1 /*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission. M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose. It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 */
30
31 /*
32 * This code implements a `root nexus' for Arm Architecture
33 * machines. The function of the root nexus is to serve as an
34 * attachment point for both processors and buses, and to manage
35 * resources which are common to all of them. In particular,
36 * this code implements the core resource managers for interrupt
37 * requests, DMA requests (which rightfully should be a part of the
38 * ISA code but it's easier to do it here for now), I/O port addresses,
39 * and I/O memory address space.
40 */
41
42 #include "opt_acpi.h"
43 #include "opt_platform.h"
44
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/module.h>
54 #include <machine/bus.h>
55 #include <sys/rman.h>
56 #include <sys/interrupt.h>
57
58 #include <machine/machdep.h>
59 #include <machine/vmparam.h>
60 #include <machine/pcb.h>
61 #include <vm/vm.h>
62 #include <vm/pmap.h>
63
64 #include <machine/resource.h>
65 #include <machine/intr.h>
66
67 #ifdef FDT
68 #include <dev/ofw/ofw_bus_subr.h>
69 #include <dev/ofw/openfirm.h>
70 #include "ofw_bus_if.h"
71 #endif
72 #ifdef DEV_ACPI
73 #include <contrib/dev/acpica/include/acpi.h>
74 #include <dev/acpica/acpivar.h>
75 #include "acpi_bus_if.h"
76 #include "pcib_if.h"
77 #endif
78
79 extern struct bus_space memmap_bus;
80
81 static MALLOC_DEFINE(M_NEXUSDEV, "nexusdev", "Nexus device");
82
83 struct nexus_device {
84 struct resource_list nx_resources;
85 };
86
87 #define DEVTONX(dev) ((struct nexus_device *)device_get_ivars(dev))
88
89 static struct rman mem_rman;
90 static struct rman irq_rman;
91
92 static int nexus_attach(device_t);
93
94 #ifdef FDT
95 static device_probe_t nexus_fdt_probe;
96 static device_attach_t nexus_fdt_attach;
97 #endif
98 #ifdef DEV_ACPI
99 static device_probe_t nexus_acpi_probe;
100 static device_attach_t nexus_acpi_attach;
101 #endif
102
103 static int nexus_print_child(device_t, device_t);
104 static device_t nexus_add_child(device_t, u_int, const char *, int);
105 static struct resource *nexus_alloc_resource(device_t, device_t, int, int *,
106 rman_res_t, rman_res_t, rman_res_t, u_int);
107 static int nexus_activate_resource(device_t, device_t, int, int,
108 struct resource *);
109 static int nexus_config_intr(device_t dev, int irq, enum intr_trigger trig,
110 enum intr_polarity pol);
111 static struct resource_list *nexus_get_reslist(device_t, device_t);
112 static int nexus_set_resource(device_t, device_t, int, int,
113 rman_res_t, rman_res_t);
114 static int nexus_deactivate_resource(device_t, device_t, int, int,
115 struct resource *);
116 static int nexus_release_resource(device_t, device_t, int, int,
117 struct resource *);
118
119 static int nexus_setup_intr(device_t dev, device_t child, struct resource *res,
120 int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg, void **cookiep);
121 static int nexus_teardown_intr(device_t, device_t, struct resource *, void *);
122 static bus_space_tag_t nexus_get_bus_tag(device_t, device_t);
123 #ifdef SMP
124 static int nexus_bind_intr(device_t, device_t, struct resource *, int);
125 #endif
126
127 #ifdef FDT
128 static int nexus_ofw_map_intr(device_t dev, device_t child, phandle_t iparent,
