK_ETH_PHY_DA_TWINAX:
8206 		PMD_DRV_LOG(INFO, sc, "Found 10Gb Twinax media.");
8207 		sc->media = IFM_10G_TWINAX;
8208 		break;
8209 	case ELINK_ETH_PHY_BASE_T:
8210 		PMD_DRV_LOG(INFO, sc, "Found 10GBase-T media.");
8211 		sc->media = IFM_10G_T;
8212 		break;
8213 	case ELINK_ETH_PHY_NOT_PRESENT:
8214 		PMD_DRV_LOG(INFO, sc, "Media not present.");
8215 		sc->media = 0;
8216 		break;
8217 	case ELINK_ETH_PHY_UNSPECIFIED:
8218 	default:
8219 		PMD_DRV_LOG(INFO, sc, "Unknown media!");
8220 		sc->media = 0;
8221 		break;
8222 	}
8223 }
8224 
8225 #define GET_FIELD(value, fname)                     \
8226 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8227 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8228 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8229 
bnx2x_get_igu_cam_info(struct bnx2x_softc * sc)8230 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8231 {
8232 	int pfid = SC_FUNC(sc);
8233 	int igu_sb_id;
8234 	uint32_t val;
8235 	uint8_t fid, igu_sb_cnt = 0;
8236 
8237 	sc->igu_base_sb = 0xff;
8238 
8239 	if (CHIP_INT_MODE_IS_BC(sc)) {
8240 		int vn = SC_VN(sc);
8241 		igu_sb_cnt = sc->igu_sb_cnt;
8242 		sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8243 				   FP_SB_MAX_E1x);
8244 		sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8245 				  (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8246 		return 0;
8247 	}
8248 
8249 	/* IGU in normal mode - read CAM */
8250 	for (igu_sb_id = 0;
8251 	     igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8252 		val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8253 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8254 			continue;
8255 		}
8256 		fid = IGU_FID(val);
8257 		if (fid & IGU_FID_ENCODE_IS_PF) {
8258 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8259 				continue;
8260 			}
8261 			if (IGU_VEC(val) == 0) {
8262 				/* default status block */
8263 				sc->igu_dsb_id = igu_sb_id;
8264 			} else {
8265 				if (sc->igu_base_sb == 0xff) {
8266 					sc->igu_base_sb = igu_sb_id;
8267 				}
8268 				igu_sb_cnt++;
8269 			}
8270 		}
8271 	}
8272 
8273 	/*
8274 	 * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8275 	 * that number of CAM entries will not be equal to the value advertised in
8276 	 * PCI. Driver should use the minimal value of both as the actual status
8277 	 * block count
8278 	 */
8279 	sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8280 
8281 	if (igu_sb_cnt == 0) {
8282 		PMD_DRV_LOG(ERR, sc, "CAM configuration error");
8283 		return -1;
8284 	}
8285 
8286 	return 0;
8287 }
8288 
8289 /*
8290 * Gather various information from the device config space, the device itself,
8291 * shmem, and the user input.
8292 */
bnx2x_get_device_info(struct bnx2x_softc * sc)8293 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8294 {
8295 	uint32_t val;
8296 	int rc;
8297 
8298 	/* get the chip revision (chip metal comes from pci config space) */
8299 	sc->devinfo.chip_id = sc->link_params.chip_id =
8300 	    (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8301 	     ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8302 	     (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8303 	     ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8304 
8305 	/* force 57811 according to MISC register */
8306 	if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8307 		if (CHIP_IS_57810(sc)) {
8308 			sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8309 					       (sc->
8310 						devinfo.chip_id & 0x0000ffff));
8311 		} else if (CHIP_IS_57810_MF(sc)) {
8312 			sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8313 					       (sc->
8314 						devinfo.chip_id & 0x0000ffff));
8315 		}
8316 		sc->devinfo.chip_id |= 0x1;
8317 	}
8318 
8319 	PMD_DRV_LOG(DEBUG, sc,
8320 		    "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8321 		    sc->devinfo.chip_id,
8322 		    ((sc->devinfo.chip_id >> 16) & 0xffff),
8323 		    ((sc->devinfo.chip_id >> 12) & 0xf),
8324 		    ((sc->devinfo.chip_id >> 4) & 0xff),
8325 		    ((sc->devinfo.chip_id >> 0) & 0xf));
8326 
8327 	val = (REG_RD(sc, 0x2874) & 0x55);
8328 	if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8329 		sc->flags |= BNX2X_ONE_PORT_FLAG;
8330 		PMD_DRV_LOG(DEBUG, sc, "single port device");
8331 	}
8332 
8333 	/* set the doorbell size */
8334 	sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8335 
8336 	/* determine whether the device is in 2 port or 4 port mode */
8337 	sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;	/* E1h */
8338 	if (CHIP_IS_E2E3(sc)) {
8339 /*
8340  * Read port4mode_en_ovwr[0]:
8341  *   If 1, four port mode is in port4mode_en_ovwr[1].
8342  *   If 0, four port mode is in port4mode_en[0].
8343  */
8344 		val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8345 		if (val & 1) {
8346 			val = ((val >> 1) & 1);
8347 		} else {
8348 			val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8349 		}
8350 
8351 		sc->devinfo.chip_port_mode =
8352 		    (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8353 
8354 		PMD_DRV_LOG(DEBUG, sc, "Port mode = %s", (val) ? "4" : "2");
8355 	}
8356 
8357 	/* get the function and path info for the device */
8358 	bnx2x_get_function_num(sc);
8359 
8360 	/* get the shared memory base address */
8361 	sc->devinfo.shmem_base =
8362 	    sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8363 	sc->devinfo.shmem2_base =
8364 	    REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8365 			MISC_REG_GENERIC_CR_0));
8366 
8367 	if (!sc->devinfo.shmem_base) {
8368 /* this should ONLY prevent upcoming shmem reads */
8369 		PMD_DRV_LOG(INFO, sc, "MCP not active");
8370 		sc->flags |= BNX2X_NO_MCP_FLAG;
8371 		return 0;
8372 	}
8373 
8374 	/* make sure the shared memory contents are valid */
8375 	val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8376 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8377 	    (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8378 		PMD_DRV_LOG(NOTICE, sc, "Invalid SHMEM validity signature: 0x%08x",
8379 			    val);
8380 		return 0;
8381 	}
8382 
8383 	/* get the bootcode version */
8384 	sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8385 	snprintf(sc->devinfo.bc_ver_str,
8386 		 sizeof(sc->devinfo.bc_ver_str),
8387 		 "%d.%d.%d",
8388 		 ((sc->devinfo.bc_ver >> 24) & 0xff),
8389 		 ((sc->devinfo.bc_ver >> 16) & 0xff),
8390 		 ((sc->devinfo.bc_ver >> 8) & 0xff));
8391 	PMD_DRV_LOG(DEBUG, sc, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8392 
8393 	/* get the bootcode shmem address */
8394 	sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8395 
8396 	/* clean indirect addresses as they're not used */
8397 	pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8398 	if (IS_PF(sc)) {
8399 		REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8400 		REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8401 		REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8402 		REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8403 		if (CHIP_IS_E1x(sc)) {
8404 			REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8405 			REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8406 			REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8407 			REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8408 		}
8409 	}
8410 
8411 	/* get the nvram size */
8412 	val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8413 	sc->devinfo.flash_size =
8414 	    (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8415 
8416 	bnx2x_set_power_state(sc, PCI_PM_D0);
8417 	/* get various configuration parameters from shmem */
8418 	bnx2x_get_shmem_info(sc);
8419 
8420 	/* initialize IGU parameters */
8421 	if (CHIP_IS_E1x(sc)) {
8422 		sc->devinfo.int_block = INT_BLOCK_HC;
8423 		sc->igu_dsb_id = DEF_SB_IGU_ID;
8424 		sc->igu_base_sb = 0;
8425 	} else {
8426 		sc->devinfo.int_block = INT_BLOCK_IGU;
8427 
8428 /* do not allow device reset during IGU info processing */
8429 		bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8430 
8431 		val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8432 
8433 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8434 			int tout = 5000;
8435 
8436 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8437 			REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8438 			REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8439 
8440 			while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8441 				tout--;
8442 				DELAY(1000);
8443 			}
8444 
8445 			if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8446 				PMD_DRV_LOG(NOTICE, sc,
8447 					    "FORCING IGU Normal Mode failed!!!");
8448 				bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8449 				return -1;
8450 			}
8451 		}
8452 
8453 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8454 			PMD_DRV_LOG(DEBUG, sc, "IGU Backward Compatible Mode");
8455 			sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8456 		} else {
8457 			PMD_DRV_LOG(DEBUG, sc, "IGU Normal Mode");
8458 		}
8459 
8460 		rc = bnx2x_get_igu_cam_info(sc);
8461 
8462 		bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8463 
8464 		if (rc) {
8465 			return rc;
8466 		}
8467 	}
8468 
8469 	/*
8470 	 * Get base FW non-default (fast path) status block ID. This value is
8471 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
8472 	 * determine the id used by the FW.
8473 	 */
8474 	if (CHIP_IS_E1x(sc)) {
8475 		sc->base_fw_ndsb =
8476 		    ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8477 	} else {
8478 /*
8479  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8480  * the same queue are indicated on the same IGU SB). So we prefer
8481  * FW and IGU SBs to be the same value.
8482  */
8483 		sc->base_fw_ndsb = sc->igu_base_sb;
8484 	}
8485 
8486 	elink_phy_probe(&sc->link_params);
8487 
8488 	return 0;
8489 }
8490 
8491 static void
bnx2x_link_settings_supported(struct bnx2x_softc * sc,uint32_t switch_cfg)8492 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8493 {
8494 	uint32_t cfg_size = 0;
8495 	uint32_t idx;
8496 	uint8_t port = SC_PORT(sc);
8497 
8498 	/* aggregation of supported attributes of all external phys */
8499 	sc->port.supported[0] = 0;
8500 	sc->port.supported[1] = 0;
8501 
8502 	switch (sc->link_params.num_phys) {
8503 	case 1:
8504 		sc->port.supported[0] =
8505 		    sc->link_params.phy[ELINK_INT_PHY].supported;
8506 		cfg_size = 1;
8507 		break;
8508 	case 2:
8509 		sc->port.supported[0] =
8510 		    sc->link_params.phy[ELINK_EXT_PHY1].supported;
8511 		cfg_size = 1;
8512 		break;
8513 	case 3:
8514 		if (sc->link_params.multi_phy_config &
8515 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8516 			sc->port.supported[1] =
8517 			    sc->link_params.phy[ELINK_EXT_PHY1].supported;
8518 			sc->port.supported[0] =
8519 			    sc->link_params.phy[ELINK_EXT_PHY2].supported;
8520 		} else {
8521 			sc->port.supported[0] =
8522 			    sc->link_params.phy[ELINK_EXT_PHY1].supported;
8523 			sc->port.supported[1] =
8524 			    sc->link_params.phy[ELINK_EXT_PHY2].supported;
8525 		}
8526 		cfg_size = 2;
8527 		break;
8528 	}
8529 
8530 	if (!(sc->port.supported[0] || sc->port.supported[1])) {
8531 		PMD_DRV_LOG(ERR, sc,
8532 			    "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8533 			    SHMEM_RD(sc,
8534 				     dev_info.port_hw_config
8535 				     [port].external_phy_config),
8536 			    SHMEM_RD(sc,
8537 				     dev_info.port_hw_config
8538 				     [port].external_phy_config2));
8539 		return;
8540 	}
8541 
8542 	if (CHIP_IS_E3(sc))
8543 		sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8544 	else {
8545 		switch (switch_cfg) {
8546 		case ELINK_SWITCH_CFG_1G:
8547 			sc->port.phy_addr =
8548 			    REG_RD(sc,
8549 				   NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8550 			break;
8551 		case ELINK_SWITCH_CFG_10G:
8552 			sc->port.phy_addr =
8553 			    REG_RD(sc,
8554 				   NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8555 			break;
8556 		default:
8557 			PMD_DRV_LOG(ERR, sc,
8558 				    "Invalid switch config in"
8559 				    "link_config=0x%08x",
8560 				    sc->port.link_config[0]);
8561 			return;
8562 		}
8563 	}
8564 
8565 	PMD_DRV_LOG(INFO, sc, "PHY addr 0x%08x", sc->port.phy_addr);
8566 
8567 	/* mask what we support according to speed_cap_mask per configuration */
8568 	for (idx = 0; idx < cfg_size; idx++) {
8569 		if (!(sc->link_params.speed_cap_mask[idx] &
8570 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8571 			sc->port.supported[idx] &=
8572 			    ~ELINK_SUPPORTED_10baseT_Half;
8573 		}
8574 
8575 		if (!(sc->link_params.speed_cap_mask[idx] &
8576 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8577 			sc->port.supported[idx] &=
8578 			    ~ELINK_SUPPORTED_10baseT_Full;
8579 		}
8580 
8581 		if (!(sc->link_params.speed_cap_mask[idx] &
8582 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8583 			sc->port.supported[idx] &=
8584 			    ~ELINK_SUPPORTED_100baseT_Half;
8585 		}
8586 
8587 		if (!(sc->link_params.speed_cap_mask[idx] &
8588 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8589 			sc->port.supported[idx] &=
8590 			    ~ELINK_SUPPORTED_100baseT_Full;
8591 		}
8592 
8593 		if (!(sc->link_params.speed_cap_mask[idx] &
8594 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8595 			sc->port.supported[idx] &=
8596 			    ~ELINK_SUPPORTED_1000baseT_Full;
8597 		}
8598 
8599 		if (!(sc->link_params.speed_cap_mask[idx] &
8600 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8601 			sc->port.supported[idx] &=
8602 			    ~ELINK_SUPPORTED_2500baseX_Full;
8603 		}
8604 
8605 		if (!(sc->link_params.speed_cap_mask[idx] &
