1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/systm.h>
36 #include <sys/sysmacros.h>
37 #include <sys/resource.h>
38 #include <sys/vfs.h>
39 #include <sys/vm.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/taskq.h>
45 #include <sys/uio.h>
46 #include <sys/atomic.h>
47 #include <sys/namei.h>
48 #include <sys/mman.h>
49 #include <sys/cmn_err.h>
50 #include <sys/errno.h>
51 #include <sys/unistd.h>
52 #include <sys/zfs_dir.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/dmu.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/spa.h>
58 #include <sys/txg.h>
59 #include <sys/dbuf.h>
60 #include <sys/zap.h>
61 #include <sys/sa.h>
62 #include <sys/dirent.h>
63 #include <sys/policy.h>
64 #include <sys/sunddi.h>
65 #include <sys/filio.h>
66 #include <sys/sid.h>
67 #include <sys/zfs_ctldir.h>
68 #include <sys/zfs_fuid.h>
69 #include <sys/zfs_sa.h>
70 #include <sys/zfs_rlock.h>
71 #include <sys/extdirent.h>
72 #include <sys/kidmap.h>
73 #include <sys/bio.h>
74 #include <sys/buf.h>
75 #include <sys/sched.h>
76 #include <sys/acl.h>
77 #include <sys/vmmeter.h>
78 #include <vm/vm_param.h>
79 #include <sys/zil.h>
80 
81 /*
82  * Programming rules.
83  *
84  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
85  * properly lock its in-core state, create a DMU transaction, do the work,
86  * record this work in the intent log (ZIL), commit the DMU transaction,
87  * and wait for the intent log to commit if it is a synchronous operation.
88  * Moreover, the vnode ops must work in both normal and log replay context.
89  * The ordering of events is important to avoid deadlocks and references
90  * to freed memory.  The example below illustrates the following Big Rules:
91  *
92  *  (1)	A check must be made in each zfs thread for a mounted file system.
93  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
94  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
95  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
96  *	can return EIO from the calling function.
97  *
98  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
99  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
100  *	First, if it's the last reference, the vnode/znode
101  *	can be freed, so the zp may point to freed memory.  Second, the last
102  *	reference will call zfs_zinactive(), which may induce a lot of work --
103  *	pushing cached pages (which acquires range locks) and syncing out
104  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
105  *	which could deadlock the system if you were already holding one.
106  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
107  *
108  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
109  *	as they can span dmu_tx_assign() calls.
110  *
111  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
112  *      dmu_tx_assign().  This is critical because we don't want to block
113  *      while holding locks.
114  *
115  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
116  *	reduces lock contention and CPU usage when we must wait (note that if
117  *	throughput is constrained by the storage, nearly every transaction
118  *	must wait).
119  *
120  *      Note, in particular, that if a lock is sometimes acquired before
121  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
122  *      to use a non-blocking assign can deadlock the system.  The scenario:
123  *
124  *	Thread A has grabbed a lock before calling dmu_tx_assign().
125  *	Thread B is in an already-assigned tx, and blocks for this lock.
126  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
127  *	forever, because the previous txg can't quiesce until B's tx commits.
128  *
129  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
130  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
131  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
132  *	to indicate that this operation has already called dmu_tx_wait().
133  *	This will ensure that we don't retry forever, waiting a short bit
134  *	each time.
135  *
136  *  (5)	If the operation succeeded, generate the intent log entry for it
137  *	before dropping locks.  This ensures that the ordering of events
138  *	in the intent log matches the order in which they actually occurred.
139  *	During ZIL replay the zfs_log_* functions will update the sequence
140  *	number to indicate the zil transaction has replayed.
141  *
142  *  (6)	At the end of each vnode op, the DMU tx must always commit,
143  *	regardless of whether there were any errors.
144  *
145  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
146  *	to ensure that synchronous semantics are provided when necessary.
147  *
148  * In general, this is how things should be ordered in each vnode op:
149  *
150  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
151  * top:
152  *	zfs_dirent_lookup(&dl, ...)	// lock directory entry (may VN_HOLD())
153  *	rw_enter(...);			// grab any other locks you need
154  *	tx = dmu_tx_create(...);	// get DMU tx
155  *	dmu_tx_hold_*();		// hold each object you might modify
156  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
157  *	if (error) {
158  *		rw_exit(...);		// drop locks
159  *		zfs_dirent_unlock(dl);	// unlock directory entry
160  *		VN_RELE(...);		// release held vnodes
161  *		if (error == ERESTART) {
162  *			waited = B_TRUE;
163  *			dmu_tx_wait(tx);
164  *			dmu_tx_abort(tx);
165  *			goto top;
166  *		}
167  *		dmu_tx_abort(tx);	// abort DMU tx
168  *		ZFS_EXIT(zfsvfs);	// finished in zfs
169  *		return (error);		// really out of space
170  *	}
171  *	error = do_real_work();		// do whatever this VOP does
172  *	if (error == 0)
173  *		zfs_log_*(...);		// on success, make ZIL entry
174  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
175  *	rw_exit(...);			// drop locks
176  *	zfs_dirent_unlock(dl);		// unlock directory entry
177  *	VN_RELE(...);			// release held vnodes
178  *	zil_commit(zilog, foid);	// synchronous when necessary
179  *	ZFS_EXIT(zfsvfs);		// finished in zfs
180  *	return (error);			// done, report error
181  */
182 
183 /* ARGSUSED */
184 static int
zfs_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)185 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
186 {
187 	znode_t	*zp = VTOZ(*vpp);
188 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
189 
190 	ZFS_ENTER(zfsvfs);
191 	ZFS_VERIFY_ZP(zp);
192 
193 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
194 	    ((flag & FAPPEND) == 0)) {
195 		ZFS_EXIT(zfsvfs);
196 		return (SET_ERROR(EPERM));
197 	}
198 
199 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
200 	    ZTOV(zp)->v_type == VREG &&
201 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
202 		if (fs_vscan(*vpp, cr, 0) != 0) {
203 			ZFS_EXIT(zfsvfs);
204 			return (SET_ERROR(EACCES));
205 		}
206 	}
207 
208 	/* Keep a count of the synchronous opens in the znode */
209 	if (flag & (FSYNC | FDSYNC))
210 		atomic_inc_32(&zp->z_sync_cnt);
211 
212 	ZFS_EXIT(zfsvfs);
213 	return (0);
214 }
215 
216 /* ARGSUSED */
217 static int
zfs_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)218 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
219     caller_context_t *ct)
220 {
221 	znode_t	*zp = VTOZ(vp);
222 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
223 
224 	/*
225 	 * Clean up any locks held by this process on the vp.
226 	 */
227 	cleanlocks(vp, ddi_get_pid(), 0);
228 	cleanshares(vp, ddi_get_pid());
229 
230 	ZFS_ENTER(zfsvfs);
231 	ZFS_VERIFY_ZP(zp);
232 
233 	/* Decrement the synchronous opens in the znode */
234 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
235 		atomic_dec_32(&zp->z_sync_cnt);
236 
237 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
238 	    ZTOV(zp)->v_type == VREG &&
239 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
240 		VERIFY(fs_vscan(vp, cr, 1) == 0);
241 
242 	ZFS_EXIT(zfsvfs);
243 	return (0);
244 }
245 
246 /*
247  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
248  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
249  */
250 static int
zfs_holey(vnode_t * vp,u_long cmd,offset_t * off)251 zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
252 {
253 	znode_t	*zp = VTOZ(vp);
254 	uint64_t noff = (uint64_t)*off; /* new offset */
255 	uint64_t file_sz;
256 	int error;
257 	boolean_t hole;
258 
259 	file_sz = zp->z_size;
260 	if (noff >= file_sz)  {
261 		return (SET_ERROR(ENXIO));
262 	}
263 
264 	if (cmd == _FIO_SEEK_HOLE)
265 		hole = B_TRUE;
266 	else
267 		hole = B_FALSE;
268 
269 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
270 
271 	if (error == ESRCH)
272 		return (SET_ERROR(ENXIO));
273 
274 	/*
275 	 * We could find a hole that begins after the logical end-of-file,
276 	 * because dmu_offset_next() only works on whole blocks.  If the
277 	 * EOF falls mid-block, then indicate that the "virtual hole"
278 	 * at the end of the file begins at the logical EOF, rather than
279 	 * at the end of the last block.
280 	 */
281 	if (noff > file_sz) {
282 		ASSERT(hole);
283 		noff = file_sz;
284 	}
285 
286 	if (noff < *off)
287 		return (error);
288 	*off = noff;
289 	return (error);
290 }
291 
292 /* ARGSUSED */
293 static int
zfs_ioctl(vnode_t * vp,u_long com,intptr_t data,int flag,cred_t * cred,int * rvalp,caller_context_t * ct)294 zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
295     int *rvalp, caller_context_t *ct)
296 {
297 	offset_t off;
298 	offset_t ndata;
299 	dmu_object_info_t doi;
300 	int error;
301 	zfsvfs_t *zfsvfs;
302 	znode_t *zp;
303 
304 	switch (com) {
305 	case _FIOFFS:
306 	{
307 		return (0);
308 
309 		/*
310 		 * The following two ioctls are used by bfu.  Faking out,
311 		 * necessary to avoid bfu errors.
312 		 */
313 	}
314 	case _FIOGDIO:
315 	case _FIOSDIO:
316 	{
317 		return (0);
318 	}
319 
320 	case _FIO_SEEK_DATA:
321 	case _FIO_SEEK_HOLE:
322 	{
323 #ifdef illumos
324 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
325 			return (SET_ERROR(EFAULT));
326 #else
327 		off = *(offset_t *)data;
328 #endif
329 		zp = VTOZ(vp);
330 		zfsvfs = zp->z_zfsvfs;
331 		ZFS_ENTER(zfsvfs);
332 		ZFS_VERIFY_ZP(zp);
333 
334 		/* offset parameter is in/out */
335 		error = zfs_holey(vp, com, &off);
336 		ZFS_EXIT(zfsvfs);
337 		if (error)
338 			return (error);
339 #ifdef illumos
340 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
341 			return (SET_ERROR(EFAULT));
342 #else
343 		*(offset_t *)data = off;
344 #endif
345 		return (0);
346 	}
347 #ifdef illumos
348 	case _FIO_COUNT_FILLED:
349 	{
350 		/*
351 		 * _FIO_COUNT_FILLED adds a new ioctl command which
352 		 * exposes the number of filled blocks in a
353 		 * ZFS object.
354 		 */
355 		zp = VTOZ(vp);
356 		zfsvfs = zp->z_zfsvfs;
357 		ZFS_ENTER(zfsvfs);
358 		ZFS_VERIFY_ZP(zp);
359 
360 		/*
361 		 * Wait for all dirty blocks for this object
362 		 * to get synced out to disk, and the DMU info
363 		 * updated.
364 		 */
365 		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
366 		if (error) {
367 			ZFS_EXIT(zfsvfs);
368 			return (error);
369 		}
370 
371 		/*
372 		 * Retrieve fill count from DMU object.
373 		 */
374 		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
375 		if (error) {
376 			ZFS_EXIT(zfsvfs);
377 			return (error);
378 		}
379 
380 		ndata = doi.doi_fill_count;
381 
382 		ZFS_EXIT(zfsvfs);
383 		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
384 			return (SET_ERROR(EFAULT));
385 		return (0);
386 	}
387 #endif
388 	}
389 	return (SET_ERROR(ENOTTY));
390 }
391 
392 static vm_page_t
page_busy(vnode_t * vp,int64_t start,int64_t off,int64_t nbytes)393 page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
394 {
395 	vm_object_t obj;
396 	vm_page_t pp;
397 	int64_t end;
398 
399 	/*
400 	 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
401 	 * aligned boundaries, if the range is not aligned.  As a result a
402 	 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
403 	 * It may happen that all DEV_BSIZE subranges are marked clean and thus
404 	 * the whole page would be considred clean despite have some dirty data.
405 	 * For this reason we should shrink the range to DEV_BSIZE aligned
406 	 * boundaries before calling vm_page_clear_dirty.
407 	 */
408 	end = rounddown2(off + nbytes, DEV_BSIZE);
409 	off = roundup2(off, DEV_BSIZE);
410 	nbytes = end - off;
411 
412 	obj = vp->v_object;
413 	zfs_vmobject_assert_wlocked(obj);
414 
415 	for (;;) {
416 		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
417 		    pp->valid) {
418 			if (vm_page_xbusied(pp)) {
419 				/*
420 				 * Reference the page before unlocking and
421 				 * sleeping so that the page daemon is less
422 				 * likely to reclaim it.
423 				 */
424 				vm_page_reference(pp);
425 				vm_page_lock(pp);
426 				zfs_vmobject_wunlock(obj);
427 				vm_page_busy_sleep(pp, "zfsmwb", true);
428 				zfs_vmobject_wlock(obj);
429 				continue;
430 			}
431 			vm_page_sbusy(pp);
432 		} else if (pp != NULL) {
433 			ASSERT(!pp->valid);
434 			pp = NULL;
435 		}
436 
437 		if (pp != NULL) {
438 			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
439 			vm_object_pip_add(obj, 1);
440 			pmap_remove_write(pp);
441 			if (nbytes != 0)
442 				vm_page_clear_dirty(pp, off, nbytes);
443 		}
444 		break;
445 	}
446 	return (pp);
447 }
448 
449 static void
page_unbusy(vm_page_t pp)450 page_unbusy(vm_page_t pp)
451 {
452 
453 	vm_page_sunbusy(pp);
454 	vm_object_pip_subtract(pp->object, 1);
455 }
456 
457 static vm_page_t
page_hold(vnode_t * vp,int64_t start)458 page_hold(vnode_t *vp, int64_t start)
459 {
460 	vm_object_t obj;
461 	vm_page_t pp;
462 
463 	obj = vp->v_object;
464 	zfs_vmobject_assert_wlocked(obj);
465 
466 	for (;;) {
467 		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
468 		    pp->valid) {
469 			if (vm_page_xbusied(pp)) {
470 				/*
471 				 * Reference the page before unlocking and
472 				 * sleeping so that the page daemon is less
473 				 * likely to reclaim it.
474 				 */
475 				vm_page_reference(pp);
476 				vm_page_lock(pp);
477 				zfs_vmobject_wunlock(obj);
478 				vm_page_busy_sleep(pp, "zfsmwb", true);
479 				zfs_vmobject_wlock(obj);
480 				continue;
481 			}
482 
483 			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
484 			vm_page_lock(pp);
485 			vm_page_hold(pp);
486 			vm_page_unlock(pp);
487 
488 		} else
489 			pp = NULL;
490 		break;
491 	}
492 	return (pp);
493 }
494 
495 static void
page_unhold(vm_page_t pp)496 page_unhold(vm_page_t pp)
497 {
498 
499 	vm_page_lock(pp);
500 	vm_page_unhold(pp);
501 	vm_page_unlock(pp);
502 }
503 
504 /*
505  * When a file is memory mapped, we must keep the IO data synchronized
506  * between the DMU cache and the memory mapped pages.  What this means:
507  *
508  * On Write:	If we find a memory mapped page, we write to *both*
509  *		the page and the dmu buffer.
510  */
511 static void
update_pages(vnode_t * vp,int64_t start,int len,objset_t * os,uint64_t oid,int segflg,dmu_tx_t * tx)512 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid,
513     int segflg, dmu_tx_t *tx)
514 {
515 	vm_object_t obj;
516 	struct sf_buf *sf;
517 	caddr_t va;
518 	int off;
519 
520 	ASSERT(segflg != UIO_NOCOPY);
521 	ASSERT(vp->v_mount != NULL);
522 	obj = vp->v_object;
523 	ASSERT(obj != NULL);
524 
525 	off = start & PAGEOFFSET;
526 	zfs_vmobject_wlock(obj);
527 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
528 		vm_page_t pp;
529 		int nbytes = imin(PAGESIZE - off, len);
530 
531 		if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
532 			zfs_vmobject_wunlock(obj);
533 
534 			va = zfs_map_page(pp, &sf);
535 			(void) dmu_read(os, oid, start+off, nbytes,
536 			    va+off, DMU_READ_PREFETCH);;
537 			zfs_unmap_page(sf);
538 
539 			zfs_vmobject_wlock(obj);
540 			page_unbusy(pp);
541 		}
542 		len -= nbytes;
543 		off = 0;
544 	}
545 	vm_object_pip_wakeupn(obj, 0);
546 	zfs_vmobject_wunlock(obj);
547 }
548 
549 /*
550  * Read with UIO_NOCOPY flag means that sendfile(2) requests
551  * ZFS to populate a range of page cache pages with data.
552  *
553  * NOTE: this function could be optimized to pre-allocate
554  * all pages in advance, drain exclusive busy on all of them,
555  * map them into contiguous KVA region and populate them
556  * in one single dmu_read() call.
557  */
558 static int
mappedread_sf(vnode_t * vp,int nbytes,uio_t * uio)559 mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio)
560 {
561 	znode_t *zp = VTOZ(vp);
562 	objset_t *os = zp->z_zfsvfs->z_os;
563 	struct sf_buf *sf;
564 	vm_object_t obj;
565 	vm_page_t pp;
566 	int64_t start;
567 	caddr_t va;
568 	int len = nbytes;
569 	int off;
570 	int error = 0;
571 
572 	ASSERT(uio->uio_segflg == UIO_NOCOPY);
573 	ASSERT(vp->v_mount != NULL);
574 	obj = vp->v_object;
575 	ASSERT(obj != NULL);
576 	ASSERT((uio->uio_loffset & PAGEOFFSET) == 0);
577 
578 	zfs_vmobject_wlock(obj);
579 	for (start = uio->uio_loffset; len > 0; start += PAGESIZE) {
580 		int bytes = MIN(PAGESIZE, len);
581 
582 		pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY |
583 		    VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
584 		if (pp->valid == 0) {
585 			zfs_vmobject_wunlock(obj);
586 			va = zfs_map_page(pp, &sf);
587 			error = dmu_read(os, zp->z_id, start, bytes, va,
588 			    DMU_READ_PREFETCH);
589 			if (bytes != PAGESIZE && error == 0)
590 				bzero(va + bytes, PAGESIZE - bytes);
591 			zfs_unmap_page(sf);
592 			zfs_vmobject_wlock(obj);
593 			vm_page_sunbusy(pp);
594 			vm_page_lock(pp);
595 			if (error) {
596 				if (pp->wire_count == 0 && pp->valid == 0 &&
597 				    !vm_page_busied(pp))
598 					vm_page_free(pp);
599 			} else {
600 				pp->valid = VM_PAGE_BITS_ALL;
601 				vm_page_activate(pp);
602 			}
603 			vm_page_unlock(pp);
604 		} else {
605 			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
606 			vm_page_sunbusy(pp);
607 		}
608 		if (error)
609 			break;
610 		uio->uio_resid -= bytes;
611 		uio->uio_offset += bytes;
612 		len -= bytes;
613 	}
614 	zfs_vmobject_wunlock(obj);
615 	return (error);
616 }
617 
618 /*
619  * When a file is memory mapped, we must keep the IO data synchronized
620  * between the DMU cache and the memory mapped pages.  What this means:
621  *
622  * On Read:	We "read" preferentially from memory mapped pages,
623  *		else we default from the dmu buffer.
624  *
625  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
626  *	 the file is memory mapped.
627  */
628 static int
mappedread(vnode_t * vp,int nbytes,uio_t * uio)629 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
630 {
631 	znode_t *zp = VTOZ(vp);
632 	vm_object_t obj;
633 	int64_t start;
634 	caddr_t va;
635 	int len = nbytes;
636 	int off;
637 	int error = 0;
638 
639 	ASSERT(vp->v_mount != NULL);
640 	obj = vp->v_object;
641 	ASSERT(obj != NULL);
642 
643 	start = uio->uio_loffset;
644 	off = start & PAGEOFFSET;
645 	zfs_vmobject_wlock(obj);
646 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
647 		vm_page_t pp;
648 		uint64_t bytes = MIN(PAGESIZE - off, len);
649 
650 		if (pp = page_hold(vp, start)) {
651 			struct sf_buf *sf;
652 			caddr_t va;
653 
654 			zfs_vmobject_wunlock(obj);
655 			va = zfs_map_page(pp, &sf);
656 #ifdef illumos
657 			error = uiomove(va + off, bytes, UIO_READ, uio);
658 #else
659 			error = vn_io_fault_uiomove(va + off, bytes, uio);
660 #endif
661 			zfs_unmap_page(sf);
662 			zfs_vmobject_wlock(obj);
663 			page_unhold(pp);
664 		} else {
665 			zfs_vmobject_wunlock(obj);
666 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
667 			    uio, bytes);
668 			zfs_vmobject_wlock(obj);
669 		}
670 		len -= bytes;
671 		off = 0;
672 		if (error)
673 			break;
674 	}
675 	zfs_vmobject_wunlock(obj);
676 	return (error);
677 }
678 
679 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
680 
681 /*
682  * Read bytes from specified file into supplied buffer.
683  *
684  *	IN:	vp	- vnode of file to be read from.
685  *		uio	- structure supplying read location, range info,
686  *			  and return buffer.
687  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
688  *		cr	- credentials of caller.
689  *		ct	- caller context
690  *
691  *	OUT:	uio	- updated offset and range, buffer filled.
692  *
693  *	RETURN:	0 on success, error code on failure.
694  *
695  * Side Effects:
696  *	vp - atime updated if byte count > 0
697  */
698 /* ARGSUSED */
699 static int
zfs_read(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cr,caller_context_t * ct)700 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
701 {
702 	znode_t		*zp = VTOZ(vp);
703 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
704 	ssize_t		n, nbytes;
705 	int		error = 0;
706 	rl_t		*rl;
707 	xuio_t		*xuio = NULL;
708 
709 	ZFS_ENTER(zfsvfs);
710 	ZFS_VERIFY_ZP(zp);
711 
712 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
713 		ZFS_EXIT(zfsvfs);
714 		return (SET_ERROR(EACCES));
715 	}
716 
717 	/*
718 	 * Validate file offset
719 	 */
720 	if (uio->uio_loffset < (offset_t)0) {
721 		ZFS_EXIT(zfsvfs);
722 		return (SET_ERROR(EINVAL));
723 	}
724 
725 	/*
726 	 * Fasttrack empty reads
727 	 */
728 	if (uio->uio_resid == 0) {
729 		ZFS_EXIT(zfsvfs);
730 		return (0);
731 	}
732 
733 	/*
734 	 * Check for mandatory locks
735 	 */
736 	if (MANDMODE(zp->z_mode)) {
737 		if (error = chklock(vp, FREAD,
738 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
739 			ZFS_EXIT(zfsvfs);
740 			return (error);
741 		}
742 	}
743 
744 	/*
745 	 * If we're in FRSYNC mode, sync out this znode before reading it.
746 	 */
747 	if (zfsvfs->z_log &&
748 	    (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
749 		zil_commit(zfsvfs->z_log, zp->z_id);
750 
751 	/*
752 	 * Lock the range against changes.
753 	 */
754 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
755 
756 	/*
757 	 * If we are reading past end-of-file we can skip
758 	 * to the end; but we might still need to set atime.
759 	 */
760 	if (uio->uio_loffset >= zp->z_size) {
761 		error = 0;
762 		goto out;
763 	}
764 
765 	ASSERT(uio->uio_loffset < zp->z_size);
766 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
767 
768 #ifdef illumos
769 	if ((uio->uio_extflg == UIO_XUIO) &&
770 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
771 		int nblk;
772 		int blksz = zp->z_blksz;
773 		uint64_t offset = uio->uio_loffset;
774 
775 		xuio = (xuio_t *)uio;
776 		if ((ISP2(blksz))) {
777 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
778 			    blksz)) / blksz;
779 		} else {
780 			ASSERT(offset + n <= blksz);
781 			nblk = 1;
782 		}
783 		(void) dmu_xuio_init(xuio, nblk);
784 
785 		if (vn_has_cached_data(vp)) {
786 			/*
787 			 * For simplicity, we always allocate a full buffer
788 			 * even if we only expect to read a portion of a block.
789 			 */
790 			while (--nblk >= 0) {
791 				(void) dmu_xuio_add(xuio,
792 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
793 				    blksz), 0, blksz);
794 			}
795 		}
796 	}
797 #endif	/* illumos */
798 
799 	while (n > 0) {
800 		nbytes = MIN(n, zfs_read_chunk_size -
801 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
802 
803 #ifdef __FreeBSD__
804 		if (uio->uio_segflg == UIO_NOCOPY)
805 			error = mappedread_sf(vp, nbytes, uio);
806 		else
807 #endif /* __FreeBSD__ */
808 		if (vn_has_cached_data(vp)) {
809 			error = mappedread(vp, nbytes, uio);
810 		} else {
811 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
812 			    uio, nbytes);
813 		}
814 		if (error) {
815 			/* convert checksum errors into IO errors */
816 			if (error == ECKSUM)
817 				error = SET_ERROR(EIO);
818 			break;
819 		}
820 
821 		n -= nbytes;
822 	}
823 out:
824 	zfs_range_unlock(rl);
825 
826 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
827 	ZFS_EXIT(zfsvfs);
828 	return (error);
829 }
830 
831 /*
832  * Write the bytes to a file.
833  *
834  *	IN:	vp	- vnode of file to be written to.
