1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <[email protected]>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 *
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
35 */
36
37 /*
38 * DVA-based Adjustable Replacement Cache
39 *
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
44 *
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory. This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about. Our cache is not so simple. At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them. Blocks are only evictable
52 * when there are no external references active. This makes
53 * eviction far more problematic: we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
55 *
56 * There are times when it is not possible to evict the requested
57 * space. In these circumstances we are unable to adjust the cache
58 * size. To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
61 *
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss. Our model has a variable sized cache. It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
67 * tight.
68 *
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
70 * elements of the cache are therefore exactly the same size. So
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict. In our model, we
73 * have variable sized cache blocks (ranging from 512 bytes to
74 * 128K bytes). We therefore choose a set of blocks to evict to make
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
77 *
78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
80 */
81
82 /*
83 * The locking model:
84 *
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists. The arc_read() interface
88 * uses method 1, while the internal ARC algorithms for
89 * adjusting the cache use method 2. We therefore provide two
90 * types of locks: 1) the hash table lock array, and 2) the
91 * ARC list locks.
92 *
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
96 *
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table. It returns
99 * NULL for the mutex if the buffer was not in the table.
100 *
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
103 *
104 * Each ARC state also has a mutex which is used to protect the
105 * buffer list associated with the state. When attempting to
106 * obtain a hash table lock while holding an ARC list lock you
107 * must use: mutex_tryenter() to avoid deadlock. Also note that
108 * the active state mutex must be held before the ghost state mutex.
109 *
110 * It as also possible to register a callback which is run when the
111 * metadata limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed. For example, when using the ZPL each dentry
114 * holds a references on a znode. These dentries must be pruned before
115 * the arc buffer holding the znode can be safely evicted.
116 *
117 * Note that the majority of the performance stats are manipulated
118 * with atomic operations.
119 *
120 * The L2ARC uses the l2ad_mtx on each vdev for the following:
121 *
122 * - L2ARC buflist creation
123 * - L2ARC buflist eviction
124 * - L2ARC write completion, which walks L2ARC buflists
125 * - ARC header destruction, as it removes from L2ARC buflists
126 * - ARC header release, as it removes from L2ARC buflists
127 */
128
129 /*
130 * ARC operation:
131 *
132 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
133 * This structure can point either to a block that is still in the cache or to
134 * one that is only accessible in an L2 ARC device, or it can provide
135 * information about a block that was recently evicted. If a block is
136 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
137 * information to retrieve it from the L2ARC device. This information is
138 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
139 * that is in this state cannot access the data directly.
140 *
141 * Blocks that are actively being referenced or have not been evicted
142 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
143 * the arc_buf_hdr_t that will point to the data block in memory. A block can
144 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
145 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
146 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
147 *
148 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
149 * ability to store the physical data (b_pabd) associated with the DVA of the
150 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
151 * it will match its on-disk compression characteristics. This behavior can be
152 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
153 * compressed ARC functionality is disabled, the b_pabd will point to an
154 * uncompressed version of the on-disk data.
155 *
156 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
157 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
158 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
159 * consumer. The ARC will provide references to this data and will keep it
160 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
161 * data block and will evict any arc_buf_t that is no longer referenced. The
162 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
163 * "overhead_size" kstat.
164 *
165 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
166 * compressed form. The typical case is that consumers will want uncompressed
167 * data, and when that happens a new data buffer is allocated where the data is
168 * decompressed for them to use. Currently the only consumer who wants
169 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
170 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
171 * with the arc_buf_hdr_t.
172 *
173 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
174 * first one is owned by a compressed send consumer (and therefore references
175 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
176 * used by any other consumer (and has its own uncompressed copy of the data
177 * buffer).
178 *
179 * arc_buf_hdr_t
180 * +-----------+
181 * | fields |
182 * | common to |
183 * | L1- and |
184 * | L2ARC |
185 * +-----------+
186 * | l2arc_buf_hdr_t
187 * | |
188 * +-----------+
189 * | l1arc_buf_hdr_t
190 * | | arc_buf_t
191 * | b_buf +------------>+-----------+ arc_buf_t
192 * | b_pabd +-+ |b_next +---->+-----------+
193 * +-----------+ | |-----------| |b_next +-->NULL
194 * | |b_comp = T | +-----------+
195 * | |b_data +-+ |b_comp = F |
196 * | +-----------+ | |b_data +-+
197 * +->+------+ | +-----------+ |
198 * compressed | | | |
199 * data | |<--------------+ | uncompressed
200 * +------+ compressed, | data
201 * shared +-->+------+
202 * data | |
203 * | |
204 * +------+
205 *
206 * When a consumer reads a block, the ARC must first look to see if the
207 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
208 * arc_buf_t and either copies uncompressed data into a new data buffer from an
209 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
210 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
211 * hdr is compressed and the desired compression characteristics of the
212 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
213 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
214 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
215 * be anywhere in the hdr's list.
216 *
217 * The diagram below shows an example of an uncompressed ARC hdr that is
218 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
219 * the last element in the buf list):
220 *
221 * arc_buf_hdr_t
222 * +-----------+
223 * | |
224 * | |
225 * | |
226 * +-----------+
227 * l2arc_buf_hdr_t| |
228 * | |
229 * +-----------+
230 * l1arc_buf_hdr_t| |
231 * | | arc_buf_t (shared)
232 * | b_buf +------------>+---------+ arc_buf_t
233 * | | |b_next +---->+---------+
234 * | b_pabd +-+ |---------| |b_next +-->NULL
235 * +-----------+ | | | +---------+
236 * | |b_data +-+ | |
237 * | +---------+ | |b_data +-+
238 * +->+------+ | +---------+ |
239 * | | | |
240 * uncompressed | | | |
241 * data +------+ | |
242 * ^ +->+------+ |
243 * | uncompressed | | |
244 * | data | | |
245 * | +------+ |
246 * +---------------------------------+
247 *
248 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
249 * since the physical block is about to be rewritten. The new data contents
250 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
251 * it may compress the data before writing it to disk. The ARC will be called
252 * with the transformed data and will memcpy the transformed on-disk block into
253 * a newly allocated b_pabd. Writes are always done into buffers which have
254 * either been loaned (and hence are new and don't have other readers) or
255 * buffers which have been released (and hence have their own hdr, if there
256 * were originally other readers of the buf's original hdr). This ensures that
257 * the ARC only needs to update a single buf and its hdr after a write occurs.
258 *
259 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
260 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
261 * that when compressed ARC is enabled that the L2ARC blocks are identical
262 * to the on-disk block in the main data pool. This provides a significant
263 * advantage since the ARC can leverage the bp's checksum when reading from the
264 * L2ARC to determine if the contents are valid. However, if the compressed
265 * ARC is disabled, then the L2ARC's block must be transformed to look
266 * like the physical block in the main data pool before comparing the
267 * checksum and determining its validity.
268 *
269 * The L1ARC has a slightly different system for storing encrypted data.
270 * Raw (encrypted + possibly compressed) data has a few subtle differences from
271 * data that is just compressed. The biggest difference is that it is not
272 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
273 * The other difference is that encryption cannot be treated as a suggestion.
274 * If a caller would prefer compressed data, but they actually wind up with
275 * uncompressed data the worst thing that could happen is there might be a
276 * performance hit. If the caller requests encrypted data, however, we must be
277 * sure they actually get it or else secret information could be leaked. Raw
278 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
279 * may have both an encrypted version and a decrypted version of its data at
280 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
281 * copied out of this header. To avoid complications with b_pabd, raw buffers
282 * cannot be shared.
283 */
284
285 #include <sys/spa.h>
286 #include <sys/zio.h>
287 #include <sys/spa_impl.h>
288 #include <sys/zio_compress.h>
289 #include <sys/zio_checksum.h>
290 #include <sys/zfs_context.h>
291 #include <sys/arc.h>
292 #include <sys/zfs_refcount.h>
293 #include <sys/vdev.h>
294 #include <sys/vdev_impl.h>
295 #include <sys/dsl_pool.h>
296 #include <sys/multilist.h>
297 #include <sys/abd.h>
298 #include <sys/zil.h>
299 #include <sys/fm/fs/zfs.h>
300 #include <sys/callb.h>
301 #include <sys/kstat.h>
302 #include <sys/zthr.h>
303 #include <zfs_fletcher.h>
304 #include <sys/arc_impl.h>
305 #include <sys/trace_zfs.h>
306 #include <sys/aggsum.h>
307 #include <sys/wmsum.h>
308 #include <cityhash.h>
309 #include <sys/vdev_trim.h>
310 #include <sys/zfs_racct.h>
311 #include <sys/zstd/zstd.h>
312
313 #ifndef _KERNEL
314 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
315 boolean_t arc_watch = B_FALSE;
316 #endif
317
318 /*
319 * This thread's job is to keep enough free memory in the system, by
320 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
321 * arc_available_memory().
322 */
323 static zthr_t *arc_reap_zthr;
324
325 /*
326 * This thread's job is to keep arc_size under arc_c, by calling
327 * arc_evict(), which improves arc_is_overflowing().
328 */
329 static zthr_t *arc_evict_zthr;
330 static arc_buf_hdr_t **arc_state_evict_markers;
331 static int arc_state_evict_marker_count;
332
333 static kmutex_t arc_evict_lock;
334 static boolean_t arc_evict_needed = B_FALSE;
335 static clock_t arc_last_uncached_flush;
336
337 /*
338 * Count of bytes evicted since boot.
339 */
340 static uint64_t arc_evict_count;
341
342 /*
343 * List of arc_evict_waiter_t's, representing threads waiting for the
344 * arc_evict_count to reach specific values.
345 */
346 static list_t arc_evict_waiters;
347
348 /*
349 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
350 * the requested amount of data to be evicted. For example, by default for
351 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
352 * Since this is above 100%, it ensures that progress is made towards getting
353 * arc_size under arc_c. Since this is finite, it ensures that allocations
354 * can still happen, even during the potentially long time that arc_size is
355 * more than arc_c.
356 */
357 static uint_t zfs_arc_eviction_pct = 200;
358
359 /*
360 * The number of headers to evict in arc_evict_state_impl() before
361 * dropping the sublist lock and evicting from another sublist. A lower
362 * value means we're more likely to evict the "correct" header (i.e. the
363 * oldest header in the arc state), but comes with higher overhead
364 * (i.e. more invocations of arc_evict_state_impl()).
365 */
366 static uint_t zfs_arc_evict_batch_limit = 10;
367
368 /* number of seconds before growing cache again */
369 uint_t arc_grow_retry = 5;
370
371 /*
372 * Minimum time between calls to arc_kmem_reap_soon().
373 */
374 static const int arc_kmem_cache_reap_retry_ms = 1000;
375
376 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
377 static int zfs_arc_overflow_shift = 8;
378
379 /* log2(fraction of arc to reclaim) */
380 uint_t arc_shrink_shift = 7;
381
382 /* percent of pagecache to reclaim arc to */
383 #ifdef _KERNEL
384 uint_t zfs_arc_pc_percent = 0;
385 #endif
386
387 /*
388 * log2(fraction of ARC which must be free to allow growing).
389 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
390 * when reading a new block into the ARC, we will evict an equal-sized block
391 * from the ARC.
392 *
393 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
394 * we will still not allow it to grow.
395 */
396 uint_t arc_no_grow_shift = 5;
397
398
399 /*
400 * minimum lifespan of a prefetch block in clock ticks
401 * (initialized in arc_init())
402 */
403 static uint_t arc_min_prefetch_ms;
404 static uint_t arc_min_prescient_prefetch_ms;
405
406 /*
407 * If this percent of memory is free, don't throttle.
408 */
409 uint_t arc_lotsfree_percent = 10;
410
411 /*
412 * The arc has filled available memory and has now warmed up.
413 */
414 boolean_t arc_warm;
415
416 /*
417 * These tunables are for performance analysis.
418 */
419 uint64_t zfs_arc_max = 0;
420 uint64_t zfs_arc_min = 0;
421 static uint64_t zfs_arc_dnode_limit = 0;
422 static uint_t zfs_arc_dnode_reduce_percent = 10;
423 static uint_t zfs_arc_grow_retry = 0;
424 static uint_t zfs_arc_shrink_shift = 0;
425 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
426
427 /*
428 * ARC dirty data constraints for arc_tempreserve_space() throttle:
429 * * total dirty data limit
430 * * anon block dirty limit
431 * * each pool's anon allowance
432 */
433 static const unsigned long zfs_arc_dirty_limit_percent = 50;
434 static const unsigned long zfs_arc_anon_limit_percent = 25;
435 static const unsigned long zfs_arc_pool_dirty_percent = 20;
436
437 /*
438 * Enable or disable compressed arc buffers.
439 */
440 int zfs_compressed_arc_enabled = B_TRUE;
441
442 /*
443 * Balance between metadata and data on ghost hits. Values above 100
444 * increase metadata caching by proportionally reducing effect of ghost
445 * data hits on target data/metadata rate.
446 */
447 static uint_t zfs_arc_meta_balance = 500;
448
449 /*
450 * Percentage that can be consumed by dnodes of ARC meta buffers.
451 */
452 static uint_t zfs_arc_dnode_limit_percent = 10;
453
454 /*
455 * These tunables are Linux-specific
456 */
457 static uint64_t zfs_arc_sys_free = 0;
458 static uint_t zfs_arc_min_prefetch_ms = 0;
459 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
460 static uint_t zfs_arc_lotsfree_percent = 10;
461
462 /*
463 * Number of arc_prune threads
464 */
465 static int zfs_arc_prune_task_threads = 1;
466
467 /* The 7 states: */
468 arc_state_t ARC_anon;
469 arc_state_t ARC_mru;
470 arc_state_t ARC_mru_ghost;
471 arc_state_t ARC_mfu;
472 arc_state_t ARC_mfu_ghost;
473 arc_state_t ARC_l2c_only;
474 arc_state_t ARC_uncached;
475
476 arc_stats_t arc_stats = {
477 { "hits", KSTAT_DATA_UINT64 },
478 { "iohits", KSTAT_DATA_UINT64 },
479 { "misses", KSTAT_DATA_UINT64 },
480 { "demand_data_hits", KSTAT_DATA_UINT64 },
481 { "demand_data_iohits", KSTAT_DATA_UINT64 },
482 { "demand_data_misses", KSTAT_DATA_UINT64 },
483 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
484 { "demand_metadata_iohits", KSTAT_DATA_UINT64 },
485 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
486 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
487 { "prefetch_data_iohits", KSTAT_DATA_UINT64 },
488 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
489 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
490 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 },
491 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
492 { "mru_hits", KSTAT_DATA_UINT64 },
493 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
494 { "mfu_hits", KSTAT_DATA_UINT64 },
495 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
496 { "uncached_hits", KSTAT_DATA_UINT64 },
497 { "deleted", KSTAT_DATA_UINT64 },
498 { "mutex_miss", KSTAT_DATA_UINT64 },
499 { "access_skip", KSTAT_DATA_UINT64 },
500 { "evict_skip", KSTAT_DATA_UINT64 },
501 { "evict_not_enough", KSTAT_DATA_UINT64 },
502 { "evict_l2_cached", KSTAT_DATA_UINT64 },
503 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
504 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
505 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
506 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
507 { "evict_l2_skip", KSTAT_DATA_UINT64 },
508 { "hash_elements", KSTAT_DATA_UINT64 },
509 { "hash_elements_max", KSTAT_DATA_UINT64 },
510 { "hash_collisions", KSTAT_DATA_UINT64 },
511 { "hash_chains", KSTAT_DATA_UINT64 },
512 { "hash_chain_max", KSTAT_DATA_UINT64 },
513 { "meta", KSTAT_DATA_UINT64 },
514 { "pd", KSTAT_DATA_UINT64 },
515 { "pm", KSTAT_DATA_UINT64 },
516 { "c", KSTAT_DATA_UINT64 },
517 { "c_min", KSTAT_DATA_UINT64 },
518 { "c_max", KSTAT_DATA_UINT64 },
519 { "size", KSTAT_DATA_UINT64 },
520 { "compressed_size", KSTAT_DATA_UINT64 },
521 { "uncompressed_size", KSTAT_DATA_UINT64 },
522 { "overhead_size", KSTAT_DATA_UINT64 },
523 { "hdr_size", KSTAT_DATA_UINT64 },
524 { "data_size", KSTAT_DATA_UINT64 },
525 { "metadata_size", KSTAT_DATA_UINT64 },
526 { "dbuf_size", KSTAT_DATA_UINT64 },
527 { "dnode_size", KSTAT_DATA_UINT64 },
528 { "bonus_size", KSTAT_DATA_UINT64 },
529 #if defined(COMPAT_FREEBSD11)
530 { "other_size", KSTAT_DATA_UINT64 },
531 #endif
532 { "anon_size", KSTAT_DATA_UINT64 },
533 { "anon_data", KSTAT_DATA_UINT64 },
534 { "anon_metadata", KSTAT_DATA_UINT64 },
535 { "anon_evictable_data", KSTAT_DATA_UINT64 },
536 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
537 { "mru_size", KSTAT_DATA_UINT64 },
538 { "mru_data", KSTAT_DATA_UINT64 },
539 { "mru_metadata", KSTAT_DATA_UINT64 },
540 { "mru_evictable_data", KSTAT_DATA_UINT64 },
541 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
542 { "mru_ghost_size", KSTAT_DATA_UINT64 },
543 { "mru_ghost_data", KSTAT_DATA_UINT64 },
544 { "mru_ghost_metadata", KSTAT_DATA_UINT64 },
545 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
546 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
547 { "mfu_size", KSTAT_DATA_UINT64 },
548 { "mfu_data", KSTAT_DATA_UINT64 },
549 { "mfu_metadata", KSTAT_DATA_UINT64 },
550 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
551 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
552 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
553 { "mfu_ghost_data", KSTAT_DATA_UINT64 },
554 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 },
555 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
556 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
557 { "uncached_size", KSTAT_DATA_UINT64 },
558 { "uncached_data", KSTAT_DATA_UINT64 },
559 { "uncached_metadata", KSTAT_DATA_UINT64 },
560 { "uncached_evictable_data", KSTAT_DATA_UINT64 },
561 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
562 { "l2_hits", KSTAT_DATA_UINT64 },
563 { "l2_misses", KSTAT_DATA_UINT64 },
564 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
565 { "l2_mru_asize", KSTAT_DATA_UINT64 },
566 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
567 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
568 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
569 { "l2_feeds", KSTAT_DATA_UINT64 },
570 { "l2_rw_clash", KSTAT_DATA_UINT64 },
571 { "l2_read_bytes", KSTAT_DATA_UINT64 },
572 { "l2_write_bytes", KSTAT_DATA_UINT64 },
573 { "l2_writes_sent", KSTAT_DATA_UINT64 },
574 { "l2_writes_done", KSTAT_DATA_UINT64 },
575 { "l2_writes_error", KSTAT_DATA_UINT64 },
576 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
577 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
578 { "l2_evict_reading", KSTAT_DATA_UINT64 },
579 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
580 { "l2_free_on_write", KSTAT_DATA_UINT64 },
581 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
582 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
583 { "l2_io_error", KSTAT_DATA_UINT64 },
584 { "l2_size", KSTAT_DATA_UINT64 },
585 { "l2_asize", KSTAT_DATA_UINT64 },
586 { "l2_hdr_size", KSTAT_DATA_UINT64 },
587 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
588 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
589 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
590 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
591 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
592 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
593 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
594 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
595 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
596 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
597 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
598 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
599 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
600 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
601 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
602 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
603 { "memory_throttle_count", KSTAT_DATA_UINT64 },
604 { "memory_direct_count", KSTAT_DATA_UINT64 },
605 { "memory_indirect_count", KSTAT_DATA_UINT64 },
606 { "memory_all_bytes", KSTAT_DATA_UINT64 },
607 { "memory_free_bytes", KSTAT_DATA_UINT64 },
608 { "memory_available_bytes", KSTAT_DATA_INT64 },
609 { "arc_no_grow", KSTAT_DATA_UINT64 },
610 { "arc_tempreserve", KSTAT_DATA_UINT64 },
611 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
612 { "arc_prune", KSTAT_DATA_UINT64 },
613 { "arc_meta_used", KSTAT_DATA_UINT64 },
614 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
615 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
616 { "predictive_prefetch", KSTAT_DATA_UINT64 },
617 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
618 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
619 { "prescient_prefetch", KSTAT_DATA_UINT64 },
620 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
621 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
622 { "arc_need_free", KSTAT_DATA_UINT64 },
623 { "arc_sys_free", KSTAT_DATA_UINT64 },
624 { "arc_raw_size", KSTAT_DATA_UINT64 },
625 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
626 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
627 };
628
629 arc_sums_t arc_sums;
630
631 #define ARCSTAT_MAX(stat, val) { \
632 uint64_t m; \
633 while ((val) > (m = arc_stats.stat.value.ui64) && \
634 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
635 continue; \
636 }
637
638 /*
639 * We define a macro to allow ARC hits/misses to be easily broken down by
640 * two separate conditions, giving a total of four different subtypes for
641 * each of hits and misses (so eight statistics total).
642 */
643 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
644 if (cond1) { \
645 if (cond2) { \
646 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
647 } else { \
648 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
649 } \
650 } else { \
651 if (cond2) { \
652 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
653 } else { \
654 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
655 } \
656 }
657
658 /*
659 * This macro allows us to use kstats as floating averages. Each time we
660 * update this kstat, we first factor it and the update value by
661 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
662 * average. This macro assumes that integer loads and stores are atomic, but
663 * is not safe for multiple writers updating the kstat in parallel (only the
664 * last writer's update will remain).
665 */
666 #define ARCSTAT_F_AVG_FACTOR 3
667 #define ARCSTAT_F_AVG(stat, value) \
668 do { \
669 uint64_t x = ARCSTAT(stat); \
670 x = x - x / ARCSTAT_F_AVG_FACTOR + \
671 (value) / ARCSTAT_F_AVG_FACTOR; \
672 ARCSTAT(stat) = x; \
673 } while (0)
674
675 static kstat_t *arc_ksp;
676
677 /*
678 * There are several ARC variables that are critical to export as kstats --
679 * but we don't want to have to grovel around in the kstat whenever we wish to
680 * manipulate them. For these variables, we therefore define them to be in
681 * terms of the statistic variable. This assures that we are not introducing
682 * the possibility of inconsistency by having shadow copies of the variables,
683 * while still allowing the code to be readable.
684 */
685 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
686 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
687 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
688 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
689
690 hrtime_t arc_growtime;
691 list_t arc_prune_list;
692 kmutex_t arc_prune_mtx;
693 taskq_t *arc_prune_taskq;
694
695 #define GHOST_STATE(state) \
696 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
697 (state) == arc_l2c_only)
698
699 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
700 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
701 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
702 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
703 #define HDR_PRESCIENT_PREFETCH(hdr) \
704 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
705 #define HDR_COMPRESSION_ENABLED(hdr) \
706 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
707
708 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
709 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED)
710 #define HDR_L2_READING(hdr) \
711 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
712 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
713 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
714 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
715 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
716 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
717 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
718 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
719
720 #define HDR_ISTYPE_METADATA(hdr) \
721 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
722 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
723
724 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
725 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
726 #define HDR_HAS_RABD(hdr) \
727 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
728 (hdr)->b_crypt_hdr.b_rabd != NULL)
729 #define HDR_ENCRYPTED(hdr) \
730 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
731 #define HDR_AUTHENTICATED(hdr) \
732 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
733
734 /* For storing compression mode in b_flags */
735 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
736
737 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
738 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
739 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
740 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
741
742 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
743 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
744 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
745 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
746
747 /*
748 * Other sizes
749 */
750
751 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
752 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
753
754 /*
755 * Hash table routines
756 */
757
758 #define BUF_LOCKS 2048
759 typedef struct buf_hash_table {
760 uint64_t ht_mask;
761 arc_buf_hdr_t **ht_table;
762 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
763 } buf_hash_table_t;
764
765 static buf_hash_table_t buf_hash_table;
766
767 #define BUF_HASH_INDEX(spa, dva, birth) \
768 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
769 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
770 #define HDR_LOCK(hdr) \
771 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
772
773 uint64_t zfs_crc64_table[256];
774
775 /*
776 * Level 2 ARC
777 */
778
779 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
780 #define L2ARC_HEADROOM 2 /* num of writes */
781
782 /*
783 * If we discover during ARC scan any buffers to be compressed, we boost
784 * our headroom for the next scanning cycle by this percentage multiple.
785 */
786 #define L2ARC_HEADROOM_BOOST 200
787 #define L2ARC_FEED_SECS 1 /* caching interval secs */
788 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
789
790 /*
791 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
792 * and each of the state has two types: data and metadata.
793 */
794 #define L2ARC_FEED_TYPES 4
795
796 /* L2ARC Performance Tunables */
797 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
798 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
799 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
800 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
801 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
802 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
803 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
804 int l2arc_feed_again = B_TRUE; /* turbo warmup */
805 int l2arc_norw = B_FALSE; /* no reads during writes */
806 static uint_t l2arc_meta_percent = 33; /* limit on headers size */
807
808 /*
809 * L2ARC Internals
810 */
811 static list_t L2ARC_dev_list; /* device list */
812 static list_t *l2arc_dev_list; /* device list pointer */
813 static kmutex_t l2arc_dev_mtx; /* device list mutex */
814 static l2arc_dev_t *l2arc_dev_last; /* last device used */
815 static list_t L2ARC_free_on_write; /* free after write buf list */
816 static list_t *l2arc_free_on_write; /* free after write list ptr */
817 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
818 static uint64_t l2arc_ndev; /* number of devices */
819
820 typedef struct l2arc_read_callback {
821 arc_buf_hdr_t *l2rcb_hdr; /* read header */
822 blkptr_t l2rcb_bp; /* original blkptr */
823 zbookmark_phys_t l2rcb_zb; /* original bookmark */
824 int l2rcb_flags; /* original flags */
825 abd_t *l2rcb_abd; /* temporary buffer */
826 } l2arc_read_callback_t;
827
828 typedef struct l2arc_data_free {
829 /* protected by l2arc_free_on_write_mtx */
830 abd_t *l2df_abd;
831 size_t l2df_size;
832 arc_buf_contents_t l2df_type;
833 list_node_t l2df_list_node;
834 } l2arc_data_free_t;
835
836 typedef enum arc_fill_flags {
837 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
838 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
839 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
840 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
841 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
842 } arc_fill_flags_t;
843
844 typedef enum arc_ovf_level {
845 ARC_OVF_NONE, /* ARC within target size. */
846 ARC_OVF_SOME, /* ARC is slightly overflowed. */
847 ARC_OVF_SEVERE /* ARC is severely overflowed. */
848 } arc_ovf_level_t;
849
850 static kmutex_t l2arc_feed_thr_lock;
851 static kcondvar_t l2arc_feed_thr_cv;
852 static uint8_t l2arc_thread_exit;
853
854 static kmutex_t l2arc_rebuild_thr_lock;
855 static kcondvar_t l2arc_rebuild_thr_cv;
856
857 enum arc_hdr_alloc_flags {
858 ARC_HDR_ALLOC_RDATA = 0x1,
859 ARC_HDR_USE_RESERVE = 0x4,
860 ARC_HDR_ALLOC_LINEAR = 0x8,
861 };
862
863
864 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
865 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
866 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
867 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
868 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
869 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
870 const void *tag);
871 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
872 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
873 static void arc_hdr_destroy(arc_buf_hdr_t *);
874 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
875 static void arc_buf_watch(arc_buf_t *);
876 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
877
878 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
879 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
880 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
881 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
882
883 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
884 static void l2arc_read_done(zio_t *);
885 static void l2arc_do_free_on_write(void);
886 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
887 boolean_t state_only);
888
889 static void arc_prune_async(uint64_t adjust);
890
891 #define l2arc_hdr_arcstats_increment(hdr) \
892 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
893 #define l2arc_hdr_arcstats_decrement(hdr) \
894 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
895 #define l2arc_hdr_arcstats_increment_state(hdr) \
896 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
897 #define l2arc_hdr_arcstats_decrement_state(hdr) \
898 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
899
900 /*
901 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
902 * present on special vdevs are eligibile for caching in L2ARC. If
903 * set to 1, exclude dbufs on special vdevs from being cached to
904 * L2ARC.
905 */
906 int l2arc_exclude_special = 0;
907
908 /*
909 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
910 * metadata and data are cached from ARC into L2ARC.
911 */
912 static int l2arc_mfuonly = 0;
913
914 /*
915 * L2ARC TRIM
916 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
917 * the current write size (l2arc_write_max) we should TRIM if we
918 * have filled the device. It is defined as a percentage of the
919 * write size. If set to 100 we trim twice the space required to
920 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
921 * It also enables TRIM of the whole L2ARC device upon creation or
922 * addition to an existing pool or if the header of the device is
923 * invalid upon importing a pool or onlining a cache device. The
924 * default is 0, which disables TRIM on L2ARC altogether as it can
925 * put significant stress on the underlying storage devices. This
926 * will vary depending of how well the specific device handles
927 * these commands.
928 */
929 static uint64_t l2arc_trim_ahead = 0;
930
931 /*
932 * Performance tuning of L2ARC persistence:
933 *
934 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
935 * an L2ARC device (either at pool import or later) will attempt
936 * to rebuild L2ARC buffer contents.
937 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
938 * whether log blocks are written to the L2ARC device. If the L2ARC
939 * device is less than 1GB, the amount of data l2arc_evict()
940 * evicts is significant compared to the amount of restored L2ARC
941 * data. In this case do not write log blocks in L2ARC in order
942 * not to waste space.
943 */
944 static int l2arc_rebuild_enabled = B_TRUE;
945 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
946
947 /* L2ARC persistence rebuild control routines. */
948 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
949 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
950 static int l2arc_rebuild(l2arc_dev_t *dev);
951
952 /* L2ARC persistence read I/O routines. */
953 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
954 static int l2arc_log_blk_read(l2arc_dev_t *dev,
955 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
956 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
957 zio_t *this_io, zio_t **next_io);
958 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
959 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
960 static void l2arc_log_blk_fetch_abort(zio_t *zio);
961
962 /* L2ARC persistence block restoration routines. */
963 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
964 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
965 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
966 l2arc_dev_t *dev);
967
968 /* L2ARC persistence write I/O routines. */
969 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
970 l2arc_write_callback_t *cb);
971
972 /* L2ARC persistence auxiliary routines. */
973 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
974 const l2arc_log_blkptr_t *lbp);
975 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
976 const arc_buf_hdr_t *ab);
977 boolean_t l2arc_range_check_overlap(uint64_t bottom,
978 uint64_t top, uint64_t check);
979 static void l2arc_blk_fetch_done(zio_t *zio);
980 static inline uint64_t
981 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
982
983 /*
984 * We use Cityhash for this. It's fast, and has good hash properties without
985 * requiring any large static buffers.
986 */
987 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)988 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
989 {
990 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
991 }
992
993 #define HDR_EMPTY(hdr) \
994 ((hdr)->b_dva.dva_word[0] == 0 && \
995 (hdr)->b_dva.dva_word[1] == 0)
996
997 #define HDR_EMPTY_OR_LOCKED(hdr) \
998 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
999
1000 #define HDR_EQUAL(spa, dva, birth, hdr) \
1001 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1002 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1003 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1004
1005 static void
buf_discard_identity(arc_buf_hdr_t * hdr)1006 buf_discard_identity(arc_buf_hdr_t *hdr)
1007 {
1008 hdr->b_dva.dva_word[0] = 0;
1009 hdr->b_dva.dva_word[1] = 0;
1010 hdr->b_birth = 0;
1011 }
1012
1013 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)1014 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1015 {
1016 const dva_t *dva = BP_IDENTITY(bp);
1017 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1018 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1019 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1020 arc_buf_hdr_t *hdr;
1021
1022 mutex_enter(hash_lock);
1023 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1024 hdr = hdr->b_hash_next) {
1025 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1026 *lockp = hash_lock;
1027 return (hdr);
1028 }
1029 }
1030 mutex_exit(hash_lock);
1031 *lockp = NULL;
1032 return (NULL);
1033 }
1034
1035 /*
1036 * Insert an entry into the hash table. If there is already an element
1037 * equal to elem in the hash table, then the already existing element
1038 * will be returned and the new element will not be inserted.
1039 * Otherwise returns NULL.
1040 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1041 */
1042 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1043 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1044 {
1045 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1046 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1047 arc_buf_hdr_t *fhdr;
1048 uint32_t i;
1049
1050 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1051 ASSERT(hdr->b_birth != 0);
1052 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1053
1054 if (lockp != NULL) {
1055 *lockp = hash_lock;
1056 mutex_enter(hash_lock);
1057 } else {
1058 ASSERT(MUTEX_HELD(hash_lock));
1059 }
1060
1061 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1062 fhdr = fhdr->b_hash_next, i++) {
1063 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1064 return (fhdr);
1065 }
1066
1067 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1068 buf_hash_table.ht_table[idx] = hdr;
1069 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1070
1071 /* collect some hash table performance data */
1072 if (i > 0) {
1073 ARCSTAT_BUMP(arcstat_hash_collisions);
1074 if (i == 1)
1075 ARCSTAT_BUMP(arcstat_hash_chains);
1076
1077 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1078 }
1079 uint64_t he = atomic_inc_64_nv(
1080 &arc_stats.arcstat_hash_elements.value.ui64);
1081 ARCSTAT_MAX(arcstat_hash_elements_max, he);
1082
1083 return (NULL);
1084 }
1085
1086 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1087 buf_hash_remove(arc_buf_hdr_t *hdr)
1088 {
1089 arc_buf_hdr_t *fhdr, **hdrp;
1090 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1091
1092 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1093 ASSERT(HDR_IN_HASH_TABLE(hdr));
1094
1095 hdrp = &buf_hash_table.ht_table[idx];
1096 while ((fhdr = *hdrp) != hdr) {
1097 ASSERT3P(fhdr, !=, NULL);
1098 hdrp = &fhdr->b_hash_next;
1099 }
1100 *hdrp = hdr->b_hash_next;
1101 hdr->b_hash_next = NULL;
1102 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1103
1104 /* collect some hash table performance data */
1105 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
1106
1107 if (buf_hash_table.ht_table[idx] &&
1108 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1109 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1110 }
1111
1112 /*
1113 * Global data structures and functions for the buf kmem cache.
1114 */
1115
1116 static kmem_cache_t *hdr_full_cache;
1117 static kmem_cache_t *hdr_l2only_cache;
1118 static kmem_cache_t *buf_cache;
1119
1120 static void
buf_fini(void)1121 buf_fini(void)
1122 {
1123 #if defined(_KERNEL)
1124 /*
1125 * Large allocations which do not require contiguous pages
1126 * should be using vmem_free() in the linux kernel\
1127 */
1128 vmem_free(buf_hash_table.ht_table,
1129 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1130 #else
1131 kmem_free(buf_hash_table.ht_table,
1132 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1133 #endif
1134 for (int i = 0; i < BUF_LOCKS; i++)
1135 mutex_destroy(BUF_HASH_LOCK(i));
1136 kmem_cache_destroy(hdr_full_cache);
1137 kmem_cache_destroy(hdr_l2only_cache);
1138 kmem_cache_destroy(buf_cache);
1139 }
1140
1141 /*
1142 * Constructor callback - called when the cache is empty
1143 * and a new buf is requested.
1144 */
1145 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1146 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1147 {
1148 (void) unused, (void) kmflag;
1149 arc_buf_hdr_t *hdr = vbuf;
1150
1151 memset(hdr, 0, HDR_FULL_SIZE);
1152 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1153 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1154 #ifdef ZFS_DEBUG
1155 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1156 #endif
1157 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1158 list_link_init(&hdr->b_l2hdr.b_l2node);
1159 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1160
1161 return (0);
1162 }
1163
1164 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1165 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1166 {
1167 (void) unused, (void) kmflag;
1168 arc_buf_hdr_t *hdr = vbuf;
1169
1170 memset(hdr, 0, HDR_L2ONLY_SIZE);
1171 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1172
1173 return (0);
1174 }
1175
1176 static int
buf_cons(void * vbuf,void * unused,int kmflag)1177 buf_cons(void *vbuf, void *unused, int kmflag)
1178 {
1179 (void) unused, (void) kmflag;
1180 arc_buf_t *buf = vbuf;
1181
1182 memset(buf, 0, sizeof (arc_buf_t));
1183 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1184
1185 return (0);
1186 }
1187
1188 /*
1189 * Destructor callback - called when a cached buf is
1190 * no longer required.
1191 */
1192 static void
hdr_full_dest(void * vbuf,void * unused)1193 hdr_full_dest(void *vbuf, void *unused)
1194 {
1195 (void) unused;
1196 arc_buf_hdr_t *hdr = vbuf;
1197
1198 ASSERT(HDR_EMPTY(hdr));
1199 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1200 #ifdef ZFS_DEBUG
1201 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1202 #endif
1203 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1204 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1205 }
1206
1207 static void
hdr_l2only_dest(void * vbuf,void * unused)1208 hdr_l2only_dest(void *vbuf, void *unused)
1209 {
1210 (void) unused;
1211 arc_buf_hdr_t *hdr = vbuf;
1212
1213 ASSERT(HDR_EMPTY(hdr));
1214 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1215 }
1216
1217 static void
buf_dest(void * vbuf,void * unused)1218 buf_dest(void *vbuf, void *unused)
1219 {
1220 (void) unused;
1221 (void) vbuf;
1222
1223 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1224 }
1225
1226 static void
buf_init(void)1227 buf_init(void)
1228 {
1229 uint64_t *ct = NULL;
1230 uint64_t hsize = 1ULL << 12;
1231 int i, j;
1232
1233 /*
1234 * The hash table is big enough to fill all of physical memory
1235 * with an average block size of zfs_arc_average_blocksize (default 8K).
1236 * By default, the table will take up
1237 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1238 */
1239 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1240 hsize <<= 1;
1241 retry:
1242 buf_hash_table.ht_mask = hsize - 1;
1243 #if defined(_KERNEL)
1244 /*
1245 * Large allocations which do not require contiguous pages
1246 * should be using vmem_alloc() in the linux kernel
1247 */
1248 buf_hash_table.ht_table =
1249 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1250 #else
1251 buf_hash_table.ht_table =
1252 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1253 #endif
1254 if (buf_hash_table.ht_table == NULL) {
1255 ASSERT(hsize > (1ULL << 8));
1256 hsize >>= 1;
1257 goto retry;
1258 }
1259
1260 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1261 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1262 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1263 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1264 NULL, NULL, 0);
1265 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1266 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1267
1268 for (i = 0; i < 256; i++)
1269 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1270 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1271
1272 for (i = 0; i < BUF_LOCKS; i++)
1273 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1274 }
1275
1276 #define ARC_MINTIME (hz>>4) /* 62 ms */
1277
1278 /*
1279 * This is the size that the buf occupies in memory. If the buf is compressed,
1280 * it will correspond to the compressed size. You should use this method of
1281 * getting the buf size unless you explicitly need the logical size.
1282 */
1283 uint64_t
arc_buf_size(arc_buf_t * buf)1284 arc_buf_size(arc_buf_t *buf)
1285 {
1286 return (ARC_BUF_COMPRESSED(buf) ?
1287 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1288 }
1289
1290 uint64_t
arc_buf_lsize(arc_buf_t * buf)1291 arc_buf_lsize(arc_buf_t *buf)
1292 {
1293 return (HDR_GET_LSIZE(buf->b_hdr));
1294 }
1295
1296 /*
1297 * This function will return B_TRUE if the buffer is encrypted in memory.
1298 * This buffer can be decrypted by calling arc_untransform().
1299 */
1300 boolean_t
arc_is_encrypted(arc_buf_t * buf)1301 arc_is_encrypted(arc_buf_t *buf)
1302 {
1303 return (ARC_BUF_ENCRYPTED(buf) != 0);
1304 }
1305
1306 /*
1307 * Returns B_TRUE if the buffer represents data that has not had its MAC
1308 * verified yet.
1309 */
1310 boolean_t
arc_is_unauthenticated(arc_buf_t * buf)1311 arc_is_unauthenticated(arc_buf_t *buf)
1312 {
1313 return (HDR_NOAUTH(buf->b_hdr) != 0);
1314 }
1315
1316 void
arc_get_raw_params(arc_buf_t * buf,boolean_t * byteorder,uint8_t * salt,uint8_t * iv,uint8_t * mac)1317 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1318 uint8_t *iv, uint8_t *mac)
1319 {
1320 arc_buf_hdr_t *hdr = buf->b_hdr;
1321
1322 ASSERT(HDR_PROTECTED(hdr));
1323
1324 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1325 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1326 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1327 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1328 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1329 }
1330
1331 /*
1332 * Indicates how this buffer is compressed in memory. If it is not compressed
1333 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1334 * arc_untransform() as long as it is also unencrypted.
1335 */
1336 enum zio_compress
arc_get_compression(arc_buf_t * buf)1337 arc_get_compression(arc_buf_t *buf)
1338 {
1339 return (ARC_BUF_COMPRESSED(buf) ?
1340 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1341 }
1342
1343 /*
1344 * Return the compression algorithm used to store this data in the ARC. If ARC
1345 * compression is enabled or this is an encrypted block, this will be the same
1346 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1347 */
1348 static inline enum zio_compress
arc_hdr_get_compress(arc_buf_hdr_t * hdr)1349 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1350 {
1351 return (HDR_COMPRESSION_ENABLED(hdr) ?
1352 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1353 }
1354
1355 uint8_t
arc_get_complevel(arc_buf_t * buf)1356 arc_get_complevel(arc_buf_t *buf)
1357 {
1358 return (buf->b_hdr->b_complevel);
1359 }
1360
1361 static inline boolean_t
arc_buf_is_shared(arc_buf_t * buf)1362 arc_buf_is_shared(arc_buf_t *buf)
1363 {
1364 boolean_t shared = (buf->b_data != NULL &&
1365 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1366 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1367 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1368 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1369 EQUIV(shared, ARC_BUF_SHARED(buf));
1370 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1371
1372 /*
1373 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1374 * already being shared" requirement prevents us from doing that.
1375 */
1376
1377 return (shared);
1378 }
1379
1380 /*
1381 * Free the checksum associated with this header. If there is no checksum, this
1382 * is a no-op.
1383 */
1384 static inline void
arc_cksum_free(arc_buf_hdr_t * hdr)1385 arc_cksum_free(arc_buf_hdr_t *hdr)
1386 {
1387 #ifdef ZFS_DEBUG
1388 ASSERT(HDR_HAS_L1HDR(hdr));
1389
1390 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1391 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1392 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1393 hdr->b_l1hdr.b_freeze_cksum = NULL;
1394 }
1395 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1396 #endif
1397 }
1398
1399 /*
1400 * Return true iff at least one of the bufs on hdr is not compressed.