8606 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8607 			sc->port.supported[idx] &=
8608 			    ~ELINK_SUPPORTED_10000baseT_Full;
8609 		}
8610 
8611 		if (!(sc->link_params.speed_cap_mask[idx] &
8612 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8613 			sc->port.supported[idx] &=
8614 			    ~ELINK_SUPPORTED_20000baseKR2_Full;
8615 		}
8616 	}
8617 
8618 	PMD_DRV_LOG(INFO, sc, "PHY supported 0=0x%08x 1=0x%08x",
8619 		    sc->port.supported[0], sc->port.supported[1]);
8620 }
8621 
bnx2x_link_settings_requested(struct bnx2x_softc * sc)8622 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8623 {
8624 	uint32_t link_config;
8625 	uint32_t idx;
8626 	uint32_t cfg_size = 0;
8627 
8628 	sc->port.advertising[0] = 0;
8629 	sc->port.advertising[1] = 0;
8630 
8631 	switch (sc->link_params.num_phys) {
8632 	case 1:
8633 	case 2:
8634 		cfg_size = 1;
8635 		break;
8636 	case 3:
8637 		cfg_size = 2;
8638 		break;
8639 	}
8640 
8641 	for (idx = 0; idx < cfg_size; idx++) {
8642 		sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8643 		link_config = sc->port.link_config[idx];
8644 
8645 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8646 		case PORT_FEATURE_LINK_SPEED_AUTO:
8647 			if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8648 				sc->link_params.req_line_speed[idx] =
8649 				    ELINK_SPEED_AUTO_NEG;
8650 				sc->port.advertising[idx] |=
8651 				    sc->port.supported[idx];
8652 				if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8653 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8654 					sc->port.advertising[idx] |=
8655 					    (ELINK_SUPPORTED_100baseT_Half |
8656 					     ELINK_SUPPORTED_100baseT_Full);
8657 			} else {
8658 				/* force 10G, no AN */
8659 				sc->link_params.req_line_speed[idx] =
8660 				    ELINK_SPEED_10000;
8661 				sc->port.advertising[idx] |=
8662 				    (ADVERTISED_10000baseT_Full |
8663 				     ADVERTISED_FIBRE);
8664 				continue;
8665 			}
8666 			break;
8667 
8668 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
8669 			if (sc->
8670 			    port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8671 			{
8672 				sc->link_params.req_line_speed[idx] =
8673 				    ELINK_SPEED_10;
8674 				sc->port.advertising[idx] |=
8675 				    (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8676 			} else {
8677 				PMD_DRV_LOG(ERR, sc,
8678 					    "Invalid NVRAM config link_config=0x%08x "
8679 					    "speed_cap_mask=0x%08x",
8680 					    link_config,
8681 					    sc->
8682 					    link_params.speed_cap_mask[idx]);
8683 				return;
8684 			}
8685 			break;
8686 
8687 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
8688 			if (sc->
8689 			    port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8690 			{
8691 				sc->link_params.req_line_speed[idx] =
8692 				    ELINK_SPEED_10;
8693 				sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8694 				sc->port.advertising[idx] |=
8695 				    (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8696 			} else {
8697 				PMD_DRV_LOG(ERR, sc,
8698 					    "Invalid NVRAM config link_config=0x%08x "
8699 					    "speed_cap_mask=0x%08x",
8700 					    link_config,
8701 					    sc->
8702 					    link_params.speed_cap_mask[idx]);
8703 				return;
8704 			}
8705 			break;
8706 
8707 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
8708 			if (sc->
8709 			    port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8710 			{
8711 				sc->link_params.req_line_speed[idx] =
8712 				    ELINK_SPEED_100;
8713 				sc->port.advertising[idx] |=
8714 				    (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8715 			} else {
8716 				PMD_DRV_LOG(ERR, sc,
8717 					    "Invalid NVRAM config link_config=0x%08x "
8718 					    "speed_cap_mask=0x%08x",
8719 					    link_config,
8720 					    sc->
8721 					    link_params.speed_cap_mask[idx]);
8722 				return;
8723 			}
8724 			break;
8725 
8726 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
8727 			if (sc->
8728 			    port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8729 			{
8730 				sc->link_params.req_line_speed[idx] =
8731 				    ELINK_SPEED_100;
8732 				sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8733 				sc->port.advertising[idx] |=
8734 				    (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8735 			} else {
8736 				PMD_DRV_LOG(ERR, sc,
8737 					    "Invalid NVRAM config link_config=0x%08x "
8738 					    "speed_cap_mask=0x%08x",
8739 					    link_config,
8740 					    sc->
8741 					    link_params.speed_cap_mask[idx]);
8742 				return;
8743 			}
8744 			break;
8745 
8746 		case PORT_FEATURE_LINK_SPEED_1G:
8747 			if (sc->port.supported[idx] &
8748 			    ELINK_SUPPORTED_1000baseT_Full) {
8749 				sc->link_params.req_line_speed[idx] =
8750 				    ELINK_SPEED_1000;
8751 				sc->port.advertising[idx] |=
8752 				    (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8753 			} else {
8754 				PMD_DRV_LOG(ERR, sc,
8755 					    "Invalid NVRAM config link_config=0x%08x "
8756 					    "speed_cap_mask=0x%08x",
8757 					    link_config,
8758 					    sc->
8759 					    link_params.speed_cap_mask[idx]);
8760 				return;
8761 			}
8762 			break;
8763 
8764 		case PORT_FEATURE_LINK_SPEED_2_5G:
8765 			if (sc->port.supported[idx] &
8766 			    ELINK_SUPPORTED_2500baseX_Full) {
8767 				sc->link_params.req_line_speed[idx] =
8768 				    ELINK_SPEED_2500;
8769 				sc->port.advertising[idx] |=
8770 				    (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8771 			} else {
8772 				PMD_DRV_LOG(ERR, sc,
8773 					    "Invalid NVRAM config link_config=0x%08x "
8774 					    "speed_cap_mask=0x%08x",
8775 					    link_config,
8776 					    sc->
8777 					    link_params.speed_cap_mask[idx]);
8778 				return;
8779 			}
8780 			break;
8781 
8782 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
8783 			if (sc->port.supported[idx] &
8784 			    ELINK_SUPPORTED_10000baseT_Full) {
8785 				sc->link_params.req_line_speed[idx] =
8786 				    ELINK_SPEED_10000;
8787 				sc->port.advertising[idx] |=
8788 				    (ADVERTISED_10000baseT_Full |
8789 				     ADVERTISED_FIBRE);
8790 			} else {
8791 				PMD_DRV_LOG(ERR, sc,
8792 					    "Invalid NVRAM config link_config=0x%08x "
8793 					    "speed_cap_mask=0x%08x",
8794 					    link_config,
8795 					    sc->
8796 					    link_params.speed_cap_mask[idx]);
8797 				return;
8798 			}
8799 			break;
8800 
8801 		case PORT_FEATURE_LINK_SPEED_20G:
8802 			sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8803 			break;
8804 
8805 		default:
8806 			PMD_DRV_LOG(ERR, sc,
8807 				    "Invalid NVRAM config link_config=0x%08x "
8808 				    "speed_cap_mask=0x%08x", link_config,
8809 				    sc->link_params.speed_cap_mask[idx]);
8810 			sc->link_params.req_line_speed[idx] =
8811 			    ELINK_SPEED_AUTO_NEG;
8812 			sc->port.advertising[idx] = sc->port.supported[idx];
8813 			break;
8814 		}
8815 
8816 		sc->link_params.req_flow_ctrl[idx] =
8817 		    (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8818 
8819 		if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8820 			if (!
8821 			    (sc->
8822 			     port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8823 				sc->link_params.req_flow_ctrl[idx] =
8824 				    ELINK_FLOW_CTRL_NONE;
8825 			} else {
8826 				bnx2x_set_requested_fc(sc);
8827 			}
8828 		}
8829 	}
8830 }
8831 
bnx2x_get_phy_info(struct bnx2x_softc * sc)8832 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8833 {
8834 	uint8_t port = SC_PORT(sc);
8835 	uint32_t eee_mode;
8836 
8837 	PMD_INIT_FUNC_TRACE(sc);
8838 
8839 	/* shmem data already read in bnx2x_get_shmem_info() */
8840 
8841 	bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8842 	bnx2x_link_settings_requested(sc);
8843 
8844 	/* configure link feature according to nvram value */
8845 	eee_mode =
8846 	    (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8847 	      & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8848 	     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8849 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8850 		sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8851 					    ELINK_EEE_MODE_ENABLE_LPI |
8852 					    ELINK_EEE_MODE_OUTPUT_TIME);
8853 	} else {
8854 		sc->link_params.eee_mode = 0;
8855 	}
8856 
8857 	/* get the media type */
8858 	bnx2x_media_detect(sc);
8859 }
8860 
bnx2x_set_modes_bitmap(struct bnx2x_softc * sc)8861 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8862 {
8863 	uint32_t flags = MODE_ASIC | MODE_PORT2;
8864 
8865 	if (CHIP_IS_E2(sc)) {
8866 		flags |= MODE_E2;
8867 	} else if (CHIP_IS_E3(sc)) {
8868 		flags |= MODE_E3;
8869 		if (CHIP_REV(sc) == CHIP_REV_Ax) {
8870 			flags |= MODE_E3_A0;
8871 		} else {	/*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8872 
8873 			flags |= MODE_E3_B0 | MODE_COS3;
8874 		}
8875 	}
8876 
8877 	if (IS_MF(sc)) {
8878 		flags |= MODE_MF;
8879 		switch (sc->devinfo.mf_info.mf_mode) {
8880 		case MULTI_FUNCTION_SD:
8881 			flags |= MODE_MF_SD;
8882 			break;
8883 		case MULTI_FUNCTION_SI:
8884 			flags |= MODE_MF_SI;
8885 			break;
8886 		case MULTI_FUNCTION_AFEX:
8887 			flags |= MODE_MF_AFEX;
8888 			break;
8889 		}
8890 	} else {
8891 		flags |= MODE_SF;
8892 	}
8893 
8894 #if defined(__LITTLE_ENDIAN)
8895 	flags |= MODE_LITTLE_ENDIAN;
8896 #else /* __BIG_ENDIAN */
8897 	flags |= MODE_BIG_ENDIAN;
8898 #endif
8899 
8900 	INIT_MODE_FLAGS(sc) = flags;
8901 }
8902 
bnx2x_alloc_hsi_mem(struct bnx2x_softc * sc)8903 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8904 {
8905 	struct bnx2x_fastpath *fp;
8906 	char buf[32];
8907 	uint32_t i;
8908 
8909 	if (IS_PF(sc)) {
8910 		/************************/
8911 		/* DEFAULT STATUS BLOCK */
8912 		/************************/
8913 
8914 		if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8915 				  &sc->def_sb_dma, "def_sb",
8916 				  RTE_CACHE_LINE_SIZE) != 0) {
8917 			return -1;
8918 		}
8919 
8920 		sc->def_sb =
8921 		    (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8922 		/***************/
8923 		/* EVENT QUEUE */
8924 		/***************/
8925 
8926 		if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8927 				  &sc->eq_dma, "ev_queue",
8928 				  RTE_CACHE_LINE_SIZE) != 0) {
8929 			sc->def_sb = NULL;
8930 			return -1;
8931 		}
8932 
8933 		sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8934 
8935 		/*************/
8936 		/* SLOW PATH */
8937 		/*************/
8938 
8939 		if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8940 				  &sc->sp_dma, "sp",
8941 				  RTE_CACHE_LINE_SIZE) != 0) {
8942 			sc->eq = NULL;
8943 			sc->def_sb = NULL;
8944 			return -1;
8945 		}
8946 
8947 		sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8948 
8949 		/*******************/
8950 		/* SLOW PATH QUEUE */
8951 		/*******************/
8952 
8953 		if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8954 				  &sc->spq_dma, "sp_queue",
8955 				  RTE_CACHE_LINE_SIZE) != 0) {
8956 			sc->sp = NULL;
8957 			sc->eq = NULL;
8958 			sc->def_sb = NULL;
8959 			return -1;
8960 		}
8961 
8962 		sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8963 
8964 		/***************************/
8965 		/* FW DECOMPRESSION BUFFER */
8966 		/***************************/
8967 
8968 		if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8969 				  "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8970 			sc->spq = NULL;
8971 			sc->sp = NULL;
8972 			sc->eq = NULL;
8973 			sc->def_sb = NULL;
8974 			return -1;
8975 		}
8976 
8977 		sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8978 	}
8979 
8980 	/*************/
8981 	/* FASTPATHS */
8982 	/*************/
8983 
8984 	/* allocate DMA memory for each fastpath structure */
8985 	for (i = 0; i < sc->num_queues; i++) {
8986 		fp = &sc->fp[i];
8987 		fp->sc = sc;
8988 		fp->index = i;
8989 
8990 		/*******************/
8991 		/* FP STATUS BLOCK */
8992 		/*******************/
8993 
8994 		snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8995 		if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8996 				  &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8997 			PMD_DRV_LOG(NOTICE, sc, "Failed to alloc %s", buf);
8998 			return -1;
8999 		} else {
9000 			if (CHIP_IS_E2E3(sc)) {
9001 				fp->status_block.e2_sb =
9002 				    (struct host_hc_status_block_e2 *)
9003 				    fp->sb_dma.vaddr;
9004 			} else {
9005 				fp->status_block.e1x_sb =
9006 				    (struct host_hc_status_block_e1x *)
9007 				    fp->sb_dma.vaddr;
9008 			}
9009 		}
9010 	}
9011 
9012 	return 0;
9013 }
9014 
bnx2x_free_hsi_mem(struct bnx2x_softc * sc)9015 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
9016 {
9017 	struct bnx2x_fastpath *fp;
9018 	int i;
9019 
9020 	for (i = 0; i < sc->num_queues; i++) {
9021 		fp = &sc->fp[i];
9022 
9023 		/*******************/
9024 		/* FP STATUS BLOCK */
9025 		/*******************/
9026 
9027 		memset(&fp->status_block, 0, sizeof(fp->status_block));
9028 		bnx2x_dma_free(&fp->sb_dma);
9029 	}
9030 
9031 	if (IS_PF(sc)) {
9032 		/***************************/
9033 		/* FW DECOMPRESSION BUFFER */
9034 		/***************************/
9035 
9036 		bnx2x_dma_free(&sc->gz_buf_dma);
9037 		sc->gz_buf = NULL;
9038 
9039 		/*******************/
9040 		/* SLOW PATH QUEUE */
9041 		/*******************/
9042 
9043 		bnx2x_dma_free(&sc->spq_dma);
9044 		sc->spq = NULL;
9045 
9046 		/*************/
9047 		/* SLOW PATH */
9048 		/*************/
9049 
9050 		bnx2x_dma_free(&sc->sp_dma);
9051 		sc->sp = NULL;
9052 
9053 		/***************/
9054 		/* EVENT QUEUE */
9055 		/***************/
9056 
9057 		bnx2x_dma_free(&sc->eq_dma);
9058 		sc->eq = NULL;
9059 
9060 		/************************/
