1 //===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_DECL_H
14 #define LLVM_CLANG_AST_DECL_H
15 
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/DeclAccessPair.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclarationName.h"
21 #include "clang/AST/ExternalASTSource.h"
22 #include "clang/AST/NestedNameSpecifier.h"
23 #include "clang/AST/Redeclarable.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/AddressSpaces.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/LLVM.h"
29 #include "clang/Basic/Linkage.h"
30 #include "clang/Basic/OperatorKinds.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/PragmaKinds.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/Specifiers.h"
35 #include "clang/Basic/Visibility.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/Optional.h"
39 #include "llvm/ADT/PointerIntPair.h"
40 #include "llvm/ADT/PointerUnion.h"
41 #include "llvm/ADT/StringRef.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/TrailingObjects.h"
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <string>
50 #include <utility>
51 
52 namespace clang {
53 
54 class ASTContext;
55 struct ASTTemplateArgumentListInfo;
56 class CompoundStmt;
57 class DependentFunctionTemplateSpecializationInfo;
58 class EnumDecl;
59 class Expr;
60 class FunctionTemplateDecl;
61 class FunctionTemplateSpecializationInfo;
62 class FunctionTypeLoc;
63 class LabelStmt;
64 class MemberSpecializationInfo;
65 class Module;
66 class NamespaceDecl;
67 class ParmVarDecl;
68 class RecordDecl;
69 class Stmt;
70 class StringLiteral;
71 class TagDecl;
72 class TemplateArgumentList;
73 class TemplateArgumentListInfo;
74 class TemplateParameterList;
75 class TypeAliasTemplateDecl;
76 class UnresolvedSetImpl;
77 class VarTemplateDecl;
78 
79 /// The top declaration context.
80 class TranslationUnitDecl : public Decl,
81                             public DeclContext,
82                             public Redeclarable<TranslationUnitDecl> {
83   using redeclarable_base = Redeclarable<TranslationUnitDecl>;
84 
getNextRedeclarationImpl()85   TranslationUnitDecl *getNextRedeclarationImpl() override {
86     return getNextRedeclaration();
87   }
88 
getPreviousDeclImpl()89   TranslationUnitDecl *getPreviousDeclImpl() override {
90     return getPreviousDecl();
91   }
92 
getMostRecentDeclImpl()93   TranslationUnitDecl *getMostRecentDeclImpl() override {
94     return getMostRecentDecl();
95   }
96 
97   ASTContext &Ctx;
98 
99   /// The (most recently entered) anonymous namespace for this
100   /// translation unit, if one has been created.
101   NamespaceDecl *AnonymousNamespace = nullptr;
102 
103   explicit TranslationUnitDecl(ASTContext &ctx);
104 
105   virtual void anchor();
106 
107 public:
108   using redecl_range = redeclarable_base::redecl_range;
109   using redecl_iterator = redeclarable_base::redecl_iterator;
110 
111   using redeclarable_base::getMostRecentDecl;
112   using redeclarable_base::getPreviousDecl;
113   using redeclarable_base::isFirstDecl;
114   using redeclarable_base::redecls;
115   using redeclarable_base::redecls_begin;
116   using redeclarable_base::redecls_end;
117 
getASTContext()118   ASTContext &getASTContext() const { return Ctx; }
119 
getAnonymousNamespace()120   NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
setAnonymousNamespace(NamespaceDecl * D)121   void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
122 
123   static TranslationUnitDecl *Create(ASTContext &C);
124 
125   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)126   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)127   static bool classofKind(Kind K) { return K == TranslationUnit; }
castToDeclContext(const TranslationUnitDecl * D)128   static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
129     return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
130   }
castFromDeclContext(const DeclContext * DC)131   static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
132     return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
133   }
134 };
135 
136 /// Represents a `#pragma comment` line. Always a child of
137 /// TranslationUnitDecl.
138 class PragmaCommentDecl final
139     : public Decl,
140       private llvm::TrailingObjects<PragmaCommentDecl, char> {
141   friend class ASTDeclReader;
142   friend class ASTDeclWriter;
143   friend TrailingObjects;
144 
145   PragmaMSCommentKind CommentKind;
146 
PragmaCommentDecl(TranslationUnitDecl * TU,SourceLocation CommentLoc,PragmaMSCommentKind CommentKind)147   PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
148                     PragmaMSCommentKind CommentKind)
149       : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
150 
151   virtual void anchor();
152 
153 public:
154   static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
155                                    SourceLocation CommentLoc,
156                                    PragmaMSCommentKind CommentKind,
157                                    StringRef Arg);
158   static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
159                                                unsigned ArgSize);
160 
getCommentKind()161   PragmaMSCommentKind getCommentKind() const { return CommentKind; }
162 
getArg()163   StringRef getArg() const { return getTrailingObjects<char>(); }
164 
165   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)166   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)167   static bool classofKind(Kind K) { return K == PragmaComment; }
168 };
169 
170 /// Represents a `#pragma detect_mismatch` line. Always a child of
171 /// TranslationUnitDecl.
172 class PragmaDetectMismatchDecl final
173     : public Decl,
174       private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
175   friend class ASTDeclReader;
176   friend class ASTDeclWriter;
177   friend TrailingObjects;
178 
179   size_t ValueStart;
180 
PragmaDetectMismatchDecl(TranslationUnitDecl * TU,SourceLocation Loc,size_t ValueStart)181   PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
182                            size_t ValueStart)
183       : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
184 
185   virtual void anchor();
186 
187 public:
188   static PragmaDetectMismatchDecl *Create(const ASTContext &C,
189                                           TranslationUnitDecl *DC,
190                                           SourceLocation Loc, StringRef Name,
191                                           StringRef Value);
192   static PragmaDetectMismatchDecl *
193   CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
194 
getName()195   StringRef getName() const { return getTrailingObjects<char>(); }
getValue()196   StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
197 
198   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)199   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)200   static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
201 };
202 
203 /// Declaration context for names declared as extern "C" in C++. This
204 /// is neither the semantic nor lexical context for such declarations, but is
205 /// used to check for conflicts with other extern "C" declarations. Example:
206 ///
207 /// \code
208 ///   namespace N { extern "C" void f(); } // #1
209 ///   void N::f() {}                       // #2
210 ///   namespace M { extern "C" void f(); } // #3
211 /// \endcode
212 ///
213 /// The semantic context of #1 is namespace N and its lexical context is the
214 /// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
215 /// context is the TU. However, both declarations are also visible in the
216 /// extern "C" context.
217 ///
218 /// The declaration at #3 finds it is a redeclaration of \c N::f through
219 /// lookup in the extern "C" context.
220 class ExternCContextDecl : public Decl, public DeclContext {
ExternCContextDecl(TranslationUnitDecl * TU)221   explicit ExternCContextDecl(TranslationUnitDecl *TU)
222     : Decl(ExternCContext, TU, SourceLocation()),
223       DeclContext(ExternCContext) {}
224 
225   virtual void anchor();
226 
227 public:
228   static ExternCContextDecl *Create(const ASTContext &C,
229                                     TranslationUnitDecl *TU);
230 
231   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)232   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)233   static bool classofKind(Kind K) { return K == ExternCContext; }
castToDeclContext(const ExternCContextDecl * D)234   static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
235     return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
236   }
castFromDeclContext(const DeclContext * DC)237   static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
238     return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
239   }
240 };
241 
242 /// This represents a decl that may have a name.  Many decls have names such
243 /// as ObjCMethodDecl, but not \@class, etc.
244 ///
245 /// Note that not every NamedDecl is actually named (e.g., a struct might
246 /// be anonymous), and not every name is an identifier.
247 class NamedDecl : public Decl {
248   /// The name of this declaration, which is typically a normal
249   /// identifier but may also be a special kind of name (C++
250   /// constructor, Objective-C selector, etc.)
251   DeclarationName Name;
252 
253   virtual void anchor();
254 
255 private:
256   NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
257 
258 protected:
NamedDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N)259   NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
260       : Decl(DK, DC, L), Name(N) {}
261 
262 public:
263   /// Get the identifier that names this declaration, if there is one.
264   ///
265   /// This will return NULL if this declaration has no name (e.g., for
266   /// an unnamed class) or if the name is a special name (C++ constructor,
267   /// Objective-C selector, etc.).
getIdentifier()268   IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
269 
270   /// Get the name of identifier for this declaration as a StringRef.
271   ///
272   /// This requires that the declaration have a name and that it be a simple
273   /// identifier.
getName()274   StringRef getName() const {
275     assert(Name.isIdentifier() && "Name is not a simple identifier");
276     return getIdentifier() ? getIdentifier()->getName() : "";
277   }
278 
279   /// Get a human-readable name for the declaration, even if it is one of the
280   /// special kinds of names (C++ constructor, Objective-C selector, etc).
281   ///
282   /// Creating this name requires expensive string manipulation, so it should
283   /// be called only when performance doesn't matter. For simple declarations,
284   /// getNameAsCString() should suffice.
285   //
286   // FIXME: This function should be renamed to indicate that it is not just an
287   // alternate form of getName(), and clients should move as appropriate.
288   //
289   // FIXME: Deprecated, move clients to getName().
getNameAsString()290   std::string getNameAsString() const { return Name.getAsString(); }
291 
292   /// Pretty-print the unqualified name of this declaration. Can be overloaded
293   /// by derived classes to provide a more user-friendly name when appropriate.
294   virtual void printName(raw_ostream &os) const;
295 
296   /// Get the actual, stored name of the declaration, which may be a special
297   /// name.
298   ///
299   /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
300   /// should be sent into the diagnostic instead of using the result of
301   /// \p getDeclName().
302   ///
303   /// A \p DeclarationName in a diagnostic will just be streamed to the output,
304   /// which will directly result in a call to \p DeclarationName::print.
305   ///
306   /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
307   /// \p DeclarationName::print, but with two customisation points along the
308   /// way (\p getNameForDiagnostic and \p printName). These are used to print
309   /// the template arguments if any, and to provide a user-friendly name for
310   /// some entities (such as unnamed variables and anonymous records).
getDeclName()311   DeclarationName getDeclName() const { return Name; }
312 
313   /// Set the name of this declaration.
setDeclName(DeclarationName N)314   void setDeclName(DeclarationName N) { Name = N; }
315 
316   /// Returns a human-readable qualified name for this declaration, like
317   /// A::B::i, for i being member of namespace A::B.
318   ///
319   /// If the declaration is not a member of context which can be named (record,
320   /// namespace), it will return the same result as printName().
321   ///
322   /// Creating this name is expensive, so it should be called only when
323   /// performance doesn't matter.
324   void printQualifiedName(raw_ostream &OS) const;
325   void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
326 
327   /// Print only the nested name specifier part of a fully-qualified name,
328   /// including the '::' at the end. E.g.
329   ///    when `printQualifiedName(D)` prints "A::B::i",
330   ///    this function prints "A::B::".
331   void printNestedNameSpecifier(raw_ostream &OS) const;
332   void printNestedNameSpecifier(raw_ostream &OS,
333                                 const PrintingPolicy &Policy) const;
334 
335   // FIXME: Remove string version.
336   std::string getQualifiedNameAsString() const;
337 
338   /// Appends a human-readable name for this declaration into the given stream.
339   ///
340   /// This is the method invoked by Sema when displaying a NamedDecl
341   /// in a diagnostic.  It does not necessarily produce the same
342   /// result as printName(); for example, class template
343   /// specializations are printed with their template arguments.
344   virtual void getNameForDiagnostic(raw_ostream &OS,
345                                     const PrintingPolicy &Policy,
346                                     bool Qualified) const;
347 
348   /// Determine whether this declaration, if known to be well-formed within
349   /// its context, will replace the declaration OldD if introduced into scope.
350   ///
351   /// A declaration will replace another declaration if, for example, it is
352   /// a redeclaration of the same variable or function, but not if it is a
353   /// declaration of a different kind (function vs. class) or an overloaded
354   /// function.
355   ///
356   /// \param IsKnownNewer \c true if this declaration is known to be newer
357   /// than \p OldD (for instance, if this declaration is newly-created).
358   bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
359 
360   /// Determine whether this declaration has linkage.
361   bool hasLinkage() const;
362 
363   using Decl::isModulePrivate;
364   using Decl::setModulePrivate;
365 
366   /// Determine whether this declaration is a C++ class member.
isCXXClassMember()367   bool isCXXClassMember() const {
368     const DeclContext *DC = getDeclContext();
369 
370     // C++0x [class.mem]p1:
371     //   The enumerators of an unscoped enumeration defined in
372     //   the class are members of the class.
373     if (isa<EnumDecl>(DC))
374       DC = DC->getRedeclContext();
375 
376     return DC->isRecord();
377   }
378 
379   /// Determine whether the given declaration is an instance member of
380   /// a C++ class.
381   bool isCXXInstanceMember() const;
382 
383   /// Determine if the declaration obeys the reserved identifier rules of the
384   /// given language.
385   ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
386 
387   /// Determine what kind of linkage this entity has.
388   ///
389   /// This is not the linkage as defined by the standard or the codegen notion
390   /// of linkage. It is just an implementation detail that is used to compute
391   /// those.
392   Linkage getLinkageInternal() const;
393 
394   /// Get the linkage from a semantic point of view. Entities in
395   /// anonymous namespaces are external (in c++98).
getFormalLinkage()396   Linkage getFormalLinkage() const {
397     return clang::getFormalLinkage(getLinkageInternal());
398   }
399 
400   /// True if this decl has external linkage.
hasExternalFormalLinkage()401   bool hasExternalFormalLinkage() const {
402     return isExternalFormalLinkage(getLinkageInternal());
403   }
404 
isExternallyVisible()405   bool isExternallyVisible() const {
406     return clang::isExternallyVisible(getLinkageInternal());
407   }
408 
409   /// Determine whether this declaration can be redeclared in a
410   /// different translation unit.
isExternallyDeclarable()411   bool isExternallyDeclarable() const {
412     return isExternallyVisible() && !getOwningModuleForLinkage();
413   }
414 
415   /// Determines the visibility of this entity.
getVisibility()416   Visibility getVisibility() const {
417     return getLinkageAndVisibility().getVisibility();
418   }
419 
420   /// Determines the linkage and visibility of this entity.
421   LinkageInfo getLinkageAndVisibility() const;
422 
423   /// Kinds of explicit visibility.
424   enum ExplicitVisibilityKind {
425     /// Do an LV computation for, ultimately, a type.
426     /// Visibility may be restricted by type visibility settings and
427     /// the visibility of template arguments.
428     VisibilityForType,
429 
430     /// Do an LV computation for, ultimately, a non-type declaration.
431     /// Visibility may be restricted by value visibility settings and
432     /// the visibility of template arguments.
433     VisibilityForValue
434   };
435 
436   /// If visibility was explicitly specified for this
437   /// declaration, return that visibility.
438   Optional<Visibility>
439   getExplicitVisibility(ExplicitVisibilityKind kind) const;
440 
441   /// True if the computed linkage is valid. Used for consistency
442   /// checking. Should always return true.
443   bool isLinkageValid() const;
444 
445   /// True if something has required us to compute the linkage
446   /// of this declaration.
447   ///
448   /// Language features which can retroactively change linkage (like a
449   /// typedef name for linkage purposes) may need to consider this,
450   /// but hopefully only in transitory ways during parsing.
hasLinkageBeenComputed()451   bool hasLinkageBeenComputed() const {
452     return hasCachedLinkage();
453   }
454 
455   /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
456   /// the underlying named decl.
getUnderlyingDecl()457   NamedDecl *getUnderlyingDecl() {
458     // Fast-path the common case.
459     if (this->getKind() != UsingShadow &&
460         this->getKind() != ConstructorUsingShadow &&
461         this->getKind() != ObjCCompatibleAlias &&
462         this->getKind() != NamespaceAlias)
463       return this;
464 
465     return getUnderlyingDeclImpl();
466   }
getUnderlyingDecl()467   const NamedDecl *getUnderlyingDecl() const {
468     return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
469   }
470 
getMostRecentDecl()471   NamedDecl *getMostRecentDecl() {
472     return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
473   }
getMostRecentDecl()474   const NamedDecl *getMostRecentDecl() const {
475     return const_cast<NamedDecl*>(this)->getMostRecentDecl();
476   }
477 
478   ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
479 
classof(const Decl * D)480   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)481   static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
482 };
483 
484 inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
485   ND.printName(OS);
486   return OS;
487 }
488 
489 /// Represents the declaration of a label.  Labels also have a
490 /// corresponding LabelStmt, which indicates the position that the label was
491 /// defined at.  For normal labels, the location of the decl is the same as the
492 /// location of the statement.  For GNU local labels (__label__), the decl
493 /// location is where the __label__ is.
494 class LabelDecl : public NamedDecl {
495   LabelStmt *TheStmt;
496   StringRef MSAsmName;
497   bool MSAsmNameResolved = false;
498 
499   /// For normal labels, this is the same as the main declaration
500   /// label, i.e., the location of the identifier; for GNU local labels,
501   /// this is the location of the __label__ keyword.
502   SourceLocation LocStart;
503 
LabelDecl(DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,LabelStmt * S,SourceLocation StartL)504   LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
505             LabelStmt *S, SourceLocation StartL)
506       : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
507 
508   void anchor() override;
509 
510 public:
511   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
512                            SourceLocation IdentL, IdentifierInfo *II);
513   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
514                            SourceLocation IdentL, IdentifierInfo *II,
515                            SourceLocation GnuLabelL);
516   static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
517 
getStmt()518   LabelStmt *getStmt() const { return TheStmt; }
setStmt(LabelStmt * T)519   void setStmt(LabelStmt *T) { TheStmt = T; }
520 
isGnuLocal()521   bool isGnuLocal() const { return LocStart != getLocation(); }
setLocStart(SourceLocation L)522   void setLocStart(SourceLocation L) { LocStart = L; }
523 
getSourceRange()524   SourceRange getSourceRange() const override LLVM_READONLY {
525     return SourceRange(LocStart, getLocation());
526   }
527 
isMSAsmLabel()528   bool isMSAsmLabel() const { return !MSAsmName.empty(); }
isResolvedMSAsmLabel()529   bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
530   void setMSAsmLabel(StringRef Name);
getMSAsmLabel()531   StringRef getMSAsmLabel() const { return MSAsmName; }
setMSAsmLabelResolved()532   void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
533 
534   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)535   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)536   static bool classofKind(Kind K) { return K == Label; }
537 };
538 
539 /// Represent a C++ namespace.
540 class NamespaceDecl : public NamedDecl, public DeclContext,
541                       public Redeclarable<NamespaceDecl>
542 {
543   /// The starting location of the source range, pointing
544   /// to either the namespace or the inline keyword.
545   SourceLocation LocStart;
546 
547   /// The ending location of the source range.
548   SourceLocation RBraceLoc;
549 
550   /// A pointer to either the anonymous namespace that lives just inside
551   /// this namespace or to the first namespace in the chain (the latter case
552   /// only when this is not the first in the chain), along with a
553   /// boolean value indicating whether this is an inline namespace.
554   llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
555 
556   NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
557                 SourceLocation StartLoc, SourceLocation IdLoc,
558                 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
559 
560   using redeclarable_base = Redeclarable<NamespaceDecl>;
561 
562   NamespaceDecl *getNextRedeclarationImpl() override;
563   NamespaceDecl *getPreviousDeclImpl() override;
564   NamespaceDecl *getMostRecentDeclImpl() override;
565 
566 public:
567   friend class ASTDeclReader;
568   friend class ASTDeclWriter;
569 
570   static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
571                                bool Inline, SourceLocation StartLoc,
572                                SourceLocation IdLoc, IdentifierInfo *Id,
573                                NamespaceDecl *PrevDecl);
574 
575   static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
576 
577   using redecl_range = redeclarable_base::redecl_range;
578   using redecl_iterator = redeclarable_base::redecl_iterator;
579 
580   using redeclarable_base::redecls_begin;
581   using redeclarable_base::redecls_end;
582   using redeclarable_base::redecls;
583   using redeclarable_base::getPreviousDecl;
584   using redeclarable_base::getMostRecentDecl;
585   using redeclarable_base::isFirstDecl;
586 
587   /// Returns true if this is an anonymous namespace declaration.
588   ///
589   /// For example:
590   /// \code
591   ///   namespace {
592   ///     ...
593   ///   };
594   /// \endcode
595   /// q.v. C++ [namespace.unnamed]
isAnonymousNamespace()596   bool isAnonymousNamespace() const {
597     return !getIdentifier();
598   }
599 
600   /// Returns true if this is an inline namespace declaration.
isInline()601   bool isInline() const {
602     return AnonOrFirstNamespaceAndInline.getInt();
603   }
604 
605   /// Set whether this is an inline namespace declaration.
setInline(bool Inline)606   void setInline(bool Inline) {
607     AnonOrFirstNamespaceAndInline.setInt(Inline);
608   }
609 
610   /// Returns true if the inline qualifier for \c Name is redundant.
isRedundantInlineQualifierFor(DeclarationName Name)611   bool isRedundantInlineQualifierFor(DeclarationName Name) const {
612     if (!isInline())
613       return false;
614     auto X = lookup(Name);
615     // We should not perform a lookup within a transparent context, so find a
616     // non-transparent parent context.
617     auto Y = getParent()->getNonTransparentContext()->lookup(Name);
618     return std::distance(X.begin(), X.end()) ==
619       std::distance(Y.begin(), Y.end());
620   }
621 
622   /// Get the original (first) namespace declaration.
623   NamespaceDecl *getOriginalNamespace();
624 
625   /// Get the original (first) namespace declaration.
626   const NamespaceDecl *getOriginalNamespace() const;
627 
628   /// Return true if this declaration is an original (first) declaration
629   /// of the namespace. This is false for non-original (subsequent) namespace
630   /// declarations and anonymous namespaces.