1401 * Encrypted buffers count as compressed.
1402 */
1403 static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t * hdr)1404 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1405 {
1406 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1407
1408 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1409 if (!ARC_BUF_COMPRESSED(b)) {
1410 return (B_TRUE);
1411 }
1412 }
1413 return (B_FALSE);
1414 }
1415
1416
1417 /*
1418 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1419 * matches the checksum that is stored in the hdr. If there is no checksum,
1420 * or if the buf is compressed, this is a no-op.
1421 */
1422 static void
arc_cksum_verify(arc_buf_t * buf)1423 arc_cksum_verify(arc_buf_t *buf)
1424 {
1425 #ifdef ZFS_DEBUG
1426 arc_buf_hdr_t *hdr = buf->b_hdr;
1427 zio_cksum_t zc;
1428
1429 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1430 return;
1431
1432 if (ARC_BUF_COMPRESSED(buf))
1433 return;
1434
1435 ASSERT(HDR_HAS_L1HDR(hdr));
1436
1437 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1438
1439 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1440 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1441 return;
1442 }
1443
1444 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1445 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1446 panic("buffer modified while frozen!");
1447 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1448 #endif
1449 }
1450
1451 /*
1452 * This function makes the assumption that data stored in the L2ARC
1453 * will be transformed exactly as it is in the main pool. Because of
1454 * this we can verify the checksum against the reading process's bp.
1455 */
1456 static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t * hdr,zio_t * zio)1457 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1458 {
1459 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1460 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1461
1462 /*
1463 * Block pointers always store the checksum for the logical data.
1464 * If the block pointer has the gang bit set, then the checksum
1465 * it represents is for the reconstituted data and not for an
1466 * individual gang member. The zio pipeline, however, must be able to
1467 * determine the checksum of each of the gang constituents so it
1468 * treats the checksum comparison differently than what we need
1469 * for l2arc blocks. This prevents us from using the
1470 * zio_checksum_error() interface directly. Instead we must call the
1471 * zio_checksum_error_impl() so that we can ensure the checksum is
1472 * generated using the correct checksum algorithm and accounts for the
1473 * logical I/O size and not just a gang fragment.
1474 */
1475 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1476 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1477 zio->io_offset, NULL) == 0);
1478 }
1479
1480 /*
1481 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1482 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1483 * isn't modified later on. If buf is compressed or there is already a checksum
1484 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1485 */
1486 static void
arc_cksum_compute(arc_buf_t * buf)1487 arc_cksum_compute(arc_buf_t *buf)
1488 {
1489 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1490 return;
1491
1492 #ifdef ZFS_DEBUG
1493 arc_buf_hdr_t *hdr = buf->b_hdr;
1494 ASSERT(HDR_HAS_L1HDR(hdr));
1495 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1496 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1497 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1498 return;
1499 }
1500
1501 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1502 ASSERT(!ARC_BUF_COMPRESSED(buf));
1503 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1504 KM_SLEEP);
1505 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1506 hdr->b_l1hdr.b_freeze_cksum);
1507 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1508 #endif
1509 arc_buf_watch(buf);
1510 }
1511
1512 #ifndef _KERNEL
1513 void
arc_buf_sigsegv(int sig,siginfo_t * si,void * unused)1514 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1515 {
1516 (void) sig, (void) unused;
1517 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1518 }
1519 #endif
1520
1521 static void
arc_buf_unwatch(arc_buf_t * buf)1522 arc_buf_unwatch(arc_buf_t *buf)
1523 {
1524 #ifndef _KERNEL
1525 if (arc_watch) {
1526 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1527 PROT_READ | PROT_WRITE));
1528 }
1529 #else
1530 (void) buf;
1531 #endif
1532 }
1533
1534 static void
arc_buf_watch(arc_buf_t * buf)1535 arc_buf_watch(arc_buf_t *buf)
1536 {
1537 #ifndef _KERNEL
1538 if (arc_watch)
1539 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1540 PROT_READ));
1541 #else
1542 (void) buf;
1543 #endif
1544 }
1545
1546 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1547 arc_buf_type(arc_buf_hdr_t *hdr)
1548 {
1549 arc_buf_contents_t type;
1550 if (HDR_ISTYPE_METADATA(hdr)) {
1551 type = ARC_BUFC_METADATA;
1552 } else {
1553 type = ARC_BUFC_DATA;
1554 }
1555 VERIFY3U(hdr->b_type, ==, type);
1556 return (type);
1557 }
1558
1559 boolean_t
arc_is_metadata(arc_buf_t * buf)1560 arc_is_metadata(arc_buf_t *buf)
1561 {
1562 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1563 }
1564
1565 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1566 arc_bufc_to_flags(arc_buf_contents_t type)
1567 {
1568 switch (type) {
1569 case ARC_BUFC_DATA:
1570 /* metadata field is 0 if buffer contains normal data */
1571 return (0);
1572 case ARC_BUFC_METADATA:
1573 return (ARC_FLAG_BUFC_METADATA);
1574 default:
1575 break;
1576 }
1577 panic("undefined ARC buffer type!");
1578 return ((uint32_t)-1);
1579 }
1580
1581 void
arc_buf_thaw(arc_buf_t * buf)1582 arc_buf_thaw(arc_buf_t *buf)
1583 {
1584 arc_buf_hdr_t *hdr = buf->b_hdr;
1585
1586 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1587 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1588
1589 arc_cksum_verify(buf);
1590
1591 /*
1592 * Compressed buffers do not manipulate the b_freeze_cksum.
1593 */
1594 if (ARC_BUF_COMPRESSED(buf))
1595 return;
1596
1597 ASSERT(HDR_HAS_L1HDR(hdr));
1598 arc_cksum_free(hdr);
1599 arc_buf_unwatch(buf);
1600 }
1601
1602 void
arc_buf_freeze(arc_buf_t * buf)1603 arc_buf_freeze(arc_buf_t *buf)
1604 {
1605 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1606 return;
1607
1608 if (ARC_BUF_COMPRESSED(buf))
1609 return;
1610
1611 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1612 arc_cksum_compute(buf);
1613 }
1614
1615 /*
1616 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1617 * the following functions should be used to ensure that the flags are
1618 * updated in a thread-safe way. When manipulating the flags either
1619 * the hash_lock must be held or the hdr must be undiscoverable. This
1620 * ensures that we're not racing with any other threads when updating
1621 * the flags.
1622 */
1623 static inline void
arc_hdr_set_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1624 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1625 {
1626 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1627 hdr->b_flags |= flags;
1628 }
1629
1630 static inline void
arc_hdr_clear_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1631 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1632 {
1633 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1634 hdr->b_flags &= ~flags;
1635 }
1636
1637 /*
1638 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1639 * done in a special way since we have to clear and set bits
1640 * at the same time. Consumers that wish to set the compression bits
1641 * must use this function to ensure that the flags are updated in
1642 * thread-safe manner.
1643 */
1644 static void
arc_hdr_set_compress(arc_buf_hdr_t * hdr,enum zio_compress cmp)1645 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1646 {
1647 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1648
1649 /*
1650 * Holes and embedded blocks will always have a psize = 0 so
1651 * we ignore the compression of the blkptr and set the
1652 * want to uncompress them. Mark them as uncompressed.
1653 */
1654 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1655 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1656 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1657 } else {
1658 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1659 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1660 }
1661
1662 HDR_SET_COMPRESS(hdr, cmp);
1663 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1664 }
1665
1666 /*
1667 * Looks for another buf on the same hdr which has the data decompressed, copies
1668 * from it, and returns true. If no such buf exists, returns false.
1669 */
1670 static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t * buf)1671 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1672 {
1673 arc_buf_hdr_t *hdr = buf->b_hdr;
1674 boolean_t copied = B_FALSE;
1675
1676 ASSERT(HDR_HAS_L1HDR(hdr));
1677 ASSERT3P(buf->b_data, !=, NULL);
1678 ASSERT(!ARC_BUF_COMPRESSED(buf));
1679
1680 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1681 from = from->b_next) {
1682 /* can't use our own data buffer */
1683 if (from == buf) {
1684 continue;
1685 }
1686
1687 if (!ARC_BUF_COMPRESSED(from)) {
1688 memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1689 copied = B_TRUE;
1690 break;
1691 }
1692 }
1693
1694 #ifdef ZFS_DEBUG
1695 /*
1696 * There were no decompressed bufs, so there should not be a
1697 * checksum on the hdr either.
1698 */
1699 if (zfs_flags & ZFS_DEBUG_MODIFY)
1700 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1701 #endif
1702
1703 return (copied);
1704 }
1705
1706 /*
1707 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1708 * This is used during l2arc reconstruction to make empty ARC buffers
1709 * which circumvent the regular disk->arc->l2arc path and instead come
1710 * into being in the reverse order, i.e. l2arc->arc.
1711 */
1712 static arc_buf_hdr_t *
arc_buf_alloc_l2only(size_t size,arc_buf_contents_t type,l2arc_dev_t * dev,dva_t dva,uint64_t daddr,int32_t psize,uint64_t birth,enum zio_compress compress,uint8_t complevel,boolean_t protected,boolean_t prefetch,arc_state_type_t arcs_state)1713 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1714 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1715 enum zio_compress compress, uint8_t complevel, boolean_t protected,
1716 boolean_t prefetch, arc_state_type_t arcs_state)
1717 {
1718 arc_buf_hdr_t *hdr;
1719
1720 ASSERT(size != 0);
1721 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1722 hdr->b_birth = birth;
1723 hdr->b_type = type;
1724 hdr->b_flags = 0;
1725 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1726 HDR_SET_LSIZE(hdr, size);
1727 HDR_SET_PSIZE(hdr, psize);
1728 arc_hdr_set_compress(hdr, compress);
1729 hdr->b_complevel = complevel;
1730 if (protected)
1731 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1732 if (prefetch)
1733 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1734 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1735
1736 hdr->b_dva = dva;
1737
1738 hdr->b_l2hdr.b_dev = dev;
1739 hdr->b_l2hdr.b_daddr = daddr;
1740 hdr->b_l2hdr.b_arcs_state = arcs_state;
1741
1742 return (hdr);
1743 }
1744
1745 /*
1746 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1747 */
1748 static uint64_t
arc_hdr_size(arc_buf_hdr_t * hdr)1749 arc_hdr_size(arc_buf_hdr_t *hdr)
1750 {
1751 uint64_t size;
1752
1753 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1754 HDR_GET_PSIZE(hdr) > 0) {
1755 size = HDR_GET_PSIZE(hdr);
1756 } else {
1757 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1758 size = HDR_GET_LSIZE(hdr);
1759 }
1760 return (size);
1761 }
1762
1763 static int
arc_hdr_authenticate(arc_buf_hdr_t * hdr,spa_t * spa,uint64_t dsobj)1764 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1765 {
1766 int ret;
1767 uint64_t csize;
1768 uint64_t lsize = HDR_GET_LSIZE(hdr);
1769 uint64_t psize = HDR_GET_PSIZE(hdr);
1770 void *tmpbuf = NULL;
1771 abd_t *abd = hdr->b_l1hdr.b_pabd;
1772
1773 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1774 ASSERT(HDR_AUTHENTICATED(hdr));
1775 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1776
1777 /*
1778 * The MAC is calculated on the compressed data that is stored on disk.
1779 * However, if compressed arc is disabled we will only have the
1780 * decompressed data available to us now. Compress it into a temporary
1781 * abd so we can verify the MAC. The performance overhead of this will
1782 * be relatively low, since most objects in an encrypted objset will
1783 * be encrypted (instead of authenticated) anyway.
1784 */
1785 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1786 !HDR_COMPRESSION_ENABLED(hdr)) {
1787
1788 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1789 hdr->b_l1hdr.b_pabd, &tmpbuf, lsize, hdr->b_complevel);
1790 ASSERT3P(tmpbuf, !=, NULL);
1791 ASSERT3U(csize, <=, psize);
1792 abd = abd_get_from_buf(tmpbuf, lsize);
1793 abd_take_ownership_of_buf(abd, B_TRUE);
1794 abd_zero_off(abd, csize, psize - csize);
1795 }
1796
1797 /*
1798 * Authentication is best effort. We authenticate whenever the key is
1799 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1800 */
1801 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1802 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1803 ASSERT3U(lsize, ==, psize);
1804 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1805 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1806 } else {
1807 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1808 hdr->b_crypt_hdr.b_mac);
1809 }
1810
1811 if (ret == 0)
1812 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1813 else if (ret != ENOENT)
1814 goto error;
1815
1816 if (tmpbuf != NULL)
1817 abd_free(abd);
1818
1819 return (0);
1820
1821 error:
1822 if (tmpbuf != NULL)
1823 abd_free(abd);
1824
1825 return (ret);
1826 }
1827
1828 /*
1829 * This function will take a header that only has raw encrypted data in
1830 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1831 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1832 * also decompress the data.
1833 */
1834 static int
arc_hdr_decrypt(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb)1835 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1836 {
1837 int ret;
1838 abd_t *cabd = NULL;
1839 void *tmp = NULL;
1840 boolean_t no_crypt = B_FALSE;
1841 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1842
1843 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1844 ASSERT(HDR_ENCRYPTED(hdr));
1845
1846 arc_hdr_alloc_abd(hdr, 0);
1847
1848 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1849 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1850 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1851 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1852 if (ret != 0)
1853 goto error;
1854
1855 if (no_crypt) {
1856 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1857 HDR_GET_PSIZE(hdr));
1858 }
1859
1860 /*
1861 * If this header has disabled arc compression but the b_pabd is
1862 * compressed after decrypting it, we need to decompress the newly
1863 * decrypted data.
1864 */
1865 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1866 !HDR_COMPRESSION_ENABLED(hdr)) {
1867 /*
1868 * We want to make sure that we are correctly honoring the
1869 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1870 * and then loan a buffer from it, rather than allocating a
1871 * linear buffer and wrapping it in an abd later.
1872 */
1873 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1874 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1875
1876 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1877 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1878 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1879 if (ret != 0) {
1880 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1881 goto error;
1882 }
1883
1884 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1885 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1886 arc_hdr_size(hdr), hdr);
1887 hdr->b_l1hdr.b_pabd = cabd;
1888 }
1889
1890 return (0);
1891
1892 error:
1893 arc_hdr_free_abd(hdr, B_FALSE);
1894 if (cabd != NULL)
1895 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1896
1897 return (ret);
1898 }
1899
1900 /*
1901 * This function is called during arc_buf_fill() to prepare the header's
1902 * abd plaintext pointer for use. This involves authenticated protected
1903 * data and decrypting encrypted data into the plaintext abd.
1904 */
1905 static int
arc_fill_hdr_crypt(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,spa_t * spa,const zbookmark_phys_t * zb,boolean_t noauth)1906 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1907 const zbookmark_phys_t *zb, boolean_t noauth)
1908 {
1909 int ret;
1910
1911 ASSERT(HDR_PROTECTED(hdr));
1912
1913 if (hash_lock != NULL)
1914 mutex_enter(hash_lock);
1915
1916 if (HDR_NOAUTH(hdr) && !noauth) {
1917 /*
1918 * The caller requested authenticated data but our data has
1919 * not been authenticated yet. Verify the MAC now if we can.
1920 */
1921 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1922 if (ret != 0)
1923 goto error;
1924 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1925 /*
1926 * If we only have the encrypted version of the data, but the
1927 * unencrypted version was requested we take this opportunity
1928 * to store the decrypted version in the header for future use.
1929 */
1930 ret = arc_hdr_decrypt(hdr, spa, zb);
1931 if (ret != 0)
1932 goto error;
1933 }
1934
1935 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1936
1937 if (hash_lock != NULL)
1938 mutex_exit(hash_lock);
1939
1940 return (0);
1941
1942 error:
1943 if (hash_lock != NULL)
1944 mutex_exit(hash_lock);
1945
1946 return (ret);
1947 }
1948
1949 /*
1950 * This function is used by the dbuf code to decrypt bonus buffers in place.
1951 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1952 * block, so we use the hash lock here to protect against concurrent calls to
1953 * arc_buf_fill().
1954 */
1955 static void
arc_buf_untransform_in_place(arc_buf_t * buf)1956 arc_buf_untransform_in_place(arc_buf_t *buf)
1957 {
1958 arc_buf_hdr_t *hdr = buf->b_hdr;
1959
1960 ASSERT(HDR_ENCRYPTED(hdr));
1961 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1962 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1963 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1964
1965 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1966 arc_buf_size(buf));
1967 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1968 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1969 }
1970
1971 /*
1972 * Given a buf that has a data buffer attached to it, this function will
1973 * efficiently fill the buf with data of the specified compression setting from
1974 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1975 * are already sharing a data buf, no copy is performed.
1976 *
1977 * If the buf is marked as compressed but uncompressed data was requested, this
1978 * will allocate a new data buffer for the buf, remove that flag, and fill the
1979 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1980 * uncompressed data, and (since we haven't added support for it yet) if you
1981 * want compressed data your buf must already be marked as compressed and have
1982 * the correct-sized data buffer.
1983 */
1984 static int
arc_buf_fill(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,arc_fill_flags_t flags)1985 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1986 arc_fill_flags_t flags)
1987 {
1988 int error = 0;
1989 arc_buf_hdr_t *hdr = buf->b_hdr;
1990 boolean_t hdr_compressed =
1991 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1992 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1993 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
1994 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1995 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
1996
1997 ASSERT3P(buf->b_data, !=, NULL);
1998 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
1999 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2000 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2001 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2002 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2003 IMPLY(encrypted, !arc_buf_is_shared(buf));
2004
2005 /*
2006 * If the caller wanted encrypted data we just need to copy it from
2007 * b_rabd and potentially byteswap it. We won't be able to do any
2008 * further transforms on it.
2009 */
2010 if (encrypted) {
2011 ASSERT(HDR_HAS_RABD(hdr));
2012 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2013 HDR_GET_PSIZE(hdr));
2014 goto byteswap;
2015 }
2016
2017 /*
2018 * Adjust encrypted and authenticated headers to accommodate
2019 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2020 * allowed to fail decryption due to keys not being loaded
2021 * without being marked as an IO error.
2022 */
2023 if (HDR_PROTECTED(hdr)) {
2024 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2025 zb, !!(flags & ARC_FILL_NOAUTH));
2026 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2027 return (error);
2028 } else if (error != 0) {
2029 if (hash_lock != NULL)
2030 mutex_enter(hash_lock);
2031 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2032 if (hash_lock != NULL)
2033 mutex_exit(hash_lock);
2034 return (error);
2035 }
2036 }
2037
2038 /*
2039 * There is a special case here for dnode blocks which are
2040 * decrypting their bonus buffers. These blocks may request to
2041 * be decrypted in-place. This is necessary because there may
2042 * be many dnodes pointing into this buffer and there is
2043 * currently no method to synchronize replacing the backing
2044 * b_data buffer and updating all of the pointers. Here we use
2045 * the hash lock to ensure there are no races. If the need
2046 * arises for other types to be decrypted in-place, they must
2047 * add handling here as well.
2048 */
2049 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2050 ASSERT(!hdr_compressed);
2051 ASSERT(!compressed);
2052 ASSERT(!encrypted);
2053
2054 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2055 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2056
2057 if (hash_lock != NULL)
2058 mutex_enter(hash_lock);
2059 arc_buf_untransform_in_place(buf);
2060 if (hash_lock != NULL)
2061 mutex_exit(hash_lock);
2062
2063 /* Compute the hdr's checksum if necessary */
2064 arc_cksum_compute(buf);
2065 }
2066
2067 return (0);
2068 }
2069
2070 if (hdr_compressed == compressed) {
2071 if (ARC_BUF_SHARED(buf)) {
2072 ASSERT(arc_buf_is_shared(buf));
2073 } else {
2074 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2075 arc_buf_size(buf));
2076 }
2077 } else {
2078 ASSERT(hdr_compressed);
2079 ASSERT(!compressed);
2080
2081 /*
2082 * If the buf is sharing its data with the hdr, unlink it and
2083 * allocate a new data buffer for the buf.
2084 */
2085 if (ARC_BUF_SHARED(buf)) {
2086 ASSERT(ARC_BUF_COMPRESSED(buf));
2087
2088 /* We need to give the buf its own b_data */
2089 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2090 buf->b_data =
2091 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2092 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2093
2094 /* Previously overhead was 0; just add new overhead */
2095 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2096 } else if (ARC_BUF_COMPRESSED(buf)) {
2097 ASSERT(!arc_buf_is_shared(buf));
2098
2099 /* We need to reallocate the buf's b_data */
2100 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2101 buf);
2102 buf->b_data =
2103 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2104
2105 /* We increased the size of b_data; update overhead */
2106 ARCSTAT_INCR(arcstat_overhead_size,
2107 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2108 }
2109
2110 /*
2111 * Regardless of the buf's previous compression settings, it
2112 * should not be compressed at the end of this function.
2113 */
2114 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2115
2116 /*
2117 * Try copying the data from another buf which already has a
2118 * decompressed version. If that's not possible, it's time to
2119 * bite the bullet and decompress the data from the hdr.
2120 */
2121 if (arc_buf_try_copy_decompressed_data(buf)) {
2122 /* Skip byteswapping and checksumming (already done) */
2123 return (0);
2124 } else {
2125 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2126 hdr->b_l1hdr.b_pabd, buf->b_data,
2127 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2128 &hdr->b_complevel);
2129
2130 /*
2131 * Absent hardware errors or software bugs, this should
2132 * be impossible, but log it anyway so we can debug it.
2133 */
2134 if (error != 0) {
2135 zfs_dbgmsg(
2136 "hdr %px, compress %d, psize %d, lsize %d",
2137 hdr, arc_hdr_get_compress(hdr),
2138 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2139 if (hash_lock != NULL)
2140 mutex_enter(hash_lock);
2141 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2142 if (hash_lock != NULL)
2143 mutex_exit(hash_lock);
2144 return (SET_ERROR(EIO));
2145 }
2146 }
2147 }
2148
2149 byteswap:
2150 /* Byteswap the buf's data if necessary */
2151 if (bswap != DMU_BSWAP_NUMFUNCS) {
2152 ASSERT(!HDR_SHARED_DATA(hdr));
2153 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2154 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2155 }
2156
2157 /* Compute the hdr's checksum if necessary */
2158 arc_cksum_compute(buf);
2159
2160 return (0);
2161 }
2162
2163 /*
2164 * If this function is being called to decrypt an encrypted buffer or verify an
2165 * authenticated one, the key must be loaded and a mapping must be made
2166 * available in the keystore via spa_keystore_create_mapping() or one of its
2167 * callers.
2168 */
2169 int
arc_untransform(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,boolean_t in_place)2170 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2171 boolean_t in_place)
2172 {
2173 int ret;
2174 arc_fill_flags_t flags = 0;
2175
2176 if (in_place)
2177 flags |= ARC_FILL_IN_PLACE;
2178
2179 ret = arc_buf_fill(buf, spa, zb, flags);
2180 if (ret == ECKSUM) {
2181 /*
2182 * Convert authentication and decryption errors to EIO
2183 * (and generate an ereport) before leaving the ARC.
2184 */
2185 ret = SET_ERROR(EIO);
2186 spa_log_error(spa, zb, &buf->b_hdr->b_birth);
2187 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2188 spa, NULL, zb, NULL, 0);
2189 }
2190
2191 return (ret);
2192 }
2193
2194 /*
2195 * Increment the amount of evictable space in the arc_state_t's refcount.
2196 * We account for the space used by the hdr and the arc buf individually
2197 * so that we can add and remove them from the refcount individually.
2198 */
2199 static void
arc_evictable_space_increment(arc_buf_hdr_t * hdr,arc_state_t * state)2200 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2201 {
2202 arc_buf_contents_t type = arc_buf_type(hdr);
2203
2204 ASSERT(HDR_HAS_L1HDR(hdr));
2205
2206 if (GHOST_STATE(state)) {
2207 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2208 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2209 ASSERT(!HDR_HAS_RABD(hdr));
2210 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2211 HDR_GET_LSIZE(hdr), hdr);
2212 return;
2213 }
2214
2215 if (hdr->b_l1hdr.b_pabd != NULL) {
2216 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2217 arc_hdr_size(hdr), hdr);
2218 }
2219 if (HDR_HAS_RABD(hdr)) {
2220 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2221 HDR_GET_PSIZE(hdr), hdr);
2222 }
2223
2224 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2225 buf = buf->b_next) {
2226 if (ARC_BUF_SHARED(buf))
2227 continue;
2228 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2229 arc_buf_size(buf), buf);
2230 }
2231 }
2232
2233 /*
2234 * Decrement the amount of evictable space in the arc_state_t's refcount.
2235 * We account for the space used by the hdr and the arc buf individually
2236 * so that we can add and remove them from the refcount individually.
2237 */
2238 static void
arc_evictable_space_decrement(arc_buf_hdr_t * hdr,arc_state_t * state)2239 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2240 {
2241 arc_buf_contents_t type = arc_buf_type(hdr);
2242
2243 ASSERT(HDR_HAS_L1HDR(hdr));
2244
2245 if (GHOST_STATE(state)) {
2246 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2247 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2248 ASSERT(!HDR_HAS_RABD(hdr));
2249 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2250 HDR_GET_LSIZE(hdr), hdr);
2251 return;
2252 }
2253
2254 if (hdr->b_l1hdr.b_pabd != NULL) {
2255 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2256 arc_hdr_size(hdr), hdr);
2257 }
2258 if (HDR_HAS_RABD(hdr)) {
2259 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2260 HDR_GET_PSIZE(hdr), hdr);
2261 }
2262
2263 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2264 buf = buf->b_next) {
2265 if (ARC_BUF_SHARED(buf))
2266 continue;
2267 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2268 arc_buf_size(buf), buf);
2269 }
2270 }
2271
2272 /*
2273 * Add a reference to this hdr indicating that someone is actively
2274 * referencing that memory. When the refcount transitions from 0 to 1,
2275 * we remove it from the respective arc_state_t list to indicate that
2276 * it is not evictable.
2277 */
2278 static void
add_reference(arc_buf_hdr_t * hdr,const void * tag)2279 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2280 {
2281 arc_state_t *state = hdr->b_l1hdr.b_state;
2282
2283 ASSERT(HDR_HAS_L1HDR(hdr));
2284 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2285 ASSERT(state == arc_anon);
2286 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2287 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2288 }
2289
2290 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2291 state != arc_anon && state != arc_l2c_only) {
2292 /* We don't use the L2-only state list. */
2293 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2294 arc_evictable_space_decrement(hdr, state);
2295 }
2296 }
2297
2298 /*
2299 * Remove a reference from this hdr. When the reference transitions from
2300 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2301 * list making it eligible for eviction.
2302 */
2303 static int
remove_reference(arc_buf_hdr_t * hdr,const void * tag)2304 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2305 {
2306 int cnt;
2307 arc_state_t *state = hdr->b_l1hdr.b_state;
2308
2309 ASSERT(HDR_HAS_L1HDR(hdr));
2310 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2311 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */
2312
2313 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2314 return (cnt);
2315
2316 if (state == arc_anon) {
2317 arc_hdr_destroy(hdr);
2318 return (0);
2319 }
2320 if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2321 arc_change_state(arc_anon, hdr);
2322 arc_hdr_destroy(hdr);
2323 return (0);
2324 }
2325 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2326 arc_evictable_space_increment(hdr, state);
2327 return (0);
2328 }
2329
2330 /*
2331 * Returns detailed information about a specific arc buffer. When the
2332 * state_index argument is set the function will calculate the arc header
2333 * list position for its arc state. Since this requires a linear traversal
2334 * callers are strongly encourage not to do this. However, it can be helpful
2335 * for targeted analysis so the functionality is provided.
2336 */
2337 void
arc_buf_info(arc_buf_t * ab,arc_buf_info_t * abi,int state_index)2338 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2339 {
2340 (void) state_index;
2341 arc_buf_hdr_t *hdr = ab->b_hdr;
2342 l1arc_buf_hdr_t *l1hdr = NULL;
2343 l2arc_buf_hdr_t *l2hdr = NULL;
2344 arc_state_t *state = NULL;
2345
2346 memset(abi, 0, sizeof (arc_buf_info_t));
2347
2348 if (hdr == NULL)
2349 return;
2350
2351 abi->abi_flags = hdr->b_flags;
2352
2353 if (HDR_HAS_L1HDR(hdr)) {
2354 l1hdr = &hdr->b_l1hdr;
2355 state = l1hdr->b_state;
2356 }
2357 if (HDR_HAS_L2HDR(hdr))
2358 l2hdr = &hdr->b_l2hdr;
2359
2360 if (l1hdr) {
2361 abi->abi_bufcnt = 0;
2362 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2363 abi->abi_bufcnt++;
2364 abi->abi_access = l1hdr->b_arc_access;
2365 abi->abi_mru_hits = l1hdr->b_mru_hits;
2366 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2367 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2368 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2369 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2370 }
2371
2372 if (l2hdr) {
2373 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2374 abi->abi_l2arc_hits = l2hdr->b_hits;
2375 }
2376
2377 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2378 abi->abi_state_contents = arc_buf_type(hdr);
2379 abi->abi_size = arc_hdr_size(hdr);
2380 }
2381
2382 /*
2383 * Move the supplied buffer to the indicated state. The hash lock
2384 * for the buffer must be held by the caller.
2385 */
2386 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr)2387 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2388 {
2389 arc_state_t *old_state;
2390 int64_t refcnt;
2391 boolean_t update_old, update_new;
2392 arc_buf_contents_t type = arc_buf_type(hdr);
2393
2394 /*
2395 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2396 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2397 * L1 hdr doesn't always exist when we change state to arc_anon before
2398 * destroying a header, in which case reallocating to add the L1 hdr is
2399 * pointless.
2400 */
2401 if (HDR_HAS_L1HDR(hdr)) {
2402 old_state = hdr->b_l1hdr.b_state;
2403 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2404 update_old = (hdr->b_l1hdr.b_buf != NULL ||
2405 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2406
2407 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2408 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2409 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2410 ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2411 } else {
2412 old_state = arc_l2c_only;
2413 refcnt = 0;
2414 update_old = B_FALSE;
2415 }
2416 update_new = update_old;
2417 if (GHOST_STATE(old_state))
2418 update_old = B_TRUE;
2419 if (GHOST_STATE(new_state))
2420 update_new = B_TRUE;
2421
2422 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2423 ASSERT3P(new_state, !=, old_state);
2424
2425 /*
2426 * If this buffer is evictable, transfer it from the
2427 * old state list to the new state list.
2428 */
2429 if (refcnt == 0) {
2430 if (old_state != arc_anon && old_state != arc_l2c_only) {
2431 ASSERT(HDR_HAS_L1HDR(hdr));
2432 /* remove_reference() saves on insert. */
2433 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2434 multilist_remove(&old_state->arcs_list[type],
2435 hdr);
2436 arc_evictable_space_decrement(hdr, old_state);
2437 }
2438 }
2439 if (new_state != arc_anon && new_state != arc_l2c_only) {
2440 /*
2441 * An L1 header always exists here, since if we're
2442 * moving to some L1-cached state (i.e. not l2c_only or
2443 * anonymous), we realloc the header to add an L1hdr
2444 * beforehand.
2445 */
2446 ASSERT(HDR_HAS_L1HDR(hdr));
2447 multilist_insert(&new_state->arcs_list[type], hdr);
2448 arc_evictable_space_increment(hdr, new_state);
2449 }
2450 }
2451
2452 ASSERT(!HDR_EMPTY(hdr));
2453 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2454 buf_hash_remove(hdr);
2455
2456 /* adjust state sizes (ignore arc_l2c_only) */
2457
2458 if (update_new && new_state != arc_l2c_only) {
2459 ASSERT(HDR_HAS_L1HDR(hdr));
2460 if (GHOST_STATE(new_state)) {
2461
2462 /*
2463 * When moving a header to a ghost state, we first
2464 * remove all arc buffers. Thus, we'll have no arc
2465 * buffer to use for the reference. As a result, we
2466 * use the arc header pointer for the reference.
2467 */
2468 (void) zfs_refcount_add_many(
2469 &new_state->arcs_size[type],
2470 HDR_GET_LSIZE(hdr), hdr);
2471 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2472 ASSERT(!HDR_HAS_RABD(hdr));
2473 } else {
2474
2475 /*
2476 * Each individual buffer holds a unique reference,
2477 * thus we must remove each of these references one
2478 * at a time.
2479 */
2480 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2481 buf = buf->b_next) {
2482
2483 /*
2484 * When the arc_buf_t is sharing the data
2485 * block with the hdr, the owner of the
2486 * reference belongs to the hdr. Only
2487 * add to the refcount if the arc_buf_t is
2488 * not shared.
2489 */
2490 if (ARC_BUF_SHARED(buf))
2491 continue;
2492
2493 (void) zfs_refcount_add_many(
2494 &new_state->arcs_size[type],
2495 arc_buf_size(buf), buf);
2496 }
2497
2498 if (hdr->b_l1hdr.b_pabd != NULL) {
2499 (void) zfs_refcount_add_many(
2500 &new_state->arcs_size[type],
2501 arc_hdr_size(hdr), hdr);
2502 }
2503
2504 if (HDR_HAS_RABD(hdr)) {
2505 (void) zfs_refcount_add_many(
2506 &new_state->arcs_size[type],
2507 HDR_GET_PSIZE(hdr), hdr);
2508 }
2509 }
2510 }
2511
2512 if (update_old && old_state != arc_l2c_only) {
2513 ASSERT(HDR_HAS_L1HDR(hdr));
2514 if (GHOST_STATE(old_state)) {
2515 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2516 ASSERT(!HDR_HAS_RABD(hdr));
2517
2518 /*
2519 * When moving a header off of a ghost state,
2520 * the header will not contain any arc buffers.
2521 * We use the arc header pointer for the reference
2522 * which is exactly what we did when we put the
2523 * header on the ghost state.
2524 */
2525
2526 (void) zfs_refcount_remove_many(
2527 &old_state->arcs_size[type],
2528 HDR_GET_LSIZE(hdr), hdr);
2529 } else {
2530
2531 /*
2532 * Each individual buffer holds a unique reference,
2533 * thus we must remove each of these references one
2534 * at a time.
2535 */
2536 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2537 buf = buf->b_next) {
2538
2539 /*
2540 * When the arc_buf_t is sharing the data
2541 * block with the hdr, the owner of the
2542 * reference belongs to the hdr. Only
2543 * add to the refcount if the arc_buf_t is
2544 * not shared.
2545 */
2546 if (ARC_BUF_SHARED(buf))
2547 continue;
2548
2549 (void) zfs_refcount_remove_many(
2550 &old_state->arcs_size[type],
2551 arc_buf_size(buf), buf);
2552 }
2553 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2554 HDR_HAS_RABD(hdr));
2555
2556 if (hdr->b_l1hdr.b_pabd != NULL) {
2557 (void) zfs_refcount_remove_many(
2558 &old_state->arcs_size[type],
2559 arc_hdr_size(hdr), hdr);
2560 }
2561
2562 if (HDR_HAS_RABD(hdr)) {
2563 (void) zfs_refcount_remove_many(
2564 &old_state->arcs_size[type],
2565 HDR_GET_PSIZE(hdr), hdr);
2566 }
2567 }
2568 }
2569
2570 if (HDR_HAS_L1HDR(hdr)) {
2571 hdr->b_l1hdr.b_state = new_state;
2572
2573 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2574 l2arc_hdr_arcstats_decrement_state(hdr);
2575 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2576 l2arc_hdr_arcstats_increment_state(hdr);
2577 }
2578 }
2579 }
2580
2581 void
arc_space_consume(uint64_t space,arc_space_type_t type)2582 arc_space_consume(uint64_t space, arc_space_type_t type)
2583 {
2584 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2585
2586 switch (type) {
2587 default:
2588 break;
2589 case ARC_SPACE_DATA:
2590 ARCSTAT_INCR(arcstat_data_size, space);
2591 break;
2592 case ARC_SPACE_META:
2593 ARCSTAT_INCR(arcstat_metadata_size, space);
2594 break;
2595 case ARC_SPACE_BONUS:
2596 ARCSTAT_INCR(arcstat_bonus_size, space);
2597 break;
2598 case ARC_SPACE_DNODE:
2599 ARCSTAT_INCR(arcstat_dnode_size, space);
2600 break;
2601 case ARC_SPACE_DBUF:
2602 ARCSTAT_INCR(arcstat_dbuf_size, space);
2603 break;
2604 case ARC_SPACE_HDRS:
2605 ARCSTAT_INCR(arcstat_hdr_size, space);
2606 break;
2607 case ARC_SPACE_L2HDRS:
2608 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2609 break;
2610 case ARC_SPACE_ABD_CHUNK_WASTE:
2611 /*
2612 * Note: this includes space wasted by all scatter ABD's, not
2613 * just those allocated by the ARC. But the vast majority of
2614 * scatter ABD's come from the ARC, because other users are
2615 * very short-lived.
2616 */
2617 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2618 break;
2619 }
2620
2621 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2622 ARCSTAT_INCR(arcstat_meta_used, space);
2623
2624 aggsum_add(&arc_sums.arcstat_size, space);
2625 }
2626
2627 void
arc_space_return(uint64_t space,arc_space_type_t type)2628 arc_space_return(uint64_t space, arc_space_type_t type)
2629 {
2630 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2631
2632 switch (type) {
2633 default:
2634 break;
2635 case ARC_SPACE_DATA:
2636 ARCSTAT_INCR(arcstat_data_size, -space);
2637 break;
2638 case ARC_SPACE_META:
2639 ARCSTAT_INCR(arcstat_metadata_size, -space);
2640 break;
2641 case ARC_SPACE_BONUS:
2642 ARCSTAT_INCR(arcstat_bonus_size, -space);
2643 break;
2644 case ARC_SPACE_DNODE:
2645 ARCSTAT_INCR(arcstat_dnode_size, -space);
2646 break;
2647 case ARC_SPACE_DBUF:
2648 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2649 break;
2650 case ARC_SPACE_HDRS:
2651 ARCSTAT_INCR(arcstat_hdr_size, -space);
2652 break;
2653 case ARC_SPACE_L2HDRS:
2654 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2655 break;
2656 case ARC_SPACE_ABD_CHUNK_WASTE:
2657 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2658 break;
2659 }
2660
2661 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2662 ARCSTAT_INCR(arcstat_meta_used, -space);
2663
2664 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2665 aggsum_add(&arc_sums.arcstat_size, -space);
2666 }
2667
2668 /*
2669 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2670 * with the hdr's b_pabd.
2671 */
2672 static boolean_t
arc_can_share(arc_buf_hdr_t * hdr,arc_buf_t * buf)2673 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2674 {
2675 /*
2676 * The criteria for sharing a hdr's data are:
2677 * 1. the buffer is not encrypted
2678 * 2. the hdr's compression matches the buf's compression
2679 * 3. the hdr doesn't need to be byteswapped
2680 * 4. the hdr isn't already being shared
2681 * 5. the buf is either compressed or it is the last buf in the hdr list
2682 *
2683 * Criterion #5 maintains the invariant that shared uncompressed
2684 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2685 * might ask, "if a compressed buf is allocated first, won't that be the
2686 * last thing in the list?", but in that case it's impossible to create
2687 * a shared uncompressed buf anyway (because the hdr must be compressed
2688 * to have the compressed buf). You might also think that #3 is
2689 * sufficient to make this guarantee, however it's possible
2690 * (specifically in the rare L2ARC write race mentioned in
2691 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2692 * is shareable, but wasn't at the time of its allocation. Rather than
2693 * allow a new shared uncompressed buf to be created and then shuffle
2694 * the list around to make it the last element, this simply disallows
2695 * sharing if the new buf isn't the first to be added.
2696 */
2697 ASSERT3P(buf->b_hdr, ==, hdr);
2698 boolean_t hdr_compressed =
2699 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2700 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2701 return (!ARC_BUF_ENCRYPTED(buf) &&
2702 buf_compressed == hdr_compressed &&
2703 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2704 !HDR_SHARED_DATA(hdr) &&
2705 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2706 }
2707
2708 /*
2709 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2710 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2711 * copy was made successfully, or an error code otherwise.
2712 */
2713 static int
arc_buf_alloc_impl(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb,const void * tag,boolean_t encrypted,boolean_t compressed,boolean_t noauth,boolean_t fill,arc_buf_t ** ret)2714 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2715 const void *tag, boolean_t encrypted, boolean_t compressed,
2716 boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2717 {
2718 arc_buf_t *buf;
2719 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2720
2721 ASSERT(HDR_HAS_L1HDR(hdr));
2722 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2723 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2724 hdr->b_type == ARC_BUFC_METADATA);
2725 ASSERT3P(ret, !=, NULL);
2726 ASSERT3P(*ret, ==, NULL);
2727 IMPLY(encrypted, compressed);
2728
2729 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2730 buf->b_hdr = hdr;
2731 buf->b_data = NULL;
2732 buf->b_next = hdr->b_l1hdr.b_buf;
2733 buf->b_flags = 0;
2734
2735 add_reference(hdr, tag);
2736
2737 /*
2738 * We're about to change the hdr's b_flags. We must either
2739 * hold the hash_lock or be undiscoverable.
2740 */
2741 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2742
2743 /*
2744 * Only honor requests for compressed bufs if the hdr is actually
2745 * compressed. This must be overridden if the buffer is encrypted since
2746 * encrypted buffers cannot be decompressed.
2747 */
2748 if (encrypted) {
2749 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2750 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2751 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2752 } else if (compressed &&
2753 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2754 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2755 flags |= ARC_FILL_COMPRESSED;
2756 }
2757
2758 if (noauth) {
2759 ASSERT0(encrypted);
2760 flags |= ARC_FILL_NOAUTH;
2761 }
2762
2763 /*
2764 * If the hdr's data can be shared then we share the data buffer and
2765 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2766 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2767 * buffer to store the buf's data.
2768 *
2769 * There are two additional restrictions here because we're sharing
2770 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2771 * actively involved in an L2ARC write, because if this buf is used by
2772 * an arc_write() then the hdr's data buffer will be released when the
2773 * write completes, even though the L2ARC write might still be using it.
2774 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2775 * need to be ABD-aware. It must be allocated via
2776 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2777 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2778 * page" buffers because the ABD code needs to handle freeing them
2779 * specially.
2780 */
2781 boolean_t can_share = arc_can_share(hdr, buf) &&
2782 !HDR_L2_WRITING(hdr) &&
2783 hdr->b_l1hdr.b_pabd != NULL &&
2784 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2785 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2786
2787 /* Set up b_data and sharing */
2788 if (can_share) {
2789 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2790 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2791 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2792 } else {
2793 buf->b_data =
2794 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2795 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2796 }
2797 VERIFY3P(buf->b_data, !=, NULL);
2798
2799 hdr->b_l1hdr.b_buf = buf;
2800
2801 /*
2802 * If the user wants the data from the hdr, we need to either copy or
2803 * decompress the data.