129 int icells, pcell_t *intr);
130 #endif
131
132 static device_method_t nexus_methods[] = {
133 /* Bus interface */
134 DEVMETHOD(bus_print_child, nexus_print_child),
135 DEVMETHOD(bus_add_child, nexus_add_child),
136 DEVMETHOD(bus_alloc_resource, nexus_alloc_resource),
137 DEVMETHOD(bus_activate_resource, nexus_activate_resource),
138 DEVMETHOD(bus_config_intr, nexus_config_intr),
139 DEVMETHOD(bus_get_resource_list, nexus_get_reslist),
140 DEVMETHOD(bus_set_resource, nexus_set_resource),
141 DEVMETHOD(bus_deactivate_resource, nexus_deactivate_resource),
142 DEVMETHOD(bus_release_resource, nexus_release_resource),
143 DEVMETHOD(bus_setup_intr, nexus_setup_intr),
144 DEVMETHOD(bus_teardown_intr, nexus_teardown_intr),
145 DEVMETHOD(bus_get_bus_tag, nexus_get_bus_tag),
146 #ifdef SMP
147 DEVMETHOD(bus_bind_intr, nexus_bind_intr),
148 #endif
149 { 0, 0 }
150 };
151
152 static driver_t nexus_driver = {
153 "nexus",
154 nexus_methods,
155 1 /* no softc */
156 };
157
158 static int
nexus_attach(device_t dev)159 nexus_attach(device_t dev)
160 {
161
162 mem_rman.rm_start = 0;
163 mem_rman.rm_end = BUS_SPACE_MAXADDR;
164 mem_rman.rm_type = RMAN_ARRAY;
165 mem_rman.rm_descr = "I/O memory addresses";
166 if (rman_init(&mem_rman) ||
167 rman_manage_region(&mem_rman, 0, BUS_SPACE_MAXADDR))
168 panic("nexus_attach mem_rman");
169 irq_rman.rm_start = 0;
170 irq_rman.rm_end = ~0;
171 irq_rman.rm_type = RMAN_ARRAY;
172 irq_rman.rm_descr = "Interrupts";
173 if (rman_init(&irq_rman) || rman_manage_region(&irq_rman, 0, ~0))
174 panic("nexus_attach irq_rman");
175
176 bus_generic_probe(dev);
177 bus_generic_attach(dev);
178
179 return (0);
180 }
181
182 static int
nexus_print_child(device_t bus,device_t child)183 nexus_print_child(device_t bus, device_t child)
184 {
185 int retval = 0;
186
187 retval += bus_print_child_header(bus, child);
188 retval += printf("\n");
189
190 return (retval);
191 }
192
193 static device_t
nexus_add_child(device_t bus,u_int order,const char * name,int unit)194 nexus_add_child(device_t bus, u_int order, const char *name, int unit)
195 {
196 device_t child;
197 struct nexus_device *ndev;
198
199 ndev = malloc(sizeof(struct nexus_device), M_NEXUSDEV, M_NOWAIT|M_ZERO);
200 if (!ndev)
201 return (0);
202 resource_list_init(&ndev->nx_resources);
203
204 child = device_add_child_ordered(bus, order, name, unit);
205
206 /* should we free this in nexus_child_detached? */
207 device_set_ivars(child, ndev);
208
209 return (child);
210 }
211
212 /*
213 * Allocate a resource on behalf of child. NB: child is usually going to be a
214 * child of one of our descendants, not a direct child of nexus0.
215 * (Exceptions include footbridge.)
216 */
217 static struct resource *
nexus_alloc_resource(device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)218 nexus_alloc_resource(device_t bus, device_t child, int type, int *rid,
219 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
220 {
221 struct nexus_device *ndev = DEVTONX(child);
222 struct resource *rv;
223 struct resource_list_entry *rle;
224 struct rman *rm;
225 int needactivate = flags & RF_ACTIVE;
226
227 /*
228 * If this is an allocation of the "default" range for a given
229 * RID, and we know what the resources for this device are
230 * (ie. they aren't maintained by a child bus), then work out
231 * the start/end values.