631   bool isOriginalNamespace() const;
632 
633   /// Retrieve the anonymous namespace nested inside this namespace,
634   /// if any.
getAnonymousNamespace()635   NamespaceDecl *getAnonymousNamespace() const {
636     return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
637   }
638 
setAnonymousNamespace(NamespaceDecl * D)639   void setAnonymousNamespace(NamespaceDecl *D) {
640     getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
641   }
642 
643   /// Retrieves the canonical declaration of this namespace.
getCanonicalDecl()644   NamespaceDecl *getCanonicalDecl() override {
645     return getOriginalNamespace();
646   }
getCanonicalDecl()647   const NamespaceDecl *getCanonicalDecl() const {
648     return getOriginalNamespace();
649   }
650 
getSourceRange()651   SourceRange getSourceRange() const override LLVM_READONLY {
652     return SourceRange(LocStart, RBraceLoc);
653   }
654 
getBeginLoc()655   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
getRBraceLoc()656   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setLocStart(SourceLocation L)657   void setLocStart(SourceLocation L) { LocStart = L; }
setRBraceLoc(SourceLocation L)658   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
659 
660   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)661   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)662   static bool classofKind(Kind K) { return K == Namespace; }
castToDeclContext(const NamespaceDecl * D)663   static DeclContext *castToDeclContext(const NamespaceDecl *D) {
664     return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
665   }
castFromDeclContext(const DeclContext * DC)666   static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
667     return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
668   }
669 };
670 
671 /// Represent the declaration of a variable (in which case it is
672 /// an lvalue) a function (in which case it is a function designator) or
673 /// an enum constant.
674 class ValueDecl : public NamedDecl {
675   QualType DeclType;
676 
677   void anchor() override;
678 
679 protected:
ValueDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T)680   ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
681             DeclarationName N, QualType T)
682     : NamedDecl(DK, DC, L, N), DeclType(T) {}
683 
684 public:
getType()685   QualType getType() const { return DeclType; }
setType(QualType newType)686   void setType(QualType newType) { DeclType = newType; }
687 
688   /// Determine whether this symbol is weakly-imported,
689   ///        or declared with the weak or weak-ref attr.
690   bool isWeak() const;
691 
692   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)693   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)694   static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
695 };
696 
697 /// A struct with extended info about a syntactic
698 /// name qualifier, to be used for the case of out-of-line declarations.
699 struct QualifierInfo {
700   NestedNameSpecifierLoc QualifierLoc;
701 
702   /// The number of "outer" template parameter lists.
703   /// The count includes all of the template parameter lists that were matched
704   /// against the template-ids occurring into the NNS and possibly (in the
705   /// case of an explicit specialization) a final "template <>".
706   unsigned NumTemplParamLists = 0;
707 
708   /// A new-allocated array of size NumTemplParamLists,
709   /// containing pointers to the "outer" template parameter lists.
710   /// It includes all of the template parameter lists that were matched
711   /// against the template-ids occurring into the NNS and possibly (in the
712   /// case of an explicit specialization) a final "template <>".
713   TemplateParameterList** TemplParamLists = nullptr;
714 
715   QualifierInfo() = default;
716   QualifierInfo(const QualifierInfo &) = delete;
717   QualifierInfo& operator=(const QualifierInfo &) = delete;
718 
719   /// Sets info about "outer" template parameter lists.
720   void setTemplateParameterListsInfo(ASTContext &Context,
721                                      ArrayRef<TemplateParameterList *> TPLists);
722 };
723 
724 /// Represents a ValueDecl that came out of a declarator.
725 /// Contains type source information through TypeSourceInfo.
726 class DeclaratorDecl : public ValueDecl {
727   // A struct representing a TInfo, a trailing requires-clause and a syntactic
728   // qualifier, to be used for the (uncommon) case of out-of-line declarations
729   // and constrained function decls.
730   struct ExtInfo : public QualifierInfo {
731     TypeSourceInfo *TInfo;
732     Expr *TrailingRequiresClause = nullptr;
733   };
734 
735   llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
736 
737   /// The start of the source range for this declaration,
738   /// ignoring outer template declarations.
739   SourceLocation InnerLocStart;
740 
hasExtInfo()741   bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
getExtInfo()742   ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
getExtInfo()743   const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
744 
745 protected:
DeclaratorDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL)746   DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
747                  DeclarationName N, QualType T, TypeSourceInfo *TInfo,
748                  SourceLocation StartL)
749       : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
750 
751 public:
752   friend class ASTDeclReader;
753   friend class ASTDeclWriter;
754 
getTypeSourceInfo()755   TypeSourceInfo *getTypeSourceInfo() const {
756     return hasExtInfo()
757       ? getExtInfo()->TInfo
758       : DeclInfo.get<TypeSourceInfo*>();
759   }
760 
setTypeSourceInfo(TypeSourceInfo * TI)761   void setTypeSourceInfo(TypeSourceInfo *TI) {
762     if (hasExtInfo())
763       getExtInfo()->TInfo = TI;
764     else
765       DeclInfo = TI;
766   }
767 
768   /// Return start of source range ignoring outer template declarations.
getInnerLocStart()769   SourceLocation getInnerLocStart() const { return InnerLocStart; }
setInnerLocStart(SourceLocation L)770   void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
771 
772   /// Return start of source range taking into account any outer template
773   /// declarations.
774   SourceLocation getOuterLocStart() const;
775 
776   SourceRange getSourceRange() const override LLVM_READONLY;
777 
getBeginLoc()778   SourceLocation getBeginLoc() const LLVM_READONLY {
779     return getOuterLocStart();
780   }
781 
782   /// Retrieve the nested-name-specifier that qualifies the name of this
783   /// declaration, if it was present in the source.
getQualifier()784   NestedNameSpecifier *getQualifier() const {
785     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
786                         : nullptr;
787   }
788 
789   /// Retrieve the nested-name-specifier (with source-location
790   /// information) that qualifies the name of this declaration, if it was
791   /// present in the source.
getQualifierLoc()792   NestedNameSpecifierLoc getQualifierLoc() const {
793     return hasExtInfo() ? getExtInfo()->QualifierLoc
794                         : NestedNameSpecifierLoc();
795   }
796 
797   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
798 
799   /// \brief Get the constraint-expression introduced by the trailing
800   /// requires-clause in the function/member declaration, or null if no
801   /// requires-clause was provided.
getTrailingRequiresClause()802   Expr *getTrailingRequiresClause() {
803     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
804                         : nullptr;
805   }
806 
getTrailingRequiresClause()807   const Expr *getTrailingRequiresClause() const {
808     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
809                         : nullptr;
810   }
811 
812   void setTrailingRequiresClause(Expr *TrailingRequiresClause);
813 
getNumTemplateParameterLists()814   unsigned getNumTemplateParameterLists() const {
815     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
816   }
817 
getTemplateParameterList(unsigned index)818   TemplateParameterList *getTemplateParameterList(unsigned index) const {
819     assert(index < getNumTemplateParameterLists());
820     return getExtInfo()->TemplParamLists[index];
821   }
822 
823   void setTemplateParameterListsInfo(ASTContext &Context,
824                                      ArrayRef<TemplateParameterList *> TPLists);
825 
826   SourceLocation getTypeSpecStartLoc() const;
827   SourceLocation getTypeSpecEndLoc() const;
828 
829   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)830   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)831   static bool classofKind(Kind K) {
832     return K >= firstDeclarator && K <= lastDeclarator;
833   }
834 };
835 
836 /// Structure used to store a statement, the constant value to
837 /// which it was evaluated (if any), and whether or not the statement
838 /// is an integral constant expression (if known).
839 struct EvaluatedStmt {
840   /// Whether this statement was already evaluated.
841   bool WasEvaluated : 1;
842 
843   /// Whether this statement is being evaluated.
844   bool IsEvaluating : 1;
845 
846   /// Whether this variable is known to have constant initialization. This is
847   /// currently only computed in C++, for static / thread storage duration
848   /// variables that might have constant initialization and for variables that
849   /// are usable in constant expressions.
850   bool HasConstantInitialization : 1;
851 
852   /// Whether this variable is known to have constant destruction. That is,
853   /// whether running the destructor on the initial value is a side-effect
854   /// (and doesn't inspect any state that might have changed during program
855   /// execution). This is currently only computed if the destructor is
856   /// non-trivial.
857   bool HasConstantDestruction : 1;
858 
859   /// In C++98, whether the initializer is an ICE. This affects whether the
860   /// variable is usable in constant expressions.
861   bool HasICEInit : 1;
862   bool CheckedForICEInit : 1;
863 
864   Stmt *Value;
865   APValue Evaluated;
866 
EvaluatedStmtEvaluatedStmt867   EvaluatedStmt()
868       : WasEvaluated(false), IsEvaluating(false),
869         HasConstantInitialization(false), HasConstantDestruction(false),
870         HasICEInit(false), CheckedForICEInit(false) {}
871 };
872 
873 /// Represents a variable declaration or definition.
874 class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
875 public:
876   /// Initialization styles.
877   enum InitializationStyle {
878     /// C-style initialization with assignment
879     CInit,
880 
881     /// Call-style initialization (C++98)
882     CallInit,
883 
884     /// Direct list-initialization (C++11)
885     ListInit
886   };
887 
888   /// Kinds of thread-local storage.
889   enum TLSKind {
890     /// Not a TLS variable.
891     TLS_None,
892 
893     /// TLS with a known-constant initializer.
894     TLS_Static,
895 
896     /// TLS with a dynamic initializer.
897     TLS_Dynamic
898   };
899 
900   /// Return the string used to specify the storage class \p SC.
901   ///
902   /// It is illegal to call this function with SC == None.
903   static const char *getStorageClassSpecifierString(StorageClass SC);
904 
905 protected:
906   // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
907   // have allocated the auxiliary struct of information there.
908   //
909   // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
910   // this as *many* VarDecls are ParmVarDecls that don't have default
911   // arguments. We could save some space by moving this pointer union to be
912   // allocated in trailing space when necessary.
913   using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
914 
915   /// The initializer for this variable or, for a ParmVarDecl, the
916   /// C++ default argument.
917   mutable InitType Init;
918 
919 private:
920   friend class ASTDeclReader;
921   friend class ASTNodeImporter;
922   friend class StmtIteratorBase;
923 
924   class VarDeclBitfields {
925     friend class ASTDeclReader;
926     friend class VarDecl;
927 
928     unsigned SClass : 3;
929     unsigned TSCSpec : 2;
930     unsigned InitStyle : 2;
931 
932     /// Whether this variable is an ARC pseudo-__strong variable; see
933     /// isARCPseudoStrong() for details.
934     unsigned ARCPseudoStrong : 1;
935   };
936   enum { NumVarDeclBits = 8 };
937 
938 protected:
939   enum { NumParameterIndexBits = 8 };
940 
941   enum DefaultArgKind {
942     DAK_None,
943     DAK_Unparsed,
944     DAK_Uninstantiated,
945     DAK_Normal
946   };
947 
948   enum { NumScopeDepthOrObjCQualsBits = 7 };
949 
950   class ParmVarDeclBitfields {
951     friend class ASTDeclReader;
952     friend class ParmVarDecl;
953 
954     unsigned : NumVarDeclBits;
955 
956     /// Whether this parameter inherits a default argument from a
957     /// prior declaration.
958     unsigned HasInheritedDefaultArg : 1;
959 
960     /// Describes the kind of default argument for this parameter. By default
961     /// this is none. If this is normal, then the default argument is stored in
962     /// the \c VarDecl initializer expression unless we were unable to parse
963     /// (even an invalid) expression for the default argument.
964     unsigned DefaultArgKind : 2;
965 
966     /// Whether this parameter undergoes K&R argument promotion.
967     unsigned IsKNRPromoted : 1;
968 
969     /// Whether this parameter is an ObjC method parameter or not.
970     unsigned IsObjCMethodParam : 1;
971 
972     /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
973     /// Otherwise, the number of function parameter scopes enclosing
974     /// the function parameter scope in which this parameter was
975     /// declared.
976     unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
977 
978     /// The number of parameters preceding this parameter in the
979     /// function parameter scope in which it was declared.
980     unsigned ParameterIndex : NumParameterIndexBits;
981   };
982 
983   class NonParmVarDeclBitfields {
984     friend class ASTDeclReader;
985     friend class ImplicitParamDecl;
986     friend class VarDecl;
987 
988     unsigned : NumVarDeclBits;
989 
990     // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
991     /// Whether this variable is a definition which was demoted due to
992     /// module merge.
993     unsigned IsThisDeclarationADemotedDefinition : 1;
994 
995     /// Whether this variable is the exception variable in a C++ catch
996     /// or an Objective-C @catch statement.
997     unsigned ExceptionVar : 1;
998 
999     /// Whether this local variable could be allocated in the return
1000     /// slot of its function, enabling the named return value optimization
1001     /// (NRVO).
1002     unsigned NRVOVariable : 1;
1003 
1004     /// Whether this variable is the for-range-declaration in a C++0x
1005     /// for-range statement.
1006     unsigned CXXForRangeDecl : 1;
1007 
1008     /// Whether this variable is the for-in loop declaration in Objective-C.
1009     unsigned ObjCForDecl : 1;
1010 
1011     /// Whether this variable is (C++1z) inline.
1012     unsigned IsInline : 1;
1013 
1014     /// Whether this variable has (C++1z) inline explicitly specified.
1015     unsigned IsInlineSpecified : 1;
1016 
1017     /// Whether this variable is (C++0x) constexpr.
1018     unsigned IsConstexpr : 1;
1019 
1020     /// Whether this variable is the implicit variable for a lambda
1021     /// init-capture.
1022     unsigned IsInitCapture : 1;
1023 
1024     /// Whether this local extern variable's previous declaration was
1025     /// declared in the same block scope. This controls whether we should merge
1026     /// the type of this declaration with its previous declaration.
1027     unsigned PreviousDeclInSameBlockScope : 1;
1028 
1029     /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
1030     /// something else.
1031     unsigned ImplicitParamKind : 3;
1032 
1033     unsigned EscapingByref : 1;
1034   };
1035 
1036   union {
1037     unsigned AllBits;
1038     VarDeclBitfields VarDeclBits;
1039     ParmVarDeclBitfields ParmVarDeclBits;
1040     NonParmVarDeclBitfields NonParmVarDeclBits;
1041   };
1042 
1043   VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1044           SourceLocation IdLoc, const IdentifierInfo *Id, QualType T,
1045           TypeSourceInfo *TInfo, StorageClass SC);
1046 
1047   using redeclarable_base = Redeclarable<VarDecl>;
1048 
getNextRedeclarationImpl()1049   VarDecl *getNextRedeclarationImpl() override {
1050     return getNextRedeclaration();
1051   }
1052 
getPreviousDeclImpl()1053   VarDecl *getPreviousDeclImpl() override {
1054     return getPreviousDecl();
1055   }
1056 
getMostRecentDeclImpl()1057   VarDecl *getMostRecentDeclImpl() override {
1058     return getMostRecentDecl();
1059   }
1060 
1061 public:
1062   using redecl_range = redeclarable_base::redecl_range;
1063   using redecl_iterator = redeclarable_base::redecl_iterator;
1064 
1065   using redeclarable_base::redecls_begin;
1066   using redeclarable_base::redecls_end;
1067   using redeclarable_base::redecls;
1068   using redeclarable_base::getPreviousDecl;
1069   using redeclarable_base::getMostRecentDecl;
1070   using redeclarable_base::isFirstDecl;
1071 
1072   static VarDecl *Create(ASTContext &C, DeclContext *DC,
1073                          SourceLocation StartLoc, SourceLocation IdLoc,
1074                          const IdentifierInfo *Id, QualType T,
1075                          TypeSourceInfo *TInfo, StorageClass S);
1076 
1077   static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1078 
1079   SourceRange getSourceRange() const override LLVM_READONLY;
1080 
1081   /// Returns the storage class as written in the source. For the
1082   /// computed linkage of symbol, see getLinkage.
getStorageClass()1083   StorageClass getStorageClass() const {
1084     return (StorageClass) VarDeclBits.SClass;
1085   }
1086   void setStorageClass(StorageClass SC);
1087 
setTSCSpec(ThreadStorageClassSpecifier TSC)1088   void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1089     VarDeclBits.TSCSpec = TSC;
1090     assert(VarDeclBits.TSCSpec == TSC && "truncation");
1091   }
getTSCSpec()1092   ThreadStorageClassSpecifier getTSCSpec() const {
1093     return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1094   }
1095   TLSKind getTLSKind() const;
1096 
1097   /// Returns true if a variable with function scope is a non-static local
1098   /// variable.
hasLocalStorage()1099   bool hasLocalStorage() const {
1100     if (getStorageClass() == SC_None) {
1101       // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1102       // used to describe variables allocated in global memory and which are
1103       // accessed inside a kernel(s) as read-only variables. As such, variables
1104       // in constant address space cannot have local storage.
1105       if (getType().getAddressSpace() == LangAS::opencl_constant)
1106         return false;
1107       // Second check is for C++11 [dcl.stc]p4.
1108       return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1109     }
1110 
1111     // Global Named Register (GNU extension)
1112     if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1113       return false;
1114 
1115     // Return true for:  Auto, Register.
1116     // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1117 
1118     return getStorageClass() >= SC_Auto;
1119   }
1120 
1121   /// Returns true if a variable with function scope is a static local
1122   /// variable.
isStaticLocal()1123   bool isStaticLocal() const {
1124     return (getStorageClass() == SC_Static ||
1125             // C++11 [dcl.stc]p4
1126             (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1127       && !isFileVarDecl();
1128   }
1129 
1130   /// Returns true if a variable has extern or __private_extern__
1131   /// storage.
hasExternalStorage()1132   bool hasExternalStorage() const {
1133     return getStorageClass() == SC_Extern ||
1134            getStorageClass() == SC_PrivateExtern;
1135   }
1136 
1137   /// Returns true for all variables that do not have local storage.
1138   ///
1139   /// This includes all global variables as well as static variables declared
1140   /// within a function.
hasGlobalStorage()1141   bool hasGlobalStorage() const { return !hasLocalStorage(); }
1142 
1143   /// Get the storage duration of this variable, per C++ [basic.stc].
getStorageDuration()1144   StorageDuration getStorageDuration() const {
1145     return hasLocalStorage() ? SD_Automatic :
1146            getTSCSpec() ? SD_Thread : SD_Static;
1147   }
1148 
1149   /// Compute the language linkage.
1150   LanguageLinkage getLanguageLinkage() const;
1151 
1152   /// Determines whether this variable is a variable with external, C linkage.
1153   bool isExternC() const;
1154 
1155   /// Determines whether this variable's context is, or is nested within,
1156   /// a C++ extern "C" linkage spec.
1157   bool isInExternCContext() const;
1158 
1159   /// Determines whether this variable's context is, or is nested within,
1160   /// a C++ extern "C++" linkage spec.
1161   bool isInExternCXXContext() const;
1162 
1163   /// Returns true for local variable declarations other than parameters.
1164   /// Note that this includes static variables inside of functions. It also
1165   /// includes variables inside blocks.
1166   ///
1167   ///   void foo() { int x; static int y; extern int z; }
isLocalVarDecl()1168   bool isLocalVarDecl() const {
1169     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1170       return false;
1171     if (const DeclContext *DC = getLexicalDeclContext())
1172       return DC->getRedeclContext()->isFunctionOrMethod();
1173     return false;
1174   }
1175 
1176   /// Similar to isLocalVarDecl but also includes parameters.
isLocalVarDeclOrParm()1177   bool isLocalVarDeclOrParm() const {
1178     return isLocalVarDecl() || getKind() == Decl::ParmVar;
1179   }
1180 
1181   /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
isFunctionOrMethodVarDecl()1182   bool isFunctionOrMethodVarDecl() const {
1183     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1184       return false;
1185     const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1186     return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1187   }
1188 
1189   /// Determines whether this is a static data member.
1190   ///
1191   /// This will only be true in C++, and applies to, e.g., the
1192   /// variable 'x' in:
1193   /// \code
1194   /// struct S {
1195   ///   static int x;
1196   /// };
1197   /// \endcode
isStaticDataMember()1198   bool isStaticDataMember() const {
1199     // If it wasn't static, it would be a FieldDecl.
1200     return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1201   }
1202 
1203   VarDecl *getCanonicalDecl() override;
getCanonicalDecl()1204   const VarDecl *getCanonicalDecl() const {
1205     return const_cast<VarDecl*>(this)->getCanonicalDecl();
1206   }
1207 
1208   enum DefinitionKind {
1209     /// This declaration is only a declaration.
1210     DeclarationOnly,
1211 
1212     /// This declaration is a tentative definition.
1213     TentativeDefinition,
1214 
1215     /// This declaration is definitely a definition.
1216     Definition
1217   };
1218 
1219   /// Check whether this declaration is a definition. If this could be
1220   /// a tentative definition (in C), don't check whether there's an overriding
1221   /// definition.
1222   DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
isThisDeclarationADefinition()1223   DefinitionKind isThisDeclarationADefinition() const {
1224     return isThisDeclarationADefinition(getASTContext());
1225   }
1226 
1227   /// Check whether this variable is defined in this translation unit.
1228   DefinitionKind hasDefinition(ASTContext &) const;
hasDefinition()1229   DefinitionKind hasDefinition() const {
1230     return hasDefinition(getASTContext());
1231   }
1232 
1233   /// Get the tentative definition that acts as the real definition in a TU.
1234   /// Returns null if there is a proper definition available.
1235   VarDecl *getActingDefinition();
getActingDefinition()1236   const VarDecl *getActingDefinition() const {
1237     return const_cast<VarDecl*>(this)->getActingDefinition();
1238   }
1239 
1240   /// Get the real (not just tentative) definition for this declaration.
1241   VarDecl *getDefinition(ASTContext &);
getDefinition(ASTContext & C)1242   const VarDecl *getDefinition(ASTContext &C) const {
1243     return const_cast<VarDecl*>(this)->getDefinition(C);
1244   }
getDefinition()1245   VarDecl *getDefinition() {
1246     return getDefinition(getASTContext());
1247   }
getDefinition()1248   const VarDecl *getDefinition() const {
1249     return const_cast<VarDecl*>(this)->getDefinition();
1250   }
1251 
1252   /// Determine whether this is or was instantiated from an out-of-line
1253   /// definition of a static data member.
1254   bool isOutOfLine() const override;
1255 
1256   /// Returns true for file scoped variable declaration.
isFileVarDecl()1257   bool isFileVarDecl() const {
1258     Kind K = getKind();
1259     if (K == ParmVar || K == ImplicitParam)
1260       return false;
1261 
1262     if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1263       return true;
1264 
1265     if (isStaticDataMember())
1266       return true;
1267 
1268     return false;
1269   }
1270 
1271   /// Get the initializer for this variable, no matter which
1272   /// declaration it is attached to.
getAnyInitializer()1273   const Expr *getAnyInitializer() const {
1274     const VarDecl *D;
1275     return getAnyInitializer(D);
1276   }
1277 
1278   /// Get the initializer for this variable, no matter which
1279   /// declaration it is attached to. Also get that declaration.
