1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018 Cavium, Inc
3 */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <cryptodev_pmd.h>
9 #include <rte_eventdev.h>
10 #include <rte_event_crypto_adapter.h>
11 #include <rte_errno.h>
12 #include <rte_malloc.h>
13 #include <rte_mempool.h>
14
15 #include "otx_cryptodev.h"
16 #include "otx_cryptodev_capabilities.h"
17 #include "otx_cryptodev_hw_access.h"
18 #include "otx_cryptodev_mbox.h"
19 #include "otx_cryptodev_ops.h"
20
21 #include "cpt_pmd_logs.h"
22 #include "cpt_pmd_ops_helper.h"
23 #include "cpt_ucode.h"
24 #include "cpt_ucode_asym.h"
25
26 #include "ssovf_worker.h"
27
28 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
29
30 /* Forward declarations */
31
32 static int
33 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
34
35 /* Alarm routines */
36
37 static void
otx_cpt_alarm_cb(void * arg)38 otx_cpt_alarm_cb(void *arg)
39 {
40 struct cpt_vf *cptvf = arg;
41 otx_cpt_poll_misc(cptvf);
42 rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
43 otx_cpt_alarm_cb, cptvf);
44 }
45
46 static int
otx_cpt_periodic_alarm_start(void * arg)47 otx_cpt_periodic_alarm_start(void *arg)
48 {
49 return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
50 otx_cpt_alarm_cb, arg);
51 }
52
53 static int
otx_cpt_periodic_alarm_stop(void * arg)54 otx_cpt_periodic_alarm_stop(void *arg)
55 {
56 return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
57 }
58
59 /* PMD ops */
60
61 static int
otx_cpt_dev_config(struct rte_cryptodev * dev,struct rte_cryptodev_config * config __rte_unused)62 otx_cpt_dev_config(struct rte_cryptodev *dev,
63 struct rte_cryptodev_config *config __rte_unused)
64 {
65 int ret = 0;
66
67 CPT_PMD_INIT_FUNC_TRACE();
68
69 if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
70 /* Initialize shared FPM table */
71 ret = cpt_fpm_init(otx_fpm_iova);
72
73 return ret;
74 }
75
76 static int
otx_cpt_dev_start(struct rte_cryptodev * c_dev)77 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
78 {
79 void *cptvf = c_dev->data->dev_private;
80
81 CPT_PMD_INIT_FUNC_TRACE();
82
83 return otx_cpt_start_device(cptvf);
84 }
85
86 static void
otx_cpt_dev_stop(struct rte_cryptodev * c_dev)87 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
88 {
89 void *cptvf = c_dev->data->dev_private;
90
91 CPT_PMD_INIT_FUNC_TRACE();
92
93 if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
94 cpt_fpm_clear();
95
96 otx_cpt_stop_device(cptvf);
97 }
98
99 static int
otx_cpt_dev_close(struct rte_cryptodev * c_dev)100 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
101 {
102 void *cptvf = c_dev->data->dev_private;
103 int i, ret;
104
105 CPT_PMD_INIT_FUNC_TRACE();
106
107 for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
108 ret = otx_cpt_que_pair_release(c_dev, i);
109 if (ret)
110 return ret;
111 }
112
113 otx_cpt_periodic_alarm_stop(cptvf);
114 otx_cpt_deinit_device(cptvf);
115
116 return 0;
117 }
118
119 static void
otx_cpt_dev_info_get(struct rte_cryptodev * dev,struct rte_cryptodev_info * info)120 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
121 {
122 CPT_PMD_INIT_FUNC_TRACE();
123 if (info != NULL) {
124 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
125 info->feature_flags = dev->feature_flags;
126 info->capabilities = otx_get_capabilities(info->feature_flags);
127 info->sym.max_nb_sessions = 0;
128 info->driver_id = otx_cryptodev_driver_id;
129 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
130 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
131 }
132 }
133
134 static int
otx_cpt_que_pair_setup(struct rte_cryptodev * dev,uint16_t que_pair_id,const struct rte_cryptodev_qp_conf * qp_conf,int socket_id __rte_unused)135 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
136 uint16_t que_pair_id,
137 const struct rte_cryptodev_qp_conf *qp_conf,
138 int socket_id __rte_unused)
139 {
140 struct cpt_instance *instance = NULL;
141 struct rte_pci_device *pci_dev;
142 int ret = -1;
143
144 CPT_PMD_INIT_FUNC_TRACE();
145
146 if (dev->data->queue_pairs[que_pair_id] != NULL) {
147 ret = otx_cpt_que_pair_release(dev, que_pair_id);
148 if (ret)
149 return ret;
150 }
151
152 if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
153 CPT_LOG_INFO("Number of descriptors too big %d, using default "
154 "queue length of %d", qp_conf->nb_descriptors,
155 DEFAULT_CMD_QLEN);
156 }
157
158 pci_dev = RTE_DEV_TO_PCI(dev->device);
159
160 if (pci_dev->mem_resource[0].addr == NULL) {