2804 */
2805 if (fill) {
2806 ASSERT3P(zb, !=, NULL);
2807 return (arc_buf_fill(buf, spa, zb, flags));
2808 }
2809
2810 return (0);
2811 }
2812
2813 static const char *arc_onloan_tag = "onloan";
2814
2815 static inline void
arc_loaned_bytes_update(int64_t delta)2816 arc_loaned_bytes_update(int64_t delta)
2817 {
2818 atomic_add_64(&arc_loaned_bytes, delta);
2819
2820 /* assert that it did not wrap around */
2821 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2822 }
2823
2824 /*
2825 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2826 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2827 * buffers must be returned to the arc before they can be used by the DMU or
2828 * freed.
2829 */
2830 arc_buf_t *
arc_loan_buf(spa_t * spa,boolean_t is_metadata,int size)2831 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2832 {
2833 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2834 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2835
2836 arc_loaned_bytes_update(arc_buf_size(buf));
2837
2838 return (buf);
2839 }
2840
2841 arc_buf_t *
arc_loan_compressed_buf(spa_t * spa,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2842 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2843 enum zio_compress compression_type, uint8_t complevel)
2844 {
2845 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2846 psize, lsize, compression_type, complevel);
2847
2848 arc_loaned_bytes_update(arc_buf_size(buf));
2849
2850 return (buf);
2851 }
2852
2853 arc_buf_t *
arc_loan_raw_buf(spa_t * spa,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2854 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2855 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2856 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2857 enum zio_compress compression_type, uint8_t complevel)
2858 {
2859 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2860 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2861 complevel);
2862
2863 atomic_add_64(&arc_loaned_bytes, psize);
2864 return (buf);
2865 }
2866
2867
2868 /*
2869 * Return a loaned arc buffer to the arc.
2870 */
2871 void
arc_return_buf(arc_buf_t * buf,const void * tag)2872 arc_return_buf(arc_buf_t *buf, const void *tag)
2873 {
2874 arc_buf_hdr_t *hdr = buf->b_hdr;
2875
2876 ASSERT3P(buf->b_data, !=, NULL);
2877 ASSERT(HDR_HAS_L1HDR(hdr));
2878 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2879 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2880
2881 arc_loaned_bytes_update(-arc_buf_size(buf));
2882 }
2883
2884 /* Detach an arc_buf from a dbuf (tag) */
2885 void
arc_loan_inuse_buf(arc_buf_t * buf,const void * tag)2886 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2887 {
2888 arc_buf_hdr_t *hdr = buf->b_hdr;
2889
2890 ASSERT3P(buf->b_data, !=, NULL);
2891 ASSERT(HDR_HAS_L1HDR(hdr));
2892 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2893 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2894
2895 arc_loaned_bytes_update(arc_buf_size(buf));
2896 }
2897
2898 static void
l2arc_free_abd_on_write(abd_t * abd,size_t size,arc_buf_contents_t type)2899 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2900 {
2901 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2902
2903 df->l2df_abd = abd;
2904 df->l2df_size = size;
2905 df->l2df_type = type;
2906 mutex_enter(&l2arc_free_on_write_mtx);
2907 list_insert_head(l2arc_free_on_write, df);
2908 mutex_exit(&l2arc_free_on_write_mtx);
2909 }
2910
2911 static void
arc_hdr_free_on_write(arc_buf_hdr_t * hdr,boolean_t free_rdata)2912 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2913 {
2914 arc_state_t *state = hdr->b_l1hdr.b_state;
2915 arc_buf_contents_t type = arc_buf_type(hdr);
2916 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2917
2918 /* protected by hash lock, if in the hash table */
2919 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2920 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2921 ASSERT(state != arc_anon && state != arc_l2c_only);
2922
2923 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2924 size, hdr);
2925 }
2926 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2927 if (type == ARC_BUFC_METADATA) {
2928 arc_space_return(size, ARC_SPACE_META);
2929 } else {
2930 ASSERT(type == ARC_BUFC_DATA);
2931 arc_space_return(size, ARC_SPACE_DATA);
2932 }
2933
2934 if (free_rdata) {
2935 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2936 } else {
2937 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2938 }
2939 }
2940
2941 /*
2942 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2943 * data buffer, we transfer the refcount ownership to the hdr and update
2944 * the appropriate kstats.
2945 */
2946 static void
arc_share_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2947 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2948 {
2949 ASSERT(arc_can_share(hdr, buf));
2950 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2951 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2952 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2953
2954 /*
2955 * Start sharing the data buffer. We transfer the
2956 * refcount ownership to the hdr since it always owns
2957 * the refcount whenever an arc_buf_t is shared.
2958 */
2959 zfs_refcount_transfer_ownership_many(
2960 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2961 arc_hdr_size(hdr), buf, hdr);
2962 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2963 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2964 HDR_ISTYPE_METADATA(hdr));
2965 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2966 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2967
2968 /*
2969 * Since we've transferred ownership to the hdr we need
2970 * to increment its compressed and uncompressed kstats and
2971 * decrement the overhead size.
2972 */
2973 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2974 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2975 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2976 }
2977
2978 static void
arc_unshare_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2979 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2980 {
2981 ASSERT(arc_buf_is_shared(buf));
2982 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2983 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2984
2985 /*
2986 * We are no longer sharing this buffer so we need
2987 * to transfer its ownership to the rightful owner.
2988 */
2989 zfs_refcount_transfer_ownership_many(
2990 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2991 arc_hdr_size(hdr), hdr, buf);
2992 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2993 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2994 abd_free(hdr->b_l1hdr.b_pabd);
2995 hdr->b_l1hdr.b_pabd = NULL;
2996 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2997
2998 /*
2999 * Since the buffer is no longer shared between
3000 * the arc buf and the hdr, count it as overhead.
3001 */
3002 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3003 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3004 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3005 }
3006
3007 /*
3008 * Remove an arc_buf_t from the hdr's buf list and return the last
3009 * arc_buf_t on the list. If no buffers remain on the list then return
3010 * NULL.
3011 */
3012 static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t * hdr,arc_buf_t * buf)3013 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3014 {
3015 ASSERT(HDR_HAS_L1HDR(hdr));
3016 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3017
3018 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3019 arc_buf_t *lastbuf = NULL;
3020
3021 /*
3022 * Remove the buf from the hdr list and locate the last
3023 * remaining buffer on the list.
3024 */
3025 while (*bufp != NULL) {
3026 if (*bufp == buf)
3027 *bufp = buf->b_next;
3028
3029 /*
3030 * If we've removed a buffer in the middle of
3031 * the list then update the lastbuf and update
3032 * bufp.
3033 */
3034 if (*bufp != NULL) {
3035 lastbuf = *bufp;
3036 bufp = &(*bufp)->b_next;
3037 }
3038 }
3039 buf->b_next = NULL;
3040 ASSERT3P(lastbuf, !=, buf);
3041 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3042
3043 return (lastbuf);
3044 }
3045
3046 /*
3047 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3048 * list and free it.
3049 */
3050 static void
arc_buf_destroy_impl(arc_buf_t * buf)3051 arc_buf_destroy_impl(arc_buf_t *buf)
3052 {
3053 arc_buf_hdr_t *hdr = buf->b_hdr;
3054
3055 /*
3056 * Free up the data associated with the buf but only if we're not
3057 * sharing this with the hdr. If we are sharing it with the hdr, the
3058 * hdr is responsible for doing the free.
3059 */
3060 if (buf->b_data != NULL) {
3061 /*
3062 * We're about to change the hdr's b_flags. We must either
3063 * hold the hash_lock or be undiscoverable.
3064 */
3065 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3066
3067 arc_cksum_verify(buf);
3068 arc_buf_unwatch(buf);
3069
3070 if (ARC_BUF_SHARED(buf)) {
3071 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3072 } else {
3073 ASSERT(!arc_buf_is_shared(buf));
3074 uint64_t size = arc_buf_size(buf);
3075 arc_free_data_buf(hdr, buf->b_data, size, buf);
3076 ARCSTAT_INCR(arcstat_overhead_size, -size);
3077 }
3078 buf->b_data = NULL;
3079
3080 /*
3081 * If we have no more encrypted buffers and we've already
3082 * gotten a copy of the decrypted data we can free b_rabd
3083 * to save some space.
3084 */
3085 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3086 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3087 arc_buf_t *b;
3088 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3089 if (b != buf && ARC_BUF_ENCRYPTED(b))
3090 break;
3091 }
3092 if (b == NULL)
3093 arc_hdr_free_abd(hdr, B_TRUE);
3094 }
3095 }
3096
3097 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3098
3099 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3100 /*
3101 * If the current arc_buf_t is sharing its data buffer with the
3102 * hdr, then reassign the hdr's b_pabd to share it with the new
3103 * buffer at the end of the list. The shared buffer is always
3104 * the last one on the hdr's buffer list.
3105 *
3106 * There is an equivalent case for compressed bufs, but since
3107 * they aren't guaranteed to be the last buf in the list and
3108 * that is an exceedingly rare case, we just allow that space be
3109 * wasted temporarily. We must also be careful not to share
3110 * encrypted buffers, since they cannot be shared.
3111 */
3112 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3113 /* Only one buf can be shared at once */
3114 ASSERT(!arc_buf_is_shared(lastbuf));
3115 /* hdr is uncompressed so can't have compressed buf */
3116 ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3117
3118 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3119 arc_hdr_free_abd(hdr, B_FALSE);
3120
3121 /*
3122 * We must setup a new shared block between the
3123 * last buffer and the hdr. The data would have
3124 * been allocated by the arc buf so we need to transfer
3125 * ownership to the hdr since it's now being shared.
3126 */
3127 arc_share_buf(hdr, lastbuf);
3128 }
3129 } else if (HDR_SHARED_DATA(hdr)) {
3130 /*
3131 * Uncompressed shared buffers are always at the end
3132 * of the list. Compressed buffers don't have the
3133 * same requirements. This makes it hard to
3134 * simply assert that the lastbuf is shared so
3135 * we rely on the hdr's compression flags to determine
3136 * if we have a compressed, shared buffer.
3137 */
3138 ASSERT3P(lastbuf, !=, NULL);
3139 ASSERT(arc_buf_is_shared(lastbuf) ||
3140 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3141 }
3142
3143 /*
3144 * Free the checksum if we're removing the last uncompressed buf from
3145 * this hdr.
3146 */
3147 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3148 arc_cksum_free(hdr);
3149 }
3150
3151 /* clean up the buf */
3152 buf->b_hdr = NULL;
3153 kmem_cache_free(buf_cache, buf);
3154 }
3155
3156 static void
arc_hdr_alloc_abd(arc_buf_hdr_t * hdr,int alloc_flags)3157 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3158 {
3159 uint64_t size;
3160 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3161
3162 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3163 ASSERT(HDR_HAS_L1HDR(hdr));
3164 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3165 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3166
3167 if (alloc_rdata) {
3168 size = HDR_GET_PSIZE(hdr);
3169 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3170 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3171 alloc_flags);
3172 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3173 ARCSTAT_INCR(arcstat_raw_size, size);
3174 } else {
3175 size = arc_hdr_size(hdr);
3176 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3177 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3178 alloc_flags);
3179 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3180 }
3181
3182 ARCSTAT_INCR(arcstat_compressed_size, size);
3183 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3184 }
3185
3186 static void
arc_hdr_free_abd(arc_buf_hdr_t * hdr,boolean_t free_rdata)3187 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3188 {
3189 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3190
3191 ASSERT(HDR_HAS_L1HDR(hdr));
3192 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3193 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3194
3195 /*
3196 * If the hdr is currently being written to the l2arc then
3197 * we defer freeing the data by adding it to the l2arc_free_on_write
3198 * list. The l2arc will free the data once it's finished
3199 * writing it to the l2arc device.
3200 */
3201 if (HDR_L2_WRITING(hdr)) {
3202 arc_hdr_free_on_write(hdr, free_rdata);
3203 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3204 } else if (free_rdata) {
3205 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3206 } else {
3207 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3208 }
3209
3210 if (free_rdata) {
3211 hdr->b_crypt_hdr.b_rabd = NULL;
3212 ARCSTAT_INCR(arcstat_raw_size, -size);
3213 } else {
3214 hdr->b_l1hdr.b_pabd = NULL;
3215 }
3216
3217 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3218 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3219
3220 ARCSTAT_INCR(arcstat_compressed_size, -size);
3221 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3222 }
3223
3224 /*
3225 * Allocate empty anonymous ARC header. The header will get its identity
3226 * assigned and buffers attached later as part of read or write operations.
3227 *
3228 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3229 * inserts it into ARC hash to become globally visible and allocates physical
3230 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3231 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3232 * sharing one of them with the physical ABD buffer.
3233 *
3234 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3235 * data. Then after compression and/or encryption arc_write_ready() allocates
3236 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3237 * buffer. On disk write completion arc_write_done() assigns the header its
3238 * new identity (b_dva + b_birth) and inserts into ARC hash.
3239 *
3240 * In case of partial overwrite the old data is read first as described. Then
3241 * arc_release() either allocates new anonymous ARC header and moves the ARC
3242 * buffer to it, or reuses the old ARC header by discarding its identity and
3243 * removing it from ARC hash. After buffer modification normal write process
3244 * follows as described.
3245 */
3246 static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa,int32_t psize,int32_t lsize,boolean_t protected,enum zio_compress compression_type,uint8_t complevel,arc_buf_contents_t type)3247 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3248 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3249 arc_buf_contents_t type)
3250 {
3251 arc_buf_hdr_t *hdr;
3252
3253 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3254 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3255
3256 ASSERT(HDR_EMPTY(hdr));
3257 #ifdef ZFS_DEBUG
3258 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3259 #endif
3260 HDR_SET_PSIZE(hdr, psize);
3261 HDR_SET_LSIZE(hdr, lsize);
3262 hdr->b_spa = spa;
3263 hdr->b_type = type;
3264 hdr->b_flags = 0;
3265 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3266 arc_hdr_set_compress(hdr, compression_type);
3267 hdr->b_complevel = complevel;
3268 if (protected)
3269 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3270
3271 hdr->b_l1hdr.b_state = arc_anon;
3272 hdr->b_l1hdr.b_arc_access = 0;
3273 hdr->b_l1hdr.b_mru_hits = 0;
3274 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3275 hdr->b_l1hdr.b_mfu_hits = 0;
3276 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3277 hdr->b_l1hdr.b_buf = NULL;
3278
3279 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3280
3281 return (hdr);
3282 }
3283
3284 /*
3285 * Transition between the two allocation states for the arc_buf_hdr struct.
3286 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3287 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3288 * version is used when a cache buffer is only in the L2ARC in order to reduce
3289 * memory usage.
3290 */
3291 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)3292 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3293 {
3294 ASSERT(HDR_HAS_L2HDR(hdr));
3295
3296 arc_buf_hdr_t *nhdr;
3297 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3298
3299 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3300 (old == hdr_l2only_cache && new == hdr_full_cache));
3301
3302 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3303
3304 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3305 buf_hash_remove(hdr);
3306
3307 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3308
3309 if (new == hdr_full_cache) {
3310 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3311 /*
3312 * arc_access and arc_change_state need to be aware that a
3313 * header has just come out of L2ARC, so we set its state to
3314 * l2c_only even though it's about to change.
3315 */
3316 nhdr->b_l1hdr.b_state = arc_l2c_only;
3317
3318 /* Verify previous threads set to NULL before freeing */
3319 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3320 ASSERT(!HDR_HAS_RABD(hdr));
3321 } else {
3322 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3323 #ifdef ZFS_DEBUG
3324 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3325 #endif
3326
3327 /*
3328 * If we've reached here, We must have been called from
3329 * arc_evict_hdr(), as such we should have already been
3330 * removed from any ghost list we were previously on
3331 * (which protects us from racing with arc_evict_state),
3332 * thus no locking is needed during this check.
3333 */
3334 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3335
3336 /*
3337 * A buffer must not be moved into the arc_l2c_only
3338 * state if it's not finished being written out to the
3339 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3340 * might try to be accessed, even though it was removed.
3341 */
3342 VERIFY(!HDR_L2_WRITING(hdr));
3343 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3344 ASSERT(!HDR_HAS_RABD(hdr));
3345
3346 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3347 }
3348 /*
3349 * The header has been reallocated so we need to re-insert it into any
3350 * lists it was on.
3351 */
3352 (void) buf_hash_insert(nhdr, NULL);
3353
3354 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3355
3356 mutex_enter(&dev->l2ad_mtx);
3357
3358 /*
3359 * We must place the realloc'ed header back into the list at
3360 * the same spot. Otherwise, if it's placed earlier in the list,
3361 * l2arc_write_buffers() could find it during the function's
3362 * write phase, and try to write it out to the l2arc.
3363 */
3364 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3365 list_remove(&dev->l2ad_buflist, hdr);
3366
3367 mutex_exit(&dev->l2ad_mtx);
3368
3369 /*
3370 * Since we're using the pointer address as the tag when
3371 * incrementing and decrementing the l2ad_alloc refcount, we
3372 * must remove the old pointer (that we're about to destroy) and
3373 * add the new pointer to the refcount. Otherwise we'd remove
3374 * the wrong pointer address when calling arc_hdr_destroy() later.
3375 */
3376
3377 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3378 arc_hdr_size(hdr), hdr);
3379 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3380 arc_hdr_size(nhdr), nhdr);
3381
3382 buf_discard_identity(hdr);
3383 kmem_cache_free(old, hdr);
3384
3385 return (nhdr);
3386 }
3387
3388 /*
3389 * This function is used by the send / receive code to convert a newly
3390 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3391 * is also used to allow the root objset block to be updated without altering
3392 * its embedded MACs. Both block types will always be uncompressed so we do not
3393 * have to worry about compression type or psize.
3394 */
3395 void
arc_convert_to_raw(arc_buf_t * buf,uint64_t dsobj,boolean_t byteorder,dmu_object_type_t ot,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac)3396 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3397 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3398 const uint8_t *mac)
3399 {
3400 arc_buf_hdr_t *hdr = buf->b_hdr;
3401
3402 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3403 ASSERT(HDR_HAS_L1HDR(hdr));
3404 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3405
3406 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3407 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3408 hdr->b_crypt_hdr.b_dsobj = dsobj;
3409 hdr->b_crypt_hdr.b_ot = ot;
3410 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3411 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3412 if (!arc_hdr_has_uncompressed_buf(hdr))
3413 arc_cksum_free(hdr);
3414
3415 if (salt != NULL)
3416 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3417 if (iv != NULL)
3418 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3419 if (mac != NULL)
3420 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3421 }
3422
3423 /*
3424 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3425 * The buf is returned thawed since we expect the consumer to modify it.
3426 */
3427 arc_buf_t *
arc_alloc_buf(spa_t * spa,const void * tag,arc_buf_contents_t type,int32_t size)3428 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3429 int32_t size)
3430 {
3431 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3432 B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3433
3434 arc_buf_t *buf = NULL;
3435 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3436 B_FALSE, B_FALSE, &buf));
3437 arc_buf_thaw(buf);
3438
3439 return (buf);
3440 }
3441
3442 /*
3443 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3444 * for bufs containing metadata.
3445 */
3446 arc_buf_t *
arc_alloc_compressed_buf(spa_t * spa,const void * tag,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3447 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3448 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3449 {
3450 ASSERT3U(lsize, >, 0);
3451 ASSERT3U(lsize, >=, psize);
3452 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3453 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3454
3455 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3456 B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3457
3458 arc_buf_t *buf = NULL;
3459 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3460 B_TRUE, B_FALSE, B_FALSE, &buf));
3461 arc_buf_thaw(buf);
3462
3463 /*
3464 * To ensure that the hdr has the correct data in it if we call
3465 * arc_untransform() on this buf before it's been written to disk,
3466 * it's easiest if we just set up sharing between the buf and the hdr.
3467 */
3468 arc_share_buf(hdr, buf);
3469
3470 return (buf);
3471 }
3472
3473 arc_buf_t *
arc_alloc_raw_buf(spa_t * spa,const void * tag,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3474 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3475 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3476 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3477 enum zio_compress compression_type, uint8_t complevel)
3478 {
3479 arc_buf_hdr_t *hdr;
3480 arc_buf_t *buf;
3481 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3482 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3483
3484 ASSERT3U(lsize, >, 0);
3485 ASSERT3U(lsize, >=, psize);
3486 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3487 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3488
3489 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3490 compression_type, complevel, type);
3491
3492 hdr->b_crypt_hdr.b_dsobj = dsobj;
3493 hdr->b_crypt_hdr.b_ot = ot;
3494 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3495 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3496 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3497 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3498 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3499
3500 /*
3501 * This buffer will be considered encrypted even if the ot is not an
3502 * encrypted type. It will become authenticated instead in
3503 * arc_write_ready().
3504 */
3505 buf = NULL;
3506 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3507 B_FALSE, B_FALSE, &buf));
3508 arc_buf_thaw(buf);
3509
3510 return (buf);
3511 }
3512
3513 static void
l2arc_hdr_arcstats_update(arc_buf_hdr_t * hdr,boolean_t incr,boolean_t state_only)3514 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3515 boolean_t state_only)
3516 {
3517 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3518 l2arc_dev_t *dev = l2hdr->b_dev;
3519 uint64_t lsize = HDR_GET_LSIZE(hdr);
3520 uint64_t psize = HDR_GET_PSIZE(hdr);
3521 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3522 arc_buf_contents_t type = hdr->b_type;
3523 int64_t lsize_s;
3524 int64_t psize_s;
3525 int64_t asize_s;
3526
3527 if (incr) {
3528 lsize_s = lsize;
3529 psize_s = psize;
3530 asize_s = asize;
3531 } else {
3532 lsize_s = -lsize;
3533 psize_s = -psize;
3534 asize_s = -asize;
3535 }
3536
3537 /* If the buffer is a prefetch, count it as such. */
3538 if (HDR_PREFETCH(hdr)) {
3539 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3540 } else {
3541 /*
3542 * We use the value stored in the L2 header upon initial
3543 * caching in L2ARC. This value will be updated in case
3544 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3545 * metadata (log entry) cannot currently be updated. Having
3546 * the ARC state in the L2 header solves the problem of a
3547 * possibly absent L1 header (apparent in buffers restored
3548 * from persistent L2ARC).
3549 */
3550 switch (hdr->b_l2hdr.b_arcs_state) {
3551 case ARC_STATE_MRU_GHOST:
3552 case ARC_STATE_MRU:
3553 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3554 break;
3555 case ARC_STATE_MFU_GHOST:
3556 case ARC_STATE_MFU:
3557 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3558 break;
3559 default:
3560 break;
3561 }
3562 }
3563
3564 if (state_only)
3565 return;
3566
3567 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3568 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3569
3570 switch (type) {
3571 case ARC_BUFC_DATA:
3572 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3573 break;
3574 case ARC_BUFC_METADATA:
3575 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3576 break;
3577 default:
3578 break;
3579 }
3580 }
3581
3582
3583 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)3584 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3585 {
3586 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3587 l2arc_dev_t *dev = l2hdr->b_dev;
3588 uint64_t psize = HDR_GET_PSIZE(hdr);
3589 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3590
3591 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3592 ASSERT(HDR_HAS_L2HDR(hdr));
3593
3594 list_remove(&dev->l2ad_buflist, hdr);
3595
3596 l2arc_hdr_arcstats_decrement(hdr);
3597 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3598
3599 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3600 hdr);
3601 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3602 }
3603
3604 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)3605 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3606 {
3607 if (HDR_HAS_L1HDR(hdr)) {
3608 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3609 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3610 }
3611 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3612 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3613
3614 if (HDR_HAS_L2HDR(hdr)) {
3615 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3616 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3617
3618 if (!buflist_held)
3619 mutex_enter(&dev->l2ad_mtx);
3620
3621 /*
3622 * Even though we checked this conditional above, we
3623 * need to check this again now that we have the
3624 * l2ad_mtx. This is because we could be racing with
3625 * another thread calling l2arc_evict() which might have
3626 * destroyed this header's L2 portion as we were waiting
3627 * to acquire the l2ad_mtx. If that happens, we don't
3628 * want to re-destroy the header's L2 portion.
3629 */
3630 if (HDR_HAS_L2HDR(hdr)) {
3631
3632 if (!HDR_EMPTY(hdr))
3633 buf_discard_identity(hdr);
3634
3635 arc_hdr_l2hdr_destroy(hdr);
3636 }
3637
3638 if (!buflist_held)
3639 mutex_exit(&dev->l2ad_mtx);
3640 }
3641
3642 /*
3643 * The header's identify can only be safely discarded once it is no
3644 * longer discoverable. This requires removing it from the hash table
3645 * and the l2arc header list. After this point the hash lock can not
3646 * be used to protect the header.
3647 */
3648 if (!HDR_EMPTY(hdr))
3649 buf_discard_identity(hdr);
3650
3651 if (HDR_HAS_L1HDR(hdr)) {
3652 arc_cksum_free(hdr);
3653
3654 while (hdr->b_l1hdr.b_buf != NULL)
3655 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3656
3657 if (hdr->b_l1hdr.b_pabd != NULL)
3658 arc_hdr_free_abd(hdr, B_FALSE);
3659
3660 if (HDR_HAS_RABD(hdr))
3661 arc_hdr_free_abd(hdr, B_TRUE);
3662 }
3663
3664 ASSERT3P(hdr->b_hash_next, ==, NULL);
3665 if (HDR_HAS_L1HDR(hdr)) {
3666 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3667 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3668 #ifdef ZFS_DEBUG
3669 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3670 #endif
3671 kmem_cache_free(hdr_full_cache, hdr);
3672 } else {
3673 kmem_cache_free(hdr_l2only_cache, hdr);
3674 }
3675 }
3676
3677 void
arc_buf_destroy(arc_buf_t * buf,const void * tag)3678 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3679 {
3680 arc_buf_hdr_t *hdr = buf->b_hdr;
3681
3682 if (hdr->b_l1hdr.b_state == arc_anon) {
3683 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3684 ASSERT(ARC_BUF_LAST(buf));
3685 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3686 VERIFY0(remove_reference(hdr, tag));
3687 return;
3688 }
3689
3690 kmutex_t *hash_lock = HDR_LOCK(hdr);
3691 mutex_enter(hash_lock);
3692
3693 ASSERT3P(hdr, ==, buf->b_hdr);
3694 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3695 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3696 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3697 ASSERT3P(buf->b_data, !=, NULL);
3698
3699 arc_buf_destroy_impl(buf);
3700 (void) remove_reference(hdr, tag);
3701 mutex_exit(hash_lock);
3702 }
3703
3704 /*
3705 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3706 * state of the header is dependent on its state prior to entering this
3707 * function. The following transitions are possible:
3708 *
3709 * - arc_mru -> arc_mru_ghost
3710 * - arc_mfu -> arc_mfu_ghost
3711 * - arc_mru_ghost -> arc_l2c_only
3712 * - arc_mru_ghost -> deleted
3713 * - arc_mfu_ghost -> arc_l2c_only
3714 * - arc_mfu_ghost -> deleted
3715 * - arc_uncached -> deleted
3716 *
3717 * Return total size of evicted data buffers for eviction progress tracking.
3718 * When evicting from ghost states return logical buffer size to make eviction
3719 * progress at the same (or at least comparable) rate as from non-ghost states.
3720 *
3721 * Return *real_evicted for actual ARC size reduction to wake up threads
3722 * waiting for it. For non-ghost states it includes size of evicted data
3723 * buffers (the headers are not freed there). For ghost states it includes
3724 * only the evicted headers size.
3725 */
3726 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,uint64_t * real_evicted)3727 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3728 {
3729 arc_state_t *evicted_state, *state;
3730 int64_t bytes_evicted = 0;
3731 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3732 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3733
3734 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3735 ASSERT(HDR_HAS_L1HDR(hdr));
3736 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3737 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3738 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3739
3740 *real_evicted = 0;
3741 state = hdr->b_l1hdr.b_state;
3742 if (GHOST_STATE(state)) {
3743
3744 /*
3745 * l2arc_write_buffers() relies on a header's L1 portion
3746 * (i.e. its b_pabd field) during it's write phase.
3747 * Thus, we cannot push a header onto the arc_l2c_only
3748 * state (removing its L1 piece) until the header is
3749 * done being written to the l2arc.
3750 */
3751 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3752 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3753 return (bytes_evicted);
3754 }
3755
3756 ARCSTAT_BUMP(arcstat_deleted);
3757 bytes_evicted += HDR_GET_LSIZE(hdr);
3758
3759 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3760
3761 if (HDR_HAS_L2HDR(hdr)) {
3762 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3763 ASSERT(!HDR_HAS_RABD(hdr));
3764 /*
3765 * This buffer is cached on the 2nd Level ARC;
3766 * don't destroy the header.
3767 */
3768 arc_change_state(arc_l2c_only, hdr);
3769 /*
3770 * dropping from L1+L2 cached to L2-only,
3771 * realloc to remove the L1 header.
3772 */
3773 (void) arc_hdr_realloc(hdr, hdr_full_cache,
3774 hdr_l2only_cache);
3775 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3776 } else {
3777 arc_change_state(arc_anon, hdr);
3778 arc_hdr_destroy(hdr);
3779 *real_evicted += HDR_FULL_SIZE;
3780 }
3781 return (bytes_evicted);
3782 }
3783
3784 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3785 evicted_state = (state == arc_uncached) ? arc_anon :
3786 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3787
3788 /* prefetch buffers have a minimum lifespan */
3789 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3790 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3791 MSEC_TO_TICK(min_lifetime)) {
3792 ARCSTAT_BUMP(arcstat_evict_skip);
3793 return (bytes_evicted);
3794 }
3795
3796 if (HDR_HAS_L2HDR(hdr)) {
3797 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3798 } else {
3799 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3800 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3801 HDR_GET_LSIZE(hdr));
3802
3803 switch (state->arcs_state) {
3804 case ARC_STATE_MRU:
3805 ARCSTAT_INCR(
3806 arcstat_evict_l2_eligible_mru,
3807 HDR_GET_LSIZE(hdr));
3808 break;
3809 case ARC_STATE_MFU:
3810 ARCSTAT_INCR(
3811 arcstat_evict_l2_eligible_mfu,
3812 HDR_GET_LSIZE(hdr));
3813 break;
3814 default:
3815 break;
3816 }
3817 } else {
3818 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3819 HDR_GET_LSIZE(hdr));
3820 }
3821 }
3822
3823 bytes_evicted += arc_hdr_size(hdr);
3824 *real_evicted += arc_hdr_size(hdr);
3825
3826 /*
3827 * If this hdr is being evicted and has a compressed buffer then we
3828 * discard it here before we change states. This ensures that the
3829 * accounting is updated correctly in arc_free_data_impl().
3830 */
3831 if (hdr->b_l1hdr.b_pabd != NULL)
3832 arc_hdr_free_abd(hdr, B_FALSE);
3833
3834 if (HDR_HAS_RABD(hdr))
3835 arc_hdr_free_abd(hdr, B_TRUE);
3836
3837 arc_change_state(evicted_state, hdr);
3838 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3839 if (evicted_state == arc_anon) {
3840 arc_hdr_destroy(hdr);
3841 *real_evicted += HDR_FULL_SIZE;
3842 } else {
3843 ASSERT(HDR_IN_HASH_TABLE(hdr));
3844 }
3845
3846 return (bytes_evicted);
3847 }
3848
3849 static void
arc_set_need_free(void)3850 arc_set_need_free(void)
3851 {
3852 ASSERT(MUTEX_HELD(&arc_evict_lock));
3853 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3854 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3855 if (aw == NULL) {
3856 arc_need_free = MAX(-remaining, 0);
3857 } else {
3858 arc_need_free =
3859 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3860 }
3861 }
3862
3863 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,uint64_t bytes)3864 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3865 uint64_t spa, uint64_t bytes)
3866 {
3867 multilist_sublist_t *mls;
3868 uint64_t bytes_evicted = 0, real_evicted = 0;
3869 arc_buf_hdr_t *hdr;
3870 kmutex_t *hash_lock;
3871 uint_t evict_count = zfs_arc_evict_batch_limit;
3872
3873 ASSERT3P(marker, !=, NULL);
3874
3875 mls = multilist_sublist_lock_idx(ml, idx);
3876
3877 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3878 hdr = multilist_sublist_prev(mls, marker)) {
3879 if ((evict_count == 0) || (bytes_evicted >= bytes))
3880 break;
3881
3882 /*
3883 * To keep our iteration location, move the marker
3884 * forward. Since we're not holding hdr's hash lock, we
3885 * must be very careful and not remove 'hdr' from the
3886 * sublist. Otherwise, other consumers might mistake the
3887 * 'hdr' as not being on a sublist when they call the
3888 * multilist_link_active() function (they all rely on
3889 * the hash lock protecting concurrent insertions and
3890 * removals). multilist_sublist_move_forward() was
3891 * specifically implemented to ensure this is the case
3892 * (only 'marker' will be removed and re-inserted).
3893 */
3894 multilist_sublist_move_forward(mls, marker);
3895
3896 /*
3897 * The only case where the b_spa field should ever be
3898 * zero, is the marker headers inserted by
3899 * arc_evict_state(). It's possible for multiple threads
3900 * to be calling arc_evict_state() concurrently (e.g.
3901 * dsl_pool_close() and zio_inject_fault()), so we must
3902 * skip any markers we see from these other threads.
3903 */
3904 if (hdr->b_spa == 0)
3905 continue;
3906
3907 /* we're only interested in evicting buffers of a certain spa */
3908 if (spa != 0 && hdr->b_spa != spa) {
3909 ARCSTAT_BUMP(arcstat_evict_skip);
3910 continue;
3911 }
3912
3913 hash_lock = HDR_LOCK(hdr);
3914
3915 /*
3916 * We aren't calling this function from any code path
3917 * that would already be holding a hash lock, so we're
3918 * asserting on this assumption to be defensive in case
3919 * this ever changes. Without this check, it would be
3920 * possible to incorrectly increment arcstat_mutex_miss
3921 * below (e.g. if the code changed such that we called
3922 * this function with a hash lock held).
3923 */
3924 ASSERT(!MUTEX_HELD(hash_lock));
3925
3926 if (mutex_tryenter(hash_lock)) {
3927 uint64_t revicted;
3928 uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3929 mutex_exit(hash_lock);
3930
3931 bytes_evicted += evicted;
3932 real_evicted += revicted;
3933
3934 /*
3935 * If evicted is zero, arc_evict_hdr() must have
3936 * decided to skip this header, don't increment
3937 * evict_count in this case.
3938 */
3939 if (evicted != 0)
3940 evict_count--;
3941
3942 } else {
3943 ARCSTAT_BUMP(arcstat_mutex_miss);
3944 }
3945 }
3946
3947 multilist_sublist_unlock(mls);
3948
3949 /*
3950 * Increment the count of evicted bytes, and wake up any threads that
3951 * are waiting for the count to reach this value. Since the list is
3952 * ordered by ascending aew_count, we pop off the beginning of the
3953 * list until we reach the end, or a waiter that's past the current
3954 * "count". Doing this outside the loop reduces the number of times
3955 * we need to acquire the global arc_evict_lock.
3956 *
3957 * Only wake when there's sufficient free memory in the system
3958 * (specifically, arc_sys_free/2, which by default is a bit more than
3959 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
3960 */
3961 mutex_enter(&arc_evict_lock);
3962 arc_evict_count += real_evicted;
3963
3964 if (arc_free_memory() > arc_sys_free / 2) {
3965 arc_evict_waiter_t *aw;
3966 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
3967 aw->aew_count <= arc_evict_count) {
3968 list_remove(&arc_evict_waiters, aw);
3969 cv_broadcast(&aw->aew_cv);
3970 }
3971 }
3972 arc_set_need_free();
3973 mutex_exit(&arc_evict_lock);
3974
3975 /*
3976 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3977 * if the average cached block is small), eviction can be on-CPU for
3978 * many seconds. To ensure that other threads that may be bound to
3979 * this CPU are able to make progress, make a voluntary preemption
3980 * call here.
3981 */
3982 kpreempt(KPREEMPT_SYNC);
3983
3984 return (bytes_evicted);
3985 }
3986
3987 static arc_buf_hdr_t *
arc_state_alloc_marker(void)3988 arc_state_alloc_marker(void)
3989 {
3990 arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3991
3992 /*
3993 * A b_spa of 0 is used to indicate that this header is
3994 * a marker. This fact is used in arc_evict_state_impl().
3995 */
3996 marker->b_spa = 0;
3997
3998 return (marker);
3999 }
4000
4001 static void
arc_state_free_marker(arc_buf_hdr_t * marker)4002 arc_state_free_marker(arc_buf_hdr_t *marker)
4003 {
4004 kmem_cache_free(hdr_full_cache, marker);
4005 }
4006
4007 /*
4008 * Allocate an array of buffer headers used as placeholders during arc state
4009 * eviction.
4010 */
4011 static arc_buf_hdr_t **
arc_state_alloc_markers(int count)4012 arc_state_alloc_markers(int count)
4013 {
4014 arc_buf_hdr_t **markers;
4015
4016 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4017 for (int i = 0; i < count; i++)
4018 markers[i] = arc_state_alloc_marker();
4019 return (markers);
4020 }
4021
4022 static void
arc_state_free_markers(arc_buf_hdr_t ** markers,int count)4023 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4024 {
4025 for (int i = 0; i < count; i++)
4026 arc_state_free_marker(markers[i]);
4027 kmem_free(markers, sizeof (*markers) * count);
4028 }
4029
4030 /*
4031 * Evict buffers from the given arc state, until we've removed the
4032 * specified number of bytes. Move the removed buffers to the
4033 * appropriate evict state.
4034 *
4035 * This function makes a "best effort". It skips over any buffers
4036 * it can't get a hash_lock on, and so, may not catch all candidates.
4037 * It may also return without evicting as much space as requested.
4038 *
4039 * If bytes is specified using the special value ARC_EVICT_ALL, this
4040 * will evict all available (i.e. unlocked and evictable) buffers from
4041 * the given arc state; which is used by arc_flush().
4042 */
4043 static uint64_t
arc_evict_state(arc_state_t * state,arc_buf_contents_t type,uint64_t spa,uint64_t bytes)4044 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4045 uint64_t bytes)
4046 {
4047 uint64_t total_evicted = 0;
4048 multilist_t *ml = &state->arcs_list[type];
4049 int num_sublists;
4050 arc_buf_hdr_t **markers;
4051
4052 num_sublists = multilist_get_num_sublists(ml);
4053
4054 /*
4055 * If we've tried to evict from each sublist, made some
4056 * progress, but still have not hit the target number of bytes
4057 * to evict, we want to keep trying. The markers allow us to
4058 * pick up where we left off for each individual sublist, rather
4059 * than starting from the tail each time.
4060 */
4061 if (zthr_iscurthread(arc_evict_zthr)) {
4062 markers = arc_state_evict_markers;
4063 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4064 } else {
4065 markers = arc_state_alloc_markers(num_sublists);
4066 }
4067 for (int i = 0; i < num_sublists; i++) {
4068 multilist_sublist_t *mls;
4069
4070 mls = multilist_sublist_lock_idx(ml, i);
4071 multilist_sublist_insert_tail(mls, markers[i]);
4072 multilist_sublist_unlock(mls);
4073 }
4074
4075 /*
4076 * While we haven't hit our target number of bytes to evict, or
4077 * we're evicting all available buffers.
4078 */
4079 while (total_evicted < bytes) {
4080 int sublist_idx = multilist_get_random_index(ml);
4081 uint64_t scan_evicted = 0;
4082
4083 /*
4084 * Start eviction using a randomly selected sublist,
4085 * this is to try and evenly balance eviction across all
4086 * sublists. Always starting at the same sublist
4087 * (e.g. index 0) would cause evictions to favor certain
4088 * sublists over others.
4089 */
4090 for (int i = 0; i < num_sublists; i++) {
4091 uint64_t bytes_remaining;
4092 uint64_t bytes_evicted;
4093
4094 if (total_evicted < bytes)
4095 bytes_remaining = bytes - total_evicted;
4096 else
4097 break;
4098
4099 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4100 markers[sublist_idx], spa, bytes_remaining);
4101
4102 scan_evicted += bytes_evicted;
4103 total_evicted += bytes_evicted;
4104
4105 /* we've reached the end, wrap to the beginning */
4106 if (++sublist_idx >= num_sublists)
4107 sublist_idx = 0;
4108 }
4109
4110 /*
4111 * If we didn't evict anything during this scan, we have
4112 * no reason to believe we'll evict more during another
4113 * scan, so break the loop.
4114 */
4115 if (scan_evicted == 0) {
4116 /* This isn't possible, let's make that obvious */
4117 ASSERT3S(bytes, !=, 0);
4118
4119 /*
4120 * When bytes is ARC_EVICT_ALL, the only way to
4121 * break the loop is when scan_evicted is zero.
4122 * In that case, we actually have evicted enough,
4123 * so we don't want to increment the kstat.
4124 */
4125 if (bytes != ARC_EVICT_ALL) {
4126 ASSERT3S(total_evicted, <, bytes);
4127 ARCSTAT_BUMP(arcstat_evict_not_enough);
4128 }
4129
4130 break;
4131 }
4132 }
4133
4134 for (int i = 0; i < num_sublists; i++) {
4135 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4136 multilist_sublist_remove(mls, markers[i]);
4137 multilist_sublist_unlock(mls);
4138 }
4139 if (markers != arc_state_evict_markers)
4140 arc_state_free_markers(markers, num_sublists);
4141
4142 return (total_evicted);
4143 }
4144
4145 /*
4146 * Flush all "evictable" data of the given type from the arc state
4147 * specified. This will not evict any "active" buffers (i.e. referenced).
4148 *
4149 * When 'retry' is set to B_FALSE, the function will make a single pass
4150 * over the state and evict any buffers that it can. Since it doesn't
4151 * continually retry the eviction, it might end up leaving some buffers
4152 * in the ARC due to lock misses.
4153 *
4154 * When 'retry' is set to B_TRUE, the function will continually retry the
4155 * eviction until *all* evictable buffers have been removed from the
4156 * state. As a result, if concurrent insertions into the state are
4157 * allowed (e.g. if the ARC isn't shutting down), this function might
4158 * wind up in an infinite loop, continually trying to evict buffers.
4159 */
4160 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)4161 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4162 boolean_t retry)
4163 {
4164 uint64_t evicted = 0;
4165
4166 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4167 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4168
4169 if (!retry)
4170 break;
4171 }
4172
4173 return (evicted);
4174 }
4175
4176 /*
4177 * Evict the specified number of bytes from the state specified. This
4178 * function prevents us from trying to evict more from a state's list
4179 * than is "evictable", and to skip evicting altogether when passed a
4180 * negative value for "bytes". In contrast, arc_evict_state() will
4181 * evict everything it can, when passed a negative value for "bytes".