1280   const Expr *getAnyInitializer(const VarDecl *&D) const;
1281 
1282   bool hasInit() const;
getInit()1283   const Expr *getInit() const {
1284     return const_cast<VarDecl *>(this)->getInit();
1285   }
1286   Expr *getInit();
1287 
1288   /// Retrieve the address of the initializer expression.
1289   Stmt **getInitAddress();
1290 
1291   void setInit(Expr *I);
1292 
1293   /// Get the initializing declaration of this variable, if any. This is
1294   /// usually the definition, except that for a static data member it can be
1295   /// the in-class declaration.
1296   VarDecl *getInitializingDeclaration();
getInitializingDeclaration()1297   const VarDecl *getInitializingDeclaration() const {
1298     return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1299   }
1300 
1301   /// Determine whether this variable's value might be usable in a
1302   /// constant expression, according to the relevant language standard.
1303   /// This only checks properties of the declaration, and does not check
1304   /// whether the initializer is in fact a constant expression.
1305   ///
1306   /// This corresponds to C++20 [expr.const]p3's notion of a
1307   /// "potentially-constant" variable.
1308   bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1309 
1310   /// Determine whether this variable's value can be used in a
1311   /// constant expression, according to the relevant language standard,
1312   /// including checking whether it was initialized by a constant expression.
1313   bool isUsableInConstantExpressions(const ASTContext &C) const;
1314 
1315   EvaluatedStmt *ensureEvaluatedStmt() const;
1316   EvaluatedStmt *getEvaluatedStmt() const;
1317 
1318   /// Attempt to evaluate the value of the initializer attached to this
1319   /// declaration, and produce notes explaining why it cannot be evaluated.
1320   /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1321   APValue *evaluateValue() const;
1322 
1323 private:
1324   APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1325                              bool IsConstantInitialization) const;
1326 
1327 public:
1328   /// Return the already-evaluated value of this variable's
1329   /// initializer, or NULL if the value is not yet known. Returns pointer
1330   /// to untyped APValue if the value could not be evaluated.
1331   APValue *getEvaluatedValue() const;
1332 
1333   /// Evaluate the destruction of this variable to determine if it constitutes
1334   /// constant destruction.
1335   ///
1336   /// \pre hasConstantInitialization()
1337   /// \return \c true if this variable has constant destruction, \c false if
1338   ///         not.
1339   bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1340 
1341   /// Determine whether this variable has constant initialization.
1342   ///
1343   /// This is only set in two cases: when the language semantics require
1344   /// constant initialization (globals in C and some globals in C++), and when
1345   /// the variable is usable in constant expressions (constexpr, const int, and
1346   /// reference variables in C++).
1347   bool hasConstantInitialization() const;
1348 
1349   /// Determine whether the initializer of this variable is an integer constant
1350   /// expression. For use in C++98, where this affects whether the variable is
1351   /// usable in constant expressions.
1352   bool hasICEInitializer(const ASTContext &Context) const;
1353 
1354   /// Evaluate the initializer of this variable to determine whether it's a
1355   /// constant initializer. Should only be called once, after completing the
1356   /// definition of the variable.
1357   bool checkForConstantInitialization(
1358       SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1359 
setInitStyle(InitializationStyle Style)1360   void setInitStyle(InitializationStyle Style) {
1361     VarDeclBits.InitStyle = Style;
1362   }
1363 
1364   /// The style of initialization for this declaration.
1365   ///
1366   /// C-style initialization is "int x = 1;". Call-style initialization is
1367   /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1368   /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1369   /// expression for class types. List-style initialization is C++11 syntax,
1370   /// e.g. "int x{1};". Clients can distinguish between different forms of
1371   /// initialization by checking this value. In particular, "int x = {1};" is
1372   /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1373   /// Init expression in all three cases is an InitListExpr.
getInitStyle()1374   InitializationStyle getInitStyle() const {
1375     return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1376   }
1377 
1378   /// Whether the initializer is a direct-initializer (list or call).
isDirectInit()1379   bool isDirectInit() const {
1380     return getInitStyle() != CInit;
1381   }
1382 
1383   /// If this definition should pretend to be a declaration.
isThisDeclarationADemotedDefinition()1384   bool isThisDeclarationADemotedDefinition() const {
1385     return isa<ParmVarDecl>(this) ? false :
1386       NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1387   }
1388 
1389   /// This is a definition which should be demoted to a declaration.
1390   ///
1391   /// In some cases (mostly module merging) we can end up with two visible
1392   /// definitions one of which needs to be demoted to a declaration to keep
1393   /// the AST invariants.
demoteThisDefinitionToDeclaration()1394   void demoteThisDefinitionToDeclaration() {
1395     assert(isThisDeclarationADefinition() && "Not a definition!");
1396     assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
1397     NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1398   }
1399 
1400   /// Determine whether this variable is the exception variable in a
1401   /// C++ catch statememt or an Objective-C \@catch statement.
isExceptionVariable()1402   bool isExceptionVariable() const {
1403     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1404   }
setExceptionVariable(bool EV)1405   void setExceptionVariable(bool EV) {
1406     assert(!isa<ParmVarDecl>(this));
1407     NonParmVarDeclBits.ExceptionVar = EV;
1408   }
1409 
1410   /// Determine whether this local variable can be used with the named
1411   /// return value optimization (NRVO).
1412   ///
1413   /// The named return value optimization (NRVO) works by marking certain
1414   /// non-volatile local variables of class type as NRVO objects. These
1415   /// locals can be allocated within the return slot of their containing
1416   /// function, in which case there is no need to copy the object to the
1417   /// return slot when returning from the function. Within the function body,
1418   /// each return that returns the NRVO object will have this variable as its
1419   /// NRVO candidate.
isNRVOVariable()1420   bool isNRVOVariable() const {
1421     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1422   }
setNRVOVariable(bool NRVO)1423   void setNRVOVariable(bool NRVO) {
1424     assert(!isa<ParmVarDecl>(this));
1425     NonParmVarDeclBits.NRVOVariable = NRVO;
1426   }
1427 
1428   /// Determine whether this variable is the for-range-declaration in
1429   /// a C++0x for-range statement.
isCXXForRangeDecl()1430   bool isCXXForRangeDecl() const {
1431     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1432   }
setCXXForRangeDecl(bool FRD)1433   void setCXXForRangeDecl(bool FRD) {
1434     assert(!isa<ParmVarDecl>(this));
1435     NonParmVarDeclBits.CXXForRangeDecl = FRD;
1436   }
1437 
1438   /// Determine whether this variable is a for-loop declaration for a
1439   /// for-in statement in Objective-C.
isObjCForDecl()1440   bool isObjCForDecl() const {
1441     return NonParmVarDeclBits.ObjCForDecl;
1442   }
1443 
setObjCForDecl(bool FRD)1444   void setObjCForDecl(bool FRD) {
1445     NonParmVarDeclBits.ObjCForDecl = FRD;
1446   }
1447 
1448   /// Determine whether this variable is an ARC pseudo-__strong variable. A
1449   /// pseudo-__strong variable has a __strong-qualified type but does not
1450   /// actually retain the object written into it. Generally such variables are
1451   /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1452   /// the variable is annotated with the objc_externally_retained attribute, 2)
1453   /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1454   /// loop.
isARCPseudoStrong()1455   bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
setARCPseudoStrong(bool PS)1456   void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1457 
1458   /// Whether this variable is (C++1z) inline.
isInline()1459   bool isInline() const {
1460     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1461   }
isInlineSpecified()1462   bool isInlineSpecified() const {
1463     return isa<ParmVarDecl>(this) ? false
1464                                   : NonParmVarDeclBits.IsInlineSpecified;
1465   }
setInlineSpecified()1466   void setInlineSpecified() {
1467     assert(!isa<ParmVarDecl>(this));
1468     NonParmVarDeclBits.IsInline = true;
1469     NonParmVarDeclBits.IsInlineSpecified = true;
1470   }
setImplicitlyInline()1471   void setImplicitlyInline() {
1472     assert(!isa<ParmVarDecl>(this));
1473     NonParmVarDeclBits.IsInline = true;
1474   }
1475 
1476   /// Whether this variable is (C++11) constexpr.
isConstexpr()1477   bool isConstexpr() const {
1478     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1479   }
setConstexpr(bool IC)1480   void setConstexpr(bool IC) {
1481     assert(!isa<ParmVarDecl>(this));
1482     NonParmVarDeclBits.IsConstexpr = IC;
1483   }
1484 
1485   /// Whether this variable is the implicit variable for a lambda init-capture.
isInitCapture()1486   bool isInitCapture() const {
1487     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1488   }
setInitCapture(bool IC)1489   void setInitCapture(bool IC) {
1490     assert(!isa<ParmVarDecl>(this));
1491     NonParmVarDeclBits.IsInitCapture = IC;
1492   }
1493 
1494   /// Determine whether this variable is actually a function parameter pack or
1495   /// init-capture pack.
1496   bool isParameterPack() const;
1497 
1498   /// Whether this local extern variable declaration's previous declaration
1499   /// was declared in the same block scope. Only correct in C++.
isPreviousDeclInSameBlockScope()1500   bool isPreviousDeclInSameBlockScope() const {
1501     return isa<ParmVarDecl>(this)
1502                ? false
1503                : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1504   }
setPreviousDeclInSameBlockScope(bool Same)1505   void setPreviousDeclInSameBlockScope(bool Same) {
1506     assert(!isa<ParmVarDecl>(this));
1507     NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1508   }
1509 
1510   /// Indicates the capture is a __block variable that is captured by a block
1511   /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1512   /// returns false).
1513   bool isEscapingByref() const;
1514 
1515   /// Indicates the capture is a __block variable that is never captured by an
1516   /// escaping block.
1517   bool isNonEscapingByref() const;
1518 
setEscapingByref()1519   void setEscapingByref() {
1520     NonParmVarDeclBits.EscapingByref = true;
1521   }
1522 
1523   /// Determines if this variable's alignment is dependent.
1524   bool hasDependentAlignment() const;
1525 
1526   /// Retrieve the variable declaration from which this variable could
1527   /// be instantiated, if it is an instantiation (rather than a non-template).
1528   VarDecl *getTemplateInstantiationPattern() const;
1529 
1530   /// If this variable is an instantiated static data member of a
1531   /// class template specialization, returns the templated static data member
1532   /// from which it was instantiated.
1533   VarDecl *getInstantiatedFromStaticDataMember() const;
1534 
1535   /// If this variable is an instantiation of a variable template or a
1536   /// static data member of a class template, determine what kind of
1537   /// template specialization or instantiation this is.
1538   TemplateSpecializationKind getTemplateSpecializationKind() const;
1539 
1540   /// Get the template specialization kind of this variable for the purposes of
1541   /// template instantiation. This differs from getTemplateSpecializationKind()
1542   /// for an instantiation of a class-scope explicit specialization.
1543   TemplateSpecializationKind
1544   getTemplateSpecializationKindForInstantiation() const;
1545 
1546   /// If this variable is an instantiation of a variable template or a
1547   /// static data member of a class template, determine its point of
1548   /// instantiation.
1549   SourceLocation getPointOfInstantiation() const;
1550 
1551   /// If this variable is an instantiation of a static data member of a
1552   /// class template specialization, retrieves the member specialization
1553   /// information.
1554   MemberSpecializationInfo *getMemberSpecializationInfo() const;
1555 
1556   /// For a static data member that was instantiated from a static
1557   /// data member of a class template, set the template specialiation kind.
1558   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1559                         SourceLocation PointOfInstantiation = SourceLocation());
1560 
1561   /// Specify that this variable is an instantiation of the
1562   /// static data member VD.
1563   void setInstantiationOfStaticDataMember(VarDecl *VD,
1564                                           TemplateSpecializationKind TSK);
1565 
1566   /// Retrieves the variable template that is described by this
1567   /// variable declaration.
1568   ///
1569   /// Every variable template is represented as a VarTemplateDecl and a
1570   /// VarDecl. The former contains template properties (such as
1571   /// the template parameter lists) while the latter contains the
1572   /// actual description of the template's
1573   /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1574   /// VarDecl that from a VarTemplateDecl, while
1575   /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1576   /// a VarDecl.
1577   VarTemplateDecl *getDescribedVarTemplate() const;
1578 
1579   void setDescribedVarTemplate(VarTemplateDecl *Template);
1580 
1581   // Is this variable known to have a definition somewhere in the complete
1582   // program? This may be true even if the declaration has internal linkage and
1583   // has no definition within this source file.
1584   bool isKnownToBeDefined() const;
1585 
1586   /// Is destruction of this variable entirely suppressed? If so, the variable
1587   /// need not have a usable destructor at all.
1588   bool isNoDestroy(const ASTContext &) const;
1589 
1590   /// Would the destruction of this variable have any effect, and if so, what
1591   /// kind?
1592   QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1593 
1594   /// Whether this variable has a flexible array member initialized with one
1595   /// or more elements. This can only be called for declarations where
1596   /// hasInit() is true.
1597   ///
1598   /// (The standard doesn't allow initializing flexible array members; this is
1599   /// a gcc/msvc extension.)
1600   bool hasFlexibleArrayInit(const ASTContext &Ctx) const;
1601 
1602   /// If hasFlexibleArrayInit is true, compute the number of additional bytes
1603   /// necessary to store those elements. Otherwise, returns zero.
1604   ///
1605   /// This can only be called for declarations where hasInit() is true.
1606   CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const;
1607 
1608   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1609   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1610   static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1611 };
1612 
1613 class ImplicitParamDecl : public VarDecl {
1614   void anchor() override;
1615 
1616 public:
1617   /// Defines the kind of the implicit parameter: is this an implicit parameter
1618   /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1619   /// context or something else.
1620   enum ImplicitParamKind : unsigned {
1621     /// Parameter for Objective-C 'self' argument
1622     ObjCSelf,
1623 
1624     /// Parameter for Objective-C '_cmd' argument
1625     ObjCCmd,
1626 
1627     /// Parameter for C++ 'this' argument
1628     CXXThis,
1629 
1630     /// Parameter for C++ virtual table pointers
1631     CXXVTT,
1632 
1633     /// Parameter for captured context
1634     CapturedContext,
1635 
1636     /// Parameter for Thread private variable
1637     ThreadPrivateVar,
1638 
1639     /// Other implicit parameter
1640     Other,
1641   };
1642 
1643   /// Create implicit parameter.
1644   static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1645                                    SourceLocation IdLoc, IdentifierInfo *Id,
1646                                    QualType T, ImplicitParamKind ParamKind);
1647   static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1648                                    ImplicitParamKind ParamKind);
1649 
1650   static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1651 
ImplicitParamDecl(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type,ImplicitParamKind ParamKind)1652   ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1653                     IdentifierInfo *Id, QualType Type,
1654                     ImplicitParamKind ParamKind)
1655       : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1656                 /*TInfo=*/nullptr, SC_None) {
1657     NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1658     setImplicit();
1659   }
1660 
ImplicitParamDecl(ASTContext & C,QualType Type,ImplicitParamKind ParamKind)1661   ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1662       : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1663                 SourceLocation(), /*Id=*/nullptr, Type,
1664                 /*TInfo=*/nullptr, SC_None) {
1665     NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1666     setImplicit();
1667   }
1668 
1669   /// Returns the implicit parameter kind.
getParameterKind()1670   ImplicitParamKind getParameterKind() const {
1671     return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1672   }
1673 
1674   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1675   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1676   static bool classofKind(Kind K) { return K == ImplicitParam; }
1677 };
1678 
1679 /// Represents a parameter to a function.
1680 class ParmVarDecl : public VarDecl {
1681 public:
1682   enum { MaxFunctionScopeDepth = 255 };
1683   enum { MaxFunctionScopeIndex = 255 };
1684 
1685 protected:
ParmVarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)1686   ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1687               SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1688               TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1689       : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1690     assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
1691     assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
1692     assert(ParmVarDeclBits.IsKNRPromoted == false);
1693     assert(ParmVarDeclBits.IsObjCMethodParam == false);
1694     setDefaultArg(DefArg);
1695   }
1696 
1697 public:
1698   static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1699                              SourceLocation StartLoc,
1700                              SourceLocation IdLoc, IdentifierInfo *Id,
1701                              QualType T, TypeSourceInfo *TInfo,
1702                              StorageClass S, Expr *DefArg);
1703 
1704   static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1705 
1706   SourceRange getSourceRange() const override LLVM_READONLY;
1707 
setObjCMethodScopeInfo(unsigned parameterIndex)1708   void setObjCMethodScopeInfo(unsigned parameterIndex) {
1709     ParmVarDeclBits.IsObjCMethodParam = true;
1710     setParameterIndex(parameterIndex);
1711   }
1712 
setScopeInfo(unsigned scopeDepth,unsigned parameterIndex)1713   void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1714     assert(!ParmVarDeclBits.IsObjCMethodParam);
1715 
1716     ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1717     assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
1718            && "truncation!");
1719 
1720     setParameterIndex(parameterIndex);
1721   }
1722 
isObjCMethodParameter()1723   bool isObjCMethodParameter() const {
1724     return ParmVarDeclBits.IsObjCMethodParam;
1725   }
1726 
1727   /// Determines whether this parameter is destroyed in the callee function.
1728   bool isDestroyedInCallee() const;
1729 
getFunctionScopeDepth()1730   unsigned getFunctionScopeDepth() const {
1731     if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1732     return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1733   }
1734 
getMaxFunctionScopeDepth()1735   static constexpr unsigned getMaxFunctionScopeDepth() {
1736     return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1737   }
1738 
1739   /// Returns the index of this parameter in its prototype or method scope.
getFunctionScopeIndex()1740   unsigned getFunctionScopeIndex() const {
1741     return getParameterIndex();
1742   }
1743 
getObjCDeclQualifier()1744   ObjCDeclQualifier getObjCDeclQualifier() const {
1745     if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1746     return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1747   }
setObjCDeclQualifier(ObjCDeclQualifier QTVal)1748   void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1749     assert(ParmVarDeclBits.IsObjCMethodParam);
1750     ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1751   }
1752 
1753   /// True if the value passed to this parameter must undergo
1754   /// K&R-style default argument promotion:
1755   ///
1756   /// C99 6.5.2.2.
1757   ///   If the expression that denotes the called function has a type
1758   ///   that does not include a prototype, the integer promotions are
1759   ///   performed on each argument, and arguments that have type float
1760   ///   are promoted to double.
isKNRPromoted()1761   bool isKNRPromoted() const {
1762     return ParmVarDeclBits.IsKNRPromoted;
1763   }
setKNRPromoted(bool promoted)1764   void setKNRPromoted(bool promoted) {
1765     ParmVarDeclBits.IsKNRPromoted = promoted;
1766   }
1767 
1768   Expr *getDefaultArg();
getDefaultArg()1769   const Expr *getDefaultArg() const {
1770     return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1771   }
1772 
1773   void setDefaultArg(Expr *defarg);
1774 
1775   /// Retrieve the source range that covers the entire default
1776   /// argument.
1777   SourceRange getDefaultArgRange() const;
1778   void setUninstantiatedDefaultArg(Expr *arg);
1779   Expr *getUninstantiatedDefaultArg();
getUninstantiatedDefaultArg()1780   const Expr *getUninstantiatedDefaultArg() const {
1781     return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1782   }
1783 
1784   /// Determines whether this parameter has a default argument,
1785   /// either parsed or not.
1786   bool hasDefaultArg() const;
1787 
1788   /// Determines whether this parameter has a default argument that has not
1789   /// yet been parsed. This will occur during the processing of a C++ class
1790   /// whose member functions have default arguments, e.g.,
1791   /// @code
1792   ///   class X {
1793   ///   public:
1794   ///     void f(int x = 17); // x has an unparsed default argument now
1795   ///   }; // x has a regular default argument now
1796   /// @endcode
hasUnparsedDefaultArg()1797   bool hasUnparsedDefaultArg() const {
1798     return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1799   }
1800 
hasUninstantiatedDefaultArg()1801   bool hasUninstantiatedDefaultArg() const {
1802     return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1803   }
1804 
1805   /// Specify that this parameter has an unparsed default argument.
1806   /// The argument will be replaced with a real default argument via
1807   /// setDefaultArg when the class definition enclosing the function
1808   /// declaration that owns this default argument is completed.
setUnparsedDefaultArg()1809   void setUnparsedDefaultArg() {
1810     ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1811   }
1812 
hasInheritedDefaultArg()1813   bool hasInheritedDefaultArg() const {
1814     return ParmVarDeclBits.HasInheritedDefaultArg;
1815   }
1816 
1817   void setHasInheritedDefaultArg(bool I = true) {
1818     ParmVarDeclBits.HasInheritedDefaultArg = I;
1819   }
1820 
1821   QualType getOriginalType() const;
1822 
1823   /// Sets the function declaration that owns this
1824   /// ParmVarDecl. Since ParmVarDecls are often created before the
1825   /// FunctionDecls that own them, this routine is required to update
1826   /// the DeclContext appropriately.
setOwningFunction(DeclContext * FD)1827   void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1828 
1829   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1830   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1831   static bool classofKind(Kind K) { return K == ParmVar; }
1832 
1833 private:
1834   enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1835 
setParameterIndex(unsigned parameterIndex)1836   void setParameterIndex(unsigned parameterIndex) {
1837     if (parameterIndex >= ParameterIndexSentinel) {
1838       setParameterIndexLarge(parameterIndex);
1839       return;
1840     }
1841 
1842     ParmVarDeclBits.ParameterIndex = parameterIndex;
1843     assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
1844   }
getParameterIndex()1845   unsigned getParameterIndex() const {
1846     unsigned d = ParmVarDeclBits.ParameterIndex;
1847     return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1848   }
1849 
1850   void setParameterIndexLarge(unsigned parameterIndex);
1851   unsigned getParameterIndexLarge() const;
1852 };
1853 
1854 enum class MultiVersionKind {
1855   None,
1856   Target,
1857   CPUSpecific,
1858   CPUDispatch,
1859   TargetClones
1860 };
1861 
1862 /// Represents a function declaration or definition.