161 CPT_LOG_ERR("PCI mem address null");
162 return -EIO;
163 }
164
165 ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
166 if (ret != 0 || instance == NULL) {
167 CPT_LOG_ERR("Error getting instance handle from device %s : "
168 "ret = %d", dev->data->name, ret);
169 return ret;
170 }
171
172 instance->queue_id = que_pair_id;
173 instance->sess_mp = qp_conf->mp_session;
174 instance->sess_mp_priv = qp_conf->mp_session_private;
175 dev->data->queue_pairs[que_pair_id] = instance;
176
177 return 0;
178 }
179
180 static int
otx_cpt_que_pair_release(struct rte_cryptodev * dev,uint16_t que_pair_id)181 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
182 {
183 struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
184 int ret;
185
186 CPT_PMD_INIT_FUNC_TRACE();
187
188 ret = otx_cpt_put_resource(instance);
189 if (ret != 0) {
190 CPT_LOG_ERR("Error putting instance handle of device %s : "
191 "ret = %d", dev->data->name, ret);
192 return ret;
193 }
194
195 dev->data->queue_pairs[que_pair_id] = NULL;
196
197 return 0;
198 }
199
200 static unsigned int
otx_cpt_get_session_size(struct rte_cryptodev * dev __rte_unused)201 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
202 {
203 return cpt_get_session_size();
204 }
205
206 static int
sym_xform_verify(struct rte_crypto_sym_xform * xform)207 sym_xform_verify(struct rte_crypto_sym_xform *xform)
208 {
209 if (xform->next) {
210 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
211 xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212 xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
213 (xform->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC ||
214 xform->next->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC))
215 return -ENOTSUP;
216
217 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
218 xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
219 xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
220 (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC ||
221 xform->next->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC))
222 return -ENOTSUP;
223
224 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225 xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
226 xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
227 xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
228 return -ENOTSUP;
229
230 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
231 xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
232 xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
233 xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
234 return -ENOTSUP;
235
236 } else {
237 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
238 xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
239 xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
240 return -ENOTSUP;
241 }
242 return 0;
243 }
244
245 static int
sym_session_configure(int driver_id,struct rte_crypto_sym_xform * xform,struct rte_cryptodev_sym_session * sess,struct rte_mempool * pool)246 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
247 struct rte_cryptodev_sym_session *sess,
248 struct rte_mempool *pool)
249 {
250 struct rte_crypto_sym_xform *temp_xform = xform;
251 struct cpt_sess_misc *misc;
252 vq_cmd_word3_t vq_cmd_w3;
253 void *priv;
254 int ret;
255
256 ret = sym_xform_verify(xform);
257 if (unlikely(ret))
258 return ret;
259
260 if (unlikely(rte_mempool_get(pool, &priv))) {
261 CPT_LOG_ERR("Could not allocate session private data");
262 return -ENOMEM;
263 }
264
265 memset(priv, 0, sizeof(struct cpt_sess_misc) +
266 offsetof(struct cpt_ctx, mc_ctx));
267
268 misc = priv;
269
270 for ( ; xform != NULL; xform = xform->next) {
271 switch (xform->type) {
272 case RTE_CRYPTO_SYM_XFORM_AEAD:
273 ret = fill_sess_aead(xform, misc);
274 break;
275 case RTE_CRYPTO_SYM_XFORM_CIPHER:
276 ret = fill_sess_cipher(xform, misc);
277 break;
278 case RTE_CRYPTO_SYM_XFORM_AUTH:
279 if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
280 ret = fill_sess_gmac(xform, misc);
281 else
282 ret = fill_sess_auth(xform, misc);
283 break;
284 default:
285 ret = -1;
286 }
287
288 if (ret)
289 goto priv_put;
290 }
291
292 if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) &&
293 cpt_mac_len_verify(&temp_xform->auth)) {
294 CPT_LOG_ERR("MAC length is not supported");
295 struct cpt_ctx *ctx = SESS_PRIV(misc);
296 if (ctx->auth_key != NULL) {
297 rte_free(ctx->auth_key);
298 ctx->auth_key = NULL;
299 }
