1 //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 // This file implements a semantic tree transformation that takes a given
9 // AST and rebuilds it, possibly transforming some nodes in the process.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
14 #define LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
15
16 #include "CoroutineStmtBuilder.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ExprOpenMP.h"
26 #include "clang/AST/OpenMPClause.h"
27 #include "clang/AST/Stmt.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/AST/StmtOpenMP.h"
31 #include "clang/Basic/DiagnosticParse.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Sema/Designator.h"
34 #include "clang/Sema/Lookup.h"
35 #include "clang/Sema/Ownership.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/ScopeInfo.h"
38 #include "clang/Sema/SemaDiagnostic.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43
44 using namespace llvm::omp;
45
46 namespace clang {
47 using namespace sema;
48
49 /// A semantic tree transformation that allows one to transform one
50 /// abstract syntax tree into another.
51 ///
52 /// A new tree transformation is defined by creating a new subclass \c X of
53 /// \c TreeTransform<X> and then overriding certain operations to provide
54 /// behavior specific to that transformation. For example, template
55 /// instantiation is implemented as a tree transformation where the
56 /// transformation of TemplateTypeParmType nodes involves substituting the
57 /// template arguments for their corresponding template parameters; a similar
58 /// transformation is performed for non-type template parameters and
59 /// template template parameters.
60 ///
61 /// This tree-transformation template uses static polymorphism to allow
62 /// subclasses to customize any of its operations. Thus, a subclass can
63 /// override any of the transformation or rebuild operators by providing an
64 /// operation with the same signature as the default implementation. The
65 /// overriding function should not be virtual.
66 ///
67 /// Semantic tree transformations are split into two stages, either of which
68 /// can be replaced by a subclass. The "transform" step transforms an AST node
69 /// or the parts of an AST node using the various transformation functions,
70 /// then passes the pieces on to the "rebuild" step, which constructs a new AST
71 /// node of the appropriate kind from the pieces. The default transformation
72 /// routines recursively transform the operands to composite AST nodes (e.g.,
73 /// the pointee type of a PointerType node) and, if any of those operand nodes
74 /// were changed by the transformation, invokes the rebuild operation to create
75 /// a new AST node.
76 ///
77 /// Subclasses can customize the transformation at various levels. The
78 /// most coarse-grained transformations involve replacing TransformType(),
79 /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
80 /// TransformTemplateName(), or TransformTemplateArgument() with entirely
81 /// new implementations.
82 ///
83 /// For more fine-grained transformations, subclasses can replace any of the
84 /// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
85 /// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
86 /// replacing TransformTemplateTypeParmType() allows template instantiation
87 /// to substitute template arguments for their corresponding template
88 /// parameters. Additionally, subclasses can override the \c RebuildXXX
89 /// functions to control how AST nodes are rebuilt when their operands change.
90 /// By default, \c TreeTransform will invoke semantic analysis to rebuild
91 /// AST nodes. However, certain other tree transformations (e.g, cloning) may
92 /// be able to use more efficient rebuild steps.
93 ///
94 /// There are a handful of other functions that can be overridden, allowing one
95 /// to avoid traversing nodes that don't need any transformation
96 /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
97 /// operands have not changed (\c AlwaysRebuild()), and customize the
98 /// default locations and entity names used for type-checking
99 /// (\c getBaseLocation(), \c getBaseEntity()).
100 template<typename Derived>
101 class TreeTransform {
102 /// Private RAII object that helps us forget and then re-remember
103 /// the template argument corresponding to a partially-substituted parameter
104 /// pack.
105 class ForgetPartiallySubstitutedPackRAII {
106 Derived &Self;
107 TemplateArgument Old;
108
109 public:
ForgetPartiallySubstitutedPackRAII(Derived & Self)110 ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
111 Old = Self.ForgetPartiallySubstitutedPack();
112 }
113
~ForgetPartiallySubstitutedPackRAII()114 ~ForgetPartiallySubstitutedPackRAII() {
115 Self.RememberPartiallySubstitutedPack(Old);
116 }
117 };
118
119 protected:
120 Sema &SemaRef;
121
122 /// The set of local declarations that have been transformed, for
123 /// cases where we are forced to build new declarations within the transformer
124 /// rather than in the subclass (e.g., lambda closure types).
125 llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
126
127 public:
128 /// Initializes a new tree transformer.
TreeTransform(Sema & SemaRef)129 TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
130
131 /// Retrieves a reference to the derived class.
getDerived()132 Derived &getDerived() { return static_cast<Derived&>(*this); }
133
134 /// Retrieves a reference to the derived class.
getDerived()135 const Derived &getDerived() const {
136 return static_cast<const Derived&>(*this);
137 }
138
Owned(Expr * E)139 static inline ExprResult Owned(Expr *E) { return E; }
Owned(Stmt * S)140 static inline StmtResult Owned(Stmt *S) { return S; }
141
142 /// Retrieves a reference to the semantic analysis object used for
143 /// this tree transform.
getSema()144 Sema &getSema() const { return SemaRef; }
145
146 /// Whether the transformation should always rebuild AST nodes, even
147 /// if none of the children have changed.
148 ///
149 /// Subclasses may override this function to specify when the transformation
150 /// should rebuild all AST nodes.
151 ///
152 /// We must always rebuild all AST nodes when performing variadic template
153 /// pack expansion, in order to avoid violating the AST invariant that each
154 /// statement node appears at most once in its containing declaration.
AlwaysRebuild()155 bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; }
156
157 /// Whether the transformation is forming an expression or statement that
158 /// replaces the original. In this case, we'll reuse mangling numbers from
159 /// existing lambdas.
ReplacingOriginal()160 bool ReplacingOriginal() { return false; }
161
162 /// Wether CXXConstructExpr can be skipped when they are implicit.
163 /// They will be reconstructed when used if needed.
164 /// This is useful when the user that cause rebuilding of the
165 /// CXXConstructExpr is outside of the expression at which the TreeTransform
166 /// started.
AllowSkippingCXXConstructExpr()167 bool AllowSkippingCXXConstructExpr() { return true; }
168
169 /// Returns the location of the entity being transformed, if that
170 /// information was not available elsewhere in the AST.
171 ///
172 /// By default, returns no source-location information. Subclasses can
173 /// provide an alternative implementation that provides better location
174 /// information.
getBaseLocation()175 SourceLocation getBaseLocation() { return SourceLocation(); }
176
177 /// Returns the name of the entity being transformed, if that
178 /// information was not available elsewhere in the AST.
179 ///
180 /// By default, returns an empty name. Subclasses can provide an alternative
181 /// implementation with a more precise name.
getBaseEntity()182 DeclarationName getBaseEntity() { return DeclarationName(); }
183
184 /// Sets the "base" location and entity when that
185 /// information is known based on another transformation.
186 ///
187 /// By default, the source location and entity are ignored. Subclasses can
188 /// override this function to provide a customized implementation.
setBase(SourceLocation Loc,DeclarationName Entity)189 void setBase(SourceLocation Loc, DeclarationName Entity) { }
190
191 /// RAII object that temporarily sets the base location and entity
192 /// used for reporting diagnostics in types.
193 class TemporaryBase {
194 TreeTransform &Self;
195 SourceLocation OldLocation;
196 DeclarationName OldEntity;
197
198 public:
TemporaryBase(TreeTransform & Self,SourceLocation Location,DeclarationName Entity)199 TemporaryBase(TreeTransform &Self, SourceLocation Location,
200 DeclarationName Entity) : Self(Self) {
201 OldLocation = Self.getDerived().getBaseLocation();
202 OldEntity = Self.getDerived().getBaseEntity();
203
204 if (Location.isValid())
205 Self.getDerived().setBase(Location, Entity);
206 }
207
~TemporaryBase()208 ~TemporaryBase() {
209 Self.getDerived().setBase(OldLocation, OldEntity);
210 }
211 };
212
213 /// Determine whether the given type \p T has already been
214 /// transformed.
215 ///
216 /// Subclasses can provide an alternative implementation of this routine
217 /// to short-circuit evaluation when it is known that a given type will
218 /// not change. For example, template instantiation need not traverse
219 /// non-dependent types.
AlreadyTransformed(QualType T)220 bool AlreadyTransformed(QualType T) {
221 return T.isNull();
222 }
223
224 /// Transform a template parameter depth level.
225 ///
226 /// During a transformation that transforms template parameters, this maps
227 /// an old template parameter depth to a new depth.
TransformTemplateDepth(unsigned Depth)228 unsigned TransformTemplateDepth(unsigned Depth) {
229 return Depth;
230 }
231
232 /// Determine whether the given call argument should be dropped, e.g.,
233 /// because it is a default argument.
234 ///
235 /// Subclasses can provide an alternative implementation of this routine to
236 /// determine which kinds of call arguments get dropped. By default,
237 /// CXXDefaultArgument nodes are dropped (prior to transformation).
DropCallArgument(Expr * E)238 bool DropCallArgument(Expr *E) {
239 return E->isDefaultArgument();
240 }
241
242 /// Determine whether we should expand a pack expansion with the
243 /// given set of parameter packs into separate arguments by repeatedly
244 /// transforming the pattern.
245 ///
246 /// By default, the transformer never tries to expand pack expansions.
247 /// Subclasses can override this routine to provide different behavior.
248 ///
249 /// \param EllipsisLoc The location of the ellipsis that identifies the
250 /// pack expansion.
251 ///
252 /// \param PatternRange The source range that covers the entire pattern of
253 /// the pack expansion.
254 ///
255 /// \param Unexpanded The set of unexpanded parameter packs within the
256 /// pattern.
257 ///
258 /// \param ShouldExpand Will be set to \c true if the transformer should
259 /// expand the corresponding pack expansions into separate arguments. When
260 /// set, \c NumExpansions must also be set.
261 ///
262 /// \param RetainExpansion Whether the caller should add an unexpanded
263 /// pack expansion after all of the expanded arguments. This is used
264 /// when extending explicitly-specified template argument packs per
265 /// C++0x [temp.arg.explicit]p9.
266 ///
267 /// \param NumExpansions The number of separate arguments that will be in
268 /// the expanded form of the corresponding pack expansion. This is both an
269 /// input and an output parameter, which can be set by the caller if the
270 /// number of expansions is known a priori (e.g., due to a prior substitution)
271 /// and will be set by the callee when the number of expansions is known.
272 /// The callee must set this value when \c ShouldExpand is \c true; it may
273 /// set this value in other cases.
274 ///
275 /// \returns true if an error occurred (e.g., because the parameter packs
276 /// are to be instantiated with arguments of different lengths), false
277 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
278 /// must be set.
TryExpandParameterPacks(SourceLocation EllipsisLoc,SourceRange PatternRange,ArrayRef<UnexpandedParameterPack> Unexpanded,bool & ShouldExpand,bool & RetainExpansion,Optional<unsigned> & NumExpansions)279 bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
280 SourceRange PatternRange,
281 ArrayRef<UnexpandedParameterPack> Unexpanded,
282 bool &ShouldExpand,
283 bool &RetainExpansion,
284 Optional<unsigned> &NumExpansions) {
285 ShouldExpand = false;
286 return false;
287 }
288
289 /// "Forget" about the partially-substituted pack template argument,
290 /// when performing an instantiation that must preserve the parameter pack
291 /// use.
292 ///
293 /// This routine is meant to be overridden by the template instantiator.
ForgetPartiallySubstitutedPack()294 TemplateArgument ForgetPartiallySubstitutedPack() {
295 return TemplateArgument();
296 }
297
298 /// "Remember" the partially-substituted pack template argument
299 /// after performing an instantiation that must preserve the parameter pack
300 /// use.
301 ///
302 /// This routine is meant to be overridden by the template instantiator.
RememberPartiallySubstitutedPack(TemplateArgument Arg)303 void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
304
305 /// Note to the derived class when a function parameter pack is
306 /// being expanded.
ExpandingFunctionParameterPack(ParmVarDecl * Pack)307 void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
308
309 /// Transforms the given type into another type.
310 ///
311 /// By default, this routine transforms a type by creating a
312 /// TypeSourceInfo for it and delegating to the appropriate
313 /// function. This is expensive, but we don't mind, because
314 /// this method is deprecated anyway; all users should be
315 /// switched to storing TypeSourceInfos.
316 ///
317 /// \returns the transformed type.
318 QualType TransformType(QualType T);
319
320 /// Transforms the given type-with-location into a new
321 /// type-with-location.
322 ///
323 /// By default, this routine transforms a type by delegating to the
324 /// appropriate TransformXXXType to build a new type. Subclasses
325 /// may override this function (to take over all type
326 /// transformations) or some set of the TransformXXXType functions
327 /// to alter the transformation.
328 TypeSourceInfo *TransformType(TypeSourceInfo *DI);
329
330 /// Transform the given type-with-location into a new
331 /// type, collecting location information in the given builder
332 /// as necessary.
333 ///
334 QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
335
336 /// Transform a type that is permitted to produce a
337 /// DeducedTemplateSpecializationType.
338 ///
339 /// This is used in the (relatively rare) contexts where it is acceptable
340 /// for transformation to produce a class template type with deduced
341 /// template arguments.
342 /// @{
343 QualType TransformTypeWithDeducedTST(QualType T);
344 TypeSourceInfo *TransformTypeWithDeducedTST(TypeSourceInfo *DI);
345 /// @}
346
347 /// The reason why the value of a statement is not discarded, if any.
348 enum StmtDiscardKind {
349 SDK_Discarded,
350 SDK_NotDiscarded,
351 SDK_StmtExprResult,
352 };
353
354 /// Transform the given statement.
355 ///
356 /// By default, this routine transforms a statement by delegating to the
357 /// appropriate TransformXXXStmt function to transform a specific kind of
358 /// statement or the TransformExpr() function to transform an expression.
359 /// Subclasses may override this function to transform statements using some
360 /// other mechanism.
361 ///
362 /// \returns the transformed statement.
363 StmtResult TransformStmt(Stmt *S, StmtDiscardKind SDK = SDK_Discarded);
364
365 /// Transform the given statement.
366 ///
367 /// By default, this routine transforms a statement by delegating to the
368 /// appropriate TransformOMPXXXClause function to transform a specific kind
369 /// of clause. Subclasses may override this function to transform statements
370 /// using some other mechanism.
371 ///
372 /// \returns the transformed OpenMP clause.
373 OMPClause *TransformOMPClause(OMPClause *S);
374
375 /// Transform the given attribute.
376 ///
377 /// By default, this routine transforms a statement by delegating to the
378 /// appropriate TransformXXXAttr function to transform a specific kind
379 /// of attribute. Subclasses may override this function to transform
380 /// attributed statements using some other mechanism.
381 ///
382 /// \returns the transformed attribute
383 const Attr *TransformAttr(const Attr *S);
384
385 /// Transform the specified attribute.
386 ///
387 /// Subclasses should override the transformation of attributes with a pragma
388 /// spelling to transform expressions stored within the attribute.
389 ///
390 /// \returns the transformed attribute.
391 #define ATTR(X)
392 #define PRAGMA_SPELLING_ATTR(X) \
393 const X##Attr *Transform##X##Attr(const X##Attr *R) { return R; }
394 #include "clang/Basic/AttrList.inc"
395
396 /// Transform the given expression.
397 ///
398 /// By default, this routine transforms an expression by delegating to the
399 /// appropriate TransformXXXExpr function to build a new expression.
400 /// Subclasses may override this function to transform expressions using some
401 /// other mechanism.
402 ///
403 /// \returns the transformed expression.
404 ExprResult TransformExpr(Expr *E);
405
406 /// Transform the given initializer.
407 ///
408 /// By default, this routine transforms an initializer by stripping off the
409 /// semantic nodes added by initialization, then passing the result to
410 /// TransformExpr or TransformExprs.
411 ///
412 /// \returns the transformed initializer.
413 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit);
414
415 /// Transform the given list of expressions.
416 ///
417 /// This routine transforms a list of expressions by invoking
418 /// \c TransformExpr() for each subexpression. However, it also provides
419 /// support for variadic templates by expanding any pack expansions (if the
420 /// derived class permits such expansion) along the way. When pack expansions
421 /// are present, the number of outputs may not equal the number of inputs.
422 ///
423 /// \param Inputs The set of expressions to be transformed.
424 ///
425 /// \param NumInputs The number of expressions in \c Inputs.
426 ///
427 /// \param IsCall If \c true, then this transform is being performed on
428 /// function-call arguments, and any arguments that should be dropped, will
429 /// be.
430 ///
431 /// \param Outputs The transformed input expressions will be added to this
432 /// vector.
433 ///
434 /// \param ArgChanged If non-NULL, will be set \c true if any argument changed
435 /// due to transformation.
436 ///
437 /// \returns true if an error occurred, false otherwise.
438 bool TransformExprs(Expr *const *Inputs, unsigned NumInputs, bool IsCall,
439 SmallVectorImpl<Expr *> &Outputs,
440 bool *ArgChanged = nullptr);
441
442 /// Transform the given declaration, which is referenced from a type
443 /// or expression.
444 ///
445 /// By default, acts as the identity function on declarations, unless the
446 /// transformer has had to transform the declaration itself. Subclasses
447 /// may override this function to provide alternate behavior.
TransformDecl(SourceLocation Loc,Decl * D)448 Decl *TransformDecl(SourceLocation Loc, Decl *D) {
449 llvm::DenseMap<Decl *, Decl *>::iterator Known
450 = TransformedLocalDecls.find(D);
451 if (Known != TransformedLocalDecls.end())
452 return Known->second;
453
454 return D;
455 }
456
457 /// Transform the specified condition.
458 ///
459 /// By default, this transforms the variable and expression and rebuilds
460 /// the condition.
461 Sema::ConditionResult TransformCondition(SourceLocation Loc, VarDecl *Var,
462 Expr *Expr,
463 Sema::ConditionKind Kind);
464
465 /// Transform the attributes associated with the given declaration and
466 /// place them on the new declaration.
467 ///
468 /// By default, this operation does nothing. Subclasses may override this
469 /// behavior to transform attributes.
transformAttrs(Decl * Old,Decl * New)470 void transformAttrs(Decl *Old, Decl *New) { }
471
472 /// Note that a local declaration has been transformed by this
473 /// transformer.
474 ///
475 /// Local declarations are typically transformed via a call to
476 /// TransformDefinition. However, in some cases (e.g., lambda expressions),
477 /// the transformer itself has to transform the declarations. This routine
478 /// can be overridden by a subclass that keeps track of such mappings.
transformedLocalDecl(Decl * Old,ArrayRef<Decl * > New)479 void transformedLocalDecl(Decl *Old, ArrayRef<Decl *> New) {
480 assert(New.size() == 1 &&
481 "must override transformedLocalDecl if performing pack expansion");
482 TransformedLocalDecls[Old] = New.front();
483 }
484
485 /// Transform the definition of the given declaration.
486 ///
487 /// By default, invokes TransformDecl() to transform the declaration.
488 /// Subclasses may override this function to provide alternate behavior.
TransformDefinition(SourceLocation Loc,Decl * D)489 Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
490 return getDerived().TransformDecl(Loc, D);
491 }
492
493 /// Transform the given declaration, which was the first part of a
494 /// nested-name-specifier in a member access expression.
495 ///
496 /// This specific declaration transformation only applies to the first
497 /// identifier in a nested-name-specifier of a member access expression, e.g.,
498 /// the \c T in \c x->T::member
499 ///
500 /// By default, invokes TransformDecl() to transform the declaration.
501 /// Subclasses may override this function to provide alternate behavior.
TransformFirstQualifierInScope(NamedDecl * D,SourceLocation Loc)502 NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
503 return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
504 }
505
506 /// Transform the set of declarations in an OverloadExpr.
507 bool TransformOverloadExprDecls(OverloadExpr *Old, bool RequiresADL,
508 LookupResult &R);
509
510 /// Transform the given nested-name-specifier with source-location
511 /// information.
512 ///
513 /// By default, transforms all of the types and declarations within the
514 /// nested-name-specifier. Subclasses may override this function to provide
515 /// alternate behavior.
516 NestedNameSpecifierLoc
517 TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
518 QualType ObjectType = QualType(),
519 NamedDecl *FirstQualifierInScope = nullptr);
520
521 /// Transform the given declaration name.
522 ///
523 /// By default, transforms the types of conversion function, constructor,
524 /// and destructor names and then (if needed) rebuilds the declaration name.
525 /// Identifiers and selectors are returned unmodified. Subclasses may
526 /// override this function to provide alternate behavior.
527 DeclarationNameInfo
528 TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
529
530 bool TransformRequiresExprRequirements(ArrayRef<concepts::Requirement *> Reqs,
531 llvm::SmallVectorImpl<concepts::Requirement *> &Transformed);
532 concepts::TypeRequirement *
533 TransformTypeRequirement(concepts::TypeRequirement *Req);
534 concepts::ExprRequirement *
535 TransformExprRequirement(concepts::ExprRequirement *Req);
536 concepts::NestedRequirement *
537 TransformNestedRequirement(concepts::NestedRequirement *Req);
538
539 /// Transform the given template name.
540 ///
541 /// \param SS The nested-name-specifier that qualifies the template
542 /// name. This nested-name-specifier must already have been transformed.
543 ///
544 /// \param Name The template name to transform.
545 ///
546 /// \param NameLoc The source location of the template name.
547 ///
548 /// \param ObjectType If we're translating a template name within a member
549 /// access expression, this is the type of the object whose member template
550 /// is being referenced.
551 ///
552 /// \param FirstQualifierInScope If the first part of a nested-name-specifier
553 /// also refers to a name within the current (lexical) scope, this is the
554 /// declaration it refers to.
555 ///
556 /// By default, transforms the template name by transforming the declarations
557 /// and nested-name-specifiers that occur within the template name.
558 /// Subclasses may override this function to provide alternate behavior.
559 TemplateName
560 TransformTemplateName(CXXScopeSpec &SS, TemplateName Name,
561 SourceLocation NameLoc,
562 QualType ObjectType = QualType(),
563 NamedDecl *FirstQualifierInScope = nullptr,
564 bool AllowInjectedClassName = false);
565
566 /// Transform the given template argument.
567 ///
568 /// By default, this operation transforms the type, expression, or
569 /// declaration stored within the template argument and constructs a
570 /// new template argument from the transformed result. Subclasses may
571 /// override this function to provide alternate behavior.
572 ///
573 /// Returns true if there was an error.
574 bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
575 TemplateArgumentLoc &Output,
576 bool Uneval = false);
577
578 /// Transform the given set of template arguments.
579 ///
580 /// By default, this operation transforms all of the template arguments
581 /// in the input set using \c TransformTemplateArgument(), and appends
582 /// the transformed arguments to the output list.
583 ///
584 /// Note that this overload of \c TransformTemplateArguments() is merely
585 /// a convenience function. Subclasses that wish to override this behavior
586 /// should override the iterator-based member template version.
587 ///
588 /// \param Inputs The set of template arguments to be transformed.
589 ///
590 /// \param NumInputs The number of template arguments in \p Inputs.
591 ///
592 /// \param Outputs The set of transformed template arguments output by this
593 /// routine.
594 ///
595 /// Returns true if an error occurred.
596 bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
597 unsigned NumInputs,
598 TemplateArgumentListInfo &Outputs,
599 bool Uneval = false) {
600 return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs,
601 Uneval);
602 }
603
604 /// Transform the given set of template arguments.
605 ///
606 /// By default, this operation transforms all of the template arguments
607 /// in the input set using \c TransformTemplateArgument(), and appends
608 /// the transformed arguments to the output list.
609 ///
610 /// \param First An iterator to the first template argument.
611 ///
612 /// \param Last An iterator one step past the last template argument.
613 ///
614 /// \param Outputs The set of transformed template arguments output by this
615 /// routine.
616 ///
617 /// Returns true if an error occurred.
618 template<typename InputIterator>
619 bool TransformTemplateArguments(InputIterator First,
620 InputIterator Last,
621 TemplateArgumentListInfo &Outputs,
622 bool Uneval = false);
623
624 /// Fakes up a TemplateArgumentLoc for a given TemplateArgument.
625 void InventTemplateArgumentLoc(const TemplateArgument &Arg,
626 TemplateArgumentLoc &ArgLoc);
627
628 /// Fakes up a TypeSourceInfo for a type.
InventTypeSourceInfo(QualType T)629 TypeSourceInfo *InventTypeSourceInfo(QualType T) {
630 return SemaRef.Context.getTrivialTypeSourceInfo(T,
631 getDerived().getBaseLocation());
632 }
633
634 #define ABSTRACT_TYPELOC(CLASS, PARENT)
635 #define TYPELOC(CLASS, PARENT) \
636 QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
637 #include "clang/AST/TypeLocNodes.def"
638
639 template<typename Fn>
640 QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
641 FunctionProtoTypeLoc TL,
642 CXXRecordDecl *ThisContext,
643 Qualifiers ThisTypeQuals,
644 Fn TransformExceptionSpec);
645
646 bool TransformExceptionSpec(SourceLocation Loc,
647 FunctionProtoType::ExceptionSpecInfo &ESI,
648 SmallVectorImpl<QualType> &Exceptions,
649 bool &Changed);
650
651 StmtResult TransformSEHHandler(Stmt *Handler);
652
653 QualType
654 TransformTemplateSpecializationType(TypeLocBuilder &TLB,
655 TemplateSpecializationTypeLoc TL,
656 TemplateName Template);
657
658 QualType
659 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
660 DependentTemplateSpecializationTypeLoc TL,
661 TemplateName Template,
662 CXXScopeSpec &SS);
663
664 QualType TransformDependentTemplateSpecializationType(
665 TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL,
666 NestedNameSpecifierLoc QualifierLoc);
667
668 /// Transforms the parameters of a function type into the
669 /// given vectors.
670 ///
671 /// The result vectors should be kept in sync; null entries in the
672 /// variables vector are acceptable.
673 ///
674 /// Return true on error.