9061 		/* DEFAULT STATUS BLOCK */
9062 		/************************/
9063 
9064 		bnx2x_dma_free(&sc->def_sb_dma);
9065 		sc->def_sb = NULL;
9066 	}
9067 }
9068 
9069 /*
9070 * Previous driver DMAE transaction may have occurred when pre-boot stage
9071 * ended and boot began. This would invalidate the addresses of the
9072 * transaction, resulting in was-error bit set in the PCI causing all
9073 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
9074 * the interrupt which detected this from the pglueb and the was-done bit
9075 */
bnx2x_prev_interrupted_dmae(struct bnx2x_softc * sc)9076 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
9077 {
9078 	uint32_t val;
9079 
9080 	if (!CHIP_IS_E1x(sc)) {
9081 		val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
9082 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9083 			REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9084 			       1 << SC_FUNC(sc));
9085 		}
9086 	}
9087 }
9088 
bnx2x_prev_mcp_done(struct bnx2x_softc * sc)9089 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9090 {
9091 	uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9092 				     DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9093 	if (!rc) {
9094 		PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9095 		return -1;
9096 	}
9097 
9098 	return 0;
9099 }
9100 
bnx2x_prev_path_get_entry(struct bnx2x_softc * sc)9101 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9102 {
9103 	struct bnx2x_prev_list_node *tmp;
9104 
9105 	LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9106 		if ((sc->pcie_bus == tmp->bus) &&
9107 		    (sc->pcie_device == tmp->slot) &&
9108 		    (SC_PATH(sc) == tmp->path)) {
9109 			return tmp;
9110 		}
9111 	}
9112 
9113 	return NULL;
9114 }
9115 
bnx2x_prev_is_path_marked(struct bnx2x_softc * sc)9116 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9117 {
9118 	struct bnx2x_prev_list_node *tmp;
9119 	int rc = FALSE;
9120 
9121 	rte_spinlock_lock(&bnx2x_prev_mtx);
9122 
9123 	tmp = bnx2x_prev_path_get_entry(sc);
9124 	if (tmp) {
9125 		if (tmp->aer) {
9126 			PMD_DRV_LOG(DEBUG, sc,
9127 				    "Path %d/%d/%d was marked by AER",
9128 				    sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9129 		} else {
9130 			rc = TRUE;
9131 			PMD_DRV_LOG(DEBUG, sc,
9132 				    "Path %d/%d/%d was already cleaned from previous drivers",
9133 				    sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9134 		}
9135 	}
9136 
9137 	rte_spinlock_unlock(&bnx2x_prev_mtx);
9138 
9139 	return rc;
9140 }
9141 
bnx2x_prev_mark_path(struct bnx2x_softc * sc,uint8_t after_undi)9142 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9143 {
9144 	struct bnx2x_prev_list_node *tmp;
9145 
9146 	rte_spinlock_lock(&bnx2x_prev_mtx);
9147 
9148 	/* Check whether the entry for this path already exists */
9149 	tmp = bnx2x_prev_path_get_entry(sc);
9150 	if (tmp) {
9151 		if (!tmp->aer) {
9152 			PMD_DRV_LOG(DEBUG, sc,
9153 				    "Re-marking AER in path %d/%d/%d",
9154 				    sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9155 		} else {
9156 			PMD_DRV_LOG(DEBUG, sc,
9157 				    "Removing AER indication from path %d/%d/%d",
9158 				    sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9159 			tmp->aer = 0;
9160 		}
9161 
9162 		rte_spinlock_unlock(&bnx2x_prev_mtx);
9163 		return 0;
9164 	}
9165 
9166 	rte_spinlock_unlock(&bnx2x_prev_mtx);
9167 
9168 	/* Create an entry for this path and add it */
9169 	tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9170 			 RTE_CACHE_LINE_SIZE);
9171 	if (!tmp) {
9172 		PMD_DRV_LOG(NOTICE, sc, "Failed to allocate 'bnx2x_prev_list_node'");
9173 		return -1;
9174 	}
9175 
9176 	tmp->bus = sc->pcie_bus;
9177 	tmp->slot = sc->pcie_device;
9178 	tmp->path = SC_PATH(sc);
9179 	tmp->aer = 0;
9180 	tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9181 
9182 	rte_spinlock_lock(&bnx2x_prev_mtx);
9183 
9184 	LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9185 
9186 	rte_spinlock_unlock(&bnx2x_prev_mtx);
9187 
9188 	return 0;
9189 }
9190 
bnx2x_do_flr(struct bnx2x_softc * sc)9191 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9192 {
9193 	int i;
9194 
9195 	/* only E2 and onwards support FLR */
9196 	if (CHIP_IS_E1x(sc)) {
9197 		PMD_DRV_LOG(WARNING, sc, "FLR not supported in E1H");
9198 		return -1;
9199 	}
9200 
9201 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9202 	if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9203 		PMD_DRV_LOG(WARNING, sc,
9204 			    "FLR not supported by BC_VER: 0x%08x",
9205 			    sc->devinfo.bc_ver);
9206 		return -1;
9207 	}
9208 
9209 	/* Wait for Transaction Pending bit clean */
9210 	for (i = 0; i < 4; i++) {
9211 		if (i) {
9212 			DELAY(((1 << (i - 1)) * 100) * 1000);
9213 		}
9214 
9215 		if (!bnx2x_is_pcie_pending(sc)) {
9216 			goto clear;
9217 		}
9218 	}
9219 
9220 	PMD_DRV_LOG(NOTICE, sc, "PCIE transaction is not cleared, "
9221 		    "proceeding with reset anyway");
9222 
9223 clear:
9224 	bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9225 
9226 	return 0;
9227 }
9228 
9229 struct bnx2x_mac_vals {
9230 	uint32_t xmac_addr;
9231 	uint32_t xmac_val;
9232 	uint32_t emac_addr;
9233 	uint32_t emac_val;
9234 	uint32_t umac_addr;
9235 	uint32_t umac_val;
9236 	uint32_t bmac_addr;
9237 	uint32_t bmac_val[2];
9238 };
9239 
9240 static void
bnx2x_prev_unload_close_mac(struct bnx2x_softc * sc,struct bnx2x_mac_vals * vals)9241 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9242 {
9243 	uint32_t val, base_addr, offset, mask, reset_reg;
9244 	uint8_t mac_stopped = FALSE;
9245 	uint8_t port = SC_PORT(sc);
9246 	uint32_t wb_data[2];
9247 
9248 	/* reset addresses as they also mark which values were changed */
9249 	vals->bmac_addr = 0;
9250 	vals->umac_addr = 0;
9251 	vals->xmac_addr = 0;
9252 	vals->emac_addr = 0;
9253 
9254 	reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9255 
9256 	if (!CHIP_IS_E3(sc)) {
9257 		val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9258 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9259 		if ((mask & reset_reg) && val) {
9260 			base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9261 			    : NIG_REG_INGRESS_BMAC0_MEM;
9262 			offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9263 			    : BIGMAC_REGISTER_BMAC_CONTROL;
9264 
9265 			/*
9266 			 * use rd/wr since we cannot use dmae. This is safe
9267 			 * since MCP won't access the bus due to the request
9268 			 * to unload, and no function on the path can be
9269 			 * loaded at this time.
9270 			 */
9271 			wb_data[0] = REG_RD(sc, base_addr + offset);
9272 			wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9273 			vals->bmac_addr = base_addr + offset;
9274 			vals->bmac_val[0] = wb_data[0];
9275 			vals->bmac_val[1] = wb_data[1];
9276 			wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9277 			REG_WR(sc, vals->bmac_addr, wb_data[0]);
9278 			REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9279 		}
9280 
9281 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9282 		vals->emac_val = REG_RD(sc, vals->emac_addr);
9283 		REG_WR(sc, vals->emac_addr, 0);
9284 		mac_stopped = TRUE;
9285 	} else {
9286 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9287 			base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9288 			val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9289 			REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9290 			       val & ~(1 << 1));
9291 			REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9292 			       val | (1 << 1));
9293 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9294 			vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9295 			REG_WR(sc, vals->xmac_addr, 0);
9296 			mac_stopped = TRUE;
9297 		}
9298 
9299 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9300 		if (mask & reset_reg) {
9301 			base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9302 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9303 			vals->umac_val = REG_RD(sc, vals->umac_addr);
9304 			REG_WR(sc, vals->umac_addr, 0);
9305 			mac_stopped = TRUE;
9306 		}
9307 	}
9308 
9309 	if (mac_stopped) {
9310 		DELAY(20000);
9311 	}
9312 }
9313 
9314 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9315 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9316 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9317 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9318 
9319 static void
bnx2x_prev_unload_undi_inc(struct bnx2x_softc * sc,uint8_t port,uint8_t inc)9320 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9321 {
9322 	uint16_t rcq, bd;
9323 	uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9324 
9325 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9326 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9327 
9328 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9329 	REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9330 }
9331 
bnx2x_prev_unload_common(struct bnx2x_softc * sc)9332 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9333 {
9334 	uint32_t reset_reg, tmp_reg = 0, rc;
9335 	uint8_t prev_undi = FALSE;
9336 	struct bnx2x_mac_vals mac_vals;
9337 	uint32_t timer_count = 1000;
9338 	uint32_t prev_brb;
9339 
9340 	/*
9341 	 * It is possible a previous function received 'common' answer,
9342 	 * but hasn't loaded yet, therefore creating a scenario of
9343 	 * multiple functions receiving 'common' on the same path.
9344 	 */
9345 	memset(&mac_vals, 0, sizeof(mac_vals));
9346 
9347 	if (bnx2x_prev_is_path_marked(sc)) {
9348 		return bnx2x_prev_mcp_done(sc);
9349 	}
9350 
9351 	reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9352 
9353 	/* Reset should be performed after BRB is emptied */
9354 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9355 		/* Close the MAC Rx to prevent BRB from filling up */
9356 		bnx2x_prev_unload_close_mac(sc, &mac_vals);
9357 
9358 		/* close LLH filters towards the BRB */
9359 		elink_set_rx_filter(&sc->link_params, 0);
9360 
9361 		/*
9362 		 * Check if the UNDI driver was previously loaded.
9363 		 * UNDI driver initializes CID offset for normal bell to 0x7
9364 		 */
9365 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9366 			tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9367 			if (tmp_reg == 0x7) {
9368 				PMD_DRV_LOG(DEBUG, sc, "UNDI previously loaded");
9369 				prev_undi = TRUE;
9370 				/* clear the UNDI indication */
9371 				REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9372 				/* clear possible idle check errors */
9373 				REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9374 			}
9375 		}
9376 
9377 		/* wait until BRB is empty */
9378 		tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9379 		while (timer_count) {
9380 			prev_brb = tmp_reg;
9381 
9382 			tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9383 			if (!tmp_reg) {
9384 				break;
9385 			}
9386 
9387 			PMD_DRV_LOG(DEBUG, sc, "BRB still has 0x%08x", tmp_reg);
9388 
9389 			/* reset timer as long as BRB actually gets emptied */
9390 			if (prev_brb > tmp_reg) {
9391 				timer_count = 1000;
9392 			} else {
9393 				timer_count--;
9394 			}
9395 
9396 			/* If UNDI resides in memory, manually increment it */
9397 			if (prev_undi) {
9398 				bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9399 			}
9400 
9401 			DELAY(10);
9402 		}
9403 
9404 		if (!timer_count) {
9405 			PMD_DRV_LOG(NOTICE, sc, "Failed to empty BRB");
9406 		}
9407 	}
9408 
9409 	/* No packets are in the pipeline, path is ready for reset */
9410 	bnx2x_reset_common(sc);
9411 
9412 	if (mac_vals.xmac_addr) {
9413 		REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9414 	}
9415 	if (mac_vals.umac_addr) {
9416 		REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9417 	}
9418 	if (mac_vals.emac_addr) {
9419 		REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9420 	}
9421 	if (mac_vals.bmac_addr) {
9422 		REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9423 		REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9424 	}
9425 
9426 	rc = bnx2x_prev_mark_path(sc, prev_undi);
9427 	if (rc) {
9428 		bnx2x_prev_mcp_done(sc);
9429 		return rc;
9430 	}
9431 
9432 	return bnx2x_prev_mcp_done(sc);
9433 }
9434 
bnx2x_prev_unload_uncommon(struct bnx2x_softc * sc)9435 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9436 {
9437 	int rc;
9438 
9439 	/* Test if previous unload process was already finished for this path */
9440 	if (bnx2x_prev_is_path_marked(sc)) {
9441 		return bnx2x_prev_mcp_done(sc);
9442 	}
9443 
9444 	/*
9445 	 * If function has FLR capabilities, and existing FW version matches
9446 	 * the one required, then FLR will be sufficient to clean any residue
9447 	 * left by previous driver
9448 	 */
9449 	rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9450 	if (!rc) {
9451 		/* fw version is good */
9452 		rc = bnx2x_do_flr(sc);
9453 	}
9454 
9455 	if (!rc) {
9456 		/* FLR was performed */
9457 		return 0;
9458 	}
9459 
9460 	PMD_DRV_LOG(INFO, sc, "Could not FLR");
9461 
9462 	/* Close the MCP request, return failure */
9463 	rc = bnx2x_prev_mcp_done(sc);
9464 	if (!rc) {
9465 		rc = BNX2X_PREV_WAIT_NEEDED;
9466 	}
9467 
9468 	return rc;
9469 }
9470 
bnx2x_prev_unload(struct bnx2x_softc * sc)9471 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9472 {
9473 	int time_counter = 10;
9474 	uint32_t fw, hw_lock_reg, hw_lock_val;
9475 	uint32_t rc = 0;
9476 
9477 	PMD_INIT_FUNC_TRACE(sc);
9478 
9479 	/*
9480 	 * Clear HW from errors which may have resulted from an interrupted
9481 	 * DMAE transaction.
9482 	 */
9483 	bnx2x_prev_interrupted_dmae(sc);
9484 
9485 	/* Release previously held locks */
9486 	hw_lock_reg = (SC_FUNC(sc) <= 5) ?