835  *		uio	- structure supplying write location, range info,
836  *			  and data buffer.
837  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
838  *			  set if in append mode.
839  *		cr	- credentials of caller.
840  *		ct	- caller context (NFS/CIFS fem monitor only)
841  *
842  *	OUT:	uio	- updated offset and range.
843  *
844  *	RETURN:	0 on success, error code on failure.
845  *
846  * Timestamps:
847  *	vp - ctime|mtime updated if byte count > 0
848  */
849 
850 /* ARGSUSED */
851 static int
zfs_write(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cr,caller_context_t * ct)852 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
853 {
854 	znode_t		*zp = VTOZ(vp);
855 	rlim64_t	limit = MAXOFFSET_T;
856 	ssize_t		start_resid = uio->uio_resid;
857 	ssize_t		tx_bytes;
858 	uint64_t	end_size;
859 	dmu_tx_t	*tx;
860 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
861 	zilog_t		*zilog;
862 	offset_t	woff;
863 	ssize_t		n, nbytes;
864 	rl_t		*rl;
865 	int		max_blksz = zfsvfs->z_max_blksz;
866 	int		error = 0;
867 	arc_buf_t	*abuf;
868 	iovec_t		*aiov = NULL;
869 	xuio_t		*xuio = NULL;
870 	int		i_iov = 0;
871 	int		iovcnt = uio->uio_iovcnt;
872 	iovec_t		*iovp = uio->uio_iov;
873 	int		write_eof;
874 	int		count = 0;
875 	sa_bulk_attr_t	bulk[4];
876 	uint64_t	mtime[2], ctime[2];
877 
878 	/*
879 	 * Fasttrack empty write
880 	 */
881 	n = start_resid;
882 	if (n == 0)
883 		return (0);
884 
885 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
886 		limit = MAXOFFSET_T;
887 
888 	ZFS_ENTER(zfsvfs);
889 	ZFS_VERIFY_ZP(zp);
890 
891 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
892 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
893 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
894 	    &zp->z_size, 8);
895 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
896 	    &zp->z_pflags, 8);
897 
898 	/*
899 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
900 	 * callers might not be able to detect properly that we are read-only,
901 	 * so check it explicitly here.
902 	 */
903 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
904 		ZFS_EXIT(zfsvfs);
905 		return (SET_ERROR(EROFS));
906 	}
907 
908 	/*
909 	 * If immutable or not appending then return EPERM.
910 	 * Intentionally allow ZFS_READONLY through here.
911 	 * See zfs_zaccess_common()
912 	 */
913 	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
914 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
915 	    (uio->uio_loffset < zp->z_size))) {
916 		ZFS_EXIT(zfsvfs);
917 		return (SET_ERROR(EPERM));
918 	}
919 
920 	zilog = zfsvfs->z_log;
921 
922 	/*
923 	 * Validate file offset
924 	 */
925 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
926 	if (woff < 0) {
927 		ZFS_EXIT(zfsvfs);
928 		return (SET_ERROR(EINVAL));
929 	}
930 
931 	/*
932 	 * Check for mandatory locks before calling zfs_range_lock()
933 	 * in order to prevent a deadlock with locks set via fcntl().
934 	 */
935 	if (MANDMODE((mode_t)zp->z_mode) &&
936 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
937 		ZFS_EXIT(zfsvfs);
938 		return (error);
939 	}
940 
941 #ifdef illumos
942 	/*
943 	 * Pre-fault the pages to ensure slow (eg NFS) pages
944 	 * don't hold up txg.
945 	 * Skip this if uio contains loaned arc_buf.
946 	 */
947 	if ((uio->uio_extflg == UIO_XUIO) &&
948 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
949 		xuio = (xuio_t *)uio;
950 	else
951 		uio_prefaultpages(MIN(n, max_blksz), uio);
952 #endif
953 
954 	/*
955 	 * If in append mode, set the io offset pointer to eof.
956 	 */
957 	if (ioflag & FAPPEND) {
958 		/*
959 		 * Obtain an appending range lock to guarantee file append
960 		 * semantics.  We reset the write offset once we have the lock.
961 		 */
962 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
963 		woff = rl->r_off;
964 		if (rl->r_len == UINT64_MAX) {
965 			/*
966 			 * We overlocked the file because this write will cause
967 			 * the file block size to increase.
968 			 * Note that zp_size cannot change with this lock held.
969 			 */
970 			woff = zp->z_size;
971 		}
972 		uio->uio_loffset = woff;
973 	} else {
974 		/*
975 		 * Note that if the file block size will change as a result of
976 		 * this write, then this range lock will lock the entire file
977 		 * so that we can re-write the block safely.
978 		 */
979 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
980 	}
981 
982 	if (vn_rlimit_fsize(vp, uio, uio->uio_td)) {
983 		zfs_range_unlock(rl);
984 		ZFS_EXIT(zfsvfs);
985 		return (EFBIG);
986 	}
987 
988 	if (woff >= limit) {
989 		zfs_range_unlock(rl);
990 		ZFS_EXIT(zfsvfs);
991 		return (SET_ERROR(EFBIG));
992 	}
993 
994 	if ((woff + n) > limit || woff > (limit - n))
995 		n = limit - woff;
996 
997 	/* Will this write extend the file length? */
998 	write_eof = (woff + n > zp->z_size);
999 
1000 	end_size = MAX(zp->z_size, woff + n);
1001 
1002 	/*
1003 	 * Write the file in reasonable size chunks.  Each chunk is written
1004 	 * in a separate transaction; this keeps the intent log records small
1005 	 * and allows us to do more fine-grained space accounting.
1006 	 */
1007 	while (n > 0) {
1008 		abuf = NULL;
1009 		woff = uio->uio_loffset;
1010 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
1011 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
1012 			if (abuf != NULL)
1013 				dmu_return_arcbuf(abuf);
1014 			error = SET_ERROR(EDQUOT);
1015 			break;
1016 		}
1017 
1018 		if (xuio && abuf == NULL) {
1019 			ASSERT(i_iov < iovcnt);
1020 			aiov = &iovp[i_iov];
1021 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
1022 			dmu_xuio_clear(xuio, i_iov);
1023 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
1024 			    iovec_t *, aiov, arc_buf_t *, abuf);
1025 			ASSERT((aiov->iov_base == abuf->b_data) ||
1026 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
1027 			    aiov->iov_len == arc_buf_size(abuf)));
1028 			i_iov++;
1029 		} else if (abuf == NULL && n >= max_blksz &&
1030 		    woff >= zp->z_size &&
1031 		    P2PHASE(woff, max_blksz) == 0 &&
1032 		    zp->z_blksz == max_blksz) {
1033 			/*
1034 			 * This write covers a full block.  "Borrow" a buffer
1035 			 * from the dmu so that we can fill it before we enter
1036 			 * a transaction.  This avoids the possibility of
1037 			 * holding up the transaction if the data copy hangs
1038 			 * up on a pagefault (e.g., from an NFS server mapping).
1039 			 */
1040 			size_t cbytes;
1041 
1042 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
1043 			    max_blksz);
1044 			ASSERT(abuf != NULL);
1045 			ASSERT(arc_buf_size(abuf) == max_blksz);
1046 			if (error = uiocopy(abuf->b_data, max_blksz,
1047 			    UIO_WRITE, uio, &cbytes)) {
1048 				dmu_return_arcbuf(abuf);
1049 				break;
1050 			}
1051 			ASSERT(cbytes == max_blksz);
1052 		}
1053 
1054 		/*
1055 		 * Start a transaction.
1056 		 */
1057 		tx = dmu_tx_create(zfsvfs->z_os);
1058 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1059 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
1060 		zfs_sa_upgrade_txholds(tx, zp);
1061 		error = dmu_tx_assign(tx, TXG_WAIT);
1062 		if (error) {
1063 			dmu_tx_abort(tx);
1064 			if (abuf != NULL)
1065 				dmu_return_arcbuf(abuf);
1066 			break;
1067 		}
1068 
1069 		/*
1070 		 * If zfs_range_lock() over-locked we grow the blocksize
1071 		 * and then reduce the lock range.  This will only happen
1072 		 * on the first iteration since zfs_range_reduce() will
1073 		 * shrink down r_len to the appropriate size.
1074 		 */
1075 		if (rl->r_len == UINT64_MAX) {
1076 			uint64_t new_blksz;
1077 
1078 			if (zp->z_blksz > max_blksz) {
1079 				/*
1080 				 * File's blocksize is already larger than the
1081 				 * "recordsize" property.  Only let it grow to
1082 				 * the next power of 2.
1083 				 */
1084 				ASSERT(!ISP2(zp->z_blksz));
1085 				new_blksz = MIN(end_size,
1086 				    1 << highbit64(zp->z_blksz));
1087 			} else {
1088 				new_blksz = MIN(end_size, max_blksz);
1089 			}
1090 			zfs_grow_blocksize(zp, new_blksz, tx);
1091 			zfs_range_reduce(rl, woff, n);
1092 		}
1093 
1094 		/*
1095 		 * XXX - should we really limit each write to z_max_blksz?
1096 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1097 		 */
1098 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1099 
1100 		if (woff + nbytes > zp->z_size)
1101 			vnode_pager_setsize(vp, woff + nbytes);
1102 
1103 		if (abuf == NULL) {
1104 			tx_bytes = uio->uio_resid;
1105 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1106 			    uio, nbytes, tx);
1107 			tx_bytes -= uio->uio_resid;
1108 		} else {
1109 			tx_bytes = nbytes;
1110 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1111 			/*
1112 			 * If this is not a full block write, but we are
1113 			 * extending the file past EOF and this data starts
1114 			 * block-aligned, use assign_arcbuf().  Otherwise,
1115 			 * write via dmu_write().
1116 			 */
1117 			if (tx_bytes < max_blksz && (!write_eof ||
1118 			    aiov->iov_base != abuf->b_data)) {
1119 				ASSERT(xuio);
1120 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1121 				    aiov->iov_len, aiov->iov_base, tx);
1122 				dmu_return_arcbuf(abuf);
1123 				xuio_stat_wbuf_copied();
1124 			} else {
1125 				ASSERT(xuio || tx_bytes == max_blksz);
1126 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
1127 				    woff, abuf, tx);
1128 			}
1129 			ASSERT(tx_bytes <= uio->uio_resid);
1130 			uioskip(uio, tx_bytes);
1131 		}
1132 		if (tx_bytes && vn_has_cached_data(vp)) {
1133 			update_pages(vp, woff, tx_bytes, zfsvfs->z_os,
1134 			    zp->z_id, uio->uio_segflg, tx);
1135 		}
1136 
1137 		/*
1138 		 * If we made no progress, we're done.  If we made even
1139 		 * partial progress, update the znode and ZIL accordingly.
1140 		 */
1141 		if (tx_bytes == 0) {
1142 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1143 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1144 			dmu_tx_commit(tx);
1145 			ASSERT(error != 0);
1146 			break;
1147 		}
1148 
1149 		/*
1150 		 * Clear Set-UID/Set-GID bits on successful write if not
1151 		 * privileged and at least one of the excute bits is set.
1152 		 *
1153 		 * It would be nice to to this after all writes have
1154 		 * been done, but that would still expose the ISUID/ISGID
1155 		 * to another app after the partial write is committed.
1156 		 *
1157 		 * Note: we don't call zfs_fuid_map_id() here because
1158 		 * user 0 is not an ephemeral uid.
1159 		 */
1160 		mutex_enter(&zp->z_acl_lock);
1161 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1162 		    (S_IXUSR >> 6))) != 0 &&
1163 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1164 		    secpolicy_vnode_setid_retain(vp, cr,
1165 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1166 			uint64_t newmode;
1167 			zp->z_mode &= ~(S_ISUID | S_ISGID);
1168 			newmode = zp->z_mode;
1169 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1170 			    (void *)&newmode, sizeof (uint64_t), tx);
1171 		}
1172 		mutex_exit(&zp->z_acl_lock);
1173 
1174 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1175 		    B_TRUE);
1176 
1177 		/*
1178 		 * Update the file size (zp_size) if it has changed;
1179 		 * account for possible concurrent updates.
1180 		 */
1181 		while ((end_size = zp->z_size) < uio->uio_loffset) {
1182 			(void) atomic_cas_64(&zp->z_size, end_size,
1183 			    uio->uio_loffset);
1184 #ifdef illumos
1185 			ASSERT(error == 0);
1186 #else
1187 			ASSERT(error == 0 || error == EFAULT);
1188 #endif
1189 		}
1190 		/*
1191 		 * If we are replaying and eof is non zero then force
1192 		 * the file size to the specified eof. Note, there's no
1193 		 * concurrency during replay.
1194 		 */
1195 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1196 			zp->z_size = zfsvfs->z_replay_eof;
1197 
1198 		if (error == 0)
1199 			error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1200 		else
1201 			(void) sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1202 
1203 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1204 		dmu_tx_commit(tx);
1205 
1206 		if (error != 0)
1207 			break;
1208 		ASSERT(tx_bytes == nbytes);
1209 		n -= nbytes;
1210 
1211 #ifdef illumos
1212 		if (!xuio && n > 0)
1213 			uio_prefaultpages(MIN(n, max_blksz), uio);
1214 #endif
1215 	}
1216 
1217 	zfs_range_unlock(rl);
1218 
1219 	/*
1220 	 * If we're in replay mode, or we made no progress, return error.
1221 	 * Otherwise, it's at least a partial write, so it's successful.
1222 	 */
1223 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1224 		ZFS_EXIT(zfsvfs);
1225 		return (error);
1226 	}
1227 
1228 #ifdef __FreeBSD__
1229 	/*
1230 	 * EFAULT means that at least one page of the source buffer was not
1231 	 * available.  VFS will re-try remaining I/O upon this error.
1232 	 */
1233 	if (error == EFAULT) {
1234 		ZFS_EXIT(zfsvfs);
1235 		return (error);
1236 	}
1237 #endif
1238 
1239 	if (ioflag & (FSYNC | FDSYNC) ||
1240 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1241 		zil_commit(zilog, zp->z_id);
1242 
1243 	ZFS_EXIT(zfsvfs);
1244 	return (0);
1245 }
1246 
1247 /* ARGSUSED */
1248 void
zfs_get_done(zgd_t * zgd,int error)1249 zfs_get_done(zgd_t *zgd, int error)
1250 {
1251 	znode_t *zp = zgd->zgd_private;
1252 	objset_t *os = zp->z_zfsvfs->z_os;
1253 
1254 	if (zgd->zgd_db)
1255 		dmu_buf_rele(zgd->zgd_db, zgd);
1256 
1257 	zfs_range_unlock(zgd->zgd_rl);
1258 
1259 	/*
1260 	 * Release the vnode asynchronously as we currently have the
1261 	 * txg stopped from syncing.
1262 	 */
1263 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1264 
1265 	kmem_free(zgd, sizeof (zgd_t));
1266 }
1267 
1268 #ifdef DEBUG
1269 static int zil_fault_io = 0;
1270 #endif
1271 
1272 /*
1273  * Get data to generate a TX_WRITE intent log record.
1274  */
1275 int
zfs_get_data(void * arg,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)1276 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1277 {
1278 	zfsvfs_t *zfsvfs = arg;
1279 	objset_t *os = zfsvfs->z_os;
1280 	znode_t *zp;
1281 	uint64_t object = lr->lr_foid;
1282 	uint64_t offset = lr->lr_offset;
1283 	uint64_t size = lr->lr_length;
1284 	dmu_buf_t *db;
1285 	zgd_t *zgd;
1286 	int error = 0;
1287 
1288 	ASSERT3P(lwb, !=, NULL);
1289 	ASSERT3P(zio, !=, NULL);
1290 	ASSERT3U(size, !=, 0);
1291 
1292 	/*
1293 	 * Nothing to do if the file has been removed
1294 	 */
1295 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1296 		return (SET_ERROR(ENOENT));
1297 	if (zp->z_unlinked) {
1298 		/*
1299 		 * Release the vnode asynchronously as we currently have the
1300 		 * txg stopped from syncing.
1301 		 */
1302 		VN_RELE_ASYNC(ZTOV(zp),
1303 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1304 		return (SET_ERROR(ENOENT));
1305 	}
1306 
1307 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1308 	zgd->zgd_lwb = lwb;
1309 	zgd->zgd_private = zp;
1310 
1311 	/*
1312 	 * Write records come in two flavors: immediate and indirect.
1313 	 * For small writes it's cheaper to store the data with the
1314 	 * log record (immediate); for large writes it's cheaper to
1315 	 * sync the data and get a pointer to it (indirect) so that
1316 	 * we don't have to write the data twice.
1317 	 */
1318 	if (buf != NULL) { /* immediate write */
1319 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1320 		/* test for truncation needs to be done while range locked */
1321 		if (offset >= zp->z_size) {
1322 			error = SET_ERROR(ENOENT);
1323 		} else {
1324 			error = dmu_read(os, object, offset, size, buf,
1325 			    DMU_READ_NO_PREFETCH);
1326 		}
1327 		ASSERT(error == 0 || error == ENOENT);
1328 	} else { /* indirect write */
1329 		/*
1330 		 * Have to lock the whole block to ensure when it's
1331 		 * written out and its checksum is being calculated
1332 		 * that no one can change the data. We need to re-check
1333 		 * blocksize after we get the lock in case it's changed!
1334 		 */
1335 		for (;;) {
1336 			uint64_t blkoff;
1337 			size = zp->z_blksz;
1338 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1339 			offset -= blkoff;
1340 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1341 			    RL_READER);
1342 			if (zp->z_blksz == size)
1343 				break;
1344 			offset += blkoff;
1345 			zfs_range_unlock(zgd->zgd_rl);
1346 		}
1347 		/* test for truncation needs to be done while range locked */
1348 		if (lr->lr_offset >= zp->z_size)
1349 			error = SET_ERROR(ENOENT);
1350 #ifdef DEBUG
1351 		if (zil_fault_io) {
1352 			error = SET_ERROR(EIO);
1353 			zil_fault_io = 0;
1354 		}
1355 #endif
1356 		if (error == 0)
1357 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1358 			    DMU_READ_NO_PREFETCH);
1359 
1360 		if (error == 0) {
1361 			blkptr_t *bp = &lr->lr_blkptr;
1362 
1363 			zgd->zgd_db = db;
1364 			zgd->zgd_bp = bp;
1365 
1366 			ASSERT(db->db_offset == offset);
1367 			ASSERT(db->db_size == size);
1368 
1369 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1370 			    zfs_get_done, zgd);
1371 			ASSERT(error || lr->lr_length <= size);
1372 
1373 			/*
1374 			 * On success, we need to wait for the write I/O
1375 			 * initiated by dmu_sync() to complete before we can
1376 			 * release this dbuf.  We will finish everything up
1377 			 * in the zfs_get_done() callback.
1378 			 */
1379 			if (error == 0)
1380 				return (0);
1381 
1382 			if (error == EALREADY) {
1383 				lr->lr_common.lrc_txtype = TX_WRITE2;
1384 				/*
1385 				 * TX_WRITE2 relies on the data previously
1386 				 * written by the TX_WRITE that caused
1387 				 * EALREADY.  We zero out the BP because
1388 				 * it is the old, currently-on-disk BP.
1389 				 */
1390 				zgd->zgd_bp = NULL;
1391 				BP_ZERO(bp);
1392 				error = 0;
1393 			}
1394 		}
1395 	}
1396 
1397 	zfs_get_done(zgd, error);
1398 
1399 	return (error);
1400 }
1401 
1402 /*ARGSUSED*/
1403 static int
zfs_access(vnode_t * vp,int mode,int flag,cred_t * cr,caller_context_t * ct)1404 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1405     caller_context_t *ct)
1406 {
1407 	znode_t *zp = VTOZ(vp);
1408 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1409 	int error;
1410 
1411 	ZFS_ENTER(zfsvfs);
1412 	ZFS_VERIFY_ZP(zp);
1413 
1414 	if (flag & V_ACE_MASK)
1415 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1416 	else
1417 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1418 
1419 	ZFS_EXIT(zfsvfs);
1420 	return (error);
1421 }
1422 
1423 static int
zfs_dd_callback(struct mount * mp,void * arg,int lkflags,struct vnode ** vpp)1424 zfs_dd_callback(struct mount *mp, void *arg, int lkflags, struct vnode **vpp)
1425 {
1426 	int error;
1427 
1428 	*vpp = arg;
1429 	error = vn_lock(*vpp, lkflags);
1430 	if (error != 0)
1431 		vrele(*vpp);
1432 	return (error);
1433 }
1434 
1435 static int
zfs_lookup_lock(vnode_t * dvp,vnode_t * vp,const char * name,int lkflags)1436 zfs_lookup_lock(vnode_t *dvp, vnode_t *vp, const char *name, int lkflags)
1437 {
1438 	znode_t *zdp = VTOZ(dvp);
1439 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1440 	int error;
1441 	int ltype;
1442 
1443 	ASSERT_VOP_LOCKED(dvp, __func__);
1444 #ifdef DIAGNOSTIC
1445 	if ((zdp->z_pflags & ZFS_XATTR) == 0)
1446 		VERIFY(!RRM_LOCK_HELD(&zfsvfs->z_teardown_lock));
1447 #endif
1448 
1449 	if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
1450 		ASSERT3P(dvp, ==, vp);
1451 		vref(dvp);
1452 		ltype = lkflags & LK_TYPE_MASK;
1453 		if (ltype != VOP_ISLOCKED(dvp)) {
1454 			if (ltype == LK_EXCLUSIVE)
1455 				vn_lock(dvp, LK_UPGRADE | LK_RETRY);
1456 			else /* if (ltype == LK_SHARED) */
1457 				vn_lock(dvp, LK_DOWNGRADE | LK_RETRY);
1458 
1459 			/*
1460 			 * Relock for the "." case could leave us with
1461 			 * reclaimed vnode.
1462 			 */
1463 			if (dvp->v_iflag & VI_DOOMED) {
1464 				vrele(dvp);
1465 				return (SET_ERROR(ENOENT));
1466 			}
1467 		}
1468 		return (0);
1469 	} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
1470 		/*
1471 		 * Note that in this case, dvp is the child vnode, and we
1472 		 * are looking up the parent vnode - exactly reverse from
1473 		 * normal operation.  Unlocking dvp requires some rather
1474 		 * tricky unlock/relock dance to prevent mp from being freed;
1475 		 * use vn_vget_ino_gen() which takes care of all that.
1476 		 *
1477 		 * XXX Note that there is a time window when both vnodes are
1478 		 * unlocked.  It is possible, although highly unlikely, that
1479 		 * during that window the parent-child relationship between
1480 		 * the vnodes may change, for example, get reversed.
1481 		 * In that case we would have a wrong lock order for the vnodes.
1482 		 * All other filesystems seem to ignore this problem, so we
1483 		 * do the same here.
1484 		 * A potential solution could be implemented as follows:
1485 		 * - using LK_NOWAIT when locking the second vnode and retrying
1486 		 *   if necessary
1487 		 * - checking that the parent-child relationship still holds
1488 		 *   after locking both vnodes and retrying if it doesn't
1489 		 */
1490 		error = vn_vget_ino_gen(dvp, zfs_dd_callback, vp, lkflags, &vp);
1491 		return (error);
1492 	} else {
1493 		error = vn_lock(vp, lkflags);
1494 		if (error != 0)
1495 			vrele(vp);
1496 		return (error);
1497 	}
1498 }
1499 
1500 /*
1501  * Lookup an entry in a directory, or an extended attribute directory.
1502  * If it exists, return a held vnode reference for it.
1503  *
1504  *	IN:	dvp	- vnode of directory to search.
1505  *		nm	- name of entry to lookup.
1506  *		pnp	- full pathname to lookup [UNUSED].
1507  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1508  *		rdir	- root directory vnode [UNUSED].
1509  *		cr	- credentials of caller.
1510  *		ct	- caller context
1511  *
1512  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1513  *
1514  *	RETURN:	0 on success, error code on failure.
1515  *
1516  * Timestamps:
1517  *	NA
1518  */
1519 /* ARGSUSED */
1520 static int
zfs_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct componentname * cnp,int nameiop,cred_t * cr,kthread_t * td,int flags)1521 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1522     int nameiop, cred_t *cr, kthread_t *td, int flags)
1523 {
1524 	znode_t *zdp = VTOZ(dvp);
1525 	znode_t *zp;
1526 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1527 	int	error = 0;
1528 
1529 	/*
1530 	 * Fast path lookup, however we must skip DNLC lookup
1531 	 * for case folding or normalizing lookups because the
1532 	 * DNLC code only stores the passed in name.  This means
1533 	 * creating 'a' and removing 'A' on a case insensitive
1534 	 * file system would work, but DNLC still thinks 'a'
1535 	 * exists and won't let you create it again on the next
1536 	 * pass through fast path.
1537 	 */
1538 	if (!(flags & LOOKUP_XATTR)) {
1539 		if (dvp->v_type != VDIR) {
1540 			return (SET_ERROR(ENOTDIR));
1541 		} else if (zdp->z_sa_hdl == NULL) {
1542 			return (SET_ERROR(EIO));
1543 		}
1544 	}
1545 
1546 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1547 
1548 	ZFS_ENTER(zfsvfs);
1549 	ZFS_VERIFY_ZP(zdp);
1550 
1551 	*vpp = NULL;
1552 
1553 	if (flags & LOOKUP_XATTR) {
1554 #ifdef TODO
1555 		/*
1556 		 * If the xattr property is off, refuse the lookup request.