232 */
233 if (RMAN_IS_DEFAULT_RANGE(start, end) && (count == 1)) {
234 if (device_get_parent(child) != bus || ndev == NULL)
235 return(NULL);
236 rle = resource_list_find(&ndev->nx_resources, type, *rid);
237 if (rle == NULL)
238 return(NULL);
239 start = rle->start;
240 end = rle->end;
241 count = rle->count;
242 }
243
244 switch (type) {
245 case SYS_RES_IRQ:
246 rm = &irq_rman;
247 break;
248
249 case SYS_RES_MEMORY:
250 case SYS_RES_IOPORT:
251 rm = &mem_rman;
252 break;
253
254 default:
255 return (NULL);
256 }
257
258 rv = rman_reserve_resource(rm, start, end, count, flags, child);
259 if (rv == NULL)
260 return (NULL);
261
262 rman_set_rid(rv, *rid);
263 rman_set_bushandle(rv, rman_get_start(rv));
264
265 if (needactivate) {
266 if (bus_activate_resource(child, type, *rid, rv)) {
267 rman_release_resource(rv);
268 return (NULL);
269 }
270 }
271
272 return (rv);
273 }
274
275 static int
nexus_release_resource(device_t bus,device_t child,int type,int rid,struct resource * res)276 nexus_release_resource(device_t bus, device_t child, int type, int rid,
277 struct resource *res)
278 {
279 int error;
280
281 if (rman_get_flags(res) & RF_ACTIVE) {
282 error = bus_deactivate_resource(child, type, rid, res);
283 if (error)
284 return (error);
285 }
286 return (rman_release_resource(res));
287 }
288
289 static int
nexus_config_intr(device_t dev,int irq,enum intr_trigger trig,enum intr_polarity pol)290 nexus_config_intr(device_t dev, int irq, enum intr_trigger trig,
291 enum intr_polarity pol)
292 {
293
294 /*
295 * On arm64 (due to INTRNG), ACPI interrupt configuration is
296 * done in nexus_acpi_map_intr().
297 */
298 return (0);
299 }
300
301 static int
nexus_setup_intr(device_t dev,device_t child,struct resource * res,int flags,driver_filter_t * filt,driver_intr_t * intr,void * arg,void ** cookiep)302 nexus_setup_intr(device_t dev, device_t child, struct resource *res, int flags,
303 driver_filter_t *filt, driver_intr_t *intr, void *arg, void **cookiep)
304 {
305 int error;
306
307 if ((rman_get_flags(res) & RF_SHAREABLE) == 0)
308 flags |= INTR_EXCL;
309
310 /* We depend here on rman_activate_resource() being idempotent. */
311 error = rman_activate_resource(res);
312 if (error)
313 return (error);
314
315 error = intr_setup_irq(child, res, filt, intr, arg, flags, cookiep);
316
317 return (error);
318 }
319
320 static int
nexus_teardown_intr(device_t dev,device_t child,struct resource * r,void * ih)321 nexus_teardown_intr(device_t dev, device_t child, struct resource *r, void *ih)
322 {
323
324 return (intr_teardown_irq(child, r, ih));
325 }
326
327 #ifdef SMP
328 static int
nexus_bind_intr(device_t dev,device_t child,struct resource * irq,int cpu)329 nexus_bind_intr(device_t dev, device_t child, struct resource *irq, int cpu)
330 {
331
332 return (intr_bind_irq(child, irq, cpu));
333 }
334 #endif
335
336 static bus_space_tag_t
nexus_get_bus_tag(device_t bus __unused,device_t child __unused)337 nexus_get_bus_tag(device_t bus __unused, device_t child __unused)
338 {
339
340 return(&memmap_bus);
341 }
342
343 static int
nexus_activate_resource(device_t bus,device_t child,int type,int rid,struct resource * r)344 nexus_activate_resource(device_t bus, device_t child, int type, int rid,
345 struct resource *r)
346 {
347 int err;
348 bus_addr_t paddr;
349 bus_size_t psize;
350 bus_space_handle_t vaddr;
351
352 if ((err = rman_activate_resource(r)) != 0)
353 return (err);
354
355 /*
356 * If this is a memory resource, map it into the kernel.