300 ret = -ENOTSUP;
301 goto priv_put;
302 }
303
304 set_sym_session_private_data(sess, driver_id, priv);
305
306 misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
307 sizeof(struct cpt_sess_misc);
308
309 vq_cmd_w3.u64 = 0;
310 vq_cmd_w3.s.grp = 0;
311 vq_cmd_w3.s.cptr = misc->ctx_dma_addr + offsetof(struct cpt_ctx,
312 mc_ctx);
313
314 misc->cpt_inst_w7 = vq_cmd_w3.u64;
315
316 return 0;
317
318 priv_put:
319 if (priv)
320 rte_mempool_put(pool, priv);
321 return -ENOTSUP;
322 }
323
324 static void
sym_session_clear(int driver_id,struct rte_cryptodev_sym_session * sess)325 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
326 {
327 void *priv = get_sym_session_private_data(sess, driver_id);
328 struct cpt_sess_misc *misc;
329 struct rte_mempool *pool;
330 struct cpt_ctx *ctx;
331
332 if (priv == NULL)
333 return;
334
335 misc = priv;
336 ctx = SESS_PRIV(misc);
337
338 rte_free(ctx->auth_key);
339
340 memset(priv, 0, cpt_get_session_size());
341
342 pool = rte_mempool_from_obj(priv);
343
344 set_sym_session_private_data(sess, driver_id, NULL);
345
346 rte_mempool_put(pool, priv);
347 }
348
349 static int
otx_cpt_session_cfg(struct rte_cryptodev * dev,struct rte_crypto_sym_xform * xform,struct rte_cryptodev_sym_session * sess,struct rte_mempool * pool)350 otx_cpt_session_cfg(struct rte_cryptodev *dev,
351 struct rte_crypto_sym_xform *xform,
352 struct rte_cryptodev_sym_session *sess,
353 struct rte_mempool *pool)
354 {
355 CPT_PMD_INIT_FUNC_TRACE();
356
357 return sym_session_configure(dev->driver_id, xform, sess, pool);
358 }
359
360
361 static void
otx_cpt_session_clear(struct rte_cryptodev * dev,struct rte_cryptodev_sym_session * sess)362 otx_cpt_session_clear(struct rte_cryptodev *dev,
363 struct rte_cryptodev_sym_session *sess)
364 {
365 CPT_PMD_INIT_FUNC_TRACE();
366
367 return sym_session_clear(dev->driver_id, sess);
368 }
369
370 static unsigned int
otx_cpt_asym_session_size_get(struct rte_cryptodev * dev __rte_unused)371 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
372 {
373 return sizeof(struct cpt_asym_sess_misc);
374 }
375
376 static int
otx_cpt_asym_session_cfg(struct rte_cryptodev * dev __rte_unused,struct rte_crypto_asym_xform * xform __rte_unused,struct rte_cryptodev_asym_session * sess)377 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev __rte_unused,
378 struct rte_crypto_asym_xform *xform __rte_unused,
379 struct rte_cryptodev_asym_session *sess)
380 {
381 struct cpt_asym_sess_misc *priv = (struct cpt_asym_sess_misc *)
382 sess->sess_private_data;
383 int ret;
384
385 CPT_PMD_INIT_FUNC_TRACE();
386
387 ret = cpt_fill_asym_session_parameters(priv, xform);
388 if (ret) {
389 CPT_LOG_ERR("Could not configure session parameters");
390 return ret;
391 }
392
393 priv->cpt_inst_w7 = 0;
394
395 return 0;
396 }
397
398 static void
otx_cpt_asym_session_clear(struct rte_cryptodev * dev,struct rte_cryptodev_asym_session * sess)399 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
400 struct rte_cryptodev_asym_session *sess)
401 {
402 struct cpt_asym_sess_misc *priv;
403
404 CPT_PMD_INIT_FUNC_TRACE();
405
406 priv = (struct cpt_asym_sess_misc *) sess->sess_private_data;
407
408 if (priv == NULL)
409 return;
410
411 /* Free resources allocated during session configure */
412 cpt_free_asym_session_parameters(priv);
413 memset(priv, 0, otx_cpt_asym_session_size_get(dev));
414 }
415
416 static __rte_always_inline void * __rte_hot
otx_cpt_request_enqueue(struct cpt_instance * instance,void * req,uint64_t cpt_inst_w7)417 otx_cpt_request_enqueue(struct cpt_instance *instance,
418 void *req, uint64_t cpt_inst_w7)
419 {
420 struct cpt_request_info *user_req = (struct cpt_request_info *)req;
421
422 fill_cpt_inst(instance, req, cpt_inst_w7);
423
424 CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
425
426 /* Fill time_out cycles */
427 user_req->time_out = rte_get_timer_cycles() +
428 DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
429 user_req->extra_time = 0;
430
431 /* Default mode of software queue */
432 mark_cpt_inst(instance);
433
434 CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
435 "op: %p", user_req, user_req->op);
436 return req;
437 }
438
439 static __rte_always_inline void * __rte_hot
otx_cpt_enq_single_asym(struct cpt_instance * instance,struct rte_crypto_op * op)440 otx_cpt_enq_single_asym(struct cpt_instance *instance,
441 struct rte_crypto_op *op)
442 {
443 struct cpt_qp_meta_info *minfo = &instance->meta_info;