1557 		 */
1558 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1559 			ZFS_EXIT(zfsvfs);
1560 			return (SET_ERROR(EINVAL));
1561 		}
1562 #endif
1563 
1564 		/*
1565 		 * We don't allow recursive attributes..
1566 		 * Maybe someday we will.
1567 		 */
1568 		if (zdp->z_pflags & ZFS_XATTR) {
1569 			ZFS_EXIT(zfsvfs);
1570 			return (SET_ERROR(EINVAL));
1571 		}
1572 
1573 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1574 			ZFS_EXIT(zfsvfs);
1575 			return (error);
1576 		}
1577 
1578 		/*
1579 		 * Do we have permission to get into attribute directory?
1580 		 */
1581 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1582 		    B_FALSE, cr)) {
1583 			vrele(*vpp);
1584 			*vpp = NULL;
1585 		}
1586 
1587 		ZFS_EXIT(zfsvfs);
1588 		return (error);
1589 	}
1590 
1591 	/*
1592 	 * Check accessibility of directory.
1593 	 */
1594 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1595 		ZFS_EXIT(zfsvfs);
1596 		return (error);
1597 	}
1598 
1599 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1600 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1601 		ZFS_EXIT(zfsvfs);
1602 		return (SET_ERROR(EILSEQ));
1603 	}
1604 
1605 
1606 	/*
1607 	 * First handle the special cases.
1608 	 */
1609 	if ((cnp->cn_flags & ISDOTDOT) != 0) {
1610 		/*
1611 		 * If we are a snapshot mounted under .zfs, return
1612 		 * the vp for the snapshot directory.
1613 		 */
1614 		if (zdp->z_id == zfsvfs->z_root && zfsvfs->z_parent != zfsvfs) {
1615 			struct componentname cn;
1616 			vnode_t *zfsctl_vp;
1617 			int ltype;
1618 
1619 			ZFS_EXIT(zfsvfs);
1620 			ltype = VOP_ISLOCKED(dvp);
1621 			VOP_UNLOCK(dvp, 0);
1622 			error = zfsctl_root(zfsvfs->z_parent, LK_SHARED,
1623 			    &zfsctl_vp);
1624 			if (error == 0) {
1625 				cn.cn_nameptr = "snapshot";
1626 				cn.cn_namelen = strlen(cn.cn_nameptr);
1627 				cn.cn_nameiop = cnp->cn_nameiop;
1628 				cn.cn_flags = cnp->cn_flags & ~ISDOTDOT;
1629 				cn.cn_lkflags = cnp->cn_lkflags;
1630 				error = VOP_LOOKUP(zfsctl_vp, vpp, &cn);
1631 				vput(zfsctl_vp);
1632 			}
1633 			vn_lock(dvp, ltype | LK_RETRY);
1634 			return (error);
1635 		}
1636 	}
1637 	if (zfs_has_ctldir(zdp) && strcmp(nm, ZFS_CTLDIR_NAME) == 0) {
1638 		ZFS_EXIT(zfsvfs);
1639 		if ((cnp->cn_flags & ISLASTCN) != 0 && nameiop != LOOKUP)
1640 			return (SET_ERROR(ENOTSUP));
1641 		error = zfsctl_root(zfsvfs, cnp->cn_lkflags, vpp);
1642 		return (error);
1643 	}
1644 
1645 	/*
1646 	 * The loop is retry the lookup if the parent-child relationship
1647 	 * changes during the dot-dot locking complexities.
1648 	 */
1649 	for (;;) {
1650 		uint64_t parent;
1651 
1652 		error = zfs_dirlook(zdp, nm, &zp);
1653 		if (error == 0)
1654 			*vpp = ZTOV(zp);
1655 
1656 		ZFS_EXIT(zfsvfs);
1657 		if (error != 0)
1658 			break;
1659 
1660 		error = zfs_lookup_lock(dvp, *vpp, nm, cnp->cn_lkflags);
1661 		if (error != 0) {
1662 			/*
1663 			 * If we've got a locking error, then the vnode
1664 			 * got reclaimed because of a force unmount.
1665 			 * We never enter doomed vnodes into the name cache.
1666 			 */
1667 			*vpp = NULL;
1668 			return (error);
1669 		}
1670 
1671 		if ((cnp->cn_flags & ISDOTDOT) == 0)
1672 			break;
1673 
1674 		ZFS_ENTER(zfsvfs);
1675 		if (zdp->z_sa_hdl == NULL) {
1676 			error = SET_ERROR(EIO);
1677 		} else {
1678 			error = sa_lookup(zdp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1679 			    &parent, sizeof (parent));
1680 		}
1681 		if (error != 0) {
1682 			ZFS_EXIT(zfsvfs);
1683 			vput(ZTOV(zp));
1684 			break;
1685 		}
1686 		if (zp->z_id == parent) {
1687 			ZFS_EXIT(zfsvfs);
1688 			break;
1689 		}
1690 		vput(ZTOV(zp));
1691 	}
1692 
1693 out:
1694 	if (error != 0)
1695 		*vpp = NULL;
1696 
1697 	/* Translate errors and add SAVENAME when needed. */
1698 	if (cnp->cn_flags & ISLASTCN) {
1699 		switch (nameiop) {
1700 		case CREATE:
1701 		case RENAME:
1702 			if (error == ENOENT) {
1703 				error = EJUSTRETURN;
1704 				cnp->cn_flags |= SAVENAME;
1705 				break;
1706 			}
1707 			/* FALLTHROUGH */
1708 		case DELETE:
1709 			if (error == 0)
1710 				cnp->cn_flags |= SAVENAME;
1711 			break;
1712 		}
1713 	}
1714 
1715 	/* Insert name into cache (as non-existent) if appropriate. */
1716 	if (zfsvfs->z_use_namecache &&
1717 	    error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0)
1718 		cache_enter(dvp, NULL, cnp);
1719 
1720 	/* Insert name into cache if appropriate. */
1721 	if (zfsvfs->z_use_namecache &&
1722 	    error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1723 		if (!(cnp->cn_flags & ISLASTCN) ||
1724 		    (nameiop != DELETE && nameiop != RENAME)) {
1725 			cache_enter(dvp, *vpp, cnp);
1726 		}
1727 	}
1728 
1729 	return (error);
1730 }
1731 
1732 /*
1733  * Attempt to create a new entry in a directory.  If the entry
1734  * already exists, truncate the file if permissible, else return
1735  * an error.  Return the vp of the created or trunc'd file.
1736  *
1737  *	IN:	dvp	- vnode of directory to put new file entry in.
1738  *		name	- name of new file entry.
1739  *		vap	- attributes of new file.
1740  *		excl	- flag indicating exclusive or non-exclusive mode.
1741  *		mode	- mode to open file with.
1742  *		cr	- credentials of caller.
1743  *		flag	- large file flag [UNUSED].
1744  *		ct	- caller context
1745  *		vsecp	- ACL to be set
1746  *
1747  *	OUT:	vpp	- vnode of created or trunc'd entry.
1748  *
1749  *	RETURN:	0 on success, error code on failure.
1750  *
1751  * Timestamps:
1752  *	dvp - ctime|mtime updated if new entry created
1753  *	 vp - ctime|mtime always, atime if new
1754  */
1755 
1756 /* ARGSUSED */
1757 static int
zfs_create(vnode_t * dvp,char * name,vattr_t * vap,int excl,int mode,vnode_t ** vpp,cred_t * cr,kthread_t * td)1758 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1759     vnode_t **vpp, cred_t *cr, kthread_t *td)
1760 {
1761 	znode_t		*zp, *dzp = VTOZ(dvp);
1762 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1763 	zilog_t		*zilog;
1764 	objset_t	*os;
1765 	dmu_tx_t	*tx;
1766 	int		error;
1767 	ksid_t		*ksid;
1768 	uid_t		uid;
1769 	gid_t		gid = crgetgid(cr);
1770 	zfs_acl_ids_t   acl_ids;
1771 	boolean_t	fuid_dirtied;
1772 	void		*vsecp = NULL;
1773 	int		flag = 0;
1774 	uint64_t	txtype;
1775 
1776 	/*
1777 	 * If we have an ephemeral id, ACL, or XVATTR then
1778 	 * make sure file system is at proper version
1779 	 */
1780 
1781 	ksid = crgetsid(cr, KSID_OWNER);
1782 	if (ksid)
1783 		uid = ksid_getid(ksid);
1784 	else
1785 		uid = crgetuid(cr);
1786 
1787 	if (zfsvfs->z_use_fuids == B_FALSE &&
1788 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1789 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1790 		return (SET_ERROR(EINVAL));
1791 
1792 	ZFS_ENTER(zfsvfs);
1793 	ZFS_VERIFY_ZP(dzp);
1794 	os = zfsvfs->z_os;
1795 	zilog = zfsvfs->z_log;
1796 
1797 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1798 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1799 		ZFS_EXIT(zfsvfs);
1800 		return (SET_ERROR(EILSEQ));
1801 	}
1802 
1803 	if (vap->va_mask & AT_XVATTR) {
1804 		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
1805 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1806 			ZFS_EXIT(zfsvfs);
1807 			return (error);
1808 		}
1809 	}
1810 
1811 	*vpp = NULL;
1812 
1813 	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1814 		vap->va_mode &= ~S_ISVTX;
1815 
1816 	error = zfs_dirent_lookup(dzp, name, &zp, ZNEW);
1817 	if (error) {
1818 		ZFS_EXIT(zfsvfs);
1819 		return (error);
1820 	}
1821 	ASSERT3P(zp, ==, NULL);
1822 
1823 	/*
1824 	 * Create a new file object and update the directory
1825 	 * to reference it.
1826 	 */
1827 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1828 		goto out;
1829 	}
1830 
1831 	/*
1832 	 * We only support the creation of regular files in
1833 	 * extended attribute directories.
1834 	 */
1835 
1836 	if ((dzp->z_pflags & ZFS_XATTR) &&
1837 	    (vap->va_type != VREG)) {
1838 		error = SET_ERROR(EINVAL);
1839 		goto out;
1840 	}
1841 
1842 	if ((error = zfs_acl_ids_create(dzp, 0, vap,
1843 	    cr, vsecp, &acl_ids)) != 0)
1844 		goto out;
1845 
1846 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1847 		zfs_acl_ids_free(&acl_ids);
1848 		error = SET_ERROR(EDQUOT);
1849 		goto out;
1850 	}
1851 
1852 	getnewvnode_reserve(1);
1853 
1854 	tx = dmu_tx_create(os);
1855 
1856 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1857 	    ZFS_SA_BASE_ATTR_SIZE);
1858 
1859 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1860 	if (fuid_dirtied)
1861 		zfs_fuid_txhold(zfsvfs, tx);
1862 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1863 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1864 	if (!zfsvfs->z_use_sa &&
1865 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1866 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1867 		    0, acl_ids.z_aclp->z_acl_bytes);
1868 	}
1869 	error = dmu_tx_assign(tx, TXG_WAIT);
1870 	if (error) {
1871 		zfs_acl_ids_free(&acl_ids);
1872 		dmu_tx_abort(tx);
1873 		getnewvnode_drop_reserve();
1874 		ZFS_EXIT(zfsvfs);
1875 		return (error);
1876 	}
1877 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1878 
1879 	if (fuid_dirtied)
1880 		zfs_fuid_sync(zfsvfs, tx);
1881 
1882 	(void) zfs_link_create(dzp, name, zp, tx, ZNEW);
1883 	txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1884 	zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1885 	    vsecp, acl_ids.z_fuidp, vap);
1886 	zfs_acl_ids_free(&acl_ids);
1887 	dmu_tx_commit(tx);
1888 
1889 	getnewvnode_drop_reserve();
1890 
1891 out:
1892 	if (error == 0) {
1893 		*vpp = ZTOV(zp);
1894 	}
1895 
1896 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1897 		zil_commit(zilog, 0);
1898 
1899 	ZFS_EXIT(zfsvfs);
1900 	return (error);
1901 }
1902 
1903 /*
1904  * Remove an entry from a directory.
1905  *
1906  *	IN:	dvp	- vnode of directory to remove entry from.
1907  *		name	- name of entry to remove.
1908  *		cr	- credentials of caller.
1909  *		ct	- caller context
1910  *		flags	- case flags
1911  *
1912  *	RETURN:	0 on success, error code on failure.
1913  *
1914  * Timestamps:
1915  *	dvp - ctime|mtime
1916  *	 vp - ctime (if nlink > 0)
1917  */
1918 
1919 /*ARGSUSED*/
1920 static int
zfs_remove(vnode_t * dvp,vnode_t * vp,char * name,cred_t * cr)1921 zfs_remove(vnode_t *dvp, vnode_t *vp, char *name, cred_t *cr)
1922 {
1923 	znode_t		*dzp = VTOZ(dvp);
1924 	znode_t		*zp = VTOZ(vp);
1925 	znode_t		*xzp;
1926 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1927 	zilog_t		*zilog;
1928 	uint64_t	acl_obj, xattr_obj;
1929 	uint64_t	obj = 0;
1930 	dmu_tx_t	*tx;
1931 	boolean_t	unlinked, toobig = FALSE;
1932 	uint64_t	txtype;
1933 	int		error;
1934 
1935 	ZFS_ENTER(zfsvfs);
1936 	ZFS_VERIFY_ZP(dzp);
1937 	ZFS_VERIFY_ZP(zp);
1938 	zilog = zfsvfs->z_log;
1939 	zp = VTOZ(vp);
1940 
1941 	xattr_obj = 0;
1942 	xzp = NULL;
1943 
1944 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1945 		goto out;
1946 	}
1947 
1948 	/*
1949 	 * Need to use rmdir for removing directories.
1950 	 */
1951 	if (vp->v_type == VDIR) {
1952 		error = SET_ERROR(EPERM);
1953 		goto out;
1954 	}
1955 
1956 	vnevent_remove(vp, dvp, name, ct);
1957 
1958 	obj = zp->z_id;
1959 
1960 	/* are there any extended attributes? */
1961 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1962 	    &xattr_obj, sizeof (xattr_obj));
1963 	if (error == 0 && xattr_obj) {
1964 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1965 		ASSERT0(error);
1966 	}
1967 
1968 	/*
1969 	 * We may delete the znode now, or we may put it in the unlinked set;
1970 	 * it depends on whether we're the last link, and on whether there are
1971 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1972 	 * allow for either case.
1973 	 */
1974 	tx = dmu_tx_create(zfsvfs->z_os);
1975 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1976 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1977 	zfs_sa_upgrade_txholds(tx, zp);
1978 	zfs_sa_upgrade_txholds(tx, dzp);
1979 
1980 	if (xzp) {
1981 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1982 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1983 	}
1984 
1985 	/* charge as an update -- would be nice not to charge at all */
1986 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1987 
1988 	/*
1989 	 * Mark this transaction as typically resulting in a net free of space
1990 	 */
1991 	dmu_tx_mark_netfree(tx);
1992 
1993 	error = dmu_tx_assign(tx, TXG_WAIT);
1994 	if (error) {
1995 		dmu_tx_abort(tx);
1996 		ZFS_EXIT(zfsvfs);
1997 		return (error);
1998 	}
1999 
2000 	/*
2001 	 * Remove the directory entry.
2002 	 */
2003 	error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, &unlinked);
2004 
2005 	if (error) {
2006 		dmu_tx_commit(tx);
2007 		goto out;
2008 	}
2009 
2010 	if (unlinked) {
2011 		zfs_unlinked_add(zp, tx);
2012 		vp->v_vflag |= VV_NOSYNC;
2013 	}
2014 
2015 	txtype = TX_REMOVE;
2016 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2017 
2018 	dmu_tx_commit(tx);
2019 out:
2020 
2021 	if (xzp)
2022 		vrele(ZTOV(xzp));
2023 
2024 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2025 		zil_commit(zilog, 0);
2026 
2027 	ZFS_EXIT(zfsvfs);
2028 	return (error);
2029 }
2030 
2031 /*
2032  * Create a new directory and insert it into dvp using the name
2033  * provided.  Return a pointer to the inserted directory.
2034  *
2035  *	IN:	dvp	- vnode of directory to add subdir to.
2036  *		dirname	- name of new directory.
2037  *		vap	- attributes of new directory.
2038  *		cr	- credentials of caller.
2039  *		ct	- caller context
2040  *		flags	- case flags
2041  *		vsecp	- ACL to be set
2042  *
2043  *	OUT:	vpp	- vnode of created directory.
2044  *
2045  *	RETURN:	0 on success, error code on failure.
2046  *
2047  * Timestamps:
2048  *	dvp - ctime|mtime updated
2049  *	 vp - ctime|mtime|atime updated
2050  */
2051 /*ARGSUSED*/
2052 static int
zfs_mkdir(vnode_t * dvp,char * dirname,vattr_t * vap,vnode_t ** vpp,cred_t * cr)2053 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr)
2054 {
2055 	znode_t		*zp, *dzp = VTOZ(dvp);
2056 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2057 	zilog_t		*zilog;
2058 	uint64_t	txtype;
2059 	dmu_tx_t	*tx;
2060 	int		error;
2061 	ksid_t		*ksid;
2062 	uid_t		uid;
2063 	gid_t		gid = crgetgid(cr);
2064 	zfs_acl_ids_t   acl_ids;
2065 	boolean_t	fuid_dirtied;
2066 
2067 	ASSERT(vap->va_type == VDIR);
2068 
2069 	/*
2070 	 * If we have an ephemeral id, ACL, or XVATTR then
2071 	 * make sure file system is at proper version
2072 	 */
2073 
2074 	ksid = crgetsid(cr, KSID_OWNER);
2075 	if (ksid)
2076 		uid = ksid_getid(ksid);
2077 	else
2078 		uid = crgetuid(cr);
2079 	if (zfsvfs->z_use_fuids == B_FALSE &&
2080 	    ((vap->va_mask & AT_XVATTR) ||
2081 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2082 		return (SET_ERROR(EINVAL));
2083 
2084 	ZFS_ENTER(zfsvfs);
2085 	ZFS_VERIFY_ZP(dzp);
2086 	zilog = zfsvfs->z_log;
2087 
2088 	if (dzp->z_pflags & ZFS_XATTR) {
2089 		ZFS_EXIT(zfsvfs);
2090 		return (SET_ERROR(EINVAL));
2091 	}
2092 
2093 	if (zfsvfs->z_utf8 && u8_validate(dirname,
2094 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2095 		ZFS_EXIT(zfsvfs);
2096 		return (SET_ERROR(EILSEQ));
2097 	}
2098 
2099 	if (vap->va_mask & AT_XVATTR) {
2100 		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
2101 		    crgetuid(cr), cr, vap->va_type)) != 0) {
2102 			ZFS_EXIT(zfsvfs);
2103 			return (error);
2104 		}
2105 	}
2106 
2107 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2108 	    NULL, &acl_ids)) != 0) {
2109 		ZFS_EXIT(zfsvfs);
2110 		return (error);
2111 	}
2112 
2113 	/*
2114 	 * First make sure the new directory doesn't exist.
2115 	 *
2116 	 * Existence is checked first to make sure we don't return
2117 	 * EACCES instead of EEXIST which can cause some applications
2118 	 * to fail.
2119 	 */
2120 	*vpp = NULL;
2121 
2122 	if (error = zfs_dirent_lookup(dzp, dirname, &zp, ZNEW)) {
2123 		zfs_acl_ids_free(&acl_ids);
2124 		ZFS_EXIT(zfsvfs);
2125 		return (error);
2126 	}
2127 	ASSERT3P(zp, ==, NULL);
2128 
2129 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2130 		zfs_acl_ids_free(&acl_ids);
2131 		ZFS_EXIT(zfsvfs);
2132 		return (error);
2133 	}
2134 
2135 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2136 		zfs_acl_ids_free(&acl_ids);
2137 		ZFS_EXIT(zfsvfs);
2138 		return (SET_ERROR(EDQUOT));
2139 	}
2140 
2141 	/*
2142 	 * Add a new entry to the directory.
2143 	 */
2144 	getnewvnode_reserve(1);
2145 	tx = dmu_tx_create(zfsvfs->z_os);
2146 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2147 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2148 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2149 	if (fuid_dirtied)
2150 		zfs_fuid_txhold(zfsvfs, tx);
2151 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2152 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2153 		    acl_ids.z_aclp->z_acl_bytes);
2154 	}
2155 
2156 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2157 	    ZFS_SA_BASE_ATTR_SIZE);
2158 
2159 	error = dmu_tx_assign(tx, TXG_WAIT);
2160 	if (error) {
2161 		zfs_acl_ids_free(&acl_ids);
2162 		dmu_tx_abort(tx);
2163 		getnewvnode_drop_reserve();
2164 		ZFS_EXIT(zfsvfs);
2165 		return (error);
2166 	}
2167 
2168 	/*
2169 	 * Create new node.
2170 	 */
2171 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2172 
2173 	if (fuid_dirtied)
2174 		zfs_fuid_sync(zfsvfs, tx);
2175 
2176 	/*
2177 	 * Now put new name in parent dir.
2178 	 */
2179 	(void) zfs_link_create(dzp, dirname, zp, tx, ZNEW);
2180 
2181 	*vpp = ZTOV(zp);
2182 
2183 	txtype = zfs_log_create_txtype(Z_DIR, NULL, vap);
2184 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, NULL,
2185 	    acl_ids.z_fuidp, vap);
2186 
2187 	zfs_acl_ids_free(&acl_ids);
2188 
2189 	dmu_tx_commit(tx);
2190 
2191 	getnewvnode_drop_reserve();
2192 
2193 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2194 		zil_commit(zilog, 0);
2195 
2196 	ZFS_EXIT(zfsvfs);
2197 	return (0);
2198 }
2199 
2200 /*
2201  * Remove a directory subdir entry.  If the current working
2202  * directory is the same as the subdir to be removed, the
2203  * remove will fail.
2204  *
2205  *	IN:	dvp	- vnode of directory to remove from.
2206  *		name	- name of directory to be removed.
2207  *		cwd	- vnode of current working directory.
2208  *		cr	- credentials of caller.
2209  *		ct	- caller context
2210  *		flags	- case flags
2211  *
2212  *	RETURN:	0 on success, error code on failure.
2213  *
2214  * Timestamps:
2215  *	dvp - ctime|mtime updated
2216  */
2217 /*ARGSUSED*/
2218 static int
zfs_rmdir(vnode_t * dvp,vnode_t * vp,char * name,cred_t * cr)2219 zfs_rmdir(vnode_t *dvp, vnode_t *vp, char *name, cred_t *cr)
2220 {
2221 	znode_t		*dzp = VTOZ(dvp);
2222 	znode_t		*zp = VTOZ(vp);
2223 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2224 	zilog_t		*zilog;
2225 	dmu_tx_t	*tx;
2226 	int		error;
2227 
2228 	ZFS_ENTER(zfsvfs);
2229 	ZFS_VERIFY_ZP(dzp);
2230 	ZFS_VERIFY_ZP(zp);
2231 	zilog = zfsvfs->z_log;
2232 
2233 
2234 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2235 		goto out;
2236 	}
2237 
2238 	if (vp->v_type != VDIR) {
2239 		error = SET_ERROR(ENOTDIR);
2240 		goto out;
2241 	}
2242 
2243 	vnevent_rmdir(vp, dvp, name, ct);
2244 
2245 	tx = dmu_tx_create(zfsvfs->z_os);
2246 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2247 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2248 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2249 	zfs_sa_upgrade_txholds(tx, zp);
2250 	zfs_sa_upgrade_txholds(tx, dzp);
2251 	dmu_tx_mark_netfree(tx);
2252 	error = dmu_tx_assign(tx, TXG_WAIT);
2253 	if (error) {
2254 		dmu_tx_abort(tx);
2255 		ZFS_EXIT(zfsvfs);
2256 		return (error);
2257 	}
2258 
2259 	cache_purge(dvp);
2260 
2261 	error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, NULL);
2262 
2263 	if (error == 0) {
2264 		uint64_t txtype = TX_RMDIR;
2265 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2266 	}
2267 
2268 	dmu_tx_commit(tx);
2269 
2270 	cache_purge(vp);
2271 out:
2272 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2273 		zil_commit(zilog, 0);
2274 
2275 	ZFS_EXIT(zfsvfs);
2276 	return (error);
2277 }
2278 
2279 /*
2280  * Read as many directory entries as will fit into the provided
2281  * buffer from the given directory cursor position (specified in
2282  * the uio structure).
2283  *
2284  *	IN:	vp	- vnode of directory to read.
2285  *		uio	- structure supplying read location, range info,
2286  *			  and return buffer.
2287  *		cr	- credentials of caller.
2288  *		ct	- caller context
2289  *		flags	- case flags
2290  *
2291  *	OUT:	uio	- updated offset and range, buffer filled.
2292  *		eofp	- set to true if end-of-file detected.
2293  *
2294  *	RETURN:	0 on success, error code on failure.
2295  *
2296  * Timestamps:
2297  *	vp - atime updated
2298  *
2299  * Note that the low 4 bits of the cookie returned by zap is always zero.