675 bool TransformFunctionTypeParams(
676 SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
677 const QualType *ParamTypes,
678 const FunctionProtoType::ExtParameterInfo *ParamInfos,
679 SmallVectorImpl<QualType> &PTypes, SmallVectorImpl<ParmVarDecl *> *PVars,
680 Sema::ExtParameterInfoBuilder &PInfos);
681
682 /// Transforms a single function-type parameter. Return null
683 /// on error.
684 ///
685 /// \param indexAdjustment - A number to add to the parameter's
686 /// scope index; can be negative
687 ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
688 int indexAdjustment,
689 Optional<unsigned> NumExpansions,
690 bool ExpectParameterPack);
691
692 /// Transform the body of a lambda-expression.
693 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body);
694 /// Alternative implementation of TransformLambdaBody that skips transforming
695 /// the body.
696 StmtResult SkipLambdaBody(LambdaExpr *E, Stmt *Body);
697
698 QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
699
700 StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
701 ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
702
TransformTemplateParameterList(TemplateParameterList * TPL)703 TemplateParameterList *TransformTemplateParameterList(
704 TemplateParameterList *TPL) {
705 return TPL;
706 }
707
708 ExprResult TransformAddressOfOperand(Expr *E);
709
710 ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
711 bool IsAddressOfOperand,
712 TypeSourceInfo **RecoveryTSI);
713
714 ExprResult TransformParenDependentScopeDeclRefExpr(
715 ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand,
716 TypeSourceInfo **RecoveryTSI);
717
718 StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S);
719
720 // FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous
721 // amount of stack usage with clang.
722 #define STMT(Node, Parent) \
723 LLVM_ATTRIBUTE_NOINLINE \
724 StmtResult Transform##Node(Node *S);
725 #define VALUESTMT(Node, Parent) \
726 LLVM_ATTRIBUTE_NOINLINE \
727 StmtResult Transform##Node(Node *S, StmtDiscardKind SDK);
728 #define EXPR(Node, Parent) \
729 LLVM_ATTRIBUTE_NOINLINE \
730 ExprResult Transform##Node(Node *E);
731 #define ABSTRACT_STMT(Stmt)
732 #include "clang/AST/StmtNodes.inc"
733
734 #define GEN_CLANG_CLAUSE_CLASS
735 #define CLAUSE_CLASS(Enum, Str, Class) \
736 LLVM_ATTRIBUTE_NOINLINE \
737 OMPClause *Transform##Class(Class *S);
738 #include "llvm/Frontend/OpenMP/OMP.inc"
739
740 /// Build a new qualified type given its unqualified type and type location.
741 ///
742 /// By default, this routine adds type qualifiers only to types that can
743 /// have qualifiers, and silently suppresses those qualifiers that are not
744 /// permitted. Subclasses may override this routine to provide different
745 /// behavior.
746 QualType RebuildQualifiedType(QualType T, QualifiedTypeLoc TL);
747
748 /// Build a new pointer type given its pointee type.
749 ///
750 /// By default, performs semantic analysis when building the pointer type.
751 /// Subclasses may override this routine to provide different behavior.
752 QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
753
754 /// Build a new block pointer type given its pointee type.
755 ///
756 /// By default, performs semantic analysis when building the block pointer
757 /// type. Subclasses may override this routine to provide different behavior.
758 QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
759
760 /// Build a new reference type given the type it references.
761 ///
762 /// By default, performs semantic analysis when building the
763 /// reference type. Subclasses may override this routine to provide
764 /// different behavior.
765 ///
766 /// \param LValue whether the type was written with an lvalue sigil
767 /// or an rvalue sigil.
768 QualType RebuildReferenceType(QualType ReferentType,
769 bool LValue,
770 SourceLocation Sigil);
771
772 /// Build a new member pointer type given the pointee type and the
773 /// class type it refers into.
774 ///
775 /// By default, performs semantic analysis when building the member pointer
776 /// type. Subclasses may override this routine to provide different behavior.
777 QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
778 SourceLocation Sigil);
779
780 QualType RebuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
781 SourceLocation ProtocolLAngleLoc,
782 ArrayRef<ObjCProtocolDecl *> Protocols,
783 ArrayRef<SourceLocation> ProtocolLocs,
784 SourceLocation ProtocolRAngleLoc);
785
786 /// Build an Objective-C object type.
787 ///
788 /// By default, performs semantic analysis when building the object type.
789 /// Subclasses may override this routine to provide different behavior.
790 QualType RebuildObjCObjectType(QualType BaseType,
791 SourceLocation Loc,
792 SourceLocation TypeArgsLAngleLoc,
793 ArrayRef<TypeSourceInfo *> TypeArgs,
794 SourceLocation TypeArgsRAngleLoc,
795 SourceLocation ProtocolLAngleLoc,
796 ArrayRef<ObjCProtocolDecl *> Protocols,
797 ArrayRef<SourceLocation> ProtocolLocs,
798 SourceLocation ProtocolRAngleLoc);
799
800 /// Build a new Objective-C object pointer type given the pointee type.
801 ///
802 /// By default, directly builds the pointer type, with no additional semantic
803 /// analysis.
804 QualType RebuildObjCObjectPointerType(QualType PointeeType,
805 SourceLocation Star);
806
807 /// Build a new array type given the element type, size
808 /// modifier, size of the array (if known), size expression, and index type
809 /// qualifiers.
810 ///
811 /// By default, performs semantic analysis when building the array type.
812 /// Subclasses may override this routine to provide different behavior.
813 /// Also by default, all of the other Rebuild*Array
814 QualType RebuildArrayType(QualType ElementType,
815 ArrayType::ArraySizeModifier SizeMod,
816 const llvm::APInt *Size,
817 Expr *SizeExpr,
818 unsigned IndexTypeQuals,
819 SourceRange BracketsRange);
820
821 /// Build a new constant array type given the element type, size
822 /// modifier, (known) size of the array, and index type qualifiers.
823 ///
824 /// By default, performs semantic analysis when building the array type.
825 /// Subclasses may override this routine to provide different behavior.
826 QualType RebuildConstantArrayType(QualType ElementType,
827 ArrayType::ArraySizeModifier SizeMod,
828 const llvm::APInt &Size,
829 Expr *SizeExpr,
830 unsigned IndexTypeQuals,
831 SourceRange BracketsRange);
832
833 /// Build a new incomplete array type given the element type, size
834 /// modifier, and index type qualifiers.
835 ///
836 /// By default, performs semantic analysis when building the array type.
837 /// Subclasses may override this routine to provide different behavior.
838 QualType RebuildIncompleteArrayType(QualType ElementType,
839 ArrayType::ArraySizeModifier SizeMod,
840 unsigned IndexTypeQuals,
841 SourceRange BracketsRange);
842
843 /// Build a new variable-length array type given the element type,
844 /// size modifier, size expression, and index type qualifiers.
845 ///
846 /// By default, performs semantic analysis when building the array type.
847 /// Subclasses may override this routine to provide different behavior.
848 QualType RebuildVariableArrayType(QualType ElementType,
849 ArrayType::ArraySizeModifier SizeMod,
850 Expr *SizeExpr,
851 unsigned IndexTypeQuals,
852 SourceRange BracketsRange);
853
854 /// Build a new dependent-sized array type given the element type,
855 /// size modifier, size expression, and index type qualifiers.
856 ///
857 /// By default, performs semantic analysis when building the array type.
858 /// Subclasses may override this routine to provide different behavior.
859 QualType RebuildDependentSizedArrayType(QualType ElementType,
860 ArrayType::ArraySizeModifier SizeMod,
861 Expr *SizeExpr,
862 unsigned IndexTypeQuals,
863 SourceRange BracketsRange);
864
865 /// Build a new vector type given the element type and
866 /// number of elements.
867 ///
868 /// By default, performs semantic analysis when building the vector type.
869 /// Subclasses may override this routine to provide different behavior.
870 QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
871 VectorType::VectorKind VecKind);
872
873 /// Build a new potentially dependently-sized extended vector type
874 /// given the element type and number of elements.
875 ///
876 /// By default, performs semantic analysis when building the vector type.
877 /// Subclasses may override this routine to provide different behavior.
878 QualType RebuildDependentVectorType(QualType ElementType, Expr *SizeExpr,
879 SourceLocation AttributeLoc,
880 VectorType::VectorKind);
881
882 /// Build a new extended vector type given the element type and
883 /// number of elements.
884 ///
885 /// By default, performs semantic analysis when building the vector type.
886 /// Subclasses may override this routine to provide different behavior.
887 QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
888 SourceLocation AttributeLoc);
889
890 /// Build a new potentially dependently-sized extended vector type
891 /// given the element type and number of elements.
892 ///
893 /// By default, performs semantic analysis when building the vector type.
894 /// Subclasses may override this routine to provide different behavior.
895 QualType RebuildDependentSizedExtVectorType(QualType ElementType,
896 Expr *SizeExpr,
897 SourceLocation AttributeLoc);
898
899 /// Build a new matrix type given the element type and dimensions.
900 QualType RebuildConstantMatrixType(QualType ElementType, unsigned NumRows,
901 unsigned NumColumns);
902
903 /// Build a new matrix type given the type and dependently-defined
904 /// dimensions.
905 QualType RebuildDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
906 Expr *ColumnExpr,
907 SourceLocation AttributeLoc);
908
909 /// Build a new DependentAddressSpaceType or return the pointee
910 /// type variable with the correct address space (retrieved from
911 /// AddrSpaceExpr) applied to it. The former will be returned in cases
912 /// where the address space remains dependent.
913 ///
914 /// By default, performs semantic analysis when building the type with address
915 /// space applied. Subclasses may override this routine to provide different
916 /// behavior.
917 QualType RebuildDependentAddressSpaceType(QualType PointeeType,
918 Expr *AddrSpaceExpr,
919 SourceLocation AttributeLoc);
920
921 /// Build a new function type.
922 ///
923 /// By default, performs semantic analysis when building the function type.
924 /// Subclasses may override this routine to provide different behavior.
925 QualType RebuildFunctionProtoType(QualType T,
926 MutableArrayRef<QualType> ParamTypes,
927 const FunctionProtoType::ExtProtoInfo &EPI);
928
929 /// Build a new unprototyped function type.
930 QualType RebuildFunctionNoProtoType(QualType ResultType);
931
932 /// Rebuild an unresolved typename type, given the decl that
933 /// the UnresolvedUsingTypenameDecl was transformed to.
934 QualType RebuildUnresolvedUsingType(SourceLocation NameLoc, Decl *D);
935
936 /// Build a new type found via an alias.
RebuildUsingType(UsingShadowDecl * Found,QualType Underlying)937 QualType RebuildUsingType(UsingShadowDecl *Found, QualType Underlying) {
938 return SemaRef.Context.getUsingType(Found, Underlying);
939 }
940
941 /// Build a new typedef type.
RebuildTypedefType(TypedefNameDecl * Typedef)942 QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
943 return SemaRef.Context.getTypeDeclType(Typedef);
944 }
945
946 /// Build a new MacroDefined type.
RebuildMacroQualifiedType(QualType T,const IdentifierInfo * MacroII)947 QualType RebuildMacroQualifiedType(QualType T,
948 const IdentifierInfo *MacroII) {
949 return SemaRef.Context.getMacroQualifiedType(T, MacroII);
950 }
951
952 /// Build a new class/struct/union type.
RebuildRecordType(RecordDecl * Record)953 QualType RebuildRecordType(RecordDecl *Record) {
954 return SemaRef.Context.getTypeDeclType(Record);
955 }
956
957 /// Build a new Enum type.
RebuildEnumType(EnumDecl * Enum)958 QualType RebuildEnumType(EnumDecl *Enum) {
959 return SemaRef.Context.getTypeDeclType(Enum);
960 }
961
962 /// Build a new typeof(expr) type.
963 ///
964 /// By default, performs semantic analysis when building the typeof type.
965 /// Subclasses may override this routine to provide different behavior.
966 QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
967
968 /// Build a new typeof(type) type.
969 ///
970 /// By default, builds a new TypeOfType with the given underlying type.
971 QualType RebuildTypeOfType(QualType Underlying);
972
973 /// Build a new unary transform type.
974 QualType RebuildUnaryTransformType(QualType BaseType,
975 UnaryTransformType::UTTKind UKind,
976 SourceLocation Loc);
977
978 /// Build a new C++11 decltype type.
979 ///
980 /// By default, performs semantic analysis when building the decltype type.
981 /// Subclasses may override this routine to provide different behavior.
982 QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
983
984 /// Build a new C++11 auto type.
985 ///
986 /// By default, builds a new AutoType with the given deduced type.
RebuildAutoType(QualType Deduced,AutoTypeKeyword Keyword,ConceptDecl * TypeConstraintConcept,ArrayRef<TemplateArgument> TypeConstraintArgs)987 QualType RebuildAutoType(QualType Deduced, AutoTypeKeyword Keyword,
988 ConceptDecl *TypeConstraintConcept,
989 ArrayRef<TemplateArgument> TypeConstraintArgs) {
990 // Note, IsDependent is always false here: we implicitly convert an 'auto'
991 // which has been deduced to a dependent type into an undeduced 'auto', so
992 // that we'll retry deduction after the transformation.
993 return SemaRef.Context.getAutoType(Deduced, Keyword,
994 /*IsDependent*/ false, /*IsPack=*/false,
995 TypeConstraintConcept,
996 TypeConstraintArgs);
997 }
998
999 /// By default, builds a new DeducedTemplateSpecializationType with the given
1000 /// deduced type.
RebuildDeducedTemplateSpecializationType(TemplateName Template,QualType Deduced)1001 QualType RebuildDeducedTemplateSpecializationType(TemplateName Template,
1002 QualType Deduced) {
1003 return SemaRef.Context.getDeducedTemplateSpecializationType(
1004 Template, Deduced, /*IsDependent*/ false);
1005 }
1006
1007 /// Build a new template specialization type.
1008 ///
1009 /// By default, performs semantic analysis when building the template
1010 /// specialization type. Subclasses may override this routine to provide
1011 /// different behavior.
1012 QualType RebuildTemplateSpecializationType(TemplateName Template,
1013 SourceLocation TemplateLoc,
1014 TemplateArgumentListInfo &Args);
1015
1016 /// Build a new parenthesized type.
1017 ///
1018 /// By default, builds a new ParenType type from the inner type.
1019 /// Subclasses may override this routine to provide different behavior.
RebuildParenType(QualType InnerType)1020 QualType RebuildParenType(QualType InnerType) {
1021 return SemaRef.BuildParenType(InnerType);
1022 }
1023
1024 /// Build a new qualified name type.
1025 ///
1026 /// By default, builds a new ElaboratedType type from the keyword,
1027 /// the nested-name-specifier and the named type.
1028 /// Subclasses may override this routine to provide different behavior.
RebuildElaboratedType(SourceLocation KeywordLoc,ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,QualType Named)1029 QualType RebuildElaboratedType(SourceLocation KeywordLoc,
1030 ElaboratedTypeKeyword Keyword,
1031 NestedNameSpecifierLoc QualifierLoc,
1032 QualType Named) {
1033 return SemaRef.Context.getElaboratedType(Keyword,
1034 QualifierLoc.getNestedNameSpecifier(),
1035 Named);
1036 }
1037
1038 /// Build a new typename type that refers to a template-id.
1039 ///
1040 /// By default, builds a new DependentNameType type from the
1041 /// nested-name-specifier and the given type. Subclasses may override
1042 /// this routine to provide different behavior.
RebuildDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const IdentifierInfo * Name,SourceLocation NameLoc,TemplateArgumentListInfo & Args,bool AllowInjectedClassName)1043 QualType RebuildDependentTemplateSpecializationType(
1044 ElaboratedTypeKeyword Keyword,
1045 NestedNameSpecifierLoc QualifierLoc,
1046 SourceLocation TemplateKWLoc,
1047 const IdentifierInfo *Name,
1048 SourceLocation NameLoc,
1049 TemplateArgumentListInfo &Args,
1050 bool AllowInjectedClassName) {
1051 // Rebuild the template name.
1052 // TODO: avoid TemplateName abstraction
1053 CXXScopeSpec SS;
1054 SS.Adopt(QualifierLoc);
1055 TemplateName InstName = getDerived().RebuildTemplateName(
1056 SS, TemplateKWLoc, *Name, NameLoc, QualType(), nullptr,
1057 AllowInjectedClassName);
1058
1059 if (InstName.isNull())
1060 return QualType();
1061
1062 // If it's still dependent, make a dependent specialization.
1063 if (InstName.getAsDependentTemplateName())
1064 return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
1065 QualifierLoc.getNestedNameSpecifier(),
1066 Name,
1067 Args);
1068
1069 // Otherwise, make an elaborated type wrapping a non-dependent
1070 // specialization.
1071 QualType T =
1072 getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
1073 if (T.isNull()) return QualType();
1074
1075 if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == nullptr)
1076 return T;
1077
1078 return SemaRef.Context.getElaboratedType(Keyword,
1079 QualifierLoc.getNestedNameSpecifier(),
1080 T);
1081 }
1082
1083 /// Build a new typename type that refers to an identifier.
1084 ///
1085 /// By default, performs semantic analysis when building the typename type
1086 /// (or elaborated type). Subclasses may override this routine to provide
1087 /// different behavior.
RebuildDependentNameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo * Id,SourceLocation IdLoc,bool DeducedTSTContext)1088 QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
1089 SourceLocation KeywordLoc,
1090 NestedNameSpecifierLoc QualifierLoc,
1091 const IdentifierInfo *Id,
1092 SourceLocation IdLoc,
1093 bool DeducedTSTContext) {
1094 CXXScopeSpec SS;
1095 SS.Adopt(QualifierLoc);
1096
1097 if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1098 // If the name is still dependent, just build a new dependent name type.
1099 if (!SemaRef.computeDeclContext(SS))
1100 return SemaRef.Context.getDependentNameType(Keyword,
1101 QualifierLoc.getNestedNameSpecifier(),
1102 Id);
1103 }
1104
1105 if (Keyword == ETK_None || Keyword == ETK_Typename) {
1106 return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
1107 *Id, IdLoc, DeducedTSTContext);
1108 }
1109
1110 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
1111
1112 // We had a dependent elaborated-type-specifier that has been transformed
1113 // into a non-dependent elaborated-type-specifier. Find the tag we're
1114 // referring to.
1115 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
1116 DeclContext *DC = SemaRef.computeDeclContext(SS, false);
1117 if (!DC)
1118 return QualType();
1119
1120 if (SemaRef.RequireCompleteDeclContext(SS, DC))
1121 return QualType();
1122
1123 TagDecl *Tag = nullptr;
1124 SemaRef.LookupQualifiedName(Result, DC);
1125 switch (Result.getResultKind()) {
1126 case LookupResult::NotFound:
1127 case LookupResult::NotFoundInCurrentInstantiation:
1128 break;
1129
1130 case LookupResult::Found:
1131 Tag = Result.getAsSingle<TagDecl>();
1132 break;
1133
1134 case LookupResult::FoundOverloaded:
1135 case LookupResult::FoundUnresolvedValue:
1136 llvm_unreachable("Tag lookup cannot find non-tags");
1137
1138 case LookupResult::Ambiguous:
1139 // Let the LookupResult structure handle ambiguities.
1140 return QualType();
1141 }
1142
1143 if (!Tag) {
1144 // Check where the name exists but isn't a tag type and use that to emit
1145 // better diagnostics.
1146 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
1147 SemaRef.LookupQualifiedName(Result, DC);
1148 switch (Result.getResultKind()) {
1149 case LookupResult::Found:
1150 case LookupResult::FoundOverloaded:
1151 case LookupResult::FoundUnresolvedValue: {
1152 NamedDecl *SomeDecl = Result.getRepresentativeDecl();
1153 Sema::NonTagKind NTK = SemaRef.getNonTagTypeDeclKind(SomeDecl, Kind);
1154 SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << SomeDecl
1155 << NTK << Kind;
1156 SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
1157 break;
1158 }
1159 default:
1160 SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
1161 << Kind << Id << DC << QualifierLoc.getSourceRange();
1162 break;
1163 }
1164 return QualType();
1165 }
1166
1167 if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
1168 IdLoc, Id)) {
1169 SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
1170 SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
1171 return QualType();
1172 }
1173
1174 // Build the elaborated-type-specifier type.
1175 QualType T = SemaRef.Context.getTypeDeclType(Tag);
1176 return SemaRef.Context.getElaboratedType(Keyword,
1177 QualifierLoc.getNestedNameSpecifier(),
1178 T);
1179 }
1180
1181 /// Build a new pack expansion type.
1182 ///
1183 /// By default, builds a new PackExpansionType type from the given pattern.
1184 /// Subclasses may override this routine to provide different behavior.
RebuildPackExpansionType(QualType Pattern,SourceRange PatternRange,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)1185 QualType RebuildPackExpansionType(QualType Pattern,
1186 SourceRange PatternRange,
1187 SourceLocation EllipsisLoc,
1188 Optional<unsigned> NumExpansions) {
1189 return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
1190 NumExpansions);
1191 }
1192
1193 /// Build a new atomic type given its value type.
1194 ///
1195 /// By default, performs semantic analysis when building the atomic type.
1196 /// Subclasses may override this routine to provide different behavior.
1197 QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
1198
1199 /// Build a new pipe type given its value type.
1200 QualType RebuildPipeType(QualType ValueType, SourceLocation KWLoc,
1201 bool isReadPipe);
1202
1203 /// Build a bit-precise int given its value type.
1204 QualType RebuildBitIntType(bool IsUnsigned, unsigned NumBits,
1205 SourceLocation Loc);
1206
1207 /// Build a dependent bit-precise int given its value type.
1208 QualType RebuildDependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr,
1209 SourceLocation Loc);
1210
1211 /// Build a new template name given a nested name specifier, a flag
1212 /// indicating whether the "template" keyword was provided, and the template
1213 /// that the template name refers to.
1214 ///
1215 /// By default, builds the new template name directly. Subclasses may override
1216 /// this routine to provide different behavior.
1217 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1218 bool TemplateKW,
1219 TemplateDecl *Template);
1220
1221 /// Build a new template name given a nested name specifier and the
1222 /// name that is referred to as a template.
1223 ///
1224 /// By default, performs semantic analysis to determine whether the name can
1225 /// be resolved to a specific template, then builds the appropriate kind of
1226 /// template name. Subclasses may override this routine to provide different
1227 /// behavior.
1228 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1229 SourceLocation TemplateKWLoc,
1230 const IdentifierInfo &Name,
1231 SourceLocation NameLoc, QualType ObjectType,
1232 NamedDecl *FirstQualifierInScope,
1233 bool AllowInjectedClassName);
1234
1235 /// Build a new template name given a nested name specifier and the
1236 /// overloaded operator name that is referred to as a template.
1237 ///
1238 /// By default, performs semantic analysis to determine whether the name can
1239 /// be resolved to a specific template, then builds the appropriate kind of
1240 /// template name. Subclasses may override this routine to provide different
1241 /// behavior.
1242 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1243 SourceLocation TemplateKWLoc,
1244 OverloadedOperatorKind Operator,
1245 SourceLocation NameLoc, QualType ObjectType,
1246 bool AllowInjectedClassName);
1247
1248 /// Build a new template name given a template template parameter pack
1249 /// and the
1250 ///
1251 /// By default, performs semantic analysis to determine whether the name can
1252 /// be resolved to a specific template, then builds the appropriate kind of
1253 /// template name. Subclasses may override this routine to provide different
1254 /// behavior.
RebuildTemplateName(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack)1255 TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
1256 const TemplateArgument &ArgPack) {
1257 return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
1258 }
1259
1260 /// Build a new compound statement.
1261 ///
1262 /// By default, performs semantic analysis to build the new statement.
1263 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundStmt(SourceLocation LBraceLoc,MultiStmtArg Statements,SourceLocation RBraceLoc,bool IsStmtExpr)1264 StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
1265 MultiStmtArg Statements,
1266 SourceLocation RBraceLoc,
1267 bool IsStmtExpr) {
1268 return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
1269 IsStmtExpr);
1270 }
1271
1272 /// Build a new case statement.
1273 ///
1274 /// By default, performs semantic analysis to build the new statement.
1275 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmt(SourceLocation CaseLoc,Expr * LHS,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation ColonLoc)1276 StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
1277 Expr *LHS,
1278 SourceLocation EllipsisLoc,
1279 Expr *RHS,
1280 SourceLocation ColonLoc) {
1281 return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
1282 ColonLoc);
1283 }
1284
1285 /// Attach the body to a new case statement.
1286 ///
1287 /// By default, performs semantic analysis to build the new statement.
1288 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmtBody(Stmt * S,Stmt * Body)1289 StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
1290 getSema().ActOnCaseStmtBody(S, Body);
1291 return S;
1292 }
1293
1294 /// Build a new default statement.
1295 ///
1296 /// By default, performs semantic analysis to build the new statement.
1297 /// Subclasses may override this routine to provide different behavior.
RebuildDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt)1298 StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
1299 SourceLocation ColonLoc,
1300 Stmt *SubStmt) {
1301 return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
1302 /*CurScope=*/nullptr);
1303 }
1304
1305 /// Build a new label statement.
1306 ///
1307 /// By default, performs semantic analysis to build the new statement.
1308 /// Subclasses may override this routine to provide different behavior.
RebuildLabelStmt(SourceLocation IdentLoc,LabelDecl * L,SourceLocation ColonLoc,Stmt * SubStmt)1309 StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
1310 SourceLocation ColonLoc, Stmt *SubStmt) {
1311 return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
1312 }
1313
1314 /// Build a new attributed statement.
1315 ///
1316 /// By default, performs semantic analysis to build the new statement.
1317 /// Subclasses may override this routine to provide different behavior.
RebuildAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)1318 StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
1319 ArrayRef<const Attr *> Attrs,
1320 Stmt *SubStmt) {
1321 return SemaRef.BuildAttributedStmt(AttrLoc, Attrs, SubStmt);
1322 }
1323
1324 /// Build a new "if" statement.
1325 ///
1326 /// By default, performs semantic analysis to build the new statement.
1327 /// Subclasses may override this routine to provide different behavior.