4182 */
4183 static uint64_t
arc_evict_impl(arc_state_t * state,arc_buf_contents_t type,int64_t bytes)4184 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4185 {
4186 uint64_t delta;
4187
4188 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4189 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4190 bytes);
4191 return (arc_evict_state(state, type, 0, delta));
4192 }
4193
4194 return (0);
4195 }
4196
4197 /*
4198 * Adjust specified fraction, taking into account initial ghost state(s) size,
4199 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4200 * decreasing it, plus a balance factor, controlling the decrease rate, used
4201 * to balance metadata vs data.
4202 */
4203 static uint64_t
arc_evict_adj(uint64_t frac,uint64_t total,uint64_t up,uint64_t down,uint_t balance)4204 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4205 uint_t balance)
4206 {
4207 if (total < 8 || up + down == 0)
4208 return (frac);
4209
4210 /*
4211 * We should not have more ghost hits than ghost size, but they
4212 * may get close. Restrict maximum adjustment in that case.
4213 */
4214 if (up + down >= total / 4) {
4215 uint64_t scale = (up + down) / (total / 8);
4216 up /= scale;
4217 down /= scale;
4218 }
4219
4220 /* Get maximal dynamic range by choosing optimal shifts. */
4221 int s = highbit64(total);
4222 s = MIN(64 - s, 32);
4223
4224 uint64_t ofrac = (1ULL << 32) - frac;
4225
4226 if (frac >= 4 * ofrac)
4227 up /= frac / (2 * ofrac + 1);
4228 up = (up << s) / (total >> (32 - s));
4229 if (ofrac >= 4 * frac)
4230 down /= ofrac / (2 * frac + 1);
4231 down = (down << s) / (total >> (32 - s));
4232 down = down * 100 / balance;
4233
4234 return (frac + up - down);
4235 }
4236
4237 /*
4238 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4239 */
4240 static uint64_t
arc_evict(void)4241 arc_evict(void)
4242 {
4243 uint64_t asize, bytes, total_evicted = 0;
4244 int64_t e, mrud, mrum, mfud, mfum, w;
4245 static uint64_t ogrd, ogrm, ogfd, ogfm;
4246 static uint64_t gsrd, gsrm, gsfd, gsfm;
4247 uint64_t ngrd, ngrm, ngfd, ngfm;
4248
4249 /* Get current size of ARC states we can evict from. */
4250 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4251 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4252 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4253 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4254 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4255 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4256 uint64_t d = mrud + mfud;
4257 uint64_t m = mrum + mfum;
4258 uint64_t t = d + m;
4259
4260 /* Get ARC ghost hits since last eviction. */
4261 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4262 uint64_t grd = ngrd - ogrd;
4263 ogrd = ngrd;
4264 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4265 uint64_t grm = ngrm - ogrm;
4266 ogrm = ngrm;
4267 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4268 uint64_t gfd = ngfd - ogfd;
4269 ogfd = ngfd;
4270 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4271 uint64_t gfm = ngfm - ogfm;
4272 ogfm = ngfm;
4273
4274 /* Adjust ARC states balance based on ghost hits. */
4275 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4276 grm + gfm, grd + gfd, zfs_arc_meta_balance);
4277 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4278 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4279
4280 asize = aggsum_value(&arc_sums.arcstat_size);
4281 int64_t wt = t - (asize - arc_c);
4282
4283 /*
4284 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4285 * target is not evictable or if they go over arc_dnode_limit.
4286 */
4287 int64_t prune = 0;
4288 int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size);
4289 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4290 if (zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4291 zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]) -
4292 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) -
4293 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]) >
4294 w * 3 / 4) {
4295 prune = dn / sizeof (dnode_t) *
4296 zfs_arc_dnode_reduce_percent / 100;
4297 } else if (dn > arc_dnode_limit) {
4298 prune = (dn - arc_dnode_limit) / sizeof (dnode_t) *
4299 zfs_arc_dnode_reduce_percent / 100;
4300 }
4301 if (prune > 0)
4302 arc_prune_async(prune);
4303
4304 /* Evict MRU metadata. */
4305 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4306 e = MIN((int64_t)(asize - arc_c), (int64_t)(mrum - w));
4307 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4308 total_evicted += bytes;
4309 mrum -= bytes;
4310 asize -= bytes;
4311
4312 /* Evict MFU metadata. */
4313 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4314 e = MIN((int64_t)(asize - arc_c), (int64_t)(m - w));
4315 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4316 total_evicted += bytes;
4317 mfum -= bytes;
4318 asize -= bytes;
4319
4320 /* Evict MRU data. */
4321 wt -= m - total_evicted;
4322 w = wt * (int64_t)(arc_pd >> 16) >> 16;
4323 e = MIN((int64_t)(asize - arc_c), (int64_t)(mrud - w));
4324 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4325 total_evicted += bytes;
4326 mrud -= bytes;
4327 asize -= bytes;
4328
4329 /* Evict MFU data. */
4330 e = asize - arc_c;
4331 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4332 mfud -= bytes;
4333 total_evicted += bytes;
4334
4335 /*
4336 * Evict ghost lists
4337 *
4338 * Size of each state's ghost list represents how much that state
4339 * may grow by shrinking the other states. Would it need to shrink
4340 * other states to zero (that is unlikely), its ghost size would be
4341 * equal to sum of other three state sizes. But excessive ghost
4342 * size may result in false ghost hits (too far back), that may
4343 * never result in real cache hits if several states are competing.
4344 * So choose some arbitraty point of 1/2 of other state sizes.
4345 */
4346 gsrd = (mrum + mfud + mfum) / 2;
4347 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4348 gsrd;
4349 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4350
4351 gsrm = (mrud + mfud + mfum) / 2;
4352 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4353 gsrm;
4354 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4355
4356 gsfd = (mrud + mrum + mfum) / 2;
4357 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4358 gsfd;
4359 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4360
4361 gsfm = (mrud + mrum + mfud) / 2;
4362 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4363 gsfm;
4364 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4365
4366 return (total_evicted);
4367 }
4368
4369 void
arc_flush(spa_t * spa,boolean_t retry)4370 arc_flush(spa_t *spa, boolean_t retry)
4371 {
4372 uint64_t guid = 0;
4373
4374 /*
4375 * If retry is B_TRUE, a spa must not be specified since we have
4376 * no good way to determine if all of a spa's buffers have been
4377 * evicted from an arc state.
4378 */
4379 ASSERT(!retry || spa == NULL);
4380
4381 if (spa != NULL)
4382 guid = spa_load_guid(spa);
4383
4384 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4385 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4386
4387 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4388 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4389
4390 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4391 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4392
4393 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4394 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4395
4396 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4397 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4398 }
4399
4400 void
arc_reduce_target_size(int64_t to_free)4401 arc_reduce_target_size(int64_t to_free)
4402 {
4403 uint64_t c = arc_c;
4404
4405 if (c <= arc_c_min)
4406 return;
4407
4408 /*
4409 * All callers want the ARC to actually evict (at least) this much
4410 * memory. Therefore we reduce from the lower of the current size and
4411 * the target size. This way, even if arc_c is much higher than
4412 * arc_size (as can be the case after many calls to arc_freed(), we will
4413 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4414 * will evict.
4415 */
4416 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4417 if (asize < c)
4418 to_free += c - asize;
4419 arc_c = MAX((int64_t)c - to_free, (int64_t)arc_c_min);
4420
4421 /* See comment in arc_evict_cb_check() on why lock+flag */
4422 mutex_enter(&arc_evict_lock);
4423 arc_evict_needed = B_TRUE;
4424 mutex_exit(&arc_evict_lock);
4425 zthr_wakeup(arc_evict_zthr);
4426 }
4427
4428 /*
4429 * Determine if the system is under memory pressure and is asking
4430 * to reclaim memory. A return value of B_TRUE indicates that the system
4431 * is under memory pressure and that the arc should adjust accordingly.
4432 */
4433 boolean_t
arc_reclaim_needed(void)4434 arc_reclaim_needed(void)
4435 {
4436 return (arc_available_memory() < 0);
4437 }
4438
4439 void
arc_kmem_reap_soon(void)4440 arc_kmem_reap_soon(void)
4441 {
4442 size_t i;
4443 kmem_cache_t *prev_cache = NULL;
4444 kmem_cache_t *prev_data_cache = NULL;
4445
4446 #ifdef _KERNEL
4447 #if defined(_ILP32)
4448 /*
4449 * Reclaim unused memory from all kmem caches.
4450 */
4451 kmem_reap();
4452 #endif
4453 #endif
4454
4455 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4456 #if defined(_ILP32)
4457 /* reach upper limit of cache size on 32-bit */
4458 if (zio_buf_cache[i] == NULL)
4459 break;
4460 #endif
4461 if (zio_buf_cache[i] != prev_cache) {
4462 prev_cache = zio_buf_cache[i];
4463 kmem_cache_reap_now(zio_buf_cache[i]);
4464 }
4465 if (zio_data_buf_cache[i] != prev_data_cache) {
4466 prev_data_cache = zio_data_buf_cache[i];
4467 kmem_cache_reap_now(zio_data_buf_cache[i]);
4468 }
4469 }
4470 kmem_cache_reap_now(buf_cache);
4471 kmem_cache_reap_now(hdr_full_cache);
4472 kmem_cache_reap_now(hdr_l2only_cache);
4473 kmem_cache_reap_now(zfs_btree_leaf_cache);
4474 abd_cache_reap_now();
4475 }
4476
4477 static boolean_t
arc_evict_cb_check(void * arg,zthr_t * zthr)4478 arc_evict_cb_check(void *arg, zthr_t *zthr)
4479 {
4480 (void) arg, (void) zthr;
4481
4482 #ifdef ZFS_DEBUG
4483 /*
4484 * This is necessary in order to keep the kstat information
4485 * up to date for tools that display kstat data such as the
4486 * mdb ::arc dcmd and the Linux crash utility. These tools
4487 * typically do not call kstat's update function, but simply
4488 * dump out stats from the most recent update. Without
4489 * this call, these commands may show stale stats for the
4490 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4491 * with this call, the data might be out of date if the
4492 * evict thread hasn't been woken recently; but that should
4493 * suffice. The arc_state_t structures can be queried
4494 * directly if more accurate information is needed.
4495 */
4496 if (arc_ksp != NULL)
4497 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4498 #endif
4499
4500 /*
4501 * We have to rely on arc_wait_for_eviction() to tell us when to
4502 * evict, rather than checking if we are overflowing here, so that we
4503 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4504 * If we have become "not overflowing" since arc_wait_for_eviction()
4505 * checked, we need to wake it up. We could broadcast the CV here,
4506 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4507 * would need to use a mutex to ensure that this function doesn't
4508 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4509 * the arc_evict_lock). However, the lock ordering of such a lock
4510 * would necessarily be incorrect with respect to the zthr_lock,
4511 * which is held before this function is called, and is held by
4512 * arc_wait_for_eviction() when it calls zthr_wakeup().
4513 */
4514 if (arc_evict_needed)
4515 return (B_TRUE);
4516
4517 /*
4518 * If we have buffers in uncached state, evict them periodically.
4519 */
4520 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4521 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4522 ddi_get_lbolt() - arc_last_uncached_flush >
4523 MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4524 }
4525
4526 /*
4527 * Keep arc_size under arc_c by running arc_evict which evicts data
4528 * from the ARC.
4529 */
4530 static void
arc_evict_cb(void * arg,zthr_t * zthr)4531 arc_evict_cb(void *arg, zthr_t *zthr)
4532 {
4533 (void) arg, (void) zthr;
4534
4535 uint64_t evicted = 0;
4536 fstrans_cookie_t cookie = spl_fstrans_mark();
4537
4538 /* Always try to evict from uncached state. */
4539 arc_last_uncached_flush = ddi_get_lbolt();
4540 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4541 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4542
4543 /* Evict from other states only if told to. */
4544 if (arc_evict_needed)
4545 evicted += arc_evict();
4546
4547 /*
4548 * If evicted is zero, we couldn't evict anything
4549 * via arc_evict(). This could be due to hash lock
4550 * collisions, but more likely due to the majority of
4551 * arc buffers being unevictable. Therefore, even if
4552 * arc_size is above arc_c, another pass is unlikely to
4553 * be helpful and could potentially cause us to enter an
4554 * infinite loop. Additionally, zthr_iscancelled() is
4555 * checked here so that if the arc is shutting down, the
4556 * broadcast will wake any remaining arc evict waiters.
4557 */
4558 mutex_enter(&arc_evict_lock);
4559 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) &&
4560 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4561 if (!arc_evict_needed) {
4562 /*
4563 * We're either no longer overflowing, or we
4564 * can't evict anything more, so we should wake
4565 * arc_get_data_impl() sooner.
4566 */
4567 arc_evict_waiter_t *aw;
4568 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4569 cv_broadcast(&aw->aew_cv);
4570 }
4571 arc_set_need_free();
4572 }
4573 mutex_exit(&arc_evict_lock);
4574 spl_fstrans_unmark(cookie);
4575 }
4576
4577 static boolean_t
arc_reap_cb_check(void * arg,zthr_t * zthr)4578 arc_reap_cb_check(void *arg, zthr_t *zthr)
4579 {
4580 (void) arg, (void) zthr;
4581
4582 int64_t free_memory = arc_available_memory();
4583 static int reap_cb_check_counter = 0;
4584
4585 /*
4586 * If a kmem reap is already active, don't schedule more. We must
4587 * check for this because kmem_cache_reap_soon() won't actually
4588 * block on the cache being reaped (this is to prevent callers from
4589 * becoming implicitly blocked by a system-wide kmem reap -- which,
4590 * on a system with many, many full magazines, can take minutes).
4591 */
4592 if (!kmem_cache_reap_active() && free_memory < 0) {
4593
4594 arc_no_grow = B_TRUE;
4595 arc_warm = B_TRUE;
4596 /*
4597 * Wait at least zfs_grow_retry (default 5) seconds
4598 * before considering growing.
4599 */
4600 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4601 return (B_TRUE);
4602 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4603 arc_no_grow = B_TRUE;
4604 } else if (gethrtime() >= arc_growtime) {
4605 arc_no_grow = B_FALSE;
4606 }
4607
4608 /*
4609 * Called unconditionally every 60 seconds to reclaim unused
4610 * zstd compression and decompression context. This is done
4611 * here to avoid the need for an independent thread.
4612 */
4613 if (!((reap_cb_check_counter++) % 60))
4614 zfs_zstd_cache_reap_now();
4615
4616 return (B_FALSE);
4617 }
4618
4619 /*
4620 * Keep enough free memory in the system by reaping the ARC's kmem
4621 * caches. To cause more slabs to be reapable, we may reduce the
4622 * target size of the cache (arc_c), causing the arc_evict_cb()
4623 * to free more buffers.
4624 */
4625 static void
arc_reap_cb(void * arg,zthr_t * zthr)4626 arc_reap_cb(void *arg, zthr_t *zthr)
4627 {
4628 (void) arg, (void) zthr;
4629
4630 int64_t free_memory;
4631 fstrans_cookie_t cookie = spl_fstrans_mark();
4632
4633 /*
4634 * Kick off asynchronous kmem_reap()'s of all our caches.
4635 */
4636 arc_kmem_reap_soon();
4637
4638 /*
4639 * Wait at least arc_kmem_cache_reap_retry_ms between
4640 * arc_kmem_reap_soon() calls. Without this check it is possible to
4641 * end up in a situation where we spend lots of time reaping
4642 * caches, while we're near arc_c_min. Waiting here also gives the
4643 * subsequent free memory check a chance of finding that the
4644 * asynchronous reap has already freed enough memory, and we don't
4645 * need to call arc_reduce_target_size().
4646 */
4647 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4648
4649 /*
4650 * Reduce the target size as needed to maintain the amount of free
4651 * memory in the system at a fraction of the arc_size (1/128th by
4652 * default). If oversubscribed (free_memory < 0) then reduce the
4653 * target arc_size by the deficit amount plus the fractional
4654 * amount. If free memory is positive but less than the fractional
4655 * amount, reduce by what is needed to hit the fractional amount.
4656 */
4657 free_memory = arc_available_memory();
4658
4659 int64_t can_free = arc_c - arc_c_min;
4660 if (can_free > 0) {
4661 int64_t to_free = (can_free >> arc_shrink_shift) - free_memory;
4662 if (to_free > 0)
4663 arc_reduce_target_size(to_free);
4664 }
4665 spl_fstrans_unmark(cookie);
4666 }
4667
4668 #ifdef _KERNEL
4669 /*
4670 * Determine the amount of memory eligible for eviction contained in the
4671 * ARC. All clean data reported by the ghost lists can always be safely
4672 * evicted. Due to arc_c_min, the same does not hold for all clean data
4673 * contained by the regular mru and mfu lists.
4674 *
4675 * In the case of the regular mru and mfu lists, we need to report as
4676 * much clean data as possible, such that evicting that same reported
4677 * data will not bring arc_size below arc_c_min. Thus, in certain
4678 * circumstances, the total amount of clean data in the mru and mfu
4679 * lists might not actually be evictable.
4680 *
4681 * The following two distinct cases are accounted for:
4682 *
4683 * 1. The sum of the amount of dirty data contained by both the mru and
4684 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4685 * is greater than or equal to arc_c_min.
4686 * (i.e. amount of dirty data >= arc_c_min)
4687 *
4688 * This is the easy case; all clean data contained by the mru and mfu
4689 * lists is evictable. Evicting all clean data can only drop arc_size
4690 * to the amount of dirty data, which is greater than arc_c_min.
4691 *
4692 * 2. The sum of the amount of dirty data contained by both the mru and
4693 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4694 * is less than arc_c_min.
4695 * (i.e. arc_c_min > amount of dirty data)
4696 *
4697 * 2.1. arc_size is greater than or equal arc_c_min.
4698 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4699 *
4700 * In this case, not all clean data from the regular mru and mfu
4701 * lists is actually evictable; we must leave enough clean data
4702 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4703 * evictable data from the two lists combined, is exactly the
4704 * difference between arc_size and arc_c_min.
4705 *
4706 * 2.2. arc_size is less than arc_c_min
4707 * (i.e. arc_c_min > arc_size > amount of dirty data)
4708 *
4709 * In this case, none of the data contained in the mru and mfu
4710 * lists is evictable, even if it's clean. Since arc_size is
4711 * already below arc_c_min, evicting any more would only
4712 * increase this negative difference.
4713 */
4714
4715 #endif /* _KERNEL */
4716
4717 /*
4718 * Adapt arc info given the number of bytes we are trying to add and
4719 * the state that we are coming from. This function is only called
4720 * when we are adding new content to the cache.
4721 */
4722 static void
arc_adapt(uint64_t bytes)4723 arc_adapt(uint64_t bytes)
4724 {
4725 /*
4726 * Wake reap thread if we do not have any available memory
4727 */
4728 if (arc_reclaim_needed()) {
4729 zthr_wakeup(arc_reap_zthr);
4730 return;
4731 }
4732
4733 if (arc_no_grow)
4734 return;
4735
4736 if (arc_c >= arc_c_max)
4737 return;
4738
4739 /*
4740 * If we're within (2 * maxblocksize) bytes of the target
4741 * cache size, increment the target cache size
4742 */
4743 if (aggsum_upper_bound(&arc_sums.arcstat_size) +
4744 2 * SPA_MAXBLOCKSIZE >= arc_c) {
4745 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
4746 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
4747 arc_c = arc_c_max;
4748 }
4749 }
4750
4751 /*
4752 * Check if arc_size has grown past our upper threshold, determined by
4753 * zfs_arc_overflow_shift.
4754 */
4755 static arc_ovf_level_t
arc_is_overflowing(boolean_t use_reserve)4756 arc_is_overflowing(boolean_t use_reserve)
4757 {
4758 /* Always allow at least one block of overflow */
4759 int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4760 arc_c >> zfs_arc_overflow_shift);
4761
4762 /*
4763 * We just compare the lower bound here for performance reasons. Our
4764 * primary goals are to make sure that the arc never grows without
4765 * bound, and that it can reach its maximum size. This check
4766 * accomplishes both goals. The maximum amount we could run over by is
4767 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4768 * in the ARC. In practice, that's in the tens of MB, which is low
4769 * enough to be safe.
4770 */
4771 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
4772 arc_c - overflow / 2;
4773 if (!use_reserve)
4774 overflow /= 2;
4775 return (over < 0 ? ARC_OVF_NONE :
4776 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
4777 }
4778
4779 static abd_t *
arc_get_data_abd(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)4780 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4781 int alloc_flags)
4782 {
4783 arc_buf_contents_t type = arc_buf_type(hdr);
4784
4785 arc_get_data_impl(hdr, size, tag, alloc_flags);
4786 if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
4787 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
4788 else
4789 return (abd_alloc(size, type == ARC_BUFC_METADATA));
4790 }
4791
4792 static void *
arc_get_data_buf(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)4793 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4794 {
4795 arc_buf_contents_t type = arc_buf_type(hdr);
4796
4797 arc_get_data_impl(hdr, size, tag, 0);
4798 if (type == ARC_BUFC_METADATA) {
4799 return (zio_buf_alloc(size));
4800 } else {
4801 ASSERT(type == ARC_BUFC_DATA);
4802 return (zio_data_buf_alloc(size));
4803 }
4804 }
4805
4806 /*
4807 * Wait for the specified amount of data (in bytes) to be evicted from the
4808 * ARC, and for there to be sufficient free memory in the system. Waiting for
4809 * eviction ensures that the memory used by the ARC decreases. Waiting for
4810 * free memory ensures that the system won't run out of free pages, regardless
4811 * of ARC behavior and settings. See arc_lowmem_init().
4812 */
4813 void
arc_wait_for_eviction(uint64_t amount,boolean_t use_reserve)4814 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve)
4815 {
4816 switch (arc_is_overflowing(use_reserve)) {
4817 case ARC_OVF_NONE:
4818 return;
4819 case ARC_OVF_SOME:
4820 /*
4821 * This is a bit racy without taking arc_evict_lock, but the
4822 * worst that can happen is we either call zthr_wakeup() extra
4823 * time due to race with other thread here, or the set flag
4824 * get cleared by arc_evict_cb(), which is unlikely due to
4825 * big hysteresis, but also not important since at this level
4826 * of overflow the eviction is purely advisory. Same time
4827 * taking the global lock here every time without waiting for
4828 * the actual eviction creates a significant lock contention.
4829 */
4830 if (!arc_evict_needed) {
4831 arc_evict_needed = B_TRUE;
4832 zthr_wakeup(arc_evict_zthr);
4833 }
4834 return;
4835 case ARC_OVF_SEVERE:
4836 default:
4837 {
4838 arc_evict_waiter_t aw;
4839 list_link_init(&aw.aew_node);
4840 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
4841
4842 uint64_t last_count = 0;
4843 mutex_enter(&arc_evict_lock);
4844 if (!list_is_empty(&arc_evict_waiters)) {
4845 arc_evict_waiter_t *last =
4846 list_tail(&arc_evict_waiters);
4847 last_count = last->aew_count;
4848 } else if (!arc_evict_needed) {
4849 arc_evict_needed = B_TRUE;
4850 zthr_wakeup(arc_evict_zthr);
4851 }
4852 /*
4853 * Note, the last waiter's count may be less than
4854 * arc_evict_count if we are low on memory in which
4855 * case arc_evict_state_impl() may have deferred
4856 * wakeups (but still incremented arc_evict_count).
4857 */
4858 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
4859
4860 list_insert_tail(&arc_evict_waiters, &aw);
4861
4862 arc_set_need_free();
4863
4864 DTRACE_PROBE3(arc__wait__for__eviction,
4865 uint64_t, amount,
4866 uint64_t, arc_evict_count,
4867 uint64_t, aw.aew_count);
4868
4869 /*
4870 * We will be woken up either when arc_evict_count reaches
4871 * aew_count, or when the ARC is no longer overflowing and
4872 * eviction completes.
4873 * In case of "false" wakeup, we will still be on the list.
4874 */
4875 do {
4876 cv_wait(&aw.aew_cv, &arc_evict_lock);
4877 } while (list_link_active(&aw.aew_node));
4878 mutex_exit(&arc_evict_lock);
4879
4880 cv_destroy(&aw.aew_cv);
4881 }
4882 }
4883 }
4884
4885 /*
4886 * Allocate a block and return it to the caller. If we are hitting the
4887 * hard limit for the cache size, we must sleep, waiting for the eviction
4888 * thread to catch up. If we're past the target size but below the hard
4889 * limit, we'll only signal the reclaim thread and continue on.
4890 */
4891 static void
arc_get_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)4892 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4893 int alloc_flags)
4894 {
4895 arc_adapt(size);
4896
4897 /*
4898 * If arc_size is currently overflowing, we must be adding data
4899 * faster than we are evicting. To ensure we don't compound the
4900 * problem by adding more data and forcing arc_size to grow even
4901 * further past it's target size, we wait for the eviction thread to
4902 * make some progress. We also wait for there to be sufficient free
4903 * memory in the system, as measured by arc_free_memory().
4904 *
4905 * Specifically, we wait for zfs_arc_eviction_pct percent of the
4906 * requested size to be evicted. This should be more than 100%, to
4907 * ensure that that progress is also made towards getting arc_size
4908 * under arc_c. See the comment above zfs_arc_eviction_pct.
4909 */
4910 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
4911 alloc_flags & ARC_HDR_USE_RESERVE);
4912
4913 arc_buf_contents_t type = arc_buf_type(hdr);
4914 if (type == ARC_BUFC_METADATA) {
4915 arc_space_consume(size, ARC_SPACE_META);
4916 } else {
4917 arc_space_consume(size, ARC_SPACE_DATA);
4918 }
4919
4920 /*
4921 * Update the state size. Note that ghost states have a
4922 * "ghost size" and so don't need to be updated.
4923 */
4924 arc_state_t *state = hdr->b_l1hdr.b_state;
4925 if (!GHOST_STATE(state)) {
4926
4927 (void) zfs_refcount_add_many(&state->arcs_size[type], size,
4928 tag);
4929
4930 /*
4931 * If this is reached via arc_read, the link is
4932 * protected by the hash lock. If reached via
4933 * arc_buf_alloc, the header should not be accessed by
4934 * any other thread. And, if reached via arc_read_done,
4935 * the hash lock will protect it if it's found in the
4936 * hash table; otherwise no other thread should be
4937 * trying to [add|remove]_reference it.
4938 */
4939 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4940 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4941 (void) zfs_refcount_add_many(&state->arcs_esize[type],
4942 size, tag);
4943 }
4944 }
4945 }
4946
4947 static void
arc_free_data_abd(arc_buf_hdr_t * hdr,abd_t * abd,uint64_t size,const void * tag)4948 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
4949 const void *tag)
4950 {
4951 arc_free_data_impl(hdr, size, tag);
4952 abd_free(abd);
4953 }
4954
4955 static void
arc_free_data_buf(arc_buf_hdr_t * hdr,void * buf,uint64_t size,const void * tag)4956 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
4957 {
4958 arc_buf_contents_t type = arc_buf_type(hdr);
4959
4960 arc_free_data_impl(hdr, size, tag);
4961 if (type == ARC_BUFC_METADATA) {
4962 zio_buf_free(buf, size);
4963 } else {
4964 ASSERT(type == ARC_BUFC_DATA);
4965 zio_data_buf_free(buf, size);
4966 }
4967 }
4968
4969 /*
4970 * Free the arc data buffer.
4971 */
4972 static void
arc_free_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)4973 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4974 {
4975 arc_state_t *state = hdr->b_l1hdr.b_state;
4976 arc_buf_contents_t type = arc_buf_type(hdr);
4977
4978 /* protected by hash lock, if in the hash table */
4979 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4980 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4981 ASSERT(state != arc_anon && state != arc_l2c_only);
4982
4983 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
4984 size, tag);
4985 }
4986 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
4987
4988 VERIFY3U(hdr->b_type, ==, type);
4989 if (type == ARC_BUFC_METADATA) {
4990 arc_space_return(size, ARC_SPACE_META);
4991 } else {
4992 ASSERT(type == ARC_BUFC_DATA);
4993 arc_space_return(size, ARC_SPACE_DATA);
4994 }
4995 }
4996
4997 /*
4998 * This routine is called whenever a buffer is accessed.
4999 */
5000 static void
arc_access(arc_buf_hdr_t * hdr,arc_flags_t arc_flags,boolean_t hit)5001 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5002 {
5003 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5004 ASSERT(HDR_HAS_L1HDR(hdr));
5005
5006 /*
5007 * Update buffer prefetch status.
5008 */
5009 boolean_t was_prefetch = HDR_PREFETCH(hdr);
5010 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5011 if (was_prefetch != now_prefetch) {
5012 if (was_prefetch) {
5013 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5014 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5015 prefetch);
5016 }
5017 if (HDR_HAS_L2HDR(hdr))
5018 l2arc_hdr_arcstats_decrement_state(hdr);
5019 if (was_prefetch) {
5020 arc_hdr_clear_flags(hdr,
5021 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5022 } else {
5023 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5024 }
5025 if (HDR_HAS_L2HDR(hdr))
5026 l2arc_hdr_arcstats_increment_state(hdr);
5027 }
5028 if (now_prefetch) {
5029 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5030 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5031 ARCSTAT_BUMP(arcstat_prescient_prefetch);
5032 } else {
5033 ARCSTAT_BUMP(arcstat_predictive_prefetch);
5034 }
5035 }
5036 if (arc_flags & ARC_FLAG_L2CACHE)
5037 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5038
5039 clock_t now = ddi_get_lbolt();
5040 if (hdr->b_l1hdr.b_state == arc_anon) {
5041 arc_state_t *new_state;
5042 /*
5043 * This buffer is not in the cache, and does not appear in
5044 * our "ghost" lists. Add it to the MRU or uncached state.
5045 */
5046 ASSERT0(hdr->b_l1hdr.b_arc_access);
5047 hdr->b_l1hdr.b_arc_access = now;
5048 if (HDR_UNCACHED(hdr)) {
5049 new_state = arc_uncached;
5050 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5051 hdr);
5052 } else {
5053 new_state = arc_mru;
5054 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5055 }
5056 arc_change_state(new_state, hdr);
5057 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5058 /*
5059 * This buffer has been accessed once recently and either
5060 * its read is still in progress or it is in the cache.
5061 */
5062 if (HDR_IO_IN_PROGRESS(hdr)) {
5063 hdr->b_l1hdr.b_arc_access = now;
5064 return;
5065 }
5066 hdr->b_l1hdr.b_mru_hits++;
5067 ARCSTAT_BUMP(arcstat_mru_hits);
5068
5069 /*
5070 * If the previous access was a prefetch, then it already
5071 * handled possible promotion, so nothing more to do for now.
5072 */
5073 if (was_prefetch) {
5074 hdr->b_l1hdr.b_arc_access = now;
5075 return;
5076 }
5077
5078 /*
5079 * If more than ARC_MINTIME have passed from the previous
5080 * hit, promote the buffer to the MFU state.
5081 */
5082 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5083 ARC_MINTIME)) {
5084 hdr->b_l1hdr.b_arc_access = now;
5085 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5086 arc_change_state(arc_mfu, hdr);
5087 }
5088 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5089 arc_state_t *new_state;
5090 /*
5091 * This buffer has been accessed once recently, but was
5092 * evicted from the cache. Would we have bigger MRU, it
5093 * would be an MRU hit, so handle it the same way, except
5094 * we don't need to check the previous access time.
5095 */
5096 hdr->b_l1hdr.b_mru_ghost_hits++;
5097 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5098 hdr->b_l1hdr.b_arc_access = now;
5099 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5100 arc_hdr_size(hdr));
5101 if (was_prefetch) {
5102 new_state = arc_mru;
5103 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5104 } else {
5105 new_state = arc_mfu;
5106 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5107 }
5108 arc_change_state(new_state, hdr);
5109 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5110 /*
5111 * This buffer has been accessed more than once and either
5112 * still in the cache or being restored from one of ghosts.
5113 */
5114 if (!HDR_IO_IN_PROGRESS(hdr)) {
5115 hdr->b_l1hdr.b_mfu_hits++;
5116 ARCSTAT_BUMP(arcstat_mfu_hits);
5117 }
5118 hdr->b_l1hdr.b_arc_access = now;
5119 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5120 /*
5121 * This buffer has been accessed more than once recently, but
5122 * has been evicted from the cache. Would we have bigger MFU
5123 * it would stay in cache, so move it back to MFU state.
5124 */
5125 hdr->b_l1hdr.b_mfu_ghost_hits++;
5126 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5127 hdr->b_l1hdr.b_arc_access = now;
5128 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5129 arc_hdr_size(hdr));
5130 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5131 arc_change_state(arc_mfu, hdr);
5132 } else if (hdr->b_l1hdr.b_state == arc_uncached) {
5133 /*
5134 * This buffer is uncacheable, but we got a hit. Probably
5135 * a demand read after prefetch. Nothing more to do here.
5136 */
5137 if (!HDR_IO_IN_PROGRESS(hdr))
5138 ARCSTAT_BUMP(arcstat_uncached_hits);
5139 hdr->b_l1hdr.b_arc_access = now;
5140 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5141 /*
5142 * This buffer is on the 2nd Level ARC and was not accessed
5143 * for a long time, so treat it as new and put into MRU.
5144 */
5145 hdr->b_l1hdr.b_arc_access = now;
5146 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5147 arc_change_state(arc_mru, hdr);
5148 } else {
5149 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5150 hdr->b_l1hdr.b_state);
5151 }
5152 }
5153
5154 /*
5155 * This routine is called by dbuf_hold() to update the arc_access() state
5156 * which otherwise would be skipped for entries in the dbuf cache.
5157 */
5158 void
arc_buf_access(arc_buf_t * buf)5159 arc_buf_access(arc_buf_t *buf)
5160 {
5161 arc_buf_hdr_t *hdr = buf->b_hdr;
5162
5163 /*
5164 * Avoid taking the hash_lock when possible as an optimization.
5165 * The header must be checked again under the hash_lock in order
5166 * to handle the case where it is concurrently being released.
5167 */
5168 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5169 return;
5170
5171 kmutex_t *hash_lock = HDR_LOCK(hdr);
5172 mutex_enter(hash_lock);
5173
5174 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5175 mutex_exit(hash_lock);
5176 ARCSTAT_BUMP(arcstat_access_skip);
5177 return;
5178 }
5179
5180 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5181 hdr->b_l1hdr.b_state == arc_mfu ||
5182 hdr->b_l1hdr.b_state == arc_uncached);
5183
5184 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5185 arc_access(hdr, 0, B_TRUE);
5186 mutex_exit(hash_lock);
5187
5188 ARCSTAT_BUMP(arcstat_hits);
5189 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5190 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5191 }
5192
5193 /* a generic arc_read_done_func_t which you can use */
5194 void
arc_bcopy_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5195 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5196 arc_buf_t *buf, void *arg)
5197 {
5198 (void) zio, (void) zb, (void) bp;
5199
5200 if (buf == NULL)
5201 return;
5202
5203 memcpy(arg, buf->b_data, arc_buf_size(buf));
5204 arc_buf_destroy(buf, arg);
5205 }
5206
5207 /* a generic arc_read_done_func_t */
5208 void
arc_getbuf_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5209 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5210 arc_buf_t *buf, void *arg)
5211 {
5212 (void) zb, (void) bp;
5213 arc_buf_t **bufp = arg;
5214
5215 if (buf == NULL) {
5216 ASSERT(zio == NULL || zio->io_error != 0);
5217 *bufp = NULL;
5218 } else {
5219 ASSERT(zio == NULL || zio->io_error == 0);
5220 *bufp = buf;
5221 ASSERT(buf->b_data != NULL);
5222 }
5223 }
5224
5225 static void
arc_hdr_verify(arc_buf_hdr_t * hdr,blkptr_t * bp)5226 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5227 {
5228 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5229 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5230 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5231 } else {
5232 if (HDR_COMPRESSION_ENABLED(hdr)) {
5233 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5234 BP_GET_COMPRESS(bp));
5235 }
5236 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5237 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5238 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5239 }
5240 }
5241
5242 static void
arc_read_done(zio_t * zio)5243 arc_read_done(zio_t *zio)
5244 {
5245 blkptr_t *bp = zio->io_bp;
5246 arc_buf_hdr_t *hdr = zio->io_private;
5247 kmutex_t *hash_lock = NULL;
5248 arc_callback_t *callback_list;
5249 arc_callback_t *acb;
5250
5251 /*
5252 * The hdr was inserted into hash-table and removed from lists
5253 * prior to starting I/O. We should find this header, since
5254 * it's in the hash table, and it should be legit since it's
5255 * not possible to evict it during the I/O. The only possible
5256 * reason for it not to be found is if we were freed during the
5257 * read.
5258 */
5259 if (HDR_IN_HASH_TABLE(hdr)) {
5260 arc_buf_hdr_t *found;
5261
5262 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5263 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5264 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5265 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5266 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5267
5268 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5269
5270 ASSERT((found == hdr &&
5271 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5272 (found == hdr && HDR_L2_READING(hdr)));
5273 ASSERT3P(hash_lock, !=, NULL);
5274 }
5275
5276 if (BP_IS_PROTECTED(bp)) {
5277 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5278 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5279 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5280 hdr->b_crypt_hdr.b_iv);
5281
5282 if (zio->io_error == 0) {
5283 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5284 void *tmpbuf;
5285
5286 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5287 sizeof (zil_chain_t));
5288 zio_crypt_decode_mac_zil(tmpbuf,
5289 hdr->b_crypt_hdr.b_mac);
5290 abd_return_buf(zio->io_abd, tmpbuf,
5291 sizeof (zil_chain_t));
5292 } else {
5293 zio_crypt_decode_mac_bp(bp,
5294 hdr->b_crypt_hdr.b_mac);
5295 }
5296 }
5297 }
5298
5299 if (zio->io_error == 0) {
5300 /* byteswap if necessary */
5301 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5302 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5303 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5304 } else {
5305 hdr->b_l1hdr.b_byteswap =
5306 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5307 }
5308 } else {
5309 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5310 }
5311 if (!HDR_L2_READING(hdr)) {
5312 hdr->b_complevel = zio->io_prop.zp_complevel;
5313 }
5314 }
5315
5316 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5317 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5318 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5319
5320 callback_list = hdr->b_l1hdr.b_acb;
5321 ASSERT3P(callback_list, !=, NULL);
5322 hdr->b_l1hdr.b_acb = NULL;
5323
5324 /*
5325 * If a read request has a callback (i.e. acb_done is not NULL), then we
5326 * make a buf containing the data according to the parameters which were
5327 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5328 * aren't needlessly decompressing the data multiple times.
5329 */
5330 int callback_cnt = 0;
5331 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5332
5333 /* We need the last one to call below in original order. */
5334 callback_list = acb;
5335
5336 if (!acb->acb_done || acb->acb_nobuf)
5337 continue;
5338
5339 callback_cnt++;
5340
5341 if (zio->io_error != 0)
5342 continue;
5343
5344 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5345 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5346 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5347 &acb->acb_buf);
5348
5349 /*
5350 * Assert non-speculative zios didn't fail because an
5351 * encryption key wasn't loaded
5352 */
5353 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5354 error != EACCES);
5355
5356 /*
5357 * If we failed to decrypt, report an error now (as the zio
5358 * layer would have done if it had done the transforms).
5359 */
5360 if (error == ECKSUM) {
5361 ASSERT(BP_IS_PROTECTED(bp));
5362 error = SET_ERROR(EIO);
5363 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5364 spa_log_error(zio->io_spa, &acb->acb_zb,
5365 &zio->io_bp->blk_birth);
5366 (void) zfs_ereport_post(
5367 FM_EREPORT_ZFS_AUTHENTICATION,
5368 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5369 }
5370 }
5371
5372 if (error != 0) {
5373 /*
5374 * Decompression or decryption failed. Set
5375 * io_error so that when we call acb_done
5376 * (below), we will indicate that the read
5377 * failed. Note that in the unusual case
5378 * where one callback is compressed and another
5379 * uncompressed, we will mark all of them
5380 * as failed, even though the uncompressed
5381 * one can't actually fail. In this case,
5382 * the hdr will not be anonymous, because
5383 * if there are multiple callbacks, it's
5384 * because multiple threads found the same
5385 * arc buf in the hash table.
5386 */
5387 zio->io_error = error;
5388 }
5389 }
5390
5391 /*
5392 * If there are multiple callbacks, we must have the hash lock,
5393 * because the only way for multiple threads to find this hdr is
5394 * in the hash table. This ensures that if there are multiple
5395 * callbacks, the hdr is not anonymous. If it were anonymous,
5396 * we couldn't use arc_buf_destroy() in the error case below.
5397 */
5398 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5399
5400 if (zio->io_error == 0) {
5401 arc_hdr_verify(hdr, zio->io_bp);
5402 } else {
5403 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5404 if (hdr->b_l1hdr.b_state != arc_anon)
5405 arc_change_state(arc_anon, hdr);
5406 if (HDR_IN_HASH_TABLE(hdr))
5407 buf_hash_remove(hdr);
5408 }
5409
5410 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5411 (void) remove_reference(hdr, hdr);
5412
5413 if (hash_lock != NULL)
5414 mutex_exit(hash_lock);
5415
5416 /* execute each callback and free its structure */
5417 while ((acb = callback_list) != NULL) {
5418 if (acb->acb_done != NULL) {
5419 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5420 /*
5421 * If arc_buf_alloc_impl() fails during
5422 * decompression, the buf will still be
5423 * allocated, and needs to be freed here.
5424 */
5425 arc_buf_destroy(acb->acb_buf,
5426 acb->acb_private);
5427 acb->acb_buf = NULL;
5428 }
5429 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5430 acb->acb_buf, acb->acb_private);
5431 }
5432
5433 if (acb->acb_zio_dummy != NULL) {
5434 acb->acb_zio_dummy->io_error = zio->io_error;
5435 zio_nowait(acb->acb_zio_dummy);
5436 }
5437
5438 callback_list = acb->acb_prev;
5439 if (acb->acb_wait) {
5440 mutex_enter(&acb->acb_wait_lock);
5441 acb->acb_wait_error = zio->io_error;
5442 acb->acb_wait = B_FALSE;
5443 cv_signal(&acb->acb_wait_cv);
5444 mutex_exit(&acb->acb_wait_lock);
5445 /* acb will be freed by the waiting thread. */
5446 } else {
5447 kmem_free(acb, sizeof (arc_callback_t));
5448 }
5449 }
5450 }
5451
5452 /*
5453 * "Read" the block at the specified DVA (in bp) via the
5454 * cache. If the block is found in the cache, invoke the provided
5455 * callback immediately and return. Note that the `zio' parameter
5456 * in the callback will be NULL in this case, since no IO was
5457 * required. If the block is not in the cache pass the read request
5458 * on to the spa with a substitute callback function, so that the
5459 * requested block will be added to the cache.