2300  * This allows us to use the low range for "special" directory entries:
2301  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2302  * we use the offset 2 for the '.zfs' directory.
2303  */
2304 /* ARGSUSED */
2305 static int
zfs_readdir(vnode_t * vp,uio_t * uio,cred_t * cr,int * eofp,int * ncookies,u_long ** cookies)2306 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2307 {
2308 	znode_t		*zp = VTOZ(vp);
2309 	iovec_t		*iovp;
2310 	edirent_t	*eodp;
2311 	dirent64_t	*odp;
2312 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2313 	objset_t	*os;
2314 	caddr_t		outbuf;
2315 	size_t		bufsize;
2316 	zap_cursor_t	zc;
2317 	zap_attribute_t	zap;
2318 	uint_t		bytes_wanted;
2319 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2320 	uint64_t	parent;
2321 	int		local_eof;
2322 	int		outcount;
2323 	int		error;
2324 	uint8_t		prefetch;
2325 	boolean_t	check_sysattrs;
2326 	uint8_t		type;
2327 	int		ncooks;
2328 	u_long		*cooks = NULL;
2329 	int		flags = 0;
2330 
2331 	ZFS_ENTER(zfsvfs);
2332 	ZFS_VERIFY_ZP(zp);
2333 
2334 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2335 	    &parent, sizeof (parent))) != 0) {
2336 		ZFS_EXIT(zfsvfs);
2337 		return (error);
2338 	}
2339 
2340 	/*
2341 	 * If we are not given an eof variable,
2342 	 * use a local one.
2343 	 */
2344 	if (eofp == NULL)
2345 		eofp = &local_eof;
2346 
2347 	/*
2348 	 * Check for valid iov_len.
2349 	 */
2350 	if (uio->uio_iov->iov_len <= 0) {
2351 		ZFS_EXIT(zfsvfs);
2352 		return (SET_ERROR(EINVAL));
2353 	}
2354 
2355 	/*
2356 	 * Quit if directory has been removed (posix)
2357 	 */
2358 	if ((*eofp = zp->z_unlinked) != 0) {
2359 		ZFS_EXIT(zfsvfs);
2360 		return (0);
2361 	}
2362 
2363 	error = 0;
2364 	os = zfsvfs->z_os;
2365 	offset = uio->uio_loffset;
2366 	prefetch = zp->z_zn_prefetch;
2367 
2368 	/*
2369 	 * Initialize the iterator cursor.
2370 	 */
2371 	if (offset <= 3) {
2372 		/*
2373 		 * Start iteration from the beginning of the directory.
2374 		 */
2375 		zap_cursor_init(&zc, os, zp->z_id);
2376 	} else {
2377 		/*
2378 		 * The offset is a serialized cursor.
2379 		 */
2380 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2381 	}
2382 
2383 	/*
2384 	 * Get space to change directory entries into fs independent format.
2385 	 */
2386 	iovp = uio->uio_iov;
2387 	bytes_wanted = iovp->iov_len;
2388 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2389 		bufsize = bytes_wanted;
2390 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2391 		odp = (struct dirent64 *)outbuf;
2392 	} else {
2393 		bufsize = bytes_wanted;
2394 		outbuf = NULL;
2395 		odp = (struct dirent64 *)iovp->iov_base;
2396 	}
2397 	eodp = (struct edirent *)odp;
2398 
2399 	if (ncookies != NULL) {
2400 		/*
2401 		 * Minimum entry size is dirent size and 1 byte for a file name.
2402 		 */
2403 		ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2404 		cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK);
2405 		*cookies = cooks;
2406 		*ncookies = ncooks;
2407 	}
2408 	/*
2409 	 * If this VFS supports the system attribute view interface; and
2410 	 * we're looking at an extended attribute directory; and we care
2411 	 * about normalization conflicts on this vfs; then we must check
2412 	 * for normalization conflicts with the sysattr name space.
2413 	 */
2414 #ifdef TODO
2415 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2416 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2417 	    (flags & V_RDDIR_ENTFLAGS);
2418 #else
2419 	check_sysattrs = 0;
2420 #endif
2421 
2422 	/*
2423 	 * Transform to file-system independent format
2424 	 */
2425 	outcount = 0;
2426 	while (outcount < bytes_wanted) {
2427 		ino64_t objnum;
2428 		ushort_t reclen;
2429 		off64_t *next = NULL;
2430 
2431 		/*
2432 		 * Special case `.', `..', and `.zfs'.
2433 		 */
2434 		if (offset == 0) {
2435 			(void) strcpy(zap.za_name, ".");
2436 			zap.za_normalization_conflict = 0;
2437 			objnum = zp->z_id;
2438 			type = DT_DIR;
2439 		} else if (offset == 1) {
2440 			(void) strcpy(zap.za_name, "..");
2441 			zap.za_normalization_conflict = 0;
2442 			objnum = parent;
2443 			type = DT_DIR;
2444 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2445 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2446 			zap.za_normalization_conflict = 0;
2447 			objnum = ZFSCTL_INO_ROOT;
2448 			type = DT_DIR;
2449 		} else {
2450 			/*
2451 			 * Grab next entry.
2452 			 */
2453 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2454 				if ((*eofp = (error == ENOENT)) != 0)
2455 					break;
2456 				else
2457 					goto update;
2458 			}
2459 
2460 			if (zap.za_integer_length != 8 ||
2461 			    zap.za_num_integers != 1) {
2462 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2463 				    "entry, obj = %lld, offset = %lld\n",
2464 				    (u_longlong_t)zp->z_id,
2465 				    (u_longlong_t)offset);
2466 				error = SET_ERROR(ENXIO);
2467 				goto update;
2468 			}
2469 
2470 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2471 			/*
2472 			 * MacOS X can extract the object type here such as:
2473 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2474 			 */
2475 			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2476 
2477 			if (check_sysattrs && !zap.za_normalization_conflict) {
2478 #ifdef TODO
2479 				zap.za_normalization_conflict =
2480 				    xattr_sysattr_casechk(zap.za_name);
2481 #else
2482 				panic("%s:%u: TODO", __func__, __LINE__);
2483 #endif
2484 			}
2485 		}
2486 
2487 		if (flags & V_RDDIR_ACCFILTER) {
2488 			/*
2489 			 * If we have no access at all, don't include
2490 			 * this entry in the returned information
2491 			 */
2492 			znode_t	*ezp;
2493 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2494 				goto skip_entry;
2495 			if (!zfs_has_access(ezp, cr)) {
2496 				vrele(ZTOV(ezp));
2497 				goto skip_entry;
2498 			}
2499 			vrele(ZTOV(ezp));
2500 		}
2501 
2502 		if (flags & V_RDDIR_ENTFLAGS)
2503 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2504 		else
2505 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2506 
2507 		/*
2508 		 * Will this entry fit in the buffer?
2509 		 */
2510 		if (outcount + reclen > bufsize) {
2511 			/*
2512 			 * Did we manage to fit anything in the buffer?
2513 			 */
2514 			if (!outcount) {
2515 				error = SET_ERROR(EINVAL);
2516 				goto update;
2517 			}
2518 			break;
2519 		}
2520 		if (flags & V_RDDIR_ENTFLAGS) {
2521 			/*
2522 			 * Add extended flag entry:
2523 			 */
2524 			eodp->ed_ino = objnum;
2525 			eodp->ed_reclen = reclen;
2526 			/* NOTE: ed_off is the offset for the *next* entry. */
2527 			next = &eodp->ed_off;
2528 			eodp->ed_eflags = zap.za_normalization_conflict ?
2529 			    ED_CASE_CONFLICT : 0;
2530 			(void) strncpy(eodp->ed_name, zap.za_name,
2531 			    EDIRENT_NAMELEN(reclen));
2532 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2533 		} else {
2534 			/*
2535 			 * Add normal entry:
2536 			 */
2537 			odp->d_ino = objnum;
2538 			odp->d_reclen = reclen;
2539 			odp->d_namlen = strlen(zap.za_name);
2540 			/* NOTE: d_off is the offset for the *next* entry. */
2541 			next = &odp->d_off;
2542 			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2543 			odp->d_type = type;
2544 			dirent_terminate(odp);
2545 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2546 		}
2547 		outcount += reclen;
2548 
2549 		ASSERT(outcount <= bufsize);
2550 
2551 		/* Prefetch znode */
2552 		if (prefetch)
2553 			dmu_prefetch(os, objnum, 0, 0, 0,
2554 			    ZIO_PRIORITY_SYNC_READ);
2555 
2556 	skip_entry:
2557 		/*
2558 		 * Move to the next entry, fill in the previous offset.
2559 		 */
2560 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2561 			zap_cursor_advance(&zc);
2562 			offset = zap_cursor_serialize(&zc);
2563 		} else {
2564 			offset += 1;
2565 		}
2566 
2567 		/* Fill the offset right after advancing the cursor. */
2568 		if (next != NULL)
2569 			*next = offset;
2570 		if (cooks != NULL) {
2571 			*cooks++ = offset;
2572 			ncooks--;
2573 			KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
2574 		}
2575 	}
2576 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2577 
2578 	/* Subtract unused cookies */
2579 	if (ncookies != NULL)
2580 		*ncookies -= ncooks;
2581 
2582 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2583 		iovp->iov_base += outcount;
2584 		iovp->iov_len -= outcount;
2585 		uio->uio_resid -= outcount;
2586 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2587 		/*
2588 		 * Reset the pointer.
2589 		 */
2590 		offset = uio->uio_loffset;
2591 	}
2592 
2593 update:
2594 	zap_cursor_fini(&zc);
2595 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2596 		kmem_free(outbuf, bufsize);
2597 
2598 	if (error == ENOENT)
2599 		error = 0;
2600 
2601 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2602 
2603 	uio->uio_loffset = offset;
2604 	ZFS_EXIT(zfsvfs);
2605 	if (error != 0 && cookies != NULL) {
2606 		free(*cookies, M_TEMP);
2607 		*cookies = NULL;
2608 		*ncookies = 0;
2609 	}
2610 	return (error);
2611 }
2612 
2613 ulong_t zfs_fsync_sync_cnt = 4;
2614 
2615 static int
zfs_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)2616 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2617 {
2618 	znode_t	*zp = VTOZ(vp);
2619 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2620 
2621 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2622 
2623 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2624 		ZFS_ENTER(zfsvfs);
2625 		ZFS_VERIFY_ZP(zp);
2626 		zil_commit(zfsvfs->z_log, zp->z_id);
2627 		ZFS_EXIT(zfsvfs);
2628 	}
2629 	return (0);
2630 }
2631 
2632 
2633 /*
2634  * Get the requested file attributes and place them in the provided
2635  * vattr structure.
2636  *
2637  *	IN:	vp	- vnode of file.
2638  *		vap	- va_mask identifies requested attributes.
2639  *			  If AT_XVATTR set, then optional attrs are requested
2640  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2641  *		cr	- credentials of caller.
2642  *		ct	- caller context
2643  *
2644  *	OUT:	vap	- attribute values.
2645  *
2646  *	RETURN:	0 (always succeeds).
2647  */
2648 /* ARGSUSED */
2649 static int
zfs_getattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2650 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2651     caller_context_t *ct)
2652 {
2653 	znode_t *zp = VTOZ(vp);
2654 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2655 	int	error = 0;
2656 	uint32_t blksize;
2657 	u_longlong_t nblocks;
2658 	uint64_t mtime[2], ctime[2], crtime[2], rdev;
2659 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2660 	xoptattr_t *xoap = NULL;
2661 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2662 	sa_bulk_attr_t bulk[4];
2663 	int count = 0;
2664 
2665 	ZFS_ENTER(zfsvfs);
2666 	ZFS_VERIFY_ZP(zp);
2667 
2668 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2669 
2670 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2671 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2672 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
2673 	if (vp->v_type == VBLK || vp->v_type == VCHR)
2674 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
2675 		    &rdev, 8);
2676 
2677 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2678 		ZFS_EXIT(zfsvfs);
2679 		return (error);
2680 	}
2681 
2682 	/*
2683 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2684 	 * Also, if we are the owner don't bother, since owner should
2685 	 * always be allowed to read basic attributes of file.
2686 	 */
2687 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2688 	    (vap->va_uid != crgetuid(cr))) {
2689 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2690 		    skipaclchk, cr)) {
2691 			ZFS_EXIT(zfsvfs);
2692 			return (error);
2693 		}
2694 	}
2695 
2696 	/*
2697 	 * Return all attributes.  It's cheaper to provide the answer
2698 	 * than to determine whether we were asked the question.
2699 	 */
2700 
2701 	vap->va_type = IFTOVT(zp->z_mode);
2702 	vap->va_mode = zp->z_mode & ~S_IFMT;
2703 #ifdef illumos
2704 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2705 #else
2706 	vn_fsid(vp, vap);
2707 #endif
2708 	vap->va_nodeid = zp->z_id;
2709 	vap->va_nlink = zp->z_links;
2710 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp) &&
2711 	    zp->z_links < ZFS_LINK_MAX)
2712 		vap->va_nlink++;
2713 	vap->va_size = zp->z_size;
2714 #ifdef illumos
2715 	vap->va_rdev = vp->v_rdev;
2716 #else
2717 	if (vp->v_type == VBLK || vp->v_type == VCHR)
2718 		vap->va_rdev = zfs_cmpldev(rdev);
2719 #endif
2720 	vap->va_seq = zp->z_seq;
2721 	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2722      	vap->va_filerev = zp->z_seq;
2723 
2724 	/*
2725 	 * Add in any requested optional attributes and the create time.
2726 	 * Also set the corresponding bits in the returned attribute bitmap.
2727 	 */
2728 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2729 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2730 			xoap->xoa_archive =
2731 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2732 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2733 		}
2734 
2735 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2736 			xoap->xoa_readonly =
2737 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2738 			XVA_SET_RTN(xvap, XAT_READONLY);
2739 		}
2740 
2741 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2742 			xoap->xoa_system =
2743 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2744 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2745 		}
2746 
2747 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2748 			xoap->xoa_hidden =
2749 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2750 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2751 		}
2752 
2753 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2754 			xoap->xoa_nounlink =
2755 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2756 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2757 		}
2758 
2759 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2760 			xoap->xoa_immutable =
2761 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2762 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2763 		}
2764 
2765 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2766 			xoap->xoa_appendonly =
2767 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2768 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2769 		}
2770 
2771 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2772 			xoap->xoa_nodump =
2773 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2774 			XVA_SET_RTN(xvap, XAT_NODUMP);
2775 		}
2776 
2777 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2778 			xoap->xoa_opaque =
2779 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2780 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2781 		}
2782 
2783 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2784 			xoap->xoa_av_quarantined =
2785 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2786 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2787 		}
2788 
2789 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2790 			xoap->xoa_av_modified =
2791 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2792 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2793 		}
2794 
2795 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2796 		    vp->v_type == VREG) {
2797 			zfs_sa_get_scanstamp(zp, xvap);
2798 		}
2799 
2800 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2801 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2802 			XVA_SET_RTN(xvap, XAT_REPARSE);
2803 		}
2804 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2805 			xoap->xoa_generation = zp->z_gen;
2806 			XVA_SET_RTN(xvap, XAT_GEN);
2807 		}
2808 
2809 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2810 			xoap->xoa_offline =
2811 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2812 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2813 		}
2814 
2815 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2816 			xoap->xoa_sparse =
2817 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2818 			XVA_SET_RTN(xvap, XAT_SPARSE);
2819 		}
2820 	}
2821 
2822 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2823 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2824 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2825 	ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
2826 
2827 
2828 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2829 	vap->va_blksize = blksize;
2830 	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
2831 
2832 	if (zp->z_blksz == 0) {
2833 		/*
2834 		 * Block size hasn't been set; suggest maximal I/O transfers.
2835 		 */
2836 		vap->va_blksize = zfsvfs->z_max_blksz;
2837 	}
2838 
2839 	ZFS_EXIT(zfsvfs);
2840 	return (0);
2841 }
2842 
2843 /*
2844  * Set the file attributes to the values contained in the
2845  * vattr structure.
2846  *
2847  *	IN:	vp	- vnode of file to be modified.
2848  *		vap	- new attribute values.
2849  *			  If AT_XVATTR set, then optional attrs are being set
2850  *		flags	- ATTR_UTIME set if non-default time values provided.
2851  *			- ATTR_NOACLCHECK (CIFS context only).
2852  *		cr	- credentials of caller.
2853  *		ct	- caller context
2854  *
2855  *	RETURN:	0 on success, error code on failure.
2856  *
2857  * Timestamps:
2858  *	vp - ctime updated, mtime updated if size changed.
2859  */
2860 /* ARGSUSED */
2861 static int
zfs_setattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2862 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2863     caller_context_t *ct)
2864 {
2865 	znode_t		*zp = VTOZ(vp);
2866 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2867 	zilog_t		*zilog;
2868 	dmu_tx_t	*tx;
2869 	vattr_t		oldva;
2870 	xvattr_t	tmpxvattr;
2871 	uint_t		mask = vap->va_mask;
2872 	uint_t		saved_mask = 0;
2873 	uint64_t	saved_mode;
2874 	int		trim_mask = 0;
2875 	uint64_t	new_mode;
2876 	uint64_t	new_uid, new_gid;
2877 	uint64_t	xattr_obj;
2878 	uint64_t	mtime[2], ctime[2];
2879 	znode_t		*attrzp;
2880 	int		need_policy = FALSE;
2881 	int		err, err2;
2882 	zfs_fuid_info_t *fuidp = NULL;
2883 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2884 	xoptattr_t	*xoap;
2885 	zfs_acl_t	*aclp;
2886 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2887 	boolean_t	fuid_dirtied = B_FALSE;
2888 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2889 	int		count = 0, xattr_count = 0;
2890 
2891 	if (mask == 0)
2892 		return (0);
2893 
2894 	if (mask & AT_NOSET)
2895 		return (SET_ERROR(EINVAL));
2896 
2897 	ZFS_ENTER(zfsvfs);
2898 	ZFS_VERIFY_ZP(zp);
2899 
2900 	zilog = zfsvfs->z_log;
2901 
2902 	/*
2903 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2904 	 * that file system is at proper version level
2905 	 */
2906 
2907 	if (zfsvfs->z_use_fuids == B_FALSE &&
2908 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2909 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2910 	    (mask & AT_XVATTR))) {
2911 		ZFS_EXIT(zfsvfs);
2912 		return (SET_ERROR(EINVAL));
2913 	}
2914 
2915 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2916 		ZFS_EXIT(zfsvfs);
2917 		return (SET_ERROR(EISDIR));
2918 	}
2919 
2920 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2921 		ZFS_EXIT(zfsvfs);
2922 		return (SET_ERROR(EINVAL));
2923 	}
2924 
2925 	/*
2926 	 * If this is an xvattr_t, then get a pointer to the structure of
2927 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2928 	 */
2929 	xoap = xva_getxoptattr(xvap);
2930 
2931 	xva_init(&tmpxvattr);
2932 
2933 	/*
2934 	 * Immutable files can only alter immutable bit and atime
2935 	 */
2936 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2937 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2938 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2939 		ZFS_EXIT(zfsvfs);
2940 		return (SET_ERROR(EPERM));
2941 	}
2942 
2943 	/*
2944 	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2945 	 */
2946 
2947 	/*
2948 	 * Verify timestamps doesn't overflow 32 bits.
2949 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2950 	 * handle times greater than 2039.  This check should be removed
2951 	 * once large timestamps are fully supported.
2952 	 */
2953 	if (mask & (AT_ATIME | AT_MTIME)) {
2954 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2955 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2956 			ZFS_EXIT(zfsvfs);
2957 			return (SET_ERROR(EOVERFLOW));
2958 		}
2959 	}
2960 	if (xoap && (mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME) &&
2961 	    TIMESPEC_OVERFLOW(&vap->va_birthtime)) {
2962 		ZFS_EXIT(zfsvfs);
2963 		return (SET_ERROR(EOVERFLOW));
2964 	}
2965 
2966 	attrzp = NULL;
2967 	aclp = NULL;
2968 
2969 	/* Can this be moved to before the top label? */
2970 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2971 		ZFS_EXIT(zfsvfs);
2972 		return (SET_ERROR(EROFS));
2973 	}
2974 
2975 	/*
2976 	 * First validate permissions
2977 	 */
2978 
2979 	if (mask & AT_SIZE) {
2980 		/*
2981 		 * XXX - Note, we are not providing any open
2982 		 * mode flags here (like FNDELAY), so we may
2983 		 * block if there are locks present... this
2984 		 * should be addressed in openat().
2985 		 */
2986 		/* XXX - would it be OK to generate a log record here? */
2987 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2988 		if (err) {
2989 			ZFS_EXIT(zfsvfs);
2990 			return (err);
2991 		}
2992 	}
2993 
2994 	if (mask & (AT_ATIME|AT_MTIME) ||
2995 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2996 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2997 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2998 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2999 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3000 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3001 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3002 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3003 		    skipaclchk, cr);
3004 	}
3005 
3006 	if (mask & (AT_UID|AT_GID)) {
3007 		int	idmask = (mask & (AT_UID|AT_GID));
3008 		int	take_owner;
3009 		int	take_group;
3010 
3011 		/*
3012 		 * NOTE: even if a new mode is being set,
3013 		 * we may clear S_ISUID/S_ISGID bits.
3014 		 */
3015 
3016 		if (!(mask & AT_MODE))
3017 			vap->va_mode = zp->z_mode;
3018 
3019 		/*
3020 		 * Take ownership or chgrp to group we are a member of
3021 		 */
3022 
3023 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3024 		take_group = (mask & AT_GID) &&
3025 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3026 
3027 		/*
3028 		 * If both AT_UID and AT_GID are set then take_owner and
3029 		 * take_group must both be set in order to allow taking
3030 		 * ownership.
3031 		 *
3032 		 * Otherwise, send the check through secpolicy_vnode_setattr()
3033 		 *
3034 		 */
3035 
3036 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3037 		    ((idmask == AT_UID) && take_owner) ||
3038 		    ((idmask == AT_GID) && take_group)) {
3039 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3040 			    skipaclchk, cr) == 0) {
3041 				/*
3042 				 * Remove setuid/setgid for non-privileged users
3043 				 */
3044 				secpolicy_setid_clear(vap, vp, cr);
3045 				trim_mask = (mask & (AT_UID|AT_GID));
3046 			} else {
3047 				need_policy =  TRUE;
3048 			}
3049 		} else {
3050 			need_policy =  TRUE;
3051 		}
3052 	}
3053 
3054 	oldva.va_mode = zp->z_mode;
3055 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3056 	if (mask & AT_XVATTR) {
3057 		/*
3058 		 * Update xvattr mask to include only those attributes
3059 		 * that are actually changing.
3060 		 *
3061 		 * the bits will be restored prior to actually setting
3062 		 * the attributes so the caller thinks they were set.
3063 		 */
3064 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3065 			if (xoap->xoa_appendonly !=
3066 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3067 				need_policy = TRUE;
3068 			} else {
3069 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3070 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3071 			}
3072 		}
3073 
3074 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3075 			if (xoap->xoa_nounlink !=
3076 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3077 				need_policy = TRUE;
3078 			} else {
3079 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3080 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3081 			}
3082 		}
3083 
3084 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3085 			if (xoap->xoa_immutable !=
3086 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3087 				need_policy = TRUE;
3088 			} else {
3089 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3090 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3091 			}
3092 		}
3093 
3094 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3095 			if (xoap->xoa_nodump !=
3096 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3097 				need_policy = TRUE;
3098 			} else {
3099 				XVA_CLR_REQ(xvap, XAT_NODUMP);
3100 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3101 			}
3102 		}
3103 
3104 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3105 			if (xoap->xoa_av_modified !=
3106 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3107 				need_policy = TRUE;
3108 			} else {
3109 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3110 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3111 			}
3112 		}
3113 
3114 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3115 			if ((vp->v_type != VREG &&
3116 			    xoap->xoa_av_quarantined) ||
3117 			    xoap->xoa_av_quarantined !=
3118 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3119 				need_policy = TRUE;
3120 			} else {
3121 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3122 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3123 			}
3124 		}
3125 
3126 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3127 			ZFS_EXIT(zfsvfs);
3128 			return (SET_ERROR(EPERM));
3129 		}
3130 
3131 		if (need_policy == FALSE &&
3132 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3133 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3134 			need_policy = TRUE;
3135 		}
3136 	}
3137 
3138 	if (mask & AT_MODE) {
3139 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3140 			err = secpolicy_setid_setsticky_clear(vp, vap,
3141 			    &oldva, cr);
3142 			if (err) {
3143 				ZFS_EXIT(zfsvfs);
3144 				return (err);
3145 			}
3146 			trim_mask |= AT_MODE;
3147 		} else {
3148 			need_policy = TRUE;
3149 		}
3150 	}
3151 
3152 	if (need_policy) {
3153 		/*
3154 		 * If trim_mask is set then take ownership
3155 		 * has been granted or write_acl is present and user
3156 		 * has the ability to modify mode.  In that case remove
3157 		 * UID|GID and or MODE from mask so that
3158 		 * secpolicy_vnode_setattr() doesn't revoke it.
3159 		 */
3160 
3161 		if (trim_mask) {
3162 			saved_mask = vap->va_mask;
3163 			vap->va_mask &= ~trim_mask;
3164 			if (trim_mask & AT_MODE) {
3165 				/*
3166 				 * Save the mode, as secpolicy_vnode_setattr()
3167 				 * will overwrite it with ova.va_mode.