RebuildIfStmt(SourceLocation IfLoc,IfStatementKind Kind,SourceLocation LParenLoc,Sema::ConditionResult Cond,SourceLocation RParenLoc,Stmt * Init,Stmt * Then,SourceLocation ElseLoc,Stmt * Else)1328 StmtResult RebuildIfStmt(SourceLocation IfLoc, IfStatementKind Kind,
1329 SourceLocation LParenLoc, Sema::ConditionResult Cond,
1330 SourceLocation RParenLoc, Stmt *Init, Stmt *Then,
1331 SourceLocation ElseLoc, Stmt *Else) {
1332 return getSema().ActOnIfStmt(IfLoc, Kind, LParenLoc, Init, Cond, RParenLoc,
1333 Then, ElseLoc, Else);
1334 }
1335
1336 /// Start building a new switch statement.
1337 ///
1338 /// By default, performs semantic analysis to build the new statement.
1339 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtStart(SourceLocation SwitchLoc,SourceLocation LParenLoc,Stmt * Init,Sema::ConditionResult Cond,SourceLocation RParenLoc)1340 StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
1341 SourceLocation LParenLoc, Stmt *Init,
1342 Sema::ConditionResult Cond,
1343 SourceLocation RParenLoc) {
1344 return getSema().ActOnStartOfSwitchStmt(SwitchLoc, LParenLoc, Init, Cond,
1345 RParenLoc);
1346 }
1347
1348 /// Attach the body to the switch statement.
1349 ///
1350 /// By default, performs semantic analysis to build the new statement.
1351 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtBody(SourceLocation SwitchLoc,Stmt * Switch,Stmt * Body)1352 StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
1353 Stmt *Switch, Stmt *Body) {
1354 return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
1355 }
1356
1357 /// Build a new while statement.
1358 ///
1359 /// By default, performs semantic analysis to build the new statement.
1360 /// Subclasses may override this routine to provide different behavior.
RebuildWhileStmt(SourceLocation WhileLoc,SourceLocation LParenLoc,Sema::ConditionResult Cond,SourceLocation RParenLoc,Stmt * Body)1361 StmtResult RebuildWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
1362 Sema::ConditionResult Cond,
1363 SourceLocation RParenLoc, Stmt *Body) {
1364 return getSema().ActOnWhileStmt(WhileLoc, LParenLoc, Cond, RParenLoc, Body);
1365 }
1366
1367 /// Build a new do-while statement.
1368 ///
1369 /// By default, performs semantic analysis to build the new statement.
1370 /// Subclasses may override this routine to provide different behavior.
RebuildDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation LParenLoc,Expr * Cond,SourceLocation RParenLoc)1371 StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
1372 SourceLocation WhileLoc, SourceLocation LParenLoc,
1373 Expr *Cond, SourceLocation RParenLoc) {
1374 return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
1375 Cond, RParenLoc);
1376 }
1377
1378 /// Build a new for statement.
1379 ///
1380 /// By default, performs semantic analysis to build the new statement.
1381 /// Subclasses may override this routine to provide different behavior.
RebuildForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * Init,Sema::ConditionResult Cond,Sema::FullExprArg Inc,SourceLocation RParenLoc,Stmt * Body)1382 StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1383 Stmt *Init, Sema::ConditionResult Cond,
1384 Sema::FullExprArg Inc, SourceLocation RParenLoc,
1385 Stmt *Body) {
1386 return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
1387 Inc, RParenLoc, Body);
1388 }
1389
1390 /// Build a new goto statement.
1391 ///
1392 /// By default, performs semantic analysis to build the new statement.
1393 /// Subclasses may override this routine to provide different behavior.
RebuildGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * Label)1394 StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
1395 LabelDecl *Label) {
1396 return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
1397 }
1398
1399 /// Build a new indirect goto statement.
1400 ///
1401 /// By default, performs semantic analysis to build the new statement.
1402 /// Subclasses may override this routine to provide different behavior.
RebuildIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * Target)1403 StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
1404 SourceLocation StarLoc,
1405 Expr *Target) {
1406 return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
1407 }
1408
1409 /// Build a new return statement.
1410 ///
1411 /// By default, performs semantic analysis to build the new statement.
1412 /// Subclasses may override this routine to provide different behavior.
RebuildReturnStmt(SourceLocation ReturnLoc,Expr * Result)1413 StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
1414 return getSema().BuildReturnStmt(ReturnLoc, Result);
1415 }
1416
1417 /// Build a new declaration statement.
1418 ///
1419 /// By default, performs semantic analysis to build the new statement.
1420 /// Subclasses may override this routine to provide different behavior.
RebuildDeclStmt(MutableArrayRef<Decl * > Decls,SourceLocation StartLoc,SourceLocation EndLoc)1421 StmtResult RebuildDeclStmt(MutableArrayRef<Decl *> Decls,
1422 SourceLocation StartLoc, SourceLocation EndLoc) {
1423 Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls);
1424 return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
1425 }
1426
1427 /// Build a new inline asm statement.
1428 ///
1429 /// By default, performs semantic analysis to build the new statement.
1430 /// Subclasses may override this routine to provide different behavior.
RebuildGCCAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg Constraints,MultiExprArg Exprs,Expr * AsmString,MultiExprArg Clobbers,unsigned NumLabels,SourceLocation RParenLoc)1431 StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1432 bool IsVolatile, unsigned NumOutputs,
1433 unsigned NumInputs, IdentifierInfo **Names,
1434 MultiExprArg Constraints, MultiExprArg Exprs,
1435 Expr *AsmString, MultiExprArg Clobbers,
1436 unsigned NumLabels,
1437 SourceLocation RParenLoc) {
1438 return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
1439 NumInputs, Names, Constraints, Exprs,
1440 AsmString, Clobbers, NumLabels, RParenLoc);
1441 }
1442
1443 /// Build a new MS style inline asm statement.
1444 ///
1445 /// By default, performs semantic analysis to build the new statement.
1446 /// Subclasses may override this routine to provide different behavior.
RebuildMSAsmStmt(SourceLocation AsmLoc,SourceLocation LBraceLoc,ArrayRef<Token> AsmToks,StringRef AsmString,unsigned NumOutputs,unsigned NumInputs,ArrayRef<StringRef> Constraints,ArrayRef<StringRef> Clobbers,ArrayRef<Expr * > Exprs,SourceLocation EndLoc)1447 StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
1448 ArrayRef<Token> AsmToks,
1449 StringRef AsmString,
1450 unsigned NumOutputs, unsigned NumInputs,
1451 ArrayRef<StringRef> Constraints,
1452 ArrayRef<StringRef> Clobbers,
1453 ArrayRef<Expr*> Exprs,
1454 SourceLocation EndLoc) {
1455 return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString,
1456 NumOutputs, NumInputs,
1457 Constraints, Clobbers, Exprs, EndLoc);
1458 }
1459
1460 /// Build a new co_return statement.
1461 ///
1462 /// By default, performs semantic analysis to build the new statement.
1463 /// Subclasses may override this routine to provide different behavior.
RebuildCoreturnStmt(SourceLocation CoreturnLoc,Expr * Result,bool IsImplicit)1464 StmtResult RebuildCoreturnStmt(SourceLocation CoreturnLoc, Expr *Result,
1465 bool IsImplicit) {
1466 return getSema().BuildCoreturnStmt(CoreturnLoc, Result, IsImplicit);
1467 }
1468
1469 /// Build a new co_await expression.
1470 ///
1471 /// By default, performs semantic analysis to build the new expression.
1472 /// Subclasses may override this routine to provide different behavior.
RebuildCoawaitExpr(SourceLocation CoawaitLoc,Expr * Operand,UnresolvedLookupExpr * OpCoawaitLookup,bool IsImplicit)1473 ExprResult RebuildCoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand,
1474 UnresolvedLookupExpr *OpCoawaitLookup,
1475 bool IsImplicit) {
1476 // This function rebuilds a coawait-expr given its operator.
1477 // For an explicit coawait-expr, the rebuild involves the full set
1478 // of transformations performed by BuildUnresolvedCoawaitExpr(),
1479 // including calling await_transform().
1480 // For an implicit coawait-expr, we need to rebuild the "operator
1481 // coawait" but not await_transform(), so use BuildResolvedCoawaitExpr().
1482 // This mirrors how the implicit CoawaitExpr is originally created
1483 // in Sema::ActOnCoroutineBodyStart().
1484 if (IsImplicit) {
1485 ExprResult Suspend = getSema().BuildOperatorCoawaitCall(
1486 CoawaitLoc, Operand, OpCoawaitLookup);
1487 if (Suspend.isInvalid())
1488 return ExprError();
1489 return getSema().BuildResolvedCoawaitExpr(CoawaitLoc, Operand,
1490 Suspend.get(), true);
1491 }
1492
1493 return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Operand,
1494 OpCoawaitLookup);
1495 }
1496
1497 /// Build a new co_await expression.
1498 ///
1499 /// By default, performs semantic analysis to build the new expression.
1500 /// Subclasses may override this routine to provide different behavior.
RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc,Expr * Result,UnresolvedLookupExpr * Lookup)1501 ExprResult RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc,
1502 Expr *Result,
1503 UnresolvedLookupExpr *Lookup) {
1504 return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Result, Lookup);
1505 }
1506
1507 /// Build a new co_yield expression.
1508 ///
1509 /// By default, performs semantic analysis to build the new expression.
1510 /// Subclasses may override this routine to provide different behavior.
RebuildCoyieldExpr(SourceLocation CoyieldLoc,Expr * Result)1511 ExprResult RebuildCoyieldExpr(SourceLocation CoyieldLoc, Expr *Result) {
1512 return getSema().BuildCoyieldExpr(CoyieldLoc, Result);
1513 }
1514
RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args)1515 StmtResult RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1516 return getSema().BuildCoroutineBodyStmt(Args);
1517 }
1518
1519 /// Build a new Objective-C \@try statement.
1520 ///
1521 /// By default, performs semantic analysis to build the new statement.
1522 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtTryStmt(SourceLocation AtLoc,Stmt * TryBody,MultiStmtArg CatchStmts,Stmt * Finally)1523 StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
1524 Stmt *TryBody,
1525 MultiStmtArg CatchStmts,
1526 Stmt *Finally) {
1527 return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
1528 Finally);
1529 }
1530
1531 /// Rebuild an Objective-C exception declaration.
1532 ///
1533 /// By default, performs semantic analysis to build the new declaration.
1534 /// Subclasses may override this routine to provide different behavior.
RebuildObjCExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * TInfo,QualType T)1535 VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
1536 TypeSourceInfo *TInfo, QualType T) {
1537 return getSema().BuildObjCExceptionDecl(TInfo, T,
1538 ExceptionDecl->getInnerLocStart(),
1539 ExceptionDecl->getLocation(),
1540 ExceptionDecl->getIdentifier());
1541 }
1542
1543 /// Build a new Objective-C \@catch statement.
1544 ///
1545 /// By default, performs semantic analysis to build the new statement.
1546 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParenLoc,VarDecl * Var,Stmt * Body)1547 StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
1548 SourceLocation RParenLoc,
1549 VarDecl *Var,
1550 Stmt *Body) {
1551 return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
1552 Var, Body);
1553 }
1554
1555 /// Build a new Objective-C \@finally statement.
1556 ///
1557 /// By default, performs semantic analysis to build the new statement.
1558 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)1559 StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
1560 Stmt *Body) {
1561 return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
1562 }
1563
1564 /// Build a new Objective-C \@throw statement.
1565 ///
1566 /// By default, performs semantic analysis to build the new statement.
1567 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Operand)1568 StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
1569 Expr *Operand) {
1570 return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
1571 }
1572
1573 /// Build a new OpenMP Canonical loop.
1574 ///
1575 /// Ensures that the outermost loop in @p LoopStmt is wrapped by a
1576 /// OMPCanonicalLoop.
RebuildOMPCanonicalLoop(Stmt * LoopStmt)1577 StmtResult RebuildOMPCanonicalLoop(Stmt *LoopStmt) {
1578 return getSema().ActOnOpenMPCanonicalLoop(LoopStmt);
1579 }
1580
1581 /// Build a new OpenMP executable directive.
1582 ///
1583 /// By default, performs semantic analysis to build the new statement.
1584 /// Subclasses may override this routine to provide different behavior.
RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,DeclarationNameInfo DirName,OpenMPDirectiveKind CancelRegion,ArrayRef<OMPClause * > Clauses,Stmt * AStmt,SourceLocation StartLoc,SourceLocation EndLoc)1585 StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,
1586 DeclarationNameInfo DirName,
1587 OpenMPDirectiveKind CancelRegion,
1588 ArrayRef<OMPClause *> Clauses,
1589 Stmt *AStmt, SourceLocation StartLoc,
1590 SourceLocation EndLoc) {
1591 return getSema().ActOnOpenMPExecutableDirective(
1592 Kind, DirName, CancelRegion, Clauses, AStmt, StartLoc, EndLoc);
1593 }
1594
1595 /// Build a new OpenMP 'if' clause.
1596 ///
1597 /// By default, performs semantic analysis to build the new OpenMP clause.
1598 /// Subclasses may override this routine to provide different behavior.
RebuildOMPIfClause(OpenMPDirectiveKind NameModifier,Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation NameModifierLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1599 OMPClause *RebuildOMPIfClause(OpenMPDirectiveKind NameModifier,
1600 Expr *Condition, SourceLocation StartLoc,
1601 SourceLocation LParenLoc,
1602 SourceLocation NameModifierLoc,
1603 SourceLocation ColonLoc,
1604 SourceLocation EndLoc) {
1605 return getSema().ActOnOpenMPIfClause(NameModifier, Condition, StartLoc,
1606 LParenLoc, NameModifierLoc, ColonLoc,
1607 EndLoc);
1608 }
1609
1610 /// Build a new OpenMP 'final' clause.
1611 ///
1612 /// By default, performs semantic analysis to build the new OpenMP clause.
1613 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFinalClause(Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1614 OMPClause *RebuildOMPFinalClause(Expr *Condition, SourceLocation StartLoc,
1615 SourceLocation LParenLoc,
1616 SourceLocation EndLoc) {
1617 return getSema().ActOnOpenMPFinalClause(Condition, StartLoc, LParenLoc,
1618 EndLoc);
1619 }
1620
1621 /// Build a new OpenMP 'num_threads' clause.
1622 ///
1623 /// By default, performs semantic analysis to build the new OpenMP clause.
1624 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumThreadsClause(Expr * NumThreads,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1625 OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads,
1626 SourceLocation StartLoc,
1627 SourceLocation LParenLoc,
1628 SourceLocation EndLoc) {
1629 return getSema().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc,
1630 LParenLoc, EndLoc);
1631 }
1632
1633 /// Build a new OpenMP 'safelen' clause.
1634 ///
1635 /// By default, performs semantic analysis to build the new OpenMP clause.
1636 /// Subclasses may override this routine to provide different behavior.
RebuildOMPSafelenClause(Expr * Len,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1637 OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc,
1638 SourceLocation LParenLoc,
1639 SourceLocation EndLoc) {
1640 return getSema().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, EndLoc);
1641 }
1642
1643 /// Build a new OpenMP 'simdlen' clause.
1644 ///
1645 /// By default, performs semantic analysis to build the new OpenMP clause.
1646 /// Subclasses may override this routine to provide different behavior.
RebuildOMPSimdlenClause(Expr * Len,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1647 OMPClause *RebuildOMPSimdlenClause(Expr *Len, SourceLocation StartLoc,
1648 SourceLocation LParenLoc,
1649 SourceLocation EndLoc) {
1650 return getSema().ActOnOpenMPSimdlenClause(Len, StartLoc, LParenLoc, EndLoc);
1651 }
1652
RebuildOMPSizesClause(ArrayRef<Expr * > Sizes,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1653 OMPClause *RebuildOMPSizesClause(ArrayRef<Expr *> Sizes,
1654 SourceLocation StartLoc,
1655 SourceLocation LParenLoc,
1656 SourceLocation EndLoc) {
1657 return getSema().ActOnOpenMPSizesClause(Sizes, StartLoc, LParenLoc, EndLoc);
1658 }
1659
1660 /// Build a new OpenMP 'full' clause.
RebuildOMPFullClause(SourceLocation StartLoc,SourceLocation EndLoc)1661 OMPClause *RebuildOMPFullClause(SourceLocation StartLoc,
1662 SourceLocation EndLoc) {
1663 return getSema().ActOnOpenMPFullClause(StartLoc, EndLoc);
1664 }
1665
1666 /// Build a new OpenMP 'partial' clause.
RebuildOMPPartialClause(Expr * Factor,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1667 OMPClause *RebuildOMPPartialClause(Expr *Factor, SourceLocation StartLoc,
1668 SourceLocation LParenLoc,
1669 SourceLocation EndLoc) {
1670 return getSema().ActOnOpenMPPartialClause(Factor, StartLoc, LParenLoc,
1671 EndLoc);
1672 }
1673
1674 /// Build a new OpenMP 'allocator' clause.
1675 ///
1676 /// By default, performs semantic analysis to build the new OpenMP clause.
1677 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAllocatorClause(Expr * A,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1678 OMPClause *RebuildOMPAllocatorClause(Expr *A, SourceLocation StartLoc,
1679 SourceLocation LParenLoc,
1680 SourceLocation EndLoc) {
1681 return getSema().ActOnOpenMPAllocatorClause(A, StartLoc, LParenLoc, EndLoc);
1682 }
1683
1684 /// Build a new OpenMP 'collapse' clause.
1685 ///
1686 /// By default, performs semantic analysis to build the new OpenMP clause.
1687 /// Subclasses may override this routine to provide different behavior.
RebuildOMPCollapseClause(Expr * Num,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1688 OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc,
1689 SourceLocation LParenLoc,
1690 SourceLocation EndLoc) {
1691 return getSema().ActOnOpenMPCollapseClause(Num, StartLoc, LParenLoc,
1692 EndLoc);
1693 }
1694
1695 /// Build a new OpenMP 'default' clause.
1696 ///
1697 /// By default, performs semantic analysis to build the new OpenMP clause.
1698 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDefaultClause(DefaultKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1699 OMPClause *RebuildOMPDefaultClause(DefaultKind Kind, SourceLocation KindKwLoc,
1700 SourceLocation StartLoc,
1701 SourceLocation LParenLoc,
1702 SourceLocation EndLoc) {
1703 return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc,
1704 StartLoc, LParenLoc, EndLoc);
1705 }
1706
1707 /// Build a new OpenMP 'proc_bind' clause.
1708 ///
1709 /// By default, performs semantic analysis to build the new OpenMP clause.
1710 /// Subclasses may override this routine to provide different behavior.
RebuildOMPProcBindClause(ProcBindKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1711 OMPClause *RebuildOMPProcBindClause(ProcBindKind Kind,
1712 SourceLocation KindKwLoc,
1713 SourceLocation StartLoc,
1714 SourceLocation LParenLoc,
1715 SourceLocation EndLoc) {
1716 return getSema().ActOnOpenMPProcBindClause(Kind, KindKwLoc,
1717 StartLoc, LParenLoc, EndLoc);
1718 }
1719
1720 /// Build a new OpenMP 'schedule' clause.
1721 ///
1722 /// By default, performs semantic analysis to build the new OpenMP clause.
1723 /// Subclasses may override this routine to provide different behavior.
RebuildOMPScheduleClause(OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,OpenMPScheduleClauseKind Kind,Expr * ChunkSize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation M1Loc,SourceLocation M2Loc,SourceLocation KindLoc,SourceLocation CommaLoc,SourceLocation EndLoc)1724 OMPClause *RebuildOMPScheduleClause(
1725 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
1726 OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
1727 SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
1728 SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) {
1729 return getSema().ActOnOpenMPScheduleClause(
1730 M1, M2, Kind, ChunkSize, StartLoc, LParenLoc, M1Loc, M2Loc, KindLoc,
1731 CommaLoc, EndLoc);
1732 }
1733
1734 /// Build a new OpenMP 'ordered' clause.
1735 ///
1736 /// By default, performs semantic analysis to build the new OpenMP clause.
1737 /// Subclasses may override this routine to provide different behavior.
RebuildOMPOrderedClause(SourceLocation StartLoc,SourceLocation EndLoc,SourceLocation LParenLoc,Expr * Num)1738 OMPClause *RebuildOMPOrderedClause(SourceLocation StartLoc,
1739 SourceLocation EndLoc,
1740 SourceLocation LParenLoc, Expr *Num) {
1741 return getSema().ActOnOpenMPOrderedClause(StartLoc, EndLoc, LParenLoc, Num);
1742 }
1743
1744 /// Build a new OpenMP 'private' clause.
1745 ///
1746 /// By default, performs semantic analysis to build the new OpenMP clause.
1747 /// Subclasses may override this routine to provide different behavior.
RebuildOMPPrivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1748 OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList,
1749 SourceLocation StartLoc,
1750 SourceLocation LParenLoc,
1751 SourceLocation EndLoc) {
1752 return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc,
1753 EndLoc);
1754 }
1755
1756 /// Build a new OpenMP 'firstprivate' clause.
1757 ///
1758 /// By default, performs semantic analysis to build the new OpenMP clause.
1759 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFirstprivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1760 OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList,
1761 SourceLocation StartLoc,
1762 SourceLocation LParenLoc,
1763 SourceLocation EndLoc) {
1764 return getSema().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc,
1765 EndLoc);
1766 }
1767
1768 /// Build a new OpenMP 'lastprivate' clause.
1769 ///
1770 /// By default, performs semantic analysis to build the new OpenMP clause.
1771 /// Subclasses may override this routine to provide different behavior.
RebuildOMPLastprivateClause(ArrayRef<Expr * > VarList,OpenMPLastprivateModifier LPKind,SourceLocation LPKindLoc,SourceLocation ColonLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1772 OMPClause *RebuildOMPLastprivateClause(ArrayRef<Expr *> VarList,
1773 OpenMPLastprivateModifier LPKind,
1774 SourceLocation LPKindLoc,
1775 SourceLocation ColonLoc,
1776 SourceLocation StartLoc,
1777 SourceLocation LParenLoc,
1778 SourceLocation EndLoc) {
1779 return getSema().ActOnOpenMPLastprivateClause(
1780 VarList, LPKind, LPKindLoc, ColonLoc, StartLoc, LParenLoc, EndLoc);
1781 }
1782
1783 /// Build a new OpenMP 'shared' clause.
1784 ///
1785 /// By default, performs semantic analysis to build the new OpenMP clause.
1786 /// Subclasses may override this routine to provide different behavior.
RebuildOMPSharedClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1787 OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList,
1788 SourceLocation StartLoc,
1789 SourceLocation LParenLoc,
1790 SourceLocation EndLoc) {
1791 return getSema().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc,
1792 EndLoc);
1793 }
1794
1795 /// Build a new OpenMP 'reduction' clause.
1796 ///
1797 /// By default, performs semantic analysis to build the new statement.
1798 /// Subclasses may override this routine to provide different behavior.
RebuildOMPReductionClause(ArrayRef<Expr * > VarList,OpenMPReductionClauseModifier Modifier,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ModifierLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId,ArrayRef<Expr * > UnresolvedReductions)1799 OMPClause *RebuildOMPReductionClause(
1800 ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
1801 SourceLocation StartLoc, SourceLocation LParenLoc,
1802 SourceLocation ModifierLoc, SourceLocation ColonLoc,
1803 SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
1804 const DeclarationNameInfo &ReductionId,
1805 ArrayRef<Expr *> UnresolvedReductions) {
1806 return getSema().ActOnOpenMPReductionClause(
1807 VarList, Modifier, StartLoc, LParenLoc, ModifierLoc, ColonLoc, EndLoc,
1808 ReductionIdScopeSpec, ReductionId, UnresolvedReductions);
1809 }
1810
1811 /// Build a new OpenMP 'task_reduction' clause.
1812 ///
1813 /// By default, performs semantic analysis to build the new statement.
1814 /// Subclasses may override this routine to provide different behavior.
RebuildOMPTaskReductionClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId,ArrayRef<Expr * > UnresolvedReductions)1815 OMPClause *RebuildOMPTaskReductionClause(
1816 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
1817 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
1818 CXXScopeSpec &ReductionIdScopeSpec,
1819 const DeclarationNameInfo &ReductionId,
1820 ArrayRef<Expr *> UnresolvedReductions) {
1821 return getSema().ActOnOpenMPTaskReductionClause(
1822 VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
1823 ReductionId, UnresolvedReductions);
1824 }
1825
1826 /// Build a new OpenMP 'in_reduction' clause.
1827 ///
1828 /// By default, performs semantic analysis to build the new statement.
1829 /// Subclasses may override this routine to provide different behavior.
1830 OMPClause *
RebuildOMPInReductionClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId,ArrayRef<Expr * > UnresolvedReductions)1831 RebuildOMPInReductionClause(ArrayRef<Expr *> VarList, SourceLocation StartLoc,
1832 SourceLocation LParenLoc, SourceLocation ColonLoc,
1833 SourceLocation EndLoc,
1834 CXXScopeSpec &ReductionIdScopeSpec,
1835 const DeclarationNameInfo &ReductionId,
1836 ArrayRef<Expr *> UnresolvedReductions) {
1837 return getSema().ActOnOpenMPInReductionClause(
1838 VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
1839 ReductionId, UnresolvedReductions);
1840 }
1841
1842 /// Build a new OpenMP 'linear' clause.
1843 ///
1844 /// By default, performs semantic analysis to build the new OpenMP clause.
1845 /// Subclasses may override this routine to provide different behavior.
RebuildOMPLinearClause(ArrayRef<Expr * > VarList,Expr * Step,SourceLocation StartLoc,SourceLocation LParenLoc,OpenMPLinearClauseKind Modifier,SourceLocation ModifierLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1846 OMPClause *RebuildOMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
1847 SourceLocation StartLoc,
1848 SourceLocation LParenLoc,
1849 OpenMPLinearClauseKind Modifier,
1850 SourceLocation ModifierLoc,
1851 SourceLocation ColonLoc,
1852 SourceLocation EndLoc) {
1853 return getSema().ActOnOpenMPLinearClause(VarList, Step, StartLoc, LParenLoc,
1854 Modifier, ModifierLoc, ColonLoc,
1855 EndLoc);
1856 }
1857
1858 /// Build a new OpenMP 'aligned' clause.