444 struct rte_crypto_asym_op *asym_op = op->asym;
445 struct asym_op_params params = {0};
446 struct cpt_asym_sess_misc *sess;
447 uintptr_t *cop;
448 void *mdata;
449 void *req;
450 int ret;
451
452 if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
453 CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
454 rte_errno = ENOMEM;
455 return NULL;
456 }
457
458 sess = (struct cpt_asym_sess_misc *)
459 asym_op->session->sess_private_data;
460
461 /* Store phys_addr of the mdata to meta_buf */
462 params.meta_buf = rte_mempool_virt2iova(mdata);
463
464 cop = mdata;
465 cop[0] = (uintptr_t)mdata;
466 cop[1] = (uintptr_t)op;
467 cop[2] = cop[3] = 0ULL;
468
469 params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
470 params.req->op = cop;
471
472 /* Adjust meta_buf by crypto_op data and request_info struct */
473 params.meta_buf += (4 * sizeof(uintptr_t)) +
474 sizeof(struct cpt_request_info);
475
476 switch (sess->xfrm_type) {
477 case RTE_CRYPTO_ASYM_XFORM_MODEX:
478 ret = cpt_modex_prep(¶ms, &sess->mod_ctx);
479 if (unlikely(ret))
480 goto req_fail;
481 break;
482 case RTE_CRYPTO_ASYM_XFORM_RSA:
483 ret = cpt_enqueue_rsa_op(op, ¶ms, sess);
484 if (unlikely(ret))
485 goto req_fail;
486 break;
487 case RTE_CRYPTO_ASYM_XFORM_ECDSA:
488 ret = cpt_enqueue_ecdsa_op(op, ¶ms, sess, otx_fpm_iova);
489 if (unlikely(ret))
490 goto req_fail;
491 break;
492 case RTE_CRYPTO_ASYM_XFORM_ECPM:
493 ret = cpt_ecpm_prep(&asym_op->ecpm, ¶ms,
494 sess->ec_ctx.curveid);
495 if (unlikely(ret))
496 goto req_fail;
497 break;
498
499 default:
500 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
501 rte_errno = EINVAL;
502 goto req_fail;
503 }
504
505 req = otx_cpt_request_enqueue(instance, params.req, sess->cpt_inst_w7);
506 if (unlikely(req == NULL)) {
507 CPT_LOG_DP_ERR("Could not enqueue crypto req");
508 goto req_fail;
509 }
510
511 return req;
512
513 req_fail:
514 free_op_meta(mdata, minfo->pool);
515
516 return NULL;
517 }
518
519 static __rte_always_inline void * __rte_hot
otx_cpt_enq_single_sym(struct cpt_instance * instance,struct rte_crypto_op * op)520 otx_cpt_enq_single_sym(struct cpt_instance *instance,
521 struct rte_crypto_op *op)
522 {
523 struct cpt_sess_misc *sess;
524 struct rte_crypto_sym_op *sym_op = op->sym;
525 struct cpt_request_info *prep_req;
526 void *mdata = NULL;
527 int ret = 0;
528 void *req;
529 uint64_t cpt_op;
530
531 sess = (struct cpt_sess_misc *)
532 get_sym_session_private_data(sym_op->session,
533 otx_cryptodev_driver_id);
534
535 cpt_op = sess->cpt_op;
536
537 if (likely(cpt_op & CPT_OP_CIPHER_MASK))
538 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
539 (void **)&prep_req);
540 else
541 ret = fill_digest_params(op, sess, &instance->meta_info,
542 &mdata, (void **)&prep_req);
543
544 if (unlikely(ret)) {
545 CPT_LOG_DP_ERR("prep crypto req : op %p, cpt_op 0x%x "
546 "ret 0x%x", op, (unsigned int)cpt_op, ret);
547 return NULL;
548 }
549
550 /* Enqueue prepared instruction to h/w */
551 req = otx_cpt_request_enqueue(instance, prep_req, sess->cpt_inst_w7);
552 if (unlikely(req == NULL))
553 /* Buffer allocated for request preparation need to be freed */
554 free_op_meta(mdata, instance->meta_info.pool);
555
556 return req;
557 }
558
559 static __rte_always_inline void * __rte_hot
otx_cpt_enq_single_sym_sessless(struct cpt_instance * instance,struct rte_crypto_op * op)560 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
561 struct rte_crypto_op *op)
562 {
563 const int driver_id = otx_cryptodev_driver_id;
564 struct rte_crypto_sym_op *sym_op = op->sym;
565 struct rte_cryptodev_sym_session *sess;
566 void *req;
567 int ret;
568
569 /* Create temporary session */
570 sess = rte_cryptodev_sym_session_create(instance->sess_mp);
571 if (sess == NULL) {
572 rte_errno = ENOMEM;
573 return NULL;
574 }
575
576 ret = sym_session_configure(driver_id, sym_op->xform, sess,
577 instance->sess_mp_priv);
578 if (ret)
579 goto sess_put;
580
581 sym_op->session = sess;
582
583 /* Enqueue op with the tmp session set */
584 req = otx_cpt_enq_single_sym(instance, op);
585 if (unlikely(req == NULL))
586 goto priv_put;
587
588 return req;
589
590 priv_put:
591 sym_session_clear(driver_id, sess);
592 sess_put:
593 rte_mempool_put(instance->sess_mp, sess);
594 return NULL;
595 }
596
597 #define OP_TYPE_SYM 0
598 #define OP_TYPE_ASYM 1
599
600 static __rte_always_inline void *__rte_hot