3168 				 */
3169 				saved_mode = vap->va_mode;
3170 			}
3171 		}
3172 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3173 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3174 		if (err) {
3175 			ZFS_EXIT(zfsvfs);
3176 			return (err);
3177 		}
3178 
3179 		if (trim_mask) {
3180 			vap->va_mask |= saved_mask;
3181 			if (trim_mask & AT_MODE) {
3182 				/*
3183 				 * Recover the mode after
3184 				 * secpolicy_vnode_setattr().
3185 				 */
3186 				vap->va_mode = saved_mode;
3187 			}
3188 		}
3189 	}
3190 
3191 	/*
3192 	 * secpolicy_vnode_setattr, or take ownership may have
3193 	 * changed va_mask
3194 	 */
3195 	mask = vap->va_mask;
3196 
3197 	if ((mask & (AT_UID | AT_GID))) {
3198 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3199 		    &xattr_obj, sizeof (xattr_obj));
3200 
3201 		if (err == 0 && xattr_obj) {
3202 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3203 			if (err == 0) {
3204 				err = vn_lock(ZTOV(attrzp), LK_EXCLUSIVE);
3205 				if (err != 0)
3206 					vrele(ZTOV(attrzp));
3207 			}
3208 			if (err)
3209 				goto out2;
3210 		}
3211 		if (mask & AT_UID) {
3212 			new_uid = zfs_fuid_create(zfsvfs,
3213 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3214 			if (new_uid != zp->z_uid &&
3215 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3216 				if (attrzp)
3217 					vput(ZTOV(attrzp));
3218 				err = SET_ERROR(EDQUOT);
3219 				goto out2;
3220 			}
3221 		}
3222 
3223 		if (mask & AT_GID) {
3224 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3225 			    cr, ZFS_GROUP, &fuidp);
3226 			if (new_gid != zp->z_gid &&
3227 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3228 				if (attrzp)
3229 					vput(ZTOV(attrzp));
3230 				err = SET_ERROR(EDQUOT);
3231 				goto out2;
3232 			}
3233 		}
3234 	}
3235 	tx = dmu_tx_create(zfsvfs->z_os);
3236 
3237 	if (mask & AT_MODE) {
3238 		uint64_t pmode = zp->z_mode;
3239 		uint64_t acl_obj;
3240 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3241 
3242 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3243 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3244 			err = SET_ERROR(EPERM);
3245 			goto out;
3246 		}
3247 
3248 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3249 			goto out;
3250 
3251 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3252 			/*
3253 			 * Are we upgrading ACL from old V0 format
3254 			 * to V1 format?
3255 			 */
3256 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3257 			    zfs_znode_acl_version(zp) ==
3258 			    ZFS_ACL_VERSION_INITIAL) {
3259 				dmu_tx_hold_free(tx, acl_obj, 0,
3260 				    DMU_OBJECT_END);
3261 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3262 				    0, aclp->z_acl_bytes);
3263 			} else {
3264 				dmu_tx_hold_write(tx, acl_obj, 0,
3265 				    aclp->z_acl_bytes);
3266 			}
3267 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3268 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3269 			    0, aclp->z_acl_bytes);
3270 		}
3271 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3272 	} else {
3273 		if ((mask & AT_XVATTR) &&
3274 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3275 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3276 		else
3277 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3278 	}
3279 
3280 	if (attrzp) {
3281 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3282 	}
3283 
3284 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3285 	if (fuid_dirtied)
3286 		zfs_fuid_txhold(zfsvfs, tx);
3287 
3288 	zfs_sa_upgrade_txholds(tx, zp);
3289 
3290 	err = dmu_tx_assign(tx, TXG_WAIT);
3291 	if (err)
3292 		goto out;
3293 
3294 	count = 0;
3295 	/*
3296 	 * Set each attribute requested.
3297 	 * We group settings according to the locks they need to acquire.
3298 	 *
3299 	 * Note: you cannot set ctime directly, although it will be
3300 	 * updated as a side-effect of calling this function.
3301 	 */
3302 
3303 	if (mask & (AT_UID|AT_GID|AT_MODE))
3304 		mutex_enter(&zp->z_acl_lock);
3305 
3306 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3307 	    &zp->z_pflags, sizeof (zp->z_pflags));
3308 
3309 	if (attrzp) {
3310 		if (mask & (AT_UID|AT_GID|AT_MODE))
3311 			mutex_enter(&attrzp->z_acl_lock);
3312 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3313 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3314 		    sizeof (attrzp->z_pflags));
3315 	}
3316 
3317 	if (mask & (AT_UID|AT_GID)) {
3318 
3319 		if (mask & AT_UID) {
3320 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3321 			    &new_uid, sizeof (new_uid));
3322 			zp->z_uid = new_uid;
3323 			if (attrzp) {
3324 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3325 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3326 				    sizeof (new_uid));
3327 				attrzp->z_uid = new_uid;
3328 			}
3329 		}
3330 
3331 		if (mask & AT_GID) {
3332 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3333 			    NULL, &new_gid, sizeof (new_gid));
3334 			zp->z_gid = new_gid;
3335 			if (attrzp) {
3336 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3337 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3338 				    sizeof (new_gid));
3339 				attrzp->z_gid = new_gid;
3340 			}
3341 		}
3342 		if (!(mask & AT_MODE)) {
3343 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3344 			    NULL, &new_mode, sizeof (new_mode));
3345 			new_mode = zp->z_mode;
3346 		}
3347 		err = zfs_acl_chown_setattr(zp);
3348 		ASSERT(err == 0);
3349 		if (attrzp) {
3350 			err = zfs_acl_chown_setattr(attrzp);
3351 			ASSERT(err == 0);
3352 		}
3353 	}
3354 
3355 	if (mask & AT_MODE) {
3356 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3357 		    &new_mode, sizeof (new_mode));
3358 		zp->z_mode = new_mode;
3359 		ASSERT3U((uintptr_t)aclp, !=, 0);
3360 		err = zfs_aclset_common(zp, aclp, cr, tx);
3361 		ASSERT0(err);
3362 		if (zp->z_acl_cached)
3363 			zfs_acl_free(zp->z_acl_cached);
3364 		zp->z_acl_cached = aclp;
3365 		aclp = NULL;
3366 	}
3367 
3368 
3369 	if (mask & AT_ATIME) {
3370 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3371 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3372 		    &zp->z_atime, sizeof (zp->z_atime));
3373 	}
3374 
3375 	if (mask & AT_MTIME) {
3376 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3377 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3378 		    mtime, sizeof (mtime));
3379 	}
3380 
3381 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3382 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3383 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3384 		    NULL, mtime, sizeof (mtime));
3385 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3386 		    &ctime, sizeof (ctime));
3387 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3388 		    B_TRUE);
3389 	} else if (mask != 0) {
3390 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3391 		    &ctime, sizeof (ctime));
3392 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3393 		    B_TRUE);
3394 		if (attrzp) {
3395 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3396 			    SA_ZPL_CTIME(zfsvfs), NULL,
3397 			    &ctime, sizeof (ctime));
3398 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3399 			    mtime, ctime, B_TRUE);
3400 		}
3401 	}
3402 	/*
3403 	 * Do this after setting timestamps to prevent timestamp
3404 	 * update from toggling bit
3405 	 */
3406 
3407 	if (xoap && (mask & AT_XVATTR)) {
3408 
3409 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME))
3410 			xoap->xoa_createtime = vap->va_birthtime;
3411 		/*
3412 		 * restore trimmed off masks
3413 		 * so that return masks can be set for caller.
3414 		 */
3415 
3416 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3417 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3418 		}
3419 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3420 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3421 		}
3422 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3423 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3424 		}
3425 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3426 			XVA_SET_REQ(xvap, XAT_NODUMP);
3427 		}
3428 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3429 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3430 		}
3431 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3432 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3433 		}
3434 
3435 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3436 			ASSERT(vp->v_type == VREG);
3437 
3438 		zfs_xvattr_set(zp, xvap, tx);
3439 	}
3440 
3441 	if (fuid_dirtied)
3442 		zfs_fuid_sync(zfsvfs, tx);
3443 
3444 	if (mask != 0)
3445 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3446 
3447 	if (mask & (AT_UID|AT_GID|AT_MODE))
3448 		mutex_exit(&zp->z_acl_lock);
3449 
3450 	if (attrzp) {
3451 		if (mask & (AT_UID|AT_GID|AT_MODE))
3452 			mutex_exit(&attrzp->z_acl_lock);
3453 	}
3454 out:
3455 	if (err == 0 && attrzp) {
3456 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3457 		    xattr_count, tx);
3458 		ASSERT(err2 == 0);
3459 	}
3460 
3461 	if (attrzp)
3462 		vput(ZTOV(attrzp));
3463 
3464 	if (aclp)
3465 		zfs_acl_free(aclp);
3466 
3467 	if (fuidp) {
3468 		zfs_fuid_info_free(fuidp);
3469 		fuidp = NULL;
3470 	}
3471 
3472 	if (err) {
3473 		dmu_tx_abort(tx);
3474 	} else {
3475 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3476 		dmu_tx_commit(tx);
3477 	}
3478 
3479 out2:
3480 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3481 		zil_commit(zilog, 0);
3482 
3483 	ZFS_EXIT(zfsvfs);
3484 	return (err);
3485 }
3486 
3487 /*
3488  * We acquire all but fdvp locks using non-blocking acquisitions.  If we
3489  * fail to acquire any lock in the path we will drop all held locks,
3490  * acquire the new lock in a blocking fashion, and then release it and
3491  * restart the rename.  This acquire/release step ensures that we do not
3492  * spin on a lock waiting for release.  On error release all vnode locks
3493  * and decrement references the way tmpfs_rename() would do.
3494  */
3495 static int
zfs_rename_relock(struct vnode * sdvp,struct vnode ** svpp,struct vnode * tdvp,struct vnode ** tvpp,const struct componentname * scnp,const struct componentname * tcnp)3496 zfs_rename_relock(struct vnode *sdvp, struct vnode **svpp,
3497     struct vnode *tdvp, struct vnode **tvpp,
3498     const struct componentname *scnp, const struct componentname *tcnp)
3499 {
3500 	zfsvfs_t	*zfsvfs;
3501 	struct vnode	*nvp, *svp, *tvp;
3502 	znode_t		*sdzp, *tdzp, *szp, *tzp;
3503 	const char	*snm = scnp->cn_nameptr;
3504 	const char	*tnm = tcnp->cn_nameptr;
3505 	int error;
3506 
3507 	VOP_UNLOCK(tdvp, 0);
3508 	if (*tvpp != NULL && *tvpp != tdvp)
3509 		VOP_UNLOCK(*tvpp, 0);
3510 
3511 relock:
3512 	error = vn_lock(sdvp, LK_EXCLUSIVE);
3513 	if (error)
3514 		goto out;
3515 	sdzp = VTOZ(sdvp);
3516 
3517 	error = vn_lock(tdvp, LK_EXCLUSIVE | LK_NOWAIT);
3518 	if (error != 0) {
3519 		VOP_UNLOCK(sdvp, 0);
3520 		if (error != EBUSY)
3521 			goto out;
3522 		error = vn_lock(tdvp, LK_EXCLUSIVE);
3523 		if (error)
3524 			goto out;
3525 		VOP_UNLOCK(tdvp, 0);
3526 		goto relock;
3527 	}
3528 	tdzp = VTOZ(tdvp);
3529 
3530 	/*
3531 	 * Before using sdzp and tdzp we must ensure that they are live.
3532 	 * As a porting legacy from illumos we have two things to worry
3533 	 * about.  One is typical for FreeBSD and it is that the vnode is
3534 	 * not reclaimed (doomed).  The other is that the znode is live.
3535 	 * The current code can invalidate the znode without acquiring the
3536 	 * corresponding vnode lock if the object represented by the znode
3537 	 * and vnode is no longer valid after a rollback or receive operation.
3538 	 * z_teardown_lock hidden behind ZFS_ENTER and ZFS_EXIT is the lock
3539 	 * that protects the znodes from the invalidation.
3540 	 */
3541 	zfsvfs = sdzp->z_zfsvfs;
3542 	ASSERT3P(zfsvfs, ==, tdzp->z_zfsvfs);
3543 	ZFS_ENTER(zfsvfs);
3544 
3545 	/*
3546 	 * We can not use ZFS_VERIFY_ZP() here because it could directly return
3547 	 * bypassing the cleanup code in the case of an error.
3548 	 */
3549 	if (tdzp->z_sa_hdl == NULL || sdzp->z_sa_hdl == NULL) {
3550 		ZFS_EXIT(zfsvfs);
3551 		VOP_UNLOCK(sdvp, 0);
3552 		VOP_UNLOCK(tdvp, 0);
3553 		error = SET_ERROR(EIO);
3554 		goto out;
3555 	}
3556 
3557 	/*
3558 	 * Re-resolve svp to be certain it still exists and fetch the
3559 	 * correct vnode.
3560 	 */
3561 	error = zfs_dirent_lookup(sdzp, snm, &szp, ZEXISTS);
3562 	if (error != 0) {
3563 		/* Source entry invalid or not there. */
3564 		ZFS_EXIT(zfsvfs);
3565 		VOP_UNLOCK(sdvp, 0);
3566 		VOP_UNLOCK(tdvp, 0);
3567 		if ((scnp->cn_flags & ISDOTDOT) != 0 ||
3568 		    (scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.'))
3569 			error = SET_ERROR(EINVAL);
3570 		goto out;
3571 	}
3572 	svp = ZTOV(szp);
3573 
3574 	/*
3575 	 * Re-resolve tvp, if it disappeared we just carry on.
3576 	 */
3577 	error = zfs_dirent_lookup(tdzp, tnm, &tzp, 0);
3578 	if (error != 0) {
3579 		ZFS_EXIT(zfsvfs);
3580 		VOP_UNLOCK(sdvp, 0);
3581 		VOP_UNLOCK(tdvp, 0);
3582 		vrele(svp);
3583 		if ((tcnp->cn_flags & ISDOTDOT) != 0)
3584 			error = SET_ERROR(EINVAL);
3585 		goto out;
3586 	}
3587 	if (tzp != NULL)
3588 		tvp = ZTOV(tzp);
3589 	else
3590 		tvp = NULL;
3591 
3592 	/*
3593 	 * At present the vnode locks must be acquired before z_teardown_lock,
3594 	 * although it would be more logical to use the opposite order.
3595 	 */
3596 	ZFS_EXIT(zfsvfs);
3597 
3598 	/*
3599 	 * Now try acquire locks on svp and tvp.
3600 	 */
3601 	nvp = svp;
3602 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT);
3603 	if (error != 0) {
3604 		VOP_UNLOCK(sdvp, 0);
3605 		VOP_UNLOCK(tdvp, 0);
3606 		if (tvp != NULL)
3607 			vrele(tvp);
3608 		if (error != EBUSY) {
3609 			vrele(nvp);
3610 			goto out;
3611 		}
3612 		error = vn_lock(nvp, LK_EXCLUSIVE);
3613 		if (error != 0) {
3614 			vrele(nvp);
3615 			goto out;
3616 		}
3617 		VOP_UNLOCK(nvp, 0);
3618 		/*
3619 		 * Concurrent rename race.
3620 		 * XXX ?
3621 		 */
3622 		if (nvp == tdvp) {
3623 			vrele(nvp);
3624 			error = SET_ERROR(EINVAL);
3625 			goto out;
3626 		}
3627 		vrele(*svpp);
3628 		*svpp = nvp;
3629 		goto relock;
3630 	}
3631 	vrele(*svpp);
3632 	*svpp = nvp;
3633 
3634 	if (*tvpp != NULL)
3635 		vrele(*tvpp);
3636 	*tvpp = NULL;
3637 	if (tvp != NULL) {
3638 		nvp = tvp;
3639 		error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT);
3640 		if (error != 0) {
3641 			VOP_UNLOCK(sdvp, 0);
3642 			VOP_UNLOCK(tdvp, 0);
3643 			VOP_UNLOCK(*svpp, 0);
3644 			if (error != EBUSY) {
3645 				vrele(nvp);
3646 				goto out;
3647 			}
3648 			error = vn_lock(nvp, LK_EXCLUSIVE);
3649 			if (error != 0) {
3650 				vrele(nvp);
3651 				goto out;
3652 			}
3653 			vput(nvp);
3654 			goto relock;
3655 		}
3656 		*tvpp = nvp;
3657 	}
3658 
3659 	return (0);
3660 
3661 out:
3662 	return (error);
3663 }
3664 
3665 /*
3666  * Note that we must use VRELE_ASYNC in this function as it walks
3667  * up the directory tree and vrele may need to acquire an exclusive
3668  * lock if a last reference to a vnode is dropped.
3669  */
3670 static int
zfs_rename_check(znode_t * szp,znode_t * sdzp,znode_t * tdzp)3671 zfs_rename_check(znode_t *szp, znode_t *sdzp, znode_t *tdzp)
3672 {
3673 	zfsvfs_t	*zfsvfs;
3674 	znode_t		*zp, *zp1;
3675 	uint64_t	parent;
3676 	int		error;
3677 
3678 	zfsvfs = tdzp->z_zfsvfs;
3679 	if (tdzp == szp)
3680 		return (SET_ERROR(EINVAL));
3681 	if (tdzp == sdzp)
3682 		return (0);
3683 	if (tdzp->z_id == zfsvfs->z_root)
3684 		return (0);
3685 	zp = tdzp;
3686 	for (;;) {
3687 		ASSERT(!zp->z_unlinked);
3688 		if ((error = sa_lookup(zp->z_sa_hdl,
3689 		    SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0)
3690 			break;
3691 
3692 		if (parent == szp->z_id) {
3693 			error = SET_ERROR(EINVAL);
3694 			break;
3695 		}
3696 		if (parent == zfsvfs->z_root)
3697 			break;
3698 		if (parent == sdzp->z_id)
3699 			break;
3700 
3701 		error = zfs_zget(zfsvfs, parent, &zp1);
3702 		if (error != 0)
3703 			break;
3704 
3705 		if (zp != tdzp)
3706 			VN_RELE_ASYNC(ZTOV(zp),
3707 			    dsl_pool_vnrele_taskq(dmu_objset_pool(zfsvfs->z_os)));
3708 		zp = zp1;
3709 	}
3710 
3711 	if (error == ENOTDIR)
3712 		panic("checkpath: .. not a directory\n");
3713 	if (zp != tdzp)
3714 		VN_RELE_ASYNC(ZTOV(zp),
3715 		    dsl_pool_vnrele_taskq(dmu_objset_pool(zfsvfs->z_os)));
3716 	return (error);
3717 }
3718 
3719 /*
3720  * Move an entry from the provided source directory to the target
3721  * directory.  Change the entry name as indicated.
3722  *
3723  *	IN:	sdvp	- Source directory containing the "old entry".
3724  *		snm	- Old entry name.
3725  *		tdvp	- Target directory to contain the "new entry".
3726  *		tnm	- New entry name.
3727  *		cr	- credentials of caller.
3728  *		ct	- caller context
3729  *		flags	- case flags
3730  *
3731  *	RETURN:	0 on success, error code on failure.
3732  *
3733  * Timestamps:
3734  *	sdvp,tdvp - ctime|mtime updated
3735  */
3736 /*ARGSUSED*/
3737 static int
zfs_rename(vnode_t * sdvp,vnode_t ** svpp,struct componentname * scnp,vnode_t * tdvp,vnode_t ** tvpp,struct componentname * tcnp,cred_t * cr)3738 zfs_rename(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp,
3739     vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp,
3740     cred_t *cr)
3741 {
3742 	zfsvfs_t	*zfsvfs;
3743 	znode_t		*sdzp, *tdzp, *szp, *tzp;
3744 	zilog_t		*zilog = NULL;
3745 	dmu_tx_t	*tx;
3746 	char		*snm = scnp->cn_nameptr;
3747 	char		*tnm = tcnp->cn_nameptr;
3748 	int		error = 0;
3749 
3750 	/* Reject renames across filesystems. */
3751 	if ((*svpp)->v_mount != tdvp->v_mount ||
3752 	    ((*tvpp) != NULL && (*svpp)->v_mount != (*tvpp)->v_mount)) {
3753 		error = SET_ERROR(EXDEV);
3754 		goto out;
3755 	}
3756 
3757 	if (zfsctl_is_node(tdvp)) {
3758 		error = SET_ERROR(EXDEV);
3759 		goto out;
3760 	}
3761 
3762 	/*
3763 	 * Lock all four vnodes to ensure safety and semantics of renaming.
3764 	 */
3765 	error = zfs_rename_relock(sdvp, svpp, tdvp, tvpp, scnp, tcnp);
3766 	if (error != 0) {
3767 		/* no vnodes are locked in the case of error here */
3768 		return (error);
3769 	}
3770 
3771 	tdzp = VTOZ(tdvp);
3772 	sdzp = VTOZ(sdvp);
3773 	zfsvfs = tdzp->z_zfsvfs;
3774 	zilog = zfsvfs->z_log;
3775 
3776 	/*
3777 	 * After we re-enter ZFS_ENTER() we will have to revalidate all
3778 	 * znodes involved.
3779 	 */
3780 	ZFS_ENTER(zfsvfs);
3781 
3782 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3783 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3784 		error = SET_ERROR(EILSEQ);
3785 		goto unlockout;
3786 	}
3787 
3788 	/* If source and target are the same file, there is nothing to do. */
3789 	if ((*svpp) == (*tvpp)) {
3790 		error = 0;
3791 		goto unlockout;
3792 	}
3793 
3794 	if (((*svpp)->v_type == VDIR && (*svpp)->v_mountedhere != NULL) ||
3795 	    ((*tvpp) != NULL && (*tvpp)->v_type == VDIR &&
3796 	    (*tvpp)->v_mountedhere != NULL)) {
3797 		error = SET_ERROR(EXDEV);
3798 		goto unlockout;
3799 	}
3800 
3801 	/*
3802 	 * We can not use ZFS_VERIFY_ZP() here because it could directly return
3803 	 * bypassing the cleanup code in the case of an error.
3804 	 */
3805 	if (tdzp->z_sa_hdl == NULL || sdzp->z_sa_hdl == NULL) {
3806 		error = SET_ERROR(EIO);
3807 		goto unlockout;
3808 	}
3809 
3810 	szp = VTOZ(*svpp);
3811 	tzp = *tvpp == NULL ? NULL : VTOZ(*tvpp);
3812 	if (szp->z_sa_hdl == NULL || (tzp != NULL && tzp->z_sa_hdl == NULL)) {
3813 		error = SET_ERROR(EIO);
3814 		goto unlockout;
3815 	}
3816 
3817 	/*
3818 	 * This is to prevent the creation of links into attribute space
3819 	 * by renaming a linked file into/outof an attribute directory.
3820 	 * See the comment in zfs_link() for why this is considered bad.
3821 	 */
3822 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3823 		error = SET_ERROR(EINVAL);
3824 		goto unlockout;
3825 	}
3826 
3827 	/*
3828 	 * Must have write access at the source to remove the old entry
3829 	 * and write access at the target to create the new entry.
3830 	 * Note that if target and source are the same, this can be
3831 	 * done in a single check.
3832 	 */
3833 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3834 		goto unlockout;
3835 
3836 	if ((*svpp)->v_type == VDIR) {
3837 		/*
3838 		 * Avoid ".", "..", and aliases of "." for obvious reasons.
3839 		 */
3840 		if ((scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.') ||
3841 		    sdzp == szp ||
3842 		    (scnp->cn_flags | tcnp->cn_flags) & ISDOTDOT) {
3843 			error = EINVAL;
3844 			goto unlockout;
3845 		}
3846 
3847 		/*
3848 		 * Check to make sure rename is valid.
3849 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3850 		 */
3851 		if (error = zfs_rename_check(szp, sdzp, tdzp))
3852 			goto unlockout;
3853 	}
3854 
3855 	/*
3856 	 * Does target exist?
3857 	 */
3858 	if (tzp) {
3859 		/*
3860 		 * Source and target must be the same type.
3861 		 */
3862 		if ((*svpp)->v_type == VDIR) {
3863 			if ((*tvpp)->v_type != VDIR) {
3864 				error = SET_ERROR(ENOTDIR);
3865 				goto unlockout;
3866 			} else {
3867 				cache_purge(tdvp);
3868 				if (sdvp != tdvp)
3869 					cache_purge(sdvp);
3870 			}
3871 		} else {
3872 			if ((*tvpp)->v_type == VDIR) {
3873 				error = SET_ERROR(EISDIR);
3874 				goto unlockout;
3875 			}
3876 		}
3877 	}
3878 
3879 	vnevent_rename_src(*svpp, sdvp, scnp->cn_nameptr, ct);
3880 	if (tzp)
3881 		vnevent_rename_dest(*tvpp, tdvp, tnm, ct);
3882 
3883 	/*
3884 	 * notify the target directory if it is not the same
3885 	 * as source directory.