1859 ///
1860 /// By default, performs semantic analysis to build the new OpenMP clause.
1861 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAlignedClause(ArrayRef<Expr * > VarList,Expr * Alignment,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1862 OMPClause *RebuildOMPAlignedClause(ArrayRef<Expr *> VarList, Expr *Alignment,
1863 SourceLocation StartLoc,
1864 SourceLocation LParenLoc,
1865 SourceLocation ColonLoc,
1866 SourceLocation EndLoc) {
1867 return getSema().ActOnOpenMPAlignedClause(VarList, Alignment, StartLoc,
1868 LParenLoc, ColonLoc, EndLoc);
1869 }
1870
1871 /// Build a new OpenMP 'copyin' clause.
1872 ///
1873 /// By default, performs semantic analysis to build the new OpenMP clause.
1874 /// Subclasses may override this routine to provide different behavior.
RebuildOMPCopyinClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1875 OMPClause *RebuildOMPCopyinClause(ArrayRef<Expr *> VarList,
1876 SourceLocation StartLoc,
1877 SourceLocation LParenLoc,
1878 SourceLocation EndLoc) {
1879 return getSema().ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc,
1880 EndLoc);
1881 }
1882
1883 /// Build a new OpenMP 'copyprivate' clause.
1884 ///
1885 /// By default, performs semantic analysis to build the new OpenMP clause.
1886 /// Subclasses may override this routine to provide different behavior.
RebuildOMPCopyprivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1887 OMPClause *RebuildOMPCopyprivateClause(ArrayRef<Expr *> VarList,
1888 SourceLocation StartLoc,
1889 SourceLocation LParenLoc,
1890 SourceLocation EndLoc) {
1891 return getSema().ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc,
1892 EndLoc);
1893 }
1894
1895 /// Build a new OpenMP 'flush' pseudo clause.
1896 ///
1897 /// By default, performs semantic analysis to build the new OpenMP clause.
1898 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFlushClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1899 OMPClause *RebuildOMPFlushClause(ArrayRef<Expr *> VarList,
1900 SourceLocation StartLoc,
1901 SourceLocation LParenLoc,
1902 SourceLocation EndLoc) {
1903 return getSema().ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc,
1904 EndLoc);
1905 }
1906
1907 /// Build a new OpenMP 'depobj' pseudo clause.
1908 ///
1909 /// By default, performs semantic analysis to build the new OpenMP clause.
1910 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDepobjClause(Expr * Depobj,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1911 OMPClause *RebuildOMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
1912 SourceLocation LParenLoc,
1913 SourceLocation EndLoc) {
1914 return getSema().ActOnOpenMPDepobjClause(Depobj, StartLoc, LParenLoc,
1915 EndLoc);
1916 }
1917
1918 /// Build a new OpenMP 'depend' pseudo clause.
1919 ///
1920 /// By default, performs semantic analysis to build the new OpenMP clause.
1921 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDependClause(OMPDependClause::DependDataTy Data,Expr * DepModifier,ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1922 OMPClause *RebuildOMPDependClause(OMPDependClause::DependDataTy Data,
1923 Expr *DepModifier, ArrayRef<Expr *> VarList,
1924 SourceLocation StartLoc,
1925 SourceLocation LParenLoc,
1926 SourceLocation EndLoc) {
1927 return getSema().ActOnOpenMPDependClause(Data, DepModifier, VarList,
1928 StartLoc, LParenLoc, EndLoc);
1929 }
1930
1931 /// Build a new OpenMP 'device' clause.
1932 ///
1933 /// By default, performs semantic analysis to build the new statement.
1934 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier,Expr * Device,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ModifierLoc,SourceLocation EndLoc)1935 OMPClause *RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
1936 Expr *Device, SourceLocation StartLoc,
1937 SourceLocation LParenLoc,
1938 SourceLocation ModifierLoc,
1939 SourceLocation EndLoc) {
1940 return getSema().ActOnOpenMPDeviceClause(Modifier, Device, StartLoc,
1941 LParenLoc, ModifierLoc, EndLoc);
1942 }
1943
1944 /// Build a new OpenMP 'map' clause.
1945 ///
1946 /// By default, performs semantic analysis to build the new OpenMP clause.
1947 /// Subclasses may override this routine to provide different behavior.
RebuildOMPMapClause(ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,ArrayRef<SourceLocation> MapTypeModifiersLoc,CXXScopeSpec MapperIdScopeSpec,DeclarationNameInfo MapperId,OpenMPMapClauseKind MapType,bool IsMapTypeImplicit,SourceLocation MapLoc,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs,ArrayRef<Expr * > UnresolvedMappers)1948 OMPClause *RebuildOMPMapClause(
1949 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
1950 ArrayRef<SourceLocation> MapTypeModifiersLoc,
1951 CXXScopeSpec MapperIdScopeSpec, DeclarationNameInfo MapperId,
1952 OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
1953 SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
1954 const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) {
1955 return getSema().ActOnOpenMPMapClause(
1956 MapTypeModifiers, MapTypeModifiersLoc, MapperIdScopeSpec, MapperId,
1957 MapType, IsMapTypeImplicit, MapLoc, ColonLoc, VarList, Locs,
1958 /*NoDiagnose=*/false, UnresolvedMappers);
1959 }
1960
1961 /// Build a new OpenMP 'allocate' clause.
1962 ///
1963 /// By default, performs semantic analysis to build the new OpenMP clause.
1964 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAllocateClause(Expr * Allocate,ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1965 OMPClause *RebuildOMPAllocateClause(Expr *Allocate, ArrayRef<Expr *> VarList,
1966 SourceLocation StartLoc,
1967 SourceLocation LParenLoc,
1968 SourceLocation ColonLoc,
1969 SourceLocation EndLoc) {
1970 return getSema().ActOnOpenMPAllocateClause(Allocate, VarList, StartLoc,
1971 LParenLoc, ColonLoc, EndLoc);
1972 }
1973
1974 /// Build a new OpenMP 'num_teams' clause.
1975 ///
1976 /// By default, performs semantic analysis to build the new statement.
1977 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumTeamsClause(Expr * NumTeams,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1978 OMPClause *RebuildOMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
1979 SourceLocation LParenLoc,
1980 SourceLocation EndLoc) {
1981 return getSema().ActOnOpenMPNumTeamsClause(NumTeams, StartLoc, LParenLoc,
1982 EndLoc);
1983 }
1984
1985 /// Build a new OpenMP 'thread_limit' clause.
1986 ///
1987 /// By default, performs semantic analysis to build the new statement.
1988 /// Subclasses may override this routine to provide different behavior.
RebuildOMPThreadLimitClause(Expr * ThreadLimit,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1989 OMPClause *RebuildOMPThreadLimitClause(Expr *ThreadLimit,
1990 SourceLocation StartLoc,
1991 SourceLocation LParenLoc,
1992 SourceLocation EndLoc) {
1993 return getSema().ActOnOpenMPThreadLimitClause(ThreadLimit, StartLoc,
1994 LParenLoc, EndLoc);
1995 }
1996
1997 /// Build a new OpenMP 'priority' clause.
1998 ///
1999 /// By default, performs semantic analysis to build the new statement.
2000 /// Subclasses may override this routine to provide different behavior.
RebuildOMPPriorityClause(Expr * Priority,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2001 OMPClause *RebuildOMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
2002 SourceLocation LParenLoc,
2003 SourceLocation EndLoc) {
2004 return getSema().ActOnOpenMPPriorityClause(Priority, StartLoc, LParenLoc,
2005 EndLoc);
2006 }
2007
2008 /// Build a new OpenMP 'grainsize' clause.
2009 ///
2010 /// By default, performs semantic analysis to build the new statement.
2011 /// Subclasses may override this routine to provide different behavior.
RebuildOMPGrainsizeClause(Expr * Grainsize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2012 OMPClause *RebuildOMPGrainsizeClause(Expr *Grainsize, SourceLocation StartLoc,
2013 SourceLocation LParenLoc,
2014 SourceLocation EndLoc) {
2015 return getSema().ActOnOpenMPGrainsizeClause(Grainsize, StartLoc, LParenLoc,
2016 EndLoc);
2017 }
2018
2019 /// Build a new OpenMP 'num_tasks' clause.
2020 ///
2021 /// By default, performs semantic analysis to build the new statement.
2022 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumTasksClause(Expr * NumTasks,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2023 OMPClause *RebuildOMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
2024 SourceLocation LParenLoc,
2025 SourceLocation EndLoc) {
2026 return getSema().ActOnOpenMPNumTasksClause(NumTasks, StartLoc, LParenLoc,
2027 EndLoc);
2028 }
2029
2030 /// Build a new OpenMP 'hint' clause.
2031 ///
2032 /// By default, performs semantic analysis to build the new statement.
2033 /// Subclasses may override this routine to provide different behavior.
RebuildOMPHintClause(Expr * Hint,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2034 OMPClause *RebuildOMPHintClause(Expr *Hint, SourceLocation StartLoc,
2035 SourceLocation LParenLoc,
2036 SourceLocation EndLoc) {
2037 return getSema().ActOnOpenMPHintClause(Hint, StartLoc, LParenLoc, EndLoc);
2038 }
2039
2040 /// Build a new OpenMP 'detach' clause.
2041 ///
2042 /// By default, performs semantic analysis to build the new statement.
2043 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDetachClause(Expr * Evt,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2044 OMPClause *RebuildOMPDetachClause(Expr *Evt, SourceLocation StartLoc,
2045 SourceLocation LParenLoc,
2046 SourceLocation EndLoc) {
2047 return getSema().ActOnOpenMPDetachClause(Evt, StartLoc, LParenLoc, EndLoc);
2048 }
2049
2050 /// Build a new OpenMP 'dist_schedule' clause.
2051 ///
2052 /// By default, performs semantic analysis to build the new OpenMP clause.
2053 /// Subclasses may override this routine to provide different behavior.
2054 OMPClause *
RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind,Expr * ChunkSize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation KindLoc,SourceLocation CommaLoc,SourceLocation EndLoc)2055 RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind,
2056 Expr *ChunkSize, SourceLocation StartLoc,
2057 SourceLocation LParenLoc, SourceLocation KindLoc,
2058 SourceLocation CommaLoc, SourceLocation EndLoc) {
2059 return getSema().ActOnOpenMPDistScheduleClause(
2060 Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc);
2061 }
2062
2063 /// Build a new OpenMP 'to' clause.
2064 ///
2065 /// By default, performs semantic analysis to build the new statement.
2066 /// Subclasses may override this routine to provide different behavior.
2067 OMPClause *
RebuildOMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,ArrayRef<SourceLocation> MotionModifiersLoc,CXXScopeSpec & MapperIdScopeSpec,DeclarationNameInfo & MapperId,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs,ArrayRef<Expr * > UnresolvedMappers)2068 RebuildOMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
2069 ArrayRef<SourceLocation> MotionModifiersLoc,
2070 CXXScopeSpec &MapperIdScopeSpec,
2071 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
2072 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
2073 ArrayRef<Expr *> UnresolvedMappers) {
2074 return getSema().ActOnOpenMPToClause(MotionModifiers, MotionModifiersLoc,
2075 MapperIdScopeSpec, MapperId, ColonLoc,
2076 VarList, Locs, UnresolvedMappers);
2077 }
2078
2079 /// Build a new OpenMP 'from' clause.
2080 ///
2081 /// By default, performs semantic analysis to build the new statement.
2082 /// Subclasses may override this routine to provide different behavior.
2083 OMPClause *
RebuildOMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,ArrayRef<SourceLocation> MotionModifiersLoc,CXXScopeSpec & MapperIdScopeSpec,DeclarationNameInfo & MapperId,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs,ArrayRef<Expr * > UnresolvedMappers)2084 RebuildOMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
2085 ArrayRef<SourceLocation> MotionModifiersLoc,
2086 CXXScopeSpec &MapperIdScopeSpec,
2087 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
2088 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
2089 ArrayRef<Expr *> UnresolvedMappers) {
2090 return getSema().ActOnOpenMPFromClause(
2091 MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId,
2092 ColonLoc, VarList, Locs, UnresolvedMappers);
2093 }
2094
2095 /// Build a new OpenMP 'use_device_ptr' clause.
2096 ///
2097 /// By default, performs semantic analysis to build the new OpenMP clause.
2098 /// Subclasses may override this routine to provide different behavior.
RebuildOMPUseDevicePtrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2099 OMPClause *RebuildOMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
2100 const OMPVarListLocTy &Locs) {
2101 return getSema().ActOnOpenMPUseDevicePtrClause(VarList, Locs);
2102 }
2103
2104 /// Build a new OpenMP 'use_device_addr' clause.
2105 ///
2106 /// By default, performs semantic analysis to build the new OpenMP clause.
2107 /// Subclasses may override this routine to provide different behavior.
RebuildOMPUseDeviceAddrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2108 OMPClause *RebuildOMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
2109 const OMPVarListLocTy &Locs) {
2110 return getSema().ActOnOpenMPUseDeviceAddrClause(VarList, Locs);
2111 }
2112
2113 /// Build a new OpenMP 'is_device_ptr' clause.
2114 ///
2115 /// By default, performs semantic analysis to build the new OpenMP clause.
2116 /// Subclasses may override this routine to provide different behavior.
RebuildOMPIsDevicePtrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2117 OMPClause *RebuildOMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
2118 const OMPVarListLocTy &Locs) {
2119 return getSema().ActOnOpenMPIsDevicePtrClause(VarList, Locs);
2120 }
2121
2122 /// Build a new OpenMP 'has_device_addr' clause.
2123 ///
2124 /// By default, performs semantic analysis to build the new OpenMP clause.
2125 /// Subclasses may override this routine to provide different behavior.
RebuildOMPHasDeviceAddrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2126 OMPClause *RebuildOMPHasDeviceAddrClause(ArrayRef<Expr *> VarList,
2127 const OMPVarListLocTy &Locs) {
2128 return getSema().ActOnOpenMPHasDeviceAddrClause(VarList, Locs);
2129 }
2130
2131 /// Build a new OpenMP 'defaultmap' clause.
2132 ///
2133 /// By default, performs semantic analysis to build the new OpenMP clause.
2134 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M,OpenMPDefaultmapClauseKind Kind,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation MLoc,SourceLocation KindLoc,SourceLocation EndLoc)2135 OMPClause *RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M,
2136 OpenMPDefaultmapClauseKind Kind,
2137 SourceLocation StartLoc,
2138 SourceLocation LParenLoc,
2139 SourceLocation MLoc,
2140 SourceLocation KindLoc,
2141 SourceLocation EndLoc) {
2142 return getSema().ActOnOpenMPDefaultmapClause(M, Kind, StartLoc, LParenLoc,
2143 MLoc, KindLoc, EndLoc);
2144 }
2145
2146 /// Build a new OpenMP 'nontemporal' clause.
2147 ///
2148 /// By default, performs semantic analysis to build the new OpenMP clause.
2149 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNontemporalClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2150 OMPClause *RebuildOMPNontemporalClause(ArrayRef<Expr *> VarList,
2151 SourceLocation StartLoc,
2152 SourceLocation LParenLoc,
2153 SourceLocation EndLoc) {
2154 return getSema().ActOnOpenMPNontemporalClause(VarList, StartLoc, LParenLoc,
2155 EndLoc);
2156 }
2157
2158 /// Build a new OpenMP 'inclusive' clause.
2159 ///
2160 /// By default, performs semantic analysis to build the new OpenMP clause.
2161 /// Subclasses may override this routine to provide different behavior.
RebuildOMPInclusiveClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2162 OMPClause *RebuildOMPInclusiveClause(ArrayRef<Expr *> VarList,
2163 SourceLocation StartLoc,
2164 SourceLocation LParenLoc,
2165 SourceLocation EndLoc) {
2166 return getSema().ActOnOpenMPInclusiveClause(VarList, StartLoc, LParenLoc,
2167 EndLoc);
2168 }
2169
2170 /// Build a new OpenMP 'exclusive' clause.
2171 ///
2172 /// By default, performs semantic analysis to build the new OpenMP clause.
2173 /// Subclasses may override this routine to provide different behavior.
RebuildOMPExclusiveClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2174 OMPClause *RebuildOMPExclusiveClause(ArrayRef<Expr *> VarList,
2175 SourceLocation StartLoc,
2176 SourceLocation LParenLoc,
2177 SourceLocation EndLoc) {
2178 return getSema().ActOnOpenMPExclusiveClause(VarList, StartLoc, LParenLoc,
2179 EndLoc);
2180 }
2181
2182 /// Build a new OpenMP 'uses_allocators' clause.
2183 ///
2184 /// By default, performs semantic analysis to build the new OpenMP clause.
2185 /// Subclasses may override this routine to provide different behavior.
RebuildOMPUsesAllocatorsClause(ArrayRef<Sema::UsesAllocatorsData> Data,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2186 OMPClause *RebuildOMPUsesAllocatorsClause(
2187 ArrayRef<Sema::UsesAllocatorsData> Data, SourceLocation StartLoc,
2188 SourceLocation LParenLoc, SourceLocation EndLoc) {
2189 return getSema().ActOnOpenMPUsesAllocatorClause(StartLoc, LParenLoc, EndLoc,
2190 Data);
2191 }
2192
2193 /// Build a new OpenMP 'affinity' clause.
2194 ///
2195 /// By default, performs semantic analysis to build the new OpenMP clause.
2196 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAffinityClause(SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,Expr * Modifier,ArrayRef<Expr * > Locators)2197 OMPClause *RebuildOMPAffinityClause(SourceLocation StartLoc,
2198 SourceLocation LParenLoc,
2199 SourceLocation ColonLoc,
2200 SourceLocation EndLoc, Expr *Modifier,
2201 ArrayRef<Expr *> Locators) {
2202 return getSema().ActOnOpenMPAffinityClause(StartLoc, LParenLoc, ColonLoc,
2203 EndLoc, Modifier, Locators);
2204 }
2205
2206 /// Build a new OpenMP 'order' clause.
2207 ///
2208 /// By default, performs semantic analysis to build the new OpenMP clause.
2209 /// Subclasses may override this routine to provide different behavior.
RebuildOMPOrderClause(OpenMPOrderClauseKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2210 OMPClause *RebuildOMPOrderClause(OpenMPOrderClauseKind Kind,
2211 SourceLocation KindKwLoc,
2212 SourceLocation StartLoc,
2213 SourceLocation LParenLoc,
2214 SourceLocation EndLoc) {
2215 return getSema().ActOnOpenMPOrderClause(Kind, KindKwLoc, StartLoc,
2216 LParenLoc, EndLoc);
2217 }
2218
2219 /// Build a new OpenMP 'init' clause.
2220 ///
2221 /// By default, performs semantic analysis to build the new OpenMP clause.
2222 /// Subclasses may override this routine to provide different behavior.
RebuildOMPInitClause(Expr * InteropVar,ArrayRef<Expr * > PrefExprs,bool IsTarget,bool IsTargetSync,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation VarLoc,SourceLocation EndLoc)2223 OMPClause *RebuildOMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
2224 bool IsTarget, bool IsTargetSync,
2225 SourceLocation StartLoc,
2226 SourceLocation LParenLoc,
2227 SourceLocation VarLoc,
2228 SourceLocation EndLoc) {
2229 return getSema().ActOnOpenMPInitClause(InteropVar, PrefExprs, IsTarget,
2230 IsTargetSync, StartLoc, LParenLoc,
2231 VarLoc, EndLoc);
2232 }
2233
2234 /// Build a new OpenMP 'use' clause.
2235 ///
2236 /// By default, performs semantic analysis to build the new OpenMP clause.
2237 /// Subclasses may override this routine to provide different behavior.
RebuildOMPUseClause(Expr * InteropVar,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation VarLoc,SourceLocation EndLoc)2238 OMPClause *RebuildOMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
2239 SourceLocation LParenLoc,
2240 SourceLocation VarLoc, SourceLocation EndLoc) {
2241 return getSema().ActOnOpenMPUseClause(InteropVar, StartLoc, LParenLoc,
2242 VarLoc, EndLoc);
2243 }
2244
2245 /// Build a new OpenMP 'destroy' clause.
2246 ///
2247 /// By default, performs semantic analysis to build the new OpenMP clause.
2248 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDestroyClause(Expr * InteropVar,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation VarLoc,SourceLocation EndLoc)2249 OMPClause *RebuildOMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
2250 SourceLocation LParenLoc,
2251 SourceLocation VarLoc,
2252 SourceLocation EndLoc) {
2253 return getSema().ActOnOpenMPDestroyClause(InteropVar, StartLoc, LParenLoc,
2254 VarLoc, EndLoc);
2255 }
2256
2257 /// Build a new OpenMP 'novariants' clause.
2258 ///
2259 /// By default, performs semantic analysis to build the new OpenMP clause.
2260 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNovariantsClause(Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2261 OMPClause *RebuildOMPNovariantsClause(Expr *Condition,
2262 SourceLocation StartLoc,
2263 SourceLocation LParenLoc,
2264 SourceLocation EndLoc) {
2265 return getSema().ActOnOpenMPNovariantsClause(Condition, StartLoc, LParenLoc,
2266 EndLoc);
2267 }
2268
2269 /// Build a new OpenMP 'nocontext' clause.
2270 ///
2271 /// By default, performs semantic analysis to build the new OpenMP clause.
2272 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNocontextClause(Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2273 OMPClause *RebuildOMPNocontextClause(Expr *Condition, SourceLocation StartLoc,
2274 SourceLocation LParenLoc,
2275 SourceLocation EndLoc) {
2276 return getSema().ActOnOpenMPNocontextClause(Condition, StartLoc, LParenLoc,
2277 EndLoc);
2278 }
2279
2280 /// Build a new OpenMP 'filter' clause.
2281 ///
2282 /// By default, performs semantic analysis to build the new OpenMP clause.
2283 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFilterClause(Expr * ThreadID,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2284 OMPClause *RebuildOMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
2285 SourceLocation LParenLoc,
2286 SourceLocation EndLoc) {
2287 return getSema().ActOnOpenMPFilterClause(ThreadID, StartLoc, LParenLoc,
2288 EndLoc);
2289 }
2290
2291 /// Build a new OpenMP 'bind' clause.
2292 ///
2293 /// By default, performs semantic analysis to build the new OpenMP clause.
2294 /// Subclasses may override this routine to provide different behavior.
RebuildOMPBindClause(OpenMPBindClauseKind Kind,SourceLocation KindLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2295 OMPClause *RebuildOMPBindClause(OpenMPBindClauseKind Kind,
2296 SourceLocation KindLoc,
2297 SourceLocation StartLoc,
2298 SourceLocation LParenLoc,
2299 SourceLocation EndLoc) {
2300 return getSema().ActOnOpenMPBindClause(Kind, KindLoc, StartLoc, LParenLoc,
2301 EndLoc);
2302 }
2303
2304 /// Build a new OpenMP 'align' clause.
2305 ///
2306 /// By default, performs semantic analysis to build the new OpenMP clause.
2307 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAlignClause(Expr * A,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2308 OMPClause *RebuildOMPAlignClause(Expr *A, SourceLocation StartLoc,
2309 SourceLocation LParenLoc,
2310 SourceLocation EndLoc) {
2311 return getSema().ActOnOpenMPAlignClause(A, StartLoc, LParenLoc, EndLoc);
2312 }
2313
2314 /// Rebuild the operand to an Objective-C \@synchronized statement.
2315 ///
2316 /// By default, performs semantic analysis to build the new statement.
2317 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * object)2318 ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
2319 Expr *object) {
2320 return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object);
2321 }
2322
2323 /// Build a new Objective-C \@synchronized statement.
2324 ///
2325 /// By default, performs semantic analysis to build the new statement.
2326 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * Object,Stmt * Body)2327 StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
2328 Expr *Object, Stmt *Body) {
2329 return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
2330 }
2331
2332 /// Build a new Objective-C \@autoreleasepool statement.
2333 ///
2334 /// By default, performs semantic analysis to build the new statement.
2335 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)2336 StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
2337 Stmt *Body) {
2338 return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
2339 }
2340
2341 /// Build a new Objective-C fast enumeration statement.
2342 ///
2343 /// By default, performs semantic analysis to build the new statement.
2344 /// Subclasses may override this routine to provide different behavior.
RebuildObjCForCollectionStmt(SourceLocation ForLoc,Stmt * Element,Expr * Collection,SourceLocation RParenLoc,Stmt * Body)2345 StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
2346 Stmt *Element,
2347 Expr *Collection,
2348 SourceLocation RParenLoc,
2349 Stmt *Body) {
2350 StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc,
2351 Element,
2352 Collection,
2353 RParenLoc);
2354 if (ForEachStmt.isInvalid())
2355 return StmtError();
2356
2357 return getSema().FinishObjCForCollectionStmt(ForEachStmt.get(), Body);
2358 }
2359
2360 /// Build a new C++ exception declaration.
2361 ///
2362 /// By default, performs semantic analysis to build the new decaration.
2363 /// Subclasses may override this routine to provide different behavior.
RebuildExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * Declarator,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id)2364 VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
2365 TypeSourceInfo *Declarator,
2366 SourceLocation StartLoc,
2367 SourceLocation IdLoc,
2368 IdentifierInfo *Id) {
2369 VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator,
2370 StartLoc, IdLoc, Id);
2371 if (Var)
2372 getSema().CurContext->addDecl(Var);
2373 return Var;
2374 }
2375
2376 /// Build a new C++ catch statement.
2377 ///
2378 /// By default, performs semantic analysis to build the new statement.
2379 /// Subclasses may override this routine to provide different behavior.
RebuildCXXCatchStmt(SourceLocation CatchLoc,VarDecl * ExceptionDecl,Stmt * Handler)2380 StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
2381 VarDecl *ExceptionDecl,
2382 Stmt *Handler) {
2383 return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
2384 Handler));
2385 }
2386
2387 /// Build a new C++ try statement.