9487 			(MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
9488 			(MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9489 
9490 	hw_lock_val = (REG_RD(sc, hw_lock_reg));
9491 	if (hw_lock_val) {
9492 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9493 			PMD_DRV_LOG(DEBUG, sc, "Releasing previously held NVRAM lock\n");
9494 			REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9495 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9496 		}
9497 		PMD_DRV_LOG(DEBUG, sc, "Releasing previously held HW lock\n");
9498 		REG_WR(sc, hw_lock_reg, 0xffffffff);
9499 	}
9500 
9501 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9502 		PMD_DRV_LOG(DEBUG, sc, "Releasing previously held ALR\n");
9503 		REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9504 	}
9505 
9506 	do {
9507 		/* Lock MCP using an unload request */
9508 		fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9509 		if (!fw) {
9510 			PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9511 			rc = -1;
9512 			break;
9513 		}
9514 
9515 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9516 			rc = bnx2x_prev_unload_common(sc);
9517 			break;
9518 		}
9519 
9520 		/* non-common reply from MCP might require looping */
9521 		rc = bnx2x_prev_unload_uncommon(sc);
9522 		if (rc != BNX2X_PREV_WAIT_NEEDED) {
9523 			break;
9524 		}
9525 
9526 		DELAY(20000);
9527 	} while (--time_counter);
9528 
9529 	if (!time_counter || rc) {
9530 		PMD_DRV_LOG(NOTICE, sc, "Failed to unload previous driver!");
9531 		rc = -1;
9532 	}
9533 
9534 	return rc;
9535 }
9536 
9537 static void
bnx2x_dcbx_set_state(struct bnx2x_softc * sc,uint8_t dcb_on,uint32_t dcbx_enabled)9538 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9539 {
9540 	if (!CHIP_IS_E1x(sc)) {
9541 		sc->dcb_state = dcb_on;
9542 		sc->dcbx_enabled = dcbx_enabled;
9543 	} else {
9544 		sc->dcb_state = FALSE;
9545 		sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9546 	}
9547 	PMD_DRV_LOG(DEBUG, sc,
9548 		    "DCB state [%s:%s]",
9549 		    dcb_on ? "ON" : "OFF",
9550 		    (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9551 		    (dcbx_enabled ==
9552 		     BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9553 		    : (dcbx_enabled ==
9554 		       BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9555 		    "on-chip with negotiation" : "invalid");
9556 }
9557 
bnx2x_set_qm_cid_count(struct bnx2x_softc * sc)9558 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9559 {
9560 	int cid_count = BNX2X_L2_MAX_CID(sc);
9561 
9562 	if (CNIC_SUPPORT(sc)) {
9563 		cid_count += CNIC_CID_MAX;
9564 	}
9565 
9566 	return roundup(cid_count, QM_CID_ROUND);
9567 }
9568 
bnx2x_init_multi_cos(struct bnx2x_softc * sc)9569 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9570 {
9571 	int pri, cos;
9572 
9573 	uint32_t pri_map = 0;
9574 
9575 	for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9576 		cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9577 		if (cos < sc->max_cos) {
9578 			sc->prio_to_cos[pri] = cos;
9579 		} else {
9580 			PMD_DRV_LOG(WARNING, sc,
9581 				    "Invalid COS %d for priority %d "
9582 				    "(max COS is %d), setting to 0", cos, pri,
9583 				    (sc->max_cos - 1));
9584 			sc->prio_to_cos[pri] = 0;
9585 		}
9586 	}
9587 }
9588 
bnx2x_pci_get_caps(struct bnx2x_softc * sc)9589 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9590 {
9591 	struct {
9592 		uint8_t id;
9593 		uint8_t next;
9594 	} pci_cap;
9595 	uint16_t status;
9596 	struct bnx2x_pci_cap *cap;
9597 
9598 	cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9599 					 RTE_CACHE_LINE_SIZE);
9600 	if (!cap) {
9601 		PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9602 		return -ENOMEM;
9603 	}
9604 
9605 #ifndef RTE_EXEC_ENV_FREEBSD
9606 	pci_read(sc, PCI_STATUS, &status, 2);
9607 	if (!(status & PCI_STATUS_CAP_LIST)) {
9608 #else
9609 	pci_read(sc, PCIR_STATUS, &status, 2);
9610 	if (!(status & PCIM_STATUS_CAPPRESENT)) {
9611 #endif
9612 		PMD_DRV_LOG(NOTICE, sc, "PCIe capability reading failed");
9613 		return -1;
9614 	}
9615 
9616 #ifndef RTE_EXEC_ENV_FREEBSD
9617 	pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9618 #else
9619 	pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9620 #endif
9621 	while (pci_cap.next) {
9622 		cap->addr = pci_cap.next & ~3;
9623 		pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9624 		if (pci_cap.id == 0xff)
9625 			break;
9626 		cap->id = pci_cap.id;
9627 		cap->type = BNX2X_PCI_CAP;
9628 		cap->next = rte_zmalloc("pci_cap",
9629 					sizeof(struct bnx2x_pci_cap),
9630 					RTE_CACHE_LINE_SIZE);
9631 		if (!cap->next) {
9632 			PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9633 			return -ENOMEM;
9634 		}
9635 		cap = cap->next;
9636 	}
9637 
9638 	return 0;
9639 }
9640 
9641 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9642 {
9643 	if (IS_VF(sc)) {
9644 		sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9645 					sc->igu_sb_cnt);
9646 		sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9647 					sc->igu_sb_cnt);
9648 	} else {
9649 		sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9650 		sc->max_tx_queues = sc->max_rx_queues;
9651 	}
9652 }
9653 
9654 #define FW_HEADER_LEN 104
9655 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.13.11.0.fw"
9656 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.13.11.0.fw"
9657 
9658 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9659 {
9660 	const char *fwname;
9661 	void *buf;
9662 	size_t bufsz;
9663 
9664 	fwname = sc->devinfo.device_id == CHIP_NUM_57711
9665 		? FW_NAME_57711 : FW_NAME_57810;
9666 	if (rte_firmware_read(fwname, &buf, &bufsz) != 0) {
9667 		PMD_DRV_LOG(NOTICE, sc, "Can't open firmware file");
9668 		return;
9669 	}
9670 
9671 	sc->firmware = rte_zmalloc("bnx2x_fw", bufsz, RTE_CACHE_LINE_SIZE);
9672 	if (!sc->firmware) {
9673 		PMD_DRV_LOG(NOTICE, sc, "Can't allocate memory for firmware");
9674 		goto out;
9675 	}
9676 
9677 	sc->fw_len = bufsz;
9678 	if (sc->fw_len < FW_HEADER_LEN) {
9679 		PMD_DRV_LOG(NOTICE, sc,
9680 			    "Invalid fw size: %" PRIu64, sc->fw_len);
9681 		goto out;
9682 	}
9683 
9684 	memcpy(sc->firmware, buf, sc->fw_len);
9685 	PMD_DRV_LOG(DEBUG, sc, "fw_len = %" PRIu64, sc->fw_len);
9686 out:
9687 	free(buf);
9688 }
9689 
9690 static void
9691 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9692 {
9693 	uint32_t *src = (uint32_t *) data;
9694 	uint32_t i, j, tmp;
9695 
9696 	for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9697 		tmp = rte_be_to_cpu_32(src[j]);
9698 		dst[i].op = (tmp >> 24) & 0xFF;
9699 		dst[i].offset = tmp & 0xFFFFFF;
9700 		dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9701 	}
9702 }
9703 
9704 static void
9705 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9706 {
9707 	uint16_t *src = (uint16_t *) data;
9708 	uint32_t i;
9709 
9710 	for (i = 0; i < len / 2; ++i)
9711 		dst[i] = rte_be_to_cpu_16(src[i]);
9712 }
9713 
9714 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9715 {
9716 	uint32_t *src = (uint32_t *) data;
9717 	uint32_t i;
9718 
9719 	for (i = 0; i < len / 4; ++i)
9720 		dst[i] = rte_be_to_cpu_32(src[i]);
9721 }
9722 
9723 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9724 {
9725 	uint32_t *src = (uint32_t *) data;
9726 	uint32_t i, j, tmp;
9727 
9728 	for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9729 		dst[i].base = rte_be_to_cpu_32(src[j++]);
9730 		tmp = rte_be_to_cpu_32(src[j]);
9731 		dst[i].m1 = (tmp >> 16) & 0xFFFF;
9732 		dst[i].m2 = tmp & 0xFFFF;
9733 		++j;
9734 		tmp = rte_be_to_cpu_32(src[j]);
9735 		dst[i].m3 = (tmp >> 16) & 0xFFFF;
9736 		dst[i].size = tmp & 0xFFFF;
9737 	}
9738 }
9739 
9740 /*
9741 * Device attach function.
9742 *
9743 * Allocates device resources, performs secondary chip identification, and
9744 * initializes driver instance variables. This function is called from driver
9745 * load after a successful probe.
9746 *
9747 * Returns:
9748 *   0 = Success, >0 = Failure
9749 */
9750 int bnx2x_attach(struct bnx2x_softc *sc)
9751 {
9752 	int rc;
9753 
9754 	PMD_DRV_LOG(DEBUG, sc, "Starting attach...");
9755 
9756 	rc = bnx2x_pci_get_caps(sc);
9757 	if (rc) {
9758 		PMD_DRV_LOG(NOTICE, sc, "PCIe caps reading was failed");
9759 		return rc;
9760 	}
9761 
9762 	sc->state = BNX2X_STATE_CLOSED;
9763 
9764 	pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9765 
9766 	sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9767 
9768 	/* get PCI capabilities */
9769 	bnx2x_probe_pci_caps(sc);
9770 
9771 	if (sc->devinfo.pcie_msix_cap_reg != 0) {
9772 		uint32_t val;
9773 		pci_read(sc,
9774 			 (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9775 			 2);
9776 		sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9777 	} else {
9778 		sc->igu_sb_cnt = 1;
9779 	}
9780 
9781 	/* Init RTE stuff */
9782 	bnx2x_init_rte(sc);
9783 
9784 	if (IS_PF(sc)) {
9785 		/* Enable internal target-read (in case we are probed after PF
9786 		 * FLR). Must be done prior to any BAR read access. Only for
9787 		 * 57712 and up
9788 		 */
9789 		if (!CHIP_IS_E1x(sc)) {
9790 			REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9791 			       1);
9792 			DELAY(200000);
9793 		}
9794 
9795 		/* get device info and set params */
9796 		if (bnx2x_get_device_info(sc) != 0) {
9797 			PMD_DRV_LOG(NOTICE, sc, "getting device info");
9798 			return -ENXIO;
9799 		}
9800 
9801 /* get phy settings from shmem and 'and' against admin settings */
9802 		bnx2x_get_phy_info(sc);
9803 	} else {
9804 		/* Left mac of VF unfilled, PF should set it for VF */
9805 		memset(sc->link_params.mac_addr, 0, RTE_ETHER_ADDR_LEN);
9806 	}
9807 
9808 	sc->wol = 0;
9809 
9810 	/* set the default MTU (changed via ifconfig) */
9811 	sc->mtu = RTE_ETHER_MTU;
9812 
9813 	bnx2x_set_modes_bitmap(sc);
9814 
9815 	/* need to reset chip if UNDI was active */
9816 	if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9817 /* init fw_seq */
9818 		sc->fw_seq =
9819 		    (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9820 		     DRV_MSG_SEQ_NUMBER_MASK);
9821 		PMD_DRV_LOG(DEBUG, sc, "prev unload fw_seq 0x%04x",
9822 			    sc->fw_seq);
9823 		bnx2x_prev_unload(sc);
9824 	}
9825 
9826 	bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9827 
9828 	/* calculate qm_cid_count */
9829 	sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9830 
9831 	sc->max_cos = 1;
9832 	bnx2x_init_multi_cos(sc);
9833 
9834 	return 0;
9835 }
9836 
9837 static void
9838 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9839 	       uint16_t index, uint8_t op, uint8_t update)
9840 {
9841 	uint32_t igu_addr = sc->igu_base_addr;
9842 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9843 	bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9844 }
9845 
9846 static void
9847 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9848 	   uint16_t index, uint8_t op, uint8_t update)
9849 {
9850 	if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9851 		bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9852 	else {
9853 		uint8_t segment;
9854 		if (CHIP_INT_MODE_IS_BC(sc)) {
9855 			segment = storm;
9856 		} else if (igu_sb_id != sc->igu_dsb_id) {
9857 			segment = IGU_SEG_ACCESS_DEF;
9858 		} else if (storm == ATTENTION_ID) {
9859 			segment = IGU_SEG_ACCESS_ATTN;
9860 		} else {
9861 			segment = IGU_SEG_ACCESS_DEF;
9862 		}
9863 		bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9864 	}
9865 }
9866 
9867 static void
9868 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9869 		     uint8_t is_pf)
9870 {
9871 	uint32_t data, ctl, cnt = 100;
9872 	uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9873 	uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9874 	uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9875 	    (idu_sb_id / 32) * 4;
9876 	uint32_t sb_bit = 1 << (idu_sb_id % 32);
9877 	uint32_t func_encode = func |
9878 	    (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9879 	uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9880 
9881 	/* Not supported in BC mode */
9882 	if (CHIP_INT_MODE_IS_BC(sc)) {
9883 		return;
9884 	}
9885 
9886 	data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9887 		 IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9888 		IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9889 
9890 	ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9891 	       (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9892 	       (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9893 
9894 	REG_WR(sc, igu_addr_data, data);
9895 
9896 	mb();
9897 
9898 	PMD_DRV_LOG(DEBUG, sc, "write 0x%08x to IGU(via GRC) addr 0x%x",
9899 		    ctl, igu_addr_ctl);
9900 	REG_WR(sc, igu_addr_ctl, ctl);
9901 
9902 	mb();
9903 
9904 	/* wait for clean up to finish */
9905 	while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9906 		DELAY(20000);
9907 	}
9908 
9909 	if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9910 		PMD_DRV_LOG(DEBUG, sc,
9911 			    "Unable to finish IGU cleanup: "
9912 			    "idu_sb_id %d offset %d bit %d (cnt %d)",
9913 			    idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9914 	}
9915 }
9916 
9917 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9918 {
9919 	bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9920 }
9921 
9922 /*******************/
9923 /* ECORE CALLBACKS */
9924 /*******************/
9925 
9926 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9927 {
9928 	uint32_t val = 0x1400;
9929 
9930 	PMD_INIT_FUNC_TRACE(sc);
9931 
9932 	/* reset_common */
9933 	REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9934 	       0xd3ffff7f);
9935 
9936 	if (CHIP_IS_E3(sc)) {
9937 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9938 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9939 	}
9940 
9941 	REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9942 }
9943 
9944 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9945 {
9946 	uint32_t shmem_base[2];
9947 	uint32_t shmem2_base[2];
9948 
9949 	/* Avoid common init in case MFW supports LFA */
9950 	if (SHMEM2_RD(sc, size) >
9951 	    (uint32_t) offsetof(struct shmem2_region,
9952 				lfa_host_addr[SC_PORT(sc)])) {
9953 		return;
9954 	}
9955 
9956 	shmem_base[0] = sc->devinfo.shmem_base;
9957 	shmem2_base[0] = sc->devinfo.shmem2_base;
9958 
9959 	if (!CHIP_IS_E1x(sc)) {
9960 		shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9961 		shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9962 	}
9963 
9964 	bnx2x_acquire_phy_lock(sc);
9965 	elink_common_init_phy(sc, shmem_base, shmem2_base,
9966 			      sc->devinfo.chip_id, 0);
9967 	bnx2x_release_phy_lock(sc);
9968 }
9969 
9970 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9971 {
9972 	uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9973 
9974 	val &= ~IGU_PF_CONF_FUNC_EN;
9975 
9976 	REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9977 	REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9978 	REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9979 }
9980 
9981 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9982 {
9983 	uint16_t devctl;
9984 	int r_order, w_order;
9985 
9986 	devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9987 
9988 	w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9989 	r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9990 
9991 	ecore_init_pxp_arb(sc, r_order, w_order);
9992 }
9993 
9994 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9995 {
9996 	uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9997 	uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9998 	return base + (SC_ABS_FUNC(sc)) * stride;
9999 }
10000 
10001 /*
10002  * Called only on E1H or E2.
10003  * When pretending to be PF, the pretend value is the function number 0..7.
10004  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
10005  * combination.