1863 ///
1864 /// Since a given function can be declared several times in a program,
1865 /// there may be several FunctionDecls that correspond to that
1866 /// function. Only one of those FunctionDecls will be found when
1867 /// traversing the list of declarations in the context of the
1868 /// FunctionDecl (e.g., the translation unit); this FunctionDecl
1869 /// contains all of the information known about the function. Other,
1870 /// previous declarations of the function are available via the
1871 /// getPreviousDecl() chain.
1872 class FunctionDecl : public DeclaratorDecl,
1873                      public DeclContext,
1874                      public Redeclarable<FunctionDecl> {
1875   // This class stores some data in DeclContext::FunctionDeclBits
1876   // to save some space. Use the provided accessors to access it.
1877 public:
1878   /// The kind of templated function a FunctionDecl can be.
1879   enum TemplatedKind {
1880     // Not templated.
1881     TK_NonTemplate,
1882     // The pattern in a function template declaration.
1883     TK_FunctionTemplate,
1884     // A non-template function that is an instantiation or explicit
1885     // specialization of a member of a templated class.
1886     TK_MemberSpecialization,
1887     // An instantiation or explicit specialization of a function template.
1888     // Note: this might have been instantiated from a templated class if it
1889     // is a class-scope explicit specialization.
1890     TK_FunctionTemplateSpecialization,
1891     // A function template specialization that hasn't yet been resolved to a
1892     // particular specialized function template.
1893     TK_DependentFunctionTemplateSpecialization,
1894     // A non-template function which is in a dependent scope.
1895     TK_DependentNonTemplate
1896 
1897   };
1898 
1899   /// Stashed information about a defaulted function definition whose body has
1900   /// not yet been lazily generated.
1901   class DefaultedFunctionInfo final
1902       : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1903     friend TrailingObjects;
1904     unsigned NumLookups;
1905 
1906   public:
1907     static DefaultedFunctionInfo *Create(ASTContext &Context,
1908                                          ArrayRef<DeclAccessPair> Lookups);
1909     /// Get the unqualified lookup results that should be used in this
1910     /// defaulted function definition.
getUnqualifiedLookups()1911     ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1912       return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1913     }
1914   };
1915 
1916 private:
1917   /// A new[]'d array of pointers to VarDecls for the formal
1918   /// parameters of this function.  This is null if a prototype or if there are
1919   /// no formals.
1920   ParmVarDecl **ParamInfo = nullptr;
1921 
1922   /// The active member of this union is determined by
1923   /// FunctionDeclBits.HasDefaultedFunctionInfo.
1924   union {
1925     /// The body of the function.
1926     LazyDeclStmtPtr Body;
1927     /// Information about a future defaulted function definition.
1928     DefaultedFunctionInfo *DefaultedInfo;
1929   };
1930 
1931   unsigned ODRHash;
1932 
1933   /// End part of this FunctionDecl's source range.
1934   ///
1935   /// We could compute the full range in getSourceRange(). However, when we're
1936   /// dealing with a function definition deserialized from a PCH/AST file,
1937   /// we can only compute the full range once the function body has been
1938   /// de-serialized, so it's far better to have the (sometimes-redundant)
1939   /// EndRangeLoc.
1940   SourceLocation EndRangeLoc;
1941 
1942   /// The template or declaration that this declaration
1943   /// describes or was instantiated from, respectively.
1944   ///
1945   /// For non-templates this value will be NULL, unless this declaration was
1946   /// declared directly inside of a function template, in which case it will
1947   /// have a pointer to a FunctionDecl, stored in the NamedDecl. For function
1948   /// declarations that describe a function template, this will be a pointer to
1949   /// a FunctionTemplateDecl, stored in the NamedDecl. For member functions of
1950   /// class template specializations, this will be a MemberSpecializationInfo
1951   /// pointer containing information about the specialization.
1952   /// For function template specializations, this will be a
1953   /// FunctionTemplateSpecializationInfo, which contains information about
1954   /// the template being specialized and the template arguments involved in
1955   /// that specialization.
1956   llvm::PointerUnion<NamedDecl *, MemberSpecializationInfo *,
1957                      FunctionTemplateSpecializationInfo *,
1958                      DependentFunctionTemplateSpecializationInfo *>
1959       TemplateOrSpecialization;
1960 
1961   /// Provides source/type location info for the declaration name embedded in
1962   /// the DeclaratorDecl base class.
1963   DeclarationNameLoc DNLoc;
1964 
1965   /// Specify that this function declaration is actually a function
1966   /// template specialization.
1967   ///
1968   /// \param C the ASTContext.
1969   ///
1970   /// \param Template the function template that this function template
1971   /// specialization specializes.
1972   ///
1973   /// \param TemplateArgs the template arguments that produced this
1974   /// function template specialization from the template.
1975   ///
1976   /// \param InsertPos If non-NULL, the position in the function template
1977   /// specialization set where the function template specialization data will
1978   /// be inserted.
1979   ///
1980   /// \param TSK the kind of template specialization this is.
1981   ///
1982   /// \param TemplateArgsAsWritten location info of template arguments.
1983   ///
1984   /// \param PointOfInstantiation point at which the function template
1985   /// specialization was first instantiated.
1986   void setFunctionTemplateSpecialization(ASTContext &C,
1987                                          FunctionTemplateDecl *Template,
1988                                        const TemplateArgumentList *TemplateArgs,
1989                                          void *InsertPos,
1990                                          TemplateSpecializationKind TSK,
1991                           const TemplateArgumentListInfo *TemplateArgsAsWritten,
1992                                          SourceLocation PointOfInstantiation);
1993 
1994   /// Specify that this record is an instantiation of the
1995   /// member function FD.
1996   void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1997                                         TemplateSpecializationKind TSK);
1998 
1999   void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
2000 
2001   // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
2002   // need to access this bit but we want to avoid making ASTDeclWriter
2003   // a friend of FunctionDeclBitfields just for this.
isDeletedBit()2004   bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
2005 
2006   /// Whether an ODRHash has been stored.
hasODRHash()2007   bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
2008 
2009   /// State that an ODRHash has been stored.
2010   void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
2011 
2012 protected:
2013   FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2014                const DeclarationNameInfo &NameInfo, QualType T,
2015                TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin,
2016                bool isInlineSpecified, ConstexprSpecKind ConstexprKind,
2017                Expr *TrailingRequiresClause = nullptr);
2018 
2019   using redeclarable_base = Redeclarable<FunctionDecl>;
2020 
getNextRedeclarationImpl()2021   FunctionDecl *getNextRedeclarationImpl() override {
2022     return getNextRedeclaration();
2023   }
2024 
getPreviousDeclImpl()2025   FunctionDecl *getPreviousDeclImpl() override {
2026     return getPreviousDecl();
2027   }
2028 
getMostRecentDeclImpl()2029   FunctionDecl *getMostRecentDeclImpl() override {
2030     return getMostRecentDecl();
2031   }
2032 
2033 public:
2034   friend class ASTDeclReader;
2035   friend class ASTDeclWriter;
2036 
2037   using redecl_range = redeclarable_base::redecl_range;
2038   using redecl_iterator = redeclarable_base::redecl_iterator;
2039 
2040   using redeclarable_base::redecls_begin;
2041   using redeclarable_base::redecls_end;
2042   using redeclarable_base::redecls;
2043   using redeclarable_base::getPreviousDecl;
2044   using redeclarable_base::getMostRecentDecl;
2045   using redeclarable_base::isFirstDecl;
2046 
2047   static FunctionDecl *
2048   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2049          SourceLocation NLoc, DeclarationName N, QualType T,
2050          TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin = false,
2051          bool isInlineSpecified = false, bool hasWrittenPrototype = true,
2052          ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
2053          Expr *TrailingRequiresClause = nullptr) {
2054     DeclarationNameInfo NameInfo(N, NLoc);
2055     return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
2056                                 UsesFPIntrin, isInlineSpecified,
2057                                 hasWrittenPrototype, ConstexprKind,
2058                                 TrailingRequiresClause);
2059   }
2060 
2061   static FunctionDecl *
2062   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2063          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2064          StorageClass SC, bool UsesFPIntrin, bool isInlineSpecified,
2065          bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind,
2066          Expr *TrailingRequiresClause);
2067 
2068   static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2069 
getNameInfo()2070   DeclarationNameInfo getNameInfo() const {
2071     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2072   }
2073 
2074   void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2075                             bool Qualified) const override;
2076 
setRangeEnd(SourceLocation E)2077   void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2078 
2079   /// Returns the location of the ellipsis of a variadic function.
getEllipsisLoc()2080   SourceLocation getEllipsisLoc() const {
2081     const auto *FPT = getType()->getAs<FunctionProtoType>();
2082     if (FPT && FPT->isVariadic())
2083       return FPT->getEllipsisLoc();
2084     return SourceLocation();
2085   }
2086 
2087   SourceRange getSourceRange() const override LLVM_READONLY;
2088 
2089   // Function definitions.
2090   //
2091   // A function declaration may be:
2092   // - a non defining declaration,
2093   // - a definition. A function may be defined because:
2094   //   - it has a body, or will have it in the case of late parsing.
2095   //   - it has an uninstantiated body. The body does not exist because the
2096   //     function is not used yet, but the declaration is considered a
2097   //     definition and does not allow other definition of this function.
2098   //   - it does not have a user specified body, but it does not allow
2099   //     redefinition, because it is deleted/defaulted or is defined through
2100   //     some other mechanism (alias, ifunc).
2101 
2102   /// Returns true if the function has a body.
2103   ///
2104   /// The function body might be in any of the (re-)declarations of this
2105   /// function. The variant that accepts a FunctionDecl pointer will set that
2106   /// function declaration to the actual declaration containing the body (if
2107   /// there is one).
2108   bool hasBody(const FunctionDecl *&Definition) const;
2109 
hasBody()2110   bool hasBody() const override {
2111     const FunctionDecl* Definition;
2112     return hasBody(Definition);
2113   }
2114 
2115   /// Returns whether the function has a trivial body that does not require any
2116   /// specific codegen.
2117   bool hasTrivialBody() const;
2118 
2119   /// Returns true if the function has a definition that does not need to be
2120   /// instantiated.
2121   ///
2122   /// The variant that accepts a FunctionDecl pointer will set that function
2123   /// declaration to the declaration that is a definition (if there is one).
2124   ///
2125   /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2126   ///        declarations that were instantiataed from function definitions.
2127   ///        Such a declaration behaves as if it is a definition for the
2128   ///        purpose of redefinition checking, but isn't actually a "real"
2129   ///        definition until its body is instantiated.
2130   bool isDefined(const FunctionDecl *&Definition,
2131                  bool CheckForPendingFriendDefinition = false) const;
2132 
isDefined()2133   bool isDefined() const {
2134     const FunctionDecl* Definition;
2135     return isDefined(Definition);
2136   }
2137 
2138   /// Get the definition for this declaration.
getDefinition()2139   FunctionDecl *getDefinition() {
2140     const FunctionDecl *Definition;
2141     if (isDefined(Definition))
2142       return const_cast<FunctionDecl *>(Definition);
2143     return nullptr;
2144   }
getDefinition()2145   const FunctionDecl *getDefinition() const {
2146     return const_cast<FunctionDecl *>(this)->getDefinition();
2147   }
2148 
2149   /// Retrieve the body (definition) of the function. The function body might be
2150   /// in any of the (re-)declarations of this function. The variant that accepts
2151   /// a FunctionDecl pointer will set that function declaration to the actual
2152   /// declaration containing the body (if there is one).
2153   /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2154   /// unnecessary AST de-serialization of the body.
2155   Stmt *getBody(const FunctionDecl *&Definition) const;
2156 
getBody()2157   Stmt *getBody() const override {
2158     const FunctionDecl* Definition;
2159     return getBody(Definition);
2160   }
2161 
2162   /// Returns whether this specific declaration of the function is also a
2163   /// definition that does not contain uninstantiated body.
2164   ///
2165   /// This does not determine whether the function has been defined (e.g., in a
2166   /// previous definition); for that information, use isDefined.
2167   ///
2168   /// Note: the function declaration does not become a definition until the
2169   /// parser reaches the definition, if called before, this function will return
2170   /// `false`.
isThisDeclarationADefinition()2171   bool isThisDeclarationADefinition() const {
2172     return isDeletedAsWritten() || isDefaulted() ||
2173            doesThisDeclarationHaveABody() || hasSkippedBody() ||
2174            willHaveBody() || hasDefiningAttr();
2175   }
2176 
2177   /// Determine whether this specific declaration of the function is a friend
2178   /// declaration that was instantiated from a function definition. Such
2179   /// declarations behave like definitions in some contexts.
2180   bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
2181 
2182   /// Returns whether this specific declaration of the function has a body.
doesThisDeclarationHaveABody()2183   bool doesThisDeclarationHaveABody() const {
2184     return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2185            isLateTemplateParsed();
2186   }
2187 
2188   void setBody(Stmt *B);
setLazyBody(uint64_t Offset)2189   void setLazyBody(uint64_t Offset) {
2190     FunctionDeclBits.HasDefaultedFunctionInfo = false;
2191     Body = LazyDeclStmtPtr(Offset);
2192   }
2193 
2194   void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2195   DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2196 
2197   /// Whether this function is variadic.
2198   bool isVariadic() const;
2199 
2200   /// Whether this function is marked as virtual explicitly.
isVirtualAsWritten()2201   bool isVirtualAsWritten() const {
2202     return FunctionDeclBits.IsVirtualAsWritten;
2203   }
2204 
2205   /// State that this function is marked as virtual explicitly.
setVirtualAsWritten(bool V)2206   void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2207 
2208   /// Whether this virtual function is pure, i.e. makes the containing class
2209   /// abstract.
isPure()2210   bool isPure() const { return FunctionDeclBits.IsPure; }
2211   void setPure(bool P = true);
2212 
2213   /// Whether this templated function will be late parsed.
isLateTemplateParsed()2214   bool isLateTemplateParsed() const {
2215     return FunctionDeclBits.IsLateTemplateParsed;
2216   }
2217 
2218   /// State that this templated function will be late parsed.
2219   void setLateTemplateParsed(bool ILT = true) {
2220     FunctionDeclBits.IsLateTemplateParsed = ILT;
2221   }
2222 
2223   /// Whether this function is "trivial" in some specialized C++ senses.
2224   /// Can only be true for default constructors, copy constructors,
2225   /// copy assignment operators, and destructors.  Not meaningful until
2226   /// the class has been fully built by Sema.
isTrivial()2227   bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
setTrivial(bool IT)2228   void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2229 
isTrivialForCall()2230   bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
setTrivialForCall(bool IT)2231   void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2232 
2233   /// Whether this function is defaulted. Valid for e.g.
2234   /// special member functions, defaulted comparisions (not methods!).
isDefaulted()2235   bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2236   void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2237 
2238   /// Whether this function is explicitly defaulted.
isExplicitlyDefaulted()2239   bool isExplicitlyDefaulted() const {
2240     return FunctionDeclBits.IsExplicitlyDefaulted;
2241   }
2242 
2243   /// State that this function is explicitly defaulted.
2244   void setExplicitlyDefaulted(bool ED = true) {
2245     FunctionDeclBits.IsExplicitlyDefaulted = ED;
2246   }
2247 
2248   /// True if this method is user-declared and was not
2249   /// deleted or defaulted on its first declaration.
isUserProvided()2250   bool isUserProvided() const {
2251     auto *DeclAsWritten = this;
2252     if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2253       DeclAsWritten = Pattern;
2254     return !(DeclAsWritten->isDeleted() ||
2255              DeclAsWritten->getCanonicalDecl()->isDefaulted());
2256   }
2257 
isIneligibleOrNotSelected()2258   bool isIneligibleOrNotSelected() const {
2259     return FunctionDeclBits.IsIneligibleOrNotSelected;
2260   }
setIneligibleOrNotSelected(bool II)2261   void setIneligibleOrNotSelected(bool II) {
2262     FunctionDeclBits.IsIneligibleOrNotSelected = II;
2263   }
2264 
2265   /// Whether falling off this function implicitly returns null/zero.
2266   /// If a more specific implicit return value is required, front-ends
2267   /// should synthesize the appropriate return statements.
hasImplicitReturnZero()2268   bool hasImplicitReturnZero() const {
2269     return FunctionDeclBits.HasImplicitReturnZero;
2270   }
2271 
2272   /// State that falling off this function implicitly returns null/zero.
2273   /// If a more specific implicit return value is required, front-ends
2274   /// should synthesize the appropriate return statements.
setHasImplicitReturnZero(bool IRZ)2275   void setHasImplicitReturnZero(bool IRZ) {
2276     FunctionDeclBits.HasImplicitReturnZero = IRZ;
2277   }
2278 
2279   /// Whether this function has a prototype, either because one
2280   /// was explicitly written or because it was "inherited" by merging
2281   /// a declaration without a prototype with a declaration that has a
2282   /// prototype.
hasPrototype()2283   bool hasPrototype() const {
2284     return hasWrittenPrototype() || hasInheritedPrototype();
2285   }
2286 
2287   /// Whether this function has a written prototype.
hasWrittenPrototype()2288   bool hasWrittenPrototype() const {
2289     return FunctionDeclBits.HasWrittenPrototype;
2290   }
2291 
2292   /// State that this function has a written prototype.
2293   void setHasWrittenPrototype(bool P = true) {
2294     FunctionDeclBits.HasWrittenPrototype = P;
2295   }
2296 
2297   /// Whether this function inherited its prototype from a
2298   /// previous declaration.
hasInheritedPrototype()2299   bool hasInheritedPrototype() const {
2300     return FunctionDeclBits.HasInheritedPrototype;
2301   }
2302 
2303   /// State that this function inherited its prototype from a
2304   /// previous declaration.
2305   void setHasInheritedPrototype(bool P = true) {
2306     FunctionDeclBits.HasInheritedPrototype = P;
2307   }
2308 
2309   /// Whether this is a (C++11) constexpr function or constexpr constructor.
isConstexpr()2310   bool isConstexpr() const {
2311     return getConstexprKind() != ConstexprSpecKind::Unspecified;
2312   }
setConstexprKind(ConstexprSpecKind CSK)2313   void setConstexprKind(ConstexprSpecKind CSK) {
2314     FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2315   }
getConstexprKind()2316   ConstexprSpecKind getConstexprKind() const {
2317     return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2318   }
isConstexprSpecified()2319   bool isConstexprSpecified() const {
2320     return getConstexprKind() == ConstexprSpecKind::Constexpr;
2321   }
isConsteval()2322   bool isConsteval() const {
2323     return getConstexprKind() == ConstexprSpecKind::Consteval;
2324   }
2325 
2326   /// Whether the instantiation of this function is pending.
2327   /// This bit is set when the decision to instantiate this function is made
2328   /// and unset if and when the function body is created. That leaves out
2329   /// cases where instantiation did not happen because the template definition
2330   /// was not seen in this TU. This bit remains set in those cases, under the
2331   /// assumption that the instantiation will happen in some other TU.
instantiationIsPending()2332   bool instantiationIsPending() const {
2333     return FunctionDeclBits.InstantiationIsPending;
2334   }
2335 
2336   /// State that the instantiation of this function is pending.
2337   /// (see instantiationIsPending)
setInstantiationIsPending(bool IC)2338   void setInstantiationIsPending(bool IC) {
2339     FunctionDeclBits.InstantiationIsPending = IC;
2340   }
2341 
2342   /// Indicates the function uses __try.
usesSEHTry()2343   bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
setUsesSEHTry(bool UST)2344   void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2345 
2346   /// Whether this function has been deleted.
2347   ///
2348   /// A function that is "deleted" (via the C++0x "= delete" syntax)
2349   /// acts like a normal function, except that it cannot actually be
2350   /// called or have its address taken. Deleted functions are
2351   /// typically used in C++ overload resolution to attract arguments
2352   /// whose type or lvalue/rvalue-ness would permit the use of a
2353   /// different overload that would behave incorrectly. For example,
2354   /// one might use deleted functions to ban implicit conversion from
2355   /// a floating-point number to an Integer type:
2356   ///
2357   /// @code
2358   /// struct Integer {
2359   ///   Integer(long); // construct from a long
2360   ///   Integer(double) = delete; // no construction from float or double
2361   ///   Integer(long double) = delete; // no construction from long double
2362   /// };
2363   /// @endcode
2364   // If a function is deleted, its first declaration must be.
isDeleted()2365   bool isDeleted() const {
2366     return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2367   }
2368 
isDeletedAsWritten()2369   bool isDeletedAsWritten() const {
2370     return FunctionDeclBits.IsDeleted && !isDefaulted();
2371   }
2372 
2373   void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2374 
2375   /// Determines whether this function is "main", which is the
2376   /// entry point into an executable program.
2377   bool isMain() const;
2378 
2379   /// Determines whether this function is a MSVCRT user defined entry
2380   /// point.
2381   bool isMSVCRTEntryPoint() const;
2382 
2383   /// Determines whether this operator new or delete is one
2384   /// of the reserved global placement operators:
2385   ///    void *operator new(size_t, void *);
2386   ///    void *operator new[](size_t, void *);
2387   ///    void operator delete(void *, void *);
2388   ///    void operator delete[](void *, void *);
2389   /// These functions have special behavior under [new.delete.placement]:
2390   ///    These functions are reserved, a C++ program may not define
2391   ///    functions that displace the versions in the Standard C++ library.
2392   ///    The provisions of [basic.stc.dynamic] do not apply to these
2393   ///    reserved placement forms of operator new and operator delete.
2394   ///
2395   /// This function must be an allocation or deallocation function.
2396   bool isReservedGlobalPlacementOperator() const;
2397 
2398   /// Determines whether this function is one of the replaceable
2399   /// global allocation functions:
2400   ///    void *operator new(size_t);
2401   ///    void *operator new(size_t, const std::nothrow_t &) noexcept;
2402   ///    void *operator new[](size_t);
2403   ///    void *operator new[](size_t, const std::nothrow_t &) noexcept;
2404   ///    void operator delete(void *) noexcept;
2405   ///    void operator delete(void *, std::size_t) noexcept;      [C++1y]
2406   ///    void operator delete(void *, const std::nothrow_t &) noexcept;
2407   ///    void operator delete[](void *) noexcept;
2408   ///    void operator delete[](void *, std::size_t) noexcept;    [C++1y]
2409   ///    void operator delete[](void *, const std::nothrow_t &) noexcept;
2410   /// These functions have special behavior under C++1y [expr.new]:
2411   ///    An implementation is allowed to omit a call to a replaceable global
2412   ///    allocation function. [...]