5460 *
5461 * If a read request arrives for a block that has a read in-progress,
5462 * either wait for the in-progress read to complete (and return the
5463 * results); or, if this is a read with a "done" func, add a record
5464 * to the read to invoke the "done" func when the read completes,
5465 * and return; or just return.
5466 *
5467 * arc_read_done() will invoke all the requested "done" functions
5468 * for readers of this block.
5469 */
5470 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_read_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)5471 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5472 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5473 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5474 {
5475 arc_buf_hdr_t *hdr = NULL;
5476 kmutex_t *hash_lock = NULL;
5477 zio_t *rzio;
5478 uint64_t guid = spa_load_guid(spa);
5479 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5480 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5481 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5482 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5483 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5484 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5485 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5486 arc_buf_t *buf = NULL;
5487 int rc = 0;
5488
5489 ASSERT(!embedded_bp ||
5490 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5491 ASSERT(!BP_IS_HOLE(bp));
5492 ASSERT(!BP_IS_REDACTED(bp));
5493
5494 /*
5495 * Normally SPL_FSTRANS will already be set since kernel threads which
5496 * expect to call the DMU interfaces will set it when created. System
5497 * calls are similarly handled by setting/cleaning the bit in the
5498 * registered callback (module/os/.../zfs/zpl_*).
5499 *
5500 * External consumers such as Lustre which call the exported DMU
5501 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5502 * on the hash_lock always set and clear the bit.
5503 */
5504 fstrans_cookie_t cookie = spl_fstrans_mark();
5505 top:
5506 /*
5507 * Verify the block pointer contents are reasonable. This should
5508 * always be the case since the blkptr is protected by a checksum.
5509 * However, if there is damage it's desirable to detect this early
5510 * and treat it as a checksum error. This allows an alternate blkptr
5511 * to be tried when one is available (e.g. ditto blocks).
5512 */
5513 if (!zfs_blkptr_verify(spa, bp, (zio_flags & ZIO_FLAG_CONFIG_WRITER) ?
5514 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
5515 rc = SET_ERROR(ECKSUM);
5516 goto done;
5517 }
5518
5519 if (!embedded_bp) {
5520 /*
5521 * Embedded BP's have no DVA and require no I/O to "read".
5522 * Create an anonymous arc buf to back it.
5523 */
5524 hdr = buf_hash_find(guid, bp, &hash_lock);
5525 }
5526
5527 /*
5528 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5529 * we maintain encrypted data separately from compressed / uncompressed
5530 * data. If the user is requesting raw encrypted data and we don't have
5531 * that in the header we will read from disk to guarantee that we can
5532 * get it even if the encryption keys aren't loaded.
5533 */
5534 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5535 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5536 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5537
5538 if (HDR_IO_IN_PROGRESS(hdr)) {
5539 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5540 mutex_exit(hash_lock);
5541 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5542 rc = SET_ERROR(ENOENT);
5543 goto done;
5544 }
5545
5546 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5547 ASSERT3P(head_zio, !=, NULL);
5548 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5549 priority == ZIO_PRIORITY_SYNC_READ) {
5550 /*
5551 * This is a sync read that needs to wait for
5552 * an in-flight async read. Request that the
5553 * zio have its priority upgraded.
5554 */
5555 zio_change_priority(head_zio, priority);
5556 DTRACE_PROBE1(arc__async__upgrade__sync,
5557 arc_buf_hdr_t *, hdr);
5558 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5559 }
5560
5561 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5562 arc_access(hdr, *arc_flags, B_FALSE);
5563
5564 /*
5565 * If there are multiple threads reading the same block
5566 * and that block is not yet in the ARC, then only one
5567 * thread will do the physical I/O and all other
5568 * threads will wait until that I/O completes.
5569 * Synchronous reads use the acb_wait_cv whereas nowait
5570 * reads register a callback. Both are signalled/called
5571 * in arc_read_done.
5572 *
5573 * Errors of the physical I/O may need to be propagated.
5574 * Synchronous read errors are returned here from
5575 * arc_read_done via acb_wait_error. Nowait reads
5576 * attach the acb_zio_dummy zio to pio and
5577 * arc_read_done propagates the physical I/O's io_error
5578 * to acb_zio_dummy, and thereby to pio.
5579 */
5580 arc_callback_t *acb = NULL;
5581 if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5582 acb = kmem_zalloc(sizeof (arc_callback_t),
5583 KM_SLEEP);
5584 acb->acb_done = done;
5585 acb->acb_private = private;
5586 acb->acb_compressed = compressed_read;
5587 acb->acb_encrypted = encrypted_read;
5588 acb->acb_noauth = noauth_read;
5589 acb->acb_nobuf = no_buf;
5590 if (*arc_flags & ARC_FLAG_WAIT) {
5591 acb->acb_wait = B_TRUE;
5592 mutex_init(&acb->acb_wait_lock, NULL,
5593 MUTEX_DEFAULT, NULL);
5594 cv_init(&acb->acb_wait_cv, NULL,
5595 CV_DEFAULT, NULL);
5596 }
5597 acb->acb_zb = *zb;
5598 if (pio != NULL) {
5599 acb->acb_zio_dummy = zio_null(pio,
5600 spa, NULL, NULL, NULL, zio_flags);
5601 }
5602 acb->acb_zio_head = head_zio;
5603 acb->acb_next = hdr->b_l1hdr.b_acb;
5604 hdr->b_l1hdr.b_acb->acb_prev = acb;
5605 hdr->b_l1hdr.b_acb = acb;
5606 }
5607 mutex_exit(hash_lock);
5608
5609 ARCSTAT_BUMP(arcstat_iohits);
5610 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5611 demand, prefetch, is_data, data, metadata, iohits);
5612
5613 if (*arc_flags & ARC_FLAG_WAIT) {
5614 mutex_enter(&acb->acb_wait_lock);
5615 while (acb->acb_wait) {
5616 cv_wait(&acb->acb_wait_cv,
5617 &acb->acb_wait_lock);
5618 }
5619 rc = acb->acb_wait_error;
5620 mutex_exit(&acb->acb_wait_lock);
5621 mutex_destroy(&acb->acb_wait_lock);
5622 cv_destroy(&acb->acb_wait_cv);
5623 kmem_free(acb, sizeof (arc_callback_t));
5624 }
5625 goto out;
5626 }
5627
5628 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5629 hdr->b_l1hdr.b_state == arc_mfu ||
5630 hdr->b_l1hdr.b_state == arc_uncached);
5631
5632 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5633 arc_access(hdr, *arc_flags, B_TRUE);
5634
5635 if (done && !no_buf) {
5636 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
5637
5638 /* Get a buf with the desired data in it. */
5639 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5640 encrypted_read, compressed_read, noauth_read,
5641 B_TRUE, &buf);
5642 if (rc == ECKSUM) {
5643 /*
5644 * Convert authentication and decryption errors
5645 * to EIO (and generate an ereport if needed)
5646 * before leaving the ARC.
5647 */
5648 rc = SET_ERROR(EIO);
5649 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5650 spa_log_error(spa, zb, &hdr->b_birth);
5651 (void) zfs_ereport_post(
5652 FM_EREPORT_ZFS_AUTHENTICATION,
5653 spa, NULL, zb, NULL, 0);
5654 }
5655 }
5656 if (rc != 0) {
5657 arc_buf_destroy_impl(buf);
5658 buf = NULL;
5659 (void) remove_reference(hdr, private);
5660 }
5661
5662 /* assert any errors weren't due to unloaded keys */
5663 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5664 rc != EACCES);
5665 }
5666 mutex_exit(hash_lock);
5667 ARCSTAT_BUMP(arcstat_hits);
5668 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5669 demand, prefetch, is_data, data, metadata, hits);
5670 *arc_flags |= ARC_FLAG_CACHED;
5671 goto done;
5672 } else {
5673 uint64_t lsize = BP_GET_LSIZE(bp);
5674 uint64_t psize = BP_GET_PSIZE(bp);
5675 arc_callback_t *acb;
5676 vdev_t *vd = NULL;
5677 uint64_t addr = 0;
5678 boolean_t devw = B_FALSE;
5679 uint64_t size;
5680 abd_t *hdr_abd;
5681 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5682 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5683
5684 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5685 if (hash_lock != NULL)
5686 mutex_exit(hash_lock);
5687 rc = SET_ERROR(ENOENT);
5688 goto done;
5689 }
5690
5691 if (hdr == NULL) {
5692 /*
5693 * This block is not in the cache or it has
5694 * embedded data.
5695 */
5696 arc_buf_hdr_t *exists = NULL;
5697 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5698 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
5699
5700 if (!embedded_bp) {
5701 hdr->b_dva = *BP_IDENTITY(bp);
5702 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5703 exists = buf_hash_insert(hdr, &hash_lock);
5704 }
5705 if (exists != NULL) {
5706 /* somebody beat us to the hash insert */
5707 mutex_exit(hash_lock);
5708 buf_discard_identity(hdr);
5709 arc_hdr_destroy(hdr);
5710 goto top; /* restart the IO request */
5711 }
5712 } else {
5713 /*
5714 * This block is in the ghost cache or encrypted data
5715 * was requested and we didn't have it. If it was
5716 * L2-only (and thus didn't have an L1 hdr),
5717 * we realloc the header to add an L1 hdr.
5718 */
5719 if (!HDR_HAS_L1HDR(hdr)) {
5720 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5721 hdr_full_cache);
5722 }
5723
5724 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5725 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5726 ASSERT(!HDR_HAS_RABD(hdr));
5727 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5728 ASSERT0(zfs_refcount_count(
5729 &hdr->b_l1hdr.b_refcnt));
5730 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5731 #ifdef ZFS_DEBUG
5732 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5733 #endif
5734 } else if (HDR_IO_IN_PROGRESS(hdr)) {
5735 /*
5736 * If this header already had an IO in progress
5737 * and we are performing another IO to fetch
5738 * encrypted data we must wait until the first
5739 * IO completes so as not to confuse
5740 * arc_read_done(). This should be very rare
5741 * and so the performance impact shouldn't
5742 * matter.
5743 */
5744 arc_callback_t *acb = kmem_zalloc(
5745 sizeof (arc_callback_t), KM_SLEEP);
5746 acb->acb_wait = B_TRUE;
5747 mutex_init(&acb->acb_wait_lock, NULL,
5748 MUTEX_DEFAULT, NULL);
5749 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
5750 NULL);
5751 acb->acb_zio_head =
5752 hdr->b_l1hdr.b_acb->acb_zio_head;
5753 acb->acb_next = hdr->b_l1hdr.b_acb;
5754 hdr->b_l1hdr.b_acb->acb_prev = acb;
5755 hdr->b_l1hdr.b_acb = acb;
5756 mutex_exit(hash_lock);
5757 mutex_enter(&acb->acb_wait_lock);
5758 while (acb->acb_wait) {
5759 cv_wait(&acb->acb_wait_cv,
5760 &acb->acb_wait_lock);
5761 }
5762 mutex_exit(&acb->acb_wait_lock);
5763 mutex_destroy(&acb->acb_wait_lock);
5764 cv_destroy(&acb->acb_wait_cv);
5765 kmem_free(acb, sizeof (arc_callback_t));
5766 goto top;
5767 }
5768 }
5769 if (*arc_flags & ARC_FLAG_UNCACHED) {
5770 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
5771 if (!encrypted_read)
5772 alloc_flags |= ARC_HDR_ALLOC_LINEAR;
5773 }
5774
5775 /*
5776 * Take additional reference for IO_IN_PROGRESS. It stops
5777 * arc_access() from putting this header without any buffers
5778 * and so other references but obviously nonevictable onto
5779 * the evictable list of MRU or MFU state.
5780 */
5781 add_reference(hdr, hdr);
5782 if (!embedded_bp)
5783 arc_access(hdr, *arc_flags, B_FALSE);
5784 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5785 arc_hdr_alloc_abd(hdr, alloc_flags);
5786 if (encrypted_read) {
5787 ASSERT(HDR_HAS_RABD(hdr));
5788 size = HDR_GET_PSIZE(hdr);
5789 hdr_abd = hdr->b_crypt_hdr.b_rabd;
5790 zio_flags |= ZIO_FLAG_RAW;
5791 } else {
5792 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5793 size = arc_hdr_size(hdr);
5794 hdr_abd = hdr->b_l1hdr.b_pabd;
5795
5796 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
5797 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
5798 }
5799
5800 /*
5801 * For authenticated bp's, we do not ask the ZIO layer
5802 * to authenticate them since this will cause the entire
5803 * IO to fail if the key isn't loaded. Instead, we
5804 * defer authentication until arc_buf_fill(), which will
5805 * verify the data when the key is available.
5806 */
5807 if (BP_IS_AUTHENTICATED(bp))
5808 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
5809 }
5810
5811 if (BP_IS_AUTHENTICATED(bp))
5812 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
5813 if (BP_GET_LEVEL(bp) > 0)
5814 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5815 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5816
5817 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5818 acb->acb_done = done;
5819 acb->acb_private = private;
5820 acb->acb_compressed = compressed_read;
5821 acb->acb_encrypted = encrypted_read;
5822 acb->acb_noauth = noauth_read;
5823 acb->acb_zb = *zb;
5824
5825 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5826 hdr->b_l1hdr.b_acb = acb;
5827
5828 if (HDR_HAS_L2HDR(hdr) &&
5829 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5830 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5831 addr = hdr->b_l2hdr.b_daddr;
5832 /*
5833 * Lock out L2ARC device removal.
5834 */
5835 if (vdev_is_dead(vd) ||
5836 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5837 vd = NULL;
5838 }
5839
5840 /*
5841 * We count both async reads and scrub IOs as asynchronous so
5842 * that both can be upgraded in the event of a cache hit while
5843 * the read IO is still in-flight.
5844 */
5845 if (priority == ZIO_PRIORITY_ASYNC_READ ||
5846 priority == ZIO_PRIORITY_SCRUB)
5847 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5848 else
5849 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5850
5851 /*
5852 * At this point, we have a level 1 cache miss or a blkptr
5853 * with embedded data. Try again in L2ARC if possible.
5854 */
5855 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5856
5857 /*
5858 * Skip ARC stat bump for block pointers with embedded
5859 * data. The data are read from the blkptr itself via
5860 * decode_embedded_bp_compressed().
5861 */
5862 if (!embedded_bp) {
5863 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
5864 blkptr_t *, bp, uint64_t, lsize,
5865 zbookmark_phys_t *, zb);
5866 ARCSTAT_BUMP(arcstat_misses);
5867 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5868 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
5869 metadata, misses);
5870 zfs_racct_read(size, 1);
5871 }
5872
5873 /* Check if the spa even has l2 configured */
5874 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
5875 spa->spa_l2cache.sav_count > 0;
5876
5877 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
5878 /*
5879 * Read from the L2ARC if the following are true:
5880 * 1. The L2ARC vdev was previously cached.
5881 * 2. This buffer still has L2ARC metadata.
5882 * 3. This buffer isn't currently writing to the L2ARC.
5883 * 4. The L2ARC entry wasn't evicted, which may
5884 * also have invalidated the vdev.
5885 */
5886 if (HDR_HAS_L2HDR(hdr) &&
5887 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
5888 l2arc_read_callback_t *cb;
5889 abd_t *abd;
5890 uint64_t asize;
5891
5892 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5893 ARCSTAT_BUMP(arcstat_l2_hits);
5894 hdr->b_l2hdr.b_hits++;
5895
5896 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5897 KM_SLEEP);
5898 cb->l2rcb_hdr = hdr;
5899 cb->l2rcb_bp = *bp;
5900 cb->l2rcb_zb = *zb;
5901 cb->l2rcb_flags = zio_flags;
5902
5903 /*
5904 * When Compressed ARC is disabled, but the
5905 * L2ARC block is compressed, arc_hdr_size()
5906 * will have returned LSIZE rather than PSIZE.
5907 */
5908 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
5909 !HDR_COMPRESSION_ENABLED(hdr) &&
5910 HDR_GET_PSIZE(hdr) != 0) {
5911 size = HDR_GET_PSIZE(hdr);
5912 }
5913
5914 asize = vdev_psize_to_asize(vd, size);
5915 if (asize != size) {
5916 abd = abd_alloc_for_io(asize,
5917 HDR_ISTYPE_METADATA(hdr));
5918 cb->l2rcb_abd = abd;
5919 } else {
5920 abd = hdr_abd;
5921 }
5922
5923 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5924 addr + asize <= vd->vdev_psize -
5925 VDEV_LABEL_END_SIZE);
5926
5927 /*
5928 * l2arc read. The SCL_L2ARC lock will be
5929 * released by l2arc_read_done().
5930 * Issue a null zio if the underlying buffer
5931 * was squashed to zero size by compression.
5932 */
5933 ASSERT3U(arc_hdr_get_compress(hdr), !=,
5934 ZIO_COMPRESS_EMPTY);
5935 rzio = zio_read_phys(pio, vd, addr,
5936 asize, abd,
5937 ZIO_CHECKSUM_OFF,
5938 l2arc_read_done, cb, priority,
5939 zio_flags | ZIO_FLAG_CANFAIL |
5940 ZIO_FLAG_DONT_PROPAGATE |
5941 ZIO_FLAG_DONT_RETRY, B_FALSE);
5942 acb->acb_zio_head = rzio;
5943
5944 if (hash_lock != NULL)
5945 mutex_exit(hash_lock);
5946
5947 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5948 zio_t *, rzio);
5949 ARCSTAT_INCR(arcstat_l2_read_bytes,
5950 HDR_GET_PSIZE(hdr));
5951
5952 if (*arc_flags & ARC_FLAG_NOWAIT) {
5953 zio_nowait(rzio);
5954 goto out;
5955 }
5956
5957 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5958 if (zio_wait(rzio) == 0)
5959 goto out;
5960
5961 /* l2arc read error; goto zio_read() */
5962 if (hash_lock != NULL)
5963 mutex_enter(hash_lock);
5964 } else {
5965 DTRACE_PROBE1(l2arc__miss,
5966 arc_buf_hdr_t *, hdr);
5967 ARCSTAT_BUMP(arcstat_l2_misses);
5968 if (HDR_L2_WRITING(hdr))
5969 ARCSTAT_BUMP(arcstat_l2_rw_clash);
5970 spa_config_exit(spa, SCL_L2ARC, vd);
5971 }
5972 } else {
5973 if (vd != NULL)
5974 spa_config_exit(spa, SCL_L2ARC, vd);
5975
5976 /*
5977 * Only a spa with l2 should contribute to l2
5978 * miss stats. (Including the case of having a
5979 * faulted cache device - that's also a miss.)
5980 */
5981 if (spa_has_l2) {
5982 /*
5983 * Skip ARC stat bump for block pointers with
5984 * embedded data. The data are read from the
5985 * blkptr itself via
5986 * decode_embedded_bp_compressed().
5987 */
5988 if (!embedded_bp) {
5989 DTRACE_PROBE1(l2arc__miss,
5990 arc_buf_hdr_t *, hdr);
5991 ARCSTAT_BUMP(arcstat_l2_misses);
5992 }
5993 }
5994 }
5995
5996 rzio = zio_read(pio, spa, bp, hdr_abd, size,
5997 arc_read_done, hdr, priority, zio_flags, zb);
5998 acb->acb_zio_head = rzio;
5999
6000 if (hash_lock != NULL)
6001 mutex_exit(hash_lock);
6002
6003 if (*arc_flags & ARC_FLAG_WAIT) {
6004 rc = zio_wait(rzio);
6005 goto out;
6006 }
6007
6008 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6009 zio_nowait(rzio);
6010 }
6011
6012 out:
6013 /* embedded bps don't actually go to disk */
6014 if (!embedded_bp)
6015 spa_read_history_add(spa, zb, *arc_flags);
6016 spl_fstrans_unmark(cookie);
6017 return (rc);
6018
6019 done:
6020 if (done)
6021 done(NULL, zb, bp, buf, private);
6022 if (pio && rc != 0) {
6023 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6024 zio->io_error = rc;
6025 zio_nowait(zio);
6026 }
6027 goto out;
6028 }
6029
6030 arc_prune_t *
arc_add_prune_callback(arc_prune_func_t * func,void * private)6031 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6032 {
6033 arc_prune_t *p;
6034
6035 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6036 p->p_pfunc = func;
6037 p->p_private = private;
6038 list_link_init(&p->p_node);
6039 zfs_refcount_create(&p->p_refcnt);
6040
6041 mutex_enter(&arc_prune_mtx);
6042 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6043 list_insert_head(&arc_prune_list, p);
6044 mutex_exit(&arc_prune_mtx);
6045
6046 return (p);
6047 }
6048
6049 void
arc_remove_prune_callback(arc_prune_t * p)6050 arc_remove_prune_callback(arc_prune_t *p)
6051 {
6052 boolean_t wait = B_FALSE;
6053 mutex_enter(&arc_prune_mtx);
6054 list_remove(&arc_prune_list, p);
6055 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6056 wait = B_TRUE;
6057 mutex_exit(&arc_prune_mtx);
6058
6059 /* wait for arc_prune_task to finish */
6060 if (wait)
6061 taskq_wait_outstanding(arc_prune_taskq, 0);
6062 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6063 zfs_refcount_destroy(&p->p_refcnt);
6064 kmem_free(p, sizeof (*p));
6065 }
6066
6067 /*
6068 * Helper function for arc_prune_async() it is responsible for safely
6069 * handling the execution of a registered arc_prune_func_t.
6070 */
6071 static void
arc_prune_task(void * ptr)6072 arc_prune_task(void *ptr)
6073 {
6074 arc_prune_t *ap = (arc_prune_t *)ptr;
6075 arc_prune_func_t *func = ap->p_pfunc;
6076
6077 if (func != NULL)
6078 func(ap->p_adjust, ap->p_private);
6079
6080 zfs_refcount_remove(&ap->p_refcnt, func);
6081 }
6082
6083 /*
6084 * Notify registered consumers they must drop holds on a portion of the ARC
6085 * buffers they reference. This provides a mechanism to ensure the ARC can
6086 * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6087 *
6088 * This operation is performed asynchronously so it may be safely called
6089 * in the context of the arc_reclaim_thread(). A reference is taken here
6090 * for each registered arc_prune_t and the arc_prune_task() is responsible
6091 * for releasing it once the registered arc_prune_func_t has completed.
6092 */
6093 static void
arc_prune_async(uint64_t adjust)6094 arc_prune_async(uint64_t adjust)
6095 {
6096 arc_prune_t *ap;
6097
6098 mutex_enter(&arc_prune_mtx);
6099 for (ap = list_head(&arc_prune_list); ap != NULL;
6100 ap = list_next(&arc_prune_list, ap)) {
6101
6102 if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6103 continue;
6104
6105 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6106 ap->p_adjust = adjust;
6107 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6108 ap, TQ_SLEEP) == TASKQID_INVALID) {
6109 zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6110 continue;
6111 }
6112 ARCSTAT_BUMP(arcstat_prune);
6113 }
6114 mutex_exit(&arc_prune_mtx);
6115 }
6116
6117 /*
6118 * Notify the arc that a block was freed, and thus will never be used again.
6119 */
6120 void
arc_freed(spa_t * spa,const blkptr_t * bp)6121 arc_freed(spa_t *spa, const blkptr_t *bp)
6122 {
6123 arc_buf_hdr_t *hdr;
6124 kmutex_t *hash_lock;
6125 uint64_t guid = spa_load_guid(spa);
6126
6127 ASSERT(!BP_IS_EMBEDDED(bp));
6128
6129 hdr = buf_hash_find(guid, bp, &hash_lock);
6130 if (hdr == NULL)
6131 return;
6132
6133 /*
6134 * We might be trying to free a block that is still doing I/O
6135 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6136 * dmu_sync-ed block). A block may also have a reference if it is
6137 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6138 * have written the new block to its final resting place on disk but
6139 * without the dedup flag set. This would have left the hdr in the MRU
6140 * state and discoverable. When the txg finally syncs it detects that
6141 * the block was overridden in open context and issues an override I/O.
6142 * Since this is a dedup block, the override I/O will determine if the
6143 * block is already in the DDT. If so, then it will replace the io_bp
6144 * with the bp from the DDT and allow the I/O to finish. When the I/O
6145 * reaches the done callback, dbuf_write_override_done, it will
6146 * check to see if the io_bp and io_bp_override are identical.
6147 * If they are not, then it indicates that the bp was replaced with
6148 * the bp in the DDT and the override bp is freed. This allows
6149 * us to arrive here with a reference on a block that is being
6150 * freed. So if we have an I/O in progress, or a reference to
6151 * this hdr, then we don't destroy the hdr.
6152 */
6153 if (!HDR_HAS_L1HDR(hdr) ||
6154 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6155 arc_change_state(arc_anon, hdr);
6156 arc_hdr_destroy(hdr);
6157 mutex_exit(hash_lock);
6158 } else {
6159 mutex_exit(hash_lock);
6160 }
6161
6162 }
6163
6164 /*
6165 * Release this buffer from the cache, making it an anonymous buffer. This
6166 * must be done after a read and prior to modifying the buffer contents.
6167 * If the buffer has more than one reference, we must make
6168 * a new hdr for the buffer.
6169 */
6170 void
arc_release(arc_buf_t * buf,const void * tag)6171 arc_release(arc_buf_t *buf, const void *tag)
6172 {
6173 arc_buf_hdr_t *hdr = buf->b_hdr;
6174
6175 /*
6176 * It would be nice to assert that if its DMU metadata (level >
6177 * 0 || it's the dnode file), then it must be syncing context.
6178 * But we don't know that information at this level.
6179 */
6180
6181 ASSERT(HDR_HAS_L1HDR(hdr));
6182
6183 /*
6184 * We don't grab the hash lock prior to this check, because if
6185 * the buffer's header is in the arc_anon state, it won't be
6186 * linked into the hash table.
6187 */
6188 if (hdr->b_l1hdr.b_state == arc_anon) {
6189 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6190 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6191 ASSERT(!HDR_HAS_L2HDR(hdr));
6192
6193 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6194 ASSERT(ARC_BUF_LAST(buf));
6195 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6196 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6197
6198 hdr->b_l1hdr.b_arc_access = 0;
6199
6200 /*
6201 * If the buf is being overridden then it may already
6202 * have a hdr that is not empty.
6203 */
6204 buf_discard_identity(hdr);
6205 arc_buf_thaw(buf);
6206
6207 return;
6208 }
6209
6210 kmutex_t *hash_lock = HDR_LOCK(hdr);
6211 mutex_enter(hash_lock);
6212
6213 /*
6214 * This assignment is only valid as long as the hash_lock is
6215 * held, we must be careful not to reference state or the
6216 * b_state field after dropping the lock.
6217 */
6218 arc_state_t *state = hdr->b_l1hdr.b_state;
6219 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6220 ASSERT3P(state, !=, arc_anon);
6221
6222 /* this buffer is not on any list */
6223 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6224
6225 if (HDR_HAS_L2HDR(hdr)) {
6226 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6227
6228 /*
6229 * We have to recheck this conditional again now that
6230 * we're holding the l2ad_mtx to prevent a race with
6231 * another thread which might be concurrently calling
6232 * l2arc_evict(). In that case, l2arc_evict() might have
6233 * destroyed the header's L2 portion as we were waiting
6234 * to acquire the l2ad_mtx.
6235 */
6236 if (HDR_HAS_L2HDR(hdr))
6237 arc_hdr_l2hdr_destroy(hdr);
6238
6239 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6240 }
6241
6242 /*
6243 * Do we have more than one buf?
6244 */
6245 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6246 arc_buf_hdr_t *nhdr;
6247 uint64_t spa = hdr->b_spa;
6248 uint64_t psize = HDR_GET_PSIZE(hdr);
6249 uint64_t lsize = HDR_GET_LSIZE(hdr);
6250 boolean_t protected = HDR_PROTECTED(hdr);
6251 enum zio_compress compress = arc_hdr_get_compress(hdr);
6252 arc_buf_contents_t type = arc_buf_type(hdr);
6253 VERIFY3U(hdr->b_type, ==, type);
6254
6255 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6256 VERIFY3S(remove_reference(hdr, tag), >, 0);
6257
6258 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6259 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6260 ASSERT(ARC_BUF_LAST(buf));
6261 }
6262
6263 /*
6264 * Pull the data off of this hdr and attach it to
6265 * a new anonymous hdr. Also find the last buffer
6266 * in the hdr's buffer list.
6267 */
6268 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6269 ASSERT3P(lastbuf, !=, NULL);
6270
6271 /*
6272 * If the current arc_buf_t and the hdr are sharing their data
6273 * buffer, then we must stop sharing that block.
6274 */
6275 if (ARC_BUF_SHARED(buf)) {
6276 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6277 ASSERT(!arc_buf_is_shared(lastbuf));
6278
6279 /*
6280 * First, sever the block sharing relationship between
6281 * buf and the arc_buf_hdr_t.
6282 */
6283 arc_unshare_buf(hdr, buf);
6284
6285 /*
6286 * Now we need to recreate the hdr's b_pabd. Since we
6287 * have lastbuf handy, we try to share with it, but if
6288 * we can't then we allocate a new b_pabd and copy the
6289 * data from buf into it.
6290 */
6291 if (arc_can_share(hdr, lastbuf)) {
6292 arc_share_buf(hdr, lastbuf);
6293 } else {
6294 arc_hdr_alloc_abd(hdr, 0);
6295 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6296 buf->b_data, psize);
6297 }
6298 VERIFY3P(lastbuf->b_data, !=, NULL);
6299 } else if (HDR_SHARED_DATA(hdr)) {
6300 /*
6301 * Uncompressed shared buffers are always at the end
6302 * of the list. Compressed buffers don't have the
6303 * same requirements. This makes it hard to
6304 * simply assert that the lastbuf is shared so
6305 * we rely on the hdr's compression flags to determine
6306 * if we have a compressed, shared buffer.
6307 */
6308 ASSERT(arc_buf_is_shared(lastbuf) ||
6309 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6310 ASSERT(!arc_buf_is_shared(buf));
6311 }
6312
6313 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6314 ASSERT3P(state, !=, arc_l2c_only);
6315
6316 (void) zfs_refcount_remove_many(&state->arcs_size[type],
6317 arc_buf_size(buf), buf);
6318
6319 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6320 ASSERT3P(state, !=, arc_l2c_only);
6321 (void) zfs_refcount_remove_many(
6322 &state->arcs_esize[type],
6323 arc_buf_size(buf), buf);
6324 }
6325
6326 arc_cksum_verify(buf);
6327 arc_buf_unwatch(buf);
6328
6329 /* if this is the last uncompressed buf free the checksum */
6330 if (!arc_hdr_has_uncompressed_buf(hdr))
6331 arc_cksum_free(hdr);
6332
6333 mutex_exit(hash_lock);
6334
6335 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6336 compress, hdr->b_complevel, type);
6337 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6338 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6339 VERIFY3U(nhdr->b_type, ==, type);
6340 ASSERT(!HDR_SHARED_DATA(nhdr));
6341
6342 nhdr->b_l1hdr.b_buf = buf;
6343 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6344 buf->b_hdr = nhdr;
6345
6346 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6347 arc_buf_size(buf), buf);
6348 } else {
6349 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6350 /* protected by hash lock, or hdr is on arc_anon */
6351 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6352 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6353 hdr->b_l1hdr.b_mru_hits = 0;
6354 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6355 hdr->b_l1hdr.b_mfu_hits = 0;
6356 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6357 arc_change_state(arc_anon, hdr);
6358 hdr->b_l1hdr.b_arc_access = 0;
6359
6360 mutex_exit(hash_lock);
6361 buf_discard_identity(hdr);
6362 arc_buf_thaw(buf);
6363 }
6364 }
6365
6366 int
arc_released(arc_buf_t * buf)6367 arc_released(arc_buf_t *buf)
6368 {
6369 return (buf->b_data != NULL &&
6370 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6371 }
6372
6373 #ifdef ZFS_DEBUG
6374 int
arc_referenced(arc_buf_t * buf)6375 arc_referenced(arc_buf_t *buf)
6376 {
6377 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6378 }
6379 #endif
6380
6381 static void
arc_write_ready(zio_t * zio)6382 arc_write_ready(zio_t *zio)
6383 {
6384 arc_write_callback_t *callback = zio->io_private;
6385 arc_buf_t *buf = callback->awcb_buf;
6386 arc_buf_hdr_t *hdr = buf->b_hdr;
6387 blkptr_t *bp = zio->io_bp;
6388 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6389 fstrans_cookie_t cookie = spl_fstrans_mark();
6390
6391 ASSERT(HDR_HAS_L1HDR(hdr));
6392 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6393 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6394
6395 /*
6396 * If we're reexecuting this zio because the pool suspended, then
6397 * cleanup any state that was previously set the first time the
6398 * callback was invoked.
6399 */
6400 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6401 arc_cksum_free(hdr);
6402 arc_buf_unwatch(buf);
6403 if (hdr->b_l1hdr.b_pabd != NULL) {
6404 if (ARC_BUF_SHARED(buf)) {
6405 arc_unshare_buf(hdr, buf);
6406 } else {
6407 ASSERT(!arc_buf_is_shared(buf));
6408 arc_hdr_free_abd(hdr, B_FALSE);
6409 }
6410 }
6411
6412 if (HDR_HAS_RABD(hdr))
6413 arc_hdr_free_abd(hdr, B_TRUE);
6414 }
6415 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6416 ASSERT(!HDR_HAS_RABD(hdr));
6417 ASSERT(!HDR_SHARED_DATA(hdr));
6418 ASSERT(!arc_buf_is_shared(buf));
6419
6420 callback->awcb_ready(zio, buf, callback->awcb_private);
6421
6422 if (HDR_IO_IN_PROGRESS(hdr)) {
6423 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6424 } else {
6425 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6426 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6427 }
6428
6429 if (BP_IS_PROTECTED(bp)) {
6430 /* ZIL blocks are written through zio_rewrite */
6431 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6432
6433 if (BP_SHOULD_BYTESWAP(bp)) {
6434 if (BP_GET_LEVEL(bp) > 0) {
6435 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6436 } else {
6437 hdr->b_l1hdr.b_byteswap =
6438 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6439 }
6440 } else {
6441 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6442 }
6443
6444 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6445 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6446 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6447 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6448 hdr->b_crypt_hdr.b_iv);
6449 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6450 } else {
6451 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6452 }
6453
6454 /*
6455 * If this block was written for raw encryption but the zio layer
6456 * ended up only authenticating it, adjust the buffer flags now.
6457 */
6458 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6459 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6460 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6461 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6462 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6463 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6464 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6465 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6466 }
6467
6468 /* this must be done after the buffer flags are adjusted */
6469 arc_cksum_compute(buf);
6470
6471 enum zio_compress compress;
6472 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6473 compress = ZIO_COMPRESS_OFF;
6474 } else {
6475 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6476 compress = BP_GET_COMPRESS(bp);
6477 }
6478 HDR_SET_PSIZE(hdr, psize);
6479 arc_hdr_set_compress(hdr, compress);
6480 hdr->b_complevel = zio->io_prop.zp_complevel;
6481
6482 if (zio->io_error != 0 || psize == 0)
6483 goto out;
6484
6485 /*
6486 * Fill the hdr with data. If the buffer is encrypted we have no choice
6487 * but to copy the data into b_radb. If the hdr is compressed, the data
6488 * we want is available from the zio, otherwise we can take it from
6489 * the buf.
6490 *
6491 * We might be able to share the buf's data with the hdr here. However,
6492 * doing so would cause the ARC to be full of linear ABDs if we write a
6493 * lot of shareable data. As a compromise, we check whether scattered
6494 * ABDs are allowed, and assume that if they are then the user wants
6495 * the ARC to be primarily filled with them regardless of the data being
6496 * written. Therefore, if they're allowed then we allocate one and copy
6497 * the data into it; otherwise, we share the data directly if we can.
6498 */
6499 if (ARC_BUF_ENCRYPTED(buf)) {
6500 ASSERT3U(psize, >, 0);
6501 ASSERT(ARC_BUF_COMPRESSED(buf));
6502 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6503 ARC_HDR_USE_RESERVE);
6504 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6505 } else if (!(HDR_UNCACHED(hdr) ||
6506 abd_size_alloc_linear(arc_buf_size(buf))) ||
6507 !arc_can_share(hdr, buf)) {
6508 /*
6509 * Ideally, we would always copy the io_abd into b_pabd, but the
6510 * user may have disabled compressed ARC, thus we must check the
6511 * hdr's compression setting rather than the io_bp's.
6512 */
6513 if (BP_IS_ENCRYPTED(bp)) {
6514 ASSERT3U(psize, >, 0);
6515 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6516 ARC_HDR_USE_RESERVE);
6517 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6518 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6519 !ARC_BUF_COMPRESSED(buf)) {
6520 ASSERT3U(psize, >, 0);
6521 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6522 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6523 } else {
6524 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6525 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6526 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6527 arc_buf_size(buf));
6528 }
6529 } else {
6530 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6531 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6532 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6533 ASSERT(ARC_BUF_LAST(buf));
6534
6535 arc_share_buf(hdr, buf);
6536 }
6537
6538 out:
6539 arc_hdr_verify(hdr, bp);
6540 spl_fstrans_unmark(cookie);
6541 }
6542
6543 static void
arc_write_children_ready(zio_t * zio)6544 arc_write_children_ready(zio_t *zio)
6545 {
6546 arc_write_callback_t *callback = zio->io_private;
6547 arc_buf_t *buf = callback->awcb_buf;
6548
6549 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6550 }
6551
6552 static void
arc_write_done(zio_t * zio)6553 arc_write_done(zio_t *zio)
6554 {
6555 arc_write_callback_t *callback = zio->io_private;
6556 arc_buf_t *buf = callback->awcb_buf;
6557 arc_buf_hdr_t *hdr = buf->b_hdr;
6558
6559 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6560
6561 if (zio->io_error == 0) {
6562 arc_hdr_verify(hdr, zio->io_bp);
6563
6564 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6565 buf_discard_identity(hdr);
6566 } else {
6567 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6568 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6569 }
6570 } else {
6571 ASSERT(HDR_EMPTY(hdr));
6572 }
6573
6574 /*
6575 * If the block to be written was all-zero or compressed enough to be
6576 * embedded in the BP, no write was performed so there will be no
6577 * dva/birth/checksum. The buffer must therefore remain anonymous
6578 * (and uncached).
6579 */
6580 if (!HDR_EMPTY(hdr)) {
6581 arc_buf_hdr_t *exists;
6582 kmutex_t *hash_lock;
6583
6584 ASSERT3U(zio->io_error, ==, 0);
6585
6586 arc_cksum_verify(buf);
6587
6588 exists = buf_hash_insert(hdr, &hash_lock);
6589 if (exists != NULL) {
6590 /*
6591 * This can only happen if we overwrite for
6592 * sync-to-convergence, because we remove
6593 * buffers from the hash table when we arc_free().
6594 */
6595 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6596 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6597 panic("bad overwrite, hdr=%p exists=%p",
6598 (void *)hdr, (void *)exists);
6599 ASSERT(zfs_refcount_is_zero(
6600 &exists->b_l1hdr.b_refcnt));
6601 arc_change_state(arc_anon, exists);
6602 arc_hdr_destroy(exists);
6603 mutex_exit(hash_lock);
6604 exists = buf_hash_insert(hdr, &hash_lock);
6605 ASSERT3P(exists, ==, NULL);
6606 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6607 /* nopwrite */
6608 ASSERT(zio->io_prop.zp_nopwrite);
6609 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6610 panic("bad nopwrite, hdr=%p exists=%p",
6611 (void *)hdr, (void *)exists);
6612 } else {
6613 /* Dedup */
6614 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6615 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
6616 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6617 ASSERT(BP_GET_DEDUP(zio->io_bp));
6618 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6619 }
6620 }
6621 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6622 VERIFY3S(remove_reference(hdr, hdr), >, 0);
6623 /* if it's not anon, we are doing a scrub */
6624 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6625 arc_access(hdr, 0, B_FALSE);
6626 mutex_exit(hash_lock);
6627 } else {
6628 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6629 VERIFY3S(remove_reference(hdr, hdr), >, 0);
6630 }
6631
6632 callback->awcb_done(zio, buf, callback->awcb_private);
6633
6634 abd_free(zio->io_abd);
6635 kmem_free(callback, sizeof (arc_write_callback_t));
6636 }
6637
6638 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t uncached,boolean_t l2arc,const zio_prop_t * zp,arc_write_done_func_t * ready,arc_write_done_func_t * children_ready,arc_write_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)6639 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6640 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
6641 const zio_prop_t *zp, arc_write_done_func_t *ready,
6642 arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
6643 void *private, zio_priority_t priority, int zio_flags,
6644 const zbookmark_phys_t *zb)
6645 {
6646 arc_buf_hdr_t *hdr = buf->b_hdr;
6647 arc_write_callback_t *callback;
6648 zio_t *zio;
6649 zio_prop_t localprop = *zp;
6650
6651 ASSERT3P(ready, !=, NULL);
6652 ASSERT3P(done, !=, NULL);
6653 ASSERT(!HDR_IO_ERROR(hdr));
6654 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6655 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6656 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6657 if (uncached)
6658 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6659 else if (l2arc)
6660 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6661
6662 if (ARC_BUF_ENCRYPTED(buf)) {
6663 ASSERT(ARC_BUF_COMPRESSED(buf));
6664 localprop.zp_encrypt = B_TRUE;
6665 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6666 localprop.zp_complevel = hdr->b_complevel;
6667 localprop.zp_byteorder =
6668 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6669 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6670 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
6671 ZIO_DATA_SALT_LEN);
6672 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
6673 ZIO_DATA_IV_LEN);
6674 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
6675 ZIO_DATA_MAC_LEN);
6676 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6677 localprop.zp_nopwrite = B_FALSE;
6678 localprop.zp_copies =
6679 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6680 }
6681 zio_flags |= ZIO_FLAG_RAW;
6682 } else if (ARC_BUF_COMPRESSED(buf)) {
6683 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6684 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6685 localprop.zp_complevel = hdr->b_complevel;
6686 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6687 }
6688 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6689 callback->awcb_ready = ready;
6690 callback->awcb_children_ready = children_ready;
6691 callback->awcb_done = done;
6692 callback->awcb_private = private;
6693 callback->awcb_buf = buf;
6694
6695 /*
6696 * The hdr's b_pabd is now stale, free it now. A new data block
6697 * will be allocated when the zio pipeline calls arc_write_ready().