otx_cpt_enq_single(struct cpt_instance * inst,struct rte_crypto_op * op,const uint8_t op_type)601 otx_cpt_enq_single(struct cpt_instance *inst,
602 struct rte_crypto_op *op,
603 const uint8_t op_type)
604 {
605 /* Check for the type */
606
607 if (op_type == OP_TYPE_SYM) {
608 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
609 return otx_cpt_enq_single_sym(inst, op);
610 else
611 return otx_cpt_enq_single_sym_sessless(inst, op);
612 }
613
614 if (op_type == OP_TYPE_ASYM) {
615 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
616 return otx_cpt_enq_single_asym(inst, op);
617 }
618
619 /* Should not reach here */
620 rte_errno = ENOTSUP;
621 return NULL;
622 }
623
624 static __rte_always_inline uint16_t __rte_hot
otx_cpt_pkt_enqueue(void * qptr,struct rte_crypto_op ** ops,uint16_t nb_ops,const uint8_t op_type)625 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
626 const uint8_t op_type)
627 {
628 struct cpt_instance *instance = (struct cpt_instance *)qptr;
629 uint16_t count, free_slots;
630 void *req;
631 struct cpt_vf *cptvf = (struct cpt_vf *)instance;
632 struct pending_queue *pqueue = &cptvf->pqueue;
633
634 free_slots = pending_queue_free_slots(pqueue, DEFAULT_CMD_QLEN,
635 DEFAULT_CMD_QRSVD_SLOTS);
636 if (nb_ops > free_slots)
637 nb_ops = free_slots;
638
639 count = 0;
640 while (likely(count < nb_ops)) {
641
642 /* Enqueue single op */
643 req = otx_cpt_enq_single(instance, ops[count], op_type);
644
645 if (unlikely(req == NULL))
646 break;
647
648 pending_queue_push(pqueue, req, count, DEFAULT_CMD_QLEN);
649 count++;
650 }
651
652 if (likely(count)) {
653 pending_queue_commit(pqueue, count, DEFAULT_CMD_QLEN);
654 otx_cpt_ring_dbell(instance, count);
655 }
656 return count;
657 }
658
659 static uint16_t
otx_cpt_enqueue_asym(void * qptr,struct rte_crypto_op ** ops,uint16_t nb_ops)660 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
661 {
662 return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
663 }
664
665 static uint16_t
otx_cpt_enqueue_sym(void * qptr,struct rte_crypto_op ** ops,uint16_t nb_ops)666 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
667 {
668 return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
669 }
670
671 static __rte_always_inline void
submit_request_to_sso(struct ssows * ws,uintptr_t req,struct rte_event * rsp_info)672 submit_request_to_sso(struct ssows *ws, uintptr_t req,
673 struct rte_event *rsp_info)
674 {
675 uint64_t add_work;
676
677 add_work = rsp_info->flow_id | (RTE_EVENT_TYPE_CRYPTODEV << 28) |
678 ((uint64_t)(rsp_info->sched_type) << 32);
679
680 if (!rsp_info->sched_type)
681 ssows_head_wait(ws);
682
683 rte_atomic_thread_fence(__ATOMIC_RELEASE);
684 ssovf_store_pair(add_work, req, ws->grps[rsp_info->queue_id]);
685 }
686
687 static inline union rte_event_crypto_metadata *
get_event_crypto_mdata(struct rte_crypto_op * op)688 get_event_crypto_mdata(struct rte_crypto_op *op)
689 {
690 union rte_event_crypto_metadata *ec_mdata;
691
692 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
693 ec_mdata = rte_cryptodev_sym_session_get_user_data(
694 op->sym->session);
695 else if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS &&
696 op->private_data_offset)
697 ec_mdata = (union rte_event_crypto_metadata *)
698 ((uint8_t *)op + op->private_data_offset);
699 else
700 return NULL;
701
702 return ec_mdata;
703 }
704
705 uint16_t __rte_hot
otx_crypto_adapter_enqueue(void * port,struct rte_crypto_op * op)706 otx_crypto_adapter_enqueue(void *port, struct rte_crypto_op *op)
707 {
708 union rte_event_crypto_metadata *ec_mdata;
709 struct cpt_instance *instance;
710 struct cpt_request_info *req;
711 struct rte_event *rsp_info;
712 uint8_t op_type, cdev_id;
713 uint16_t qp_id;
714
715 ec_mdata = get_event_crypto_mdata(op);
716 if (unlikely(ec_mdata == NULL)) {
717 rte_errno = EINVAL;
718 return 0;
719 }
720
721 cdev_id = ec_mdata->request_info.cdev_id;
722 qp_id = ec_mdata->request_info.queue_pair_id;
723 rsp_info = &ec_mdata->response_info;
724 instance = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id];
725
726 if (unlikely(!instance->ca_enabled)) {
727 rte_errno = EINVAL;
728 return 0;
729 }
730
731 op_type = op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
732 OP_TYPE_ASYM;
733 req = otx_cpt_enq_single(instance, op, op_type);
734 if (unlikely(req == NULL))
735 return 0;
736
737 otx_cpt_ring_dbell(instance, 1);
738 req->qp = instance;
739 submit_request_to_sso(port, (uintptr_t)req, rsp_info);
740
741 return 1;
742 }