10006  */
10007 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
10008 {
10009 	uint32_t pretend_reg;
10010 
10011 	if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
10012 		return -1;
10013 
10014 	/* get my own pretend register */
10015 	pretend_reg = bnx2x_get_pretend_reg(sc);
10016 	REG_WR(sc, pretend_reg, pretend_func_val);
10017 	REG_RD(sc, pretend_reg);
10018 	return 0;
10019 }
10020 
10021 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
10022 {
10023 	int is_required;
10024 	uint32_t val;
10025 	int port;
10026 
10027 	is_required = 0;
10028 	val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
10029 	       SHARED_HW_CFG_FAN_FAILURE_MASK);
10030 
10031 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
10032 		is_required = 1;
10033 	}
10034 	/*
10035 	 * The fan failure mechanism is usually related to the PHY type since
10036 	 * the power consumption of the board is affected by the PHY. Currently,
10037 	 * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
10038 	 */
10039 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
10040 		for (port = PORT_0; port < PORT_MAX; port++) {
10041 			is_required |= elink_fan_failure_det_req(sc,
10042 								 sc->
10043 								 devinfo.shmem_base,
10044 								 sc->
10045 								 devinfo.shmem2_base,
10046 								 port);
10047 		}
10048 	}
10049 
10050 	if (is_required == 0) {
10051 		return;
10052 	}
10053 
10054 	/* Fan failure is indicated by SPIO 5 */
10055 	bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
10056 
10057 	/* set to active low mode */
10058 	val = REG_RD(sc, MISC_REG_SPIO_INT);
10059 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
10060 	REG_WR(sc, MISC_REG_SPIO_INT, val);
10061 
10062 	/* enable interrupt to signal the IGU */
10063 	val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10064 	val |= MISC_SPIO_SPIO5;
10065 	REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
10066 }
10067 
10068 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
10069 {
10070 	uint32_t val;
10071 
10072 	REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
10073 	if (!CHIP_IS_E1x(sc)) {
10074 		REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
10075 	} else {
10076 		REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
10077 	}
10078 	REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10079 	REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10080 	/*
10081 	 * mask read length error interrupts in brb for parser
10082 	 * (parsing unit and 'checksum and crc' unit)
10083 	 * these errors are legal (PU reads fixed length and CAC can cause
10084 	 * read length error on truncated packets)
10085 	 */
10086 	REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
10087 	REG_WR(sc, QM_REG_QM_INT_MASK, 0);
10088 	REG_WR(sc, TM_REG_TM_INT_MASK, 0);
10089 	REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
10090 	REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
10091 	REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
10092 	/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
10093 	/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10094 	REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10095 	REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10096 	REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10097 	/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10098 	/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10099 	REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10100 	REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10101 	REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10102 	REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10103 	/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10104 	/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10105 
10106 	val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10107 	       PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10108 	       PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10109 	if (!CHIP_IS_E1x(sc)) {
10110 		val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10111 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10112 	}
10113 	REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10114 
10115 	REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10116 	REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10117 	REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10118 	/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10119 
10120 	if (!CHIP_IS_E1x(sc)) {
10121 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10122 		REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10123 	}
10124 
10125 	REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10126 	REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10127 	/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10128 	REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);	/* bit 3,4 masked */
10129 }
10130 
10131 /**
10132  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10133  *
10134  * @sc:     driver handle
10135  */
10136 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10137 {
10138 	uint8_t abs_func_id;
10139 	uint32_t val;
10140 
10141 	PMD_DRV_LOG(DEBUG, sc,
10142 		    "starting common init for func %d", SC_ABS_FUNC(sc));
10143 
10144 	/*
10145 	 * take the RESET lock to protect undi_unload flow from accessing
10146 	 * registers while we are resetting the chip
10147 	 */
10148 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10149 
10150 	bnx2x_reset_common(sc);
10151 
10152 	REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10153 
10154 	val = 0xfffc;
10155 	if (CHIP_IS_E3(sc)) {
10156 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10157 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10158 	}
10159 
10160 	REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10161 
10162 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10163 
10164 	ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10165 
10166 	if (!CHIP_IS_E1x(sc)) {
10167 /*
10168  * 4-port mode or 2-port mode we need to turn off master-enable for
10169  * everyone. After that we turn it back on for self. So, we disregard
10170  * multi-function, and always disable all functions on the given path,
10171  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10172  */
10173 		for (abs_func_id = SC_PATH(sc);
10174 		     abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10175 			if (abs_func_id == SC_ABS_FUNC(sc)) {
10176 				REG_WR(sc,
10177 				       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10178 				       1);
10179 				continue;
10180 			}
10181 
10182 			bnx2x_pretend_func(sc, abs_func_id);
10183 
10184 			/* clear pf enable */
10185 			bnx2x_pf_disable(sc);
10186 
10187 			bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10188 		}
10189 	}
10190 
10191 	ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10192 
10193 	ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10194 	bnx2x_init_pxp(sc);
10195 
10196 #ifdef __BIG_ENDIAN
10197 	REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10198 	REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10199 	REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10200 	REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10201 	REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10202 	/* make sure this value is 0 */
10203 	REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10204 
10205 	//REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10206 	REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10207 	REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10208 	REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10209 	REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10210 #endif
10211 
10212 	ecore_ilt_init_page_size(sc, INITOP_SET);
10213 
10214 	if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10215 		REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10216 	}
10217 
10218 	/* let the HW do it's magic... */
10219 	DELAY(100000);
10220 
10221 	/* finish PXP init */
10222 
10223 	val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10224 	if (val != 1) {
10225 		PMD_DRV_LOG(NOTICE, sc, "PXP2 CFG failed");
10226 		return -1;
10227 	}
10228 	val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10229 	if (val != 1) {
10230 		PMD_DRV_LOG(NOTICE, sc, "PXP2 RD_INIT failed");
10231 		return -1;
10232 	}
10233 
10234 	/*
10235 	 * Timer bug workaround for E2 only. We need to set the entire ILT to have
10236 	 * entries with value "0" and valid bit on. This needs to be done by the
10237 	 * first PF that is loaded in a path (i.e. common phase)
10238 	 */
10239 	if (!CHIP_IS_E1x(sc)) {
10240 /*
10241  * In E2 there is a bug in the timers block that can cause function 6 / 7
10242  * (i.e. vnic3) to start even if it is marked as "scan-off".
10243  * This occurs when a different function (func2,3) is being marked
10244  * as "scan-off". Real-life scenario for example: if a driver is being
10245  * load-unloaded while func6,7 are down. This will cause the timer to access
10246  * the ilt, translate to a logical address and send a request to read/write.
10247  * Since the ilt for the function that is down is not valid, this will cause
10248  * a translation error which is unrecoverable.
10249  * The Workaround is intended to make sure that when this happens nothing
10250  * fatal will occur. The workaround:
10251  *  1.  First PF driver which loads on a path will:
10252  *      a.  After taking the chip out of reset, by using pretend,
10253  *          it will write "0" to the following registers of
10254  *          the other vnics.
10255  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10256  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10257  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10258  *          And for itself it will write '1' to
10259  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10260  *          dmae-operations (writing to pram for example.)
10261  *          note: can be done for only function 6,7 but cleaner this
10262  *            way.
10263  *      b.  Write zero+valid to the entire ILT.
10264  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10265  *          VNIC3 (of that port). The range allocated will be the
10266  *          entire ILT. This is needed to prevent  ILT range error.
10267  *  2.  Any PF driver load flow:
10268  *      a.  ILT update with the physical addresses of the allocated
10269  *          logical pages.
10270  *      b.  Wait 20msec. - note that this timeout is needed to make
10271  *          sure there are no requests in one of the PXP internal
10272  *          queues with "old" ILT addresses.
10273  *      c.  PF enable in the PGLC.
10274  *      d.  Clear the was_error of the PF in the PGLC. (could have
10275  *          occurred while driver was down)
10276  *      e.  PF enable in the CFC (WEAK + STRONG)
10277  *      f.  Timers scan enable
10278  *  3.  PF driver unload flow:
10279  *      a.  Clear the Timers scan_en.
10280  *      b.  Polling for scan_on=0 for that PF.
10281  *      c.  Clear the PF enable bit in the PXP.
10282  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10283  *      e.  Write zero+valid to all ILT entries (The valid bit must
10284  *          stay set)
10285  *      f.  If this is VNIC 3 of a port then also init
10286  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10287  *          to the last entry in the ILT.
10288  *
10289  *      Notes:
10290  *      Currently the PF error in the PGLC is non recoverable.
10291  *      In the future the there will be a recovery routine for this error.
10292  *      Currently attention is masked.
10293  *      Having an MCP lock on the load/unload process does not guarantee that
10294  *      there is no Timer disable during Func6/7 enable. This is because the
10295  *      Timers scan is currently being cleared by the MCP on FLR.
10296  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10297  *      there is error before clearing it. But the flow above is simpler and
10298  *      more general.
10299  *      All ILT entries are written by zero+valid and not just PF6/7
10300  *      ILT entries since in the future the ILT entries allocation for
10301  *      PF-s might be dynamic.
10302  */
10303 		struct ilt_client_info ilt_cli;
10304 		struct ecore_ilt ilt;
10305 
10306 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10307 		memset(&ilt, 0, sizeof(struct ecore_ilt));
10308 
10309 /* initialize dummy TM client */
10310 		ilt_cli.start = 0;
10311 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10312 		ilt_cli.client_num = ILT_CLIENT_TM;
10313 
10314 /*
10315  * Step 1: set zeroes to all ilt page entries with valid bit on
10316  * Step 2: set the timers first/last ilt entry to point
10317  * to the entire range to prevent ILT range error for 3rd/4th
10318  * vnic (this code assumes existence of the vnic)
10319  *
10320  * both steps performed by call to ecore_ilt_client_init_op()
10321  * with dummy TM client
10322  *
10323  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10324  * and his brother are split registers
10325  */
10326 
10327 		bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10328 		ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10329 		bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10330 
10331 		REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10332 		REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10333 		REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10334 	}
10335 
10336 	REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10337 	REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10338 
10339 	if (!CHIP_IS_E1x(sc)) {
10340 		int factor = 0;
10341 
10342 		ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10343 		ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10344 
10345 /* let the HW do it's magic... */
10346 		do {
10347 			DELAY(200000);
10348 			val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10349 		} while (factor-- && (val != 1));
10350 
10351 		if (val != 1) {
10352 			PMD_DRV_LOG(NOTICE, sc, "ATC_INIT failed");
10353 			return -1;
10354 		}
10355 	}
10356 
10357 	ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10358 
10359 	/* clean the DMAE memory */
10360 	sc->dmae_ready = 1;
10361 	ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
10362 
10363 	ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10364 
10365 	ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10366 
10367 	ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10368 
10369 	ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10370 
10371 	bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10372 	bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10373 	bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10374 	bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10375 
10376 	ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10377 
10378 	/* QM queues pointers table */
10379 	ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10380 
10381 	/* soft reset pulse */
10382 	REG_WR(sc, QM_REG_SOFT_RESET, 1);
10383 	REG_WR(sc, QM_REG_SOFT_RESET, 0);
10384 
10385 	if (CNIC_SUPPORT(sc))
10386 		ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10387 
10388 	ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10389 
10390 	if (!CHIP_REV_IS_SLOW(sc)) {
10391 /* enable hw interrupt from doorbell Q */
10392 		REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10393 	}
10394 
10395 	ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10396 
10397 	ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10398 	REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10399 	REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10400 
10401 	if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10402 		if (IS_MF_AFEX(sc)) {
10403 			/*
10404 			 * configure that AFEX and VLAN headers must be
10405 			 * received in AFEX mode
10406 			 */
10407 			REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10408 			REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10409 			REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10410 			REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10411 			REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10412 		} else {
10413 			/*
10414 			 * Bit-map indicating which L2 hdrs may appear
10415 			 * after the basic Ethernet header
10416 			 */
10417 			REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10418 			       sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10419 		}
10420 	}
10421 
10422 	ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10423 	ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10424 	ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10425 	ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10426 
10427 	if (!CHIP_IS_E1x(sc)) {
10428 /* reset VFC memories */
10429 		REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10430 		       VFC_MEMORIES_RST_REG_CAM_RST |
10431 		       VFC_MEMORIES_RST_REG_RAM_RST);
10432 		REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10433 		       VFC_MEMORIES_RST_REG_CAM_RST |
10434 		       VFC_MEMORIES_RST_REG_RAM_RST);
10435 
10436 		DELAY(20000);
10437 	}
10438 
10439 	ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10440 	ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10441 	ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10442 	ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10443 
10444 	/* sync semi rtc */
10445 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10446 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10447 
10448 	ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10449 	ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10450 	ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10451 
10452 	if (!CHIP_IS_E1x(sc)) {
10453 		if (IS_MF_AFEX(sc)) {
10454 			/*
10455 			 * configure that AFEX and VLAN headers must be
10456 			 * sent in AFEX mode
10457 			 */
10458 			REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10459 			REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10460 			REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10461 			REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10462 			REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10463 		} else {
10464 			REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10465 			       sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10466 		}
10467 	}
10468 
10469 	REG_WR(sc, SRC_REG_SOFT_RST, 1);
10470 
10471 	ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10472 
10473 	if (CNIC_SUPPORT(sc)) {
10474 		REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10475 		REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10476 		REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10477 		REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10478 		REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10479 		REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10480 		REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10481 		REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10482 		REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10483 		REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10484 	}
10485 	REG_WR(sc, SRC_REG_SOFT_RST, 0);
10486 
10487 	if (sizeof(union cdu_context) != 1024) {
10488 /* we currently assume that a context is 1024 bytes */
10489 		PMD_DRV_LOG(NOTICE, sc,
10490 			    "please adjust the size of cdu_context(%ld)",
10491 			    (long)sizeof(union cdu_context));
10492 	}
10493 
10494 	ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10495 	val = (4 << 24) + (0 << 12) + 1024;
10496 	REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10497 
10498 	ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10499 
10500 	REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10501 	/* enable context validation interrupt from CFC */
10502 	REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10503 
10504 	/* set the thresholds to prevent CFC/CDU race */
10505 	REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10506 	ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10507 
10508 	if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10509 		REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10510 	}
10511 
10512 	ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10513 	ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10514 
10515 	/* Reset PCIE errors for debug */
10516 	REG_WR(sc, 0x2814, 0xffffffff);
10517 	REG_WR(sc, 0x3820, 0xffffffff);
10518 
10519 	if (!CHIP_IS_E1x(sc)) {
10520 		REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10521 		       (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10522 			PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10523 		REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10524 		       (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10525 			PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10526 			PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10527 		REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10528 		       (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10529 			PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10530 			PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10531 	}
10532 
10533 	ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10534 
10535 	/* in E3 this done in per-port section */
10536 	if (!CHIP_IS_E3(sc))
10537 		REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10538 
10539 	if (CHIP_IS_E1H(sc)) {
10540 /* not applicable for E2 (and above ...) */
10541 		REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10542 	}
10543 
10544 	if (CHIP_REV_IS_SLOW(sc)) {
10545 		DELAY(200000);
10546 	}
10547 
10548 	/* finish CFC init */
10549 	val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10550 	if (val != 1) {
10551 		PMD_DRV_LOG(NOTICE, sc, "CFC LL_INIT failed");
10552 		return -1;
10553 	}
10554 	val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10555 	if (val != 1) {
10556 		PMD_DRV_LOG(NOTICE, sc, "CFC AC_INIT failed");
10557 		return -1;
10558 	}
10559 	val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10560 	if (val != 1) {
10561 		PMD_DRV_LOG(NOTICE, sc, "CFC CAM_INIT failed");
10562 		return -1;
10563 	}
10564 	REG_WR(sc, CFC_REG_DEBUG0, 0);
10565 
10566 	bnx2x_setup_fan_failure_detection(sc);
10567 
10568 	/* clear PXP2 attentions */
10569 	REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10570 
10571 	bnx2x_enable_blocks_attention(sc);
10572 
10573 	if (!CHIP_REV_IS_SLOW(sc)) {
10574 		ecore_enable_blocks_parity(sc);
10575 	}
10576 
10577 	if (!BNX2X_NOMCP(sc)) {
10578 		if (CHIP_IS_E1x(sc)) {
10579 			bnx2x_common_init_phy(sc);
10580 		}
10581 	}
10582 
10583 	return 0;
10584 }
10585 
10586 /**
10587  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10588  *
10589  * @sc:     driver handle
10590  */
10591 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10592 {
10593 	int rc = bnx2x_init_hw_common(sc);
10594 
10595 	if (rc) {
10596 		return rc;
10597 	}
10598 
10599 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
10600 	if (!BNX2X_NOMCP(sc)) {
10601 		bnx2x_common_init_phy(sc);
10602 	}
10603 
10604 	return 0;
10605 }
10606 
10607 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10608 {
10609 	int port = SC_PORT(sc);
10610 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10611 	uint32_t low, high;
10612 	uint32_t val;
10613 
10614 	PMD_DRV_LOG(DEBUG, sc, "starting port init for port %d", port);
10615 
10616 	REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10617 
10618 	ecore_init_block(sc, BLOCK_MISC, init_phase);
10619 	ecore_init_block(sc, BLOCK_PXP, init_phase);
10620 	ecore_init_block(sc, BLOCK_PXP2, init_phase);
10621 
10622 	/*
10623 	 * Timers bug workaround: disables the pf_master bit in pglue at
10624 	 * common phase, we need to enable it here before any dmae access are
10625 	 * attempted. Therefore we manually added the enable-master to the
10626 	 * port phase (it also happens in the function phase)
10627 	 */
10628 	if (!CHIP_IS_E1x(sc)) {
10629 		REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10630 	}
10631 
10632 	ecore_init_block(sc, BLOCK_ATC, init_phase);
10633 	ecore_init_block(sc, BLOCK_DMAE, init_phase);
10634 	ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10635 	ecore_init_block(sc, BLOCK_QM, init_phase);
10636 
10637 	ecore_init_block(sc, BLOCK_TCM, init_phase);
10638 	ecore_init_block(sc, BLOCK_UCM, init_phase);
10639 	ecore_init_block(sc, BLOCK_CCM, init_phase);
10640 	ecore_init_block(sc, BLOCK_XCM, init_phase);
10641 
10642 	/* QM cid (connection) count */
10643 	ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10644 
10645 	if (CNIC_SUPPORT(sc)) {
10646 		ecore_init_block(sc, BLOCK_TM, init_phase);
10647 		REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10648 		REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10649 	}
10650 
10651 	ecore_init_block(sc, BLOCK_DORQ, init_phase);
10652 
10653 	ecore_init_block(sc, BLOCK_BRB1, init_phase);
10654 
10655 	if (CHIP_IS_E1H(sc)) {
10656 		if (IS_MF(sc)) {
10657 			low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10658 		} else if (sc->mtu > 4096) {
10659 			if (BNX2X_ONE_PORT(sc)) {
10660 				low = 160;
10661 			} else {
10662 				val = sc->mtu;
10663 				/* (24*1024 + val*4)/256 */
10664 				low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10665 			}
10666 		} else {
10667 			low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10668 		}
10669 		high = (low + 56);	/* 14*1024/256 */
10670 		REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10671 		REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10672 	}