2388 ///
2389 /// By default, performs semantic analysis to build the new statement.
2390 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTryStmt(SourceLocation TryLoc,Stmt * TryBlock,ArrayRef<Stmt * > Handlers)2391 StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock,
2392 ArrayRef<Stmt *> Handlers) {
2393 return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
2394 }
2395
2396 /// Build a new C++0x range-based for statement.
2397 ///
2398 /// By default, performs semantic analysis to build the new statement.
2399 /// Subclasses may override this routine to provide different behavior.
RebuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation CoawaitLoc,Stmt * Init,SourceLocation ColonLoc,Stmt * Range,Stmt * Begin,Stmt * End,Expr * Cond,Expr * Inc,Stmt * LoopVar,SourceLocation RParenLoc)2400 StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
2401 SourceLocation CoawaitLoc, Stmt *Init,
2402 SourceLocation ColonLoc, Stmt *Range,
2403 Stmt *Begin, Stmt *End, Expr *Cond,
2404 Expr *Inc, Stmt *LoopVar,
2405 SourceLocation RParenLoc) {
2406 // If we've just learned that the range is actually an Objective-C
2407 // collection, treat this as an Objective-C fast enumeration loop.
2408 if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
2409 if (RangeStmt->isSingleDecl()) {
2410 if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
2411 if (RangeVar->isInvalidDecl())
2412 return StmtError();
2413
2414 Expr *RangeExpr = RangeVar->getInit();
2415 if (!RangeExpr->isTypeDependent() &&
2416 RangeExpr->getType()->isObjCObjectPointerType()) {
2417 // FIXME: Support init-statements in Objective-C++20 ranged for
2418 // statement.
2419 if (Init) {
2420 return SemaRef.Diag(Init->getBeginLoc(),
2421 diag::err_objc_for_range_init_stmt)
2422 << Init->getSourceRange();
2423 }
2424 return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar,
2425 RangeExpr, RParenLoc);
2426 }
2427 }
2428 }
2429 }
2430
2431 return getSema().BuildCXXForRangeStmt(ForLoc, CoawaitLoc, Init, ColonLoc,
2432 Range, Begin, End, Cond, Inc, LoopVar,
2433 RParenLoc, Sema::BFRK_Rebuild);
2434 }
2435
2436 /// Build a new C++0x range-based for statement.
2437 ///
2438 /// By default, performs semantic analysis to build the new statement.
2439 /// Subclasses may override this routine to provide different behavior.
RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)2440 StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2441 bool IsIfExists,
2442 NestedNameSpecifierLoc QualifierLoc,
2443 DeclarationNameInfo NameInfo,
2444 Stmt *Nested) {
2445 return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2446 QualifierLoc, NameInfo, Nested);
2447 }
2448
2449 /// Attach body to a C++0x range-based for statement.
2450 ///
2451 /// By default, performs semantic analysis to finish the new statement.
2452 /// Subclasses may override this routine to provide different behavior.
FinishCXXForRangeStmt(Stmt * ForRange,Stmt * Body)2453 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
2454 return getSema().FinishCXXForRangeStmt(ForRange, Body);
2455 }
2456
RebuildSEHTryStmt(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)2457 StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc,
2458 Stmt *TryBlock, Stmt *Handler) {
2459 return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler);
2460 }
2461
RebuildSEHExceptStmt(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)2462 StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr,
2463 Stmt *Block) {
2464 return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block);
2465 }
2466
RebuildSEHFinallyStmt(SourceLocation Loc,Stmt * Block)2467 StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) {
2468 return SEHFinallyStmt::Create(getSema().getASTContext(), Loc, Block);
2469 }
2470
RebuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,SourceLocation LParen,SourceLocation RParen,TypeSourceInfo * TSI)2471 ExprResult RebuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
2472 SourceLocation LParen,
2473 SourceLocation RParen,
2474 TypeSourceInfo *TSI) {
2475 return getSema().BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
2476 }
2477
2478 /// Build a new predefined expression.
2479 ///
2480 /// By default, performs semantic analysis to build the new expression.
2481 /// Subclasses may override this routine to provide different behavior.
RebuildPredefinedExpr(SourceLocation Loc,PredefinedExpr::IdentKind IK)2482 ExprResult RebuildPredefinedExpr(SourceLocation Loc,
2483 PredefinedExpr::IdentKind IK) {
2484 return getSema().BuildPredefinedExpr(Loc, IK);
2485 }
2486
2487 /// Build a new expression that references a declaration.
2488 ///
2489 /// By default, performs semantic analysis to build the new expression.
2490 /// Subclasses may override this routine to provide different behavior.
RebuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool RequiresADL)2491 ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
2492 LookupResult &R,
2493 bool RequiresADL) {
2494 return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
2495 }
2496
2497
2498 /// Build a new expression that references a declaration.
2499 ///
2500 /// By default, performs semantic analysis to build the new expression.
2501 /// Subclasses may override this routine to provide different behavior.
RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,ValueDecl * VD,const DeclarationNameInfo & NameInfo,NamedDecl * Found,TemplateArgumentListInfo * TemplateArgs)2502 ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
2503 ValueDecl *VD,
2504 const DeclarationNameInfo &NameInfo,
2505 NamedDecl *Found,
2506 TemplateArgumentListInfo *TemplateArgs) {
2507 CXXScopeSpec SS;
2508 SS.Adopt(QualifierLoc);
2509 return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD, Found,
2510 TemplateArgs);
2511 }
2512
2513 /// Build a new expression in parentheses.
2514 ///
2515 /// By default, performs semantic analysis to build the new expression.
2516 /// Subclasses may override this routine to provide different behavior.
RebuildParenExpr(Expr * SubExpr,SourceLocation LParen,SourceLocation RParen)2517 ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
2518 SourceLocation RParen) {
2519 return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
2520 }
2521
2522 /// Build a new pseudo-destructor expression.
2523 ///
2524 /// By default, performs semantic analysis to build the new expression.
2525 /// Subclasses may override this routine to provide different behavior.
2526 ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
2527 SourceLocation OperatorLoc,
2528 bool isArrow,
2529 CXXScopeSpec &SS,
2530 TypeSourceInfo *ScopeType,
2531 SourceLocation CCLoc,
2532 SourceLocation TildeLoc,
2533 PseudoDestructorTypeStorage Destroyed);
2534
2535 /// Build a new unary operator expression.
2536 ///
2537 /// By default, performs semantic analysis to build the new expression.
2538 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryOperator(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * SubExpr)2539 ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
2540 UnaryOperatorKind Opc,
2541 Expr *SubExpr) {
2542 return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr);
2543 }
2544
2545 /// Build a new builtin offsetof expression.
2546 ///
2547 /// By default, performs semantic analysis to build the new expression.
2548 /// Subclasses may override this routine to provide different behavior.
RebuildOffsetOfExpr(SourceLocation OperatorLoc,TypeSourceInfo * Type,ArrayRef<Sema::OffsetOfComponent> Components,SourceLocation RParenLoc)2549 ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
2550 TypeSourceInfo *Type,
2551 ArrayRef<Sema::OffsetOfComponent> Components,
2552 SourceLocation RParenLoc) {
2553 return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
2554 RParenLoc);
2555 }
2556
2557 /// Build a new sizeof, alignof or vec_step expression with a
2558 /// type argument.
2559 ///
2560 /// By default, performs semantic analysis to build the new expression.
2561 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)2562 ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
2563 SourceLocation OpLoc,
2564 UnaryExprOrTypeTrait ExprKind,
2565 SourceRange R) {
2566 return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
2567 }
2568
2569 /// Build a new sizeof, alignof or vec step expression with an
2570 /// expression argument.
2571 ///
2572 /// By default, performs semantic analysis to build the new expression.
2573 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(Expr * SubExpr,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)2574 ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
2575 UnaryExprOrTypeTrait ExprKind,
2576 SourceRange R) {
2577 ExprResult Result
2578 = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
2579 if (Result.isInvalid())
2580 return ExprError();
2581
2582 return Result;
2583 }
2584
2585 /// Build a new array subscript expression.
2586 ///
2587 /// By default, performs semantic analysis to build the new expression.
2588 /// Subclasses may override this routine to provide different behavior.
RebuildArraySubscriptExpr(Expr * LHS,SourceLocation LBracketLoc,Expr * RHS,SourceLocation RBracketLoc)2589 ExprResult RebuildArraySubscriptExpr(Expr *LHS,
2590 SourceLocation LBracketLoc,
2591 Expr *RHS,
2592 SourceLocation RBracketLoc) {
2593 return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS,
2594 LBracketLoc, RHS,
2595 RBracketLoc);
2596 }
2597
2598 /// Build a new matrix subscript expression.
2599 ///
2600 /// By default, performs semantic analysis to build the new expression.
2601 /// Subclasses may override this routine to provide different behavior.
RebuildMatrixSubscriptExpr(Expr * Base,Expr * RowIdx,Expr * ColumnIdx,SourceLocation RBracketLoc)2602 ExprResult RebuildMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
2603 Expr *ColumnIdx,
2604 SourceLocation RBracketLoc) {
2605 return getSema().CreateBuiltinMatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
2606 RBracketLoc);
2607 }
2608
2609 /// Build a new array section expression.
2610 ///
2611 /// By default, performs semantic analysis to build the new expression.
2612 /// Subclasses may override this routine to provide different behavior.
RebuildOMPArraySectionExpr(Expr * Base,SourceLocation LBracketLoc,Expr * LowerBound,SourceLocation ColonLocFirst,SourceLocation ColonLocSecond,Expr * Length,Expr * Stride,SourceLocation RBracketLoc)2613 ExprResult RebuildOMPArraySectionExpr(Expr *Base, SourceLocation LBracketLoc,
2614 Expr *LowerBound,
2615 SourceLocation ColonLocFirst,
2616 SourceLocation ColonLocSecond,
2617 Expr *Length, Expr *Stride,
2618 SourceLocation RBracketLoc) {
2619 return getSema().ActOnOMPArraySectionExpr(Base, LBracketLoc, LowerBound,
2620 ColonLocFirst, ColonLocSecond,
2621 Length, Stride, RBracketLoc);
2622 }
2623
2624 /// Build a new array shaping expression.
2625 ///
2626 /// By default, performs semantic analysis to build the new expression.
2627 /// Subclasses may override this routine to provide different behavior.
RebuildOMPArrayShapingExpr(Expr * Base,SourceLocation LParenLoc,SourceLocation RParenLoc,ArrayRef<Expr * > Dims,ArrayRef<SourceRange> BracketsRanges)2628 ExprResult RebuildOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
2629 SourceLocation RParenLoc,
2630 ArrayRef<Expr *> Dims,
2631 ArrayRef<SourceRange> BracketsRanges) {
2632 return getSema().ActOnOMPArrayShapingExpr(Base, LParenLoc, RParenLoc, Dims,
2633 BracketsRanges);
2634 }
2635
2636 /// Build a new iterator expression.
2637 ///
2638 /// By default, performs semantic analysis to build the new expression.
2639 /// Subclasses may override this routine to provide different behavior.
RebuildOMPIteratorExpr(SourceLocation IteratorKwLoc,SourceLocation LLoc,SourceLocation RLoc,ArrayRef<Sema::OMPIteratorData> Data)2640 ExprResult RebuildOMPIteratorExpr(
2641 SourceLocation IteratorKwLoc, SourceLocation LLoc, SourceLocation RLoc,
2642 ArrayRef<Sema::OMPIteratorData> Data) {
2643 return getSema().ActOnOMPIteratorExpr(/*Scope=*/nullptr, IteratorKwLoc,
2644 LLoc, RLoc, Data);
2645 }
2646
2647 /// Build a new call expression.
2648 ///
2649 /// By default, performs semantic analysis to build the new expression.
2650 /// Subclasses may override this routine to provide different behavior.
2651 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
2652 MultiExprArg Args,
2653 SourceLocation RParenLoc,
2654 Expr *ExecConfig = nullptr) {
2655 return getSema().ActOnCallExpr(
2656 /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc, ExecConfig);
2657 }
2658
RebuildCxxSubscriptExpr(Expr * Callee,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)2659 ExprResult RebuildCxxSubscriptExpr(Expr *Callee, SourceLocation LParenLoc,
2660 MultiExprArg Args,
2661 SourceLocation RParenLoc) {
2662 return getSema().ActOnArraySubscriptExpr(
2663 /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc);
2664 }
2665
2666 /// Build a new member access expression.
2667 ///
2668 /// By default, performs semantic analysis to build the new expression.
2669 /// Subclasses may override this routine to provide different behavior.
RebuildMemberExpr(Expr * Base,SourceLocation OpLoc,bool isArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & MemberNameInfo,ValueDecl * Member,NamedDecl * FoundDecl,const TemplateArgumentListInfo * ExplicitTemplateArgs,NamedDecl * FirstQualifierInScope)2670 ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
2671 bool isArrow,
2672 NestedNameSpecifierLoc QualifierLoc,
2673 SourceLocation TemplateKWLoc,
2674 const DeclarationNameInfo &MemberNameInfo,
2675 ValueDecl *Member,
2676 NamedDecl *FoundDecl,
2677 const TemplateArgumentListInfo *ExplicitTemplateArgs,
2678 NamedDecl *FirstQualifierInScope) {
2679 ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
2680 isArrow);
2681 if (!Member->getDeclName()) {
2682 // We have a reference to an unnamed field. This is always the
2683 // base of an anonymous struct/union member access, i.e. the
2684 // field is always of record type.
2685 assert(Member->getType()->isRecordType() &&
2686 "unnamed member not of record type?");
2687
2688 BaseResult =
2689 getSema().PerformObjectMemberConversion(BaseResult.get(),
2690 QualifierLoc.getNestedNameSpecifier(),
2691 FoundDecl, Member);
2692 if (BaseResult.isInvalid())
2693 return ExprError();
2694 Base = BaseResult.get();
2695
2696 CXXScopeSpec EmptySS;
2697 return getSema().BuildFieldReferenceExpr(
2698 Base, isArrow, OpLoc, EmptySS, cast<FieldDecl>(Member),
2699 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), MemberNameInfo);
2700 }
2701
2702 CXXScopeSpec SS;
2703 SS.Adopt(QualifierLoc);
2704
2705 Base = BaseResult.get();
2706 QualType BaseType = Base->getType();
2707
2708 if (isArrow && !BaseType->isPointerType())
2709 return ExprError();
2710
2711 // FIXME: this involves duplicating earlier analysis in a lot of
2712 // cases; we should avoid this when possible.
2713 LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
2714 R.addDecl(FoundDecl);
2715 R.resolveKind();
2716
2717 return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
2718 SS, TemplateKWLoc,
2719 FirstQualifierInScope,
2720 R, ExplicitTemplateArgs,
2721 /*S*/nullptr);
2722 }
2723
2724 /// Build a new binary operator expression.
2725 ///
2726 /// By default, performs semantic analysis to build the new expression.
2727 /// Subclasses may override this routine to provide different behavior.
RebuildBinaryOperator(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)2728 ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
2729 BinaryOperatorKind Opc,
2730 Expr *LHS, Expr *RHS) {
2731 return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS);
2732 }
2733
2734 /// Build a new rewritten operator expression.
2735 ///
2736 /// By default, performs semantic analysis to build the new expression.
2737 /// Subclasses may override this routine to provide different behavior.
RebuildCXXRewrittenBinaryOperator(SourceLocation OpLoc,BinaryOperatorKind Opcode,const UnresolvedSetImpl & UnqualLookups,Expr * LHS,Expr * RHS)2738 ExprResult RebuildCXXRewrittenBinaryOperator(
2739 SourceLocation OpLoc, BinaryOperatorKind Opcode,
2740 const UnresolvedSetImpl &UnqualLookups, Expr *LHS, Expr *RHS) {
2741 return getSema().CreateOverloadedBinOp(OpLoc, Opcode, UnqualLookups, LHS,
2742 RHS, /*RequiresADL*/false);
2743 }
2744
2745 /// Build a new conditional operator expression.
2746 ///
2747 /// By default, performs semantic analysis to build the new expression.
2748 /// Subclasses may override this routine to provide different behavior.
RebuildConditionalOperator(Expr * Cond,SourceLocation QuestionLoc,Expr * LHS,SourceLocation ColonLoc,Expr * RHS)2749 ExprResult RebuildConditionalOperator(Expr *Cond,
2750 SourceLocation QuestionLoc,
2751 Expr *LHS,
2752 SourceLocation ColonLoc,
2753 Expr *RHS) {
2754 return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
2755 LHS, RHS);
2756 }
2757
2758 /// Build a new C-style cast expression.
2759 ///
2760 /// By default, performs semantic analysis to build the new expression.
2761 /// Subclasses may override this routine to provide different behavior.
RebuildCStyleCastExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * SubExpr)2762 ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
2763 TypeSourceInfo *TInfo,
2764 SourceLocation RParenLoc,
2765 Expr *SubExpr) {
2766 return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
2767 SubExpr);
2768 }
2769
2770 /// Build a new compound literal expression.
2771 ///
2772 /// By default, performs semantic analysis to build the new expression.
2773 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * Init)2774 ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
2775 TypeSourceInfo *TInfo,
2776 SourceLocation RParenLoc,
2777 Expr *Init) {
2778 return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
2779 Init);
2780 }
2781
2782 /// Build a new extended vector element access expression.
2783 ///
2784 /// By default, performs semantic analysis to build the new expression.
2785 /// Subclasses may override this routine to provide different behavior.
RebuildExtVectorElementExpr(Expr * Base,SourceLocation OpLoc,SourceLocation AccessorLoc,IdentifierInfo & Accessor)2786 ExprResult RebuildExtVectorElementExpr(Expr *Base,
2787 SourceLocation OpLoc,
2788 SourceLocation AccessorLoc,
2789 IdentifierInfo &Accessor) {
2790
2791 CXXScopeSpec SS;
2792 DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
2793 return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
2794 OpLoc, /*IsArrow*/ false,
2795 SS, SourceLocation(),
2796 /*FirstQualifierInScope*/ nullptr,
2797 NameInfo,
2798 /* TemplateArgs */ nullptr,
2799 /*S*/ nullptr);
2800 }
2801
2802 /// Build a new initializer list expression.
2803 ///
2804 /// By default, performs semantic analysis to build the new expression.
2805 /// Subclasses may override this routine to provide different behavior.
RebuildInitList(SourceLocation LBraceLoc,MultiExprArg Inits,SourceLocation RBraceLoc)2806 ExprResult RebuildInitList(SourceLocation LBraceLoc,
2807 MultiExprArg Inits,
2808 SourceLocation RBraceLoc) {
2809 return SemaRef.BuildInitList(LBraceLoc, Inits, RBraceLoc);
2810 }
2811
2812 /// Build a new designated initializer expression.
2813 ///
2814 /// By default, performs semantic analysis to build the new expression.
2815 /// Subclasses may override this routine to provide different behavior.
RebuildDesignatedInitExpr(Designation & Desig,MultiExprArg ArrayExprs,SourceLocation EqualOrColonLoc,bool GNUSyntax,Expr * Init)2816 ExprResult RebuildDesignatedInitExpr(Designation &Desig,
2817 MultiExprArg ArrayExprs,
2818 SourceLocation EqualOrColonLoc,
2819 bool GNUSyntax,
2820 Expr *Init) {
2821 ExprResult Result
2822 = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
2823 Init);
2824 if (Result.isInvalid())
2825 return ExprError();
2826
2827 return Result;
2828 }
2829
2830 /// Build a new value-initialized expression.
2831 ///
2832 /// By default, builds the implicit value initialization without performing
2833 /// any semantic analysis. Subclasses may override this routine to provide
2834 /// different behavior.
RebuildImplicitValueInitExpr(QualType T)2835 ExprResult RebuildImplicitValueInitExpr(QualType T) {
2836 return new (SemaRef.Context) ImplicitValueInitExpr(T);
2837 }
2838
2839 /// Build a new \c va_arg expression.
2840 ///
2841 /// By default, performs semantic analysis to build the new expression.
2842 /// Subclasses may override this routine to provide different behavior.
RebuildVAArgExpr(SourceLocation BuiltinLoc,Expr * SubExpr,TypeSourceInfo * TInfo,SourceLocation RParenLoc)2843 ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
2844 Expr *SubExpr, TypeSourceInfo *TInfo,
2845 SourceLocation RParenLoc) {
2846 return getSema().BuildVAArgExpr(BuiltinLoc,
2847 SubExpr, TInfo,
2848 RParenLoc);
2849 }
2850
2851 /// Build a new expression list in parentheses.
2852 ///
2853 /// By default, performs semantic analysis to build the new expression.
2854 /// Subclasses may override this routine to provide different behavior.
RebuildParenListExpr(SourceLocation LParenLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)2855 ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
2856 MultiExprArg SubExprs,
2857 SourceLocation RParenLoc) {
2858 return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
2859 }
2860
2861 /// Build a new address-of-label expression.
2862 ///
2863 /// By default, performs semantic analysis, using the name of the label
2864 /// rather than attempting to map the label statement itself.
2865 /// Subclasses may override this routine to provide different behavior.
RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,SourceLocation LabelLoc,LabelDecl * Label)2866 ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
2867 SourceLocation LabelLoc, LabelDecl *Label) {
2868 return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
2869 }
2870
2871 /// Build a new GNU statement expression.
2872 ///
2873 /// By default, performs semantic analysis to build the new expression.
2874 /// Subclasses may override this routine to provide different behavior.
RebuildStmtExpr(SourceLocation LParenLoc,Stmt * SubStmt,SourceLocation RParenLoc,unsigned TemplateDepth)2875 ExprResult RebuildStmtExpr(SourceLocation LParenLoc, Stmt *SubStmt,
2876 SourceLocation RParenLoc, unsigned TemplateDepth) {
2877 return getSema().BuildStmtExpr(LParenLoc, SubStmt, RParenLoc,
2878 TemplateDepth);
2879 }
2880
2881 /// Build a new __builtin_choose_expr expression.
2882 ///
2883 /// By default, performs semantic analysis to build the new expression.
2884 /// Subclasses may override this routine to provide different behavior.
RebuildChooseExpr(SourceLocation BuiltinLoc,Expr * Cond,Expr * LHS,Expr * RHS,SourceLocation RParenLoc)2885 ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
2886 Expr *Cond, Expr *LHS, Expr *RHS,
2887 SourceLocation RParenLoc) {
2888 return SemaRef.ActOnChooseExpr(BuiltinLoc,
2889 Cond, LHS, RHS,
2890 RParenLoc);
2891 }
2892
2893 /// Build a new generic selection expression.
2894 ///
2895 /// By default, performs semantic analysis to build the new expression.
2896 /// Subclasses may override this routine to provide different behavior.
RebuildGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)2897 ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
2898 SourceLocation DefaultLoc,
2899 SourceLocation RParenLoc,
2900 Expr *ControllingExpr,
2901 ArrayRef<TypeSourceInfo *> Types,
2902 ArrayRef<Expr *> Exprs) {
2903 return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
2904 ControllingExpr, Types, Exprs);
2905 }
2906
2907 /// Build a new overloaded operator call expression.
2908 ///
2909 /// By default, performs semantic analysis to build the new expression.
2910 /// The semantic analysis provides the behavior of template instantiation,
2911 /// copying with transformations that turn what looks like an overloaded
2912 /// operator call into a use of a builtin operator, performing
2913 /// argument-dependent lookup, etc. Subclasses may override this routine to
2914 /// provide different behavior.
2915 ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
2916 SourceLocation OpLoc,
2917 Expr *Callee,
2918 Expr *First,
2919 Expr *Second);
2920
2921 /// Build a new C++ "named" cast expression, such as static_cast or
2922 /// reinterpret_cast.
2923 ///
2924 /// By default, this routine dispatches to one of the more-specific routines
2925 /// for a particular named case, e.g., RebuildCXXStaticCastExpr().
2926 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNamedCastExpr(SourceLocation OpLoc,Stmt::StmtClass Class,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2927 ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
2928 Stmt::StmtClass Class,
2929 SourceLocation LAngleLoc,
2930 TypeSourceInfo *TInfo,
2931 SourceLocation RAngleLoc,
2932 SourceLocation LParenLoc,
2933 Expr *SubExpr,
2934 SourceLocation RParenLoc) {
2935 switch (Class) {
2936 case Stmt::CXXStaticCastExprClass:
2937 return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
2938 RAngleLoc, LParenLoc,
2939 SubExpr, RParenLoc);
2940
2941 case Stmt::CXXDynamicCastExprClass:
2942 return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
2943 RAngleLoc, LParenLoc,
2944 SubExpr, RParenLoc);
2945
2946 case Stmt::CXXReinterpretCastExprClass:
2947 return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
2948 RAngleLoc, LParenLoc,
2949 SubExpr,
2950 RParenLoc);
2951
2952 case Stmt::CXXConstCastExprClass:
2953 return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
2954 RAngleLoc, LParenLoc,
2955 SubExpr, RParenLoc);
2956
2957 case Stmt::CXXAddrspaceCastExprClass:
2958 return getDerived().RebuildCXXAddrspaceCastExpr(
2959 OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc);
2960
2961 default:
2962 llvm_unreachable("Invalid C++ named cast");
2963 }
2964 }
2965
2966 /// Build a new C++ static_cast expression.
2967 ///
2968 /// By default, performs semantic analysis to build the new expression.
2969 /// Subclasses may override this routine to provide different behavior.
RebuildCXXStaticCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2970 ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
2971 SourceLocation LAngleLoc,
2972 TypeSourceInfo *TInfo,
2973 SourceLocation RAngleLoc,
2974 SourceLocation LParenLoc,
2975 Expr *SubExpr,
2976 SourceLocation RParenLoc) {
2977 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
2978 TInfo, SubExpr,
2979 SourceRange(LAngleLoc, RAngleLoc),
2980 SourceRange(LParenLoc, RParenLoc));
2981 }
2982
2983 /// Build a new C++ dynamic_cast expression.
2984 ///
2985 /// By default, performs semantic analysis to build the new expression.