743
744 static inline void
otx_cpt_asym_rsa_op(struct rte_crypto_op * cop,struct cpt_request_info * req,struct rte_crypto_rsa_xform * rsa_ctx)745 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
746 struct rte_crypto_rsa_xform *rsa_ctx)
747
748 {
749 struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
750
751 switch (rsa->op_type) {
752 case RTE_CRYPTO_ASYM_OP_ENCRYPT:
753 rsa->cipher.length = rsa_ctx->n.length;
754 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
755 break;
756 case RTE_CRYPTO_ASYM_OP_DECRYPT:
757 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
758 rsa->message.length = rsa_ctx->n.length;
759 else {
760 /* Get length of decrypted output */
761 rsa->message.length = rte_cpu_to_be_16
762 (*((uint16_t *)req->rptr));
763
764 /* Offset data pointer by length fields */
765 req->rptr += 2;
766 }
767 memcpy(rsa->message.data, req->rptr, rsa->message.length);
768 break;
769 case RTE_CRYPTO_ASYM_OP_SIGN:
770 rsa->sign.length = rsa_ctx->n.length;
771 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
772 break;
773 case RTE_CRYPTO_ASYM_OP_VERIFY:
774 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
775 rsa->sign.length = rsa_ctx->n.length;
776 else {
777 /* Get length of decrypted output */
778 rsa->sign.length = rte_cpu_to_be_16
779 (*((uint16_t *)req->rptr));
780
781 /* Offset data pointer by length fields */
782 req->rptr += 2;
783 }
784 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
785
786 if (memcmp(rsa->sign.data, rsa->message.data,
787 rsa->message.length)) {
788 CPT_LOG_DP_ERR("RSA verification failed");
789 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
790 }
791 break;
792 default:
793 CPT_LOG_DP_DEBUG("Invalid RSA operation type");
794 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
795 break;
796 }
797 }
798
799 static __rte_always_inline void
otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param * ecdsa,struct cpt_request_info * req,struct cpt_asym_ec_ctx * ec)800 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
801 struct cpt_request_info *req,
802 struct cpt_asym_ec_ctx *ec)
803
804 {
805 int prime_len = ec_grp[ec->curveid].prime.length;
806
807 if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
808 return;
809
810 /* Separate out sign r and s components */
811 memcpy(ecdsa->r.data, req->rptr, prime_len);
812 memcpy(ecdsa->s.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
813 prime_len);
814 ecdsa->r.length = prime_len;
815 ecdsa->s.length = prime_len;
816 }
817
818 static __rte_always_inline void
otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param * ecpm,struct cpt_request_info * req,struct cpt_asym_ec_ctx * ec)819 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
820 struct cpt_request_info *req,
821 struct cpt_asym_ec_ctx *ec)
822 {
823 int prime_len = ec_grp[ec->curveid].prime.length;
824
825 memcpy(ecpm->r.x.data, req->rptr, prime_len);
826 memcpy(ecpm->r.y.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
827 prime_len);
828 ecpm->r.x.length = prime_len;
829 ecpm->r.y.length = prime_len;
830 }
831
832 static __rte_always_inline void __rte_hot
otx_cpt_asym_post_process(struct rte_crypto_op * cop,struct cpt_request_info * req)833 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
834 struct cpt_request_info *req)
835 {
836 struct rte_crypto_asym_op *op = cop->asym;
837 struct cpt_asym_sess_misc *sess;
838
839 sess = (struct cpt_asym_sess_misc *) op->session->sess_private_data;
840
841 switch (sess->xfrm_type) {
842 case RTE_CRYPTO_ASYM_XFORM_RSA:
843 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
844 break;
845 case RTE_CRYPTO_ASYM_XFORM_MODEX:
846 op->modex.result.length = sess->mod_ctx.modulus.length;
847 memcpy(op->modex.result.data, req->rptr,
848 op->modex.result.length);
849 break;
850 case RTE_CRYPTO_ASYM_XFORM_ECDSA:
851 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
852 break;
853 case RTE_CRYPTO_ASYM_XFORM_ECPM:
854 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
855 break;
856 default:
857 CPT_LOG_DP_DEBUG("Invalid crypto xform type");
858 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
859 break;
860 }
861 }
862
863 static __rte_always_inline void __rte_hot
otx_cpt_dequeue_post_process(struct rte_crypto_op * cop,uintptr_t * rsp,const uint8_t op_type)864 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
865 const uint8_t op_type)
866 {
867 /* H/w has returned success */
868 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