10673 
10674 	if (CHIP_IS_MODE_4_PORT(sc)) {
10675 		REG_WR(sc, SC_PORT(sc) ?
10676 		       BRB1_REG_MAC_GUARANTIED_1 :
10677 		       BRB1_REG_MAC_GUARANTIED_0, 40);
10678 	}
10679 
10680 	ecore_init_block(sc, BLOCK_PRS, init_phase);
10681 	if (CHIP_IS_E3B0(sc)) {
10682 		if (IS_MF_AFEX(sc)) {
10683 			/* configure headers for AFEX mode */
10684 			if (SC_PORT(sc)) {
10685 				REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10686 				       0xE);
10687 				REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10688 				       0x6);
10689 				REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10690 			} else {
10691 				REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10692 				       0xE);
10693 				REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10694 				       0x6);
10695 				REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10696 			}
10697 		} else {
10698 			/* Ovlan exists only if we are in multi-function +
10699 			 * switch-dependent mode, in switch-independent there
10700 			 * is no ovlan headers
10701 			 */
10702 			REG_WR(sc, SC_PORT(sc) ?
10703 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10704 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10705 			       (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10706 		}
10707 	}
10708 
10709 	ecore_init_block(sc, BLOCK_TSDM, init_phase);
10710 	ecore_init_block(sc, BLOCK_CSDM, init_phase);
10711 	ecore_init_block(sc, BLOCK_USDM, init_phase);
10712 	ecore_init_block(sc, BLOCK_XSDM, init_phase);
10713 
10714 	ecore_init_block(sc, BLOCK_TSEM, init_phase);
10715 	ecore_init_block(sc, BLOCK_USEM, init_phase);
10716 	ecore_init_block(sc, BLOCK_CSEM, init_phase);
10717 	ecore_init_block(sc, BLOCK_XSEM, init_phase);
10718 
10719 	ecore_init_block(sc, BLOCK_UPB, init_phase);
10720 	ecore_init_block(sc, BLOCK_XPB, init_phase);
10721 
10722 	ecore_init_block(sc, BLOCK_PBF, init_phase);
10723 
10724 	if (CHIP_IS_E1x(sc)) {
10725 /* configure PBF to work without PAUSE mtu 9000 */
10726 		REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10727 
10728 /* update threshold */
10729 		REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10730 /* update init credit */
10731 		REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10732 		       (9040 / 16) + 553 - 22);
10733 
10734 /* probe changes */
10735 		REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10736 		DELAY(50);
10737 		REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10738 	}
10739 
10740 	if (CNIC_SUPPORT(sc)) {
10741 		ecore_init_block(sc, BLOCK_SRC, init_phase);
10742 	}
10743 
10744 	ecore_init_block(sc, BLOCK_CDU, init_phase);
10745 	ecore_init_block(sc, BLOCK_CFC, init_phase);
10746 	ecore_init_block(sc, BLOCK_HC, init_phase);
10747 	ecore_init_block(sc, BLOCK_IGU, init_phase);
10748 	ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10749 	/* init aeu_mask_attn_func_0/1:
10750 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10751 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10752 	 *             bits 4-7 are used for "per vn group attention" */
10753 	val = IS_MF(sc) ? 0xF7 : 0x7;
10754 	val |= 0x10;
10755 	REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10756 
10757 	ecore_init_block(sc, BLOCK_NIG, init_phase);
10758 
10759 	if (!CHIP_IS_E1x(sc)) {
10760 /* Bit-map indicating which L2 hdrs may appear after the
10761  * basic Ethernet header
10762  */
10763 		if (IS_MF_AFEX(sc)) {
10764 			REG_WR(sc, SC_PORT(sc) ?
10765 			       NIG_REG_P1_HDRS_AFTER_BASIC :
10766 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10767 		} else {
10768 			REG_WR(sc, SC_PORT(sc) ?
10769 			       NIG_REG_P1_HDRS_AFTER_BASIC :
10770 			       NIG_REG_P0_HDRS_AFTER_BASIC,
10771 			       IS_MF_SD(sc) ? 7 : 6);
10772 		}
10773 
10774 		if (CHIP_IS_E3(sc)) {
10775 			REG_WR(sc, SC_PORT(sc) ?
10776 			       NIG_REG_LLH1_MF_MODE :
10777 			       NIG_REG_LLH_MF_MODE, IS_MF(sc));
10778 		}
10779 	}
10780 	if (!CHIP_IS_E3(sc)) {
10781 		REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10782 	}
10783 
10784 	/* 0x2 disable mf_ov, 0x1 enable */
10785 	REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10786 	       (IS_MF_SD(sc) ? 0x1 : 0x2));
10787 
10788 	if (!CHIP_IS_E1x(sc)) {
10789 		val = 0;
10790 		switch (sc->devinfo.mf_info.mf_mode) {
10791 		case MULTI_FUNCTION_SD:
10792 			val = 1;
10793 			break;
10794 		case MULTI_FUNCTION_SI:
10795 		case MULTI_FUNCTION_AFEX:
10796 			val = 2;
10797 			break;
10798 		}
10799 
10800 		REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10801 			    NIG_REG_LLH0_CLS_TYPE), val);
10802 	}
10803 	REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10804 	REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10805 	REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10806 
10807 	/* If SPIO5 is set to generate interrupts, enable it for this port */
10808 	val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10809 	if (val & MISC_SPIO_SPIO5) {
10810 		uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10811 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10812 		val = REG_RD(sc, reg_addr);
10813 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10814 		REG_WR(sc, reg_addr, val);
10815 	}
10816 
10817 	return 0;
10818 }
10819 
10820 static uint32_t
10821 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10822 		       uint32_t expected, uint32_t poll_count)
10823 {
10824 	uint32_t cur_cnt = poll_count;
10825 	uint32_t val;
10826 
10827 	while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10828 		DELAY(FLR_WAIT_INTERVAL);
10829 	}
10830 
10831 	return val;
10832 }
10833 
10834 static int
10835 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10836 			      __rte_unused const char *msg, uint32_t poll_cnt)
10837 {
10838 	uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10839 
10840 	if (val != 0) {
10841 		PMD_DRV_LOG(NOTICE, sc, "%s usage count=%d", msg, val);
10842 		return -1;
10843 	}
10844 
10845 	return 0;
10846 }
10847 
10848 /* Common routines with VF FLR cleanup */
10849 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10850 {
10851 	/* adjust polling timeout */
10852 	if (CHIP_REV_IS_EMUL(sc)) {
10853 		return FLR_POLL_CNT * 2000;
10854 	}
10855 
10856 	if (CHIP_REV_IS_FPGA(sc)) {
10857 		return FLR_POLL_CNT * 120;
10858 	}
10859 
10860 	return FLR_POLL_CNT;
10861 }
10862 
10863 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10864 {
10865 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
10866 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10867 					  CFC_REG_NUM_LCIDS_INSIDE_PF,
10868 					  "CFC PF usage counter timed out",
10869 					  poll_cnt)) {
10870 		return -1;
10871 	}
10872 
10873 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10874 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10875 					  DORQ_REG_PF_USAGE_CNT,
10876 					  "DQ PF usage counter timed out",
10877 					  poll_cnt)) {
10878 		return -1;
10879 	}
10880 
10881 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10882 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10883 					  QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10884 					  "QM PF usage counter timed out",
10885 					  poll_cnt)) {
10886 		return -1;
10887 	}
10888 
10889 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10890 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10891 					  TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10892 					  "Timers VNIC usage counter timed out",
10893 					  poll_cnt)) {
10894 		return -1;
10895 	}
10896 
10897 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10898 					  TM_REG_LIN0_NUM_SCANS +
10899 					  4 * SC_PORT(sc),
10900 					  "Timers NUM_SCANS usage counter timed out",
10901 					  poll_cnt)) {
10902 		return -1;
10903 	}
10904 
10905 	/* Wait DMAE PF usage counter to zero */
10906 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10907 					  dmae_reg_go_c[INIT_DMAE_C(sc)],
10908 					  "DMAE dommand register timed out",
10909 					  poll_cnt)) {
10910 		return -1;
10911 	}
10912 
10913 	return 0;
10914 }
10915 
10916 #define OP_GEN_PARAM(param)                                            \
10917 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10918 #define OP_GEN_TYPE(type)                                           \
10919 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10920 #define OP_GEN_AGG_VECT(index)                                             \
10921 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10922 
10923 static int
10924 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10925 		     uint32_t poll_cnt)
10926 {
10927 	uint32_t op_gen_command = 0;
10928 	uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10929 			      CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10930 	int ret = 0;
10931 
10932 	if (REG_RD(sc, comp_addr)) {
10933 		PMD_DRV_LOG(NOTICE, sc,
10934 			    "Cleanup complete was not 0 before sending");
10935 		return -1;
10936 	}
10937 
10938 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10939 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10940 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10941 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10942 
10943 	REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10944 
10945 	if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10946 		PMD_DRV_LOG(NOTICE, sc, "FW final cleanup did not succeed");
10947 		PMD_DRV_LOG(DEBUG, sc, "At timeout completion address contained %x",
10948 			    (REG_RD(sc, comp_addr)));
10949 		rte_panic("FLR cleanup failed");
10950 		return -1;
10951 	}
10952 
10953 	/* Zero completion for nxt FLR */
10954 	REG_WR(sc, comp_addr, 0);
10955 
10956 	return ret;
10957 }
10958 
10959 static void
10960 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10961 		       uint32_t poll_count)
10962 {
10963 	uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10964 	uint32_t cur_cnt = poll_count;
10965 
10966 	crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10967 	crd = crd_start = REG_RD(sc, regs->crd);
10968 	init_crd = REG_RD(sc, regs->init_crd);
10969 
10970 	while ((crd != init_crd) &&
10971 	       ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10972 		(init_crd - crd_start))) {
10973 		if (cur_cnt--) {
10974 			DELAY(FLR_WAIT_INTERVAL);
10975 			crd = REG_RD(sc, regs->crd);
10976 			crd_freed = REG_RD(sc, regs->crd_freed);
10977 		} else {
10978 			break;
10979 		}
10980 	}
10981 }
10982 
10983 static void
10984 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10985 		       uint32_t poll_count)
10986 {
10987 	uint32_t occup, to_free, freed, freed_start;
10988 	uint32_t cur_cnt = poll_count;
10989 
10990 	occup = to_free = REG_RD(sc, regs->lines_occup);
10991 	freed = freed_start = REG_RD(sc, regs->lines_freed);
10992 
10993 	while (occup &&
10994 	       ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10995 		to_free)) {
10996 		if (cur_cnt--) {
10997 			DELAY(FLR_WAIT_INTERVAL);
10998 			occup = REG_RD(sc, regs->lines_occup);
10999 			freed = REG_RD(sc, regs->lines_freed);
11000 		} else {
11001 			break;
11002 		}
11003 	}
11004 }
11005 
11006 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
11007 {
11008 	struct pbf_pN_cmd_regs cmd_regs[] = {
11009 		{0, (CHIP_IS_E3B0(sc)) ?
11010 		 PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
11011 		 (CHIP_IS_E3B0(sc)) ?
11012 		 PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
11013 		{1, (CHIP_IS_E3B0(sc)) ?
11014 		 PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
11015 		 (CHIP_IS_E3B0(sc)) ?
11016 		 PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
11017 		{4, (CHIP_IS_E3B0(sc)) ?
11018 		 PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
11019 		 (CHIP_IS_E3B0(sc)) ?
11020 		 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
11021 		 PBF_REG_P4_TQ_LINES_FREED_CNT}
11022 	};
11023 
11024 	struct pbf_pN_buf_regs buf_regs[] = {
11025 		{0, (CHIP_IS_E3B0(sc)) ?
11026 		 PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
11027 		 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
11028 		 (CHIP_IS_E3B0(sc)) ?
11029 		 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
11030 		 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
11031 		{1, (CHIP_IS_E3B0(sc)) ?
11032 		 PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
11033 		 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
11034 		 (CHIP_IS_E3B0(sc)) ?
11035 		 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
11036 		 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
11037 		{4, (CHIP_IS_E3B0(sc)) ?
11038 		 PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
11039 		 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
11040 		 (CHIP_IS_E3B0(sc)) ?