6698 */
6699 if (hdr->b_l1hdr.b_pabd != NULL) {
6700 /*
6701 * If the buf is currently sharing the data block with
6702 * the hdr then we need to break that relationship here.
6703 * The hdr will remain with a NULL data pointer and the
6704 * buf will take sole ownership of the block.
6705 */
6706 if (ARC_BUF_SHARED(buf)) {
6707 arc_unshare_buf(hdr, buf);
6708 } else {
6709 ASSERT(!arc_buf_is_shared(buf));
6710 arc_hdr_free_abd(hdr, B_FALSE);
6711 }
6712 VERIFY3P(buf->b_data, !=, NULL);
6713 }
6714
6715 if (HDR_HAS_RABD(hdr))
6716 arc_hdr_free_abd(hdr, B_TRUE);
6717
6718 if (!(zio_flags & ZIO_FLAG_RAW))
6719 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6720
6721 ASSERT(!arc_buf_is_shared(buf));
6722 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6723
6724 zio = zio_write(pio, spa, txg, bp,
6725 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6726 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6727 (children_ready != NULL) ? arc_write_children_ready : NULL,
6728 arc_write_done, callback, priority, zio_flags, zb);
6729
6730 return (zio);
6731 }
6732
6733 void
arc_tempreserve_clear(uint64_t reserve)6734 arc_tempreserve_clear(uint64_t reserve)
6735 {
6736 atomic_add_64(&arc_tempreserve, -reserve);
6737 ASSERT((int64_t)arc_tempreserve >= 0);
6738 }
6739
6740 int
arc_tempreserve_space(spa_t * spa,uint64_t reserve,uint64_t txg)6741 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6742 {
6743 int error;
6744 uint64_t anon_size;
6745
6746 if (!arc_no_grow &&
6747 reserve > arc_c/4 &&
6748 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6749 arc_c = MIN(arc_c_max, reserve * 4);
6750
6751 /*
6752 * Throttle when the calculated memory footprint for the TXG
6753 * exceeds the target ARC size.
6754 */
6755 if (reserve > arc_c) {
6756 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6757 return (SET_ERROR(ERESTART));
6758 }
6759
6760 /*
6761 * Don't count loaned bufs as in flight dirty data to prevent long
6762 * network delays from blocking transactions that are ready to be
6763 * assigned to a txg.
6764 */
6765
6766 /* assert that it has not wrapped around */
6767 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6768
6769 anon_size = MAX((int64_t)
6770 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
6771 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
6772 arc_loaned_bytes), 0);
6773
6774 /*
6775 * Writes will, almost always, require additional memory allocations
6776 * in order to compress/encrypt/etc the data. We therefore need to
6777 * make sure that there is sufficient available memory for this.
6778 */
6779 error = arc_memory_throttle(spa, reserve, txg);
6780 if (error != 0)
6781 return (error);
6782
6783 /*
6784 * Throttle writes when the amount of dirty data in the cache
6785 * gets too large. We try to keep the cache less than half full
6786 * of dirty blocks so that our sync times don't grow too large.
6787 *
6788 * In the case of one pool being built on another pool, we want
6789 * to make sure we don't end up throttling the lower (backing)
6790 * pool when the upper pool is the majority contributor to dirty
6791 * data. To insure we make forward progress during throttling, we
6792 * also check the current pool's net dirty data and only throttle
6793 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6794 * data in the cache.
6795 *
6796 * Note: if two requests come in concurrently, we might let them
6797 * both succeed, when one of them should fail. Not a huge deal.
6798 */
6799 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6800 uint64_t spa_dirty_anon = spa_dirty_data(spa);
6801 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
6802 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
6803 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
6804 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6805 #ifdef ZFS_DEBUG
6806 uint64_t meta_esize = zfs_refcount_count(
6807 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6808 uint64_t data_esize =
6809 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6810 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6811 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
6812 (u_longlong_t)arc_tempreserve >> 10,
6813 (u_longlong_t)meta_esize >> 10,
6814 (u_longlong_t)data_esize >> 10,
6815 (u_longlong_t)reserve >> 10,
6816 (u_longlong_t)rarc_c >> 10);
6817 #endif
6818 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
6819 return (SET_ERROR(ERESTART));
6820 }
6821 atomic_add_64(&arc_tempreserve, reserve);
6822 return (0);
6823 }
6824
6825 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * data,kstat_named_t * metadata,kstat_named_t * evict_data,kstat_named_t * evict_metadata)6826 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6827 kstat_named_t *data, kstat_named_t *metadata,
6828 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6829 {
6830 data->value.ui64 =
6831 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
6832 metadata->value.ui64 =
6833 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
6834 size->value.ui64 = data->value.ui64 + metadata->value.ui64;
6835 evict_data->value.ui64 =
6836 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6837 evict_metadata->value.ui64 =
6838 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6839 }
6840
6841 static int
arc_kstat_update(kstat_t * ksp,int rw)6842 arc_kstat_update(kstat_t *ksp, int rw)
6843 {
6844 arc_stats_t *as = ksp->ks_data;
6845
6846 if (rw == KSTAT_WRITE)
6847 return (SET_ERROR(EACCES));
6848
6849 as->arcstat_hits.value.ui64 =
6850 wmsum_value(&arc_sums.arcstat_hits);
6851 as->arcstat_iohits.value.ui64 =
6852 wmsum_value(&arc_sums.arcstat_iohits);
6853 as->arcstat_misses.value.ui64 =
6854 wmsum_value(&arc_sums.arcstat_misses);
6855 as->arcstat_demand_data_hits.value.ui64 =
6856 wmsum_value(&arc_sums.arcstat_demand_data_hits);
6857 as->arcstat_demand_data_iohits.value.ui64 =
6858 wmsum_value(&arc_sums.arcstat_demand_data_iohits);
6859 as->arcstat_demand_data_misses.value.ui64 =
6860 wmsum_value(&arc_sums.arcstat_demand_data_misses);
6861 as->arcstat_demand_metadata_hits.value.ui64 =
6862 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
6863 as->arcstat_demand_metadata_iohits.value.ui64 =
6864 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
6865 as->arcstat_demand_metadata_misses.value.ui64 =
6866 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
6867 as->arcstat_prefetch_data_hits.value.ui64 =
6868 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
6869 as->arcstat_prefetch_data_iohits.value.ui64 =
6870 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
6871 as->arcstat_prefetch_data_misses.value.ui64 =
6872 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
6873 as->arcstat_prefetch_metadata_hits.value.ui64 =
6874 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
6875 as->arcstat_prefetch_metadata_iohits.value.ui64 =
6876 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
6877 as->arcstat_prefetch_metadata_misses.value.ui64 =
6878 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
6879 as->arcstat_mru_hits.value.ui64 =
6880 wmsum_value(&arc_sums.arcstat_mru_hits);
6881 as->arcstat_mru_ghost_hits.value.ui64 =
6882 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
6883 as->arcstat_mfu_hits.value.ui64 =
6884 wmsum_value(&arc_sums.arcstat_mfu_hits);
6885 as->arcstat_mfu_ghost_hits.value.ui64 =
6886 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
6887 as->arcstat_uncached_hits.value.ui64 =
6888 wmsum_value(&arc_sums.arcstat_uncached_hits);
6889 as->arcstat_deleted.value.ui64 =
6890 wmsum_value(&arc_sums.arcstat_deleted);
6891 as->arcstat_mutex_miss.value.ui64 =
6892 wmsum_value(&arc_sums.arcstat_mutex_miss);
6893 as->arcstat_access_skip.value.ui64 =
6894 wmsum_value(&arc_sums.arcstat_access_skip);
6895 as->arcstat_evict_skip.value.ui64 =
6896 wmsum_value(&arc_sums.arcstat_evict_skip);
6897 as->arcstat_evict_not_enough.value.ui64 =
6898 wmsum_value(&arc_sums.arcstat_evict_not_enough);
6899 as->arcstat_evict_l2_cached.value.ui64 =
6900 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
6901 as->arcstat_evict_l2_eligible.value.ui64 =
6902 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
6903 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
6904 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
6905 as->arcstat_evict_l2_eligible_mru.value.ui64 =
6906 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
6907 as->arcstat_evict_l2_ineligible.value.ui64 =
6908 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
6909 as->arcstat_evict_l2_skip.value.ui64 =
6910 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
6911 as->arcstat_hash_collisions.value.ui64 =
6912 wmsum_value(&arc_sums.arcstat_hash_collisions);
6913 as->arcstat_hash_chains.value.ui64 =
6914 wmsum_value(&arc_sums.arcstat_hash_chains);
6915 as->arcstat_size.value.ui64 =
6916 aggsum_value(&arc_sums.arcstat_size);
6917 as->arcstat_compressed_size.value.ui64 =
6918 wmsum_value(&arc_sums.arcstat_compressed_size);
6919 as->arcstat_uncompressed_size.value.ui64 =
6920 wmsum_value(&arc_sums.arcstat_uncompressed_size);
6921 as->arcstat_overhead_size.value.ui64 =
6922 wmsum_value(&arc_sums.arcstat_overhead_size);
6923 as->arcstat_hdr_size.value.ui64 =
6924 wmsum_value(&arc_sums.arcstat_hdr_size);
6925 as->arcstat_data_size.value.ui64 =
6926 wmsum_value(&arc_sums.arcstat_data_size);
6927 as->arcstat_metadata_size.value.ui64 =
6928 wmsum_value(&arc_sums.arcstat_metadata_size);
6929 as->arcstat_dbuf_size.value.ui64 =
6930 wmsum_value(&arc_sums.arcstat_dbuf_size);
6931 #if defined(COMPAT_FREEBSD11)
6932 as->arcstat_other_size.value.ui64 =
6933 wmsum_value(&arc_sums.arcstat_bonus_size) +
6934 wmsum_value(&arc_sums.arcstat_dnode_size) +
6935 wmsum_value(&arc_sums.arcstat_dbuf_size);
6936 #endif
6937
6938 arc_kstat_update_state(arc_anon,
6939 &as->arcstat_anon_size,
6940 &as->arcstat_anon_data,
6941 &as->arcstat_anon_metadata,
6942 &as->arcstat_anon_evictable_data,
6943 &as->arcstat_anon_evictable_metadata);
6944 arc_kstat_update_state(arc_mru,
6945 &as->arcstat_mru_size,
6946 &as->arcstat_mru_data,
6947 &as->arcstat_mru_metadata,
6948 &as->arcstat_mru_evictable_data,
6949 &as->arcstat_mru_evictable_metadata);
6950 arc_kstat_update_state(arc_mru_ghost,
6951 &as->arcstat_mru_ghost_size,
6952 &as->arcstat_mru_ghost_data,
6953 &as->arcstat_mru_ghost_metadata,
6954 &as->arcstat_mru_ghost_evictable_data,
6955 &as->arcstat_mru_ghost_evictable_metadata);
6956 arc_kstat_update_state(arc_mfu,
6957 &as->arcstat_mfu_size,
6958 &as->arcstat_mfu_data,
6959 &as->arcstat_mfu_metadata,
6960 &as->arcstat_mfu_evictable_data,
6961 &as->arcstat_mfu_evictable_metadata);
6962 arc_kstat_update_state(arc_mfu_ghost,
6963 &as->arcstat_mfu_ghost_size,
6964 &as->arcstat_mfu_ghost_data,
6965 &as->arcstat_mfu_ghost_metadata,
6966 &as->arcstat_mfu_ghost_evictable_data,
6967 &as->arcstat_mfu_ghost_evictable_metadata);
6968 arc_kstat_update_state(arc_uncached,
6969 &as->arcstat_uncached_size,
6970 &as->arcstat_uncached_data,
6971 &as->arcstat_uncached_metadata,
6972 &as->arcstat_uncached_evictable_data,
6973 &as->arcstat_uncached_evictable_metadata);
6974
6975 as->arcstat_dnode_size.value.ui64 =
6976 wmsum_value(&arc_sums.arcstat_dnode_size);
6977 as->arcstat_bonus_size.value.ui64 =
6978 wmsum_value(&arc_sums.arcstat_bonus_size);
6979 as->arcstat_l2_hits.value.ui64 =
6980 wmsum_value(&arc_sums.arcstat_l2_hits);
6981 as->arcstat_l2_misses.value.ui64 =
6982 wmsum_value(&arc_sums.arcstat_l2_misses);
6983 as->arcstat_l2_prefetch_asize.value.ui64 =
6984 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
6985 as->arcstat_l2_mru_asize.value.ui64 =
6986 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
6987 as->arcstat_l2_mfu_asize.value.ui64 =
6988 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
6989 as->arcstat_l2_bufc_data_asize.value.ui64 =
6990 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
6991 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
6992 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
6993 as->arcstat_l2_feeds.value.ui64 =
6994 wmsum_value(&arc_sums.arcstat_l2_feeds);
6995 as->arcstat_l2_rw_clash.value.ui64 =
6996 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
6997 as->arcstat_l2_read_bytes.value.ui64 =
6998 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
6999 as->arcstat_l2_write_bytes.value.ui64 =
7000 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7001 as->arcstat_l2_writes_sent.value.ui64 =
7002 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7003 as->arcstat_l2_writes_done.value.ui64 =
7004 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7005 as->arcstat_l2_writes_error.value.ui64 =
7006 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7007 as->arcstat_l2_writes_lock_retry.value.ui64 =
7008 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7009 as->arcstat_l2_evict_lock_retry.value.ui64 =
7010 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7011 as->arcstat_l2_evict_reading.value.ui64 =
7012 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7013 as->arcstat_l2_evict_l1cached.value.ui64 =
7014 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7015 as->arcstat_l2_free_on_write.value.ui64 =
7016 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7017 as->arcstat_l2_abort_lowmem.value.ui64 =
7018 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7019 as->arcstat_l2_cksum_bad.value.ui64 =
7020 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7021 as->arcstat_l2_io_error.value.ui64 =
7022 wmsum_value(&arc_sums.arcstat_l2_io_error);
7023 as->arcstat_l2_lsize.value.ui64 =
7024 wmsum_value(&arc_sums.arcstat_l2_lsize);
7025 as->arcstat_l2_psize.value.ui64 =
7026 wmsum_value(&arc_sums.arcstat_l2_psize);
7027 as->arcstat_l2_hdr_size.value.ui64 =
7028 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7029 as->arcstat_l2_log_blk_writes.value.ui64 =
7030 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7031 as->arcstat_l2_log_blk_asize.value.ui64 =
7032 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7033 as->arcstat_l2_log_blk_count.value.ui64 =
7034 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7035 as->arcstat_l2_rebuild_success.value.ui64 =
7036 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7037 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7038 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7039 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7040 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7041 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7042 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7043 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7044 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7045 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7046 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7047 as->arcstat_l2_rebuild_size.value.ui64 =
7048 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7049 as->arcstat_l2_rebuild_asize.value.ui64 =
7050 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7051 as->arcstat_l2_rebuild_bufs.value.ui64 =
7052 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7053 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7054 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7055 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7056 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7057 as->arcstat_memory_throttle_count.value.ui64 =
7058 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7059 as->arcstat_memory_direct_count.value.ui64 =
7060 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7061 as->arcstat_memory_indirect_count.value.ui64 =
7062 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7063
7064 as->arcstat_memory_all_bytes.value.ui64 =
7065 arc_all_memory();
7066 as->arcstat_memory_free_bytes.value.ui64 =
7067 arc_free_memory();
7068 as->arcstat_memory_available_bytes.value.i64 =
7069 arc_available_memory();
7070
7071 as->arcstat_prune.value.ui64 =
7072 wmsum_value(&arc_sums.arcstat_prune);
7073 as->arcstat_meta_used.value.ui64 =
7074 wmsum_value(&arc_sums.arcstat_meta_used);
7075 as->arcstat_async_upgrade_sync.value.ui64 =
7076 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7077 as->arcstat_predictive_prefetch.value.ui64 =
7078 wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7079 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7080 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7081 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7082 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7083 as->arcstat_prescient_prefetch.value.ui64 =
7084 wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7085 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7086 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7087 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7088 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7089 as->arcstat_raw_size.value.ui64 =
7090 wmsum_value(&arc_sums.arcstat_raw_size);
7091 as->arcstat_cached_only_in_progress.value.ui64 =
7092 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7093 as->arcstat_abd_chunk_waste_size.value.ui64 =
7094 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7095
7096 return (0);
7097 }
7098
7099 /*
7100 * This function *must* return indices evenly distributed between all
7101 * sublists of the multilist. This is needed due to how the ARC eviction
7102 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7103 * distributed between all sublists and uses this assumption when
7104 * deciding which sublist to evict from and how much to evict from it.
7105 */
7106 static unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)7107 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7108 {
7109 arc_buf_hdr_t *hdr = obj;
7110
7111 /*
7112 * We rely on b_dva to generate evenly distributed index
7113 * numbers using buf_hash below. So, as an added precaution,
7114 * let's make sure we never add empty buffers to the arc lists.
7115 */
7116 ASSERT(!HDR_EMPTY(hdr));
7117
7118 /*
7119 * The assumption here, is the hash value for a given
7120 * arc_buf_hdr_t will remain constant throughout its lifetime
7121 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7122 * Thus, we don't need to store the header's sublist index
7123 * on insertion, as this index can be recalculated on removal.
7124 *
7125 * Also, the low order bits of the hash value are thought to be
7126 * distributed evenly. Otherwise, in the case that the multilist
7127 * has a power of two number of sublists, each sublists' usage
7128 * would not be evenly distributed. In this context full 64bit
7129 * division would be a waste of time, so limit it to 32 bits.
7130 */
7131 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7132 multilist_get_num_sublists(ml));
7133 }
7134
7135 static unsigned int
arc_state_l2c_multilist_index_func(multilist_t * ml,void * obj)7136 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7137 {
7138 panic("Header %p insert into arc_l2c_only %p", obj, ml);
7139 }
7140
7141 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7142 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7143 cmn_err(CE_WARN, \
7144 "ignoring tunable %s (using %llu instead)", \
7145 (#tuning), (u_longlong_t)(value)); \
7146 } \
7147 } while (0)
7148
7149 /*
7150 * Called during module initialization and periodically thereafter to
7151 * apply reasonable changes to the exposed performance tunings. Can also be
7152 * called explicitly by param_set_arc_*() functions when ARC tunables are
7153 * updated manually. Non-zero zfs_* values which differ from the currently set
7154 * values will be applied.
7155 */
7156 void
arc_tuning_update(boolean_t verbose)7157 arc_tuning_update(boolean_t verbose)
7158 {
7159 uint64_t allmem = arc_all_memory();
7160
7161 /* Valid range: 32M - <arc_c_max> */
7162 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7163 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7164 (zfs_arc_min <= arc_c_max)) {
7165 arc_c_min = zfs_arc_min;
7166 arc_c = MAX(arc_c, arc_c_min);
7167 }
7168 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7169
7170 /* Valid range: 64M - <all physical memory> */
7171 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7172 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7173 (zfs_arc_max > arc_c_min)) {
7174 arc_c_max = zfs_arc_max;
7175 arc_c = MIN(arc_c, arc_c_max);
7176 if (arc_dnode_limit > arc_c_max)
7177 arc_dnode_limit = arc_c_max;
7178 }
7179 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7180
7181 /* Valid range: 0 - <all physical memory> */
7182 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7183 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7184 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7185
7186 /* Valid range: 1 - N */
7187 if (zfs_arc_grow_retry)
7188 arc_grow_retry = zfs_arc_grow_retry;
7189
7190 /* Valid range: 1 - N */
7191 if (zfs_arc_shrink_shift) {
7192 arc_shrink_shift = zfs_arc_shrink_shift;
7193 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7194 }
7195
7196 /* Valid range: 1 - N ms */
7197 if (zfs_arc_min_prefetch_ms)
7198 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7199
7200 /* Valid range: 1 - N ms */
7201 if (zfs_arc_min_prescient_prefetch_ms) {
7202 arc_min_prescient_prefetch_ms =
7203 zfs_arc_min_prescient_prefetch_ms;
7204 }
7205
7206 /* Valid range: 0 - 100 */
7207 if (zfs_arc_lotsfree_percent <= 100)
7208 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7209 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7210 verbose);
7211
7212 /* Valid range: 0 - <all physical memory> */
7213 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7214 arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7215 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7216 }
7217
7218 static void
arc_state_multilist_init(multilist_t * ml,multilist_sublist_index_func_t * index_func,int * maxcountp)7219 arc_state_multilist_init(multilist_t *ml,
7220 multilist_sublist_index_func_t *index_func, int *maxcountp)
7221 {
7222 multilist_create(ml, sizeof (arc_buf_hdr_t),
7223 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7224 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7225 }
7226
7227 static void
arc_state_init(void)7228 arc_state_init(void)
7229 {
7230 int num_sublists = 0;
7231
7232 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7233 arc_state_multilist_index_func, &num_sublists);
7234 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7235 arc_state_multilist_index_func, &num_sublists);
7236 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7237 arc_state_multilist_index_func, &num_sublists);
7238 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7239 arc_state_multilist_index_func, &num_sublists);
7240 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7241 arc_state_multilist_index_func, &num_sublists);
7242 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7243 arc_state_multilist_index_func, &num_sublists);
7244 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7245 arc_state_multilist_index_func, &num_sublists);
7246 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7247 arc_state_multilist_index_func, &num_sublists);
7248 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7249 arc_state_multilist_index_func, &num_sublists);
7250 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7251 arc_state_multilist_index_func, &num_sublists);
7252
7253 /*
7254 * L2 headers should never be on the L2 state list since they don't
7255 * have L1 headers allocated. Special index function asserts that.
7256 */
7257 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7258 arc_state_l2c_multilist_index_func, &num_sublists);
7259 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7260 arc_state_l2c_multilist_index_func, &num_sublists);
7261
7262 /*
7263 * Keep track of the number of markers needed to reclaim buffers from
7264 * any ARC state. The markers will be pre-allocated so as to minimize
7265 * the number of memory allocations performed by the eviction thread.
7266 */
7267 arc_state_evict_marker_count = num_sublists;
7268
7269 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7270 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7271 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7272 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7273 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7274 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7275 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7276 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7277 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7278 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7279 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7280 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7281 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7282 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7283
7284 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7285 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7286 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7287 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7288 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7289 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7290 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7291 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7292 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7293 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7294 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7295 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7296 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7297 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7298
7299 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7300 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7301 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7302 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7303
7304 wmsum_init(&arc_sums.arcstat_hits, 0);
7305 wmsum_init(&arc_sums.arcstat_iohits, 0);
7306 wmsum_init(&arc_sums.arcstat_misses, 0);
7307 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7308 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7309 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7310 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7311 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7312 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7313 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7314 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7315 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7316 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7317 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7318 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7319 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7320 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7321 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7322 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7323 wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7324 wmsum_init(&arc_sums.arcstat_deleted, 0);
7325 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7326 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7327 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7328 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7329 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7330 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7331 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7332 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7333 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7334 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7335 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7336 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7337 aggsum_init(&arc_sums.arcstat_size, 0);
7338 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7339 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7340 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7341 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7342 wmsum_init(&arc_sums.arcstat_data_size, 0);
7343 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7344 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7345 wmsum_init(&arc_sums.arcstat_dnode_size, 0);
7346 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7347 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7348 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7349 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7350 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7351 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7352 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7353 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7354 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7355 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7356 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7357 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7358 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7359 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7360 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7361 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7362 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7363 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7364 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7365 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7366 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7367 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7368 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7369 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7370 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7371 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7372 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7373 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7374 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7375 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7376 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7377 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7378 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7379 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7380 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7381 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7382 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7383 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7384 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7385 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7386 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7387 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7388 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7389 wmsum_init(&arc_sums.arcstat_prune, 0);
7390 wmsum_init(&arc_sums.arcstat_meta_used, 0);
7391 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7392 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7393 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7394 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7395 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7396 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7397 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7398 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7399 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7400 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7401
7402 arc_anon->arcs_state = ARC_STATE_ANON;
7403 arc_mru->arcs_state = ARC_STATE_MRU;
7404 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7405 arc_mfu->arcs_state = ARC_STATE_MFU;
7406 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7407 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7408 arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7409 }
7410
7411 static void
arc_state_fini(void)7412 arc_state_fini(void)
7413 {
7414 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7415 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7416 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7417 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7418 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7419 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7420 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7421 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7422 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7423 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7424 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7425 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7426 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7427 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7428
7429 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7430 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7431 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7432 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7433 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7434 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7435 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7436 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7437 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7438 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7439 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7440 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7441 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7442 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7443
7444 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7445 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7446 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7447 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7448 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7449 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7450 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7451 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7452 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7453 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7454 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7455 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7456
7457 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7458 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7459 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7460 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7461
7462 wmsum_fini(&arc_sums.arcstat_hits);
7463 wmsum_fini(&arc_sums.arcstat_iohits);
7464 wmsum_fini(&arc_sums.arcstat_misses);
7465 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7466 wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7467 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7468 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7469 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7470 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7471 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7472 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7473 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7474 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7475 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7476 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7477 wmsum_fini(&arc_sums.arcstat_mru_hits);
7478 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7479 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7480 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7481 wmsum_fini(&arc_sums.arcstat_uncached_hits);
7482 wmsum_fini(&arc_sums.arcstat_deleted);
7483 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7484 wmsum_fini(&arc_sums.arcstat_access_skip);
7485 wmsum_fini(&arc_sums.arcstat_evict_skip);
7486 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7487 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7488 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7489 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7490 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7491 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7492 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7493 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7494 wmsum_fini(&arc_sums.arcstat_hash_chains);
7495 aggsum_fini(&arc_sums.arcstat_size);
7496 wmsum_fini(&arc_sums.arcstat_compressed_size);
7497 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7498 wmsum_fini(&arc_sums.arcstat_overhead_size);
7499 wmsum_fini(&arc_sums.arcstat_hdr_size);
7500 wmsum_fini(&arc_sums.arcstat_data_size);
7501 wmsum_fini(&arc_sums.arcstat_metadata_size);
7502 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7503 wmsum_fini(&arc_sums.arcstat_dnode_size);
7504 wmsum_fini(&arc_sums.arcstat_bonus_size);
7505 wmsum_fini(&arc_sums.arcstat_l2_hits);
7506 wmsum_fini(&arc_sums.arcstat_l2_misses);
7507 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7508 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7509 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7510 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7511 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7512 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7513 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7514 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7515 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7516 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7517 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7518 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7519 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7520 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7521 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7522 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7523 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7524 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7525 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7526 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7527 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7528 wmsum_fini(&arc_sums.arcstat_l2_psize);
7529 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7530 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7531 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7532 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7533 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7534 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7535 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7536 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7537 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7538 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7539 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7540 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7541 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7542 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7543 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7544 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7545 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7546 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7547 wmsum_fini(&arc_sums.arcstat_prune);
7548 wmsum_fini(&arc_sums.arcstat_meta_used);
7549 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7550 wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7551 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7552 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7553 wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7554 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7555 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7556 wmsum_fini(&arc_sums.arcstat_raw_size);
7557 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7558 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7559 }
7560
7561 uint64_t
arc_target_bytes(void)7562 arc_target_bytes(void)
7563 {
7564 return (arc_c);
7565 }
7566
7567 void
arc_set_limits(uint64_t allmem)7568 arc_set_limits(uint64_t allmem)
7569 {
7570 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7571 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7572
7573 /* How to set default max varies by platform. */
7574 arc_c_max = arc_default_max(arc_c_min, allmem);
7575 }
7576 void
arc_init(void)7577 arc_init(void)
7578 {
7579 uint64_t percent, allmem = arc_all_memory();
7580 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7581 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7582 offsetof(arc_evict_waiter_t, aew_node));
7583
7584 arc_min_prefetch_ms = 1000;
7585 arc_min_prescient_prefetch_ms = 6000;
7586
7587 #if defined(_KERNEL)
7588 arc_lowmem_init();
7589 #endif
7590
7591 arc_set_limits(allmem);
7592
7593 #ifdef _KERNEL
7594 /*
7595 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7596 * environment before the module was loaded, don't block setting the
7597 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7598 * to a lower value.
7599 * zfs_arc_min will be handled by arc_tuning_update().
7600 */
7601 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7602 zfs_arc_max < allmem) {
7603 arc_c_max = zfs_arc_max;
7604 if (arc_c_min >= arc_c_max) {
7605 arc_c_min = MAX(zfs_arc_max / 2,
7606 2ULL << SPA_MAXBLOCKSHIFT);
7607 }
7608 }
7609 #else
7610 /*
7611 * In userland, there's only the memory pressure that we artificially
7612 * create (see arc_available_memory()). Don't let arc_c get too
7613 * small, because it can cause transactions to be larger than
7614 * arc_c, causing arc_tempreserve_space() to fail.
7615 */
7616 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7617 #endif
7618
7619 arc_c = arc_c_min;
7620 /*
7621 * 32-bit fixed point fractions of metadata from total ARC size,
7622 * MRU data from all data and MRU metadata from all metadata.
7623 */
7624 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */
7625 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */
7626 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */
7627
7628 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7629 arc_dnode_limit = arc_c_max * percent / 100;
7630
7631 /* Apply user specified tunings */
7632 arc_tuning_update(B_TRUE);
7633
7634 /* if kmem_flags are set, lets try to use less memory */
7635 if (kmem_debugging())
7636 arc_c = arc_c / 2;
7637 if (arc_c < arc_c_min)
7638 arc_c = arc_c_min;
7639
7640 arc_register_hotplug();
7641
7642 arc_state_init();
7643
7644 buf_init();
7645
7646 list_create(&arc_prune_list, sizeof (arc_prune_t),
7647 offsetof(arc_prune_t, p_node));
7648 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7649
7650 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
7651 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7652
7653 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7654 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7655
7656 if (arc_ksp != NULL) {
7657 arc_ksp->ks_data = &arc_stats;
7658 arc_ksp->ks_update = arc_kstat_update;
7659 kstat_install(arc_ksp);
7660 }
7661
7662 arc_state_evict_markers =
7663 arc_state_alloc_markers(arc_state_evict_marker_count);
7664 arc_evict_zthr = zthr_create_timer("arc_evict",
7665 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
7666 arc_reap_zthr = zthr_create_timer("arc_reap",
7667 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
7668
7669 arc_warm = B_FALSE;
7670
7671 /*
7672 * Calculate maximum amount of dirty data per pool.
7673 *
7674 * If it has been set by a module parameter, take that.
7675 * Otherwise, use a percentage of physical memory defined by
7676 * zfs_dirty_data_max_percent (default 10%) with a cap at
7677 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7678 */
7679 #ifdef __LP64__
7680 if (zfs_dirty_data_max_max == 0)
7681 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7682 allmem * zfs_dirty_data_max_max_percent / 100);
7683 #else
7684 if (zfs_dirty_data_max_max == 0)
7685 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7686 allmem * zfs_dirty_data_max_max_percent / 100);
7687 #endif
7688
7689 if (zfs_dirty_data_max == 0) {
7690 zfs_dirty_data_max = allmem *
7691 zfs_dirty_data_max_percent / 100;
7692 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7693 zfs_dirty_data_max_max);
7694 }
7695
7696 if (zfs_wrlog_data_max == 0) {
7697
7698 /*
7699 * dp_wrlog_total is reduced for each txg at the end of
7700 * spa_sync(). However, dp_dirty_total is reduced every time
7701 * a block is written out. Thus under normal operation,
7702 * dp_wrlog_total could grow 2 times as big as
7703 * zfs_dirty_data_max.
7704 */
7705 zfs_wrlog_data_max = zfs_dirty_data_max * 2;
7706 }
7707 }
7708
7709 void
arc_fini(void)7710 arc_fini(void)
7711 {
7712 arc_prune_t *p;
7713
7714 #ifdef _KERNEL
7715 arc_lowmem_fini();
7716 #endif /* _KERNEL */
7717
7718 /* Use B_TRUE to ensure *all* buffers are evicted */
7719 arc_flush(NULL, B_TRUE);
7720
7721 if (arc_ksp != NULL) {
7722 kstat_delete(arc_ksp);
7723 arc_ksp = NULL;
7724 }
7725
7726 taskq_wait(arc_prune_taskq);
7727 taskq_destroy(arc_prune_taskq);
7728
7729 mutex_enter(&arc_prune_mtx);
7730 while ((p = list_remove_head(&arc_prune_list)) != NULL) {
7731 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7732 zfs_refcount_destroy(&p->p_refcnt);
7733 kmem_free(p, sizeof (*p));
7734 }
7735 mutex_exit(&arc_prune_mtx);
7736
7737 list_destroy(&arc_prune_list);
7738 mutex_destroy(&arc_prune_mtx);
7739
7740 (void) zthr_cancel(arc_evict_zthr);
7741 (void) zthr_cancel(arc_reap_zthr);
7742 arc_state_free_markers(arc_state_evict_markers,
7743 arc_state_evict_marker_count);
7744
7745 mutex_destroy(&arc_evict_lock);
7746 list_destroy(&arc_evict_waiters);
7747
7748 /*
7749 * Free any buffers that were tagged for destruction. This needs
7750 * to occur before arc_state_fini() runs and destroys the aggsum
7751 * values which are updated when freeing scatter ABDs.
7752 */
7753 l2arc_do_free_on_write();
7754
7755 /*
7756 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7757 * trigger the release of kmem magazines, which can callback to
7758 * arc_space_return() which accesses aggsums freed in act_state_fini().
7759 */
7760 buf_fini();
7761 arc_state_fini();
7762
7763 arc_unregister_hotplug();
7764
7765 /*
7766 * We destroy the zthrs after all the ARC state has been
7767 * torn down to avoid the case of them receiving any
7768 * wakeup() signals after they are destroyed.
7769 */
7770 zthr_destroy(arc_evict_zthr);
7771 zthr_destroy(arc_reap_zthr);
7772
7773 ASSERT0(arc_loaned_bytes);
7774 }
7775
7776 /*
7777 * Level 2 ARC
7778 *
7779 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7780 * It uses dedicated storage devices to hold cached data, which are populated
7781 * using large infrequent writes. The main role of this cache is to boost
7782 * the performance of random read workloads. The intended L2ARC devices
7783 * include short-stroked disks, solid state disks, and other media with
7784 * substantially faster read latency than disk.
7785 *
7786 * +-----------------------+
7787 * | ARC |
7788 * +-----------------------+
7789 * | ^ ^
7790 * | | |
7791 * l2arc_feed_thread() arc_read()
7792 * | | |
7793 * | l2arc read |
7794 * V | |
7795 * +---------------+ |
7796 * | L2ARC | |
7797 * +---------------+ |
7798 * | ^ |
7799 * l2arc_write() | |
7800 * | | |
7801 * V | |
7802 * +-------+ +-------+
7803 * | vdev | | vdev |
7804 * | cache | | cache |
7805 * +-------+ +-------+
7806 * +=========+ .-----.
7807 * : L2ARC : |-_____-|
7808 * : devices : | Disks |
7809 * +=========+ `-_____-'
7810 *
7811 * Read requests are satisfied from the following sources, in order:
7812 *
7813 * 1) ARC
7814 * 2) vdev cache of L2ARC devices
7815 * 3) L2ARC devices
7816 * 4) vdev cache of disks
7817 * 5) disks
7818 *
7819 * Some L2ARC device types exhibit extremely slow write performance.
7820 * To accommodate for this there are some significant differences between
7821 * the L2ARC and traditional cache design:
7822 *
7823 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7824 * the ARC behave as usual, freeing buffers and placing headers on ghost
7825 * lists. The ARC does not send buffers to the L2ARC during eviction as
7826 * this would add inflated write latencies for all ARC memory pressure.
7827 *
7828 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7829 * It does this by periodically scanning buffers from the eviction-end of
7830 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7831 * not already there. It scans until a headroom of buffers is satisfied,
7832 * which itself is a buffer for ARC eviction. If a compressible buffer is
7833 * found during scanning and selected for writing to an L2ARC device, we
7834 * temporarily boost scanning headroom during the next scan cycle to make
7835 * sure we adapt to compression effects (which might significantly reduce
7836 * the data volume we write to L2ARC). The thread that does this is
7837 * l2arc_feed_thread(), illustrated below; example sizes are included to
7838 * provide a better sense of ratio than this diagram:
7839 *
7840 * head --> tail
7841 * +---------------------+----------+
7842 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
7843 * +---------------------+----------+ | o L2ARC eligible
7844 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
7845 * +---------------------+----------+ |
7846 * 15.9 Gbytes ^ 32 Mbytes |
7847 * headroom |
7848 * l2arc_feed_thread()
7849 * |
7850 * l2arc write hand <--[oooo]--'
7851 * | 8 Mbyte
7852 * | write max
7853 * V
7854 * +==============================+
7855 * L2ARC dev |####|#|###|###| |####| ... |
7856 * +==============================+
7857 * 32 Gbytes
7858 *
7859 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7860 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7861 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
7862 * safe to say that this is an uncommon case, since buffers at the end of
7863 * the ARC lists have moved there due to inactivity.
7864 *
7865 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7866 * then the L2ARC simply misses copying some buffers. This serves as a
7867 * pressure valve to prevent heavy read workloads from both stalling the ARC
7868 * with waits and clogging the L2ARC with writes. This also helps prevent
7869 * the potential for the L2ARC to churn if it attempts to cache content too
7870 * quickly, such as during backups of the entire pool.
7871 *
7872 * 5. After system boot and before the ARC has filled main memory, there are
7873 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7874 * lists can remain mostly static. Instead of searching from tail of these
7875 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7876 * for eligible buffers, greatly increasing its chance of finding them.
7877 *
7878 * The L2ARC device write speed is also boosted during this time so that
7879 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
7880 * there are no L2ARC reads, and no fear of degrading read performance
7881 * through increased writes.
7882 *
7883 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7884 * the vdev queue can aggregate them into larger and fewer writes. Each
7885 * device is written to in a rotor fashion, sweeping writes through
7886 * available space then repeating.
7887 *
7888 * 7. The L2ARC does not store dirty content. It never needs to flush
7889 * write buffers back to disk based storage.
7890 *
7891 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7892 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7893 *
7894 * The performance of the L2ARC can be tweaked by a number of tunables, which
7895 * may be necessary for different workloads:
7896 *
7897 * l2arc_write_max max write bytes per interval
7898 * l2arc_write_boost extra write bytes during device warmup
7899 * l2arc_noprefetch skip caching prefetched buffers
7900 * l2arc_headroom number of max device writes to precache
7901 * l2arc_headroom_boost when we find compressed buffers during ARC
7902 * scanning, we multiply headroom by this
7903 * percentage factor for the next scan cycle,
7904 * since more compressed buffers are likely to
7905 * be present
7906 * l2arc_feed_secs seconds between L2ARC writing
7907 *
7908 * Tunables may be removed or added as future performance improvements are
7909 * integrated, and also may become zpool properties.
7910 *
7911 * There are three key functions that control how the L2ARC warms up:
7912 *
7913 * l2arc_write_eligible() check if a buffer is eligible to cache
7914 * l2arc_write_size() calculate how much to write
7915 * l2arc_write_interval() calculate sleep delay between writes
7916 *
7917 * These three functions determine what to write, how much, and how quickly
7918 * to send writes.
7919 *
7920 * L2ARC persistence:
7921 *
7922 * When writing buffers to L2ARC, we periodically add some metadata to
7923 * make sure we can pick them up after reboot, thus dramatically reducing
7924 * the impact that any downtime has on the performance of storage systems
7925 * with large caches.
7926 *
7927 * The implementation works fairly simply by integrating the following two
7928 * modifications:
7929 *
7930 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
7931 * which is an additional piece of metadata which describes what's been
7932 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
7933 * main ARC buffers. There are 2 linked-lists of log blocks headed by
7934 * dh_start_lbps[2]. We alternate which chain we append to, so they are
7935 * time-wise and offset-wise interleaved, but that is an optimization rather
7936 * than for correctness. The log block also includes a pointer to the
7937 * previous block in its chain.
7938 *
7939 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
7940 * for our header bookkeeping purposes. This contains a device header,
7941 * which contains our top-level reference structures. We update it each
7942 * time we write a new log block, so that we're able to locate it in the
7943 * L2ARC device. If this write results in an inconsistent device header
7944 * (e.g. due to power failure), we detect this by verifying the header's
7945 * checksum and simply fail to reconstruct the L2ARC after reboot.
7946 *
7947 * Implementation diagram:
7948 *
7949 * +=== L2ARC device (not to scale) ======================================+
7950 * | ___two newest log block pointers__.__________ |
7951 * | / \dh_start_lbps[1] |
7952 * | / \ \dh_start_lbps[0]|
7953 * |.___/__. V V |
7954 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
7955 * || hdr| ^ /^ /^ / / |
7956 * |+------+ ...--\-------/ \-----/--\------/ / |
7957 * | \--------------/ \--------------/ |
7958 * +======================================================================+
7959 *
7960 * As can be seen on the diagram, rather than using a simple linked list,
7961 * we use a pair of linked lists with alternating elements. This is a
7962 * performance enhancement due to the fact that we only find out the
7963 * address of the next log block access once the current block has been
7964 * completely read in. Obviously, this hurts performance, because we'd be
7965 * keeping the device's I/O queue at only a 1 operation deep, thus
7966 * incurring a large amount of I/O round-trip latency. Having two lists
7967 * allows us to fetch two log blocks ahead of where we are currently
7968 * rebuilding L2ARC buffers.
7969 *
7970 * On-device data structures:
7971 *
7972 * L2ARC device header: l2arc_dev_hdr_phys_t
7973 * L2ARC log block: l2arc_log_blk_phys_t
7974 *
7975 * L2ARC reconstruction:
7976 *
7977 * When writing data, we simply write in the standard rotary fashion,
7978 * evicting buffers as we go and simply writing new data over them (writing
7979 * a new log block every now and then). This obviously means that once we
7980 * loop around the end of the device, we will start cutting into an already
7981 * committed log block (and its referenced data buffers), like so:
7982 *
7983 * current write head__ __old tail
7984 * \ /
7985 * V V
7986 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
7987 * ^ ^^^^^^^^^___________________________________
7988 * | \
7989 * <<nextwrite>> may overwrite this blk and/or its bufs --'
7990 *
7991 * When importing the pool, we detect this situation and use it to stop
7992 * our scanning process (see l2arc_rebuild).
7993 *
7994 * There is one significant caveat to consider when rebuilding ARC contents
7995 * from an L2ARC device: what about invalidated buffers? Given the above
7996 * construction, we cannot update blocks which we've already written to amend
7997 * them to remove buffers which were invalidated. Thus, during reconstruction,
7998 * we might be populating the cache with buffers for data that's not on the
7999 * main pool anymore, or may have been overwritten!