3886 	 */
3887 	if (tdvp != sdvp) {
3888 		vnevent_rename_dest_dir(tdvp, ct);
3889 	}
3890 
3891 	tx = dmu_tx_create(zfsvfs->z_os);
3892 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3893 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3894 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3895 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3896 	if (sdzp != tdzp) {
3897 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3898 		zfs_sa_upgrade_txholds(tx, tdzp);
3899 	}
3900 	if (tzp) {
3901 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3902 		zfs_sa_upgrade_txholds(tx, tzp);
3903 	}
3904 
3905 	zfs_sa_upgrade_txholds(tx, szp);
3906 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3907 	error = dmu_tx_assign(tx, TXG_WAIT);
3908 	if (error) {
3909 		dmu_tx_abort(tx);
3910 		goto unlockout;
3911 	}
3912 
3913 
3914 	if (tzp)	/* Attempt to remove the existing target */
3915 		error = zfs_link_destroy(tdzp, tnm, tzp, tx, 0, NULL);
3916 
3917 	if (error == 0) {
3918 		error = zfs_link_create(tdzp, tnm, szp, tx, ZRENAMING);
3919 		if (error == 0) {
3920 			szp->z_pflags |= ZFS_AV_MODIFIED;
3921 
3922 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3923 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3924 			ASSERT0(error);
3925 
3926 			error = zfs_link_destroy(sdzp, snm, szp, tx, ZRENAMING,
3927 			    NULL);
3928 			if (error == 0) {
3929 				zfs_log_rename(zilog, tx, TX_RENAME, sdzp,
3930 				    snm, tdzp, tnm, szp);
3931 
3932 				/*
3933 				 * Update path information for the target vnode
3934 				 */
3935 				vn_renamepath(tdvp, *svpp, tnm, strlen(tnm));
3936 			} else {
3937 				/*
3938 				 * At this point, we have successfully created
3939 				 * the target name, but have failed to remove
3940 				 * the source name.  Since the create was done
3941 				 * with the ZRENAMING flag, there are
3942 				 * complications; for one, the link count is
3943 				 * wrong.  The easiest way to deal with this
3944 				 * is to remove the newly created target, and
3945 				 * return the original error.  This must
3946 				 * succeed; fortunately, it is very unlikely to
3947 				 * fail, since we just created it.
3948 				 */
3949 				VERIFY3U(zfs_link_destroy(tdzp, tnm, szp, tx,
3950 				    ZRENAMING, NULL), ==, 0);
3951 			}
3952 		}
3953 		if (error == 0) {
3954 			cache_purge(*svpp);
3955 			if (*tvpp != NULL)
3956 				cache_purge(*tvpp);
3957 			cache_purge_negative(tdvp);
3958 		}
3959 	}
3960 
3961 	dmu_tx_commit(tx);
3962 
3963 unlockout:			/* all 4 vnodes are locked, ZFS_ENTER called */
3964 	ZFS_EXIT(zfsvfs);
3965 	VOP_UNLOCK(*svpp, 0);
3966 	VOP_UNLOCK(sdvp, 0);
3967 
3968 out:				/* original two vnodes are locked */
3969 	if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3970 		zil_commit(zilog, 0);
3971 
3972 	if (*tvpp != NULL)
3973 		VOP_UNLOCK(*tvpp, 0);
3974 	if (tdvp != *tvpp)
3975 		VOP_UNLOCK(tdvp, 0);
3976 	return (error);
3977 }
3978 
3979 /*
3980  * Insert the indicated symbolic reference entry into the directory.
3981  *
3982  *	IN:	dvp	- Directory to contain new symbolic link.
3983  *		link	- Name for new symlink entry.
3984  *		vap	- Attributes of new entry.
3985  *		cr	- credentials of caller.
3986  *		ct	- caller context
3987  *		flags	- case flags
3988  *
3989  *	RETURN:	0 on success, error code on failure.
3990  *
3991  * Timestamps:
3992  *	dvp - ctime|mtime updated
3993  */
3994 /*ARGSUSED*/
3995 static int
zfs_symlink(vnode_t * dvp,vnode_t ** vpp,char * name,vattr_t * vap,char * link,cred_t * cr,kthread_t * td)3996 zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
3997     cred_t *cr, kthread_t *td)
3998 {
3999 	znode_t		*zp, *dzp = VTOZ(dvp);
4000 	dmu_tx_t	*tx;
4001 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4002 	zilog_t		*zilog;
4003 	uint64_t	len = strlen(link);
4004 	int		error;
4005 	zfs_acl_ids_t	acl_ids;
4006 	boolean_t	fuid_dirtied;
4007 	uint64_t	txtype = TX_SYMLINK;
4008 	int		flags = 0;
4009 
4010 	ASSERT(vap->va_type == VLNK);
4011 
4012 	ZFS_ENTER(zfsvfs);
4013 	ZFS_VERIFY_ZP(dzp);
4014 	zilog = zfsvfs->z_log;
4015 
4016 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4017 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4018 		ZFS_EXIT(zfsvfs);
4019 		return (SET_ERROR(EILSEQ));
4020 	}
4021 
4022 	if (len > MAXPATHLEN) {
4023 		ZFS_EXIT(zfsvfs);
4024 		return (SET_ERROR(ENAMETOOLONG));
4025 	}
4026 
4027 	if ((error = zfs_acl_ids_create(dzp, 0,
4028 	    vap, cr, NULL, &acl_ids)) != 0) {
4029 		ZFS_EXIT(zfsvfs);
4030 		return (error);
4031 	}
4032 
4033 	/*
4034 	 * Attempt to lock directory; fail if entry already exists.
4035 	 */
4036 	error = zfs_dirent_lookup(dzp, name, &zp, ZNEW);
4037 	if (error) {
4038 		zfs_acl_ids_free(&acl_ids);
4039 		ZFS_EXIT(zfsvfs);
4040 		return (error);
4041 	}
4042 
4043 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4044 		zfs_acl_ids_free(&acl_ids);
4045 		ZFS_EXIT(zfsvfs);
4046 		return (error);
4047 	}
4048 
4049 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
4050 		zfs_acl_ids_free(&acl_ids);
4051 		ZFS_EXIT(zfsvfs);
4052 		return (SET_ERROR(EDQUOT));
4053 	}
4054 
4055 	getnewvnode_reserve(1);
4056 	tx = dmu_tx_create(zfsvfs->z_os);
4057 	fuid_dirtied = zfsvfs->z_fuid_dirty;
4058 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4059 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4060 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4061 	    ZFS_SA_BASE_ATTR_SIZE + len);
4062 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4063 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4064 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4065 		    acl_ids.z_aclp->z_acl_bytes);
4066 	}
4067 	if (fuid_dirtied)
4068 		zfs_fuid_txhold(zfsvfs, tx);
4069 	error = dmu_tx_assign(tx, TXG_WAIT);
4070 	if (error) {
4071 		zfs_acl_ids_free(&acl_ids);
4072 		dmu_tx_abort(tx);
4073 		getnewvnode_drop_reserve();
4074 		ZFS_EXIT(zfsvfs);
4075 		return (error);
4076 	}
4077 
4078 	/*
4079 	 * Create a new object for the symlink.
4080 	 * for version 4 ZPL datsets the symlink will be an SA attribute
4081 	 */
4082 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4083 
4084 	if (fuid_dirtied)
4085 		zfs_fuid_sync(zfsvfs, tx);
4086 
4087 	if (zp->z_is_sa)
4088 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4089 		    link, len, tx);
4090 	else
4091 		zfs_sa_symlink(zp, link, len, tx);
4092 
4093 	zp->z_size = len;
4094 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4095 	    &zp->z_size, sizeof (zp->z_size), tx);
4096 	/*
4097 	 * Insert the new object into the directory.
4098 	 */
4099 	(void) zfs_link_create(dzp, name, zp, tx, ZNEW);
4100 
4101 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4102 	*vpp = ZTOV(zp);
4103 
4104 	zfs_acl_ids_free(&acl_ids);
4105 
4106 	dmu_tx_commit(tx);
4107 
4108 	getnewvnode_drop_reserve();
4109 
4110 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4111 		zil_commit(zilog, 0);
4112 
4113 	ZFS_EXIT(zfsvfs);
4114 	return (error);
4115 }
4116 
4117 /*
4118  * Return, in the buffer contained in the provided uio structure,
4119  * the symbolic path referred to by vp.
4120  *
4121  *	IN:	vp	- vnode of symbolic link.
4122  *		uio	- structure to contain the link path.
4123  *		cr	- credentials of caller.
4124  *		ct	- caller context
4125  *
4126  *	OUT:	uio	- structure containing the link path.
4127  *
4128  *	RETURN:	0 on success, error code on failure.
4129  *
4130  * Timestamps:
4131  *	vp - atime updated
4132  */
4133 /* ARGSUSED */
4134 static int
zfs_readlink(vnode_t * vp,uio_t * uio,cred_t * cr,caller_context_t * ct)4135 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4136 {
4137 	znode_t		*zp = VTOZ(vp);
4138 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4139 	int		error;
4140 
4141 	ZFS_ENTER(zfsvfs);
4142 	ZFS_VERIFY_ZP(zp);
4143 
4144 	if (zp->z_is_sa)
4145 		error = sa_lookup_uio(zp->z_sa_hdl,
4146 		    SA_ZPL_SYMLINK(zfsvfs), uio);
4147 	else
4148 		error = zfs_sa_readlink(zp, uio);
4149 
4150 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4151 
4152 	ZFS_EXIT(zfsvfs);
4153 	return (error);
4154 }
4155 
4156 /*
4157  * Insert a new entry into directory tdvp referencing svp.
4158  *
4159  *	IN:	tdvp	- Directory to contain new entry.
4160  *		svp	- vnode of new entry.
4161  *		name	- name of new entry.
4162  *		cr	- credentials of caller.
4163  *		ct	- caller context
4164  *
4165  *	RETURN:	0 on success, error code on failure.
4166  *
4167  * Timestamps:
4168  *	tdvp - ctime|mtime updated
4169  *	 svp - ctime updated
4170  */
4171 /* ARGSUSED */
4172 static int
zfs_link(vnode_t * tdvp,vnode_t * svp,char * name,cred_t * cr,caller_context_t * ct,int flags)4173 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4174     caller_context_t *ct, int flags)
4175 {
4176 	znode_t		*dzp = VTOZ(tdvp);
4177 	znode_t		*tzp, *szp;
4178 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4179 	zilog_t		*zilog;
4180 	dmu_tx_t	*tx;
4181 	int		error;
4182 	uint64_t	parent;
4183 	uid_t		owner;
4184 
4185 	ASSERT(tdvp->v_type == VDIR);
4186 
4187 	ZFS_ENTER(zfsvfs);
4188 	ZFS_VERIFY_ZP(dzp);
4189 	zilog = zfsvfs->z_log;
4190 
4191 	/*
4192 	 * POSIX dictates that we return EPERM here.
4193 	 * Better choices include ENOTSUP or EISDIR.
4194 	 */
4195 	if (svp->v_type == VDIR) {
4196 		ZFS_EXIT(zfsvfs);
4197 		return (SET_ERROR(EPERM));
4198 	}
4199 
4200 	szp = VTOZ(svp);
4201 	ZFS_VERIFY_ZP(szp);
4202 
4203 	if (szp->z_pflags & (ZFS_APPENDONLY | ZFS_IMMUTABLE | ZFS_READONLY)) {
4204 		ZFS_EXIT(zfsvfs);
4205 		return (SET_ERROR(EPERM));
4206 	}
4207 
4208 	/* Prevent links to .zfs/shares files */
4209 
4210 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4211 	    &parent, sizeof (uint64_t))) != 0) {
4212 		ZFS_EXIT(zfsvfs);
4213 		return (error);
4214 	}
4215 	if (parent == zfsvfs->z_shares_dir) {
4216 		ZFS_EXIT(zfsvfs);
4217 		return (SET_ERROR(EPERM));
4218 	}
4219 
4220 	if (zfsvfs->z_utf8 && u8_validate(name,
4221 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4222 		ZFS_EXIT(zfsvfs);
4223 		return (SET_ERROR(EILSEQ));
4224 	}
4225 
4226 	/*
4227 	 * We do not support links between attributes and non-attributes
4228 	 * because of the potential security risk of creating links
4229 	 * into "normal" file space in order to circumvent restrictions
4230 	 * imposed in attribute space.
4231 	 */
4232 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4233 		ZFS_EXIT(zfsvfs);
4234 		return (SET_ERROR(EINVAL));
4235 	}
4236 
4237 
4238 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4239 	if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) {
4240 		ZFS_EXIT(zfsvfs);
4241 		return (SET_ERROR(EPERM));
4242 	}
4243 
4244 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4245 		ZFS_EXIT(zfsvfs);
4246 		return (error);
4247 	}
4248 
4249 	/*
4250 	 * Attempt to lock directory; fail if entry already exists.
4251 	 */
4252 	error = zfs_dirent_lookup(dzp, name, &tzp, ZNEW);
4253 	if (error) {
4254 		ZFS_EXIT(zfsvfs);
4255 		return (error);
4256 	}
4257 
4258 	tx = dmu_tx_create(zfsvfs->z_os);
4259 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4260 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4261 	zfs_sa_upgrade_txholds(tx, szp);
4262 	zfs_sa_upgrade_txholds(tx, dzp);
4263 	error = dmu_tx_assign(tx, TXG_WAIT);
4264 	if (error) {
4265 		dmu_tx_abort(tx);
4266 		ZFS_EXIT(zfsvfs);
4267 		return (error);
4268 	}
4269 
4270 	error = zfs_link_create(dzp, name, szp, tx, 0);
4271 
4272 	if (error == 0) {
4273 		uint64_t txtype = TX_LINK;
4274 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4275 	}
4276 
4277 	dmu_tx_commit(tx);
4278 
4279 	if (error == 0) {
4280 		vnevent_link(svp, ct);
4281 	}
4282 
4283 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4284 		zil_commit(zilog, 0);
4285 
4286 	ZFS_EXIT(zfsvfs);
4287 	return (error);
4288 }
4289 
4290 
4291 /*ARGSUSED*/
4292 void
zfs_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)4293 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4294 {
4295 	znode_t	*zp = VTOZ(vp);
4296 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4297 	int error;
4298 
4299 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4300 	if (zp->z_sa_hdl == NULL) {
4301 		/*
4302 		 * The fs has been unmounted, or we did a
4303 		 * suspend/resume and this file no longer exists.
4304 		 */
4305 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4306 		vrecycle(vp);
4307 		return;
4308 	}
4309 
4310 	if (zp->z_unlinked) {
4311 		/*
4312 		 * Fast path to recycle a vnode of a removed file.
4313 		 */
4314 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4315 		vrecycle(vp);
4316 		return;
4317 	}
4318 
4319 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4320 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4321 
4322 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4323 		zfs_sa_upgrade_txholds(tx, zp);
4324 		error = dmu_tx_assign(tx, TXG_WAIT);
4325 		if (error) {
4326 			dmu_tx_abort(tx);
4327 		} else {
4328 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4329 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4330 			zp->z_atime_dirty = 0;
4331 			dmu_tx_commit(tx);
4332 		}
4333 	}
4334 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4335 }
4336 
4337 
4338 CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid));
4339 CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid));
4340 
4341 /*ARGSUSED*/
4342 static int
zfs_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)4343 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4344 {
4345 	znode_t		*zp = VTOZ(vp);
4346 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4347 	uint32_t	gen;
4348 	uint64_t	gen64;
4349 	uint64_t	object = zp->z_id;
4350 	zfid_short_t	*zfid;
4351 	int		size, i, error;
4352 
4353 	ZFS_ENTER(zfsvfs);
4354 	ZFS_VERIFY_ZP(zp);
4355 
4356 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4357 	    &gen64, sizeof (uint64_t))) != 0) {
4358 		ZFS_EXIT(zfsvfs);
4359 		return (error);
4360 	}
4361 
4362 	gen = (uint32_t)gen64;
4363 
4364 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4365 
4366 #ifdef illumos
4367 	if (fidp->fid_len < size) {
4368 		fidp->fid_len = size;
4369 		ZFS_EXIT(zfsvfs);
4370 		return (SET_ERROR(ENOSPC));
4371 	}
4372 #else
4373 	fidp->fid_len = size;
4374 #endif
4375 
4376 	zfid = (zfid_short_t *)fidp;
4377 
4378 	zfid->zf_len = size;
4379 
4380 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4381 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4382 
4383 	/* Must have a non-zero generation number to distinguish from .zfs */
4384 	if (gen == 0)
4385 		gen = 1;
4386 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4387 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4388 
4389 	if (size == LONG_FID_LEN) {
4390 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4391 		zfid_long_t	*zlfid;
4392 
4393 		zlfid = (zfid_long_t *)fidp;
4394 
4395 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4396 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4397 
4398 		/* XXX - this should be the generation number for the objset */
4399 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4400 			zlfid->zf_setgen[i] = 0;
4401 	}
4402 
4403 	ZFS_EXIT(zfsvfs);
4404 	return (0);
4405 }
4406 
4407 static int
zfs_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)4408 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4409     caller_context_t *ct)
4410 {
4411 	znode_t		*zp, *xzp;
4412 	zfsvfs_t	*zfsvfs;
4413 	int		error;
4414 
4415 	switch (cmd) {
4416 	case _PC_LINK_MAX:
4417 		*valp = MIN(LONG_MAX, ZFS_LINK_MAX);
4418 		return (0);
4419 
4420 	case _PC_FILESIZEBITS:
4421 		*valp = 64;
4422 		return (0);
4423 #ifdef illumos
4424 	case _PC_XATTR_EXISTS:
4425 		zp = VTOZ(vp);
4426 		zfsvfs = zp->z_zfsvfs;
4427 		ZFS_ENTER(zfsvfs);
4428 		ZFS_VERIFY_ZP(zp);
4429 		*valp = 0;
4430 		error = zfs_dirent_lookup(zp, "", &xzp,
4431 		    ZXATTR | ZEXISTS | ZSHARED);
4432 		if (error == 0) {
4433 			if (!zfs_dirempty(xzp))
4434 				*valp = 1;
4435 			vrele(ZTOV(xzp));
4436 		} else if (error == ENOENT) {
4437 			/*
4438 			 * If there aren't extended attributes, it's the
4439 			 * same as having zero of them.
4440 			 */
4441 			error = 0;
4442 		}
4443 		ZFS_EXIT(zfsvfs);
4444 		return (error);
4445 
4446 	case _PC_SATTR_ENABLED:
4447 	case _PC_SATTR_EXISTS:
4448 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4449 		    (vp->v_type == VREG || vp->v_type == VDIR);
4450 		return (0);
4451 
4452 	case _PC_ACCESS_FILTERING:
4453 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4454 		    vp->v_type == VDIR;
4455 		return (0);
4456 
4457 	case _PC_ACL_ENABLED:
4458 		*valp = _ACL_ACE_ENABLED;
4459 		return (0);
4460 #endif	/* illumos */
4461 	case _PC_MIN_HOLE_SIZE:
4462 		*valp = (int)SPA_MINBLOCKSIZE;
4463 		return (0);
4464 #ifdef illumos
4465 	case _PC_TIMESTAMP_RESOLUTION:
4466 		/* nanosecond timestamp resolution */
4467 		*valp = 1L;
4468 		return (0);
4469 #endif
4470 	case _PC_ACL_EXTENDED:
4471 		*valp = 0;
4472 		return (0);
4473 
4474 	case _PC_ACL_NFS4:
4475 		*valp = 1;
4476 		return (0);
4477 
4478 	case _PC_ACL_PATH_MAX:
4479 		*valp = ACL_MAX_ENTRIES;
4480 		return (0);
4481 
4482 	default:
4483 		return (EOPNOTSUPP);
4484 	}
4485 }
4486 
4487 /*ARGSUSED*/
4488 static int
zfs_getsecattr(vnode_t * vp,vsecattr_t * vsecp,int flag,cred_t * cr,caller_context_t * ct)4489 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4490     caller_context_t *ct)
4491 {
4492 	znode_t *zp = VTOZ(vp);
4493 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4494 	int error;
4495 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4496 
4497 	ZFS_ENTER(zfsvfs);
4498 	ZFS_VERIFY_ZP(zp);
4499 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4500 	ZFS_EXIT(zfsvfs);
4501 
4502 	return (error);
4503 }
4504 
4505 /*ARGSUSED*/
4506 int
zfs_setsecattr(vnode_t * vp,vsecattr_t * vsecp,int flag,cred_t * cr,caller_context_t * ct)4507 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4508     caller_context_t *ct)
4509 {
4510 	znode_t *zp = VTOZ(vp);
4511 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4512 	int error;
4513 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4514 	zilog_t	*zilog = zfsvfs->z_log;
4515 
4516 	ZFS_ENTER(zfsvfs);
4517 	ZFS_VERIFY_ZP(zp);
4518 
4519 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4520 
4521 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4522 		zil_commit(zilog, 0);
4523 
4524 	ZFS_EXIT(zfsvfs);
4525 	return (error);
4526 }
4527 
4528 static int
zfs_getpages(struct vnode * vp,vm_page_t * ma,int count,int * rbehind,int * rahead)4529 zfs_getpages(struct vnode *vp, vm_page_t *ma, int count, int *rbehind,
4530     int *rahead)
4531 {
4532 	znode_t *zp = VTOZ(vp);
4533 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4534 	objset_t *os = zp->z_zfsvfs->z_os;
4535 	rl_t *rl;
4536 	vm_object_t object;
4537 	off_t start, end, obj_size;
4538 	uint_t blksz;
4539 	int pgsin_b, pgsin_a;
4540 	int error;
4541 
4542 	ZFS_ENTER(zfsvfs);
4543 	ZFS_VERIFY_ZP(zp);
4544 
4545 	start = IDX_TO_OFF(ma[0]->pindex);
4546 	end = IDX_TO_OFF(ma[count - 1]->pindex + 1);
4547 
4548 	/*
4549 	 * Lock a range covering all required and optional pages.
4550 	 * Note that we need to handle the case of the block size growing.
4551 	 */
4552 	for (;;) {
4553 		blksz = zp->z_blksz;
4554 		rl = zfs_range_lock(zp, rounddown(start, blksz),
4555 		    roundup(end, blksz) - rounddown(start, blksz), RL_READER);
4556 		if (blksz == zp->z_blksz)
4557 			break;
4558 		zfs_range_unlock(rl);
4559 	}
4560 
4561 	object = ma[0]->object;
4562 	zfs_vmobject_wlock(object);
4563 	obj_size = object->un_pager.vnp.vnp_size;
4564 	zfs_vmobject_wunlock(object);
4565 	if (IDX_TO_OFF(ma[count - 1]->pindex) >= obj_size) {
4566 		zfs_range_unlock(rl);
4567 		ZFS_EXIT(zfsvfs);
4568 		return (zfs_vm_pagerret_bad);
4569 	}
4570 
4571 	pgsin_b = 0;
4572 	if (rbehind != NULL) {
4573 		pgsin_b = OFF_TO_IDX(start - rounddown(start, blksz));
4574 		pgsin_b = MIN(*rbehind, pgsin_b);
4575 	}
4576 
4577 	pgsin_a = 0;
4578 	if (rahead != NULL) {
4579 		pgsin_a = OFF_TO_IDX(roundup(end, blksz) - end);
4580 		if (end + IDX_TO_OFF(pgsin_a) >= obj_size)
4581 			pgsin_a = OFF_TO_IDX(round_page(obj_size) - end);
4582 		pgsin_a = MIN(*rahead, pgsin_a);
4583 	}
4584 
4585 	/*
4586 	 * NB: we need to pass the exact byte size of the data that we expect
4587 	 * to read after accounting for the file size.  This is required because
4588 	 * ZFS will panic if we request DMU to read beyond the end of the last
4589 	 * allocated block.