11041 		 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
11042 		 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
11043 	};
11044 
11045 	uint32_t i;
11046 
11047 	/* Verify the command queues are flushed P0, P1, P4 */
11048 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
11049 		bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
11050 	}
11051 
11052 	/* Verify the transmission buffers are flushed P0, P1, P4 */
11053 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
11054 		bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
11055 	}
11056 }
11057 
11058 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
11059 {
11060 	__rte_unused uint32_t val;
11061 
11062 	val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
11063 	PMD_DRV_LOG(DEBUG, sc, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
11064 
11065 	val = REG_RD(sc, PBF_REG_DISABLE_PF);
11066 	PMD_DRV_LOG(DEBUG, sc, "PBF_REG_DISABLE_PF is 0x%x", val);
11067 
11068 	val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
11069 	PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
11070 
11071 	val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
11072 	PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
11073 
11074 	val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
11075 	PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
11076 
11077 	val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
11078 	PMD_DRV_LOG(DEBUG, sc,
11079 		    "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
11080 
11081 	val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
11082 	PMD_DRV_LOG(DEBUG, sc,
11083 		    "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
11084 
11085 	val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
11086 	PMD_DRV_LOG(DEBUG, sc, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
11087 		    val);
11088 }
11089 
11090 /**
11091  *	bnx2x_pf_flr_clnup
11092  *	a. re-enable target read on the PF
11093  *	b. poll cfc per function usage counter
11094  *	c. poll the qm perfunction usage counter
11095  *	d. poll the tm per function usage counter
11096  *	e. poll the tm per function scan-done indication
11097  *	f. clear the dmae channel associated wit hthe PF
11098  *	g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11099  *	h. call the common flr cleanup code with -1 (pf indication)
11100  */
11101 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11102 {
11103 	uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11104 
11105 	/* Re-enable PF target read access */
11106 	REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11107 
11108 	/* Poll HW usage counters */
11109 	if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11110 		return -1;
11111 	}
11112 
11113 	/* Zero the igu 'trailing edge' and 'leading edge' */
11114 
11115 	/* Send the FW cleanup command */
11116 	if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11117 		return -1;
11118 	}
11119 
11120 	/* ATC cleanup */
11121 
11122 	/* Verify TX hw is flushed */
11123 	bnx2x_tx_hw_flushed(sc, poll_cnt);
11124 
11125 	/* Wait 100ms (not adjusted according to platform) */
11126 	DELAY(100000);
11127 
11128 	/* Verify no pending pci transactions */
11129 	if (bnx2x_is_pcie_pending(sc)) {
11130 		PMD_DRV_LOG(NOTICE, sc, "PCIE Transactions still pending");
11131 	}
11132 
11133 	/* Debug */
11134 	bnx2x_hw_enable_status(sc);
11135 
11136 	/*
11137 	 * Master enable - Due to WB DMAE writes performed before this
11138 	 * register is re-initialized as part of the regular function init
11139 	 */
11140 	REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11141 
11142 	return 0;
11143 }
11144 
11145 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11146 {
11147 	int port = SC_PORT(sc);
11148 	int func = SC_FUNC(sc);
11149 	int init_phase = PHASE_PF0 + func;
11150 	struct ecore_ilt *ilt = sc->ilt;
11151 	uint16_t cdu_ilt_start;
11152 	uint32_t addr, val;
11153 	uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11154 	int main_mem_width, rc;
11155 	uint32_t i;
11156 
11157 	PMD_DRV_LOG(DEBUG, sc, "starting func init for func %d", func);
11158 
11159 	/* FLR cleanup */
11160 	if (!CHIP_IS_E1x(sc)) {
11161 		rc = bnx2x_pf_flr_clnup(sc);
11162 		if (rc) {
11163 			PMD_DRV_LOG(NOTICE, sc, "FLR cleanup failed!");
11164 			return rc;
11165 		}
11166 	}
11167 
11168 	/* set MSI reconfigure capability */
11169 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
11170 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11171 		val = REG_RD(sc, addr);
11172 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11173 		REG_WR(sc, addr, val);
11174 	}
11175 
11176 	ecore_init_block(sc, BLOCK_PXP, init_phase);
11177 	ecore_init_block(sc, BLOCK_PXP2, init_phase);
11178 
11179 	ilt = sc->ilt;
11180 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11181 
11182 	for (i = 0; i < L2_ILT_LINES(sc); i++) {
11183 		ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11184 		ilt->lines[cdu_ilt_start + i].page_mapping =
11185 		    (rte_iova_t)sc->context[i].vcxt_dma.paddr;
11186 		ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11187 	}
11188 	ecore_ilt_init_op(sc, INITOP_SET);
11189 
11190 	REG_WR(sc, PRS_REG_NIC_MODE, 1);
11191 
11192 	if (!CHIP_IS_E1x(sc)) {
11193 		uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11194 
11195 /* Turn on a single ISR mode in IGU if driver is going to use
11196  * INT#x or MSI
11197  */
11198 		if ((sc->interrupt_mode != INTR_MODE_MSIX)
11199 		    || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11200 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11201 		}
11202 
11203 /*
11204  * Timers workaround bug: function init part.
11205  * Need to wait 20msec after initializing ILT,
11206  * needed to make sure there are no requests in
11207  * one of the PXP internal queues with "old" ILT addresses
11208  */
11209 		DELAY(20000);
11210 
11211 /*
11212  * Master enable - Due to WB DMAE writes performed before this
11213  * register is re-initialized as part of the regular function
11214  * init
11215  */
11216 		REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11217 /* Enable the function in IGU */
11218 		REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11219 	}
11220 
11221 	sc->dmae_ready = 1;
11222 
11223 	ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11224 
11225 	if (!CHIP_IS_E1x(sc))
11226 		REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11227 
11228 	ecore_init_block(sc, BLOCK_ATC, init_phase);
11229 	ecore_init_block(sc, BLOCK_DMAE, init_phase);
11230 	ecore_init_block(sc, BLOCK_NIG, init_phase);
11231 	ecore_init_block(sc, BLOCK_SRC, init_phase);
11232 	ecore_init_block(sc, BLOCK_MISC, init_phase);
11233 	ecore_init_block(sc, BLOCK_TCM, init_phase);
11234 	ecore_init_block(sc, BLOCK_UCM, init_phase);
11235 	ecore_init_block(sc, BLOCK_CCM, init_phase);
11236 	ecore_init_block(sc, BLOCK_XCM, init_phase);
11237 	ecore_init_block(sc, BLOCK_TSEM, init_phase);
11238 	ecore_init_block(sc, BLOCK_USEM, init_phase);
11239 	ecore_init_block(sc, BLOCK_CSEM, init_phase);
11240 	ecore_init_block(sc, BLOCK_XSEM, init_phase);
11241 
11242 	if (!CHIP_IS_E1x(sc))
11243 		REG_WR(sc, QM_REG_PF_EN, 1);
11244 
11245 	if (!CHIP_IS_E1x(sc)) {
11246 		REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11247 		REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11248 		REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11249 		REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11250 	}
11251 	ecore_init_block(sc, BLOCK_QM, init_phase);
11252 
11253 	ecore_init_block(sc, BLOCK_TM, init_phase);
11254 	ecore_init_block(sc, BLOCK_DORQ, init_phase);
11255 
11256 	ecore_init_block(sc, BLOCK_BRB1, init_phase);
11257 	ecore_init_block(sc, BLOCK_PRS, init_phase);
11258 	ecore_init_block(sc, BLOCK_TSDM, init_phase);
11259 	ecore_init_block(sc, BLOCK_CSDM, init_phase);
11260 	ecore_init_block(sc, BLOCK_USDM, init_phase);
11261 	ecore_init_block(sc, BLOCK_XSDM, init_phase);
11262 	ecore_init_block(sc, BLOCK_UPB, init_phase);
11263 	ecore_init_block(sc, BLOCK_XPB, init_phase);
11264 	ecore_init_block(sc, BLOCK_PBF, init_phase);
11265 	if (!CHIP_IS_E1x(sc))
11266 		REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11267 
11268 	ecore_init_block(sc, BLOCK_CDU, init_phase);
11269 
11270 	ecore_init_block(sc, BLOCK_CFC, init_phase);
11271 
11272 	if (!CHIP_IS_E1x(sc))
11273 		REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11274 
11275 	if (IS_MF(sc)) {
11276 		REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11277 		REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11278 	}
11279 
11280 	ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11281 
11282 	/* HC init per function */
11283 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
11284 		if (CHIP_IS_E1H(sc)) {
11285 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11286 
11287 			REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11288 			REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11289 		}
11290 		ecore_init_block(sc, BLOCK_HC, init_phase);
11291 
11292 	} else {
11293 		uint32_t num_segs, sb_idx, prod_offset;
11294 
11295 		REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11296 
11297 		if (!CHIP_IS_E1x(sc)) {
11298 			REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11299 			REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11300 		}
11301 
11302 		ecore_init_block(sc, BLOCK_IGU, init_phase);
11303 
11304 		if (!CHIP_IS_E1x(sc)) {
11305 			int dsb_idx = 0;
11306 	/**
11307 	 * Producer memory:
11308 	 * E2 mode: address 0-135 match to the mapping memory;
11309 	 * 136 - PF0 default prod; 137 - PF1 default prod;
11310 	 * 138 - PF2 default prod; 139 - PF3 default prod;
11311 	 * 140 - PF0 attn prod;    141 - PF1 attn prod;
11312 	 * 142 - PF2 attn prod;    143 - PF3 attn prod;
11313 	 * 144-147 reserved.
11314 	 *
11315 	 * E1.5 mode - In backward compatible mode;
11316 	 * for non default SB; each even line in the memory
11317 	 * holds the U producer and each odd line hold
11318 	 * the C producer. The first 128 producers are for
11319 	 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11320 	 * producers are for the DSB for each PF.
11321 	 * Each PF has five segments: (the order inside each
11322 	 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11323 	 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11324 	 * 144-147 attn prods;
11325 	 */
11326 			/* non-default-status-blocks */
11327 			num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11328 			    IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11329 			for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11330 				prod_offset = (sc->igu_base_sb + sb_idx) *
11331 				    num_segs;
11332 
11333 				for (i = 0; i < num_segs; i++) {
11334 					addr = IGU_REG_PROD_CONS_MEMORY +
11335 					    (prod_offset + i) * 4;
11336 					REG_WR(sc, addr, 0);
11337 				}
11338 				/* send consumer update with value 0 */
11339 				bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11340 					   USTORM_ID, 0, IGU_INT_NOP, 1);
11341 				bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11342 			}
11343 
11344 			/* default-status-blocks */
11345 			num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11346 			    IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11347 
11348 			if (CHIP_IS_MODE_4_PORT(sc))
11349 				dsb_idx = SC_FUNC(sc);
11350 			else
11351 				dsb_idx = SC_VN(sc);
11352 
11353 			prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11354 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
11355 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
11356 
11357 			/*
11358 			 * igu prods come in chunks of E1HVN_MAX (4) -
11359 			 * does not matters what is the current chip mode
11360 			 */
11361 			for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11362 				addr = IGU_REG_PROD_CONS_MEMORY +
11363 				    (prod_offset + i) * 4;
11364 				REG_WR(sc, addr, 0);
11365 			}
11366 			/* send consumer update with 0 */
11367 			if (CHIP_INT_MODE_IS_BC(sc)) {
11368 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11369 					   USTORM_ID, 0, IGU_INT_NOP, 1);
11370 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11371 					   CSTORM_ID, 0, IGU_INT_NOP, 1);
11372 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11373 					   XSTORM_ID, 0, IGU_INT_NOP, 1);
11374 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11375 					   TSTORM_ID, 0, IGU_INT_NOP, 1);
11376 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11377 					   ATTENTION_ID, 0, IGU_INT_NOP, 1);
11378 			} else {
11379 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11380 					   USTORM_ID, 0, IGU_INT_NOP, 1);
11381 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11382 					   ATTENTION_ID, 0, IGU_INT_NOP, 1);
11383 			}
11384 			bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11385 
11386 			/* !!! these should become driver const once
11387 			   rf-tool supports split-68 const */
11388 			REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11389 			REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11390 			REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11391 			REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11392 			REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11393 			REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11394 		}
11395 	}
11396 
11397 	/* Reset PCIE errors for debug */
11398 	REG_WR(sc, 0x2114, 0xffffffff);
11399 	REG_WR(sc, 0x2120, 0xffffffff);
11400 
11401 	if (CHIP_IS_E1x(sc)) {
11402 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;	/*dwords */
11403 		main_mem_base = HC_REG_MAIN_MEMORY +
11404 		    SC_PORT(sc) * (main_mem_size * 4);
11405 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11406 		main_mem_width = 8;
11407 
11408 		val = REG_RD(sc, main_mem_prty_clr);
11409 		if (val) {
11410 			PMD_DRV_LOG(DEBUG, sc,
11411 				    "Parity errors in HC block during function init (0x%x)!",
11412 				    val);
11413 		}
11414 
11415 /* Clear "false" parity errors in MSI-X table */
11416 		for (i = main_mem_base;
11417 		     i < main_mem_base + main_mem_size * 4;
11418 		     i += main_mem_width) {
11419 			bnx2x_read_dmae(sc, i, main_mem_width / 4);
11420 			bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11421 				       i, main_mem_width / 4);
11422 		}
11423 /* Clear HC parity attention */
11424 		REG_RD(sc, main_mem_prty_clr);
11425 	}
11426 
11427 	/* Enable STORMs SP logging */
11428 	REG_WR8(sc, BAR_USTRORM_INTMEM +
11429 		USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11430 	REG_WR8(sc, BAR_TSTRORM_INTMEM +
11431 		TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11432 	REG_WR8(sc, BAR_CSTRORM_INTMEM +
11433 		CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11434 	REG_WR8(sc, BAR_XSTRORM_INTMEM +
11435 		XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11436 
11437 	elink_phy_probe(&sc->link_params);
11438 
11439 	return 0;
11440 }
11441 
11442 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11443 {
11444 	if (!BNX2X_NOMCP(sc)) {
11445 		bnx2x_acquire_phy_lock(sc);
11446 		elink_lfa_reset(&sc->link_params, &sc->link_vars);
11447 		bnx2x_release_phy_lock(sc);
11448 	} else {
11449 		if (!CHIP_REV_IS_SLOW(sc)) {
11450 			PMD_DRV_LOG(WARNING, sc,
11451 				    "Bootcode is missing - cannot reset link");
11452 		}
11453 	}
11454 }
11455 
11456 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11457 {
11458 	int port = SC_PORT(sc);
11459 	uint32_t val;
11460 
11461 	/* reset physical Link */
11462 	bnx2x_link_reset(sc);
11463 
11464 	REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11465 
11466 	/* Do not rcv packets to BRB */
11467 	REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11468 	/* Do not direct rcv packets that are not for MCP to the BRB */
11469 	REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11470 		    NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11471 
11472 	/* Configure AEU */
11473 	REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11474 
11475 	DELAY(100000);
11476 
11477 	/* Check for BRB port occupancy */
11478 	val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11479 	if (val) {
11480 		PMD_DRV_LOG(DEBUG, sc,
11481 			    "BRB1 is not empty, %d blocks are occupied", val);
11482 	}
11483 }
11484 
11485 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
11486 {
11487 	int reg;
11488 	uint32_t wb_write[2];
11489 
11490 	reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11491 
11492 	wb_write[0] = ONCHIP_ADDR1(addr);
11493 	wb_write[1] = ONCHIP_ADDR2(addr);
11494 	REG_WR_DMAE(sc, reg, wb_write, 2);
11495 }
11496 
11497 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11498 {
11499 	uint32_t i, base = FUNC_ILT_BASE(func);
11500 	for (i = base; i < base + ILT_PER_FUNC; i++) {
11501 		bnx2x_ilt_wr(sc, i, 0);
11502 	}
11503 }
11504 
11505 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11506 {
11507 	struct bnx2x_fastpath *fp;
11508 	int port = SC_PORT(sc);
11509 	int func = SC_FUNC(sc);
11510 	int i;
11511 
11512 	/* Disable the function in the FW */
11513 	REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11514 	REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11515 	REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11516 	REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11517 
11518 	/* FP SBs */
11519 	FOR_EACH_ETH_QUEUE(sc, i) {
11520 		fp = &sc->fp[i];
11521 		REG_WR8(sc, BAR_CSTRORM_INTMEM +
11522 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11523 			SB_DISABLED);
11524 	}
11525 
11526 	/* SP SB */
11527 	REG_WR8(sc, BAR_CSTRORM_INTMEM +
11528 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11529 
11530 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11531 		REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11532 		       0);
11533 	}
11534 
11535 	/* Configure IGU */
11536 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
11537 		REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11538 		REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11539 	} else {
11540 		REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11541 		REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11542 	}
11543 
11544 	if (CNIC_LOADED(sc)) {
11545 /* Disable Timer scan */
11546 		REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11547 /*
11548  * Wait for at least 10ms and up to 2 second for the timers
11549  * scan to complete
11550  */
11551 		for (i = 0; i < 200; i++) {
11552 			DELAY(10000);
11553 			if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11554 				break;
11555 		}
11556 	}
11557 
11558 	/* Clear ILT */
11559 	bnx2x_clear_func_ilt(sc, func);
11560 
11561 	/*
11562 	 * Timers workaround bug for E2: if this is vnic-3,
11563 	 * we need to set the entire ilt range for this timers.