2986 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDynamicCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2987 ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
2988 SourceLocation LAngleLoc,
2989 TypeSourceInfo *TInfo,
2990 SourceLocation RAngleLoc,
2991 SourceLocation LParenLoc,
2992 Expr *SubExpr,
2993 SourceLocation RParenLoc) {
2994 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
2995 TInfo, SubExpr,
2996 SourceRange(LAngleLoc, RAngleLoc),
2997 SourceRange(LParenLoc, RParenLoc));
2998 }
2999
3000 /// Build a new C++ reinterpret_cast expression.
3001 ///
3002 /// By default, performs semantic analysis to build the new expression.
3003 /// Subclasses may override this routine to provide different behavior.
RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)3004 ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
3005 SourceLocation LAngleLoc,
3006 TypeSourceInfo *TInfo,
3007 SourceLocation RAngleLoc,
3008 SourceLocation LParenLoc,
3009 Expr *SubExpr,
3010 SourceLocation RParenLoc) {
3011 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
3012 TInfo, SubExpr,
3013 SourceRange(LAngleLoc, RAngleLoc),
3014 SourceRange(LParenLoc, RParenLoc));
3015 }
3016
3017 /// Build a new C++ const_cast expression.
3018 ///
3019 /// By default, performs semantic analysis to build the new expression.
3020 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)3021 ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
3022 SourceLocation LAngleLoc,
3023 TypeSourceInfo *TInfo,
3024 SourceLocation RAngleLoc,
3025 SourceLocation LParenLoc,
3026 Expr *SubExpr,
3027 SourceLocation RParenLoc) {
3028 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
3029 TInfo, SubExpr,
3030 SourceRange(LAngleLoc, RAngleLoc),
3031 SourceRange(LParenLoc, RParenLoc));
3032 }
3033
3034 ExprResult
RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)3035 RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc,
3036 TypeSourceInfo *TInfo, SourceLocation RAngleLoc,
3037 SourceLocation LParenLoc, Expr *SubExpr,
3038 SourceLocation RParenLoc) {
3039 return getSema().BuildCXXNamedCast(
3040 OpLoc, tok::kw_addrspace_cast, TInfo, SubExpr,
3041 SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc));
3042 }
3043
3044 /// Build a new C++ functional-style cast expression.
3045 ///
3046 /// By default, performs semantic analysis to build the new expression.
3047 /// Subclasses may override this routine to provide different behavior.
RebuildCXXFunctionalCastExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,Expr * Sub,SourceLocation RParenLoc,bool ListInitialization)3048 ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
3049 SourceLocation LParenLoc,
3050 Expr *Sub,
3051 SourceLocation RParenLoc,
3052 bool ListInitialization) {
3053 return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
3054 MultiExprArg(&Sub, 1), RParenLoc,
3055 ListInitialization);
3056 }
3057
3058 /// Build a new C++ __builtin_bit_cast expression.
3059 ///
3060 /// By default, performs semantic analysis to build the new expression.
3061 /// Subclasses may override this routine to provide different behavior.
RebuildBuiltinBitCastExpr(SourceLocation KWLoc,TypeSourceInfo * TSI,Expr * Sub,SourceLocation RParenLoc)3062 ExprResult RebuildBuiltinBitCastExpr(SourceLocation KWLoc,
3063 TypeSourceInfo *TSI, Expr *Sub,
3064 SourceLocation RParenLoc) {
3065 return getSema().BuildBuiltinBitCastExpr(KWLoc, TSI, Sub, RParenLoc);
3066 }
3067
3068 /// Build a new C++ typeid(type) expression.
3069 ///
3070 /// By default, performs semantic analysis to build the new expression.
3071 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)3072 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
3073 SourceLocation TypeidLoc,
3074 TypeSourceInfo *Operand,
3075 SourceLocation RParenLoc) {
3076 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
3077 RParenLoc);
3078 }
3079
3080
3081 /// Build a new C++ typeid(expr) expression.
3082 ///
3083 /// By default, performs semantic analysis to build the new expression.
3084 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)3085 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
3086 SourceLocation TypeidLoc,
3087 Expr *Operand,
3088 SourceLocation RParenLoc) {
3089 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
3090 RParenLoc);
3091 }
3092
3093 /// Build a new C++ __uuidof(type) expression.
3094 ///
3095 /// By default, performs semantic analysis to build the new expression.
3096 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType Type,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)3097 ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc,
3098 TypeSourceInfo *Operand,
3099 SourceLocation RParenLoc) {
3100 return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc);
3101 }
3102
3103 /// Build a new C++ __uuidof(expr) expression.
3104 ///
3105 /// By default, performs semantic analysis to build the new expression.
3106 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType Type,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)3107 ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc,
3108 Expr *Operand, SourceLocation RParenLoc) {
3109 return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc);
3110 }
3111
3112 /// Build a new C++ "this" expression.
3113 ///
3114 /// By default, builds a new "this" expression without performing any
3115 /// semantic analysis. Subclasses may override this routine to provide
3116 /// different behavior.
RebuildCXXThisExpr(SourceLocation ThisLoc,QualType ThisType,bool isImplicit)3117 ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
3118 QualType ThisType,
3119 bool isImplicit) {
3120 return getSema().BuildCXXThisExpr(ThisLoc, ThisType, isImplicit);
3121 }
3122
3123 /// Build a new C++ throw expression.
3124 ///
3125 /// By default, performs semantic analysis to build the new expression.
3126 /// Subclasses may override this routine to provide different behavior.
RebuildCXXThrowExpr(SourceLocation ThrowLoc,Expr * Sub,bool IsThrownVariableInScope)3127 ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
3128 bool IsThrownVariableInScope) {
3129 return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
3130 }
3131
3132 /// Build a new C++ default-argument expression.
3133 ///
3134 /// By default, builds a new default-argument expression, which does not
3135 /// require any semantic analysis. Subclasses may override this routine to
3136 /// provide different behavior.
RebuildCXXDefaultArgExpr(SourceLocation Loc,ParmVarDecl * Param)3137 ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, ParmVarDecl *Param) {
3138 return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param,
3139 getSema().CurContext);
3140 }
3141
3142 /// Build a new C++11 default-initialization expression.
3143 ///
3144 /// By default, builds a new default field initialization expression, which
3145 /// does not require any semantic analysis. Subclasses may override this
3146 /// routine to provide different behavior.
RebuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)3147 ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc,
3148 FieldDecl *Field) {
3149 return CXXDefaultInitExpr::Create(getSema().Context, Loc, Field,
3150 getSema().CurContext);
3151 }
3152
3153 /// Build a new C++ zero-initialization expression.
3154 ///
3155 /// By default, performs semantic analysis to build the new expression.
3156 /// Subclasses may override this routine to provide different behavior.
RebuildCXXScalarValueInitExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,SourceLocation RParenLoc)3157 ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
3158 SourceLocation LParenLoc,
3159 SourceLocation RParenLoc) {
3160 return getSema().BuildCXXTypeConstructExpr(
3161 TSInfo, LParenLoc, None, RParenLoc, /*ListInitialization=*/false);
3162 }
3163
3164 /// Build a new C++ "new" expression.
3165 ///
3166 /// By default, performs semantic analysis to build the new expression.
3167 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNewExpr(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocatedType,TypeSourceInfo * AllocatedTypeInfo,Optional<Expr * > ArraySize,SourceRange DirectInitRange,Expr * Initializer)3168 ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
3169 bool UseGlobal,
3170 SourceLocation PlacementLParen,
3171 MultiExprArg PlacementArgs,
3172 SourceLocation PlacementRParen,
3173 SourceRange TypeIdParens,
3174 QualType AllocatedType,
3175 TypeSourceInfo *AllocatedTypeInfo,
3176 Optional<Expr *> ArraySize,
3177 SourceRange DirectInitRange,
3178 Expr *Initializer) {
3179 return getSema().BuildCXXNew(StartLoc, UseGlobal,
3180 PlacementLParen,
3181 PlacementArgs,
3182 PlacementRParen,
3183 TypeIdParens,
3184 AllocatedType,
3185 AllocatedTypeInfo,
3186 ArraySize,
3187 DirectInitRange,
3188 Initializer);
3189 }
3190
3191 /// Build a new C++ "delete" expression.
3192 ///
3193 /// By default, performs semantic analysis to build the new expression.
3194 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDeleteExpr(SourceLocation StartLoc,bool IsGlobalDelete,bool IsArrayForm,Expr * Operand)3195 ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
3196 bool IsGlobalDelete,
3197 bool IsArrayForm,
3198 Expr *Operand) {
3199 return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
3200 Operand);
3201 }
3202
3203 /// Build a new type trait expression.
3204 ///
3205 /// By default, performs semantic analysis to build the new expression.
3206 /// Subclasses may override this routine to provide different behavior.
RebuildTypeTrait(TypeTrait Trait,SourceLocation StartLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3207 ExprResult RebuildTypeTrait(TypeTrait Trait,
3208 SourceLocation StartLoc,
3209 ArrayRef<TypeSourceInfo *> Args,
3210 SourceLocation RParenLoc) {
3211 return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
3212 }
3213
3214 /// Build a new array type trait expression.
3215 ///
3216 /// By default, performs semantic analysis to build the new expression.
3217 /// Subclasses may override this routine to provide different behavior.
RebuildArrayTypeTrait(ArrayTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParenLoc)3218 ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
3219 SourceLocation StartLoc,
3220 TypeSourceInfo *TSInfo,
3221 Expr *DimExpr,
3222 SourceLocation RParenLoc) {
3223 return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
3224 }
3225
3226 /// Build a new expression trait expression.
3227 ///
3228 /// By default, performs semantic analysis to build the new expression.
3229 /// Subclasses may override this routine to provide different behavior.
RebuildExpressionTrait(ExpressionTrait Trait,SourceLocation StartLoc,Expr * Queried,SourceLocation RParenLoc)3230 ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
3231 SourceLocation StartLoc,
3232 Expr *Queried,
3233 SourceLocation RParenLoc) {
3234 return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
3235 }
3236
3237 /// Build a new (previously unresolved) declaration reference
3238 /// expression.
3239 ///
3240 /// By default, performs semantic analysis to build the new expression.
3241 /// Subclasses may override this routine to provide different behavior.
RebuildDependentScopeDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,bool IsAddressOfOperand,TypeSourceInfo ** RecoveryTSI)3242 ExprResult RebuildDependentScopeDeclRefExpr(
3243 NestedNameSpecifierLoc QualifierLoc,
3244 SourceLocation TemplateKWLoc,
3245 const DeclarationNameInfo &NameInfo,
3246 const TemplateArgumentListInfo *TemplateArgs,
3247 bool IsAddressOfOperand,
3248 TypeSourceInfo **RecoveryTSI) {
3249 CXXScopeSpec SS;
3250 SS.Adopt(QualifierLoc);
3251
3252 if (TemplateArgs || TemplateKWLoc.isValid())
3253 return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, NameInfo,
3254 TemplateArgs);
3255
3256 return getSema().BuildQualifiedDeclarationNameExpr(
3257 SS, NameInfo, IsAddressOfOperand, /*S*/nullptr, RecoveryTSI);
3258 }
3259
3260 /// Build a new template-id expression.
3261 ///
3262 /// By default, performs semantic analysis to build the new expression.
3263 /// Subclasses may override this routine to provide different behavior.
RebuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)3264 ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
3265 SourceLocation TemplateKWLoc,
3266 LookupResult &R,
3267 bool RequiresADL,
3268 const TemplateArgumentListInfo *TemplateArgs) {
3269 return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
3270 TemplateArgs);
3271 }
3272
3273 /// Build a new object-construction expression.
3274 ///
3275 /// By default, performs semantic analysis to build the new expression.
3276 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstructExpr(QualType T,SourceLocation Loc,CXXConstructorDecl * Constructor,bool IsElidable,MultiExprArg Args,bool HadMultipleCandidates,bool ListInitialization,bool StdInitListInitialization,bool RequiresZeroInit,CXXConstructExpr::ConstructionKind ConstructKind,SourceRange ParenRange)3277 ExprResult RebuildCXXConstructExpr(QualType T,
3278 SourceLocation Loc,
3279 CXXConstructorDecl *Constructor,
3280 bool IsElidable,
3281 MultiExprArg Args,
3282 bool HadMultipleCandidates,
3283 bool ListInitialization,
3284 bool StdInitListInitialization,
3285 bool RequiresZeroInit,
3286 CXXConstructExpr::ConstructionKind ConstructKind,
3287 SourceRange ParenRange) {
3288 // Reconstruct the constructor we originally found, which might be
3289 // different if this is a call to an inherited constructor.
3290 CXXConstructorDecl *FoundCtor = Constructor;
3291 if (Constructor->isInheritingConstructor())
3292 FoundCtor = Constructor->getInheritedConstructor().getConstructor();
3293
3294 SmallVector<Expr *, 8> ConvertedArgs;
3295 if (getSema().CompleteConstructorCall(FoundCtor, T, Args, Loc,
3296 ConvertedArgs))
3297 return ExprError();
3298
3299 return getSema().BuildCXXConstructExpr(Loc, T, Constructor,
3300 IsElidable,
3301 ConvertedArgs,
3302 HadMultipleCandidates,
3303 ListInitialization,
3304 StdInitListInitialization,
3305 RequiresZeroInit, ConstructKind,
3306 ParenRange);
3307 }
3308
3309 /// Build a new implicit construction via inherited constructor
3310 /// expression.
RebuildCXXInheritedCtorInitExpr(QualType T,SourceLocation Loc,CXXConstructorDecl * Constructor,bool ConstructsVBase,bool InheritedFromVBase)3311 ExprResult RebuildCXXInheritedCtorInitExpr(QualType T, SourceLocation Loc,
3312 CXXConstructorDecl *Constructor,
3313 bool ConstructsVBase,
3314 bool InheritedFromVBase) {
3315 return new (getSema().Context) CXXInheritedCtorInitExpr(
3316 Loc, T, Constructor, ConstructsVBase, InheritedFromVBase);
3317 }
3318
3319 /// Build a new object-construction expression.
3320 ///
3321 /// By default, performs semantic analysis to build the new expression.
3322 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTemporaryObjectExpr(TypeSourceInfo * TSInfo,SourceLocation LParenOrBraceLoc,MultiExprArg Args,SourceLocation RParenOrBraceLoc,bool ListInitialization)3323 ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
3324 SourceLocation LParenOrBraceLoc,
3325 MultiExprArg Args,
3326 SourceLocation RParenOrBraceLoc,
3327 bool ListInitialization) {
3328 return getSema().BuildCXXTypeConstructExpr(
3329 TSInfo, LParenOrBraceLoc, Args, RParenOrBraceLoc, ListInitialization);
3330 }
3331
3332 /// Build a new object-construction expression.
3333 ///
3334 /// By default, performs semantic analysis to build the new expression.
3335 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUnresolvedConstructExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,bool ListInitialization)3336 ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
3337 SourceLocation LParenLoc,
3338 MultiExprArg Args,
3339 SourceLocation RParenLoc,
3340 bool ListInitialization) {
3341 return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args,
3342 RParenLoc, ListInitialization);
3343 }
3344
3345 /// Build a new member reference expression.
3346 ///
3347 /// By default, performs semantic analysis to build the new expression.
3348 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDependentScopeMemberExpr(Expr * BaseE,QualType BaseType,bool IsArrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & MemberNameInfo,const TemplateArgumentListInfo * TemplateArgs)3349 ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
3350 QualType BaseType,
3351 bool IsArrow,
3352 SourceLocation OperatorLoc,
3353 NestedNameSpecifierLoc QualifierLoc,
3354 SourceLocation TemplateKWLoc,
3355 NamedDecl *FirstQualifierInScope,
3356 const DeclarationNameInfo &MemberNameInfo,
3357 const TemplateArgumentListInfo *TemplateArgs) {
3358 CXXScopeSpec SS;
3359 SS.Adopt(QualifierLoc);
3360
3361 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
3362 OperatorLoc, IsArrow,
3363 SS, TemplateKWLoc,
3364 FirstQualifierInScope,
3365 MemberNameInfo,
3366 TemplateArgs, /*S*/nullptr);
3367 }
3368
3369 /// Build a new member reference expression.
3370 ///
3371 /// By default, performs semantic analysis to build the new expression.
3372 /// Subclasses may override this routine to provide different behavior.
RebuildUnresolvedMemberExpr(Expr * BaseE,QualType BaseType,SourceLocation OperatorLoc,bool IsArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)3373 ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
3374 SourceLocation OperatorLoc,
3375 bool IsArrow,
3376 NestedNameSpecifierLoc QualifierLoc,
3377 SourceLocation TemplateKWLoc,
3378 NamedDecl *FirstQualifierInScope,
3379 LookupResult &R,
3380 const TemplateArgumentListInfo *TemplateArgs) {
3381 CXXScopeSpec SS;
3382 SS.Adopt(QualifierLoc);
3383
3384 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
3385 OperatorLoc, IsArrow,
3386 SS, TemplateKWLoc,
3387 FirstQualifierInScope,
3388 R, TemplateArgs, /*S*/nullptr);
3389 }
3390
3391 /// Build a new noexcept expression.
3392 ///
3393 /// By default, performs semantic analysis to build the new expression.
3394 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNoexceptExpr(SourceRange Range,Expr * Arg)3395 ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
3396 return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
3397 }
3398
3399 /// Build a new expression to compute the length of a parameter pack.
RebuildSizeOfPackExpr(SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,Optional<unsigned> Length,ArrayRef<TemplateArgument> PartialArgs)3400 ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc,
3401 NamedDecl *Pack,
3402 SourceLocation PackLoc,
3403 SourceLocation RParenLoc,
3404 Optional<unsigned> Length,
3405 ArrayRef<TemplateArgument> PartialArgs) {
3406 return SizeOfPackExpr::Create(SemaRef.Context, OperatorLoc, Pack, PackLoc,
3407 RParenLoc, Length, PartialArgs);
3408 }
3409
3410 /// Build a new expression representing a call to a source location
3411 /// builtin.
3412 ///
3413 /// By default, performs semantic analysis to build the new expression.
3414 /// Subclasses may override this routine to provide different behavior.
RebuildSourceLocExpr(SourceLocExpr::IdentKind Kind,QualType ResultTy,SourceLocation BuiltinLoc,SourceLocation RPLoc,DeclContext * ParentContext)3415 ExprResult RebuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
3416 QualType ResultTy, SourceLocation BuiltinLoc,
3417 SourceLocation RPLoc,
3418 DeclContext *ParentContext) {
3419 return getSema().BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc,
3420 ParentContext);
3421 }
3422
3423 /// Build a new Objective-C boxed expression.
3424 ///
3425 /// By default, performs semantic analysis to build the new expression.
3426 /// Subclasses may override this routine to provide different behavior.
RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS,SourceLocation TemplateKWLoc,DeclarationNameInfo ConceptNameInfo,NamedDecl * FoundDecl,ConceptDecl * NamedConcept,TemplateArgumentListInfo * TALI)3427 ExprResult RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS,
3428 SourceLocation TemplateKWLoc, DeclarationNameInfo ConceptNameInfo,
3429 NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
3430 TemplateArgumentListInfo *TALI) {
3431 CXXScopeSpec SS;
3432 SS.Adopt(NNS);
3433 ExprResult Result = getSema().CheckConceptTemplateId(SS, TemplateKWLoc,
3434 ConceptNameInfo,
3435 FoundDecl,
3436 NamedConcept, TALI);
3437 if (Result.isInvalid())
3438 return ExprError();
3439 return Result;
3440 }
3441
3442 /// \brief Build a new requires expression.
3443 ///
3444 /// By default, performs semantic analysis to build the new expression.
3445 /// Subclasses may override this routine to provide different behavior.
RebuildRequiresExpr(SourceLocation RequiresKWLoc,RequiresExprBodyDecl * Body,ArrayRef<ParmVarDecl * > LocalParameters,ArrayRef<concepts::Requirement * > Requirements,SourceLocation ClosingBraceLoc)3446 ExprResult RebuildRequiresExpr(SourceLocation RequiresKWLoc,
3447 RequiresExprBodyDecl *Body,
3448 ArrayRef<ParmVarDecl *> LocalParameters,
3449 ArrayRef<concepts::Requirement *> Requirements,
3450 SourceLocation ClosingBraceLoc) {
3451 return RequiresExpr::Create(SemaRef.Context, RequiresKWLoc, Body,
3452 LocalParameters, Requirements, ClosingBraceLoc);
3453 }
3454
3455 concepts::TypeRequirement *
RebuildTypeRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)3456 RebuildTypeRequirement(
3457 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
3458 return SemaRef.BuildTypeRequirement(SubstDiag);
3459 }
3460
RebuildTypeRequirement(TypeSourceInfo * T)3461 concepts::TypeRequirement *RebuildTypeRequirement(TypeSourceInfo *T) {
3462 return SemaRef.BuildTypeRequirement(T);
3463 }
3464
3465 concepts::ExprRequirement *
RebuildExprRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement Ret)3466 RebuildExprRequirement(
3467 concepts::Requirement::SubstitutionDiagnostic *SubstDiag, bool IsSimple,
3468 SourceLocation NoexceptLoc,
3469 concepts::ExprRequirement::ReturnTypeRequirement Ret) {
3470 return SemaRef.BuildExprRequirement(SubstDiag, IsSimple, NoexceptLoc,
3471 std::move(Ret));
3472 }
3473
3474 concepts::ExprRequirement *
RebuildExprRequirement(Expr * E,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement Ret)3475 RebuildExprRequirement(Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
3476 concepts::ExprRequirement::ReturnTypeRequirement Ret) {
3477 return SemaRef.BuildExprRequirement(E, IsSimple, NoexceptLoc,
3478 std::move(Ret));
3479 }
3480
3481 concepts::NestedRequirement *
RebuildNestedRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)3482 RebuildNestedRequirement(
3483 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
3484 return SemaRef.BuildNestedRequirement(SubstDiag);
3485 }
3486
RebuildNestedRequirement(Expr * Constraint)3487 concepts::NestedRequirement *RebuildNestedRequirement(Expr *Constraint) {
3488 return SemaRef.BuildNestedRequirement(Constraint);
3489 }
3490
3491 /// \brief Build a new Objective-C boxed expression.
3492 ///
3493 /// By default, performs semantic analysis to build the new expression.
3494 /// Subclasses may override this routine to provide different behavior.
RebuildObjCBoxedExpr(SourceRange SR,Expr * ValueExpr)3495 ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
3496 return getSema().BuildObjCBoxedExpr(SR, ValueExpr);
3497 }
3498
3499 /// Build a new Objective-C array literal.
3500 ///
3501 /// By default, performs semantic analysis to build the new expression.
3502 /// Subclasses may override this routine to provide different behavior.
RebuildObjCArrayLiteral(SourceRange Range,Expr ** Elements,unsigned NumElements)3503 ExprResult RebuildObjCArrayLiteral(SourceRange Range,
3504 Expr **Elements, unsigned NumElements) {
3505 return getSema().BuildObjCArrayLiteral(Range,
3506 MultiExprArg(Elements, NumElements));
3507 }
3508
RebuildObjCSubscriptRefExpr(SourceLocation RB,Expr * Base,Expr * Key,ObjCMethodDecl * getterMethod,ObjCMethodDecl * setterMethod)3509 ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
3510 Expr *Base, Expr *Key,
3511 ObjCMethodDecl *getterMethod,
3512 ObjCMethodDecl *setterMethod) {
3513 return getSema().BuildObjCSubscriptExpression(RB, Base, Key,
3514 getterMethod, setterMethod);
3515 }
3516
3517 /// Build a new Objective-C dictionary literal.
3518 ///
3519 /// By default, performs semantic analysis to build the new expression.
3520 /// Subclasses may override this routine to provide different behavior.
RebuildObjCDictionaryLiteral(SourceRange Range,MutableArrayRef<ObjCDictionaryElement> Elements)3521 ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
3522 MutableArrayRef<ObjCDictionaryElement> Elements) {
3523 return getSema().BuildObjCDictionaryLiteral(Range, Elements);
3524 }
3525
3526 /// Build a new Objective-C \@encode expression.
3527 ///
3528 /// By default, performs semantic analysis to build the new expression.
3529 /// Subclasses may override this routine to provide different behavior.
RebuildObjCEncodeExpr(SourceLocation AtLoc,TypeSourceInfo * EncodeTypeInfo,SourceLocation RParenLoc)3530 ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
3531 TypeSourceInfo *EncodeTypeInfo,
3532 SourceLocation RParenLoc) {
3533 return SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc);
3534 }
3535
3536 /// Build a new Objective-C class message.
RebuildObjCMessageExpr(TypeSourceInfo * ReceiverTypeInfo,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)3537 ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
3538 Selector Sel,
3539 ArrayRef<SourceLocation> SelectorLocs,
3540 ObjCMethodDecl *Method,
3541 SourceLocation LBracLoc,
3542 MultiExprArg Args,
3543 SourceLocation RBracLoc) {
3544 return SemaRef.BuildClassMessage(ReceiverTypeInfo,
3545 ReceiverTypeInfo->getType(),
3546 /*SuperLoc=*/SourceLocation(),
3547 Sel, Method, LBracLoc, SelectorLocs,
3548 RBracLoc, Args);
3549 }
3550
3551 /// Build a new Objective-C instance message.
RebuildObjCMessageExpr(Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)3552 ExprResult RebuildObjCMessageExpr(Expr *Receiver,
3553 Selector Sel,
3554 ArrayRef<SourceLocation> SelectorLocs,
3555 ObjCMethodDecl *Method,
3556 SourceLocation LBracLoc,
3557 MultiExprArg Args,
3558 SourceLocation RBracLoc) {
3559 return SemaRef.BuildInstanceMessage(Receiver,
3560 Receiver->getType(),
3561 /*SuperLoc=*/SourceLocation(),
3562 Sel, Method, LBracLoc, SelectorLocs,
3563 RBracLoc, Args);
3564 }
3565
3566 /// Build a new Objective-C instance/class message to 'super'.