2413   ///
2414   /// If this function is an aligned allocation/deallocation function, return
2415   /// the parameter number of the requested alignment through AlignmentParam.
2416   ///
2417   /// If this function is an allocation/deallocation function that takes
2418   /// the `std::nothrow_t` tag, return true through IsNothrow,
2419   bool isReplaceableGlobalAllocationFunction(
2420       Optional<unsigned> *AlignmentParam = nullptr,
2421       bool *IsNothrow = nullptr) const;
2422 
2423   /// Determine if this function provides an inline implementation of a builtin.
2424   bool isInlineBuiltinDeclaration() const;
2425 
2426   /// Determine whether this is a destroying operator delete.
2427   bool isDestroyingOperatorDelete() const;
2428 
2429   /// Compute the language linkage.
2430   LanguageLinkage getLanguageLinkage() const;
2431 
2432   /// Determines whether this function is a function with
2433   /// external, C linkage.
2434   bool isExternC() const;
2435 
2436   /// Determines whether this function's context is, or is nested within,
2437   /// a C++ extern "C" linkage spec.
2438   bool isInExternCContext() const;
2439 
2440   /// Determines whether this function's context is, or is nested within,
2441   /// a C++ extern "C++" linkage spec.
2442   bool isInExternCXXContext() const;
2443 
2444   /// Determines whether this is a global function.
2445   bool isGlobal() const;
2446 
2447   /// Determines whether this function is known to be 'noreturn', through
2448   /// an attribute on its declaration or its type.
2449   bool isNoReturn() const;
2450 
2451   /// True if the function was a definition but its body was skipped.
hasSkippedBody()2452   bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2453   void setHasSkippedBody(bool Skipped = true) {
2454     FunctionDeclBits.HasSkippedBody = Skipped;
2455   }
2456 
2457   /// True if this function will eventually have a body, once it's fully parsed.
willHaveBody()2458   bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2459   void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2460 
2461   /// True if this function is considered a multiversioned function.
isMultiVersion()2462   bool isMultiVersion() const {
2463     return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2464   }
2465 
2466   /// Sets the multiversion state for this declaration and all of its
2467   /// redeclarations.
2468   void setIsMultiVersion(bool V = true) {
2469     getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2470   }
2471 
2472   /// Gets the kind of multiversioning attribute this declaration has. Note that
2473   /// this can return a value even if the function is not multiversion, such as
2474   /// the case of 'target'.
2475   MultiVersionKind getMultiVersionKind() const;
2476 
2477 
2478   /// True if this function is a multiversioned dispatch function as a part of
2479   /// the cpu_specific/cpu_dispatch functionality.
2480   bool isCPUDispatchMultiVersion() const;
2481   /// True if this function is a multiversioned processor specific function as a
2482   /// part of the cpu_specific/cpu_dispatch functionality.
2483   bool isCPUSpecificMultiVersion() const;
2484 
2485   /// True if this function is a multiversioned dispatch function as a part of
2486   /// the target functionality.
2487   bool isTargetMultiVersion() const;
2488 
2489   /// True if this function is a multiversioned dispatch function as a part of
2490   /// the target-clones functionality.
2491   bool isTargetClonesMultiVersion() const;
2492 
2493   /// \brief Get the associated-constraints of this function declaration.
2494   /// Currently, this will either be a vector of size 1 containing the
2495   /// trailing-requires-clause or an empty vector.
2496   ///
2497   /// Use this instead of getTrailingRequiresClause for concepts APIs that
2498   /// accept an ArrayRef of constraint expressions.
getAssociatedConstraints(SmallVectorImpl<const Expr * > & AC)2499   void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2500     if (auto *TRC = getTrailingRequiresClause())
2501       AC.push_back(TRC);
2502   }
2503 
2504   void setPreviousDeclaration(FunctionDecl * PrevDecl);
2505 
2506   FunctionDecl *getCanonicalDecl() override;
getCanonicalDecl()2507   const FunctionDecl *getCanonicalDecl() const {
2508     return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2509   }
2510 
2511   unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2512 
2513   // ArrayRef interface to parameters.
parameters()2514   ArrayRef<ParmVarDecl *> parameters() const {
2515     return {ParamInfo, getNumParams()};
2516   }
parameters()2517   MutableArrayRef<ParmVarDecl *> parameters() {
2518     return {ParamInfo, getNumParams()};
2519   }
2520 
2521   // Iterator access to formal parameters.
2522   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2523   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2524 
param_empty()2525   bool param_empty() const { return parameters().empty(); }
param_begin()2526   param_iterator param_begin() { return parameters().begin(); }
param_end()2527   param_iterator param_end() { return parameters().end(); }
param_begin()2528   param_const_iterator param_begin() const { return parameters().begin(); }
param_end()2529   param_const_iterator param_end() const { return parameters().end(); }
param_size()2530   size_t param_size() const { return parameters().size(); }
2531 
2532   /// Return the number of parameters this function must have based on its
2533   /// FunctionType.  This is the length of the ParamInfo array after it has been
2534   /// created.
2535   unsigned getNumParams() const;
2536 
getParamDecl(unsigned i)2537   const ParmVarDecl *getParamDecl(unsigned i) const {
2538     assert(i < getNumParams() && "Illegal param #");
2539     return ParamInfo[i];
2540   }
getParamDecl(unsigned i)2541   ParmVarDecl *getParamDecl(unsigned i) {
2542     assert(i < getNumParams() && "Illegal param #");
2543     return ParamInfo[i];
2544   }
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)2545   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2546     setParams(getASTContext(), NewParamInfo);
2547   }
2548 
2549   /// Returns the minimum number of arguments needed to call this function. This
2550   /// may be fewer than the number of function parameters, if some of the
2551   /// parameters have default arguments (in C++).
2552   unsigned getMinRequiredArguments() const;
2553 
2554   /// Determine whether this function has a single parameter, or multiple
2555   /// parameters where all but the first have default arguments.
2556   ///
2557   /// This notion is used in the definition of copy/move constructors and
2558   /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2559   /// parameter packs are not treated specially here.
2560   bool hasOneParamOrDefaultArgs() const;
2561 
2562   /// Find the source location information for how the type of this function
2563   /// was written. May be absent (for example if the function was declared via
2564   /// a typedef) and may contain a different type from that of the function
2565   /// (for example if the function type was adjusted by an attribute).
2566   FunctionTypeLoc getFunctionTypeLoc() const;
2567 
getReturnType()2568   QualType getReturnType() const {
2569     return getType()->castAs<FunctionType>()->getReturnType();
2570   }
2571 
2572   /// Attempt to compute an informative source range covering the
2573   /// function return type. This may omit qualifiers and other information with
2574   /// limited representation in the AST.
2575   SourceRange getReturnTypeSourceRange() const;
2576 
2577   /// Attempt to compute an informative source range covering the
2578   /// function parameters, including the ellipsis of a variadic function.
2579   /// The source range excludes the parentheses, and is invalid if there are
2580   /// no parameters and no ellipsis.
2581   SourceRange getParametersSourceRange() const;
2582 
2583   /// Get the declared return type, which may differ from the actual return
2584   /// type if the return type is deduced.
getDeclaredReturnType()2585   QualType getDeclaredReturnType() const {
2586     auto *TSI = getTypeSourceInfo();
2587     QualType T = TSI ? TSI->getType() : getType();
2588     return T->castAs<FunctionType>()->getReturnType();
2589   }
2590 
2591   /// Gets the ExceptionSpecificationType as declared.
getExceptionSpecType()2592   ExceptionSpecificationType getExceptionSpecType() const {
2593     auto *TSI = getTypeSourceInfo();
2594     QualType T = TSI ? TSI->getType() : getType();
2595     const auto *FPT = T->getAs<FunctionProtoType>();
2596     return FPT ? FPT->getExceptionSpecType() : EST_None;
2597   }
2598 
2599   /// Attempt to compute an informative source range covering the
2600   /// function exception specification, if any.
2601   SourceRange getExceptionSpecSourceRange() const;
2602 
2603   /// Determine the type of an expression that calls this function.
getCallResultType()2604   QualType getCallResultType() const {
2605     return getType()->castAs<FunctionType>()->getCallResultType(
2606         getASTContext());
2607   }
2608 
2609   /// Returns the storage class as written in the source. For the
2610   /// computed linkage of symbol, see getLinkage.
getStorageClass()2611   StorageClass getStorageClass() const {
2612     return static_cast<StorageClass>(FunctionDeclBits.SClass);
2613   }
2614 
2615   /// Sets the storage class as written in the source.
setStorageClass(StorageClass SClass)2616   void setStorageClass(StorageClass SClass) {
2617     FunctionDeclBits.SClass = SClass;
2618   }
2619 
2620   /// Determine whether the "inline" keyword was specified for this
2621   /// function.
isInlineSpecified()2622   bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2623 
2624   /// Set whether the "inline" keyword was specified for this function.
setInlineSpecified(bool I)2625   void setInlineSpecified(bool I) {
2626     FunctionDeclBits.IsInlineSpecified = I;
2627     FunctionDeclBits.IsInline = I;
2628   }
2629 
2630   /// Determine whether the function was declared in source context
2631   /// that requires constrained FP intrinsics
UsesFPIntrin()2632   bool UsesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; }
2633 
2634   /// Set whether the function was declared in source context
2635   /// that requires constrained FP intrinsics
setUsesFPIntrin(bool I)2636   void setUsesFPIntrin(bool I) { FunctionDeclBits.UsesFPIntrin = I; }
2637 
2638   /// Flag that this function is implicitly inline.
2639   void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2640 
2641   /// Determine whether this function should be inlined, because it is
2642   /// either marked "inline" or "constexpr" or is a member function of a class
2643   /// that was defined in the class body.
isInlined()2644   bool isInlined() const { return FunctionDeclBits.IsInline; }
2645 
2646   bool isInlineDefinitionExternallyVisible() const;
2647 
2648   bool isMSExternInline() const;
2649 
2650   bool doesDeclarationForceExternallyVisibleDefinition() const;
2651 
isStatic()2652   bool isStatic() const { return getStorageClass() == SC_Static; }
2653 
2654   /// Whether this function declaration represents an C++ overloaded
2655   /// operator, e.g., "operator+".
isOverloadedOperator()2656   bool isOverloadedOperator() const {
2657     return getOverloadedOperator() != OO_None;
2658   }
2659 
2660   OverloadedOperatorKind getOverloadedOperator() const;
2661 
2662   const IdentifierInfo *getLiteralIdentifier() const;
2663 
2664   /// If this function is an instantiation of a member function
2665   /// of a class template specialization, retrieves the function from
2666   /// which it was instantiated.
2667   ///
2668   /// This routine will return non-NULL for (non-templated) member
2669   /// functions of class templates and for instantiations of function
2670   /// templates. For example, given:
2671   ///
2672   /// \code
2673   /// template<typename T>
2674   /// struct X {
2675   ///   void f(T);
2676   /// };
2677   /// \endcode
2678   ///
2679   /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2680   /// whose parent is the class template specialization X<int>. For
2681   /// this declaration, getInstantiatedFromFunction() will return
2682   /// the FunctionDecl X<T>::A. When a complete definition of
2683   /// X<int>::A is required, it will be instantiated from the
2684   /// declaration returned by getInstantiatedFromMemberFunction().
2685   FunctionDecl *getInstantiatedFromMemberFunction() const;
2686 
2687   /// What kind of templated function this is.
2688   TemplatedKind getTemplatedKind() const;
2689 
2690   /// If this function is an instantiation of a member function of a
2691   /// class template specialization, retrieves the member specialization
2692   /// information.
2693   MemberSpecializationInfo *getMemberSpecializationInfo() const;
2694 
2695   /// Specify that this record is an instantiation of the
2696   /// member function FD.
setInstantiationOfMemberFunction(FunctionDecl * FD,TemplateSpecializationKind TSK)2697   void setInstantiationOfMemberFunction(FunctionDecl *FD,
2698                                         TemplateSpecializationKind TSK) {
2699     setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2700   }
2701 
2702   /// Specify that this function declaration was instantiated from a
2703   /// FunctionDecl FD. This is only used if this is a function declaration
2704   /// declared locally inside of a function template.
2705   void setInstantiatedFromDecl(FunctionDecl *FD);
2706 
2707   FunctionDecl *getInstantiatedFromDecl() const;
2708 
2709   /// Retrieves the function template that is described by this
2710   /// function declaration.
2711   ///
2712   /// Every function template is represented as a FunctionTemplateDecl
2713   /// and a FunctionDecl (or something derived from FunctionDecl). The
2714   /// former contains template properties (such as the template
2715   /// parameter lists) while the latter contains the actual
2716   /// description of the template's
2717   /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2718   /// FunctionDecl that describes the function template,
2719   /// getDescribedFunctionTemplate() retrieves the
2720   /// FunctionTemplateDecl from a FunctionDecl.
2721   FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2722 
2723   void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2724 
2725   /// Determine whether this function is a function template
2726   /// specialization.
isFunctionTemplateSpecialization()2727   bool isFunctionTemplateSpecialization() const {
2728     return getPrimaryTemplate() != nullptr;
2729   }
2730 
2731   /// If this function is actually a function template specialization,
2732   /// retrieve information about this function template specialization.
2733   /// Otherwise, returns NULL.
2734   FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2735 
2736   /// Determines whether this function is a function template
2737   /// specialization or a member of a class template specialization that can
2738   /// be implicitly instantiated.
2739   bool isImplicitlyInstantiable() const;
2740 
2741   /// Determines if the given function was instantiated from a
2742   /// function template.
2743   bool isTemplateInstantiation() const;
2744 
2745   /// Retrieve the function declaration from which this function could
2746   /// be instantiated, if it is an instantiation (rather than a non-template
2747   /// or a specialization, for example).
2748   ///
2749   /// If \p ForDefinition is \c false, explicit specializations will be treated
2750   /// as if they were implicit instantiations. This will then find the pattern
2751   /// corresponding to non-definition portions of the declaration, such as
2752   /// default arguments and the exception specification.
2753   FunctionDecl *
2754   getTemplateInstantiationPattern(bool ForDefinition = true) const;
2755 
2756   /// Retrieve the primary template that this function template
2757   /// specialization either specializes or was instantiated from.
2758   ///
2759   /// If this function declaration is not a function template specialization,
2760   /// returns NULL.
2761   FunctionTemplateDecl *getPrimaryTemplate() const;
2762 
2763   /// Retrieve the template arguments used to produce this function
2764   /// template specialization from the primary template.
2765   ///
2766   /// If this function declaration is not a function template specialization,
2767   /// returns NULL.
2768   const TemplateArgumentList *getTemplateSpecializationArgs() const;
2769 
2770   /// Retrieve the template argument list as written in the sources,
2771   /// if any.
2772   ///
2773   /// If this function declaration is not a function template specialization
2774   /// or if it had no explicit template argument list, returns NULL.
2775   /// Note that it an explicit template argument list may be written empty,
2776   /// e.g., template<> void foo<>(char* s);
2777   const ASTTemplateArgumentListInfo*
2778   getTemplateSpecializationArgsAsWritten() const;
2779 
2780   /// Specify that this function declaration is actually a function
2781   /// template specialization.
2782   ///
2783   /// \param Template the function template that this function template
2784   /// specialization specializes.
2785   ///
2786   /// \param TemplateArgs the template arguments that produced this
2787   /// function template specialization from the template.
2788   ///
2789   /// \param InsertPos If non-NULL, the position in the function template
2790   /// specialization set where the function template specialization data will
2791   /// be inserted.
2792   ///
2793   /// \param TSK the kind of template specialization this is.
2794   ///
2795   /// \param TemplateArgsAsWritten location info of template arguments.
2796   ///
2797   /// \param PointOfInstantiation point at which the function template
2798   /// specialization was first instantiated.
2799   void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2800                 const TemplateArgumentList *TemplateArgs,
2801                 void *InsertPos,
2802                 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2803                 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2804                 SourceLocation PointOfInstantiation = SourceLocation()) {
2805     setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2806                                       InsertPos, TSK, TemplateArgsAsWritten,
2807                                       PointOfInstantiation);
2808   }
2809 
2810   /// Specifies that this function declaration is actually a
2811   /// dependent function template specialization.
2812   void setDependentTemplateSpecialization(ASTContext &Context,
2813                              const UnresolvedSetImpl &Templates,
2814                       const TemplateArgumentListInfo &TemplateArgs);
2815 
2816   DependentFunctionTemplateSpecializationInfo *
2817   getDependentSpecializationInfo() const;
2818 
2819   /// Determine what kind of template instantiation this function
2820   /// represents.
2821   TemplateSpecializationKind getTemplateSpecializationKind() const;
2822 
2823   /// Determine the kind of template specialization this function represents
2824   /// for the purpose of template instantiation.
2825   TemplateSpecializationKind
2826   getTemplateSpecializationKindForInstantiation() const;
2827 
2828   /// Determine what kind of template instantiation this function
2829   /// represents.
2830   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2831                         SourceLocation PointOfInstantiation = SourceLocation());
2832 
2833   /// Retrieve the (first) point of instantiation of a function template
2834   /// specialization or a member of a class template specialization.
2835   ///
2836   /// \returns the first point of instantiation, if this function was
2837   /// instantiated from a template; otherwise, returns an invalid source
2838   /// location.
2839   SourceLocation getPointOfInstantiation() const;
2840 
2841   /// Determine whether this is or was instantiated from an out-of-line
2842   /// definition of a member function.
2843   bool isOutOfLine() const override;
2844 
2845   /// Identify a memory copying or setting function.
2846   /// If the given function is a memory copy or setting function, returns
2847   /// the corresponding Builtin ID. If the function is not a memory function,
2848   /// returns 0.
2849   unsigned getMemoryFunctionKind() const;
2850 
2851   /// Returns ODRHash of the function.  This value is calculated and
2852   /// stored on first call, then the stored value returned on the other calls.
2853   unsigned getODRHash();
2854 
2855   /// Returns cached ODRHash of the function.  This must have been previously
2856   /// computed and stored.
2857   unsigned getODRHash() const;
2858 
2859   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2860   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2861   static bool classofKind(Kind K) {
2862     return K >= firstFunction && K <= lastFunction;
2863   }
castToDeclContext(const FunctionDecl * D)2864   static DeclContext *castToDeclContext(const FunctionDecl *D) {
2865     return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2866   }
castFromDeclContext(const DeclContext * DC)2867   static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2868     return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2869   }
2870 };
2871 
2872 /// Represents a member of a struct/union/class.
2873 class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2874   unsigned BitField : 1;
2875   unsigned Mutable : 1;
2876   mutable unsigned CachedFieldIndex : 30;
2877 
2878   /// The kinds of value we can store in InitializerOrBitWidth.
2879   ///
2880   /// Note that this is compatible with InClassInitStyle except for
2881   /// ISK_CapturedVLAType.
2882   enum InitStorageKind {
2883     /// If the pointer is null, there's nothing special.  Otherwise,
2884     /// this is a bitfield and the pointer is the Expr* storing the
2885     /// bit-width.
2886     ISK_NoInit = (unsigned) ICIS_NoInit,
2887 
2888     /// The pointer is an (optional due to delayed parsing) Expr*
2889     /// holding the copy-initializer.
2890     ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2891 
2892     /// The pointer is an (optional due to delayed parsing) Expr*
2893     /// holding the list-initializer.
2894     ISK_InClassListInit = (unsigned) ICIS_ListInit,
2895 
2896     /// The pointer is a VariableArrayType* that's been captured;
2897     /// the enclosing context is a lambda or captured statement.
2898     ISK_CapturedVLAType,
2899   };
2900 
2901   /// If this is a bitfield with a default member initializer, this
2902   /// structure is used to represent the two expressions.
2903   struct InitAndBitWidth {
2904     Expr *Init;
2905     Expr *BitWidth;
2906   };
2907 
2908   /// Storage for either the bit-width, the in-class initializer, or
2909   /// both (via InitAndBitWidth), or the captured variable length array bound.
2910   ///
2911   /// If the storage kind is ISK_InClassCopyInit or
2912   /// ISK_InClassListInit, but the initializer is null, then this
2913   /// field has an in-class initializer that has not yet been parsed
2914   /// and attached.
2915   // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2916   // overwhelmingly common case that we have none of these things.
2917   llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2918 
2919 protected:
FieldDecl(Kind DK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)2920   FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2921             SourceLocation IdLoc, IdentifierInfo *Id,
2922             QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2923             InClassInitStyle InitStyle)
2924     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2925       BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2926       InitStorage(nullptr, (InitStorageKind) InitStyle) {
2927     if (BW)
2928       setBitWidth(BW);
2929   }
2930 
2931 public:
2932   friend class ASTDeclReader;
2933   friend class ASTDeclWriter;
2934 
2935   static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2936                            SourceLocation StartLoc, SourceLocation IdLoc,
2937                            IdentifierInfo *Id, QualType T,
2938                            TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2939                            InClassInitStyle InitStyle);
2940 
2941   static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2942 
2943   /// Returns the index of this field within its record,
2944   /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2945   unsigned getFieldIndex() const;
2946 
2947   /// Determines whether this field is mutable (C++ only).
isMutable()2948   bool isMutable() const { return Mutable; }
2949 
2950   /// Determines whether this field is a bitfield.
isBitField()2951   bool isBitField() const { return BitField; }
2952 
2953   /// Determines whether this is an unnamed bitfield.
isUnnamedBitfield()2954   bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2955 
2956   /// Determines whether this field is a
2957   /// representative for an anonymous struct or union. Such fields are
2958   /// unnamed and are implicitly generated by the implementation to
2959   /// store the data for the anonymous union or struct.
2960   bool isAnonymousStructOrUnion() const;
2961 
getBitWidth()2962   Expr *getBitWidth() const {
2963     if (!BitField)
2964       return nullptr;
2965     void *Ptr = InitStorage.getPointer();
2966     if (getInClassInitStyle())
2967       return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2968     return static_cast<Expr*>(Ptr);
2969   }
2970 
2971   unsigned getBitWidthValue(const ASTContext &Ctx) const;
2972 
2973   /// Set the bit-field width for this member.