4590 	 */
4591 	error = dmu_read_pages(os, zp->z_id, ma, count, &pgsin_b, &pgsin_a,
4592 	    MIN(end, obj_size) - (end - PAGE_SIZE));
4593 
4594 	zfs_range_unlock(rl);
4595 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4596 	ZFS_EXIT(zfsvfs);
4597 
4598 	if (error != 0)
4599 		return (zfs_vm_pagerret_error);
4600 
4601 	VM_CNT_INC(v_vnodein);
4602 	VM_CNT_ADD(v_vnodepgsin, count + pgsin_b + pgsin_a);
4603 	if (rbehind != NULL)
4604 		*rbehind = pgsin_b;
4605 	if (rahead != NULL)
4606 		*rahead = pgsin_a;
4607 	return (zfs_vm_pagerret_ok);
4608 }
4609 
4610 static int
zfs_freebsd_getpages(ap)4611 zfs_freebsd_getpages(ap)
4612 	struct vop_getpages_args /* {
4613 		struct vnode *a_vp;
4614 		vm_page_t *a_m;
4615 		int a_count;
4616 		int *a_rbehind;
4617 		int *a_rahead;
4618 	} */ *ap;
4619 {
4620 
4621 	return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind,
4622 	    ap->a_rahead));
4623 }
4624 
4625 static int
zfs_putpages(struct vnode * vp,vm_page_t * ma,size_t len,int flags,int * rtvals)4626 zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags,
4627     int *rtvals)
4628 {
4629 	znode_t		*zp = VTOZ(vp);
4630 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4631 	rl_t		*rl;
4632 	dmu_tx_t	*tx;
4633 	struct sf_buf	*sf;
4634 	vm_object_t	object;
4635 	vm_page_t	m;
4636 	caddr_t		va;
4637 	size_t		tocopy;
4638 	size_t		lo_len;
4639 	vm_ooffset_t	lo_off;
4640 	vm_ooffset_t	off;
4641 	uint_t		blksz;
4642 	int		ncount;
4643 	int		pcount;
4644 	int		err;
4645 	int		i;
4646 
4647 	ZFS_ENTER(zfsvfs);
4648 	ZFS_VERIFY_ZP(zp);
4649 
4650 	object = vp->v_object;
4651 	pcount = btoc(len);
4652 	ncount = pcount;
4653 
4654 	KASSERT(ma[0]->object == object, ("mismatching object"));
4655 	KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length"));
4656 
4657 	for (i = 0; i < pcount; i++)
4658 		rtvals[i] = zfs_vm_pagerret_error;
4659 
4660 	off = IDX_TO_OFF(ma[0]->pindex);
4661 	blksz = zp->z_blksz;
4662 	lo_off = rounddown(off, blksz);
4663 	lo_len = roundup(len + (off - lo_off), blksz);
4664 	rl = zfs_range_lock(zp, lo_off, lo_len, RL_WRITER);
4665 
4666 	zfs_vmobject_wlock(object);
4667 	if (len + off > object->un_pager.vnp.vnp_size) {
4668 		if (object->un_pager.vnp.vnp_size > off) {
4669 			int pgoff;
4670 
4671 			len = object->un_pager.vnp.vnp_size - off;
4672 			ncount = btoc(len);
4673 			if ((pgoff = (int)len & PAGE_MASK) != 0) {
4674 				/*
4675 				 * If the object is locked and the following
4676 				 * conditions hold, then the page's dirty
4677 				 * field cannot be concurrently changed by a
4678 				 * pmap operation.
4679 				 */
4680 				m = ma[ncount - 1];
4681 				vm_page_assert_sbusied(m);
4682 				KASSERT(!pmap_page_is_write_mapped(m),
4683 				    ("zfs_putpages: page %p is not read-only", m));
4684 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
4685 				    pgoff);
4686 			}
4687 		} else {
4688 			len = 0;
4689 			ncount = 0;
4690 		}
4691 		if (ncount < pcount) {
4692 			for (i = ncount; i < pcount; i++) {
4693 				rtvals[i] = zfs_vm_pagerret_bad;
4694 			}
4695 		}
4696 	}
4697 	zfs_vmobject_wunlock(object);
4698 
4699 	if (ncount == 0)
4700 		goto out;
4701 
4702 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4703 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4704 		goto out;
4705 	}
4706 
4707 	tx = dmu_tx_create(zfsvfs->z_os);
4708 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4709 
4710 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4711 	zfs_sa_upgrade_txholds(tx, zp);
4712 	err = dmu_tx_assign(tx, TXG_WAIT);
4713 	if (err != 0) {
4714 		dmu_tx_abort(tx);
4715 		goto out;
4716 	}
4717 
4718 	if (zp->z_blksz < PAGE_SIZE) {
4719 		for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) {
4720 			tocopy = len > PAGE_SIZE ? PAGE_SIZE : len;
4721 			va = zfs_map_page(ma[i], &sf);
4722 			dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx);
4723 			zfs_unmap_page(sf);
4724 		}
4725 	} else {
4726 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx);
4727 	}
4728 
4729 	if (err == 0) {
4730 		uint64_t mtime[2], ctime[2];
4731 		sa_bulk_attr_t bulk[3];
4732 		int count = 0;
4733 
4734 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4735 		    &mtime, 16);
4736 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4737 		    &ctime, 16);
4738 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4739 		    &zp->z_pflags, 8);
4740 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4741 		    B_TRUE);
4742 		err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4743 		ASSERT0(err);
4744 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4745 
4746 		zfs_vmobject_wlock(object);
4747 		for (i = 0; i < ncount; i++) {
4748 			rtvals[i] = zfs_vm_pagerret_ok;
4749 			vm_page_undirty(ma[i]);
4750 		}
4751 		zfs_vmobject_wunlock(object);
4752 		VM_CNT_INC(v_vnodeout);
4753 		VM_CNT_ADD(v_vnodepgsout, ncount);
4754 	}
4755 	dmu_tx_commit(tx);
4756 
4757 out:
4758 	zfs_range_unlock(rl);
4759 	if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 ||
4760 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4761 		zil_commit(zfsvfs->z_log, zp->z_id);
4762 	ZFS_EXIT(zfsvfs);
4763 	return (rtvals[0]);
4764 }
4765 
4766 int
zfs_freebsd_putpages(ap)4767 zfs_freebsd_putpages(ap)
4768 	struct vop_putpages_args /* {
4769 		struct vnode *a_vp;
4770 		vm_page_t *a_m;
4771 		int a_count;
4772 		int a_sync;
4773 		int *a_rtvals;
4774 	} */ *ap;
4775 {
4776 
4777 	return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync,
4778 	    ap->a_rtvals));
4779 }
4780 
4781 static int
zfs_freebsd_bmap(ap)4782 zfs_freebsd_bmap(ap)
4783 	struct vop_bmap_args /* {
4784 		struct vnode *a_vp;
4785 		daddr_t  a_bn;
4786 		struct bufobj **a_bop;
4787 		daddr_t *a_bnp;
4788 		int *a_runp;
4789 		int *a_runb;
4790 	} */ *ap;
4791 {
4792 
4793 	if (ap->a_bop != NULL)
4794 		*ap->a_bop = &ap->a_vp->v_bufobj;
4795 	if (ap->a_bnp != NULL)
4796 		*ap->a_bnp = ap->a_bn;
4797 	if (ap->a_runp != NULL)
4798 		*ap->a_runp = 0;
4799 	if (ap->a_runb != NULL)
4800 		*ap->a_runb = 0;
4801 
4802 	return (0);
4803 }
4804 
4805 static int
zfs_freebsd_open(ap)4806 zfs_freebsd_open(ap)
4807 	struct vop_open_args /* {
4808 		struct vnode *a_vp;
4809 		int a_mode;
4810 		struct ucred *a_cred;
4811 		struct thread *a_td;
4812 	} */ *ap;
4813 {
4814 	vnode_t	*vp = ap->a_vp;
4815 	znode_t *zp = VTOZ(vp);
4816 	int error;
4817 
4818 	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
4819 	if (error == 0)
4820 		vnode_create_vobject(vp, zp->z_size, ap->a_td);
4821 	return (error);
4822 }
4823 
4824 static int
zfs_freebsd_close(ap)4825 zfs_freebsd_close(ap)
4826 	struct vop_close_args /* {
4827 		struct vnode *a_vp;
4828 		int  a_fflag;
4829 		struct ucred *a_cred;
4830 		struct thread *a_td;
4831 	} */ *ap;
4832 {
4833 
4834 	return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL));
4835 }
4836 
4837 static int
zfs_freebsd_ioctl(ap)4838 zfs_freebsd_ioctl(ap)
4839 	struct vop_ioctl_args /* {
4840 		struct vnode *a_vp;
4841 		u_long a_command;
4842 		caddr_t a_data;
4843 		int a_fflag;
4844 		struct ucred *cred;
4845 		struct thread *td;
4846 	} */ *ap;
4847 {
4848 
4849 	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
4850 	    ap->a_fflag, ap->a_cred, NULL, NULL));
4851 }
4852 
4853 static int
ioflags(int ioflags)4854 ioflags(int ioflags)
4855 {
4856 	int flags = 0;
4857 
4858 	if (ioflags & IO_APPEND)
4859 		flags |= FAPPEND;
4860 	if (ioflags & IO_NDELAY)
4861 		flags |= FNONBLOCK;
4862 	if (ioflags & IO_SYNC)
4863 		flags |= (FSYNC | FDSYNC | FRSYNC);
4864 
4865 	return (flags);
4866 }
4867 
4868 static int
zfs_freebsd_read(ap)4869 zfs_freebsd_read(ap)
4870 	struct vop_read_args /* {
4871 		struct vnode *a_vp;
4872 		struct uio *a_uio;
4873 		int a_ioflag;
4874 		struct ucred *a_cred;
4875 	} */ *ap;
4876 {
4877 
4878 	return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
4879 	    ap->a_cred, NULL));
4880 }
4881 
4882 static int
zfs_freebsd_write(ap)4883 zfs_freebsd_write(ap)
4884 	struct vop_write_args /* {
4885 		struct vnode *a_vp;
4886 		struct uio *a_uio;
4887 		int a_ioflag;
4888 		struct ucred *a_cred;
4889 	} */ *ap;
4890 {
4891 
4892 	return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
4893 	    ap->a_cred, NULL));
4894 }
4895 
4896 static int
zfs_freebsd_access(ap)4897 zfs_freebsd_access(ap)
4898 	struct vop_access_args /* {
4899 		struct vnode *a_vp;
4900 		accmode_t a_accmode;
4901 		struct ucred *a_cred;
4902 		struct thread *a_td;
4903 	} */ *ap;
4904 {
4905 	vnode_t *vp = ap->a_vp;
4906 	znode_t *zp = VTOZ(vp);
4907 	accmode_t accmode;
4908 	int error = 0;
4909 
4910 	/*
4911 	 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
4912 	 */
4913 	accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
4914 	if (accmode != 0)
4915 		error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL);
4916 
4917 	/*
4918 	 * VADMIN has to be handled by vaccess().
4919 	 */
4920 	if (error == 0) {
4921 		accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
4922 		if (accmode != 0) {
4923 			error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
4924 			    zp->z_gid, accmode, ap->a_cred, NULL);
4925 		}
4926 	}
4927 
4928 	/*
4929 	 * For VEXEC, ensure that at least one execute bit is set for
4930 	 * non-directories.
4931 	 */
4932 	if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
4933 	    (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
4934 		error = EACCES;
4935 	}
4936 
4937 	return (error);
4938 }
4939 
4940 static int
zfs_freebsd_lookup(ap)4941 zfs_freebsd_lookup(ap)
4942 	struct vop_lookup_args /* {
4943 		struct vnode *a_dvp;
4944 		struct vnode **a_vpp;
4945 		struct componentname *a_cnp;
4946 	} */ *ap;
4947 {
4948 	struct componentname *cnp = ap->a_cnp;
4949 	char nm[NAME_MAX + 1];
4950 
4951 	ASSERT(cnp->cn_namelen < sizeof(nm));
4952 	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
4953 
4954 	return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
4955 	    cnp->cn_cred, cnp->cn_thread, 0));
4956 }
4957 
4958 static int
zfs_cache_lookup(ap)4959 zfs_cache_lookup(ap)
4960 	struct vop_lookup_args /* {
4961 		struct vnode *a_dvp;
4962 		struct vnode **a_vpp;
4963 		struct componentname *a_cnp;
4964 	} */ *ap;
4965 {
4966 	zfsvfs_t *zfsvfs;
4967 
4968 	zfsvfs = ap->a_dvp->v_mount->mnt_data;
4969 	if (zfsvfs->z_use_namecache)
4970 		return (vfs_cache_lookup(ap));
4971 	else
4972 		return (zfs_freebsd_lookup(ap));
4973 }
4974 
4975 static int
zfs_freebsd_create(ap)4976 zfs_freebsd_create(ap)
4977 	struct vop_create_args /* {
4978 		struct vnode *a_dvp;
4979 		struct vnode **a_vpp;
4980 		struct componentname *a_cnp;
4981 		struct vattr *a_vap;
4982 	} */ *ap;
4983 {
4984 	zfsvfs_t *zfsvfs;
4985 	struct componentname *cnp = ap->a_cnp;
4986 	vattr_t *vap = ap->a_vap;
4987 	int error, mode;
4988 
4989 	ASSERT(cnp->cn_flags & SAVENAME);
4990 
4991 	vattr_init_mask(vap);
4992 	mode = vap->va_mode & ALLPERMS;
4993 	zfsvfs = ap->a_dvp->v_mount->mnt_data;
4994 
4995 	error = zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode,
4996 	    ap->a_vpp, cnp->cn_cred, cnp->cn_thread);
4997 	if (zfsvfs->z_use_namecache &&
4998 	    error == 0 && (cnp->cn_flags & MAKEENTRY) != 0)
4999 		cache_enter(ap->a_dvp, *ap->a_vpp, cnp);
5000 	return (error);
5001 }
5002 
5003 static int
zfs_freebsd_remove(ap)5004 zfs_freebsd_remove(ap)
5005 	struct vop_remove_args /* {
5006 		struct vnode *a_dvp;
5007 		struct vnode *a_vp;
5008 		struct componentname *a_cnp;
5009 	} */ *ap;
5010 {
5011 
5012 	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
5013 
5014 	return (zfs_remove(ap->a_dvp, ap->a_vp, ap->a_cnp->cn_nameptr,
5015 	    ap->a_cnp->cn_cred));
5016 }
5017 
5018 static int
zfs_freebsd_mkdir(ap)5019 zfs_freebsd_mkdir(ap)
5020 	struct vop_mkdir_args /* {
5021 		struct vnode *a_dvp;
5022 		struct vnode **a_vpp;
5023 		struct componentname *a_cnp;
5024 		struct vattr *a_vap;
5025 	} */ *ap;
5026 {
5027 	vattr_t *vap = ap->a_vap;
5028 
5029 	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
5030 
5031 	vattr_init_mask(vap);
5032 
5033 	return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
5034 	    ap->a_cnp->cn_cred));
5035 }
5036 
5037 static int
zfs_freebsd_rmdir(ap)5038 zfs_freebsd_rmdir(ap)
5039 	struct vop_rmdir_args /* {
5040 		struct vnode *a_dvp;
5041 		struct vnode *a_vp;
5042 		struct componentname *a_cnp;
5043 	} */ *ap;
5044 {
5045 	struct componentname *cnp = ap->a_cnp;
5046 
5047 	ASSERT(cnp->cn_flags & SAVENAME);
5048 
5049 	return (zfs_rmdir(ap->a_dvp, ap->a_vp, cnp->cn_nameptr, cnp->cn_cred));
5050 }
5051 
5052 static int
zfs_freebsd_readdir(ap)5053 zfs_freebsd_readdir(ap)
5054 	struct vop_readdir_args /* {
5055 		struct vnode *a_vp;
5056 		struct uio *a_uio;
5057 		struct ucred *a_cred;
5058 		int *a_eofflag;
5059 		int *a_ncookies;
5060 		u_long **a_cookies;
5061 	} */ *ap;
5062 {
5063 
5064 	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
5065 	    ap->a_ncookies, ap->a_cookies));
5066 }
5067 
5068 static int
zfs_freebsd_fsync(ap)5069 zfs_freebsd_fsync(ap)
5070 	struct vop_fsync_args /* {
5071 		struct vnode *a_vp;
5072 		int a_waitfor;
5073 		struct thread *a_td;
5074 	} */ *ap;
5075 {
5076 
5077 	vop_stdfsync(ap);
5078 	return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL));
5079 }
5080 
5081 static int
zfs_freebsd_getattr(ap)5082 zfs_freebsd_getattr(ap)
5083 	struct vop_getattr_args /* {
5084 		struct vnode *a_vp;
5085 		struct vattr *a_vap;
5086 		struct ucred *a_cred;
5087 	} */ *ap;
5088 {
5089 	vattr_t *vap = ap->a_vap;
5090 	xvattr_t xvap;
5091 	u_long fflags = 0;
5092 	int error;
5093 
5094 	xva_init(&xvap);
5095 	xvap.xva_vattr = *vap;
5096 	xvap.xva_vattr.va_mask |= AT_XVATTR;
5097 
5098 	/* Convert chflags into ZFS-type flags. */
5099 	/* XXX: what about SF_SETTABLE?. */
5100 	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
5101 	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
5102 	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
5103 	XVA_SET_REQ(&xvap, XAT_NODUMP);
5104 	XVA_SET_REQ(&xvap, XAT_READONLY);
5105 	XVA_SET_REQ(&xvap, XAT_ARCHIVE);
5106 	XVA_SET_REQ(&xvap, XAT_SYSTEM);
5107 	XVA_SET_REQ(&xvap, XAT_HIDDEN);
5108 	XVA_SET_REQ(&xvap, XAT_REPARSE);
5109 	XVA_SET_REQ(&xvap, XAT_OFFLINE);
5110 	XVA_SET_REQ(&xvap, XAT_SPARSE);
5111 
5112 	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
5113 	if (error != 0)
5114 		return (error);
5115 
5116 	/* Convert ZFS xattr into chflags. */
5117 #define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
5118 	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
5119 		fflags |= (fflag);					\
5120 } while (0)
5121 	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
5122 	    xvap.xva_xoptattrs.xoa_immutable);
5123 	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
5124 	    xvap.xva_xoptattrs.xoa_appendonly);
5125 	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
5126 	    xvap.xva_xoptattrs.xoa_nounlink);
5127 	FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
5128 	    xvap.xva_xoptattrs.xoa_archive);
5129 	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
5130 	    xvap.xva_xoptattrs.xoa_nodump);
5131 	FLAG_CHECK(UF_READONLY, XAT_READONLY,
5132 	    xvap.xva_xoptattrs.xoa_readonly);
5133 	FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
5134 	    xvap.xva_xoptattrs.xoa_system);
5135 	FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
5136 	    xvap.xva_xoptattrs.xoa_hidden);
5137 	FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
5138 	    xvap.xva_xoptattrs.xoa_reparse);
5139 	FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
5140 	    xvap.xva_xoptattrs.xoa_offline);
5141 	FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
5142 	    xvap.xva_xoptattrs.xoa_sparse);
5143 
5144 #undef	FLAG_CHECK
5145 	*vap = xvap.xva_vattr;
5146 	vap->va_flags = fflags;
5147 	return (0);
5148 }
5149 
5150 static int
zfs_freebsd_setattr(ap)5151 zfs_freebsd_setattr(ap)
5152 	struct vop_setattr_args /* {
5153 		struct vnode *a_vp;
5154 		struct vattr *a_vap;
5155 		struct ucred *a_cred;
5156 	} */ *ap;
5157 {
5158 	vnode_t *vp = ap->a_vp;
5159 	vattr_t *vap = ap->a_vap;
5160 	cred_t *cred = ap->a_cred;
5161 	xvattr_t xvap;
5162 	u_long fflags;
5163 	uint64_t zflags;
5164 
5165 	vattr_init_mask(vap);
5166 	vap->va_mask &= ~AT_NOSET;
5167 
5168 	xva_init(&xvap);
5169 	xvap.xva_vattr = *vap;
5170 
5171 	zflags = VTOZ(vp)->z_pflags;
5172 
5173 	if (vap->va_flags != VNOVAL) {
5174 		zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
5175 		int error;
5176 
5177 		if (zfsvfs->z_use_fuids == B_FALSE)
5178 			return (EOPNOTSUPP);
5179 
5180 		fflags = vap->va_flags;
5181 		/*
5182 		 * XXX KDM
5183 		 * We need to figure out whether it makes sense to allow
5184 		 * UF_REPARSE through, since we don't really have other
5185 		 * facilities to handle reparse points and zfs_setattr()
5186 		 * doesn't currently allow setting that attribute anyway.
5187 		 */
5188 		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
5189 		     UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
5190 		     UF_OFFLINE|UF_SPARSE)) != 0)
5191 			return (EOPNOTSUPP);
5192 		/*
5193 		 * Unprivileged processes are not permitted to unset system
5194 		 * flags, or modify flags if any system flags are set.
5195 		 * Privileged non-jail processes may not modify system flags
5196 		 * if securelevel > 0 and any existing system flags are set.
5197 		 * Privileged jail processes behave like privileged non-jail
5198 		 * processes if the PR_ALLOW_CHFLAGS permission bit is set;
5199 		 * otherwise, they behave like unprivileged processes.
5200 		 */
5201 		if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
5202 		    priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) {
5203 			if (zflags &
5204 			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
5205 				error = securelevel_gt(cred, 0);
5206 				if (error != 0)
5207 					return (error);
5208 			}
5209 		} else {
5210 			/*
5211 			 * Callers may only modify the file flags on objects they
5212 			 * have VADMIN rights for.
5213 			 */
5214 			if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0)
5215 				return (error);
5216 			if (zflags &
5217 			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
5218 				return (EPERM);
5219 			}
5220 			if (fflags &
5221 			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
5222 				return (EPERM);
5223 			}
5224 		}
5225 
5226 #define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
5227 	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
5228 	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
5229 		XVA_SET_REQ(&xvap, (xflag));				\
5230 		(xfield) = ((fflags & (fflag)) != 0);			\
5231 	}								\
5232 } while (0)
5233 		/* Convert chflags into ZFS-type flags. */
5234 		/* XXX: what about SF_SETTABLE?. */
5235 		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
5236 		    xvap.xva_xoptattrs.xoa_immutable);
5237 		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
5238 		    xvap.xva_xoptattrs.xoa_appendonly);
5239 		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
5240 		    xvap.xva_xoptattrs.xoa_nounlink);
5241 		FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
5242 		    xvap.xva_xoptattrs.xoa_archive);
5243 		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
5244 		    xvap.xva_xoptattrs.xoa_nodump);
5245 		FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
5246 		    xvap.xva_xoptattrs.xoa_readonly);
5247 		FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
5248 		    xvap.xva_xoptattrs.xoa_system);
5249 		FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
5250 		    xvap.xva_xoptattrs.xoa_hidden);
5251 		FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
5252 		    xvap.xva_xoptattrs.xoa_reparse);
5253 		FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
5254 		    xvap.xva_xoptattrs.xoa_offline);
5255 		FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
5256 		    xvap.xva_xoptattrs.xoa_sparse);
5257 #undef	FLAG_CHANGE
5258 	}
5259 	if (vap->va_birthtime.tv_sec != VNOVAL) {
5260 		xvap.xva_vattr.va_mask |= AT_XVATTR;
5261 		XVA_SET_REQ(&xvap, XAT_CREATETIME);
5262 	}
5263 	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
5264 }
5265 
5266 static int
zfs_freebsd_rename(ap)5267 zfs_freebsd_rename(ap)
5268 	struct vop_rename_args  /* {
5269 		struct vnode *a_fdvp;
5270 		struct vnode *a_fvp;
5271 		struct componentname *a_fcnp;
5272 		struct vnode *a_tdvp;
5273 		struct vnode *a_tvp;
5274 		struct componentname *a_tcnp;
5275 	} */ *ap;
5276 {
5277 	vnode_t *fdvp = ap->a_fdvp;
5278 	vnode_t *fvp = ap->a_fvp;
5279 	vnode_t *tdvp = ap->a_tdvp;
5280 	vnode_t *tvp = ap->a_tvp;
5281 	int error;
5282 
5283 	ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
5284 	ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
5285 
5286 	error = zfs_rename(fdvp, &fvp, ap->a_fcnp, tdvp, &tvp,
5287 	    ap->a_tcnp, ap->a_fcnp->cn_cred);
5288 
5289 	vrele(fdvp);
5290 	vrele(fvp);
5291 	vrele(tdvp);
5292 	if (tvp != NULL)
5293 		vrele(tvp);
5294 
5295 	return (error);
5296 }
5297 
5298 static int
zfs_freebsd_symlink(ap)5299 zfs_freebsd_symlink(ap)
5300 	struct vop_symlink_args /* {
5301 		struct vnode *a_dvp;
5302 		struct vnode **a_vpp;
5303 		struct componentname *a_cnp;
5304 		struct vattr *a_vap;
5305 		char *a_target;
5306 	} */ *ap;
5307 {
5308 	struct componentname *cnp = ap->a_cnp;
5309 	vattr_t *vap = ap->a_vap;
5310 
5311 	ASSERT(cnp->cn_flags & SAVENAME);
5312 
5313 	vap->va_type = VLNK;	/* FreeBSD: Syscall only sets va_mode. */
5314 	vattr_init_mask(vap);
5315 
5316 	return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap,
5317 	    ap->a_target, cnp->cn_cred, cnp->cn_thread));
5318 }
5319 
5320 static int
zfs_freebsd_readlink(ap)5321 zfs_freebsd_readlink(ap)
5322 	struct vop_readlink_args /* {
5323 		struct vnode *a_vp;
5324 		struct uio *a_uio;
5325 		struct ucred *a_cred;
5326 	} */ *ap;
5327 {
5328 
5329 	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
5330 }
5331 
5332 static int
zfs_freebsd_link(ap)5333 zfs_freebsd_link(ap)
5334 	struct vop_link_args /* {
5335 		struct vnode *a_tdvp;
5336 		struct vnode *a_vp;
5337 		struct componentname *a_cnp;
5338 	} */ *ap;
5339 {
5340 	struct componentname *cnp = ap->a_cnp;
5341 	vnode_t *vp = ap->a_vp;
5342 	vnode_t *tdvp = ap->a_tdvp;
5343 
5344 	if (tdvp->v_mount != vp->v_mount)
5345 		return (EXDEV);
5346 
5347 	ASSERT(cnp->cn_flags & SAVENAME);
5348 
5349 	return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
5350 }
5351 
5352 static int
zfs_freebsd_inactive(ap)5353 zfs_freebsd_inactive(ap)
5354 	struct vop_inactive_args /* {
5355 		struct vnode *a_vp;
5356 		struct thread *a_td;
5357 	} */ *ap;
5358 {
5359 	vnode_t *vp = ap->a_vp;
5360 
5361 	zfs_inactive(vp, ap->a_td->td_ucred, NULL);
5362 	return (0);
5363 }
5364 
5365 static int
zfs_freebsd_reclaim(ap)5366 zfs_freebsd_reclaim(ap)
5367 	struct vop_reclaim_args /* {
5368 		struct vnode *a_vp;
5369 		struct thread *a_td;
5370 	} */ *ap;
5371 {
5372 	vnode_t	*vp = ap->a_vp;
5373 	znode_t	*zp = VTOZ(vp);
5374 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5375 
5376 	ASSERT(zp != NULL);
5377 
5378 	/* Destroy the vm object and flush associated pages. */
5379 	vnode_destroy_vobject(vp);
5380 
5381 	/*
5382 	 * z_teardown_inactive_lock protects from a race with
5383 	 * zfs_znode_dmu_fini in zfsvfs_teardown during
5384 	 * force unmount.