RebuildObjCMessageExpr(SourceLocation SuperLoc,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,QualType SuperType,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)3567 ExprResult RebuildObjCMessageExpr(SourceLocation SuperLoc,
3568 Selector Sel,
3569 ArrayRef<SourceLocation> SelectorLocs,
3570 QualType SuperType,
3571 ObjCMethodDecl *Method,
3572 SourceLocation LBracLoc,
3573 MultiExprArg Args,
3574 SourceLocation RBracLoc) {
3575 return Method->isInstanceMethod() ? SemaRef.BuildInstanceMessage(nullptr,
3576 SuperType,
3577 SuperLoc,
3578 Sel, Method, LBracLoc, SelectorLocs,
3579 RBracLoc, Args)
3580 : SemaRef.BuildClassMessage(nullptr,
3581 SuperType,
3582 SuperLoc,
3583 Sel, Method, LBracLoc, SelectorLocs,
3584 RBracLoc, Args);
3585
3586
3587 }
3588
3589 /// Build a new Objective-C ivar reference expression.
3590 ///
3591 /// By default, performs semantic analysis to build the new expression.
3592 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIvarRefExpr(Expr * BaseArg,ObjCIvarDecl * Ivar,SourceLocation IvarLoc,bool IsArrow,bool IsFreeIvar)3593 ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
3594 SourceLocation IvarLoc,
3595 bool IsArrow, bool IsFreeIvar) {
3596 CXXScopeSpec SS;
3597 DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc);
3598 ExprResult Result = getSema().BuildMemberReferenceExpr(
3599 BaseArg, BaseArg->getType(),
3600 /*FIXME:*/ IvarLoc, IsArrow, SS, SourceLocation(),
3601 /*FirstQualifierInScope=*/nullptr, NameInfo,
3602 /*TemplateArgs=*/nullptr,
3603 /*S=*/nullptr);
3604 if (IsFreeIvar && Result.isUsable())
3605 cast<ObjCIvarRefExpr>(Result.get())->setIsFreeIvar(IsFreeIvar);
3606 return Result;
3607 }
3608
3609 /// Build a new Objective-C property reference expression.
3610 ///
3611 /// By default, performs semantic analysis to build the new expression.
3612 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * BaseArg,ObjCPropertyDecl * Property,SourceLocation PropertyLoc)3613 ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
3614 ObjCPropertyDecl *Property,
3615 SourceLocation PropertyLoc) {
3616 CXXScopeSpec SS;
3617 DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc);
3618 return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
3619 /*FIXME:*/PropertyLoc,
3620 /*IsArrow=*/false,
3621 SS, SourceLocation(),
3622 /*FirstQualifierInScope=*/nullptr,
3623 NameInfo,
3624 /*TemplateArgs=*/nullptr,
3625 /*S=*/nullptr);
3626 }
3627
3628 /// Build a new Objective-C property reference expression.
3629 ///
3630 /// By default, performs semantic analysis to build the new expression.
3631 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * Base,QualType T,ObjCMethodDecl * Getter,ObjCMethodDecl * Setter,SourceLocation PropertyLoc)3632 ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
3633 ObjCMethodDecl *Getter,
3634 ObjCMethodDecl *Setter,
3635 SourceLocation PropertyLoc) {
3636 // Since these expressions can only be value-dependent, we do not
3637 // need to perform semantic analysis again.
3638 return Owned(
3639 new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
3640 VK_LValue, OK_ObjCProperty,
3641 PropertyLoc, Base));
3642 }
3643
3644 /// Build a new Objective-C "isa" expression.
3645 ///
3646 /// By default, performs semantic analysis to build the new expression.
3647 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIsaExpr(Expr * BaseArg,SourceLocation IsaLoc,SourceLocation OpLoc,bool IsArrow)3648 ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
3649 SourceLocation OpLoc, bool IsArrow) {
3650 CXXScopeSpec SS;
3651 DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc);
3652 return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
3653 OpLoc, IsArrow,
3654 SS, SourceLocation(),
3655 /*FirstQualifierInScope=*/nullptr,
3656 NameInfo,
3657 /*TemplateArgs=*/nullptr,
3658 /*S=*/nullptr);
3659 }
3660
3661 /// Build a new shuffle vector expression.
3662 ///
3663 /// By default, performs semantic analysis to build the new expression.
3664 /// Subclasses may override this routine to provide different behavior.
RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)3665 ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
3666 MultiExprArg SubExprs,
3667 SourceLocation RParenLoc) {
3668 // Find the declaration for __builtin_shufflevector
3669 const IdentifierInfo &Name
3670 = SemaRef.Context.Idents.get("__builtin_shufflevector");
3671 TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
3672 DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
3673 assert(!Lookup.empty() && "No __builtin_shufflevector?");
3674
3675 // Build a reference to the __builtin_shufflevector builtin
3676 FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
3677 Expr *Callee = new (SemaRef.Context)
3678 DeclRefExpr(SemaRef.Context, Builtin, false,
3679 SemaRef.Context.BuiltinFnTy, VK_PRValue, BuiltinLoc);
3680 QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
3681 Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
3682 CK_BuiltinFnToFnPtr).get();
3683
3684 // Build the CallExpr
3685 ExprResult TheCall = CallExpr::Create(
3686 SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(),
3687 Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc,
3688 FPOptionsOverride());
3689
3690 // Type-check the __builtin_shufflevector expression.
3691 return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.get()));
3692 }
3693
3694 /// Build a new convert vector expression.
RebuildConvertVectorExpr(SourceLocation BuiltinLoc,Expr * SrcExpr,TypeSourceInfo * DstTInfo,SourceLocation RParenLoc)3695 ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc,
3696 Expr *SrcExpr, TypeSourceInfo *DstTInfo,
3697 SourceLocation RParenLoc) {
3698 return SemaRef.SemaConvertVectorExpr(SrcExpr, DstTInfo,
3699 BuiltinLoc, RParenLoc);
3700 }
3701
3702 /// Build a new template argument pack expansion.
3703 ///
3704 /// By default, performs semantic analysis to build a new pack expansion
3705 /// for a template argument. Subclasses may override this routine to provide
3706 /// different behavior.
RebuildPackExpansion(TemplateArgumentLoc Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)3707 TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
3708 SourceLocation EllipsisLoc,
3709 Optional<unsigned> NumExpansions) {
3710 switch (Pattern.getArgument().getKind()) {
3711 case TemplateArgument::Expression: {
3712 ExprResult Result
3713 = getSema().CheckPackExpansion(Pattern.getSourceExpression(),
3714 EllipsisLoc, NumExpansions);
3715 if (Result.isInvalid())
3716 return TemplateArgumentLoc();
3717
3718 return TemplateArgumentLoc(Result.get(), Result.get());
3719 }
3720
3721 case TemplateArgument::Template:
3722 return TemplateArgumentLoc(
3723 SemaRef.Context,
3724 TemplateArgument(Pattern.getArgument().getAsTemplate(),
3725 NumExpansions),
3726 Pattern.getTemplateQualifierLoc(), Pattern.getTemplateNameLoc(),
3727 EllipsisLoc);
3728
3729 case TemplateArgument::Null:
3730 case TemplateArgument::Integral:
3731 case TemplateArgument::Declaration:
3732 case TemplateArgument::Pack:
3733 case TemplateArgument::TemplateExpansion:
3734 case TemplateArgument::NullPtr:
3735 llvm_unreachable("Pack expansion pattern has no parameter packs");
3736
3737 case TemplateArgument::Type:
3738 if (TypeSourceInfo *Expansion
3739 = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
3740 EllipsisLoc,
3741 NumExpansions))
3742 return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
3743 Expansion);
3744 break;
3745 }
3746
3747 return TemplateArgumentLoc();
3748 }
3749
3750 /// Build a new expression pack expansion.
3751 ///
3752 /// By default, performs semantic analysis to build a new pack expansion
3753 /// for an expression. Subclasses may override this routine to provide
3754 /// different behavior.
RebuildPackExpansion(Expr * Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)3755 ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
3756 Optional<unsigned> NumExpansions) {
3757 return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
3758 }
3759
3760 /// Build a new C++1z fold-expression.
3761 ///
3762 /// By default, performs semantic analysis in order to build a new fold
3763 /// expression.
RebuildCXXFoldExpr(UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,Expr * LHS,BinaryOperatorKind Operator,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation RParenLoc,Optional<unsigned> NumExpansions)3764 ExprResult RebuildCXXFoldExpr(UnresolvedLookupExpr *ULE,
3765 SourceLocation LParenLoc, Expr *LHS,
3766 BinaryOperatorKind Operator,
3767 SourceLocation EllipsisLoc, Expr *RHS,
3768 SourceLocation RParenLoc,
3769 Optional<unsigned> NumExpansions) {
3770 return getSema().BuildCXXFoldExpr(ULE, LParenLoc, LHS, Operator,
3771 EllipsisLoc, RHS, RParenLoc,
3772 NumExpansions);
3773 }
3774
3775 /// Build an empty C++1z fold-expression with the given operator.
3776 ///
3777 /// By default, produces the fallback value for the fold-expression, or
3778 /// produce an error if there is no fallback value.
RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,BinaryOperatorKind Operator)3779 ExprResult RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
3780 BinaryOperatorKind Operator) {
3781 return getSema().BuildEmptyCXXFoldExpr(EllipsisLoc, Operator);
3782 }
3783
3784 /// Build a new atomic operation expression.
3785 ///
3786 /// By default, performs semantic analysis to build the new expression.
3787 /// Subclasses may override this routine to provide different behavior.
RebuildAtomicExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,AtomicExpr::AtomicOp Op,SourceLocation RParenLoc)3788 ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs,
3789 AtomicExpr::AtomicOp Op,
3790 SourceLocation RParenLoc) {
3791 // Use this for all of the locations, since we don't know the difference
3792 // between the call and the expr at this point.
3793 SourceRange Range{BuiltinLoc, RParenLoc};
3794 return getSema().BuildAtomicExpr(Range, Range, RParenLoc, SubExprs, Op,
3795 Sema::AtomicArgumentOrder::AST);
3796 }
3797
RebuildRecoveryExpr(SourceLocation BeginLoc,SourceLocation EndLoc,ArrayRef<Expr * > SubExprs,QualType Type)3798 ExprResult RebuildRecoveryExpr(SourceLocation BeginLoc, SourceLocation EndLoc,
3799 ArrayRef<Expr *> SubExprs, QualType Type) {
3800 return getSema().CreateRecoveryExpr(BeginLoc, EndLoc, SubExprs, Type);
3801 }
3802
3803 private:
3804 TypeLoc TransformTypeInObjectScope(TypeLoc TL,
3805 QualType ObjectType,
3806 NamedDecl *FirstQualifierInScope,
3807 CXXScopeSpec &SS);
3808
3809 TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
3810 QualType ObjectType,
3811 NamedDecl *FirstQualifierInScope,
3812 CXXScopeSpec &SS);
3813
3814 TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType,
3815 NamedDecl *FirstQualifierInScope,
3816 CXXScopeSpec &SS);
3817
3818 QualType TransformDependentNameType(TypeLocBuilder &TLB,
3819 DependentNameTypeLoc TL,
3820 bool DeducibleTSTContext);
3821 };
3822
3823 template <typename Derived>
TransformStmt(Stmt * S,StmtDiscardKind SDK)3824 StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S, StmtDiscardKind SDK) {
3825 if (!S)
3826 return S;
3827
3828 switch (S->getStmtClass()) {
3829 case Stmt::NoStmtClass: break;
3830
3831 // Transform individual statement nodes
3832 // Pass SDK into statements that can produce a value
3833 #define STMT(Node, Parent) \
3834 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
3835 #define VALUESTMT(Node, Parent) \
3836 case Stmt::Node##Class: \
3837 return getDerived().Transform##Node(cast<Node>(S), SDK);
3838 #define ABSTRACT_STMT(Node)
3839 #define EXPR(Node, Parent)
3840 #include "clang/AST/StmtNodes.inc"
3841
3842 // Transform expressions by calling TransformExpr.
3843 #define STMT(Node, Parent)
3844 #define ABSTRACT_STMT(Stmt)
3845 #define EXPR(Node, Parent) case Stmt::Node##Class:
3846 #include "clang/AST/StmtNodes.inc"
3847 {
3848 ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
3849
3850 if (SDK == SDK_StmtExprResult)
3851 E = getSema().ActOnStmtExprResult(E);
3852 return getSema().ActOnExprStmt(E, SDK == SDK_Discarded);
3853 }
3854 }
3855
3856 return S;
3857 }
3858
3859 template<typename Derived>
TransformOMPClause(OMPClause * S)3860 OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) {
3861 if (!S)
3862 return S;
3863
3864 switch (S->getClauseKind()) {
3865 default: break;
3866 // Transform individual clause nodes
3867 #define GEN_CLANG_CLAUSE_CLASS
3868 #define CLAUSE_CLASS(Enum, Str, Class) \
3869 case Enum: \
3870 return getDerived().Transform##Class(cast<Class>(S));
3871 #include "llvm/Frontend/OpenMP/OMP.inc"
3872 }
3873
3874 return S;
3875 }
3876
3877
3878 template<typename Derived>
TransformExpr(Expr * E)3879 ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
3880 if (!E)
3881 return E;
3882
3883 switch (E->getStmtClass()) {
3884 case Stmt::NoStmtClass: break;
3885 #define STMT(Node, Parent) case Stmt::Node##Class: break;
3886 #define ABSTRACT_STMT(Stmt)
3887 #define EXPR(Node, Parent) \
3888 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
3889 #include "clang/AST/StmtNodes.inc"
3890 }
3891
3892 return E;
3893 }
3894
3895 template<typename Derived>
TransformInitializer(Expr * Init,bool NotCopyInit)3896 ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
3897 bool NotCopyInit) {
3898 // Initializers are instantiated like expressions, except that various outer
3899 // layers are stripped.
3900 if (!Init)
3901 return Init;
3902
3903 if (auto *FE = dyn_cast<FullExpr>(Init))
3904 Init = FE->getSubExpr();
3905
3906 if (auto *AIL = dyn_cast<ArrayInitLoopExpr>(Init)) {
3907 OpaqueValueExpr *OVE = AIL->getCommonExpr();
3908 Init = OVE->getSourceExpr();
3909 }
3910
3911 if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
3912 Init = MTE->getSubExpr();
3913
3914 while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
3915 Init = Binder->getSubExpr();
3916
3917 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
3918 Init = ICE->getSubExprAsWritten();
3919
3920 if (CXXStdInitializerListExpr *ILE =
3921 dyn_cast<CXXStdInitializerListExpr>(Init))
3922 return TransformInitializer(ILE->getSubExpr(), NotCopyInit);
3923
3924 // If this is copy-initialization, we only need to reconstruct
3925 // InitListExprs. Other forms of copy-initialization will be a no-op if
3926 // the initializer is already the right type.
3927 CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
3928 if (!NotCopyInit && !(Construct && Construct->isListInitialization()))
3929 return getDerived().TransformExpr(Init);
3930
3931 // Revert value-initialization back to empty parens.
3932 if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
3933 SourceRange Parens = VIE->getSourceRange();
3934 return getDerived().RebuildParenListExpr(Parens.getBegin(), None,
3935 Parens.getEnd());
3936 }
3937
3938 // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
3939 if (isa<ImplicitValueInitExpr>(Init))
3940 return getDerived().RebuildParenListExpr(SourceLocation(), None,
3941 SourceLocation());
3942
3943 // Revert initialization by constructor back to a parenthesized or braced list
3944 // of expressions. Any other form of initializer can just be reused directly.
3945 if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
3946 return getDerived().TransformExpr(Init);
3947
3948 // If the initialization implicitly converted an initializer list to a
3949 // std::initializer_list object, unwrap the std::initializer_list too.
3950 if (Construct && Construct->isStdInitListInitialization())
3951 return TransformInitializer(Construct->getArg(0), NotCopyInit);
3952
3953 // Enter a list-init context if this was list initialization.
3954 EnterExpressionEvaluationContext Context(
3955 getSema(), EnterExpressionEvaluationContext::InitList,
3956 Construct->isListInitialization());
3957
3958 SmallVector<Expr*, 8> NewArgs;
3959 bool ArgChanged = false;
3960 if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
3961 /*IsCall*/true, NewArgs, &ArgChanged))
3962 return ExprError();
3963
3964 // If this was list initialization, revert to syntactic list form.
3965 if (Construct->isListInitialization())
3966 return getDerived().RebuildInitList(Construct->getBeginLoc(), NewArgs,
3967 Construct->getEndLoc());
3968
3969 // Build a ParenListExpr to represent anything else.
3970 SourceRange Parens = Construct->getParenOrBraceRange();
3971 if (Parens.isInvalid()) {
3972 // This was a variable declaration's initialization for which no initializer
3973 // was specified.
3974 assert(NewArgs.empty() &&
3975 "no parens or braces but have direct init with arguments?");
3976 return ExprEmpty();
3977 }
3978 return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
3979 Parens.getEnd());
3980 }
3981
3982 template<typename Derived>
TransformExprs(Expr * const * Inputs,unsigned NumInputs,bool IsCall,SmallVectorImpl<Expr * > & Outputs,bool * ArgChanged)3983 bool TreeTransform<Derived>::TransformExprs(Expr *const *Inputs,
3984 unsigned NumInputs,
3985 bool IsCall,
3986 SmallVectorImpl<Expr *> &Outputs,
3987 bool *ArgChanged) {
3988 for (unsigned I = 0; I != NumInputs; ++I) {
3989 // If requested, drop call arguments that need to be dropped.
3990 if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
3991 if (ArgChanged)
3992 *ArgChanged = true;
3993
3994 break;
3995 }
3996
3997 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
3998 Expr *Pattern = Expansion->getPattern();
3999
4000 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
4001 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
4002 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
4003
4004 // Determine whether the set of unexpanded parameter packs can and should
4005 // be expanded.
4006 bool Expand = true;
4007 bool RetainExpansion = false;
4008 Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions();
4009 Optional<unsigned> NumExpansions = OrigNumExpansions;
4010 if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
4011 Pattern->getSourceRange(),
4012 Unexpanded,
4013 Expand, RetainExpansion,
4014 NumExpansions))
4015 return true;
4016
4017 if (!Expand) {
4018 // The transform has determined that we should perform a simple
4019 // transformation on the pack expansion, producing another pack
4020 // expansion.
4021 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
4022 ExprResult OutPattern = getDerived().TransformExpr(Pattern);
4023 if (OutPattern.isInvalid())
4024 return true;
4025
4026 ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
4027 Expansion->getEllipsisLoc(),
4028 NumExpansions);
4029 if (Out.isInvalid())
4030 return true;
4031
4032 if (ArgChanged)
4033 *ArgChanged = true;
4034 Outputs.push_back(Out.get());
4035 continue;
4036 }
4037
4038 // Record right away that the argument was changed. This needs
4039 // to happen even if the array expands to nothing.
4040 if (ArgChanged) *ArgChanged = true;
4041
4042 // The transform has determined that we should perform an elementwise
4043 // expansion of the pattern. Do so.
4044 for (unsigned I = 0; I != *NumExpansions; ++I) {
4045 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
4046 ExprResult Out = getDerived().TransformExpr(Pattern);
4047 if (Out.isInvalid())
4048 return true;
4049
4050 if (Out.get()->containsUnexpandedParameterPack()) {
4051 Out = getDerived().RebuildPackExpansion(
4052 Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
4053 if (Out.isInvalid())
4054 return true;
4055 }
4056
4057 Outputs.push_back(Out.get());
4058 }
4059
4060 // If we're supposed to retain a pack expansion, do so by temporarily
4061 // forgetting the partially-substituted parameter pack.
4062 if (RetainExpansion) {
4063 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
4064
4065 ExprResult Out = getDerived().TransformExpr(Pattern);
4066 if (Out.isInvalid())
4067 return true;
4068
4069 Out = getDerived().RebuildPackExpansion(
4070 Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
4071 if (Out.isInvalid())
4072 return true;
4073
4074 Outputs.push_back(Out.get());
4075 }
4076
4077 continue;
4078 }
4079
4080 ExprResult Result =
4081 IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
4082 : getDerived().TransformExpr(Inputs[I]);
4083 if (Result.isInvalid())
4084 return true;
4085
4086 if (Result.get() != Inputs[I] && ArgChanged)
4087 *ArgChanged = true;
4088
4089 Outputs.push_back(Result.get());
4090 }
4091
4092 return false;
4093 }
4094
4095 template <typename Derived>
TransformCondition(SourceLocation Loc,VarDecl * Var,Expr * Expr,Sema::ConditionKind Kind)4096 Sema::ConditionResult TreeTransform<Derived>::TransformCondition(
4097 SourceLocation Loc, VarDecl *Var, Expr *Expr, Sema::ConditionKind Kind) {
4098 if (Var) {
4099 VarDecl *ConditionVar = cast_or_null<VarDecl>(
4100 getDerived().TransformDefinition(Var->getLocation(), Var));
4101
4102 if (!ConditionVar)
4103 return Sema::ConditionError();
4104
4105 return getSema().ActOnConditionVariable(ConditionVar, Loc, Kind);
4106 }
4107
4108 if (Expr) {
4109 ExprResult CondExpr = getDerived().TransformExpr(Expr);
4110
4111 if (CondExpr.isInvalid())
4112 return Sema::ConditionError();
4113
4114 return getSema().ActOnCondition(nullptr, Loc, CondExpr.get(), Kind,
4115 /*MissingOK=*/true);
4116 }
4117
4118 return Sema::ConditionResult();
4119 }
4120
4121 template <typename Derived>
TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,QualType ObjectType,NamedDecl * FirstQualifierInScope)4122 NestedNameSpecifierLoc TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
4123 NestedNameSpecifierLoc NNS, QualType ObjectType,
4124 NamedDecl *FirstQualifierInScope) {
4125 SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
4126 for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
4127 Qualifier = Qualifier.getPrefix())
4128 Qualifiers.push_back(Qualifier);
4129
4130 CXXScopeSpec SS;
4131 while (!Qualifiers.empty()) {
4132 NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
4133 NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
4134
4135 switch (QNNS->getKind()) {
4136 case NestedNameSpecifier::Identifier: {
4137 Sema::NestedNameSpecInfo IdInfo(QNNS->getAsIdentifier(),
4138 Q.getLocalBeginLoc(), Q.getLocalEndLoc(),
4139 ObjectType);
4140 if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr, IdInfo, false,
4141 SS, FirstQualifierInScope, false))
4142 return NestedNameSpecifierLoc();
4143 break;
4144 }
4145
4146 case NestedNameSpecifier::Namespace: {
4147 NamespaceDecl *NS =
4148 cast_or_null<NamespaceDecl>(getDerived().TransformDecl(
4149 Q.getLocalBeginLoc(), QNNS->getAsNamespace()));
4150 SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
4151 break;
4152 }
4153
4154 case NestedNameSpecifier::NamespaceAlias: {
4155 NamespaceAliasDecl *Alias =
4156 cast_or_null<NamespaceAliasDecl>(getDerived().TransformDecl(
4157 Q.getLocalBeginLoc(), QNNS->getAsNamespaceAlias()));
4158 SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
4159 Q.getLocalEndLoc());
4160 break;
4161 }
4162
4163 case NestedNameSpecifier::Global:
4164 // There is no meaningful transformation that one could perform on the
4165 // global scope.
4166 SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
4167 break;
4168
4169 case NestedNameSpecifier::Super: {
4170 CXXRecordDecl *RD =
4171 cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
4172 SourceLocation(), QNNS->getAsRecordDecl()));
4173 SS.MakeSuper(SemaRef.Context, RD, Q.getBeginLoc(), Q.getEndLoc());
4174 break;
4175 }
4176
4177 case NestedNameSpecifier::TypeSpecWithTemplate:
4178 case NestedNameSpecifier::TypeSpec: {
4179 TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
4180 FirstQualifierInScope, SS);
4181
4182 if (!TL)
4183 return NestedNameSpecifierLoc();
4184
4185 if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
4186 (SemaRef.getLangOpts().CPlusPlus11 &&
4187 TL.getType()->isEnumeralType())) {
4188 assert(!TL.getType().hasLocalQualifiers() &&
4189 "Can't get cv-qualifiers here");
4190 if (TL.getType()->isEnumeralType())
4191 SemaRef.Diag(TL.getBeginLoc(),
4192 diag::warn_cxx98_compat_enum_nested_name_spec);
4193 SS.Extend(SemaRef.Context, /*FIXME:*/ SourceLocation(), TL,
4194 Q.getLocalEndLoc());
4195 break;
4196 }
4197 // If the nested-name-specifier is an invalid type def, don't emit an
4198 // error because a previous error should have already been emitted.
4199 TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>();
4200 if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
4201 SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
4202 << TL.getType() << SS.getRange();
4203 }
4204 return NestedNameSpecifierLoc();
4205 }
4206 }
4207
4208 // The qualifier-in-scope and object type only apply to the leftmost entity.
4209 FirstQualifierInScope = nullptr;
4210 ObjectType = QualType();
4211 }
4212
4213 // Don't rebuild the nested-name-specifier if we don't have to.
4214 if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
4215 !getDerived().AlwaysRebuild())
4216 return NNS;
4217
4218 // If we can re-use the source-location data from the original
4219 // nested-name-specifier, do so.
4220 if (SS.location_size() == NNS.getDataLength() &&
4221 memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
4222 return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
4223
4224 // Allocate new nested-name-specifier location information.