2974   // Note: used by some clients (i.e., do not remove it).
setBitWidth(Expr * Width)2975   void setBitWidth(Expr *Width) {
2976     assert(!hasCapturedVLAType() && !BitField &&
2977            "bit width or captured type already set");
2978     assert(Width && "no bit width specified");
2979     InitStorage.setPointer(
2980         InitStorage.getInt()
2981             ? new (getASTContext())
2982                   InitAndBitWidth{getInClassInitializer(), Width}
2983             : static_cast<void*>(Width));
2984     BitField = true;
2985   }
2986 
2987   /// Remove the bit-field width from this member.
2988   // Note: used by some clients (i.e., do not remove it).
removeBitWidth()2989   void removeBitWidth() {
2990     assert(isBitField() && "no bitfield width to remove");
2991     InitStorage.setPointer(getInClassInitializer());
2992     BitField = false;
2993   }
2994 
2995   /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2996   /// at all and instead act as a separator between contiguous runs of other
2997   /// bit-fields.
2998   bool isZeroLengthBitField(const ASTContext &Ctx) const;
2999 
3000   /// Determine if this field is a subobject of zero size, that is, either a
3001   /// zero-length bit-field or a field of empty class type with the
3002   /// [[no_unique_address]] attribute.
3003   bool isZeroSize(const ASTContext &Ctx) const;
3004 
3005   /// Get the kind of (C++11) default member initializer that this field has.
getInClassInitStyle()3006   InClassInitStyle getInClassInitStyle() const {
3007     InitStorageKind storageKind = InitStorage.getInt();
3008     return (storageKind == ISK_CapturedVLAType
3009               ? ICIS_NoInit : (InClassInitStyle) storageKind);
3010   }
3011 
3012   /// Determine whether this member has a C++11 default member initializer.
hasInClassInitializer()3013   bool hasInClassInitializer() const {
3014     return getInClassInitStyle() != ICIS_NoInit;
3015   }
3016 
3017   /// Get the C++11 default member initializer for this member, or null if one
3018   /// has not been set. If a valid declaration has a default member initializer,
3019   /// but this returns null, then we have not parsed and attached it yet.
getInClassInitializer()3020   Expr *getInClassInitializer() const {
3021     if (!hasInClassInitializer())
3022       return nullptr;
3023     void *Ptr = InitStorage.getPointer();
3024     if (BitField)
3025       return static_cast<InitAndBitWidth*>(Ptr)->Init;
3026     return static_cast<Expr*>(Ptr);
3027   }
3028 
3029   /// Set the C++11 in-class initializer for this member.
setInClassInitializer(Expr * Init)3030   void setInClassInitializer(Expr *Init) {
3031     assert(hasInClassInitializer() && !getInClassInitializer());
3032     if (BitField)
3033       static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
3034     else
3035       InitStorage.setPointer(Init);
3036   }
3037 
3038   /// Remove the C++11 in-class initializer from this member.
removeInClassInitializer()3039   void removeInClassInitializer() {
3040     assert(hasInClassInitializer() && "no initializer to remove");
3041     InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
3042   }
3043 
3044   /// Determine whether this member captures the variable length array
3045   /// type.
hasCapturedVLAType()3046   bool hasCapturedVLAType() const {
3047     return InitStorage.getInt() == ISK_CapturedVLAType;
3048   }
3049 
3050   /// Get the captured variable length array type.
getCapturedVLAType()3051   const VariableArrayType *getCapturedVLAType() const {
3052     return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
3053                                       InitStorage.getPointer())
3054                                 : nullptr;
3055   }
3056 
3057   /// Set the captured variable length array type for this field.
3058   void setCapturedVLAType(const VariableArrayType *VLAType);
3059 
3060   /// Returns the parent of this field declaration, which
3061   /// is the struct in which this field is defined.
3062   ///
3063   /// Returns null if this is not a normal class/struct field declaration, e.g.
3064   /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
getParent()3065   const RecordDecl *getParent() const {
3066     return dyn_cast<RecordDecl>(getDeclContext());
3067   }
3068 
getParent()3069   RecordDecl *getParent() {
3070     return dyn_cast<RecordDecl>(getDeclContext());
3071   }
3072 
3073   SourceRange getSourceRange() const override LLVM_READONLY;
3074 
3075   /// Retrieves the canonical declaration of this field.
getCanonicalDecl()3076   FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3077   const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3078 
3079   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3080   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3081   static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
3082 };
3083 
3084 /// An instance of this object exists for each enum constant
3085 /// that is defined.  For example, in "enum X {a,b}", each of a/b are
3086 /// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
3087 /// TagType for the X EnumDecl.
3088 class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
3089   Stmt *Init; // an integer constant expression
3090   llvm::APSInt Val; // The value.
3091 
3092 protected:
EnumConstantDecl(DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3093   EnumConstantDecl(DeclContext *DC, SourceLocation L,
3094                    IdentifierInfo *Id, QualType T, Expr *E,
3095                    const llvm::APSInt &V)
3096     : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
3097 
3098 public:
3099   friend class StmtIteratorBase;
3100 
3101   static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
3102                                   SourceLocation L, IdentifierInfo *Id,
3103                                   QualType T, Expr *E,
3104                                   const llvm::APSInt &V);
3105   static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3106 
getInitExpr()3107   const Expr *getInitExpr() const { return (const Expr*) Init; }
getInitExpr()3108   Expr *getInitExpr() { return (Expr*) Init; }
getInitVal()3109   const llvm::APSInt &getInitVal() const { return Val; }
3110 
setInitExpr(Expr * E)3111   void setInitExpr(Expr *E) { Init = (Stmt*) E; }
setInitVal(const llvm::APSInt & V)3112   void setInitVal(const llvm::APSInt &V) { Val = V; }
3113 
3114   SourceRange getSourceRange() const override LLVM_READONLY;
3115 
3116   /// Retrieves the canonical declaration of this enumerator.
getCanonicalDecl()3117   EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3118   const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
3119 
3120   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3121   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3122   static bool classofKind(Kind K) { return K == EnumConstant; }
3123 };
3124 
3125 /// Represents a field injected from an anonymous union/struct into the parent
3126 /// scope. These are always implicit.
3127 class IndirectFieldDecl : public ValueDecl,
3128                           public Mergeable<IndirectFieldDecl> {
3129   NamedDecl **Chaining;
3130   unsigned ChainingSize;
3131 
3132   IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
3133                     DeclarationName N, QualType T,
3134                     MutableArrayRef<NamedDecl *> CH);
3135 
3136   void anchor() override;
3137 
3138 public:
3139   friend class ASTDeclReader;
3140 
3141   static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
3142                                    SourceLocation L, IdentifierInfo *Id,
3143                                    QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
3144 
3145   static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3146 
3147   using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
3148 
chain()3149   ArrayRef<NamedDecl *> chain() const {
3150     return llvm::makeArrayRef(Chaining, ChainingSize);
3151   }
chain_begin()3152   chain_iterator chain_begin() const { return chain().begin(); }
chain_end()3153   chain_iterator chain_end() const { return chain().end(); }
3154 
getChainingSize()3155   unsigned getChainingSize() const { return ChainingSize; }
3156 
getAnonField()3157   FieldDecl *getAnonField() const {
3158     assert(chain().size() >= 2);
3159     return cast<FieldDecl>(chain().back());
3160   }
3161 
getVarDecl()3162   VarDecl *getVarDecl() const {
3163     assert(chain().size() >= 2);
3164     return dyn_cast<VarDecl>(chain().front());
3165   }
3166 
getCanonicalDecl()3167   IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3168   const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3169 
3170   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3171   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3172   static bool classofKind(Kind K) { return K == IndirectField; }
3173 };
3174 
3175 /// Represents a declaration of a type.
3176 class TypeDecl : public NamedDecl {
3177   friend class ASTContext;
3178 
3179   /// This indicates the Type object that represents
3180   /// this TypeDecl.  It is a cache maintained by
3181   /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3182   /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3183   mutable const Type *TypeForDecl = nullptr;
3184 
3185   /// The start of the source range for this declaration.
3186   SourceLocation LocStart;
3187 
3188   void anchor() override;
3189 
3190 protected:
3191   TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
3192            SourceLocation StartL = SourceLocation())
NamedDecl(DK,DC,L,Id)3193     : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3194 
3195 public:
3196   // Low-level accessor. If you just want the type defined by this node,
3197   // check out ASTContext::getTypeDeclType or one of
3198   // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3199   // already know the specific kind of node this is.
getTypeForDecl()3200   const Type *getTypeForDecl() const { return TypeForDecl; }
setTypeForDecl(const Type * TD)3201   void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3202 
getBeginLoc()3203   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
setLocStart(SourceLocation L)3204   void setLocStart(SourceLocation L) { LocStart = L; }
getSourceRange()3205   SourceRange getSourceRange() const override LLVM_READONLY {
3206     if (LocStart.isValid())
3207       return SourceRange(LocStart, getLocation());
3208     else
3209       return SourceRange(getLocation());
3210   }
3211 
3212   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3213   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3214   static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3215 };
3216 
3217 /// Base class for declarations which introduce a typedef-name.
3218 class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3219   struct alignas(8) ModedTInfo {
3220     TypeSourceInfo *first;
3221     QualType second;
3222   };
3223 
3224   /// If int part is 0, we have not computed IsTransparentTag.
3225   /// Otherwise, IsTransparentTag is (getInt() >> 1).
3226   mutable llvm::PointerIntPair<
3227       llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3228       MaybeModedTInfo;
3229 
3230   void anchor() override;
3231 
3232 protected:
TypedefNameDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3233   TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3234                   SourceLocation StartLoc, SourceLocation IdLoc,
3235                   IdentifierInfo *Id, TypeSourceInfo *TInfo)
3236       : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3237         MaybeModedTInfo(TInfo, 0) {}
3238 
3239   using redeclarable_base = Redeclarable<TypedefNameDecl>;
3240 
getNextRedeclarationImpl()3241   TypedefNameDecl *getNextRedeclarationImpl() override {
3242     return getNextRedeclaration();
3243   }
3244 
getPreviousDeclImpl()3245   TypedefNameDecl *getPreviousDeclImpl() override {
3246     return getPreviousDecl();
3247   }
3248 
getMostRecentDeclImpl()3249   TypedefNameDecl *getMostRecentDeclImpl() override {
3250     return getMostRecentDecl();
3251   }
3252 
3253 public:
3254   using redecl_range = redeclarable_base::redecl_range;
3255   using redecl_iterator = redeclarable_base::redecl_iterator;
3256 
3257   using redeclarable_base::redecls_begin;
3258   using redeclarable_base::redecls_end;
3259   using redeclarable_base::redecls;
3260   using redeclarable_base::getPreviousDecl;
3261   using redeclarable_base::getMostRecentDecl;
3262   using redeclarable_base::isFirstDecl;
3263 
isModed()3264   bool isModed() const {
3265     return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3266   }
3267 
getTypeSourceInfo()3268   TypeSourceInfo *getTypeSourceInfo() const {
3269     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3270                      : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3271   }
3272 
getUnderlyingType()3273   QualType getUnderlyingType() const {
3274     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3275                      : MaybeModedTInfo.getPointer()
3276                            .get<TypeSourceInfo *>()
3277                            ->getType();
3278   }
3279 
setTypeSourceInfo(TypeSourceInfo * newType)3280   void setTypeSourceInfo(TypeSourceInfo *newType) {
3281     MaybeModedTInfo.setPointer(newType);
3282   }
3283 
setModedTypeSourceInfo(TypeSourceInfo * unmodedTSI,QualType modedTy)3284   void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3285     MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3286                                    ModedTInfo({unmodedTSI, modedTy}));
3287   }
3288 
3289   /// Retrieves the canonical declaration of this typedef-name.
getCanonicalDecl()3290   TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3291   const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3292 
3293   /// Retrieves the tag declaration for which this is the typedef name for
3294   /// linkage purposes, if any.
3295   ///
3296   /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3297   /// this typedef declaration.
3298   TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3299 
3300   /// Determines if this typedef shares a name and spelling location with its
3301   /// underlying tag type, as is the case with the NS_ENUM macro.
isTransparentTag()3302   bool isTransparentTag() const {
3303     if (MaybeModedTInfo.getInt())
3304       return MaybeModedTInfo.getInt() & 0x2;
3305     return isTransparentTagSlow();
3306   }
3307 
3308   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3309   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3310   static bool classofKind(Kind K) {
3311     return K >= firstTypedefName && K <= lastTypedefName;
3312   }
3313 
3314 private:
3315   bool isTransparentTagSlow() const;
3316 };
3317 
3318 /// Represents the declaration of a typedef-name via the 'typedef'
3319 /// type specifier.
3320 class TypedefDecl : public TypedefNameDecl {
TypedefDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3321   TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3322               SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3323       : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3324 
3325 public:
3326   static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3327                              SourceLocation StartLoc, SourceLocation IdLoc,
3328                              IdentifierInfo *Id, TypeSourceInfo *TInfo);
3329   static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3330 
3331   SourceRange getSourceRange() const override LLVM_READONLY;
3332 
3333   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3334   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3335   static bool classofKind(Kind K) { return K == Typedef; }
3336 };
3337 
3338 /// Represents the declaration of a typedef-name via a C++11
3339 /// alias-declaration.
3340 class TypeAliasDecl : public TypedefNameDecl {
3341   /// The template for which this is the pattern, if any.
3342   TypeAliasTemplateDecl *Template;
3343 
TypeAliasDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3344   TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3345                 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3346       : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3347         Template(nullptr) {}
3348 
3349 public:
3350   static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3351                                SourceLocation StartLoc, SourceLocation IdLoc,
3352                                IdentifierInfo *Id, TypeSourceInfo *TInfo);
3353   static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3354 
3355   SourceRange getSourceRange() const override LLVM_READONLY;
3356 
getDescribedAliasTemplate()3357   TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
setDescribedAliasTemplate(TypeAliasTemplateDecl * TAT)3358   void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3359 
3360   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3361   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3362   static bool classofKind(Kind K) { return K == TypeAlias; }
3363 };
3364 
3365 /// Represents the declaration of a struct/union/class/enum.
3366 class TagDecl : public TypeDecl,
3367                 public DeclContext,
3368                 public Redeclarable<TagDecl> {
3369   // This class stores some data in DeclContext::TagDeclBits
3370   // to save some space. Use the provided accessors to access it.
3371 public:
3372   // This is really ugly.
3373   using TagKind = TagTypeKind;
3374 
3375 private:
3376   SourceRange BraceRange;
3377 
3378   // A struct representing syntactic qualifier info,
3379   // to be used for the (uncommon) case of out-of-line declarations.
3380   using ExtInfo = QualifierInfo;
3381 
3382   /// If the (out-of-line) tag declaration name
3383   /// is qualified, it points to the qualifier info (nns and range);
3384   /// otherwise, if the tag declaration is anonymous and it is part of
3385   /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3386   /// otherwise, if the tag declaration is anonymous and it is used as a
3387   /// declaration specifier for variables, it points to the first VarDecl (used
3388   /// for mangling);
3389   /// otherwise, it is a null (TypedefNameDecl) pointer.
3390   llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3391 
hasExtInfo()3392   bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
getExtInfo()3393   ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
getExtInfo()3394   const ExtInfo *getExtInfo() const {
3395     return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3396   }
3397 
3398 protected:
3399   TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3400           SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3401           SourceLocation StartL);
3402 
3403   using redeclarable_base = Redeclarable<TagDecl>;
3404 
getNextRedeclarationImpl()3405   TagDecl *getNextRedeclarationImpl() override {
3406     return getNextRedeclaration();
3407   }
3408 
getPreviousDeclImpl()3409   TagDecl *getPreviousDeclImpl() override {
3410     return getPreviousDecl();
3411   }
3412 
getMostRecentDeclImpl()3413   TagDecl *getMostRecentDeclImpl() override {
3414     return getMostRecentDecl();
3415   }
3416 
3417   /// Completes the definition of this tag declaration.
3418   ///
3419   /// This is a helper function for derived classes.
3420   void completeDefinition();
3421 
3422   /// True if this decl is currently being defined.
3423   void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3424 
3425   /// Indicates whether it is possible for declarations of this kind
3426   /// to have an out-of-date definition.
3427   ///
3428   /// This option is only enabled when modules are enabled.
3429   void setMayHaveOutOfDateDef(bool V = true) {
3430     TagDeclBits.MayHaveOutOfDateDef = V;
3431   }
3432 
3433 public:
3434   friend class ASTDeclReader;
3435   friend class ASTDeclWriter;
3436 
3437   using redecl_range = redeclarable_base::redecl_range;
3438   using redecl_iterator = redeclarable_base::redecl_iterator;
3439 
3440   using redeclarable_base::redecls_begin;
3441   using redeclarable_base::redecls_end;
3442   using redeclarable_base::redecls;
3443   using redeclarable_base::getPreviousDecl;
3444   using redeclarable_base::getMostRecentDecl;
3445   using redeclarable_base::isFirstDecl;
3446 
getBraceRange()3447   SourceRange getBraceRange() const { return BraceRange; }
setBraceRange(SourceRange R)3448   void setBraceRange(SourceRange R) { BraceRange = R; }
3449 
3450   /// Return SourceLocation representing start of source
3451   /// range ignoring outer template declarations.
getInnerLocStart()3452   SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3453 
3454   /// Return SourceLocation representing start of source
3455   /// range taking into account any outer template declarations.
3456   SourceLocation getOuterLocStart() const;
3457   SourceRange getSourceRange() const override LLVM_READONLY;
3458 
3459   TagDecl *getCanonicalDecl() override;
getCanonicalDecl()3460   const TagDecl *getCanonicalDecl() const {
3461     return const_cast<TagDecl*>(this)->getCanonicalDecl();
3462   }
3463 
3464   /// Return true if this declaration is a completion definition of the type.
3465   /// Provided for consistency.
isThisDeclarationADefinition()3466   bool isThisDeclarationADefinition() const {
3467     return isCompleteDefinition();
3468   }
3469 
3470   /// Return true if this decl has its body fully specified.
isCompleteDefinition()3471   bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3472 
3473   /// True if this decl has its body fully specified.
3474   void setCompleteDefinition(bool V = true) {
3475     TagDeclBits.IsCompleteDefinition = V;
3476   }
3477 
3478   /// Return true if this complete decl is
3479   /// required to be complete for some existing use.
isCompleteDefinitionRequired()3480   bool isCompleteDefinitionRequired() const {
3481     return TagDeclBits.IsCompleteDefinitionRequired;
3482   }
3483 
3484   /// True if this complete decl is
3485   /// required to be complete for some existing use.
3486   void setCompleteDefinitionRequired(bool V = true) {
3487     TagDeclBits.IsCompleteDefinitionRequired = V;
3488   }
3489 
3490   /// Return true if this decl is currently being defined.
isBeingDefined()3491   bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3492 
3493   /// True if this tag declaration is "embedded" (i.e., defined or declared
3494   /// for the very first time) in the syntax of a declarator.
isEmbeddedInDeclarator()3495   bool isEmbeddedInDeclarator() const {
3496     return TagDeclBits.IsEmbeddedInDeclarator;
3497   }
3498 
3499   /// True if this tag declaration is "embedded" (i.e., defined or declared
3500   /// for the very first time) in the syntax of a declarator.
setEmbeddedInDeclarator(bool isInDeclarator)3501   void setEmbeddedInDeclarator(bool isInDeclarator) {
3502     TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3503   }
3504 
3505   /// True if this tag is free standing, e.g. "struct foo;".
isFreeStanding()3506   bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3507 
3508   /// True if this tag is free standing, e.g. "struct foo;".
3509   void setFreeStanding(bool isFreeStanding = true) {
3510     TagDeclBits.IsFreeStanding = isFreeStanding;
3511   }
3512 
3513   /// Indicates whether it is possible for declarations of this kind
3514   /// to have an out-of-date definition.
3515   ///
3516   /// This option is only enabled when modules are enabled.
mayHaveOutOfDateDef()3517   bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3518 
3519   /// Whether this declaration declares a type that is
3520   /// dependent, i.e., a type that somehow depends on template
3521   /// parameters.
isDependentType()3522   bool isDependentType() const { return isDependentContext(); }
3523 
3524   /// Whether this declaration was a definition in some module but was forced
3525   /// to be a declaration.
3526   ///
3527   /// Useful for clients checking if a module has a definition of a specific
3528   /// symbol and not interested in the final AST with deduplicated definitions.
isThisDeclarationADemotedDefinition()3529   bool isThisDeclarationADemotedDefinition() const {
3530     return TagDeclBits.IsThisDeclarationADemotedDefinition;
3531   }
3532 
3533   /// Mark a definition as a declaration and maintain information it _was_
3534   /// a definition.
demoteThisDefinitionToDeclaration()3535   void demoteThisDefinitionToDeclaration() {
3536     assert(isCompleteDefinition() &&
3537            "Should demote definitions only, not forward declarations");
3538     setCompleteDefinition(false);
3539     TagDeclBits.IsThisDeclarationADemotedDefinition = true;
3540   }
3541 
3542   /// Starts the definition of this tag declaration.
3543   ///
3544   /// This method should be invoked at the beginning of the definition
3545   /// of this tag declaration. It will set the tag type into a state
3546   /// where it is in the process of being defined.
3547   void startDefinition();
3548 
3549   /// Returns the TagDecl that actually defines this
3550   ///  struct/union/class/enum.  When determining whether or not a
3551   ///  struct/union/class/enum has a definition, one should use this
3552   ///  method as opposed to 'isDefinition'.  'isDefinition' indicates
3553   ///  whether or not a specific TagDecl is defining declaration, not
3554   ///  whether or not the struct/union/class/enum type is defined.
3555   ///  This method returns NULL if there is no TagDecl that defines
3556   ///  the struct/union/class/enum.