869
870 /* Perform further post processing */
871
872 if ((op_type == OP_TYPE_SYM) &&
873 (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
874 /* Check if auth verify need to be completed */
875 if (unlikely(rsp[2]))
876 compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
877 return;
878 }
879
880 if ((op_type == OP_TYPE_ASYM) &&
881 (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
882 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
883 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
884 }
885
886 return;
887 }
888
889 static inline void
free_sym_session_data(const struct cpt_instance * instance,struct rte_crypto_op * cop)890 free_sym_session_data(const struct cpt_instance *instance,
891 struct rte_crypto_op *cop)
892 {
893 void *sess_private_data_t = get_sym_session_private_data(
894 cop->sym->session, otx_cryptodev_driver_id);
895 memset(sess_private_data_t, 0, cpt_get_session_size());
896 memset(cop->sym->session, 0,
897 rte_cryptodev_sym_get_existing_header_session_size(
898 cop->sym->session));
899 rte_mempool_put(instance->sess_mp_priv, sess_private_data_t);
900 rte_mempool_put(instance->sess_mp, cop->sym->session);
901 cop->sym->session = NULL;
902 }
903
904 static __rte_always_inline struct rte_crypto_op *
otx_cpt_process_response(const struct cpt_instance * instance,uintptr_t * rsp,uint8_t cc,const uint8_t op_type)905 otx_cpt_process_response(const struct cpt_instance *instance, uintptr_t *rsp,
906 uint8_t cc, const uint8_t op_type)
907 {
908 struct rte_crypto_op *cop;
909 void *metabuf;
910
911 metabuf = (void *)rsp[0];
912 cop = (void *)rsp[1];
913
914 /* Check completion code */
915 if (likely(cc == 0)) {
916 /* H/w success pkt. Post process */
917 otx_cpt_dequeue_post_process(cop, rsp, op_type);
918 } else if (cc == ERR_GC_ICV_MISCOMPARE) {
919 /* auth data mismatch */
920 cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
921 } else {
922 /* Error */
923 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
924 }
925
926 if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS))
927 free_sym_session_data(instance, cop);
928 free_op_meta(metabuf, instance->meta_info.pool);
929
930 return cop;
931 }
932
933 static __rte_always_inline uint16_t __rte_hot
otx_cpt_pkt_dequeue(void * qptr,struct rte_crypto_op ** ops,uint16_t nb_ops,const uint8_t op_type)934 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
935 const uint8_t op_type)
936 {
937 struct cpt_instance *instance = (struct cpt_instance *)qptr;
938 struct cpt_request_info *user_req;
939 struct cpt_vf *cptvf = (struct cpt_vf *)instance;
940 uint8_t cc[nb_ops];
941 int i, count, pcount;
942 uint8_t ret;
943 int nb_completed;
944 struct pending_queue *pqueue = &cptvf->pqueue;
945
946 pcount = pending_queue_level(pqueue, DEFAULT_CMD_QLEN);
947
948 /* Ensure pcount isn't read before data lands */
949 rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
950
951 count = (nb_ops > pcount) ? pcount : nb_ops;
952
953 for (i = 0; i < count; i++) {
954 pending_queue_peek(pqueue, (void **) &user_req,
955 DEFAULT_CMD_QLEN, i + 1 < count);
956
957 ret = check_nb_command_id(user_req, instance);
958
959 if (unlikely(ret == ERR_REQ_PENDING)) {
960 /* Stop checking for completions */
961 break;
962 }
963
964 /* Return completion code and op handle */
965 cc[i] = ret;
966 ops[i] = user_req->op;
967
968 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
969 user_req, user_req->op, ret);
970
971 pending_queue_pop(pqueue, DEFAULT_CMD_QLEN);
972 }
973
974 nb_completed = i;
975
976 for (i = 0; i < nb_completed; i++) {
977 if (likely((i + 1) < nb_completed))
978 rte_prefetch0(ops[i+1]);
979
980 ops[i] = otx_cpt_process_response(instance, (void *)ops[i],
981 cc[i], op_type);
982 }
983
984 return nb_completed;
985 }
986
987 static uint16_t
otx_cpt_dequeue_asym(void * qptr,struct rte_crypto_op ** ops,uint16_t nb_ops)988 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
989 {
990 return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
991 }
992
993 static uint16_t
otx_cpt_dequeue_sym(void * qptr,struct rte_crypto_op ** ops,uint16_t nb_ops)994 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
995 {
996 return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
997 }
998
999 uintptr_t __rte_hot
otx_crypto_adapter_dequeue(uintptr_t get_work1)1000 otx_crypto_adapter_dequeue(uintptr_t get_work1)
1001 {
1002 const struct cpt_instance *instance;