357 */
358 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
359 paddr = (bus_addr_t)rman_get_start(r);
360 psize = (bus_size_t)rman_get_size(r);
361 err = bus_space_map(&memmap_bus, paddr, psize, 0, &vaddr);
362 if (err != 0) {
363 rman_deactivate_resource(r);
364 return (err);
365 }
366 rman_set_bustag(r, &memmap_bus);
367 rman_set_virtual(r, (void *)vaddr);
368 rman_set_bushandle(r, vaddr);
369 } else if (type == SYS_RES_IRQ) {
370 err = intr_activate_irq(child, r);
371 if (err != 0) {
372 rman_deactivate_resource(r);
373 return (err);
374 }
375 }
376 return (0);
377 }
378
379 static struct resource_list *
nexus_get_reslist(device_t dev,device_t child)380 nexus_get_reslist(device_t dev, device_t child)
381 {
382 struct nexus_device *ndev = DEVTONX(child);
383
384 return (&ndev->nx_resources);
385 }
386
387 static int
nexus_set_resource(device_t dev,device_t child,int type,int rid,rman_res_t start,rman_res_t count)388 nexus_set_resource(device_t dev, device_t child, int type, int rid,
389 rman_res_t start, rman_res_t count)
390 {
391 struct nexus_device *ndev = DEVTONX(child);
392 struct resource_list *rl = &ndev->nx_resources;
393
394 /* XXX this should return a success/failure indicator */
395 resource_list_add(rl, type, rid, start, start + count - 1, count);
396
397 return(0);
398 }
399
400 static int
nexus_deactivate_resource(device_t bus,device_t child,int type,int rid,struct resource * r)401 nexus_deactivate_resource(device_t bus, device_t child, int type, int rid,
402 struct resource *r)
403 {
404 bus_size_t psize;
405 bus_space_handle_t vaddr;
406
407 if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
408 psize = (bus_size_t)rman_get_size(r);
409 vaddr = rman_get_bushandle(r);
410
411 if (vaddr != 0) {
412 bus_space_unmap(&memmap_bus, vaddr, psize);
413 rman_set_virtual(r, NULL);
414 rman_set_bushandle(r, 0);
415 }
416 } else if (type == SYS_RES_IRQ) {
417 intr_deactivate_irq(child, r);
418 }
419
420 return (rman_deactivate_resource(r));
421 }
422
423 #ifdef FDT
424 static device_method_t nexus_fdt_methods[] = {
425 /* Device interface */
426 DEVMETHOD(device_probe, nexus_fdt_probe),
427 DEVMETHOD(device_attach, nexus_fdt_attach),
428
429 /* OFW interface */
430 DEVMETHOD(ofw_bus_map_intr, nexus_ofw_map_intr),
431
432 DEVMETHOD_END,
433 };
434
435 #define nexus_baseclasses nexus_fdt_baseclasses
436 DEFINE_CLASS_1(nexus, nexus_fdt_driver, nexus_fdt_methods, 1, nexus_driver);
437 #undef nexus_baseclasses
438 static devclass_t nexus_fdt_devclass;
439
440 EARLY_DRIVER_MODULE(nexus_fdt, root, nexus_fdt_driver, nexus_fdt_devclass,
441 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_FIRST);
442
443 static int
nexus_fdt_probe(device_t dev)444 nexus_fdt_probe(device_t dev)
445 {
446
447 if (arm64_bus_method != ARM64_BUS_FDT)
448 return (ENXIO);
449
450 device_quiet(dev);
451 return (BUS_PROBE_DEFAULT);
452 }
453
454 static int
nexus_fdt_attach(device_t dev)455 nexus_fdt_attach(device_t dev)
456 {
457