3557   TagDecl *getDefinition() const;
3558 
getKindName()3559   StringRef getKindName() const {
3560     return TypeWithKeyword::getTagTypeKindName(getTagKind());
3561   }
3562 
getTagKind()3563   TagKind getTagKind() const {
3564     return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3565   }
3566 
setTagKind(TagKind TK)3567   void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3568 
isStruct()3569   bool isStruct() const { return getTagKind() == TTK_Struct; }
isInterface()3570   bool isInterface() const { return getTagKind() == TTK_Interface; }
isClass()3571   bool isClass()  const { return getTagKind() == TTK_Class; }
isUnion()3572   bool isUnion()  const { return getTagKind() == TTK_Union; }
isEnum()3573   bool isEnum()   const { return getTagKind() == TTK_Enum; }
3574 
3575   /// Is this tag type named, either directly or via being defined in
3576   /// a typedef of this type?
3577   ///
3578   /// C++11 [basic.link]p8:
3579   ///   A type is said to have linkage if and only if:
3580   ///     - it is a class or enumeration type that is named (or has a
3581   ///       name for linkage purposes) and the name has linkage; ...
3582   /// C++11 [dcl.typedef]p9:
3583   ///   If the typedef declaration defines an unnamed class (or enum),
3584   ///   the first typedef-name declared by the declaration to be that
3585   ///   class type (or enum type) is used to denote the class type (or
3586   ///   enum type) for linkage purposes only.
3587   ///
3588   /// C does not have an analogous rule, but the same concept is
3589   /// nonetheless useful in some places.
hasNameForLinkage()3590   bool hasNameForLinkage() const {
3591     return (getDeclName() || getTypedefNameForAnonDecl());
3592   }
3593 
getTypedefNameForAnonDecl()3594   TypedefNameDecl *getTypedefNameForAnonDecl() const {
3595     return hasExtInfo() ? nullptr
3596                         : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3597   }
3598 
3599   void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3600 
3601   /// Retrieve the nested-name-specifier that qualifies the name of this
3602   /// declaration, if it was present in the source.
getQualifier()3603   NestedNameSpecifier *getQualifier() const {
3604     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3605                         : nullptr;
3606   }
3607 
3608   /// Retrieve the nested-name-specifier (with source-location
3609   /// information) that qualifies the name of this declaration, if it was
3610   /// present in the source.
getQualifierLoc()3611   NestedNameSpecifierLoc getQualifierLoc() const {
3612     return hasExtInfo() ? getExtInfo()->QualifierLoc
3613                         : NestedNameSpecifierLoc();
3614   }
3615 
3616   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3617 
getNumTemplateParameterLists()3618   unsigned getNumTemplateParameterLists() const {
3619     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3620   }
3621 
getTemplateParameterList(unsigned i)3622   TemplateParameterList *getTemplateParameterList(unsigned i) const {
3623     assert(i < getNumTemplateParameterLists());
3624     return getExtInfo()->TemplParamLists[i];
3625   }
3626 
3627   void setTemplateParameterListsInfo(ASTContext &Context,
3628                                      ArrayRef<TemplateParameterList *> TPLists);
3629 
3630   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3631   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3632   static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3633 
castToDeclContext(const TagDecl * D)3634   static DeclContext *castToDeclContext(const TagDecl *D) {
3635     return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3636   }
3637 
castFromDeclContext(const DeclContext * DC)3638   static TagDecl *castFromDeclContext(const DeclContext *DC) {
3639     return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3640   }
3641 };
3642 
3643 /// Represents an enum.  In C++11, enums can be forward-declared
3644 /// with a fixed underlying type, and in C we allow them to be forward-declared
3645 /// with no underlying type as an extension.
3646 class EnumDecl : public TagDecl {
3647   // This class stores some data in DeclContext::EnumDeclBits
3648   // to save some space. Use the provided accessors to access it.
3649 
3650   /// This represent the integer type that the enum corresponds
3651   /// to for code generation purposes.  Note that the enumerator constants may
3652   /// have a different type than this does.
3653   ///
3654   /// If the underlying integer type was explicitly stated in the source
3655   /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3656   /// was automatically deduced somehow, and this is a Type*.
3657   ///
3658   /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3659   /// some cases it won't.
3660   ///
3661   /// The underlying type of an enumeration never has any qualifiers, so
3662   /// we can get away with just storing a raw Type*, and thus save an
3663   /// extra pointer when TypeSourceInfo is needed.
3664   llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3665 
3666   /// The integer type that values of this type should
3667   /// promote to.  In C, enumerators are generally of an integer type
3668   /// directly, but gcc-style large enumerators (and all enumerators
3669   /// in C++) are of the enum type instead.
3670   QualType PromotionType;
3671 
3672   /// If this enumeration is an instantiation of a member enumeration
3673   /// of a class template specialization, this is the member specialization
3674   /// information.
3675   MemberSpecializationInfo *SpecializationInfo = nullptr;
3676 
3677   /// Store the ODRHash after first calculation.
3678   /// The corresponding flag HasODRHash is in EnumDeclBits
3679   /// and can be accessed with the provided accessors.
3680   unsigned ODRHash;
3681 
3682   EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3683            SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3684            bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3685 
3686   void anchor() override;
3687 
3688   void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3689                                     TemplateSpecializationKind TSK);
3690 
3691   /// Sets the width in bits required to store all the
3692   /// non-negative enumerators of this enum.
setNumPositiveBits(unsigned Num)3693   void setNumPositiveBits(unsigned Num) {
3694     EnumDeclBits.NumPositiveBits = Num;
3695     assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
3696   }
3697 
3698   /// Returns the width in bits required to store all the
3699   /// negative enumerators of this enum. (see getNumNegativeBits)
setNumNegativeBits(unsigned Num)3700   void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3701 
3702 public:
3703   /// True if this tag declaration is a scoped enumeration. Only
3704   /// possible in C++11 mode.
3705   void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3706 
3707   /// If this tag declaration is a scoped enum,
3708   /// then this is true if the scoped enum was declared using the class
3709   /// tag, false if it was declared with the struct tag. No meaning is
3710   /// associated if this tag declaration is not a scoped enum.
3711   void setScopedUsingClassTag(bool ScopedUCT = true) {
3712     EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3713   }
3714 
3715   /// True if this is an Objective-C, C++11, or
3716   /// Microsoft-style enumeration with a fixed underlying type.
3717   void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3718 
3719 private:
3720   /// True if a valid hash is stored in ODRHash.
hasODRHash()3721   bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3722   void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3723 
3724 public:
3725   friend class ASTDeclReader;
3726 
getCanonicalDecl()3727   EnumDecl *getCanonicalDecl() override {
3728     return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3729   }
getCanonicalDecl()3730   const EnumDecl *getCanonicalDecl() const {
3731     return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3732   }
3733 
getPreviousDecl()3734   EnumDecl *getPreviousDecl() {
3735     return cast_or_null<EnumDecl>(
3736             static_cast<TagDecl *>(this)->getPreviousDecl());
3737   }
getPreviousDecl()3738   const EnumDecl *getPreviousDecl() const {
3739     return const_cast<EnumDecl*>(this)->getPreviousDecl();
3740   }
3741 
getMostRecentDecl()3742   EnumDecl *getMostRecentDecl() {
3743     return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3744   }
getMostRecentDecl()3745   const EnumDecl *getMostRecentDecl() const {
3746     return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3747   }
3748 
getDefinition()3749   EnumDecl *getDefinition() const {
3750     return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3751   }
3752 
3753   static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3754                           SourceLocation StartLoc, SourceLocation IdLoc,
3755                           IdentifierInfo *Id, EnumDecl *PrevDecl,
3756                           bool IsScoped, bool IsScopedUsingClassTag,
3757                           bool IsFixed);
3758   static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3759 
3760   /// Overrides to provide correct range when there's an enum-base specifier
3761   /// with forward declarations.
3762   SourceRange getSourceRange() const override LLVM_READONLY;
3763 
3764   /// When created, the EnumDecl corresponds to a
3765   /// forward-declared enum. This method is used to mark the
3766   /// declaration as being defined; its enumerators have already been
3767   /// added (via DeclContext::addDecl). NewType is the new underlying
3768   /// type of the enumeration type.
3769   void completeDefinition(QualType NewType,
3770                           QualType PromotionType,
3771                           unsigned NumPositiveBits,
3772                           unsigned NumNegativeBits);
3773 
3774   // Iterates through the enumerators of this enumeration.
3775   using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3776   using enumerator_range =
3777       llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3778 
enumerators()3779   enumerator_range enumerators() const {
3780     return enumerator_range(enumerator_begin(), enumerator_end());
3781   }
3782 
enumerator_begin()3783   enumerator_iterator enumerator_begin() const {
3784     const EnumDecl *E = getDefinition();
3785     if (!E)
3786       E = this;
3787     return enumerator_iterator(E->decls_begin());
3788   }
3789 
enumerator_end()3790   enumerator_iterator enumerator_end() const {
3791     const EnumDecl *E = getDefinition();
3792     if (!E)
3793       E = this;
3794     return enumerator_iterator(E->decls_end());
3795   }
3796 
3797   /// Return the integer type that enumerators should promote to.
getPromotionType()3798   QualType getPromotionType() const { return PromotionType; }
3799 
3800   /// Set the promotion type.
setPromotionType(QualType T)3801   void setPromotionType(QualType T) { PromotionType = T; }
3802 
3803   /// Return the integer type this enum decl corresponds to.
3804   /// This returns a null QualType for an enum forward definition with no fixed
3805   /// underlying type.
getIntegerType()3806   QualType getIntegerType() const {
3807     if (!IntegerType)
3808       return QualType();
3809     if (const Type *T = IntegerType.dyn_cast<const Type*>())
3810       return QualType(T, 0);
3811     return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3812   }
3813 
3814   /// Set the underlying integer type.
setIntegerType(QualType T)3815   void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3816 
3817   /// Set the underlying integer type source info.
setIntegerTypeSourceInfo(TypeSourceInfo * TInfo)3818   void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3819 
3820   /// Return the type source info for the underlying integer type,
3821   /// if no type source info exists, return 0.
getIntegerTypeSourceInfo()3822   TypeSourceInfo *getIntegerTypeSourceInfo() const {
3823     return IntegerType.dyn_cast<TypeSourceInfo*>();
3824   }
3825 
3826   /// Retrieve the source range that covers the underlying type if
3827   /// specified.
3828   SourceRange getIntegerTypeRange() const LLVM_READONLY;
3829 
3830   /// Returns the width in bits required to store all the
3831   /// non-negative enumerators of this enum.
getNumPositiveBits()3832   unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3833 
3834   /// Returns the width in bits required to store all the
3835   /// negative enumerators of this enum.  These widths include
3836   /// the rightmost leading 1;  that is:
3837   ///
3838   /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
3839   /// ------------------------     -------     -----------------
3840   ///                       -1     1111111                     1
3841   ///                      -10     1110110                     5
3842   ///                     -101     1001011                     8
getNumNegativeBits()3843   unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3844 
3845   /// Returns true if this is a C++11 scoped enumeration.
isScoped()3846   bool isScoped() const { return EnumDeclBits.IsScoped; }
3847 
3848   /// Returns true if this is a C++11 scoped enumeration.
isScopedUsingClassTag()3849   bool isScopedUsingClassTag() const {
3850     return EnumDeclBits.IsScopedUsingClassTag;
3851   }
3852 
3853   /// Returns true if this is an Objective-C, C++11, or
3854   /// Microsoft-style enumeration with a fixed underlying type.
isFixed()3855   bool isFixed() const { return EnumDeclBits.IsFixed; }
3856 
3857   unsigned getODRHash();
3858 
3859   /// Returns true if this can be considered a complete type.
isComplete()3860   bool isComplete() const {
3861     // IntegerType is set for fixed type enums and non-fixed but implicitly
3862     // int-sized Microsoft enums.
3863     return isCompleteDefinition() || IntegerType;
3864   }
3865 
3866   /// Returns true if this enum is either annotated with
3867   /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3868   bool isClosed() const;
3869 
3870   /// Returns true if this enum is annotated with flag_enum and isn't annotated
3871   /// with enum_extensibility(open).
3872   bool isClosedFlag() const;
3873 
3874   /// Returns true if this enum is annotated with neither flag_enum nor
3875   /// enum_extensibility(open).
3876   bool isClosedNonFlag() const;
3877 
3878   /// Retrieve the enum definition from which this enumeration could
3879   /// be instantiated, if it is an instantiation (rather than a non-template).
3880   EnumDecl *getTemplateInstantiationPattern() const;
3881 
3882   /// Returns the enumeration (declared within the template)
3883   /// from which this enumeration type was instantiated, or NULL if
3884   /// this enumeration was not instantiated from any template.
3885   EnumDecl *getInstantiatedFromMemberEnum() const;
3886 
3887   /// If this enumeration is a member of a specialization of a
3888   /// templated class, determine what kind of template specialization
3889   /// or instantiation this is.
3890   TemplateSpecializationKind getTemplateSpecializationKind() const;
3891 
3892   /// For an enumeration member that was instantiated from a member
3893   /// enumeration of a templated class, set the template specialiation kind.
3894   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3895                         SourceLocation PointOfInstantiation = SourceLocation());
3896 
3897   /// If this enumeration is an instantiation of a member enumeration of
3898   /// a class template specialization, retrieves the member specialization
3899   /// information.
getMemberSpecializationInfo()3900   MemberSpecializationInfo *getMemberSpecializationInfo() const {
3901     return SpecializationInfo;
3902   }
3903 
3904   /// Specify that this enumeration is an instantiation of the
3905   /// member enumeration ED.
setInstantiationOfMemberEnum(EnumDecl * ED,TemplateSpecializationKind TSK)3906   void setInstantiationOfMemberEnum(EnumDecl *ED,
3907                                     TemplateSpecializationKind TSK) {
3908     setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
3909   }
3910 
classof(const Decl * D)3911   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3912   static bool classofKind(Kind K) { return K == Enum; }
3913 };
3914 
3915 /// Represents a struct/union/class.  For example:
3916 ///   struct X;                  // Forward declaration, no "body".
3917 ///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
3918 /// This decl will be marked invalid if *any* members are invalid.
3919 class RecordDecl : public TagDecl {
3920   // This class stores some data in DeclContext::RecordDeclBits
3921   // to save some space. Use the provided accessors to access it.
3922 public:
3923   friend class DeclContext;
3924   /// Enum that represents the different ways arguments are passed to and
3925   /// returned from function calls. This takes into account the target-specific
3926   /// and version-specific rules along with the rules determined by the
3927   /// language.
3928   enum ArgPassingKind : unsigned {
3929     /// The argument of this type can be passed directly in registers.
3930     APK_CanPassInRegs,
3931 
3932     /// The argument of this type cannot be passed directly in registers.
3933     /// Records containing this type as a subobject are not forced to be passed
3934     /// indirectly. This value is used only in C++. This value is required by
3935     /// C++ because, in uncommon situations, it is possible for a class to have
3936     /// only trivial copy/move constructors even when one of its subobjects has
3937     /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
3938     /// constructor in the derived class is deleted).
3939     APK_CannotPassInRegs,
3940 
3941     /// The argument of this type cannot be passed directly in registers.
3942     /// Records containing this type as a subobject are forced to be passed
3943     /// indirectly.
3944     APK_CanNeverPassInRegs
3945   };
3946 
3947 protected:
3948   RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3949              SourceLocation StartLoc, SourceLocation IdLoc,
3950              IdentifierInfo *Id, RecordDecl *PrevDecl);
3951 
3952 public:
3953   static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3954                             SourceLocation StartLoc, SourceLocation IdLoc,
3955                             IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
3956   static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
3957 
getPreviousDecl()3958   RecordDecl *getPreviousDecl() {
3959     return cast_or_null<RecordDecl>(
3960             static_cast<TagDecl *>(this)->getPreviousDecl());
3961   }
getPreviousDecl()3962   const RecordDecl *getPreviousDecl() const {
3963     return const_cast<RecordDecl*>(this)->getPreviousDecl();
3964   }
3965 
getMostRecentDecl()3966   RecordDecl *getMostRecentDecl() {
3967     return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3968   }
getMostRecentDecl()3969   const RecordDecl *getMostRecentDecl() const {
3970     return const_cast<RecordDecl*>(this)->getMostRecentDecl();
3971   }
3972 
hasFlexibleArrayMember()3973   bool hasFlexibleArrayMember() const {
3974     return RecordDeclBits.HasFlexibleArrayMember;
3975   }
3976 
setHasFlexibleArrayMember(bool V)3977   void setHasFlexibleArrayMember(bool V) {
3978     RecordDeclBits.HasFlexibleArrayMember = V;
3979   }
3980 
3981   /// Whether this is an anonymous struct or union. To be an anonymous
3982   /// struct or union, it must have been declared without a name and
3983   /// there must be no objects of this type declared, e.g.,
3984   /// @code
3985   ///   union { int i; float f; };
3986   /// @endcode
3987   /// is an anonymous union but neither of the following are:
3988   /// @code
3989   ///  union X { int i; float f; };
3990   ///  union { int i; float f; } obj;
3991   /// @endcode
isAnonymousStructOrUnion()3992   bool isAnonymousStructOrUnion() const {
3993     return RecordDeclBits.AnonymousStructOrUnion;
3994   }
3995 
setAnonymousStructOrUnion(bool Anon)3996   void setAnonymousStructOrUnion(bool Anon) {
3997     RecordDeclBits.AnonymousStructOrUnion = Anon;
3998   }
3999 
hasObjectMember()4000   bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
setHasObjectMember(bool val)4001   void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
4002 
hasVolatileMember()4003   bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
4004 
setHasVolatileMember(bool val)4005   void setHasVolatileMember(bool val) {
4006     RecordDeclBits.HasVolatileMember = val;
4007   }
4008 
hasLoadedFieldsFromExternalStorage()4009   bool hasLoadedFieldsFromExternalStorage() const {
4010     return RecordDeclBits.LoadedFieldsFromExternalStorage;
4011   }
4012 
setHasLoadedFieldsFromExternalStorage(bool val)4013   void setHasLoadedFieldsFromExternalStorage(bool val) const {
4014     RecordDeclBits.LoadedFieldsFromExternalStorage = val;
4015   }
4016 
4017   /// Functions to query basic properties of non-trivial C structs.
isNonTrivialToPrimitiveDefaultInitialize()4018   bool isNonTrivialToPrimitiveDefaultInitialize() const {
4019     return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
4020   }
4021 
setNonTrivialToPrimitiveDefaultInitialize(bool V)4022   void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
4023     RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
4024   }
4025 
isNonTrivialToPrimitiveCopy()4026   bool isNonTrivialToPrimitiveCopy() const {
4027     return RecordDeclBits.NonTrivialToPrimitiveCopy;
4028   }
4029 
setNonTrivialToPrimitiveCopy(bool V)4030   void setNonTrivialToPrimitiveCopy(bool V) {
4031     RecordDeclBits.NonTrivialToPrimitiveCopy = V;
4032   }
4033 
isNonTrivialToPrimitiveDestroy()4034   bool isNonTrivialToPrimitiveDestroy() const {
4035     return RecordDeclBits.NonTrivialToPrimitiveDestroy;
4036   }
4037 
setNonTrivialToPrimitiveDestroy(bool V)4038   void setNonTrivialToPrimitiveDestroy(bool V) {
4039     RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
4040   }
4041 
hasNonTrivialToPrimitiveDefaultInitializeCUnion()4042   bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
4043     return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
4044   }
4045 
setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V)4046   void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
4047     RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
4048   }
4049 
hasNonTrivialToPrimitiveDestructCUnion()4050   bool hasNonTrivialToPrimitiveDestructCUnion() const {
4051     return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
4052   }
4053 
setHasNonTrivialToPrimitiveDestructCUnion(bool V)4054   void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
4055     RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
4056   }
4057 
hasNonTrivialToPrimitiveCopyCUnion()4058   bool hasNonTrivialToPrimitiveCopyCUnion() const {
4059     return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
4060   }
4061 
setHasNonTrivialToPrimitiveCopyCUnion(bool V)4062   void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
4063     RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
4064   }
4065 
4066   /// Determine whether this class can be passed in registers. In C++ mode,
4067   /// it must have at least one trivial, non-deleted copy or move constructor.
4068   /// FIXME: This should be set as part of completeDefinition.
canPassInRegisters()4069   bool canPassInRegisters() const {
4070     return getArgPassingRestrictions() == APK_CanPassInRegs;
4071   }
4072 
getArgPassingRestrictions()4073   ArgPassingKind getArgPassingRestrictions() const {
4074     return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
4075   }
4076 
setArgPassingRestrictions(ArgPassingKind Kind)4077   void setArgPassingRestrictions(ArgPassingKind Kind) {
4078     RecordDeclBits.ArgPassingRestrictions = Kind;
4079   }
4080 
isParamDestroyedInCallee()4081   bool isParamDestroyedInCallee() const {
4082     return RecordDeclBits.ParamDestroyedInCallee;
4083   }
4084 
setParamDestroyedInCallee(bool V)4085   void setParamDestroyedInCallee(bool V) {
4086     RecordDeclBits.ParamDestroyedInCallee = V;
4087   }
4088 
isRandomized()4089   bool isRandomized() const { return RecordDeclBits.IsRandomized; }
4090 
setIsRandomized(bool V)4091   void setIsRandomized(bool V) { RecordDeclBits.IsRandomized = V; }
4092 
4093   void reorderDecls(const SmallVectorImpl<Decl *> &Decls);
4094 
4095   /// Determines whether this declaration represents the
4096   /// injected class name.
4097   ///
4098   /// The injected class name in C++ is the name of the class that
4099   /// appears inside the class itself. For example:
4100   ///
4101   /// \code
4102   /// struct C {
4103   ///   // C is implicitly declared here as a synonym for the class name.
4104   /// };
4105   ///
4106   /// C::C c; // same as "C c;"
4107   /// \endcode
4108   bool isInjectedClassName() const;
4109 
4110   /// Determine whether this record is a class describing a lambda
4111   /// function object.
4112   bool isLambda() const;
4113 
4114   /// Determine whether this record is a record for captured variables in
4115   /// CapturedStmt construct.
4116   bool isCapturedRecord() const;
4117 
4118   /// Mark the record as a record for captured variables in CapturedStmt
4119   /// construct.
4120   void setCapturedRecord();
4121 
4122   /// Returns the RecordDecl that actually defines
4123   ///  this struct/union/class.  When determining whether or not a
4124   ///  struct/union/class is completely defined, one should use this
4125   ///  method as opposed to 'isCompleteDefinition'.