1003 struct cpt_request_info *req;
1004 struct rte_crypto_op *cop;
1005 uint8_t cc, op_type;
1006 uintptr_t *rsp;
1007
1008 req = (struct cpt_request_info *)get_work1;
1009 instance = req->qp;
1010 rsp = req->op;
1011 cop = (void *)rsp[1];
1012 op_type = cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
1013 OP_TYPE_ASYM;
1014
1015 do {
1016 cc = check_nb_command_id(
1017 req, (struct cpt_instance *)(uintptr_t)instance);
1018 } while (cc == ERR_REQ_PENDING);
1019
1020 cop = otx_cpt_process_response(instance, (void *)req->op, cc, op_type);
1021
1022 return (uintptr_t)(cop);
1023 }
1024
1025 static struct rte_cryptodev_ops cptvf_ops = {
1026 /* Device related operations */
1027 .dev_configure = otx_cpt_dev_config,
1028 .dev_start = otx_cpt_dev_start,
1029 .dev_stop = otx_cpt_dev_stop,
1030 .dev_close = otx_cpt_dev_close,
1031 .dev_infos_get = otx_cpt_dev_info_get,
1032
1033 .stats_get = NULL,
1034 .stats_reset = NULL,
1035 .queue_pair_setup = otx_cpt_que_pair_setup,
1036 .queue_pair_release = otx_cpt_que_pair_release,
1037
1038 /* Crypto related operations */
1039 .sym_session_get_size = otx_cpt_get_session_size,
1040 .sym_session_configure = otx_cpt_session_cfg,
1041 .sym_session_clear = otx_cpt_session_clear,
1042
1043 .asym_session_get_size = otx_cpt_asym_session_size_get,
1044 .asym_session_configure = otx_cpt_asym_session_cfg,
1045 .asym_session_clear = otx_cpt_asym_session_clear,
1046 };
1047
1048 int
otx_cpt_dev_create(struct rte_cryptodev * c_dev)1049 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
1050 {
1051 struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
1052 struct cpt_vf *cptvf = NULL;
1053 void *reg_base;
1054 char dev_name[32];
1055 int ret;
1056
1057 if (pdev->mem_resource[0].phys_addr == 0ULL)
1058 return -EIO;
1059
1060 /* for secondary processes, we don't initialise any further as primary
1061 * has already done this work.
1062 */
1063 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1064 return 0;
1065
1066 cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
1067 sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
1068 rte_socket_id());
1069
1070 if (cptvf == NULL) {
1071 CPT_LOG_ERR("Cannot allocate memory for device private data");
1072 return -ENOMEM;
1073 }
1074
1075 snprintf(dev_name, 32, "%02x:%02x.%x",
1076 pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
1077
1078 reg_base = pdev->mem_resource[0].addr;
1079 if (!reg_base) {
1080 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
1081 ret = -ENODEV;
1082 goto fail;
1083 }
1084
1085 ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
1086 if (ret) {
1087 CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
1088 ret = -EIO;
1089 goto fail;
1090 }
1091
1092 switch (cptvf->vftype) {
1093 case OTX_CPT_VF_TYPE_AE:
1094 /* Set asymmetric cpt feature flags */
1095 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
1096 RTE_CRYPTODEV_FF_HW_ACCELERATED |
1097 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
1098 break;
1099 case OTX_CPT_VF_TYPE_SE:
1100 /* Set symmetric cpt feature flags */
1101 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
1102 RTE_CRYPTODEV_FF_HW_ACCELERATED |
1103 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
1104 RTE_CRYPTODEV_FF_IN_PLACE_SGL |
1105 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
1106 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
1107 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
1108 RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
1109 RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
1110 break;
1111 default:
1112 /* Feature not supported. Abort */
1113 CPT_LOG_ERR("VF type not supported by %s", dev_name);
1114 ret = -EIO;
1115 goto deinit_dev;
1116 }
1117
1118 /* Start off timer for mailbox interrupts */
1119 otx_cpt_periodic_alarm_start(cptvf);
1120
1121 c_dev->dev_ops = &cptvf_ops;
1122
1123 if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
1124 c_dev->enqueue_burst = otx_cpt_enqueue_sym;
1125 c_dev->dequeue_burst = otx_cpt_dequeue_sym;
1126 } else {
1127 c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1128 c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1129 }
1130
1131 /* Save dev private data */
1132 c_dev->data->dev_private = cptvf;
1133
1134 return 0;
1135
1136 deinit_dev:
1137 otx_cpt_deinit_device(cptvf);
1138
1139 fail:
1140 if (cptvf) {
1141 /* Free private data allocated */
1142 rte_free(cptvf);
1143 }
1144
1145 return ret;
1146 }
1147