5385 	 */
5386 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
5387 	if (zp->z_sa_hdl == NULL)
5388 		zfs_znode_free(zp);
5389 	else
5390 		zfs_zinactive(zp);
5391 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
5392 
5393 	vp->v_data = NULL;
5394 	return (0);
5395 }
5396 
5397 static int
zfs_freebsd_fid(ap)5398 zfs_freebsd_fid(ap)
5399 	struct vop_fid_args /* {
5400 		struct vnode *a_vp;
5401 		struct fid *a_fid;
5402 	} */ *ap;
5403 {
5404 
5405 	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
5406 }
5407 
5408 static int
zfs_freebsd_pathconf(ap)5409 zfs_freebsd_pathconf(ap)
5410 	struct vop_pathconf_args /* {
5411 		struct vnode *a_vp;
5412 		int a_name;
5413 		register_t *a_retval;
5414 	} */ *ap;
5415 {
5416 	ulong_t val;
5417 	int error;
5418 
5419 	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL);
5420 	if (error == 0) {
5421 		*ap->a_retval = val;
5422 		return (error);
5423 	}
5424 	if (error != EOPNOTSUPP)
5425 		return (error);
5426 
5427 	switch (ap->a_name) {
5428 	case _PC_NAME_MAX:
5429 		*ap->a_retval = NAME_MAX;
5430 		return (0);
5431 	case _PC_PIPE_BUF:
5432 		if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) {
5433 			*ap->a_retval = PIPE_BUF;
5434 			return (0);
5435 		}
5436 		return (EINVAL);
5437 	default:
5438 		return (vop_stdpathconf(ap));
5439 	}
5440 }
5441 
5442 /*
5443  * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
5444  * extended attribute name:
5445  *
5446  *	NAMESPACE	PREFIX
5447  *	system		freebsd:system:
5448  *	user		(none, can be used to access ZFS fsattr(5) attributes
5449  *			created on Solaris)
5450  */
5451 static int
zfs_create_attrname(int attrnamespace,const char * name,char * attrname,size_t size)5452 zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
5453     size_t size)
5454 {
5455 	const char *namespace, *prefix, *suffix;
5456 
5457 	/* We don't allow '/' character in attribute name. */
5458 	if (strchr(name, '/') != NULL)
5459 		return (EINVAL);
5460 	/* We don't allow attribute names that start with "freebsd:" string. */
5461 	if (strncmp(name, "freebsd:", 8) == 0)
5462 		return (EINVAL);
5463 
5464 	bzero(attrname, size);
5465 
5466 	switch (attrnamespace) {
5467 	case EXTATTR_NAMESPACE_USER:
5468 #if 0
5469 		prefix = "freebsd:";
5470 		namespace = EXTATTR_NAMESPACE_USER_STRING;
5471 		suffix = ":";
5472 #else
5473 		/*
5474 		 * This is the default namespace by which we can access all
5475 		 * attributes created on Solaris.
5476 		 */
5477 		prefix = namespace = suffix = "";
5478 #endif
5479 		break;
5480 	case EXTATTR_NAMESPACE_SYSTEM:
5481 		prefix = "freebsd:";
5482 		namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
5483 		suffix = ":";
5484 		break;
5485 	case EXTATTR_NAMESPACE_EMPTY:
5486 	default:
5487 		return (EINVAL);
5488 	}
5489 	if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
5490 	    name) >= size) {
5491 		return (ENAMETOOLONG);
5492 	}
5493 	return (0);
5494 }
5495 
5496 /*
5497  * Vnode operating to retrieve a named extended attribute.
5498  */
5499 static int
zfs_getextattr(struct vop_getextattr_args * ap)5500 zfs_getextattr(struct vop_getextattr_args *ap)
5501 /*
5502 vop_getextattr {
5503 	IN struct vnode *a_vp;
5504 	IN int a_attrnamespace;
5505 	IN const char *a_name;
5506 	INOUT struct uio *a_uio;
5507 	OUT size_t *a_size;
5508 	IN struct ucred *a_cred;
5509 	IN struct thread *a_td;
5510 };
5511 */
5512 {
5513 	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
5514 	struct thread *td = ap->a_td;
5515 	struct nameidata nd;
5516 	char attrname[255];
5517 	struct vattr va;
5518 	vnode_t *xvp = NULL, *vp;
5519 	int error, flags;
5520 
5521 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
5522 	    ap->a_cred, ap->a_td, VREAD);
5523 	if (error != 0)
5524 		return (error);
5525 
5526 	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
5527 	    sizeof(attrname));
5528 	if (error != 0)
5529 		return (error);
5530 
5531 	ZFS_ENTER(zfsvfs);
5532 
5533 	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
5534 	    LOOKUP_XATTR);
5535 	if (error != 0) {
5536 		ZFS_EXIT(zfsvfs);
5537 		return (error);
5538 	}
5539 
5540 	flags = FREAD;
5541 	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
5542 	    xvp, td);
5543 	error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL);
5544 	vp = nd.ni_vp;
5545 	NDFREE(&nd, NDF_ONLY_PNBUF);
5546 	if (error != 0) {
5547 		ZFS_EXIT(zfsvfs);
5548 		if (error == ENOENT)
5549 			error = ENOATTR;
5550 		return (error);
5551 	}
5552 
5553 	if (ap->a_size != NULL) {
5554 		error = VOP_GETATTR(vp, &va, ap->a_cred);
5555 		if (error == 0)
5556 			*ap->a_size = (size_t)va.va_size;
5557 	} else if (ap->a_uio != NULL)
5558 		error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
5559 
5560 	VOP_UNLOCK(vp, 0);
5561 	vn_close(vp, flags, ap->a_cred, td);
5562 	ZFS_EXIT(zfsvfs);
5563 
5564 	return (error);
5565 }
5566 
5567 /*
5568  * Vnode operation to remove a named attribute.
5569  */
5570 int
zfs_deleteextattr(struct vop_deleteextattr_args * ap)5571 zfs_deleteextattr(struct vop_deleteextattr_args *ap)
5572 /*
5573 vop_deleteextattr {
5574 	IN struct vnode *a_vp;
5575 	IN int a_attrnamespace;
5576 	IN const char *a_name;
5577 	IN struct ucred *a_cred;
5578 	IN struct thread *a_td;
5579 };
5580 */
5581 {
5582 	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
5583 	struct thread *td = ap->a_td;
5584 	struct nameidata nd;
5585 	char attrname[255];
5586 	struct vattr va;
5587 	vnode_t *xvp = NULL, *vp;
5588 	int error, flags;
5589 
5590 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
5591 	    ap->a_cred, ap->a_td, VWRITE);
5592 	if (error != 0)
5593 		return (error);
5594 
5595 	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
5596 	    sizeof(attrname));
5597 	if (error != 0)
5598 		return (error);
5599 
5600 	ZFS_ENTER(zfsvfs);
5601 
5602 	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
5603 	    LOOKUP_XATTR);
5604 	if (error != 0) {
5605 		ZFS_EXIT(zfsvfs);
5606 		return (error);
5607 	}
5608 
5609 	NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
5610 	    UIO_SYSSPACE, attrname, xvp, td);
5611 	error = namei(&nd);
5612 	vp = nd.ni_vp;
5613 	if (error != 0) {
5614 		ZFS_EXIT(zfsvfs);
5615 		NDFREE(&nd, NDF_ONLY_PNBUF);
5616 		if (error == ENOENT)
5617 			error = ENOATTR;
5618 		return (error);
5619 	}
5620 
5621 	error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
5622 	NDFREE(&nd, NDF_ONLY_PNBUF);
5623 
5624 	vput(nd.ni_dvp);
5625 	if (vp == nd.ni_dvp)
5626 		vrele(vp);
5627 	else
5628 		vput(vp);
5629 	ZFS_EXIT(zfsvfs);
5630 
5631 	return (error);
5632 }
5633 
5634 /*
5635  * Vnode operation to set a named attribute.
5636  */
5637 static int
zfs_setextattr(struct vop_setextattr_args * ap)5638 zfs_setextattr(struct vop_setextattr_args *ap)
5639 /*
5640 vop_setextattr {
5641 	IN struct vnode *a_vp;
5642 	IN int a_attrnamespace;
5643 	IN const char *a_name;
5644 	INOUT struct uio *a_uio;
5645 	IN struct ucred *a_cred;
5646 	IN struct thread *a_td;
5647 };
5648 */
5649 {
5650 	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
5651 	struct thread *td = ap->a_td;
5652 	struct nameidata nd;
5653 	char attrname[255];
5654 	struct vattr va;
5655 	vnode_t *xvp = NULL, *vp;
5656 	int error, flags;
5657 
5658 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
5659 	    ap->a_cred, ap->a_td, VWRITE);
5660 	if (error != 0)
5661 		return (error);
5662 
5663 	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
5664 	    sizeof(attrname));
5665 	if (error != 0)
5666 		return (error);
5667 
5668 	ZFS_ENTER(zfsvfs);
5669 
5670 	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
5671 	    LOOKUP_XATTR | CREATE_XATTR_DIR);
5672 	if (error != 0) {
5673 		ZFS_EXIT(zfsvfs);
5674 		return (error);
5675 	}
5676 
5677 	flags = FFLAGS(O_WRONLY | O_CREAT);
5678 	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
5679 	    xvp, td);
5680 	error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL);
5681 	vp = nd.ni_vp;
5682 	NDFREE(&nd, NDF_ONLY_PNBUF);
5683 	if (error != 0) {
5684 		ZFS_EXIT(zfsvfs);
5685 		return (error);
5686 	}
5687 
5688 	VATTR_NULL(&va);
5689 	va.va_size = 0;
5690 	error = VOP_SETATTR(vp, &va, ap->a_cred);
5691 	if (error == 0)
5692 		VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred);
5693 
5694 	VOP_UNLOCK(vp, 0);
5695 	vn_close(vp, flags, ap->a_cred, td);
5696 	ZFS_EXIT(zfsvfs);
5697 
5698 	return (error);
5699 }
5700 
5701 /*
5702  * Vnode operation to retrieve extended attributes on a vnode.
5703  */
5704 static int
zfs_listextattr(struct vop_listextattr_args * ap)5705 zfs_listextattr(struct vop_listextattr_args *ap)
5706 /*
5707 vop_listextattr {
5708 	IN struct vnode *a_vp;
5709 	IN int a_attrnamespace;
5710 	INOUT struct uio *a_uio;
5711 	OUT size_t *a_size;
5712 	IN struct ucred *a_cred;
5713 	IN struct thread *a_td;
5714 };
5715 */
5716 {
5717 	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
5718 	struct thread *td = ap->a_td;
5719 	struct nameidata nd;
5720 	char attrprefix[16];
5721 	u_char dirbuf[sizeof(struct dirent)];
5722 	struct dirent *dp;
5723 	struct iovec aiov;
5724 	struct uio auio, *uio = ap->a_uio;
5725 	size_t *sizep = ap->a_size;
5726 	size_t plen;
5727 	vnode_t *xvp = NULL, *vp;
5728 	int done, error, eof, pos;
5729 
5730 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
5731 	    ap->a_cred, ap->a_td, VREAD);
5732 	if (error != 0)
5733 		return (error);
5734 
5735 	error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
5736 	    sizeof(attrprefix));
5737 	if (error != 0)
5738 		return (error);
5739 	plen = strlen(attrprefix);
5740 
5741 	ZFS_ENTER(zfsvfs);
5742 
5743 	if (sizep != NULL)
5744 		*sizep = 0;
5745 
5746 	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
5747 	    LOOKUP_XATTR);
5748 	if (error != 0) {
5749 		ZFS_EXIT(zfsvfs);
5750 		/*
5751 		 * ENOATTR means that the EA directory does not yet exist,
5752 		 * i.e. there are no extended attributes there.
5753 		 */
5754 		if (error == ENOATTR)
5755 			error = 0;
5756 		return (error);
5757 	}
5758 
5759 	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
5760 	    UIO_SYSSPACE, ".", xvp, td);
5761 	error = namei(&nd);
5762 	vp = nd.ni_vp;
5763 	NDFREE(&nd, NDF_ONLY_PNBUF);
5764 	if (error != 0) {
5765 		ZFS_EXIT(zfsvfs);
5766 		return (error);
5767 	}
5768 
5769 	auio.uio_iov = &aiov;
5770 	auio.uio_iovcnt = 1;
5771 	auio.uio_segflg = UIO_SYSSPACE;
5772 	auio.uio_td = td;
5773 	auio.uio_rw = UIO_READ;
5774 	auio.uio_offset = 0;
5775 
5776 	do {
5777 		u_char nlen;
5778 
5779 		aiov.iov_base = (void *)dirbuf;
5780 		aiov.iov_len = sizeof(dirbuf);
5781 		auio.uio_resid = sizeof(dirbuf);
5782 		error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
5783 		done = sizeof(dirbuf) - auio.uio_resid;
5784 		if (error != 0)
5785 			break;
5786 		for (pos = 0; pos < done;) {
5787 			dp = (struct dirent *)(dirbuf + pos);
5788 			pos += dp->d_reclen;
5789 			/*
5790 			 * XXX: Temporarily we also accept DT_UNKNOWN, as this
5791 			 * is what we get when attribute was created on Solaris.
5792 			 */
5793 			if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
5794 				continue;
5795 			if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0)
5796 				continue;
5797 			else if (strncmp(dp->d_name, attrprefix, plen) != 0)
5798 				continue;
5799 			nlen = dp->d_namlen - plen;
5800 			if (sizep != NULL)
5801 				*sizep += 1 + nlen;
5802 			else if (uio != NULL) {
5803 				/*
5804 				 * Format of extattr name entry is one byte for
5805 				 * length and the rest for name.
5806 				 */
5807 				error = uiomove(&nlen, 1, uio->uio_rw, uio);
5808 				if (error == 0) {
5809 					error = uiomove(dp->d_name + plen, nlen,
5810 					    uio->uio_rw, uio);
5811 				}
5812 				if (error != 0)
5813 					break;
5814 			}
5815 		}
5816 	} while (!eof && error == 0);
5817 
5818 	vput(vp);
5819 	ZFS_EXIT(zfsvfs);
5820 
5821 	return (error);
5822 }
5823 
5824 int
zfs_freebsd_getacl(ap)5825 zfs_freebsd_getacl(ap)
5826 	struct vop_getacl_args /* {
5827 		struct vnode *vp;
5828 		acl_type_t type;
5829 		struct acl *aclp;
5830 		struct ucred *cred;
5831 		struct thread *td;
5832 	} */ *ap;
5833 {
5834 	int		error;
5835 	vsecattr_t      vsecattr;
5836 
5837 	if (ap->a_type != ACL_TYPE_NFS4)
5838 		return (EINVAL);
5839 
5840 	vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
5841 	if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL))
5842 		return (error);
5843 
5844 	error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt);
5845 	if (vsecattr.vsa_aclentp != NULL)
5846 		kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
5847 
5848 	return (error);
5849 }
5850 
5851 int
zfs_freebsd_setacl(ap)5852 zfs_freebsd_setacl(ap)
5853 	struct vop_setacl_args /* {
5854 		struct vnode *vp;
5855 		acl_type_t type;
5856 		struct acl *aclp;
5857 		struct ucred *cred;
5858 		struct thread *td;
5859 	} */ *ap;
5860 {
5861 	int		error;
5862 	vsecattr_t      vsecattr;
5863 	int		aclbsize;	/* size of acl list in bytes */
5864 	aclent_t	*aaclp;
5865 
5866 	if (ap->a_type != ACL_TYPE_NFS4)
5867 		return (EINVAL);
5868 
5869 	if (ap->a_aclp == NULL)
5870 		return (EINVAL);
5871 
5872 	if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
5873 		return (EINVAL);
5874 
5875 	/*
5876 	 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
5877 	 * splitting every entry into two and appending "canonical six"
5878 	 * entries at the end.  Don't allow for setting an ACL that would
5879 	 * cause chmod(2) to run out of ACL entries.
5880 	 */
5881 	if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
5882 		return (ENOSPC);
5883 
5884 	error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
5885 	if (error != 0)
5886 		return (error);
5887 
5888 	vsecattr.vsa_mask = VSA_ACE;
5889 	aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t);
5890 	vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
5891 	aaclp = vsecattr.vsa_aclentp;
5892 	vsecattr.vsa_aclentsz = aclbsize;
5893 
5894 	aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
5895 	error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL);
5896 	kmem_free(aaclp, aclbsize);
5897 
5898 	return (error);
5899 }
5900 
5901 int
zfs_freebsd_aclcheck(ap)5902 zfs_freebsd_aclcheck(ap)
5903 	struct vop_aclcheck_args /* {
5904 		struct vnode *vp;
5905 		acl_type_t type;
5906 		struct acl *aclp;
5907 		struct ucred *cred;
5908 		struct thread *td;
5909 	} */ *ap;
5910 {
5911 
5912 	return (EOPNOTSUPP);
5913 }
5914 
5915 static int
zfs_vptocnp(struct vop_vptocnp_args * ap)5916 zfs_vptocnp(struct vop_vptocnp_args *ap)
5917 {
5918 	vnode_t *covered_vp;
5919 	vnode_t *vp = ap->a_vp;;
5920 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
5921 	znode_t *zp = VTOZ(vp);
5922 	int ltype;
5923 	int error;
5924 
5925 	ZFS_ENTER(zfsvfs);
5926 	ZFS_VERIFY_ZP(zp);
5927 
5928 	/*
5929 	 * If we are a snapshot mounted under .zfs, run the operation
5930 	 * on the covered vnode.
5931 	 */
5932 	if (zp->z_id != zfsvfs->z_root || zfsvfs->z_parent == zfsvfs) {
5933 		char name[MAXNAMLEN + 1];
5934 		znode_t *dzp;
5935 		size_t len;
5936 
5937 		error = zfs_znode_parent_and_name(zp, &dzp, name);
5938 		if (error == 0) {
5939 			len = strlen(name);
5940 			if (*ap->a_buflen < len)
5941 				error = SET_ERROR(ENOMEM);
5942 		}
5943 		if (error == 0) {
5944 			*ap->a_buflen -= len;
5945 			bcopy(name, ap->a_buf + *ap->a_buflen, len);
5946 			*ap->a_vpp = ZTOV(dzp);
5947 		}
5948 		ZFS_EXIT(zfsvfs);
5949 		return (error);
5950 	}
5951 	ZFS_EXIT(zfsvfs);
5952 
5953 	covered_vp = vp->v_mount->mnt_vnodecovered;
5954 	vhold(covered_vp);
5955 	ltype = VOP_ISLOCKED(vp);
5956 	VOP_UNLOCK(vp, 0);
5957 	error = vget(covered_vp, LK_SHARED | LK_VNHELD, curthread);
5958 	if (error == 0) {
5959 		error = VOP_VPTOCNP(covered_vp, ap->a_vpp, ap->a_cred,
5960 		    ap->a_buf, ap->a_buflen);
5961 		vput(covered_vp);
5962 	}
5963 	vn_lock(vp, ltype | LK_RETRY);
5964 	if ((vp->v_iflag & VI_DOOMED) != 0)
5965 		error = SET_ERROR(ENOENT);
5966 	return (error);
5967 }
5968 
5969 #ifdef DIAGNOSTIC
5970 static int
zfs_lock(ap)5971 zfs_lock(ap)
5972 	struct vop_lock1_args /* {
5973 		struct vnode *a_vp;
5974 		int a_flags;
5975 		char *file;
5976 		int line;
5977 	} */ *ap;
5978 {
5979 	vnode_t *vp;
5980 	znode_t *zp;
5981 	int err;
5982 
5983 	err = vop_stdlock(ap);
5984 	if (err == 0 && (ap->a_flags & LK_NOWAIT) == 0) {
5985 		vp = ap->a_vp;
5986 		zp = vp->v_data;
5987 		if (vp->v_mount != NULL && (vp->v_iflag & VI_DOOMED) == 0 &&
5988 		    zp != NULL && (zp->z_pflags & ZFS_XATTR) == 0)
5989 			VERIFY(!RRM_LOCK_HELD(&zp->z_zfsvfs->z_teardown_lock));
5990 	}
5991 	return (err);
5992 }
5993 #endif
5994 
5995 struct vop_vector zfs_vnodeops;
5996 struct vop_vector zfs_fifoops;
5997 struct vop_vector zfs_shareops;
5998 
5999 struct vop_vector zfs_vnodeops = {
6000 	.vop_default =		&default_vnodeops,
6001 	.vop_inactive =		zfs_freebsd_inactive,
6002 	.vop_reclaim =		zfs_freebsd_reclaim,
6003 	.vop_access =		zfs_freebsd_access,
6004 	.vop_allocate =		VOP_EINVAL,
6005 	.vop_lookup =		zfs_cache_lookup,
6006 	.vop_cachedlookup =	zfs_freebsd_lookup,
6007 	.vop_getattr =		zfs_freebsd_getattr,
6008 	.vop_setattr =		zfs_freebsd_setattr,
6009 	.vop_create =		zfs_freebsd_create,
6010 	.vop_mknod =		zfs_freebsd_create,
6011 	.vop_mkdir =		zfs_freebsd_mkdir,
6012 	.vop_readdir =		zfs_freebsd_readdir,
6013 	.vop_fsync =		zfs_freebsd_fsync,
6014 	.vop_open =		zfs_freebsd_open,
6015 	.vop_close =		zfs_freebsd_close,
6016 	.vop_rmdir =		zfs_freebsd_rmdir,
6017 	.vop_ioctl =		zfs_freebsd_ioctl,
6018 	.vop_link =		zfs_freebsd_link,
6019 	.vop_symlink =		zfs_freebsd_symlink,
6020 	.vop_readlink =		zfs_freebsd_readlink,
6021 	.vop_read =		zfs_freebsd_read,
6022 	.vop_write =		zfs_freebsd_write,
6023 	.vop_remove =		zfs_freebsd_remove,
6024 	.vop_rename =		zfs_freebsd_rename,
6025 	.vop_pathconf =		zfs_freebsd_pathconf,
6026 	.vop_bmap =		zfs_freebsd_bmap,
6027 	.vop_fid =		zfs_freebsd_fid,
6028 	.vop_getextattr =	zfs_getextattr,
6029 	.vop_deleteextattr =	zfs_deleteextattr,
6030 	.vop_setextattr =	zfs_setextattr,
6031 	.vop_listextattr =	zfs_listextattr,
6032 	.vop_getacl =		zfs_freebsd_getacl,
6033 	.vop_setacl =		zfs_freebsd_setacl,
6034 	.vop_aclcheck =		zfs_freebsd_aclcheck,
6035 	.vop_getpages =		zfs_freebsd_getpages,
6036 	.vop_putpages =		zfs_freebsd_putpages,
6037 	.vop_vptocnp =		zfs_vptocnp,
6038 #ifdef DIAGNOSTIC
6039 	.vop_lock1 =		zfs_lock,
6040 #endif
6041 };
6042 
6043 struct vop_vector zfs_fifoops = {
6044 	.vop_default =		&fifo_specops,
6045 	.vop_fsync =		zfs_freebsd_fsync,
6046 	.vop_access =		zfs_freebsd_access,
6047 	.vop_getattr =		zfs_freebsd_getattr,
6048 	.vop_inactive =		zfs_freebsd_inactive,
6049 	.vop_read =		VOP_PANIC,
6050 	.vop_reclaim =		zfs_freebsd_reclaim,
6051 	.vop_setattr =		zfs_freebsd_setattr,
6052 	.vop_write =		VOP_PANIC,
6053 	.vop_pathconf = 	zfs_freebsd_pathconf,
6054 	.vop_fid =		zfs_freebsd_fid,
6055 	.vop_getacl =		zfs_freebsd_getacl,
6056 	.vop_setacl =		zfs_freebsd_setacl,
6057 	.vop_aclcheck =		zfs_freebsd_aclcheck,
6058 };
6059 
6060 /*
6061  * special share hidden files vnode operations template
6062  */
6063 struct vop_vector zfs_shareops = {
6064 	.vop_default =		&default_vnodeops,
6065 	.vop_access =		zfs_freebsd_access,
6066 	.vop_inactive =		zfs_freebsd_inactive,
6067 	.vop_reclaim =		zfs_freebsd_reclaim,
6068 	.vop_fid =		zfs_freebsd_fid,
6069 	.vop_pathconf =		zfs_freebsd_pathconf,
6070 };
6071