4126   ///  'isCompleteDefinition' indicates whether or not a specific
4127   ///  RecordDecl is a completed definition, not whether or not the
4128   ///  record type is defined.  This method returns NULL if there is
4129   ///  no RecordDecl that defines the struct/union/tag.
getDefinition()4130   RecordDecl *getDefinition() const {
4131     return cast_or_null<RecordDecl>(TagDecl::getDefinition());
4132   }
4133 
4134   /// Returns whether this record is a union, or contains (at any nesting level)
4135   /// a union member. This is used by CMSE to warn about possible information
4136   /// leaks.
4137   bool isOrContainsUnion() const;
4138 
4139   // Iterator access to field members. The field iterator only visits
4140   // the non-static data members of this class, ignoring any static
4141   // data members, functions, constructors, destructors, etc.
4142   using field_iterator = specific_decl_iterator<FieldDecl>;
4143   using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
4144 
fields()4145   field_range fields() const { return field_range(field_begin(), field_end()); }
4146   field_iterator field_begin() const;
4147 
field_end()4148   field_iterator field_end() const {
4149     return field_iterator(decl_iterator());
4150   }
4151 
4152   // Whether there are any fields (non-static data members) in this record.
field_empty()4153   bool field_empty() const {
4154     return field_begin() == field_end();
4155   }
4156 
4157   /// Note that the definition of this type is now complete.
4158   virtual void completeDefinition();
4159 
classof(const Decl * D)4160   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4161   static bool classofKind(Kind K) {
4162     return K >= firstRecord && K <= lastRecord;
4163   }
4164 
4165   /// Get whether or not this is an ms_struct which can
4166   /// be turned on with an attribute, pragma, or -mms-bitfields
4167   /// commandline option.
4168   bool isMsStruct(const ASTContext &C) const;
4169 
4170   /// Whether we are allowed to insert extra padding between fields.
4171   /// These padding are added to help AddressSanitizer detect
4172   /// intra-object-overflow bugs.
4173   bool mayInsertExtraPadding(bool EmitRemark = false) const;
4174 
4175   /// Finds the first data member which has a name.
4176   /// nullptr is returned if no named data member exists.
4177   const FieldDecl *findFirstNamedDataMember() const;
4178 
4179 private:
4180   /// Deserialize just the fields.
4181   void LoadFieldsFromExternalStorage() const;
4182 };
4183 
4184 class FileScopeAsmDecl : public Decl {
4185   StringLiteral *AsmString;
4186   SourceLocation RParenLoc;
4187 
FileScopeAsmDecl(DeclContext * DC,StringLiteral * asmstring,SourceLocation StartL,SourceLocation EndL)4188   FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
4189                    SourceLocation StartL, SourceLocation EndL)
4190     : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
4191 
4192   virtual void anchor();
4193 
4194 public:
4195   static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
4196                                   StringLiteral *Str, SourceLocation AsmLoc,
4197                                   SourceLocation RParenLoc);
4198 
4199   static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4200 
getAsmLoc()4201   SourceLocation getAsmLoc() const { return getLocation(); }
getRParenLoc()4202   SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)4203   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
getSourceRange()4204   SourceRange getSourceRange() const override LLVM_READONLY {
4205     return SourceRange(getAsmLoc(), getRParenLoc());
4206   }
4207 
getAsmString()4208   const StringLiteral *getAsmString() const { return AsmString; }
getAsmString()4209   StringLiteral *getAsmString() { return AsmString; }
setAsmString(StringLiteral * Asm)4210   void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
4211 
classof(const Decl * D)4212   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4213   static bool classofKind(Kind K) { return K == FileScopeAsm; }
4214 };
4215 
4216 /// Represents a block literal declaration, which is like an
4217 /// unnamed FunctionDecl.  For example:
4218 /// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4219 class BlockDecl : public Decl, public DeclContext {
4220   // This class stores some data in DeclContext::BlockDeclBits
4221   // to save some space. Use the provided accessors to access it.
4222 public:
4223   /// A class which contains all the information about a particular
4224   /// captured value.
4225   class Capture {
4226     enum {
4227       flag_isByRef = 0x1,
4228       flag_isNested = 0x2
4229     };
4230 
4231     /// The variable being captured.
4232     llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
4233 
4234     /// The copy expression, expressed in terms of a DeclRef (or
4235     /// BlockDeclRef) to the captured variable.  Only required if the
4236     /// variable has a C++ class type.
4237     Expr *CopyExpr;
4238 
4239   public:
Capture(VarDecl * variable,bool byRef,bool nested,Expr * copy)4240     Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
4241       : VariableAndFlags(variable,
4242                   (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
4243         CopyExpr(copy) {}
4244 
4245     /// The variable being captured.
getVariable()4246     VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
4247 
4248     /// Whether this is a "by ref" capture, i.e. a capture of a __block
4249     /// variable.
isByRef()4250     bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
4251 
isEscapingByref()4252     bool isEscapingByref() const {
4253       return getVariable()->isEscapingByref();
4254     }
4255 
isNonEscapingByref()4256     bool isNonEscapingByref() const {
4257       return getVariable()->isNonEscapingByref();
4258     }
4259 
4260     /// Whether this is a nested capture, i.e. the variable captured
4261     /// is not from outside the immediately enclosing function/block.
isNested()4262     bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
4263 
hasCopyExpr()4264     bool hasCopyExpr() const { return CopyExpr != nullptr; }
getCopyExpr()4265     Expr *getCopyExpr() const { return CopyExpr; }
setCopyExpr(Expr * e)4266     void setCopyExpr(Expr *e) { CopyExpr = e; }
4267   };
4268 
4269 private:
4270   /// A new[]'d array of pointers to ParmVarDecls for the formal
4271   /// parameters of this function.  This is null if a prototype or if there are
4272   /// no formals.
4273   ParmVarDecl **ParamInfo = nullptr;
4274   unsigned NumParams = 0;
4275 
4276   Stmt *Body = nullptr;
4277   TypeSourceInfo *SignatureAsWritten = nullptr;
4278 
4279   const Capture *Captures = nullptr;
4280   unsigned NumCaptures = 0;
4281 
4282   unsigned ManglingNumber = 0;
4283   Decl *ManglingContextDecl = nullptr;
4284 
4285 protected:
4286   BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4287 
4288 public:
4289   static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
4290   static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4291 
getCaretLocation()4292   SourceLocation getCaretLocation() const { return getLocation(); }
4293 
isVariadic()4294   bool isVariadic() const { return BlockDeclBits.IsVariadic; }
setIsVariadic(bool value)4295   void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4296 
getCompoundBody()4297   CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
getBody()4298   Stmt *getBody() const override { return (Stmt*) Body; }
setBody(CompoundStmt * B)4299   void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4300 
setSignatureAsWritten(TypeSourceInfo * Sig)4301   void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
getSignatureAsWritten()4302   TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4303 
4304   // ArrayRef access to formal parameters.
parameters()4305   ArrayRef<ParmVarDecl *> parameters() const {
4306     return {ParamInfo, getNumParams()};
4307   }
parameters()4308   MutableArrayRef<ParmVarDecl *> parameters() {
4309     return {ParamInfo, getNumParams()};
4310   }
4311 
4312   // Iterator access to formal parameters.
4313   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
4314   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
4315 
param_empty()4316   bool param_empty() const { return parameters().empty(); }
param_begin()4317   param_iterator param_begin() { return parameters().begin(); }
param_end()4318   param_iterator param_end() { return parameters().end(); }
param_begin()4319   param_const_iterator param_begin() const { return parameters().begin(); }
param_end()4320   param_const_iterator param_end() const { return parameters().end(); }
param_size()4321   size_t param_size() const { return parameters().size(); }
4322 
getNumParams()4323   unsigned getNumParams() const { return NumParams; }
4324 
getParamDecl(unsigned i)4325   const ParmVarDecl *getParamDecl(unsigned i) const {
4326     assert(i < getNumParams() && "Illegal param #");
4327     return ParamInfo[i];
4328   }
getParamDecl(unsigned i)4329   ParmVarDecl *getParamDecl(unsigned i) {
4330     assert(i < getNumParams() && "Illegal param #");
4331     return ParamInfo[i];
4332   }
4333 
4334   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4335 
4336   /// True if this block (or its nested blocks) captures
4337   /// anything of local storage from its enclosing scopes.
hasCaptures()4338   bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4339 
4340   /// Returns the number of captured variables.
4341   /// Does not include an entry for 'this'.
getNumCaptures()4342   unsigned getNumCaptures() const { return NumCaptures; }
4343 
4344   using capture_const_iterator = ArrayRef<Capture>::const_iterator;
4345 
captures()4346   ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4347 
capture_begin()4348   capture_const_iterator capture_begin() const { return captures().begin(); }
capture_end()4349   capture_const_iterator capture_end() const { return captures().end(); }
4350 
capturesCXXThis()4351   bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4352   void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4353 
blockMissingReturnType()4354   bool blockMissingReturnType() const {
4355     return BlockDeclBits.BlockMissingReturnType;
4356   }
4357 
4358   void setBlockMissingReturnType(bool val = true) {
4359     BlockDeclBits.BlockMissingReturnType = val;
4360   }
4361 
isConversionFromLambda()4362   bool isConversionFromLambda() const {
4363     return BlockDeclBits.IsConversionFromLambda;
4364   }
4365 
4366   void setIsConversionFromLambda(bool val = true) {
4367     BlockDeclBits.IsConversionFromLambda = val;
4368   }
4369 
doesNotEscape()4370   bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4371   void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4372 
canAvoidCopyToHeap()4373   bool canAvoidCopyToHeap() const {
4374     return BlockDeclBits.CanAvoidCopyToHeap;
4375   }
4376   void setCanAvoidCopyToHeap(bool B = true) {
4377     BlockDeclBits.CanAvoidCopyToHeap = B;
4378   }
4379 
4380   bool capturesVariable(const VarDecl *var) const;
4381 
4382   void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4383                    bool CapturesCXXThis);
4384 
getBlockManglingNumber()4385   unsigned getBlockManglingNumber() const { return ManglingNumber; }
4386 
getBlockManglingContextDecl()4387   Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4388 
setBlockMangling(unsigned Number,Decl * Ctx)4389   void setBlockMangling(unsigned Number, Decl *Ctx) {
4390     ManglingNumber = Number;
4391     ManglingContextDecl = Ctx;
4392   }
4393 
4394   SourceRange getSourceRange() const override LLVM_READONLY;
4395 
4396   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4397   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4398   static bool classofKind(Kind K) { return K == Block; }
castToDeclContext(const BlockDecl * D)4399   static DeclContext *castToDeclContext(const BlockDecl *D) {
4400     return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4401   }
castFromDeclContext(const DeclContext * DC)4402   static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4403     return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4404   }
4405 };
4406 
4407 /// Represents the body of a CapturedStmt, and serves as its DeclContext.
4408 class CapturedDecl final
4409     : public Decl,
4410       public DeclContext,
4411       private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4412 protected:
numTrailingObjects(OverloadToken<ImplicitParamDecl>)4413   size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4414     return NumParams;
4415   }
4416 
4417 private:
4418   /// The number of parameters to the outlined function.
4419   unsigned NumParams;
4420 
4421   /// The position of context parameter in list of parameters.
4422   unsigned ContextParam;
4423 
4424   /// The body of the outlined function.
4425   llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4426 
4427   explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4428 
getParams()4429   ImplicitParamDecl *const *getParams() const {
4430     return getTrailingObjects<ImplicitParamDecl *>();
4431   }
4432 
getParams()4433   ImplicitParamDecl **getParams() {
4434     return getTrailingObjects<ImplicitParamDecl *>();
4435   }
4436 
4437 public:
4438   friend class ASTDeclReader;
4439   friend class ASTDeclWriter;
4440   friend TrailingObjects;
4441 
4442   static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4443                               unsigned NumParams);
4444   static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4445                                           unsigned NumParams);
4446 
4447   Stmt *getBody() const override;
4448   void setBody(Stmt *B);
4449 
4450   bool isNothrow() const;
4451   void setNothrow(bool Nothrow = true);
4452 
getNumParams()4453   unsigned getNumParams() const { return NumParams; }
4454 
getParam(unsigned i)4455   ImplicitParamDecl *getParam(unsigned i) const {
4456     assert(i < NumParams);
4457     return getParams()[i];
4458   }
setParam(unsigned i,ImplicitParamDecl * P)4459   void setParam(unsigned i, ImplicitParamDecl *P) {
4460     assert(i < NumParams);
4461     getParams()[i] = P;
4462   }
4463 
4464   // ArrayRef interface to parameters.
parameters()4465   ArrayRef<ImplicitParamDecl *> parameters() const {
4466     return {getParams(), getNumParams()};
4467   }
parameters()4468   MutableArrayRef<ImplicitParamDecl *> parameters() {
4469     return {getParams(), getNumParams()};
4470   }
4471 
4472   /// Retrieve the parameter containing captured variables.
getContextParam()4473   ImplicitParamDecl *getContextParam() const {
4474     assert(ContextParam < NumParams);
4475     return getParam(ContextParam);
4476   }
setContextParam(unsigned i,ImplicitParamDecl * P)4477   void setContextParam(unsigned i, ImplicitParamDecl *P) {
4478     assert(i < NumParams);
4479     ContextParam = i;
4480     setParam(i, P);
4481   }
getContextParamPosition()4482   unsigned getContextParamPosition() const { return ContextParam; }
4483 
4484   using param_iterator = ImplicitParamDecl *const *;
4485   using param_range = llvm::iterator_range<param_iterator>;
4486 
4487   /// Retrieve an iterator pointing to the first parameter decl.
param_begin()4488   param_iterator param_begin() const { return getParams(); }
4489   /// Retrieve an iterator one past the last parameter decl.
param_end()4490   param_iterator param_end() const { return getParams() + NumParams; }
4491 
4492   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4493   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4494   static bool classofKind(Kind K) { return K == Captured; }
castToDeclContext(const CapturedDecl * D)4495   static DeclContext *castToDeclContext(const CapturedDecl *D) {
4496     return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4497   }
castFromDeclContext(const DeclContext * DC)4498   static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4499     return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4500   }
4501 };
4502 
4503 /// Describes a module import declaration, which makes the contents
4504 /// of the named module visible in the current translation unit.
4505 ///
4506 /// An import declaration imports the named module (or submodule). For example:
4507 /// \code
4508 ///   @import std.vector;
4509 /// \endcode
4510 ///
4511 /// A C++20 module import declaration imports the named module or partition.
4512 /// Periods are permitted in C++20 module names, but have no semantic meaning.
4513 /// For example:
4514 /// \code
4515 ///   import NamedModule;
4516 ///   import :SomePartition; // Must be a partition of the current module.
4517 ///   import Names.Like.this; // Allowed.
4518 ///   import :and.Also.Partition.names;
4519 /// \endcode
4520 ///
4521 /// Import declarations can also be implicitly generated from
4522 /// \#include/\#import directives.
4523 class ImportDecl final : public Decl,
4524                          llvm::TrailingObjects<ImportDecl, SourceLocation> {
4525   friend class ASTContext;
4526   friend class ASTDeclReader;
4527   friend class ASTReader;
4528   friend TrailingObjects;
4529 
4530   /// The imported module.
4531   Module *ImportedModule = nullptr;
4532 
4533   /// The next import in the list of imports local to the translation
4534   /// unit being parsed (not loaded from an AST file).
4535   ///
4536   /// Includes a bit that indicates whether we have source-location information
4537   /// for each identifier in the module name.
4538   ///
4539   /// When the bit is false, we only have a single source location for the
4540   /// end of the import declaration.
4541   llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
4542 
4543   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4544              ArrayRef<SourceLocation> IdentifierLocs);
4545 
4546   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4547              SourceLocation EndLoc);
4548 
ImportDecl(EmptyShell Empty)4549   ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4550 
isImportComplete()4551   bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
4552 
setImportComplete(bool C)4553   void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
4554 
4555   /// The next import in the list of imports local to the translation
4556   /// unit being parsed (not loaded from an AST file).
getNextLocalImport()4557   ImportDecl *getNextLocalImport() const {
4558     return NextLocalImportAndComplete.getPointer();
4559   }
4560 
setNextLocalImport(ImportDecl * Import)4561   void setNextLocalImport(ImportDecl *Import) {
4562     NextLocalImportAndComplete.setPointer(Import);
4563   }
4564 
4565 public:
4566   /// Create a new module import declaration.
4567   static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4568                             SourceLocation StartLoc, Module *Imported,
4569                             ArrayRef<SourceLocation> IdentifierLocs);
4570 
4571   /// Create a new module import declaration for an implicitly-generated
4572   /// import.
4573   static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4574                                     SourceLocation StartLoc, Module *Imported,
4575                                     SourceLocation EndLoc);
4576 
4577   /// Create a new, deserialized module import declaration.
4578   static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4579                                         unsigned NumLocations);
4580 
4581   /// Retrieve the module that was imported by the import declaration.
getImportedModule()4582   Module *getImportedModule() const { return ImportedModule; }
4583 
4584   /// Retrieves the locations of each of the identifiers that make up
4585   /// the complete module name in the import declaration.
4586   ///
4587   /// This will return an empty array if the locations of the individual
4588   /// identifiers aren't available.
4589   ArrayRef<SourceLocation> getIdentifierLocs() const;
4590 
4591   SourceRange getSourceRange() const override LLVM_READONLY;
4592 
classof(const Decl * D)4593   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4594   static bool classofKind(Kind K) { return K == Import; }
4595 };
4596 
4597 /// Represents a C++ Modules TS module export declaration.
4598 ///
4599 /// For example:
4600 /// \code
4601 ///   export void foo();
4602 /// \endcode
4603 class ExportDecl final : public Decl, public DeclContext {
4604   virtual void anchor();
4605 
4606 private:
4607   friend class ASTDeclReader;
4608 
4609   /// The source location for the right brace (if valid).
4610   SourceLocation RBraceLoc;
4611 
ExportDecl(DeclContext * DC,SourceLocation ExportLoc)4612   ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4613       : Decl(Export, DC, ExportLoc), DeclContext(Export),
4614         RBraceLoc(SourceLocation()) {}
4615 
4616 public:
4617   static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4618                             SourceLocation ExportLoc);
4619   static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4620 
getExportLoc()4621   SourceLocation getExportLoc() const { return getLocation(); }
getRBraceLoc()4622   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setRBraceLoc(SourceLocation L)4623   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4624 
hasBraces()4625   bool hasBraces() const { return RBraceLoc.isValid(); }
4626 
getEndLoc()4627   SourceLocation getEndLoc() const LLVM_READONLY {
4628     if (hasBraces())
4629       return RBraceLoc;
4630     // No braces: get the end location of the (only) declaration in context
4631     // (if present).
4632     return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4633   }
4634 
getSourceRange()4635   SourceRange getSourceRange() const override LLVM_READONLY {
4636     return SourceRange(getLocation(), getEndLoc());
4637   }
4638 
classof(const Decl * D)4639   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4640   static bool classofKind(Kind K) { return K == Export; }
castToDeclContext(const ExportDecl * D)4641   static DeclContext *castToDeclContext(const ExportDecl *D) {
4642     return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4643   }
castFromDeclContext(const DeclContext * DC)4644   static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4645     return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4646   }
4647 };
4648 
4649 /// Represents an empty-declaration.
4650 class EmptyDecl : public Decl {
EmptyDecl(DeclContext * DC,SourceLocation L)4651   EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4652 
4653   virtual void anchor();
4654 
4655 public:
4656   static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4657                            SourceLocation L);
4658   static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4659 
classof(const Decl * D)4660   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4661   static bool classofKind(Kind K) { return K == Empty; }
4662 };
4663 
4664 /// Insertion operator for diagnostics.  This allows sending NamedDecl's
4665 /// into a diagnostic with <<.
4666 inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
4667                                              const NamedDecl *ND) {
4668   PD.AddTaggedVal(reinterpret_cast<uint64_t>(ND),
4669                   DiagnosticsEngine::ak_nameddecl);
4670   return PD;
4671 }
4672 
4673 template<typename decl_type>
setPreviousDecl(decl_type * PrevDecl)4674 void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4675   // Note: This routine is implemented here because we need both NamedDecl
4676   // and Redeclarable to be defined.
4677   assert(RedeclLink.isFirst() &&
4678          "setPreviousDecl on a decl already in a redeclaration chain");
4679 
4680   if (PrevDecl) {
4681     // Point to previous. Make sure that this is actually the most recent
4682     // redeclaration, or we can build invalid chains. If the most recent
4683     // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4684     First = PrevDecl->getFirstDecl();
4685     assert(First->RedeclLink.isFirst() && "Expected first");
4686     decl_type *MostRecent = First->getNextRedeclaration();
4687     RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4688 
4689     // If the declaration was previously visible, a redeclaration of it remains
4690     // visible even if it wouldn't be visible by itself.
4691     static_cast<decl_type*>(this)->IdentifierNamespace |=
4692       MostRecent->getIdentifierNamespace() &
4693       (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4694   } else {
4695     // Make this first.
4696     First = static_cast<decl_type*>(this);
4697   }
4698 
4699   // First one will point to this one as latest.
4700   First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4701 
4702   assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
4703          cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
4704 }
4705 
4706 // Inline function definitions.
4707 
4708 /// Check if the given decl is complete.
4709 ///
4710 /// We use this function to break a cycle between the inline definitions in
4711 /// Type.h and Decl.h.
IsEnumDeclComplete(EnumDecl * ED)4712 inline bool IsEnumDeclComplete(EnumDecl *ED) {
4713   return ED->isComplete();
4714 }
4715 
4716 /// Check if the given decl is scoped.
4717 ///
4718 /// We use this function to break a cycle between the inline definitions in
4719 /// Type.h and Decl.h.
IsEnumDeclScoped(EnumDecl * ED)4720 inline bool IsEnumDeclScoped(EnumDecl *ED) {
4721   return ED->isScoped();
4722 }
4723 
4724 /// OpenMP variants are mangled early based on their OpenMP context selector.
4725 /// The new name looks likes this:
4726 ///  <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
getOpenMPVariantManglingSeparatorStr()4727 static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
4728   return "$ompvariant";
4729 }
4730 
4731 } // namespace clang
4732 
4733 #endif // LLVM_CLANG_AST_DECL_H
4734