458 nexus_add_child(dev, 10, "ofwbus", 0);
459 return (nexus_attach(dev));
460 }
461
462 static int
nexus_ofw_map_intr(device_t dev,device_t child,phandle_t iparent,int icells,pcell_t * intr)463 nexus_ofw_map_intr(device_t dev, device_t child, phandle_t iparent, int icells,
464 pcell_t *intr)
465 {
466 u_int irq;
467 struct intr_map_data_fdt *fdt_data;
468 size_t len;
469
470 len = sizeof(*fdt_data) + icells * sizeof(pcell_t);
471 fdt_data = (struct intr_map_data_fdt *)intr_alloc_map_data(
472 INTR_MAP_DATA_FDT, len, M_WAITOK | M_ZERO);
473 fdt_data->iparent = iparent;
474 fdt_data->ncells = icells;
475 memcpy(fdt_data->cells, intr, icells * sizeof(pcell_t));
476 irq = intr_map_irq(NULL, iparent, (struct intr_map_data *)fdt_data);
477 return (irq);
478 }
479 #endif
480
481 #ifdef DEV_ACPI
482 static int nexus_acpi_map_intr(device_t dev, device_t child, u_int irq, int trig, int pol);
483
484 static device_method_t nexus_acpi_methods[] = {
485 /* Device interface */
486 DEVMETHOD(device_probe, nexus_acpi_probe),
487 DEVMETHOD(device_attach, nexus_acpi_attach),
488
489 /* ACPI interface */
490 DEVMETHOD(acpi_bus_map_intr, nexus_acpi_map_intr),
491
492 DEVMETHOD_END,
493 };
494
495 #define nexus_baseclasses nexus_acpi_baseclasses
496 DEFINE_CLASS_1(nexus, nexus_acpi_driver, nexus_acpi_methods, 1,
497 nexus_driver);
498 #undef nexus_baseclasses
499 static devclass_t nexus_acpi_devclass;
500
501 EARLY_DRIVER_MODULE(nexus_acpi, root, nexus_acpi_driver, nexus_acpi_devclass,
502 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_FIRST);
503
504 static int
nexus_acpi_probe(device_t dev)505 nexus_acpi_probe(device_t dev)
506 {
507
508 if (arm64_bus_method != ARM64_BUS_ACPI || acpi_identify() != 0)
509 return (ENXIO);
510
511 device_quiet(dev);
512 return (BUS_PROBE_LOW_PRIORITY);
513 }
514
515 static int
nexus_acpi_attach(device_t dev)516 nexus_acpi_attach(device_t dev)
517 {
518
519 nexus_add_child(dev, 10, "acpi", 0);
520 return (nexus_attach(dev));
521 }
522
523 static int
nexus_acpi_map_intr(device_t dev,device_t child,u_int irq,int trig,int pol)524 nexus_acpi_map_intr(device_t dev, device_t child, u_int irq, int trig, int pol)
525 {
526 struct intr_map_data_acpi *acpi_data;
527 size_t len;
528
529 len = sizeof(*acpi_data);
530 acpi_data = (struct intr_map_data_acpi *)intr_alloc_map_data(
531 INTR_MAP_DATA_ACPI, len, M_WAITOK | M_ZERO);
532 acpi_data->irq = irq;
533 acpi_data->pol = pol;
534 acpi_data->trig = trig;
535
536 /*
537 * TODO: This will only handle a single interrupt controller.
538 * ACPI will map multiple controllers into a single virtual IRQ
539 * space. Each controller has a System Vector Base to hold the
540 * first irq it handles in this space. As such the correct way
541 * to handle interrupts with ACPI is to search through the
542 * controllers for the largest base value that is no larger than
543 * the IRQ value.
544 */
545 irq = intr_map_irq(NULL, ACPI_INTR_XREF,
546 (struct intr_map_data *)acpi_data);
547 return (irq);
548 }
549 #endif
550