11564 	 */
11565 	if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11566 		struct ilt_client_info ilt_cli;
11567 /* use dummy TM client */
11568 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11569 		ilt_cli.start = 0;
11570 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11571 		ilt_cli.client_num = ILT_CLIENT_TM;
11572 
11573 		ecore_ilt_boundary_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
11574 	}
11575 
11576 	/* this assumes that reset_port() called before reset_func() */
11577 	if (!CHIP_IS_E1x(sc)) {
11578 		bnx2x_pf_disable(sc);
11579 	}
11580 
11581 	sc->dmae_ready = 0;
11582 }
11583 
11584 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11585 {
11586 	rte_free(sc->init_ops);
11587 	rte_free(sc->init_ops_offsets);
11588 	rte_free(sc->init_data);
11589 	rte_free(sc->iro_array);
11590 }
11591 
11592 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11593 {
11594 	uint32_t len, i;
11595 	uint8_t *p = sc->firmware;
11596 	uint32_t off[24];
11597 
11598 	for (i = 0; i < 24; ++i)
11599 		off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11600 
11601 	len = off[0];
11602 	sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11603 	if (!sc->init_ops)
11604 		goto alloc_failed;
11605 	bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11606 
11607 	len = off[2];
11608 	sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11609 	if (!sc->init_ops_offsets)
11610 		goto alloc_failed;
11611 	bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11612 
11613 	len = off[4];
11614 	sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11615 	if (!sc->init_data)
11616 		goto alloc_failed;
11617 	bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11618 
11619 	sc->tsem_int_table_data = p + off[7];
11620 	sc->tsem_pram_data = p + off[9];
11621 	sc->usem_int_table_data = p + off[11];
11622 	sc->usem_pram_data = p + off[13];
11623 	sc->csem_int_table_data = p + off[15];
11624 	sc->csem_pram_data = p + off[17];
11625 	sc->xsem_int_table_data = p + off[19];
11626 	sc->xsem_pram_data = p + off[21];
11627 
11628 	len = off[22];
11629 	sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11630 	if (!sc->iro_array)
11631 		goto alloc_failed;
11632 	bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11633 
11634 	return 0;
11635 
11636 alloc_failed:
11637 	bnx2x_release_firmware(sc);
11638 	return -1;
11639 }
11640 
11641 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11642 {
11643 #define MIN_PREFIX_SIZE (10)
11644 
11645 	int n = MIN_PREFIX_SIZE;
11646 	uint16_t xlen;
11647 
11648 	if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11649 	    len <= MIN_PREFIX_SIZE) {
11650 		return -1;
11651 	}
11652 
11653 	/* optional extra fields are present */
11654 	if (zbuf[3] & 0x4) {
11655 		xlen = zbuf[13];
11656 		xlen <<= 8;
11657 		xlen += zbuf[12];
11658 
11659 		n += xlen;
11660 	}
11661 	/* file name is present */
11662 	if (zbuf[3] & 0x8) {
11663 		while ((zbuf[n++] != 0) && (n < len)) ;
11664 	}
11665 
11666 	return n;
11667 }
11668 
11669 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11670 {
11671 	int ret;
11672 	int data_begin = cut_gzip_prefix(zbuf, len);
11673 
11674 	PMD_DRV_LOG(DEBUG, sc, "ecore_gunzip %d", len);
11675 
11676 	if (data_begin <= 0) {
11677 		PMD_DRV_LOG(NOTICE, sc, "bad gzip prefix");
11678 		return -1;
11679 	}
11680 
11681 	memset(&zlib_stream, 0, sizeof(zlib_stream));
11682 	zlib_stream.next_in = zbuf + data_begin;
11683 	zlib_stream.avail_in = len - data_begin;
11684 	zlib_stream.next_out = sc->gz_buf;
11685 	zlib_stream.avail_out = FW_BUF_SIZE;
11686 
11687 	ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11688 	if (ret != Z_OK) {
11689 		PMD_DRV_LOG(NOTICE, sc, "zlib inflateInit2 error");
11690 		return ret;
11691 	}
11692 
11693 	ret = inflate(&zlib_stream, Z_FINISH);
11694 	if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11695 		PMD_DRV_LOG(NOTICE, sc, "zlib inflate error: %d %s", ret,
11696 			    zlib_stream.msg);
11697 	}
11698 
11699 	sc->gz_outlen = zlib_stream.total_out;
11700 	if (sc->gz_outlen & 0x3) {
11701 		PMD_DRV_LOG(NOTICE, sc, "firmware is not aligned. gz_outlen == %d",
11702 			    sc->gz_outlen);
11703 	}
11704 	sc->gz_outlen >>= 2;
11705 
11706 	inflateEnd(&zlib_stream);
11707 
11708 	if (ret == Z_STREAM_END)
11709 		return 0;
11710 
11711 	return ret;
11712 }
11713 
11714 static void
11715 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
11716 			  uint32_t addr, uint32_t len)
11717 {
11718 	bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11719 }
11720 
11721 void
11722 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11723 			  uint32_t * data)
11724 {
11725 	uint8_t i;
11726 	for (i = 0; i < size / 4; i++) {
11727 		REG_WR(sc, addr + (i * 4), data[i]);
11728 	}
11729 }
11730 
11731 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11732 {
11733 	uint32_t phy_type_idx = ext_phy_type >> 8;
11734 	static const char *types[] =
11735 	    { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11736 		"BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11737 		"BNX2X-8727",
11738 		"BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11739 	};
11740 
11741 	if (phy_type_idx < 12)
11742 		return types[phy_type_idx];
11743 	else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11744 		return types[12];
11745 	else
11746 		return types[13];
11747 }
11748 
11749 static const char *get_state(uint32_t state)
11750 {
11751 	uint32_t state_idx = state >> 12;
11752 	static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11753 		"OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11754 		"CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11755 		"UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11756 		"UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11757 	};
11758 
11759 	if (state_idx <= 0xF)
11760 		return states[state_idx];
11761 	else
11762 		return states[0x10];
11763 }
11764 
11765 static const char *get_recovery_state(uint32_t state)
11766 {
11767 	static const char *states[] = { "NONE", "DONE", "INIT",
11768 		"WAIT", "FAILED", "NIC_LOADING"
11769 	};
11770 	return states[state];
11771 }
11772 
11773 static const char *get_rx_mode(uint32_t mode)
11774 {
11775 	static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11776 		"PROMISC", "MAX_MULTICAST", "ERROR"
11777 	};
11778 
11779 	if (mode < 0x4)
11780 		return modes[mode];
11781 	else if (BNX2X_MAX_MULTICAST == mode)
11782 		return modes[4];
11783 	else
11784 		return modes[5];
11785 }
11786 
11787 #define BNX2X_INFO_STR_MAX 256
11788 static const char *get_bnx2x_flags(uint32_t flags)
11789 {
11790 	int i;
11791 	static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11792 		"NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11793 		"USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11794 		"SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11795 	};
11796 	static char flag_str[BNX2X_INFO_STR_MAX];
11797 	memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11798 
11799 	for (i = 0; i < 5; i++)
11800 		if (flags & (1 << i)) {
11801 			strlcat(flag_str, flag[i], sizeof(flag_str));
11802 			flags ^= (1 << i);
11803 		}
11804 	if (flags) {
11805 		static char unknown[BNX2X_INFO_STR_MAX];
11806 		snprintf(unknown, 32, "Unknown flag mask %x", flags);
11807 		strlcat(flag_str, unknown, sizeof(flag_str));
11808 	}
11809 	return flag_str;
11810 }
11811 
11812 /* Prints useful adapter info. */
11813 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11814 {
11815 	int i = 0;
11816 
11817 	PMD_DRV_LOG(INFO, sc, "========================================");
11818 	/* DPDK and Driver versions */
11819 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "DPDK",
11820 			rte_version());
11821 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "Driver",
11822 			bnx2x_pmd_version());
11823 	/* Firmware versions. */
11824 	PMD_DRV_LOG(INFO, sc, "%12s : %d.%d.%d",
11825 		     "Firmware",
11826 		     BNX2X_5710_FW_MAJOR_VERSION,
11827 		     BNX2X_5710_FW_MINOR_VERSION,
11828 		     BNX2X_5710_FW_REVISION_VERSION);
11829 	PMD_DRV_LOG(INFO, sc, "%12s : %s",
11830 		     "Bootcode", sc->devinfo.bc_ver_str);
11831 	/* Hardware chip info. */
11832 	PMD_DRV_LOG(INFO, sc, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11833 	PMD_DRV_LOG(INFO, sc, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11834 		     (CHIP_METAL(sc) >> 4));
11835 	/* Bus PCIe info. */
11836 	PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Vendor Id",
11837 		    sc->devinfo.vendor_id);
11838 	PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Device Id",
11839 		    sc->devinfo.device_id);
11840 	PMD_DRV_LOG(INFO, sc, "%12s : width x%d, ", "Bus PCIe",
11841 		    sc->devinfo.pcie_link_width);
11842 	switch (sc->devinfo.pcie_link_speed) {
11843 	case 1:
11844 		PMD_DRV_LOG(INFO, sc, "%23s", "2.5 Gbps");
11845 		break;
11846 	case 2:
11847 		PMD_DRV_LOG(INFO, sc, "%21s", "5 Gbps");
11848 		break;
11849 	case 4:
11850 		PMD_DRV_LOG(INFO, sc, "%21s", "8 Gbps");
11851 		break;
11852 	default:
11853 		PMD_DRV_LOG(INFO, sc, "%33s", "Unknown link speed");
11854 	}
11855 	/* Device features. */
11856 	PMD_DRV_LOG(INFO, sc, "%12s : ", "Flags");
11857 	/* Miscellaneous flags. */
11858 	if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11859 		PMD_DRV_LOG(INFO, sc, "%18s", "MSI");
11860 		i++;
11861 	}
11862 	if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11863 		if (i > 0)
11864 			PMD_DRV_LOG(INFO, sc, "|");
11865 		PMD_DRV_LOG(INFO, sc, "%20s", "MSI-X");
11866 		i++;
11867 	}
11868 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11869 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11870 	PMD_DRV_LOG(INFO, sc, "========================================");
11871 }
11872 
11873 /* Prints useful device info. */
11874 void bnx2x_print_device_info(struct bnx2x_softc *sc)
11875 {
11876 	__rte_unused uint32_t ext_phy_type;
11877 	uint32_t offset, reg_val;
11878 
11879 	PMD_INIT_FUNC_TRACE(sc);
11880 	offset = offsetof(struct shmem_region,
11881 			  dev_info.port_hw_config[0].external_phy_config);
11882 	reg_val = REG_RD(sc, sc->devinfo.shmem_base + offset);
11883 	if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11884 		ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(reg_val);
11885 	else
11886 		ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(reg_val);
11887 
11888 	/* Device features. */
11889 	PMD_DRV_LOG(INFO, sc, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11890 	PMD_DRV_LOG(INFO, sc,
11891 		    "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11892 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "DMAE Is",
11893 		     (sc->dmae_ready ? "Ready" : "Not Ready"));
11894 	PMD_DRV_LOG(INFO, sc, "%12s : %u", "MTU", sc->mtu);
11895 	PMD_DRV_LOG(INFO, sc,
11896 		    "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11897 	PMD_DRV_LOG(INFO, sc, "%12s : " RTE_ETHER_ADDR_PRT_FMT, "MAC Addr",
11898 			sc->link_params.mac_addr[0],
11899 			sc->link_params.mac_addr[1],
11900 			sc->link_params.mac_addr[2],
11901 			sc->link_params.mac_addr[3],
11902 			sc->link_params.mac_addr[4],
11903 			sc->link_params.mac_addr[5]);
11904 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11905 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "State", get_state(sc->state));
11906 	if (sc->recovery_state)
11907 		PMD_DRV_LOG(INFO, sc, "%12s : %s", "Recovery",
11908 			     get_recovery_state(sc->recovery_state));
11909 	/* Queue info. */
11910 	if (IS_PF(sc)) {
11911 		switch (sc->sp->rss_rdata.rss_mode) {
11912 		case ETH_RSS_MODE_DISABLED:
11913 			PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - None");
11914 			break;
11915 		case ETH_RSS_MODE_REGULAR:
11916 			PMD_DRV_LOG(INFO, sc, "%12s : %s,", "Queues", "RSS mode - Regular");
11917 			PMD_DRV_LOG(INFO, sc, "%16d", sc->num_queues);
11918 			break;
11919 		default:
11920 			PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - Unknown");
11921 			break;
11922 		}
11923 	}
11924 	PMD_DRV_LOG(INFO, sc, "%12s : CQ = %lx,  EQ = %lx", "SPQ Left",
11925 		     sc->cq_spq_left, sc->eq_spq_left);
11926 
11927 	PMD_DRV_LOG(INFO, sc,
11928 		    "%12s : %x", "Switch", sc->link_params.switch_cfg);
11929 	PMD_DRV_LOG(INFO, sc, "pcie_bus=%d, pcie_device=%d",
11930 			sc->pcie_bus, sc->pcie_device);
11931 	PMD_DRV_LOG(INFO, sc, "bar0.addr=%p, bar1.addr=%p",
11932 			sc->bar[BAR0].base_addr, sc->bar[BAR1].base_addr);
11933 	PMD_DRV_LOG(INFO, sc, "port=%d, path=%d, vnic=%d, func=%d",
11934 			PORT_ID(sc), PATH_ID(sc), VNIC_ID(sc), FUNC_ID(sc));
11935 }
11936