8000 *
8001 * As it turns out, this isn't a problem. Every arc_read request includes
8002 * both the DVA and, crucially, the birth TXG of the BP the caller is
8003 * looking for. So even if the cache were populated by completely rotten
8004 * blocks for data that had been long deleted and/or overwritten, we'll
8005 * never actually return bad data from the cache, since the DVA with the
8006 * birth TXG uniquely identify a block in space and time - once created,
8007 * a block is immutable on disk. The worst thing we have done is wasted
8008 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8009 * entries that will get dropped from the l2arc as it is being updated
8010 * with new blocks.
8011 *
8012 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8013 * hand are not restored. This is done by saving the offset (in bytes)
8014 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8015 * into account when restoring buffers.
8016 */
8017
8018 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * hdr)8019 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8020 {
8021 /*
8022 * A buffer is *not* eligible for the L2ARC if it:
8023 * 1. belongs to a different spa.
8024 * 2. is already cached on the L2ARC.
8025 * 3. has an I/O in progress (it may be an incomplete read).
8026 * 4. is flagged not eligible (zfs property).
8027 */
8028 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8029 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8030 return (B_FALSE);
8031
8032 return (B_TRUE);
8033 }
8034
8035 static uint64_t
l2arc_write_size(l2arc_dev_t * dev)8036 l2arc_write_size(l2arc_dev_t *dev)
8037 {
8038 uint64_t size;
8039
8040 /*
8041 * Make sure our globals have meaningful values in case the user
8042 * altered them.
8043 */
8044 size = l2arc_write_max;
8045 if (size == 0) {
8046 cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8047 "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8048 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8049 }
8050
8051 if (arc_warm == B_FALSE)
8052 size += l2arc_write_boost;
8053
8054 /* We need to add in the worst case scenario of log block overhead. */
8055 size += l2arc_log_blk_overhead(size, dev);
8056 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8057 /*
8058 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8059 * times the writesize, whichever is greater.
8060 */
8061 size += MAX(64 * 1024 * 1024,
8062 (size * l2arc_trim_ahead) / 100);
8063 }
8064
8065 /*
8066 * Make sure the write size does not exceed the size of the cache
8067 * device. This is important in l2arc_evict(), otherwise infinite
8068 * iteration can occur.
8069 */
8070 size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8071
8072 size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8073
8074 return (size);
8075
8076 }
8077
8078 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)8079 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8080 {
8081 clock_t interval, next, now;
8082
8083 /*
8084 * If the ARC lists are busy, increase our write rate; if the
8085 * lists are stale, idle back. This is achieved by checking
8086 * how much we previously wrote - if it was more than half of
8087 * what we wanted, schedule the next write much sooner.
8088 */
8089 if (l2arc_feed_again && wrote > (wanted / 2))
8090 interval = (hz * l2arc_feed_min_ms) / 1000;
8091 else
8092 interval = hz * l2arc_feed_secs;
8093
8094 now = ddi_get_lbolt();
8095 next = MAX(now, MIN(now + interval, began + interval));
8096
8097 return (next);
8098 }
8099
8100 /*
8101 * Cycle through L2ARC devices. This is how L2ARC load balances.
8102 * If a device is returned, this also returns holding the spa config lock.
8103 */
8104 static l2arc_dev_t *
l2arc_dev_get_next(void)8105 l2arc_dev_get_next(void)
8106 {
8107 l2arc_dev_t *first, *next = NULL;
8108
8109 /*
8110 * Lock out the removal of spas (spa_namespace_lock), then removal
8111 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8112 * both locks will be dropped and a spa config lock held instead.
8113 */
8114 mutex_enter(&spa_namespace_lock);
8115 mutex_enter(&l2arc_dev_mtx);
8116
8117 /* if there are no vdevs, there is nothing to do */
8118 if (l2arc_ndev == 0)
8119 goto out;
8120
8121 first = NULL;
8122 next = l2arc_dev_last;
8123 do {
8124 /* loop around the list looking for a non-faulted vdev */
8125 if (next == NULL) {
8126 next = list_head(l2arc_dev_list);
8127 } else {
8128 next = list_next(l2arc_dev_list, next);
8129 if (next == NULL)
8130 next = list_head(l2arc_dev_list);
8131 }
8132
8133 /* if we have come back to the start, bail out */
8134 if (first == NULL)
8135 first = next;
8136 else if (next == first)
8137 break;
8138
8139 ASSERT3P(next, !=, NULL);
8140 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8141 next->l2ad_trim_all);
8142
8143 /* if we were unable to find any usable vdevs, return NULL */
8144 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8145 next->l2ad_trim_all)
8146 next = NULL;
8147
8148 l2arc_dev_last = next;
8149
8150 out:
8151 mutex_exit(&l2arc_dev_mtx);
8152
8153 /*
8154 * Grab the config lock to prevent the 'next' device from being
8155 * removed while we are writing to it.
8156 */
8157 if (next != NULL)
8158 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8159 mutex_exit(&spa_namespace_lock);
8160
8161 return (next);
8162 }
8163
8164 /*
8165 * Free buffers that were tagged for destruction.
8166 */
8167 static void
l2arc_do_free_on_write(void)8168 l2arc_do_free_on_write(void)
8169 {
8170 l2arc_data_free_t *df;
8171
8172 mutex_enter(&l2arc_free_on_write_mtx);
8173 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8174 ASSERT3P(df->l2df_abd, !=, NULL);
8175 abd_free(df->l2df_abd);
8176 kmem_free(df, sizeof (l2arc_data_free_t));
8177 }
8178 mutex_exit(&l2arc_free_on_write_mtx);
8179 }
8180
8181 /*
8182 * A write to a cache device has completed. Update all headers to allow
8183 * reads from these buffers to begin.
8184 */
8185 static void
l2arc_write_done(zio_t * zio)8186 l2arc_write_done(zio_t *zio)
8187 {
8188 l2arc_write_callback_t *cb;
8189 l2arc_lb_abd_buf_t *abd_buf;
8190 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8191 l2arc_dev_t *dev;
8192 l2arc_dev_hdr_phys_t *l2dhdr;
8193 list_t *buflist;
8194 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8195 kmutex_t *hash_lock;
8196 int64_t bytes_dropped = 0;
8197
8198 cb = zio->io_private;
8199 ASSERT3P(cb, !=, NULL);
8200 dev = cb->l2wcb_dev;
8201 l2dhdr = dev->l2ad_dev_hdr;
8202 ASSERT3P(dev, !=, NULL);
8203 head = cb->l2wcb_head;
8204 ASSERT3P(head, !=, NULL);
8205 buflist = &dev->l2ad_buflist;
8206 ASSERT3P(buflist, !=, NULL);
8207 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8208 l2arc_write_callback_t *, cb);
8209
8210 /*
8211 * All writes completed, or an error was hit.
8212 */
8213 top:
8214 mutex_enter(&dev->l2ad_mtx);
8215 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8216 hdr_prev = list_prev(buflist, hdr);
8217
8218 hash_lock = HDR_LOCK(hdr);
8219
8220 /*
8221 * We cannot use mutex_enter or else we can deadlock
8222 * with l2arc_write_buffers (due to swapping the order
8223 * the hash lock and l2ad_mtx are taken).
8224 */
8225 if (!mutex_tryenter(hash_lock)) {
8226 /*
8227 * Missed the hash lock. We must retry so we
8228 * don't leave the ARC_FLAG_L2_WRITING bit set.
8229 */
8230 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8231
8232 /*
8233 * We don't want to rescan the headers we've
8234 * already marked as having been written out, so
8235 * we reinsert the head node so we can pick up
8236 * where we left off.
8237 */
8238 list_remove(buflist, head);
8239 list_insert_after(buflist, hdr, head);
8240
8241 mutex_exit(&dev->l2ad_mtx);
8242
8243 /*
8244 * We wait for the hash lock to become available
8245 * to try and prevent busy waiting, and increase
8246 * the chance we'll be able to acquire the lock
8247 * the next time around.
8248 */
8249 mutex_enter(hash_lock);
8250 mutex_exit(hash_lock);
8251 goto top;
8252 }
8253
8254 /*
8255 * We could not have been moved into the arc_l2c_only
8256 * state while in-flight due to our ARC_FLAG_L2_WRITING
8257 * bit being set. Let's just ensure that's being enforced.
8258 */
8259 ASSERT(HDR_HAS_L1HDR(hdr));
8260
8261 /*
8262 * Skipped - drop L2ARC entry and mark the header as no
8263 * longer L2 eligibile.
8264 */
8265 if (zio->io_error != 0) {
8266 /*
8267 * Error - drop L2ARC entry.
8268 */
8269 list_remove(buflist, hdr);
8270 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8271
8272 uint64_t psize = HDR_GET_PSIZE(hdr);
8273 l2arc_hdr_arcstats_decrement(hdr);
8274
8275 bytes_dropped +=
8276 vdev_psize_to_asize(dev->l2ad_vdev, psize);
8277 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8278 arc_hdr_size(hdr), hdr);
8279 }
8280
8281 /*
8282 * Allow ARC to begin reads and ghost list evictions to
8283 * this L2ARC entry.
8284 */
8285 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8286
8287 mutex_exit(hash_lock);
8288 }
8289
8290 /*
8291 * Free the allocated abd buffers for writing the log blocks.
8292 * If the zio failed reclaim the allocated space and remove the
8293 * pointers to these log blocks from the log block pointer list
8294 * of the L2ARC device.
8295 */
8296 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8297 abd_free(abd_buf->abd);
8298 zio_buf_free(abd_buf, sizeof (*abd_buf));
8299 if (zio->io_error != 0) {
8300 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8301 /*
8302 * L2BLK_GET_PSIZE returns aligned size for log
8303 * blocks.
8304 */
8305 uint64_t asize =
8306 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8307 bytes_dropped += asize;
8308 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8309 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8310 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8311 lb_ptr_buf);
8312 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8313 kmem_free(lb_ptr_buf->lb_ptr,
8314 sizeof (l2arc_log_blkptr_t));
8315 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8316 }
8317 }
8318 list_destroy(&cb->l2wcb_abd_list);
8319
8320 if (zio->io_error != 0) {
8321 ARCSTAT_BUMP(arcstat_l2_writes_error);
8322
8323 /*
8324 * Restore the lbps array in the header to its previous state.
8325 * If the list of log block pointers is empty, zero out the
8326 * log block pointers in the device header.
8327 */
8328 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8329 for (int i = 0; i < 2; i++) {
8330 if (lb_ptr_buf == NULL) {
8331 /*
8332 * If the list is empty zero out the device
8333 * header. Otherwise zero out the second log
8334 * block pointer in the header.
8335 */
8336 if (i == 0) {
8337 memset(l2dhdr, 0,
8338 dev->l2ad_dev_hdr_asize);
8339 } else {
8340 memset(&l2dhdr->dh_start_lbps[i], 0,
8341 sizeof (l2arc_log_blkptr_t));
8342 }
8343 break;
8344 }
8345 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8346 sizeof (l2arc_log_blkptr_t));
8347 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8348 lb_ptr_buf);
8349 }
8350 }
8351
8352 ARCSTAT_BUMP(arcstat_l2_writes_done);
8353 list_remove(buflist, head);
8354 ASSERT(!HDR_HAS_L1HDR(head));
8355 kmem_cache_free(hdr_l2only_cache, head);
8356 mutex_exit(&dev->l2ad_mtx);
8357
8358 ASSERT(dev->l2ad_vdev != NULL);
8359 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8360
8361 l2arc_do_free_on_write();
8362
8363 kmem_free(cb, sizeof (l2arc_write_callback_t));
8364 }
8365
8366 static int
l2arc_untransform(zio_t * zio,l2arc_read_callback_t * cb)8367 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8368 {
8369 int ret;
8370 spa_t *spa = zio->io_spa;
8371 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8372 blkptr_t *bp = zio->io_bp;
8373 uint8_t salt[ZIO_DATA_SALT_LEN];
8374 uint8_t iv[ZIO_DATA_IV_LEN];
8375 uint8_t mac[ZIO_DATA_MAC_LEN];
8376 boolean_t no_crypt = B_FALSE;
8377
8378 /*
8379 * ZIL data is never be written to the L2ARC, so we don't need
8380 * special handling for its unique MAC storage.
8381 */
8382 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8383 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8384 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8385
8386 /*
8387 * If the data was encrypted, decrypt it now. Note that
8388 * we must check the bp here and not the hdr, since the
8389 * hdr does not have its encryption parameters updated
8390 * until arc_read_done().
8391 */
8392 if (BP_IS_ENCRYPTED(bp)) {
8393 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8394 ARC_HDR_USE_RESERVE);
8395
8396 zio_crypt_decode_params_bp(bp, salt, iv);
8397 zio_crypt_decode_mac_bp(bp, mac);
8398
8399 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8400 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8401 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8402 hdr->b_l1hdr.b_pabd, &no_crypt);
8403 if (ret != 0) {
8404 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8405 goto error;
8406 }
8407
8408 /*
8409 * If we actually performed decryption, replace b_pabd
8410 * with the decrypted data. Otherwise we can just throw
8411 * our decryption buffer away.
8412 */
8413 if (!no_crypt) {
8414 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8415 arc_hdr_size(hdr), hdr);
8416 hdr->b_l1hdr.b_pabd = eabd;
8417 zio->io_abd = eabd;
8418 } else {
8419 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8420 }
8421 }
8422
8423 /*
8424 * If the L2ARC block was compressed, but ARC compression
8425 * is disabled we decompress the data into a new buffer and
8426 * replace the existing data.
8427 */
8428 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8429 !HDR_COMPRESSION_ENABLED(hdr)) {
8430 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8431 ARC_HDR_USE_RESERVE);
8432 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8433
8434 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8435 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8436 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8437 if (ret != 0) {
8438 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8439 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8440 goto error;
8441 }
8442
8443 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8444 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8445 arc_hdr_size(hdr), hdr);
8446 hdr->b_l1hdr.b_pabd = cabd;
8447 zio->io_abd = cabd;
8448 zio->io_size = HDR_GET_LSIZE(hdr);
8449 }
8450
8451 return (0);
8452
8453 error:
8454 return (ret);
8455 }
8456
8457
8458 /*
8459 * A read to a cache device completed. Validate buffer contents before
8460 * handing over to the regular ARC routines.
8461 */
8462 static void
l2arc_read_done(zio_t * zio)8463 l2arc_read_done(zio_t *zio)
8464 {
8465 int tfm_error = 0;
8466 l2arc_read_callback_t *cb = zio->io_private;
8467 arc_buf_hdr_t *hdr;
8468 kmutex_t *hash_lock;
8469 boolean_t valid_cksum;
8470 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8471 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8472
8473 ASSERT3P(zio->io_vd, !=, NULL);
8474 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8475
8476 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8477
8478 ASSERT3P(cb, !=, NULL);
8479 hdr = cb->l2rcb_hdr;
8480 ASSERT3P(hdr, !=, NULL);
8481
8482 hash_lock = HDR_LOCK(hdr);
8483 mutex_enter(hash_lock);
8484 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8485
8486 /*
8487 * If the data was read into a temporary buffer,
8488 * move it and free the buffer.
8489 */
8490 if (cb->l2rcb_abd != NULL) {
8491 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8492 if (zio->io_error == 0) {
8493 if (using_rdata) {
8494 abd_copy(hdr->b_crypt_hdr.b_rabd,
8495 cb->l2rcb_abd, arc_hdr_size(hdr));
8496 } else {
8497 abd_copy(hdr->b_l1hdr.b_pabd,
8498 cb->l2rcb_abd, arc_hdr_size(hdr));
8499 }
8500 }
8501
8502 /*
8503 * The following must be done regardless of whether
8504 * there was an error:
8505 * - free the temporary buffer
8506 * - point zio to the real ARC buffer
8507 * - set zio size accordingly
8508 * These are required because zio is either re-used for
8509 * an I/O of the block in the case of the error
8510 * or the zio is passed to arc_read_done() and it
8511 * needs real data.
8512 */
8513 abd_free(cb->l2rcb_abd);
8514 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8515
8516 if (using_rdata) {
8517 ASSERT(HDR_HAS_RABD(hdr));
8518 zio->io_abd = zio->io_orig_abd =
8519 hdr->b_crypt_hdr.b_rabd;
8520 } else {
8521 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8522 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8523 }
8524 }
8525
8526 ASSERT3P(zio->io_abd, !=, NULL);
8527
8528 /*
8529 * Check this survived the L2ARC journey.
8530 */
8531 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8532 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8533 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8534 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8535 zio->io_prop.zp_complevel = hdr->b_complevel;
8536
8537 valid_cksum = arc_cksum_is_equal(hdr, zio);
8538
8539 /*
8540 * b_rabd will always match the data as it exists on disk if it is
8541 * being used. Therefore if we are reading into b_rabd we do not
8542 * attempt to untransform the data.
8543 */
8544 if (valid_cksum && !using_rdata)
8545 tfm_error = l2arc_untransform(zio, cb);
8546
8547 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8548 !HDR_L2_EVICTED(hdr)) {
8549 mutex_exit(hash_lock);
8550 zio->io_private = hdr;
8551 arc_read_done(zio);
8552 } else {
8553 /*
8554 * Buffer didn't survive caching. Increment stats and
8555 * reissue to the original storage device.
8556 */
8557 if (zio->io_error != 0) {
8558 ARCSTAT_BUMP(arcstat_l2_io_error);
8559 } else {
8560 zio->io_error = SET_ERROR(EIO);
8561 }
8562 if (!valid_cksum || tfm_error != 0)
8563 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8564
8565 /*
8566 * If there's no waiter, issue an async i/o to the primary
8567 * storage now. If there *is* a waiter, the caller must
8568 * issue the i/o in a context where it's OK to block.
8569 */
8570 if (zio->io_waiter == NULL) {
8571 zio_t *pio = zio_unique_parent(zio);
8572 void *abd = (using_rdata) ?
8573 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8574
8575 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8576
8577 zio = zio_read(pio, zio->io_spa, zio->io_bp,
8578 abd, zio->io_size, arc_read_done,
8579 hdr, zio->io_priority, cb->l2rcb_flags,
8580 &cb->l2rcb_zb);
8581
8582 /*
8583 * Original ZIO will be freed, so we need to update
8584 * ARC header with the new ZIO pointer to be used
8585 * by zio_change_priority() in arc_read().
8586 */
8587 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8588 acb != NULL; acb = acb->acb_next)
8589 acb->acb_zio_head = zio;
8590
8591 mutex_exit(hash_lock);
8592 zio_nowait(zio);
8593 } else {
8594 mutex_exit(hash_lock);
8595 }
8596 }
8597
8598 kmem_free(cb, sizeof (l2arc_read_callback_t));
8599 }
8600
8601 /*
8602 * This is the list priority from which the L2ARC will search for pages to
8603 * cache. This is used within loops (0..3) to cycle through lists in the
8604 * desired order. This order can have a significant effect on cache
8605 * performance.
8606 *
8607 * Currently the metadata lists are hit first, MFU then MRU, followed by
8608 * the data lists. This function returns a locked list, and also returns
8609 * the lock pointer.
8610 */
8611 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)8612 l2arc_sublist_lock(int list_num)
8613 {
8614 multilist_t *ml = NULL;
8615 unsigned int idx;
8616
8617 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8618
8619 switch (list_num) {
8620 case 0:
8621 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8622 break;
8623 case 1:
8624 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8625 break;
8626 case 2:
8627 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8628 break;
8629 case 3:
8630 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8631 break;
8632 default:
8633 return (NULL);
8634 }
8635
8636 /*
8637 * Return a randomly-selected sublist. This is acceptable
8638 * because the caller feeds only a little bit of data for each
8639 * call (8MB). Subsequent calls will result in different
8640 * sublists being selected.
8641 */
8642 idx = multilist_get_random_index(ml);
8643 return (multilist_sublist_lock_idx(ml, idx));
8644 }
8645
8646 /*
8647 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8648 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8649 * overhead in processing to make sure there is enough headroom available
8650 * when writing buffers.
8651 */
8652 static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz,l2arc_dev_t * dev)8653 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8654 {
8655 if (dev->l2ad_log_entries == 0) {
8656 return (0);
8657 } else {
8658 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8659
8660 uint64_t log_blocks = (log_entries +
8661 dev->l2ad_log_entries - 1) /
8662 dev->l2ad_log_entries;
8663
8664 return (vdev_psize_to_asize(dev->l2ad_vdev,
8665 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8666 }
8667 }
8668
8669 /*
8670 * Evict buffers from the device write hand to the distance specified in
8671 * bytes. This distance may span populated buffers, it may span nothing.
8672 * This is clearing a region on the L2ARC device ready for writing.
8673 * If the 'all' boolean is set, every buffer is evicted.
8674 */
8675 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)8676 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8677 {
8678 list_t *buflist;
8679 arc_buf_hdr_t *hdr, *hdr_prev;
8680 kmutex_t *hash_lock;
8681 uint64_t taddr;
8682 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8683 vdev_t *vd = dev->l2ad_vdev;
8684 boolean_t rerun;
8685
8686 buflist = &dev->l2ad_buflist;
8687
8688 top:
8689 rerun = B_FALSE;
8690 if (dev->l2ad_hand + distance > dev->l2ad_end) {
8691 /*
8692 * When there is no space to accommodate upcoming writes,
8693 * evict to the end. Then bump the write and evict hands
8694 * to the start and iterate. This iteration does not
8695 * happen indefinitely as we make sure in
8696 * l2arc_write_size() that when the write hand is reset,
8697 * the write size does not exceed the end of the device.
8698 */
8699 rerun = B_TRUE;
8700 taddr = dev->l2ad_end;
8701 } else {
8702 taddr = dev->l2ad_hand + distance;
8703 }
8704 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8705 uint64_t, taddr, boolean_t, all);
8706
8707 if (!all) {
8708 /*
8709 * This check has to be placed after deciding whether to
8710 * iterate (rerun).
8711 */
8712 if (dev->l2ad_first) {
8713 /*
8714 * This is the first sweep through the device. There is
8715 * nothing to evict. We have already trimmmed the
8716 * whole device.
8717 */
8718 goto out;
8719 } else {
8720 /*
8721 * Trim the space to be evicted.
8722 */
8723 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
8724 l2arc_trim_ahead > 0) {
8725 /*
8726 * We have to drop the spa_config lock because
8727 * vdev_trim_range() will acquire it.
8728 * l2ad_evict already accounts for the label
8729 * size. To prevent vdev_trim_ranges() from
8730 * adding it again, we subtract it from
8731 * l2ad_evict.
8732 */
8733 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
8734 vdev_trim_simple(vd,
8735 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
8736 taddr - dev->l2ad_evict);
8737 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
8738 RW_READER);
8739 }
8740
8741 /*
8742 * When rebuilding L2ARC we retrieve the evict hand
8743 * from the header of the device. Of note, l2arc_evict()
8744 * does not actually delete buffers from the cache
8745 * device, but trimming may do so depending on the
8746 * hardware implementation. Thus keeping track of the
8747 * evict hand is useful.
8748 */
8749 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8750 }
8751 }
8752
8753 retry:
8754 mutex_enter(&dev->l2ad_mtx);
8755 /*
8756 * We have to account for evicted log blocks. Run vdev_space_update()
8757 * on log blocks whose offset (in bytes) is before the evicted offset
8758 * (in bytes) by searching in the list of pointers to log blocks
8759 * present in the L2ARC device.
8760 */
8761 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
8762 lb_ptr_buf = lb_ptr_buf_prev) {
8763
8764 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
8765
8766 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
8767 uint64_t asize = L2BLK_GET_PSIZE(
8768 (lb_ptr_buf->lb_ptr)->lbp_prop);
8769
8770 /*
8771 * We don't worry about log blocks left behind (ie
8772 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8773 * will never write more than l2arc_evict() evicts.
8774 */
8775 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
8776 break;
8777 } else {
8778 vdev_space_update(vd, -asize, 0, 0);
8779 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8780 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8781 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8782 lb_ptr_buf);
8783 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8784 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
8785 kmem_free(lb_ptr_buf->lb_ptr,
8786 sizeof (l2arc_log_blkptr_t));
8787 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8788 }
8789 }
8790
8791 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8792 hdr_prev = list_prev(buflist, hdr);
8793
8794 ASSERT(!HDR_EMPTY(hdr));
8795 hash_lock = HDR_LOCK(hdr);
8796
8797 /*
8798 * We cannot use mutex_enter or else we can deadlock
8799 * with l2arc_write_buffers (due to swapping the order
8800 * the hash lock and l2ad_mtx are taken).
8801 */
8802 if (!mutex_tryenter(hash_lock)) {
8803 /*
8804 * Missed the hash lock. Retry.
8805 */
8806 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8807 mutex_exit(&dev->l2ad_mtx);
8808 mutex_enter(hash_lock);
8809 mutex_exit(hash_lock);
8810 goto retry;
8811 }
8812
8813 /*
8814 * A header can't be on this list if it doesn't have L2 header.
8815 */
8816 ASSERT(HDR_HAS_L2HDR(hdr));
8817
8818 /* Ensure this header has finished being written. */
8819 ASSERT(!HDR_L2_WRITING(hdr));
8820 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8821
8822 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
8823 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8824 /*
8825 * We've evicted to the target address,
8826 * or the end of the device.
8827 */
8828 mutex_exit(hash_lock);
8829 break;
8830 }
8831
8832 if (!HDR_HAS_L1HDR(hdr)) {
8833 ASSERT(!HDR_L2_READING(hdr));
8834 /*
8835 * This doesn't exist in the ARC. Destroy.
8836 * arc_hdr_destroy() will call list_remove()
8837 * and decrement arcstat_l2_lsize.
8838 */
8839 arc_change_state(arc_anon, hdr);
8840 arc_hdr_destroy(hdr);
8841 } else {
8842 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8843 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8844 /*
8845 * Invalidate issued or about to be issued
8846 * reads, since we may be about to write
8847 * over this location.
8848 */
8849 if (HDR_L2_READING(hdr)) {
8850 ARCSTAT_BUMP(arcstat_l2_evict_reading);
8851 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8852 }
8853
8854 arc_hdr_l2hdr_destroy(hdr);
8855 }
8856 mutex_exit(hash_lock);
8857 }
8858 mutex_exit(&dev->l2ad_mtx);
8859
8860 out:
8861 /*
8862 * We need to check if we evict all buffers, otherwise we may iterate
8863 * unnecessarily.
8864 */
8865 if (!all && rerun) {
8866 /*
8867 * Bump device hand to the device start if it is approaching the
8868 * end. l2arc_evict() has already evicted ahead for this case.
8869 */
8870 dev->l2ad_hand = dev->l2ad_start;
8871 dev->l2ad_evict = dev->l2ad_start;
8872 dev->l2ad_first = B_FALSE;
8873 goto top;
8874 }
8875
8876 if (!all) {
8877 /*
8878 * In case of cache device removal (all) the following
8879 * assertions may be violated without functional consequences
8880 * as the device is about to be removed.
8881 */
8882 ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
8883 if (!dev->l2ad_first)
8884 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
8885 }
8886 }
8887
8888 /*
8889 * Handle any abd transforms that might be required for writing to the L2ARC.
8890 * If successful, this function will always return an abd with the data
8891 * transformed as it is on disk in a new abd of asize bytes.
8892 */
8893 static int
l2arc_apply_transforms(spa_t * spa,arc_buf_hdr_t * hdr,uint64_t asize,abd_t ** abd_out)8894 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8895 abd_t **abd_out)
8896 {
8897 int ret;
8898 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8899 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8900 uint64_t psize = HDR_GET_PSIZE(hdr);
8901 uint64_t size = arc_hdr_size(hdr);
8902 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8903 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8904 dsl_crypto_key_t *dck = NULL;
8905 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8906 boolean_t no_crypt = B_FALSE;
8907
8908 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8909 !HDR_COMPRESSION_ENABLED(hdr)) ||
8910 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8911 ASSERT3U(psize, <=, asize);
8912
8913 /*
8914 * If this data simply needs its own buffer, we simply allocate it
8915 * and copy the data. This may be done to eliminate a dependency on a
8916 * shared buffer or to reallocate the buffer to match asize.
8917 */
8918 if (HDR_HAS_RABD(hdr)) {
8919 ASSERT3U(asize, >, psize);
8920 to_write = abd_alloc_for_io(asize, ismd);
8921 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8922 abd_zero_off(to_write, psize, asize - psize);
8923 goto out;
8924 }
8925
8926 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8927 !HDR_ENCRYPTED(hdr)) {
8928 ASSERT3U(size, ==, psize);
8929 to_write = abd_alloc_for_io(asize, ismd);
8930 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8931 if (asize > size)
8932 abd_zero_off(to_write, size, asize - size);
8933 goto out;
8934 }
8935
8936 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8937 size_t bufsize = MAX(size, asize);
8938 void *buf = zio_buf_alloc(bufsize);
8939 uint64_t csize = zio_compress_data(compress, to_write, &buf,
8940 size, hdr->b_complevel);
8941 if (csize > psize) {
8942 /*
8943 * We can't re-compress the block into the original
8944 * psize. Even if it fits into asize, it does not
8945 * matter, since checksum will never match on read.
8946 */
8947 zio_buf_free(buf, bufsize);
8948 return (SET_ERROR(EIO));
8949 }
8950 if (asize > csize)
8951 memset((char *)buf + csize, 0, asize - csize);
8952 to_write = cabd = abd_get_from_buf(buf, bufsize);
8953 abd_take_ownership_of_buf(cabd, B_TRUE);
8954 }
8955
8956 if (HDR_ENCRYPTED(hdr)) {
8957 eabd = abd_alloc_for_io(asize, ismd);
8958
8959 /*
8960 * If the dataset was disowned before the buffer
8961 * made it to this point, the key to re-encrypt
8962 * it won't be available. In this case we simply
8963 * won't write the buffer to the L2ARC.
8964 */
8965 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8966 FTAG, &dck);
8967 if (ret != 0)
8968 goto error;
8969
8970 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8971 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8972 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8973 &no_crypt);
8974 if (ret != 0)
8975 goto error;
8976
8977 if (no_crypt)
8978 abd_copy(eabd, to_write, psize);
8979
8980 if (psize != asize)
8981 abd_zero_off(eabd, psize, asize - psize);
8982
8983 /* assert that the MAC we got here matches the one we saved */
8984 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8985 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8986
8987 if (to_write == cabd)
8988 abd_free(cabd);
8989
8990 to_write = eabd;
8991 }
8992
8993 out:
8994 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8995 *abd_out = to_write;
8996 return (0);
8997
8998 error:
8999 if (dck != NULL)
9000 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9001 if (cabd != NULL)
9002 abd_free(cabd);
9003 if (eabd != NULL)
9004 abd_free(eabd);
9005
9006 *abd_out = NULL;
9007 return (ret);
9008 }
9009
9010 static void
l2arc_blk_fetch_done(zio_t * zio)9011 l2arc_blk_fetch_done(zio_t *zio)
9012 {
9013 l2arc_read_callback_t *cb;
9014
9015 cb = zio->io_private;
9016 if (cb->l2rcb_abd != NULL)
9017 abd_free(cb->l2rcb_abd);
9018 kmem_free(cb, sizeof (l2arc_read_callback_t));
9019 }
9020
9021 /*
9022 * Find and write ARC buffers to the L2ARC device.
9023 *
9024 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9025 * for reading until they have completed writing.
9026 * The headroom_boost is an in-out parameter used to maintain headroom boost
9027 * state between calls to this function.
9028 *
9029 * Returns the number of bytes actually written (which may be smaller than
9030 * the delta by which the device hand has changed due to alignment and the
9031 * writing of log blocks).
9032 */
9033 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)9034 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9035 {
9036 arc_buf_hdr_t *hdr, *head, *marker;
9037 uint64_t write_asize, write_psize, headroom;
9038 boolean_t full, from_head = !arc_warm;
9039 l2arc_write_callback_t *cb = NULL;
9040 zio_t *pio, *wzio;
9041 uint64_t guid = spa_load_guid(spa);
9042 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9043
9044 ASSERT3P(dev->l2ad_vdev, !=, NULL);
9045
9046 pio = NULL;
9047 write_asize = write_psize = 0;
9048 full = B_FALSE;
9049 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9050 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9051 marker = arc_state_alloc_marker();
9052
9053 /*
9054 * Copy buffers for L2ARC writing.
9055 */
9056 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9057 /*
9058 * pass == 0: MFU meta
9059 * pass == 1: MRU meta
9060 * pass == 2: MFU data
9061 * pass == 3: MRU data
9062 */
9063 if (l2arc_mfuonly == 1) {
9064 if (pass == 1 || pass == 3)
9065 continue;
9066 } else if (l2arc_mfuonly > 1) {
9067 if (pass == 3)
9068 continue;
9069 }
9070
9071 uint64_t passed_sz = 0;
9072 headroom = target_sz * l2arc_headroom;
9073 if (zfs_compressed_arc_enabled)
9074 headroom = (headroom * l2arc_headroom_boost) / 100;
9075
9076 /*
9077 * Until the ARC is warm and starts to evict, read from the
9078 * head of the ARC lists rather than the tail.
9079 */
9080 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9081 ASSERT3P(mls, !=, NULL);
9082 if (from_head)
9083 hdr = multilist_sublist_head(mls);
9084 else
9085 hdr = multilist_sublist_tail(mls);
9086
9087 while (hdr != NULL) {
9088 kmutex_t *hash_lock;
9089 abd_t *to_write = NULL;
9090
9091 hash_lock = HDR_LOCK(hdr);
9092 if (!mutex_tryenter(hash_lock)) {
9093 skip:
9094 /* Skip this buffer rather than waiting. */
9095 if (from_head)
9096 hdr = multilist_sublist_next(mls, hdr);
9097 else
9098 hdr = multilist_sublist_prev(mls, hdr);
9099 continue;
9100 }
9101
9102 passed_sz += HDR_GET_LSIZE(hdr);
9103 if (l2arc_headroom != 0 && passed_sz > headroom) {
9104 /*
9105 * Searched too far.
9106 */
9107 mutex_exit(hash_lock);
9108 break;
9109 }
9110
9111 if (!l2arc_write_eligible(guid, hdr)) {
9112 mutex_exit(hash_lock);
9113 goto skip;
9114 }
9115
9116 ASSERT(HDR_HAS_L1HDR(hdr));
9117 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9118 ASSERT3U(arc_hdr_size(hdr), >, 0);
9119 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9120 HDR_HAS_RABD(hdr));
9121 uint64_t psize = HDR_GET_PSIZE(hdr);
9122 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9123 psize);
9124
9125 /*
9126 * If the allocated size of this buffer plus the max
9127 * size for the pending log block exceeds the evicted
9128 * target size, terminate writing buffers for this run.
9129 */
9130 if (write_asize + asize +
9131 sizeof (l2arc_log_blk_phys_t) > target_sz) {
9132 full = B_TRUE;
9133 mutex_exit(hash_lock);
9134 break;
9135 }
9136
9137 /*
9138 * We should not sleep with sublist lock held or it
9139 * may block ARC eviction. Insert a marker to save
9140 * the position and drop the lock.
9141 */
9142 if (from_head) {
9143 multilist_sublist_insert_after(mls, hdr,
9144 marker);
9145 } else {
9146 multilist_sublist_insert_before(mls, hdr,
9147 marker);
9148 }
9149 multilist_sublist_unlock(mls);
9150
9151 /*
9152 * If this header has b_rabd, we can use this since it
9153 * must always match the data exactly as it exists on
9154 * disk. Otherwise, the L2ARC can normally use the
9155 * hdr's data, but if we're sharing data between the
9156 * hdr and one of its bufs, L2ARC needs its own copy of
9157 * the data so that the ZIO below can't race with the
9158 * buf consumer. To ensure that this copy will be
9159 * available for the lifetime of the ZIO and be cleaned
9160 * up afterwards, we add it to the l2arc_free_on_write
9161 * queue. If we need to apply any transforms to the
9162 * data (compression, encryption) we will also need the
9163 * extra buffer.
9164 */
9165 if (HDR_HAS_RABD(hdr) && psize == asize) {
9166 to_write = hdr->b_crypt_hdr.b_rabd;
9167 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9168 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9169 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9170 psize == asize) {
9171 to_write = hdr->b_l1hdr.b_pabd;
9172 } else {
9173 int ret;
9174 arc_buf_contents_t type = arc_buf_type(hdr);
9175
9176 ret = l2arc_apply_transforms(spa, hdr, asize,
9177 &to_write);
9178 if (ret != 0) {
9179 arc_hdr_clear_flags(hdr,
9180 ARC_FLAG_L2CACHE);
9181 mutex_exit(hash_lock);
9182 goto next;
9183 }
9184
9185 l2arc_free_abd_on_write(to_write, asize, type);
9186 }
9187
9188 hdr->b_l2hdr.b_dev = dev;
9189 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9190 hdr->b_l2hdr.b_hits = 0;
9191 hdr->b_l2hdr.b_arcs_state =
9192 hdr->b_l1hdr.b_state->arcs_state;
9193 mutex_enter(&dev->l2ad_mtx);
9194 if (pio == NULL) {
9195 /*
9196 * Insert a dummy header on the buflist so
9197 * l2arc_write_done() can find where the
9198 * write buffers begin without searching.
9199 */
9200 list_insert_head(&dev->l2ad_buflist, head);
9201 }
9202 list_insert_head(&dev->l2ad_buflist, hdr);
9203 mutex_exit(&dev->l2ad_mtx);
9204 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9205 ARC_FLAG_L2_WRITING);
9206
9207 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9208 arc_hdr_size(hdr), hdr);
9209 l2arc_hdr_arcstats_increment(hdr);
9210
9211 boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9212 mutex_exit(hash_lock);
9213
9214 if (pio == NULL) {
9215 cb = kmem_alloc(
9216 sizeof (l2arc_write_callback_t), KM_SLEEP);
9217 cb->l2wcb_dev = dev;
9218 cb->l2wcb_head = head;
9219 list_create(&cb->l2wcb_abd_list,
9220 sizeof (l2arc_lb_abd_buf_t),
9221 offsetof(l2arc_lb_abd_buf_t, node));
9222 pio = zio_root(spa, l2arc_write_done, cb,
9223 ZIO_FLAG_CANFAIL);
9224 }
9225
9226 wzio = zio_write_phys(pio, dev->l2ad_vdev,
9227 dev->l2ad_hand, asize, to_write,
9228 ZIO_CHECKSUM_OFF, NULL, hdr,
9229 ZIO_PRIORITY_ASYNC_WRITE,
9230 ZIO_FLAG_CANFAIL, B_FALSE);
9231
9232 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9233 zio_t *, wzio);
9234 zio_nowait(wzio);
9235
9236 write_psize += psize;
9237 write_asize += asize;
9238 dev->l2ad_hand += asize;
9239 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9240
9241 if (commit) {
9242 /* l2ad_hand will be adjusted inside. */
9243 write_asize +=
9244 l2arc_log_blk_commit(dev, pio, cb);
9245 }
9246
9247 next:
9248 multilist_sublist_lock(mls);
9249 if (from_head)
9250 hdr = multilist_sublist_next(mls, marker);
9251 else
9252 hdr = multilist_sublist_prev(mls, marker);
9253 multilist_sublist_remove(mls, marker);
9254 }
9255
9256 multilist_sublist_unlock(mls);
9257
9258 if (full == B_TRUE)
9259 break;
9260 }
9261
9262 arc_state_free_marker(marker);
9263
9264 /* No buffers selected for writing? */
9265 if (pio == NULL) {
9266 ASSERT0(write_psize);
9267 ASSERT(!HDR_HAS_L1HDR(head));
9268 kmem_cache_free(hdr_l2only_cache, head);
9269
9270 /*
9271 * Although we did not write any buffers l2ad_evict may
9272 * have advanced.
9273 */
9274 if (dev->l2ad_evict != l2dhdr->dh_evict)
9275 l2arc_dev_hdr_update(dev);
9276
9277 return (0);
9278 }
9279
9280 if (!dev->l2ad_first)
9281 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9282
9283 ASSERT3U(write_asize, <=, target_sz);
9284 ARCSTAT_BUMP(arcstat_l2_writes_sent);
9285 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9286
9287 dev->l2ad_writing = B_TRUE;
9288 (void) zio_wait(pio);
9289 dev->l2ad_writing = B_FALSE;
9290
9291 /*
9292 * Update the device header after the zio completes as
9293 * l2arc_write_done() may have updated the memory holding the log block
9294 * pointers in the device header.
9295 */
9296 l2arc_dev_hdr_update(dev);
9297
9298 return (write_asize);
9299 }
9300
9301 static boolean_t
l2arc_hdr_limit_reached(void)9302 l2arc_hdr_limit_reached(void)
9303 {
9304 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9305
9306 return (arc_reclaim_needed() ||
9307 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9308 }
9309
9310 /*
9311 * This thread feeds the L2ARC at regular intervals. This is the beating
9312 * heart of the L2ARC.
9313 */
9314 static __attribute__((noreturn)) void
l2arc_feed_thread(void * unused)9315 l2arc_feed_thread(void *unused)
9316 {
9317 (void) unused;
9318 callb_cpr_t cpr;
9319 l2arc_dev_t *dev;
9320 spa_t *spa;
9321 uint64_t size, wrote;
9322 clock_t begin, next = ddi_get_lbolt();
9323 fstrans_cookie_t cookie;
9324
9325 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9326
9327 mutex_enter(&l2arc_feed_thr_lock);
9328
9329 cookie = spl_fstrans_mark();
9330 while (l2arc_thread_exit == 0) {
9331 CALLB_CPR_SAFE_BEGIN(&cpr);
9332 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9333 &l2arc_feed_thr_lock, next);
9334 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9335 next = ddi_get_lbolt() + hz;
9336
9337 /*
9338 * Quick check for L2ARC devices.
9339 */
9340 mutex_enter(&l2arc_dev_mtx);
9341 if (l2arc_ndev == 0) {
9342 mutex_exit(&l2arc_dev_mtx);
9343 continue;
9344 }
9345 mutex_exit(&l2arc_dev_mtx);
9346 begin = ddi_get_lbolt();
9347
9348 /*
9349 * This selects the next l2arc device to write to, and in
9350 * doing so the next spa to feed from: dev->l2ad_spa. This
9351 * will return NULL if there are now no l2arc devices or if
9352 * they are all faulted.
9353 *
9354 * If a device is returned, its spa's config lock is also
9355 * held to prevent device removal. l2arc_dev_get_next()
9356 * will grab and release l2arc_dev_mtx.
9357 */
9358 if ((dev = l2arc_dev_get_next()) == NULL)
9359 continue;
9360
9361 spa = dev->l2ad_spa;
9362 ASSERT3P(spa, !=, NULL);
9363
9364 /*
9365 * If the pool is read-only then force the feed thread to
9366 * sleep a little longer.
9367 */
9368 if (!spa_writeable(spa)) {
9369 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9370 spa_config_exit(spa, SCL_L2ARC, dev);
9371 continue;
9372 }
9373
9374 /*
9375 * Avoid contributing to memory pressure.
9376 */
9377 if (l2arc_hdr_limit_reached()) {
9378 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9379 spa_config_exit(spa, SCL_L2ARC, dev);
9380 continue;
9381 }
9382
9383 ARCSTAT_BUMP(arcstat_l2_feeds);
9384
9385 size = l2arc_write_size(dev);
9386
9387 /*
9388 * Evict L2ARC buffers that will be overwritten.
9389 */
9390 l2arc_evict(dev, size, B_FALSE);
9391
9392 /*
9393 * Write ARC buffers.
9394 */
9395 wrote = l2arc_write_buffers(spa, dev, size);
9396
9397 /*
9398 * Calculate interval between writes.
9399 */
9400 next = l2arc_write_interval(begin, size, wrote);
9401 spa_config_exit(spa, SCL_L2ARC, dev);
9402 }
9403 spl_fstrans_unmark(cookie);
9404
9405 l2arc_thread_exit = 0;
9406 cv_broadcast(&l2arc_feed_thr_cv);
9407 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9408 thread_exit();
9409 }
9410
9411 boolean_t
l2arc_vdev_present(vdev_t * vd)9412 l2arc_vdev_present(vdev_t *vd)
9413 {
9414 return (l2arc_vdev_get(vd) != NULL);
9415 }
9416
9417 /*
9418 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9419 * the vdev_t isn't an L2ARC device.
9420 */
9421 l2arc_dev_t *
l2arc_vdev_get(vdev_t * vd)9422 l2arc_vdev_get(vdev_t *vd)
9423 {
9424 l2arc_dev_t *dev;
9425
9426 mutex_enter(&l2arc_dev_mtx);
9427 for (dev = list_head(l2arc_dev_list); dev != NULL;
9428 dev = list_next(l2arc_dev_list, dev)) {
9429 if (dev->l2ad_vdev == vd)
9430 break;
9431 }
9432 mutex_exit(&l2arc_dev_mtx);
9433
9434 return (dev);
9435 }
9436
9437 static void
l2arc_rebuild_dev(l2arc_dev_t * dev,boolean_t reopen)9438 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9439 {
9440 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9441 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9442 spa_t *spa = dev->l2ad_spa;
9443
9444 /*
9445 * The L2ARC has to hold at least the payload of one log block for
9446 * them to be restored (persistent L2ARC). The payload of a log block
9447 * depends on the amount of its log entries. We always write log blocks
9448 * with 1022 entries. How many of them are committed or restored depends
9449 * on the size of the L2ARC device. Thus the maximum payload of
9450 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9451 * is less than that, we reduce the amount of committed and restored
9452 * log entries per block so as to enable persistence.
9453 */
9454 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9455 dev->l2ad_log_entries = 0;
9456 } else {
9457 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9458 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9459 L2ARC_LOG_BLK_MAX_ENTRIES);
9460 }
9461
9462 /*
9463 * Read the device header, if an error is returned do not rebuild L2ARC.
9464 */
9465 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9466 /*
9467 * If we are onlining a cache device (vdev_reopen) that was
9468 * still present (l2arc_vdev_present()) and rebuild is enabled,
9469 * we should evict all ARC buffers and pointers to log blocks
9470 * and reclaim their space before restoring its contents to
9471 * L2ARC.
9472 */
9473 if (reopen) {
9474 if (!l2arc_rebuild_enabled) {
9475 return;
9476 } else {
9477 l2arc_evict(dev, 0, B_TRUE);
9478 /* start a new log block */
9479 dev->l2ad_log_ent_idx = 0;
9480 dev->l2ad_log_blk_payload_asize = 0;
9481 dev->l2ad_log_blk_payload_start = 0;
9482 }
9483 }
9484 /*
9485 * Just mark the device as pending for a rebuild. We won't
9486 * be starting a rebuild in line here as it would block pool
9487 * import. Instead spa_load_impl will hand that off to an
9488 * async task which will call l2arc_spa_rebuild_start.
9489 */
9490 dev->l2ad_rebuild = B_TRUE;
9491 } else if (spa_writeable(spa)) {
9492 /*
9493 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9494 * otherwise create a new header. We zero out the memory holding
9495 * the header to reset dh_start_lbps. If we TRIM the whole
9496 * device the new header will be written by
9497 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9498 * trim_state in the header too. When reading the header, if
9499 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9500 * we opt to TRIM the whole device again.
9501 */
9502 if (l2arc_trim_ahead > 0) {
9503 dev->l2ad_trim_all = B_TRUE;
9504 } else {
9505 memset(l2dhdr, 0, l2dhdr_asize);
9506 l2arc_dev_hdr_update(dev);
9507 }
9508 }
9509 }
9510
9511 /*
9512 * Add a vdev for use by the L2ARC. By this point the spa has already
9513 * validated the vdev and opened it.
9514 */
9515 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)9516 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9517 {
9518 l2arc_dev_t *adddev;
9519 uint64_t l2dhdr_asize;
9520
9521 ASSERT(!l2arc_vdev_present(vd));
9522
9523 /*
9524 * Create a new l2arc device entry.
9525 */
9526 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9527 adddev->l2ad_spa = spa;
9528 adddev->l2ad_vdev = vd;
9529 /* leave extra size for an l2arc device header */
9530 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9531 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9532 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9533 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9534 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9535 adddev->l2ad_hand = adddev->l2ad_start;
9536 adddev->l2ad_evict = adddev->l2ad_start;
9537 adddev->l2ad_first = B_TRUE;
9538 adddev->l2ad_writing = B_FALSE;
9539 adddev->l2ad_trim_all = B_FALSE;
9540 list_link_init(&adddev->l2ad_node);
9541 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9542
9543 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9544 /*
9545 * This is a list of all ARC buffers that are still valid on the
9546 * device.
9547 */
9548 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9549 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9550
9551 /*
9552 * This is a list of pointers to log blocks that are still present
9553 * on the device.
9554 */
9555 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9556 offsetof(l2arc_lb_ptr_buf_t, node));
9557
9558 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9559 zfs_refcount_create(&adddev->l2ad_alloc);
9560 zfs_refcount_create(&adddev->l2ad_lb_asize);
9561 zfs_refcount_create(&adddev->l2ad_lb_count);
9562
9563 /*
9564 * Decide if dev is eligible for L2ARC rebuild or whole device
9565 * trimming. This has to happen before the device is added in the
9566 * cache device list and l2arc_dev_mtx is released. Otherwise
9567 * l2arc_feed_thread() might already start writing on the
9568 * device.
9569 */
9570 l2arc_rebuild_dev(adddev, B_FALSE);
9571
9572 /*
9573 * Add device to global list
9574 */
9575 mutex_enter(&l2arc_dev_mtx);
9576 list_insert_head(l2arc_dev_list, adddev);
9577 atomic_inc_64(&l2arc_ndev);
9578 mutex_exit(&l2arc_dev_mtx);
9579 }
9580
9581 /*
9582 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9583 * in case of onlining a cache device.
9584 */
9585 void
l2arc_rebuild_vdev(vdev_t * vd,boolean_t reopen)9586 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9587 {
9588 l2arc_dev_t *dev = NULL;
9589
9590 dev = l2arc_vdev_get(vd);
9591 ASSERT3P(dev, !=, NULL);
9592
9593 /*
9594 * In contrast to l2arc_add_vdev() we do not have to worry about
9595 * l2arc_feed_thread() invalidating previous content when onlining a
9596 * cache device. The device parameters (l2ad*) are not cleared when
9597 * offlining the device and writing new buffers will not invalidate
9598 * all previous content. In worst case only buffers that have not had
9599 * their log block written to the device will be lost.
9600 * When onlining the cache device (ie offline->online without exporting
9601 * the pool in between) this happens:
9602 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9603 * | |
9604 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
9605 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9606 * is set to B_TRUE we might write additional buffers to the device.
9607 */
9608 l2arc_rebuild_dev(dev, reopen);
9609 }
9610
9611 /*
9612 * Remove a vdev from the L2ARC.
9613 */
9614 void
l2arc_remove_vdev(vdev_t * vd)9615 l2arc_remove_vdev(vdev_t *vd)
9616 {
9617 l2arc_dev_t *remdev = NULL;
9618
9619 /*
9620 * Find the device by vdev
9621 */
9622 remdev = l2arc_vdev_get(vd);
9623 ASSERT3P(remdev, !=, NULL);
9624
9625 /*
9626 * Cancel any ongoing or scheduled rebuild.
9627 */
9628 mutex_enter(&l2arc_rebuild_thr_lock);
9629 if (remdev->l2ad_rebuild_began == B_TRUE) {
9630 remdev->l2ad_rebuild_cancel = B_TRUE;
9631 while (remdev->l2ad_rebuild == B_TRUE)
9632 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9633 }
9634 mutex_exit(&l2arc_rebuild_thr_lock);
9635
9636 /*
9637 * Remove device from global list
9638 */
9639 mutex_enter(&l2arc_dev_mtx);
9640 list_remove(l2arc_dev_list, remdev);
9641 l2arc_dev_last = NULL; /* may have been invalidated */
9642 atomic_dec_64(&l2arc_ndev);
9643 mutex_exit(&l2arc_dev_mtx);
9644
9645 /*
9646 * Clear all buflists and ARC references. L2ARC device flush.
9647 */
9648 l2arc_evict(remdev, 0, B_TRUE);
9649 list_destroy(&remdev->l2ad_buflist);
9650 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9651 list_destroy(&remdev->l2ad_lbptr_list);
9652 mutex_destroy(&remdev->l2ad_mtx);
9653 zfs_refcount_destroy(&remdev->l2ad_alloc);
9654 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9655 zfs_refcount_destroy(&remdev->l2ad_lb_count);
9656 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9657 vmem_free(remdev, sizeof (l2arc_dev_t));
9658 }
9659
9660 void
l2arc_init(void)9661 l2arc_init(void)
9662 {
9663 l2arc_thread_exit = 0;
9664 l2arc_ndev = 0;
9665
9666 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9667 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9668 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9669 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9670 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9671 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9672
9673 l2arc_dev_list = &L2ARC_dev_list;
9674 l2arc_free_on_write = &L2ARC_free_on_write;
9675 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9676 offsetof(l2arc_dev_t, l2ad_node));
9677 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9678 offsetof(l2arc_data_free_t, l2df_list_node));
9679 }
9680
9681 void
l2arc_fini(void)9682 l2arc_fini(void)
9683 {
9684 mutex_destroy(&l2arc_feed_thr_lock);
9685 cv_destroy(&l2arc_feed_thr_cv);
9686 mutex_destroy(&l2arc_rebuild_thr_lock);
9687 cv_destroy(&l2arc_rebuild_thr_cv);
9688 mutex_destroy(&l2arc_dev_mtx);
9689 mutex_destroy(&l2arc_free_on_write_mtx);
9690
9691 list_destroy(l2arc_dev_list);
9692 list_destroy(l2arc_free_on_write);
9693 }
9694
9695 void
l2arc_start(void)9696 l2arc_start(void)
9697 {
9698 if (!(spa_mode_global & SPA_MODE_WRITE))
9699 return;
9700
9701 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9702 TS_RUN, defclsyspri);
9703 }
9704
9705 void
l2arc_stop(void)9706 l2arc_stop(void)
9707 {
9708 if (!(spa_mode_global & SPA_MODE_WRITE))
9709 return;
9710
9711 mutex_enter(&l2arc_feed_thr_lock);
9712 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
9713 l2arc_thread_exit = 1;
9714 while (l2arc_thread_exit != 0)
9715 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9716 mutex_exit(&l2arc_feed_thr_lock);
9717 }
9718
9719 /*
9720 * Punches out rebuild threads for the L2ARC devices in a spa. This should
9721 * be called after pool import from the spa async thread, since starting
9722 * these threads directly from spa_import() will make them part of the
9723 * "zpool import" context and delay process exit (and thus pool import).
9724 */
9725 void
l2arc_spa_rebuild_start(spa_t * spa)9726 l2arc_spa_rebuild_start(spa_t *spa)
9727 {
9728 ASSERT(MUTEX_HELD(&spa_namespace_lock));
9729
9730 /*
9731 * Locate the spa's l2arc devices and kick off rebuild threads.
9732 */
9733 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
9734 l2arc_dev_t *dev =
9735 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
9736 if (dev == NULL) {
9737 /* Don't attempt a rebuild if the vdev is UNAVAIL */
9738 continue;
9739 }
9740 mutex_enter(&l2arc_rebuild_thr_lock);
9741 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
9742 dev->l2ad_rebuild_began = B_TRUE;
9743 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
9744 dev, 0, &p0, TS_RUN, minclsyspri);
9745 }
9746 mutex_exit(&l2arc_rebuild_thr_lock);
9747 }
9748 }
9749
9750 /*
9751 * Main entry point for L2ARC rebuilding.
9752 */
9753 static __attribute__((noreturn)) void
l2arc_dev_rebuild_thread(void * arg)9754 l2arc_dev_rebuild_thread(void *arg)
9755 {
9756 l2arc_dev_t *dev = arg;
9757
9758 VERIFY(!dev->l2ad_rebuild_cancel);
9759 VERIFY(dev->l2ad_rebuild);
9760 (void) l2arc_rebuild(dev);
9761 mutex_enter(&l2arc_rebuild_thr_lock);
9762 dev->l2ad_rebuild_began = B_FALSE;
9763 dev->l2ad_rebuild = B_FALSE;
9764 mutex_exit(&l2arc_rebuild_thr_lock);
9765
9766 thread_exit();
9767 }
9768
9769 /*
9770 * This function implements the actual L2ARC metadata rebuild. It:
9771 * starts reading the log block chain and restores each block's contents
9772 * to memory (reconstructing arc_buf_hdr_t's).
9773 *
9774 * Operation stops under any of the following conditions:
9775 *
9776 * 1) We reach the end of the log block chain.
9777 * 2) We encounter *any* error condition (cksum errors, io errors)
9778 */
9779 static int
l2arc_rebuild(l2arc_dev_t * dev)9780 l2arc_rebuild(l2arc_dev_t *dev)
9781 {
9782 vdev_t *vd = dev->l2ad_vdev;
9783 spa_t *spa = vd->vdev_spa;
9784 int err = 0;
9785 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9786 l2arc_log_blk_phys_t *this_lb, *next_lb;
9787 zio_t *this_io = NULL, *next_io = NULL;
9788 l2arc_log_blkptr_t lbps[2];
9789 l2arc_lb_ptr_buf_t *lb_ptr_buf;
9790 boolean_t lock_held;
9791
9792 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
9793 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
9794
9795 /*
9796 * We prevent device removal while issuing reads to the device,
9797 * then during the rebuilding phases we drop this lock again so
9798 * that a spa_unload or device remove can be initiated - this is
9799 * safe, because the spa will signal us to stop before removing
9800 * our device and wait for us to stop.
9801 */
9802 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
9803 lock_held = B_TRUE;
9804
9805 /*
9806 * Retrieve the persistent L2ARC device state.
9807 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9808 */
9809 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
9810 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
9811 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
9812 dev->l2ad_start);
9813 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
9814
9815 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
9816 vd->vdev_trim_state = l2dhdr->dh_trim_state;
9817
9818 /*
9819 * In case the zfs module parameter l2arc_rebuild_enabled is false
9820 * we do not start the rebuild process.
9821 */
9822 if (!l2arc_rebuild_enabled)
9823 goto out;
9824
9825 /* Prepare the rebuild process */
9826 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
9827
9828 /* Start the rebuild process */
9829 for (;;) {
9830 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
9831 break;
9832
9833 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
9834 this_lb, next_lb, this_io, &next_io)) != 0)
9835 goto out;
9836
9837 /*
9838 * Our memory pressure valve. If the system is running low
9839 * on memory, rather than swamping memory with new ARC buf
9840 * hdrs, we opt not to rebuild the L2ARC. At this point,
9841 * however, we have already set up our L2ARC dev to chain in
9842 * new metadata log blocks, so the user may choose to offline/
9843 * online the L2ARC dev at a later time (or re-import the pool)
9844 * to reconstruct it (when there's less memory pressure).
9845 */
9846 if (l2arc_hdr_limit_reached()) {
9847 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
9848 cmn_err(CE_NOTE, "System running low on memory, "
9849 "aborting L2ARC rebuild.");
9850 err = SET_ERROR(ENOMEM);
9851 goto out;
9852 }
9853
9854 spa_config_exit(spa, SCL_L2ARC, vd);
9855 lock_held = B_FALSE;
9856
9857 /*
9858 * Now that we know that the next_lb checks out alright, we
9859 * can start reconstruction from this log block.
9860 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9861 */
9862 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
9863 l2arc_log_blk_restore(dev, this_lb, asize);
9864
9865 /*
9866 * log block restored, include its pointer in the list of
9867 * pointers to log blocks present in the L2ARC device.
9868 */
9869 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
9870 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
9871 KM_SLEEP);
9872 memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
9873 sizeof (l2arc_log_blkptr_t));
9874 mutex_enter(&dev->l2ad_mtx);
9875 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
9876 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
9877 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
9878 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
9879 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
9880 mutex_exit(&dev->l2ad_mtx);
9881 vdev_space_update(vd, asize, 0, 0);
9882
9883 /*
9884 * Protection against loops of log blocks:
9885 *
9886 * l2ad_hand l2ad_evict
9887 * V V
9888 * l2ad_start |=======================================| l2ad_end
9889 * -----|||----|||---|||----|||
9890 * (3) (2) (1) (0)
9891 * ---|||---|||----|||---|||
9892 * (7) (6) (5) (4)
9893 *
9894 * In this situation the pointer of log block (4) passes
9895 * l2arc_log_blkptr_valid() but the log block should not be
9896 * restored as it is overwritten by the payload of log block
9897 * (0). Only log blocks (0)-(3) should be restored. We check
9898 * whether l2ad_evict lies in between the payload starting
9899 * offset of the next log block (lbps[1].lbp_payload_start)
9900 * and the payload starting offset of the present log block
9901 * (lbps[0].lbp_payload_start). If true and this isn't the
9902 * first pass, we are looping from the beginning and we should
9903 * stop.
9904 */
9905 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
9906 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
9907 !dev->l2ad_first)
9908 goto out;
9909
9910 kpreempt(KPREEMPT_SYNC);
9911 for (;;) {
9912 mutex_enter(&l2arc_rebuild_thr_lock);
9913 if (dev->l2ad_rebuild_cancel) {
9914 dev->l2ad_rebuild = B_FALSE;
9915 cv_signal(&l2arc_rebuild_thr_cv);
9916 mutex_exit(&l2arc_rebuild_thr_lock);
9917 err = SET_ERROR(ECANCELED);
9918 goto out;
9919 }
9920 mutex_exit(&l2arc_rebuild_thr_lock);
9921 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
9922 RW_READER)) {
9923 lock_held = B_TRUE;
9924 break;
9925 }
9926 /*
9927 * L2ARC config lock held by somebody in writer,
9928 * possibly due to them trying to remove us. They'll
9929 * likely to want us to shut down, so after a little
9930 * delay, we check l2ad_rebuild_cancel and retry
9931 * the lock again.
9932 */
9933 delay(1);
9934 }
9935
9936 /*
9937 * Continue with the next log block.
9938 */
9939 lbps[0] = lbps[1];
9940 lbps[1] = this_lb->lb_prev_lbp;
9941 PTR_SWAP(this_lb, next_lb);
9942 this_io = next_io;
9943 next_io = NULL;
9944 }
9945
9946 if (this_io != NULL)
9947 l2arc_log_blk_fetch_abort(this_io);
9948 out:
9949 if (next_io != NULL)
9950 l2arc_log_blk_fetch_abort(next_io);
9951 vmem_free(this_lb, sizeof (*this_lb));
9952 vmem_free(next_lb, sizeof (*next_lb));
9953
9954 if (!l2arc_rebuild_enabled) {
9955 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9956 "disabled");
9957 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
9958 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
9959 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9960 "successful, restored %llu blocks",
9961 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9962 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
9963 /*
9964 * No error but also nothing restored, meaning the lbps array
9965 * in the device header points to invalid/non-present log
9966 * blocks. Reset the header.
9967 */
9968 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9969 "no valid log blocks");
9970 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
9971 l2arc_dev_hdr_update(dev);
9972 } else if (err == ECANCELED) {
9973 /*
9974 * In case the rebuild was canceled do not log to spa history
9975 * log as the pool may be in the process of being removed.
9976 */
9977 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
9978 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9979 } else if (err != 0) {
9980 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
9981 "aborted, restored %llu blocks",
9982 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
9983 }
9984
9985 if (lock_held)
9986 spa_config_exit(spa, SCL_L2ARC, vd);
9987
9988 return (err);
9989 }
9990
9991 /*
9992 * Attempts to read the device header on the provided L2ARC device and writes
9993 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
9994 * error code is returned.
9995 */
9996 static int
l2arc_dev_hdr_read(l2arc_dev_t * dev)9997 l2arc_dev_hdr_read(l2arc_dev_t *dev)
9998 {
9999 int err;
10000 uint64_t guid;
10001 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10002 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10003 abd_t *abd;
10004
10005 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10006
10007 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10008
10009 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10010 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10011 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10012 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10013 ZIO_FLAG_SPECULATIVE, B_FALSE));
10014
10015 abd_free(abd);
10016
10017 if (err != 0) {
10018 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10019 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10020 "vdev guid: %llu", err,
10021 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10022 return (err);
10023 }
10024
10025 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10026 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10027
10028 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10029 l2dhdr->dh_spa_guid != guid ||
10030 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10031 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10032 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10033 l2dhdr->dh_end != dev->l2ad_end ||
10034 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10035 l2dhdr->dh_evict) ||
10036 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10037 l2arc_trim_ahead > 0)) {
10038 /*
10039 * Attempt to rebuild a device containing no actual dev hdr
10040 * or containing a header from some other pool or from another
10041 * version of persistent L2ARC.
10042 */
10043 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10044 return (SET_ERROR(ENOTSUP));
10045 }
10046
10047 return (0);
10048 }
10049
10050 /*
10051 * Reads L2ARC log blocks from storage and validates their contents.
10052 *
10053 * This function implements a simple fetcher to make sure that while
10054 * we're processing one buffer the L2ARC is already fetching the next
10055 * one in the chain.
10056 *
10057 * The arguments this_lp and next_lp point to the current and next log block
10058 * address in the block chain. Similarly, this_lb and next_lb hold the
10059 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10060 *
10061 * The `this_io' and `next_io' arguments are used for block fetching.
10062 * When issuing the first blk IO during rebuild, you should pass NULL for
10063 * `this_io'. This function will then issue a sync IO to read the block and
10064 * also issue an async IO to fetch the next block in the block chain. The
10065 * fetched IO is returned in `next_io'. On subsequent calls to this
10066 * function, pass the value returned in `next_io' from the previous call
10067 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10068 * Prior to the call, you should initialize your `next_io' pointer to be
10069 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10070 *
10071 * On success, this function returns 0, otherwise it returns an appropriate
10072 * error code. On error the fetching IO is aborted and cleared before
10073 * returning from this function. Therefore, if we return `success', the
10074 * caller can assume that we have taken care of cleanup of fetch IOs.
10075 */
10076 static int
l2arc_log_blk_read(l2arc_dev_t * dev,const l2arc_log_blkptr_t * this_lbp,const l2arc_log_blkptr_t * next_lbp,l2arc_log_blk_phys_t * this_lb,l2arc_log_blk_phys_t * next_lb,zio_t * this_io,zio_t ** next_io)10077 l2arc_log_blk_read(l2arc_dev_t *dev,
10078 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10079 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10080 zio_t *this_io, zio_t **next_io)
10081 {
10082 int err = 0;
10083 zio_cksum_t cksum;
10084 abd_t *abd = NULL;
10085 uint64_t asize;
10086
10087 ASSERT(this_lbp != NULL && next_lbp != NULL);
10088 ASSERT(this_lb != NULL && next_lb != NULL);
10089 ASSERT(next_io != NULL && *next_io == NULL);
10090 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10091
10092 /*
10093 * Check to see if we have issued the IO for this log block in a
10094 * previous run. If not, this is the first call, so issue it now.
10095 */
10096 if (this_io == NULL) {
10097 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10098 this_lb);
10099 }
10100
10101 /*
10102 * Peek to see if we can start issuing the next IO immediately.
10103 */
10104 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10105 /*
10106 * Start issuing IO for the next log block early - this
10107 * should help keep the L2ARC device busy while we
10108 * decompress and restore this log block.
10109 */
10110 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10111 next_lb);
10112 }
10113
10114 /* Wait for the IO to read this log block to complete */
10115 if ((err = zio_wait(this_io)) != 0) {
10116 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10117 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10118 "offset: %llu, vdev guid: %llu", err,
10119 (u_longlong_t)this_lbp->lbp_daddr,
10120 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10121 goto cleanup;
10122 }
10123
10124 /*
10125 * Make sure the buffer checks out.
10126 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10127 */
10128 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10129 fletcher_4_native(this_lb, asize, NULL, &cksum);
10130 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10131 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10132 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10133 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10134 (u_longlong_t)this_lbp->lbp_daddr,
10135 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10136 (u_longlong_t)dev->l2ad_hand,
10137 (u_longlong_t)dev->l2ad_evict);
10138 err = SET_ERROR(ECKSUM);
10139 goto cleanup;
10140 }
10141
10142 /* Now we can take our time decoding this buffer */
10143 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10144 case ZIO_COMPRESS_OFF:
10145 break;
10146 case ZIO_COMPRESS_LZ4:
10147 abd = abd_alloc_for_io(asize, B_TRUE);
10148 abd_copy_from_buf_off(abd, this_lb, 0, asize);
10149 if ((err = zio_decompress_data(
10150 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10151 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
10152 err = SET_ERROR(EINVAL);
10153 goto cleanup;
10154 }
10155 break;
10156 default:
10157 err = SET_ERROR(EINVAL);
10158 goto cleanup;
10159 }
10160 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10161 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10162 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10163 err = SET_ERROR(EINVAL);
10164 goto cleanup;
10165 }
10166 cleanup:
10167 /* Abort an in-flight fetch I/O in case of error */
10168 if (err != 0 && *next_io != NULL) {
10169 l2arc_log_blk_fetch_abort(*next_io);
10170 *next_io = NULL;
10171 }
10172 if (abd != NULL)
10173 abd_free(abd);
10174 return (err);
10175 }
10176
10177 /*
10178 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10179 * entries which only contain an l2arc hdr, essentially restoring the
10180 * buffers to their L2ARC evicted state. This function also updates space
10181 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10182 */
10183 static void
l2arc_log_blk_restore(l2arc_dev_t * dev,const l2arc_log_blk_phys_t * lb,uint64_t lb_asize)10184 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10185 uint64_t lb_asize)
10186 {
10187 uint64_t size = 0, asize = 0;
10188 uint64_t log_entries = dev->l2ad_log_entries;
10189
10190 /*
10191 * Usually arc_adapt() is called only for data, not headers, but
10192 * since we may allocate significant amount of memory here, let ARC
10193 * grow its arc_c.
10194 */
10195 arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10196
10197 for (int i = log_entries - 1; i >= 0; i--) {
10198 /*
10199 * Restore goes in the reverse temporal direction to preserve
10200 * correct temporal ordering of buffers in the l2ad_buflist.
10201 * l2arc_hdr_restore also does a list_insert_tail instead of
10202 * list_insert_head on the l2ad_buflist:
10203 *
10204 * LIST l2ad_buflist LIST
10205 * HEAD <------ (time) ------ TAIL
10206 * direction +-----+-----+-----+-----+-----+ direction
10207 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10208 * fill +-----+-----+-----+-----+-----+
10209 * ^ ^
10210 * | |
10211 * | |
10212 * l2arc_feed_thread l2arc_rebuild
10213 * will place new bufs here restores bufs here
10214 *
10215 * During l2arc_rebuild() the device is not used by
10216 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10217 */
10218 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10219 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10220 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10221 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10222 }
10223
10224 /*
10225 * Record rebuild stats:
10226 * size Logical size of restored buffers in the L2ARC
10227 * asize Aligned size of restored buffers in the L2ARC
10228 */
10229 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10230 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10231 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10232 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10233 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10234 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10235 }
10236
10237 /*
10238 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10239 * into a state indicating that it has been evicted to L2ARC.
10240 */
10241 static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t * le,l2arc_dev_t * dev)10242 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10243 {
10244 arc_buf_hdr_t *hdr, *exists;
10245 kmutex_t *hash_lock;
10246 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10247 uint64_t asize;
10248
10249 /*
10250 * Do all the allocation before grabbing any locks, this lets us
10251 * sleep if memory is full and we don't have to deal with failed
10252 * allocations.
10253 */
10254 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10255 dev, le->le_dva, le->le_daddr,
10256 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10257 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10258 L2BLK_GET_PROTECTED((le)->le_prop),
10259 L2BLK_GET_PREFETCH((le)->le_prop),
10260 L2BLK_GET_STATE((le)->le_prop));
10261 asize = vdev_psize_to_asize(dev->l2ad_vdev,
10262 L2BLK_GET_PSIZE((le)->le_prop));
10263
10264 /*
10265 * vdev_space_update() has to be called before arc_hdr_destroy() to
10266 * avoid underflow since the latter also calls vdev_space_update().
10267 */
10268 l2arc_hdr_arcstats_increment(hdr);
10269 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10270
10271 mutex_enter(&dev->l2ad_mtx);
10272 list_insert_tail(&dev->l2ad_buflist, hdr);
10273 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10274 mutex_exit(&dev->l2ad_mtx);
10275
10276 exists = buf_hash_insert(hdr, &hash_lock);
10277 if (exists) {
10278 /* Buffer was already cached, no need to restore it. */
10279 arc_hdr_destroy(hdr);
10280 /*
10281 * If the buffer is already cached, check whether it has
10282 * L2ARC metadata. If not, enter them and update the flag.
10283 * This is important is case of onlining a cache device, since
10284 * we previously evicted all L2ARC metadata from ARC.
10285 */
10286 if (!HDR_HAS_L2HDR(exists)) {
10287 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10288 exists->b_l2hdr.b_dev = dev;
10289 exists->b_l2hdr.b_daddr = le->le_daddr;
10290 exists->b_l2hdr.b_arcs_state =
10291 L2BLK_GET_STATE((le)->le_prop);
10292 mutex_enter(&dev->l2ad_mtx);
10293 list_insert_tail(&dev->l2ad_buflist, exists);
10294 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10295 arc_hdr_size(exists), exists);
10296 mutex_exit(&dev->l2ad_mtx);
10297 l2arc_hdr_arcstats_increment(exists);
10298 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10299 }
10300 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10301 }
10302
10303 mutex_exit(hash_lock);
10304 }
10305
10306 /*
10307 * Starts an asynchronous read IO to read a log block. This is used in log
10308 * block reconstruction to start reading the next block before we are done
10309 * decoding and reconstructing the current block, to keep the l2arc device
10310 * nice and hot with read IO to process.
10311 * The returned zio will contain a newly allocated memory buffers for the IO
10312 * data which should then be freed by the caller once the zio is no longer
10313 * needed (i.e. due to it having completed). If you wish to abort this
10314 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10315 * care of disposing of the allocated buffers correctly.
10316 */
10317 static zio_t *
l2arc_log_blk_fetch(vdev_t * vd,const l2arc_log_blkptr_t * lbp,l2arc_log_blk_phys_t * lb)10318 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10319 l2arc_log_blk_phys_t *lb)
10320 {
10321 uint32_t asize;
10322 zio_t *pio;
10323 l2arc_read_callback_t *cb;
10324
10325 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10326 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10327 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10328
10329 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10330 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10331 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10332 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10333 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10334 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10335 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10336 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10337
10338 return (pio);
10339 }
10340
10341 /*
10342 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10343 * buffers allocated for it.
10344 */
10345 static void
l2arc_log_blk_fetch_abort(zio_t * zio)10346 l2arc_log_blk_fetch_abort(zio_t *zio)
10347 {
10348 (void) zio_wait(zio);
10349 }
10350
10351 /*
10352 * Creates a zio to update the device header on an l2arc device.
10353 */
10354 void
l2arc_dev_hdr_update(l2arc_dev_t * dev)10355 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10356 {
10357 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10358 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10359 abd_t *abd;
10360 int err;
10361
10362 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10363
10364 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10365 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10366 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10367 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10368 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10369 l2dhdr->dh_evict = dev->l2ad_evict;
10370 l2dhdr->dh_start = dev->l2ad_start;
10371 l2dhdr->dh_end = dev->l2ad_end;
10372 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10373 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10374 l2dhdr->dh_flags = 0;
10375 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10376 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10377 if (dev->l2ad_first)
10378 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10379
10380 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10381
10382 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10383 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10384 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10385
10386 abd_free(abd);
10387
10388 if (err != 0) {
10389 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10390 "vdev guid: %llu", err,
10391 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10392 }
10393 }
10394
10395 /*
10396 * Commits a log block to the L2ARC device. This routine is invoked from
10397 * l2arc_write_buffers when the log block fills up.
10398 * This function allocates some memory to temporarily hold the serialized
10399 * buffer to be written. This is then released in l2arc_write_done.
10400 */
10401 static uint64_t
l2arc_log_blk_commit(l2arc_dev_t * dev,zio_t * pio,l2arc_write_callback_t * cb)10402 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10403 {
10404 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10405 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10406 uint64_t psize, asize;
10407 zio_t *wzio;
10408 l2arc_lb_abd_buf_t *abd_buf;
10409 uint8_t *tmpbuf = NULL;
10410 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10411
10412 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10413
10414 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10415 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10416 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10417 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10418
10419 /* link the buffer into the block chain */
10420 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10421 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10422
10423 /*
10424 * l2arc_log_blk_commit() may be called multiple times during a single
10425 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10426 * so we can free them in l2arc_write_done() later on.
10427 */
10428 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10429
10430 /* try to compress the buffer */
10431 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10432 abd_buf->abd, (void **) &tmpbuf, sizeof (*lb), 0);
10433
10434 /* a log block is never entirely zero */
10435 ASSERT(psize != 0);
10436 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10437 ASSERT(asize <= sizeof (*lb));
10438
10439 /*
10440 * Update the start log block pointer in the device header to point
10441 * to the log block we're about to write.
10442 */
10443 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10444 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10445 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10446 dev->l2ad_log_blk_payload_asize;
10447 l2dhdr->dh_start_lbps[0].lbp_payload_start =
10448 dev->l2ad_log_blk_payload_start;
10449 L2BLK_SET_LSIZE(
10450 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10451 L2BLK_SET_PSIZE(
10452 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10453 L2BLK_SET_CHECKSUM(
10454 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10455 ZIO_CHECKSUM_FLETCHER_4);
10456 if (asize < sizeof (*lb)) {
10457 /* compression succeeded */
10458 memset(tmpbuf + psize, 0, asize - psize);
10459 L2BLK_SET_COMPRESS(
10460 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10461 ZIO_COMPRESS_LZ4);
10462 } else {
10463 /* compression failed */
10464 memcpy(tmpbuf, lb, sizeof (*lb));
10465 L2BLK_SET_COMPRESS(
10466 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10467 ZIO_COMPRESS_OFF);
10468 }
10469
10470 /* checksum what we're about to write */
10471 fletcher_4_native(tmpbuf, asize, NULL,
10472 &l2dhdr->dh_start_lbps[0].lbp_cksum);
10473
10474 abd_free(abd_buf->abd);
10475
10476 /* perform the write itself */
10477 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10478 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10479 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10480 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10481 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10482 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10483 (void) zio_nowait(wzio);
10484
10485 dev->l2ad_hand += asize;
10486 /*
10487 * Include the committed log block's pointer in the list of pointers
10488 * to log blocks present in the L2ARC device.
10489 */
10490 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10491 sizeof (l2arc_log_blkptr_t));
10492 mutex_enter(&dev->l2ad_mtx);
10493 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10494 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10495 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10496 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10497 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10498 mutex_exit(&dev->l2ad_mtx);
10499 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10500
10501 /* bump the kstats */
10502 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10503 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10504 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10505 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10506 dev->l2ad_log_blk_payload_asize / asize);
10507
10508 /* start a new log block */
10509 dev->l2ad_log_ent_idx = 0;
10510 dev->l2ad_log_blk_payload_asize = 0;
10511 dev->l2ad_log_blk_payload_start = 0;
10512
10513 return (asize);
10514 }
10515
10516 /*
10517 * Validates an L2ARC log block address to make sure that it can be read
10518 * from the provided L2ARC device.
10519 */
10520 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t * dev,const l2arc_log_blkptr_t * lbp)10521 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10522 {
10523 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10524 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10525 uint64_t end = lbp->lbp_daddr + asize - 1;
10526 uint64_t start = lbp->lbp_payload_start;
10527 boolean_t evicted = B_FALSE;
10528
10529 /*
10530 * A log block is valid if all of the following conditions are true:
10531 * - it fits entirely (including its payload) between l2ad_start and
10532 * l2ad_end
10533 * - it has a valid size
10534 * - neither the log block itself nor part of its payload was evicted
10535 * by l2arc_evict():
10536 *
10537 * l2ad_hand l2ad_evict
10538 * | | lbp_daddr
10539 * | start | | end
10540 * | | | | |
10541 * V V V V V
10542 * l2ad_start ============================================ l2ad_end
10543 * --------------------------||||
10544 * ^ ^
10545 * | log block
10546 * payload
10547 */
10548
10549 evicted =
10550 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10551 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10552 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10553 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10554
10555 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10556 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10557 (!evicted || dev->l2ad_first));
10558 }
10559
10560 /*
10561 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10562 * the device. The buffer being inserted must be present in L2ARC.
10563 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10564 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10565 */
10566 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t * dev,const arc_buf_hdr_t * hdr)10567 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10568 {
10569 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10570 l2arc_log_ent_phys_t *le;
10571
10572 if (dev->l2ad_log_entries == 0)
10573 return (B_FALSE);
10574
10575 int index = dev->l2ad_log_ent_idx++;
10576
10577 ASSERT3S(index, <, dev->l2ad_log_entries);
10578 ASSERT(HDR_HAS_L2HDR(hdr));
10579
10580 le = &lb->lb_entries[index];
10581 memset(le, 0, sizeof (*le));
10582 le->le_dva = hdr->b_dva;
10583 le->le_birth = hdr->b_birth;
10584 le->le_daddr = hdr->b_l2hdr.b_daddr;
10585 if (index == 0)
10586 dev->l2ad_log_blk_payload_start = le->le_daddr;
10587 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10588 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10589 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10590 le->le_complevel = hdr->b_complevel;
10591 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10592 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10593 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10594 L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
10595
10596 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10597 HDR_GET_PSIZE(hdr));
10598
10599 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10600 }
10601
10602 /*
10603 * Checks whether a given L2ARC device address sits in a time-sequential
10604 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10605 * just do a range comparison, we need to handle the situation in which the
10606 * range wraps around the end of the L2ARC device. Arguments:
10607 * bottom -- Lower end of the range to check (written to earlier).
10608 * top -- Upper end of the range to check (written to later).
10609 * check -- The address for which we want to determine if it sits in
10610 * between the top and bottom.
10611 *
10612 * The 3-way conditional below represents the following cases:
10613 *
10614 * bottom < top : Sequentially ordered case:
10615 * <check>--------+-------------------+
10616 * | (overlap here?) |
10617 * L2ARC dev V V
10618 * |---------------<bottom>============<top>--------------|
10619 *
10620 * bottom > top: Looped-around case:
10621 * <check>--------+------------------+
10622 * | (overlap here?) |
10623 * L2ARC dev V V
10624 * |===============<top>---------------<bottom>===========|
10625 * ^ ^
10626 * | (or here?) |
10627 * +---------------+---------<check>
10628 *
10629 * top == bottom : Just a single address comparison.
10630 */
10631 boolean_t
l2arc_range_check_overlap(uint64_t bottom,uint64_t top,uint64_t check)10632 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10633 {
10634 if (bottom < top)
10635 return (bottom <= check && check <= top);
10636 else if (bottom > top)
10637 return (check <= top || bottom <= check);
10638 else
10639 return (check == top);
10640 }
10641
10642 EXPORT_SYMBOL(arc_buf_size);
10643 EXPORT_SYMBOL(arc_write);
10644 EXPORT_SYMBOL(arc_read);
10645 EXPORT_SYMBOL(arc_buf_info);
10646 EXPORT_SYMBOL(arc_getbuf_func);
10647 EXPORT_SYMBOL(arc_add_prune_callback);
10648 EXPORT_SYMBOL(arc_remove_prune_callback);
10649
10650 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
10651 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
10652
10653 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
10654 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
10655
10656 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
10657 "Balance between metadata and data on ghost hits.");
10658
10659 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
10660 param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
10661
10662 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
10663 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
10664
10665 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
10666 "Percent of pagecache to reclaim ARC to");
10667
10668 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
10669 "Target average block size");
10670
10671 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
10672 "Disable compressed ARC buffers");
10673
10674 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
10675 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
10676
10677 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
10678 param_set_arc_int, param_get_uint, ZMOD_RW,
10679 "Min life of prescient prefetched block in ms");
10680
10681 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
10682 "Max write bytes per interval");
10683
10684 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
10685 "Extra write bytes during device warmup");
10686
10687 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
10688 "Number of max device writes to precache");
10689
10690 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
10691 "Compressed l2arc_headroom multiplier");
10692
10693 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
10694 "TRIM ahead L2ARC write size multiplier");
10695
10696 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
10697 "Seconds between L2ARC writing");
10698
10699 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
10700 "Min feed interval in milliseconds");
10701
10702 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
10703 "Skip caching prefetched buffers");
10704
10705 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
10706 "Turbo L2ARC warmup");
10707
10708 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
10709 "No reads during writes");
10710
10711 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
10712 "Percent of ARC size allowed for L2ARC-only headers");
10713
10714 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
10715 "Rebuild the L2ARC when importing a pool");
10716
10717 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
10718 "Min size in bytes to write rebuild log blocks in L2ARC");
10719
10720 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
10721 "Cache only MFU data from ARC into L2ARC");
10722
10723 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
10724 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
10725
10726 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
10727 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
10728
10729 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
10730 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
10731
10732 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
10733 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
10734
10735 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
10736 param_set_arc_int, param_get_uint, ZMOD_RW,
10737 "Percent of ARC meta buffers for dnodes");
10738
10739 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
10740 "Percentage of excess dnodes to try to unpin");
10741
10742 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
10743 "When full, ARC allocation waits for eviction of this % of alloc size");
10744
10745 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
10746 "The number of headers to evict per sublist before moving to the next");
10747
10748 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
10749 "Number of arc_prune threads");
10750