4225 return SS.getWithLocInContext(SemaRef.Context);
4226 }
4227
4228 template<typename Derived>
4229 DeclarationNameInfo
4230 TreeTransform<Derived>
TransformDeclarationNameInfo(const DeclarationNameInfo & NameInfo)4231 ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
4232 DeclarationName Name = NameInfo.getName();
4233 if (!Name)
4234 return DeclarationNameInfo();
4235
4236 switch (Name.getNameKind()) {
4237 case DeclarationName::Identifier:
4238 case DeclarationName::ObjCZeroArgSelector:
4239 case DeclarationName::ObjCOneArgSelector:
4240 case DeclarationName::ObjCMultiArgSelector:
4241 case DeclarationName::CXXOperatorName:
4242 case DeclarationName::CXXLiteralOperatorName:
4243 case DeclarationName::CXXUsingDirective:
4244 return NameInfo;
4245
4246 case DeclarationName::CXXDeductionGuideName: {
4247 TemplateDecl *OldTemplate = Name.getCXXDeductionGuideTemplate();
4248 TemplateDecl *NewTemplate = cast_or_null<TemplateDecl>(
4249 getDerived().TransformDecl(NameInfo.getLoc(), OldTemplate));
4250 if (!NewTemplate)
4251 return DeclarationNameInfo();
4252
4253 DeclarationNameInfo NewNameInfo(NameInfo);
4254 NewNameInfo.setName(
4255 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(NewTemplate));
4256 return NewNameInfo;
4257 }
4258
4259 case DeclarationName::CXXConstructorName:
4260 case DeclarationName::CXXDestructorName:
4261 case DeclarationName::CXXConversionFunctionName: {
4262 TypeSourceInfo *NewTInfo;
4263 CanQualType NewCanTy;
4264 if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
4265 NewTInfo = getDerived().TransformType(OldTInfo);
4266 if (!NewTInfo)
4267 return DeclarationNameInfo();
4268 NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
4269 }
4270 else {
4271 NewTInfo = nullptr;
4272 TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
4273 QualType NewT = getDerived().TransformType(Name.getCXXNameType());
4274 if (NewT.isNull())
4275 return DeclarationNameInfo();
4276 NewCanTy = SemaRef.Context.getCanonicalType(NewT);
4277 }
4278
4279 DeclarationName NewName
4280 = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
4281 NewCanTy);
4282 DeclarationNameInfo NewNameInfo(NameInfo);
4283 NewNameInfo.setName(NewName);
4284 NewNameInfo.setNamedTypeInfo(NewTInfo);
4285 return NewNameInfo;
4286 }
4287 }
4288
4289 llvm_unreachable("Unknown name kind.");
4290 }
4291
4292 template<typename Derived>
4293 TemplateName
TransformTemplateName(CXXScopeSpec & SS,TemplateName Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope,bool AllowInjectedClassName)4294 TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
4295 TemplateName Name,
4296 SourceLocation NameLoc,
4297 QualType ObjectType,
4298 NamedDecl *FirstQualifierInScope,
4299 bool AllowInjectedClassName) {
4300 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
4301 TemplateDecl *Template = QTN->getUnderlyingTemplate().getAsTemplateDecl();
4302 assert(Template && "qualified template name must refer to a template");
4303
4304 TemplateDecl *TransTemplate
4305 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
4306 Template));
4307 if (!TransTemplate)
4308 return TemplateName();
4309
4310 if (!getDerived().AlwaysRebuild() &&
4311 SS.getScopeRep() == QTN->getQualifier() &&
4312 TransTemplate == Template)
4313 return Name;
4314
4315 return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
4316 TransTemplate);
4317 }
4318
4319 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
4320 if (SS.getScopeRep()) {
4321 // These apply to the scope specifier, not the template.
4322 ObjectType = QualType();
4323 FirstQualifierInScope = nullptr;
4324 }
4325
4326 if (!getDerived().AlwaysRebuild() &&
4327 SS.getScopeRep() == DTN->getQualifier() &&
4328 ObjectType.isNull())
4329 return Name;
4330
4331 // FIXME: Preserve the location of the "template" keyword.
4332 SourceLocation TemplateKWLoc = NameLoc;
4333
4334 if (DTN->isIdentifier()) {
4335 return getDerived().RebuildTemplateName(SS,
4336 TemplateKWLoc,
4337 *DTN->getIdentifier(),
4338 NameLoc,
4339 ObjectType,
4340 FirstQualifierInScope,
4341 AllowInjectedClassName);
4342 }
4343
4344 return getDerived().RebuildTemplateName(SS, TemplateKWLoc,
4345 DTN->getOperator(), NameLoc,
4346 ObjectType, AllowInjectedClassName);
4347 }
4348
4349 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4350 TemplateDecl *TransTemplate
4351 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
4352 Template));
4353 if (!TransTemplate)
4354 return TemplateName();
4355
4356 if (!getDerived().AlwaysRebuild() &&
4357 TransTemplate == Template)
4358 return Name;
4359
4360 return TemplateName(TransTemplate);
4361 }
4362
4363 if (SubstTemplateTemplateParmPackStorage *SubstPack
4364 = Name.getAsSubstTemplateTemplateParmPack()) {
4365 TemplateTemplateParmDecl *TransParam
4366 = cast_or_null<TemplateTemplateParmDecl>(
4367 getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
4368 if (!TransParam)
4369 return TemplateName();
4370
4371 if (!getDerived().AlwaysRebuild() &&
4372 TransParam == SubstPack->getParameterPack())
4373 return Name;
4374
4375 return getDerived().RebuildTemplateName(TransParam,
4376 SubstPack->getArgumentPack());
4377 }
4378
4379 // These should be getting filtered out before they reach the AST.
4380 llvm_unreachable("overloaded function decl survived to here");
4381 }
4382
4383 template<typename Derived>
InventTemplateArgumentLoc(const TemplateArgument & Arg,TemplateArgumentLoc & Output)4384 void TreeTransform<Derived>::InventTemplateArgumentLoc(
4385 const TemplateArgument &Arg,
4386 TemplateArgumentLoc &Output) {
4387 Output = getSema().getTrivialTemplateArgumentLoc(
4388 Arg, QualType(), getDerived().getBaseLocation());
4389 }
4390
4391 template <typename Derived>
TransformTemplateArgument(const TemplateArgumentLoc & Input,TemplateArgumentLoc & Output,bool Uneval)4392 bool TreeTransform<Derived>::TransformTemplateArgument(
4393 const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output,
4394 bool Uneval) {
4395 const TemplateArgument &Arg = Input.getArgument();
4396 switch (Arg.getKind()) {
4397 case TemplateArgument::Null:
4398 case TemplateArgument::Pack:
4399 llvm_unreachable("Unexpected TemplateArgument");
4400
4401 case TemplateArgument::Integral:
4402 case TemplateArgument::NullPtr:
4403 case TemplateArgument::Declaration: {
4404 // Transform a resolved template argument straight to a resolved template
4405 // argument. We get here when substituting into an already-substituted
4406 // template type argument during concept satisfaction checking.
4407 QualType T = Arg.getNonTypeTemplateArgumentType();
4408 QualType NewT = getDerived().TransformType(T);
4409 if (NewT.isNull())
4410 return true;
4411
4412 ValueDecl *D = Arg.getKind() == TemplateArgument::Declaration
4413 ? Arg.getAsDecl()
4414 : nullptr;
4415 ValueDecl *NewD = D ? cast_or_null<ValueDecl>(getDerived().TransformDecl(
4416 getDerived().getBaseLocation(), D))
4417 : nullptr;
4418 if (D && !NewD)
4419 return true;
4420
4421 if (NewT == T && D == NewD)
4422 Output = Input;
4423 else if (Arg.getKind() == TemplateArgument::Integral)
4424 Output = TemplateArgumentLoc(
4425 TemplateArgument(getSema().Context, Arg.getAsIntegral(), NewT),
4426 TemplateArgumentLocInfo());
4427 else if (Arg.getKind() == TemplateArgument::NullPtr)
4428 Output = TemplateArgumentLoc(TemplateArgument(NewT, /*IsNullPtr=*/true),
4429 TemplateArgumentLocInfo());
4430 else
4431 Output = TemplateArgumentLoc(TemplateArgument(NewD, NewT),
4432 TemplateArgumentLocInfo());
4433
4434 return false;
4435 }
4436
4437 case TemplateArgument::Type: {
4438 TypeSourceInfo *DI = Input.getTypeSourceInfo();
4439 if (!DI)
4440 DI = InventTypeSourceInfo(Input.getArgument().getAsType());
4441
4442 DI = getDerived().TransformType(DI);
4443 if (!DI)
4444 return true;
4445
4446 Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
4447 return false;
4448 }
4449
4450 case TemplateArgument::Template: {
4451 NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
4452 if (QualifierLoc) {
4453 QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
4454 if (!QualifierLoc)
4455 return true;
4456 }
4457
4458 CXXScopeSpec SS;
4459 SS.Adopt(QualifierLoc);
4460 TemplateName Template = getDerived().TransformTemplateName(
4461 SS, Arg.getAsTemplate(), Input.getTemplateNameLoc());
4462 if (Template.isNull())
4463 return true;
4464
4465 Output = TemplateArgumentLoc(SemaRef.Context, TemplateArgument(Template),
4466 QualifierLoc, Input.getTemplateNameLoc());
4467 return false;
4468 }
4469
4470 case TemplateArgument::TemplateExpansion:
4471 llvm_unreachable("Caller should expand pack expansions");
4472
4473 case TemplateArgument::Expression: {
4474 // Template argument expressions are constant expressions.
4475 EnterExpressionEvaluationContext Unevaluated(
4476 getSema(),
4477 Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
4478 : Sema::ExpressionEvaluationContext::ConstantEvaluated,
4479 /*LambdaContextDecl=*/nullptr, /*ExprContext=*/
4480 Sema::ExpressionEvaluationContextRecord::EK_TemplateArgument);
4481
4482 Expr *InputExpr = Input.getSourceExpression();
4483 if (!InputExpr)
4484 InputExpr = Input.getArgument().getAsExpr();
4485
4486 ExprResult E = getDerived().TransformExpr(InputExpr);
4487 E = SemaRef.ActOnConstantExpression(E);
4488 if (E.isInvalid())
4489 return true;
4490 Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get());
4491 return false;
4492 }
4493 }
4494
4495 // Work around bogus GCC warning
4496 return true;
4497 }
4498
4499 /// Iterator adaptor that invents template argument location information
4500 /// for each of the template arguments in its underlying iterator.
4501 template<typename Derived, typename InputIterator>
4502 class TemplateArgumentLocInventIterator {
4503 TreeTransform<Derived> &Self;
4504 InputIterator Iter;
4505
4506 public:
4507 typedef TemplateArgumentLoc value_type;
4508 typedef TemplateArgumentLoc reference;
4509 typedef typename std::iterator_traits<InputIterator>::difference_type
4510 difference_type;
4511 typedef std::input_iterator_tag iterator_category;
4512
4513 class pointer {
4514 TemplateArgumentLoc Arg;
4515
4516 public:
pointer(TemplateArgumentLoc Arg)4517 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
4518
4519 const TemplateArgumentLoc *operator->() const { return &Arg; }
4520 };
4521
TemplateArgumentLocInventIterator()4522 TemplateArgumentLocInventIterator() { }
4523
TemplateArgumentLocInventIterator(TreeTransform<Derived> & Self,InputIterator Iter)4524 explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
4525 InputIterator Iter)
4526 : Self(Self), Iter(Iter) { }
4527
4528 TemplateArgumentLocInventIterator &operator++() {
4529 ++Iter;
4530 return *this;
4531 }
4532
4533 TemplateArgumentLocInventIterator operator++(int) {
4534 TemplateArgumentLocInventIterator Old(*this);
4535 ++(*this);
4536 return Old;
4537 }
4538
4539 reference operator*() const {
4540 TemplateArgumentLoc Result;
4541 Self.InventTemplateArgumentLoc(*Iter, Result);
4542 return Result;
4543 }
4544
4545 pointer operator->() const { return pointer(**this); }
4546
4547 friend bool operator==(const TemplateArgumentLocInventIterator &X,
4548 const TemplateArgumentLocInventIterator &Y) {
4549 return X.Iter == Y.Iter;
4550 }
4551
4552 friend bool operator!=(const TemplateArgumentLocInventIterator &X,
4553 const TemplateArgumentLocInventIterator &Y) {
4554 return X.Iter != Y.Iter;
4555 }
4556 };
4557
4558 template<typename Derived>
4559 template<typename InputIterator>
TransformTemplateArguments(InputIterator First,InputIterator Last,TemplateArgumentListInfo & Outputs,bool Uneval)4560 bool TreeTransform<Derived>::TransformTemplateArguments(
4561 InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs,
4562 bool Uneval) {
4563 for (; First != Last; ++First) {
4564 TemplateArgumentLoc Out;
4565 TemplateArgumentLoc In = *First;
4566
4567 if (In.getArgument().getKind() == TemplateArgument::Pack) {
4568 // Unpack argument packs, which we translate them into separate
4569 // arguments.
4570 // FIXME: We could do much better if we could guarantee that the
4571 // TemplateArgumentLocInfo for the pack expansion would be usable for
4572 // all of the template arguments in the argument pack.
4573 typedef TemplateArgumentLocInventIterator<Derived,
4574 TemplateArgument::pack_iterator>
4575 PackLocIterator;
4576 if (TransformTemplateArguments(PackLocIterator(*this,
4577 In.getArgument().pack_begin()),
4578 PackLocIterator(*this,
4579 In.getArgument().pack_end()),
4580 Outputs, Uneval))
4581 return true;
4582
4583 continue;
4584 }
4585
4586 if (In.getArgument().isPackExpansion()) {
4587 // We have a pack expansion, for which we will be substituting into
4588 // the pattern.
4589 SourceLocation Ellipsis;
4590 Optional<unsigned> OrigNumExpansions;
4591 TemplateArgumentLoc Pattern
4592 = getSema().getTemplateArgumentPackExpansionPattern(
4593 In, Ellipsis, OrigNumExpansions);
4594
4595 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
4596 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
4597 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
4598
4599 // Determine whether the set of unexpanded parameter packs can and should
4600 // be expanded.
4601 bool Expand = true;
4602 bool RetainExpansion = false;
4603 Optional<unsigned> NumExpansions = OrigNumExpansions;
4604 if (getDerived().TryExpandParameterPacks(Ellipsis,
4605 Pattern.getSourceRange(),
4606 Unexpanded,
4607 Expand,
4608 RetainExpansion,
4609 NumExpansions))
4610 return true;
4611
4612 if (!Expand) {
4613 // The transform has determined that we should perform a simple
4614 // transformation on the pack expansion, producing another pack
4615 // expansion.
4616 TemplateArgumentLoc OutPattern;
4617 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
4618 if (getDerived().TransformTemplateArgument(Pattern, OutPattern, Uneval))
4619 return true;
4620
4621 Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
4622 NumExpansions);
4623 if (Out.getArgument().isNull())
4624 return true;
4625
4626 Outputs.addArgument(Out);
4627 continue;
4628 }
4629
4630 // The transform has determined that we should perform an elementwise
4631 // expansion of the pattern. Do so.
4632 for (unsigned I = 0; I != *NumExpansions; ++I) {
4633 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
4634
4635 if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval))
4636 return true;
4637
4638 if (Out.getArgument().containsUnexpandedParameterPack()) {
4639 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
4640 OrigNumExpansions);
4641 if (Out.getArgument().isNull())
4642 return true;
4643 }
4644
4645 Outputs.addArgument(Out);
4646 }
4647
4648 // If we're supposed to retain a pack expansion, do so by temporarily
4649 // forgetting the partially-substituted parameter pack.
4650 if (RetainExpansion) {
4651 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
4652
4653 if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval))
4654 return true;
4655
4656 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
4657 OrigNumExpansions);
4658 if (Out.getArgument().isNull())
4659 return true;
4660
4661 Outputs.addArgument(Out);
4662 }
4663
4664 continue;
4665 }
4666
4667 // The simple case:
4668 if (getDerived().TransformTemplateArgument(In, Out, Uneval))
4669 return true;
4670
4671 Outputs.addArgument(Out);
4672 }
4673
4674 return false;
4675
4676 }
4677
4678 //===----------------------------------------------------------------------===//
4679 // Type transformation
4680 //===----------------------------------------------------------------------===//
4681
4682 template<typename Derived>
TransformType(QualType T)4683 QualType TreeTransform<Derived>::TransformType(QualType T) {
4684 if (getDerived().AlreadyTransformed(T))
4685 return T;
4686
4687 // Temporary workaround. All of these transformations should
4688 // eventually turn into transformations on TypeLocs.
4689 TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
4690 getDerived().getBaseLocation());
4691
4692 TypeSourceInfo *NewDI = getDerived().TransformType(DI);
4693
4694 if (!NewDI)
4695 return QualType();
4696
4697 return NewDI->getType();
4698 }
4699
4700 template<typename Derived>
TransformType(TypeSourceInfo * DI)4701 TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
4702 // Refine the base location to the type's location.
4703 TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
4704 getDerived().getBaseEntity());
4705 if (getDerived().AlreadyTransformed(DI->getType()))
4706 return DI;
4707
4708 TypeLocBuilder TLB;
4709
4710 TypeLoc TL = DI->getTypeLoc();
4711 TLB.reserve(TL.getFullDataSize());
4712
4713 QualType Result = getDerived().TransformType(TLB, TL);
4714 if (Result.isNull())
4715 return nullptr;
4716
4717 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
4718 }
4719
4720 template<typename Derived>
4721 QualType
TransformType(TypeLocBuilder & TLB,TypeLoc T)4722 TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
4723 switch (T.getTypeLocClass()) {
4724 #define ABSTRACT_TYPELOC(CLASS, PARENT)
4725 #define TYPELOC(CLASS, PARENT) \
4726 case TypeLoc::CLASS: \
4727 return getDerived().Transform##CLASS##Type(TLB, \
4728 T.castAs<CLASS##TypeLoc>());
4729 #include "clang/AST/TypeLocNodes.def"
4730 }
4731
4732 llvm_unreachable("unhandled type loc!");
4733 }
4734
4735 template<typename Derived>
TransformTypeWithDeducedTST(QualType T)4736 QualType TreeTransform<Derived>::TransformTypeWithDeducedTST(QualType T) {
4737 if (!isa<DependentNameType>(T))
4738 return TransformType(T);
4739
4740 if (getDerived().AlreadyTransformed(T))
4741 return T;
4742 TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
4743 getDerived().getBaseLocation());
4744 TypeSourceInfo *NewDI = getDerived().TransformTypeWithDeducedTST(DI);
4745 return NewDI ? NewDI->getType() : QualType();
4746 }
4747
4748 template<typename Derived>
4749 TypeSourceInfo *
TransformTypeWithDeducedTST(TypeSourceInfo * DI)4750 TreeTransform<Derived>::TransformTypeWithDeducedTST(TypeSourceInfo *DI) {
4751 if (!isa<DependentNameType>(DI->getType()))
4752 return TransformType(DI);
4753
4754 // Refine the base location to the type's location.
4755 TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
4756 getDerived().getBaseEntity());
4757 if (getDerived().AlreadyTransformed(DI->getType()))
4758 return DI;
4759
4760 TypeLocBuilder TLB;
4761
4762 TypeLoc TL = DI->getTypeLoc();
4763 TLB.reserve(TL.getFullDataSize());
4764
4765 auto QTL = TL.getAs<QualifiedTypeLoc>();
4766 if (QTL)
4767 TL = QTL.getUnqualifiedLoc();
4768
4769 auto DNTL = TL.castAs<DependentNameTypeLoc>();
4770
4771 QualType Result = getDerived().TransformDependentNameType(
4772 TLB, DNTL, /*DeducedTSTContext*/true);
4773 if (Result.isNull())
4774 return nullptr;
4775
4776 if (QTL) {
4777 Result = getDerived().RebuildQualifiedType(Result, QTL);
4778 if (Result.isNull())
4779 return nullptr;
4780 TLB.TypeWasModifiedSafely(Result);
4781 }
4782
4783 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
4784 }
4785
4786 template<typename Derived>
4787 QualType
TransformQualifiedType(TypeLocBuilder & TLB,QualifiedTypeLoc T)4788 TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
4789 QualifiedTypeLoc T) {
4790 QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
4791 if (Result.isNull())
4792 return QualType();
4793
4794 Result = getDerived().RebuildQualifiedType(Result, T);
4795
4796 if (Result.isNull())
4797 return QualType();
4798
4799 // RebuildQualifiedType might have updated the type, but not in a way
4800 // that invalidates the TypeLoc. (There's no location information for
4801 // qualifiers.)
4802 TLB.TypeWasModifiedSafely(Result);
4803
4804 return Result;
4805 }
4806
4807 template <typename Derived>
RebuildQualifiedType(QualType T,QualifiedTypeLoc TL)4808 QualType TreeTransform<Derived>::RebuildQualifiedType(QualType T,
4809 QualifiedTypeLoc TL) {
4810
4811 SourceLocation Loc = TL.getBeginLoc();
4812 Qualifiers Quals = TL.getType().getLocalQualifiers();
4813
4814 if ((T.getAddressSpace() != LangAS::Default &&
4815 Quals.getAddressSpace() != LangAS::Default) &&
4816 T.getAddressSpace() != Quals.getAddressSpace()) {
4817 SemaRef.Diag(Loc, diag::err_address_space_mismatch_templ_inst)
4818 << TL.getType() << T;
4819 return QualType();
4820 }
4821
4822 // C++ [dcl.fct]p7:
4823 // [When] adding cv-qualifications on top of the function type [...] the
4824 // cv-qualifiers are ignored.
4825 if (T->isFunctionType()) {
4826 T = SemaRef.getASTContext().getAddrSpaceQualType(T,
4827 Quals.getAddressSpace());
4828 return T;
4829 }
4830
4831 // C++ [dcl.ref]p1:
4832 // when the cv-qualifiers are introduced through the use of a typedef-name
4833 // or decltype-specifier [...] the cv-qualifiers are ignored.
4834 // Note that [dcl.ref]p1 lists all cases in which cv-qualifiers can be
4835 // applied to a reference type.
4836 if (T->isReferenceType()) {
4837 // The only qualifier that applies to a reference type is restrict.
4838 if (!Quals.hasRestrict())
4839 return T;
4840 Quals = Qualifiers::fromCVRMask(Qualifiers::Restrict);
4841 }
4842
4843 // Suppress Objective-C lifetime qualifiers if they don't make sense for the
4844 // resulting type.
4845 if (Quals.hasObjCLifetime()) {
4846 if (!T->isObjCLifetimeType() && !T->isDependentType())
4847 Quals.removeObjCLifetime();
4848 else if (T.getObjCLifetime()) {
4849 // Objective-C ARC:
4850 // A lifetime qualifier applied to a substituted template parameter
4851 // overrides the lifetime qualifier from the template argument.
4852 const AutoType *AutoTy;
4853 if (const SubstTemplateTypeParmType *SubstTypeParam
4854 = dyn_cast<SubstTemplateTypeParmType>(T)) {
4855 QualType Replacement = SubstTypeParam->getReplacementType();
4856 Qualifiers Qs = Replacement.getQualifiers();
4857 Qs.removeObjCLifetime();
4858 Replacement = SemaRef.Context.getQualifiedType(
4859 Replacement.getUnqualifiedType(), Qs);
4860 T = SemaRef.Context.getSubstTemplateTypeParmType(
4861 SubstTypeParam->getReplacedParameter(), Replacement);
4862 } else if ((AutoTy = dyn_cast<AutoType>(T)) && AutoTy->isDeduced()) {
4863 // 'auto' types behave the same way as template parameters.
4864 QualType Deduced = AutoTy->getDeducedType();
4865 Qualifiers Qs = Deduced.getQualifiers();
4866 Qs.removeObjCLifetime();
4867 Deduced =
4868 SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), Qs);
4869 T = SemaRef.Context.getAutoType(Deduced, AutoTy->getKeyword(),
4870 AutoTy->isDependentType(),
4871 /*isPack=*/false,
4872 AutoTy->getTypeConstraintConcept(),
4873 AutoTy->getTypeConstraintArguments());
4874 } else {
4875 // Otherwise, complain about the addition of a qualifier to an
4876 // already-qualified type.
4877 // FIXME: Why is this check not in Sema::BuildQualifiedType?
4878 SemaRef.Diag(Loc, diag::err_attr_objc_ownership_redundant) << T;
4879 Quals.removeObjCLifetime();
4880 }
4881 }
4882 }
4883
4884 return SemaRef.BuildQualifiedType(T, Loc, Quals);
4885 }
4886
4887 template<typename Derived>
4888 TypeLoc
TransformTypeInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)4889 TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
4890 QualType ObjectType,
4891 NamedDecl *UnqualLookup,
4892 CXXScopeSpec &SS) {
4893 if (getDerived().AlreadyTransformed(TL.getType()))
4894 return TL;
4895
4896 TypeSourceInfo *TSI =
4897 TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS);
4898 if (TSI)
4899 return TSI->getTypeLoc();
4900 return TypeLoc();
4901 }
4902
4903 template<typename Derived>
4904 TypeSourceInfo *
TransformTypeInObjectScope(TypeSourceInfo * TSInfo,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)4905 TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
4906 QualType ObjectType,
4907 NamedDecl *UnqualLookup,
4908 CXXScopeSpec &SS) {
4909 if (getDerived().AlreadyTransformed(TSInfo->getType()))
4910 return TSInfo;
4911
4912 return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType,
4913 UnqualLookup, SS);
4914 }
4915
4916 template <typename Derived>
TransformTSIInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)4917 TypeSourceInfo *TreeTransform<Derived>::TransformTSIInObjectScope(
4918 TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup,
4919 CXXScopeSpec &SS) {
4920 QualType T = TL.getType();
4921 assert(!getDerived().AlreadyTransformed(T));
4922
4923 TypeLocBuilder TLB;
4924 QualType Result;
4925
4926 if (isa<TemplateSpecializationType>(T)) {
4927 TemplateSpecializationTypeLoc SpecTL =
4928 TL.castAs<TemplateSpecializationTypeLoc>();
4929
4930 TemplateName Template = getDerived().TransformTemplateName(
4931 SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(),
4932 ObjectType, UnqualLookup, /*AllowInjectedClassName*/true);
4933 if (Template.isNull())
4934 return nullptr;
4935
4936 Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
4937 Template);
4938 } else if (isa<DependentTemplateSpecializationType>(T)) {
4939 DependentTemplateSpecializationTypeLoc SpecTL =
4940 TL.castAs<DependentTemplateSpecializationTypeLoc>();
4941
4942 TemplateName Template
4943 = getDerived().RebuildTemplateName(SS,
4944 SpecTL.getTemplateKeywordLoc(),
4945 *SpecTL.getTypePtr()->getIdentifier(),
4946 SpecTL.getTemplateNameLoc(),
4947 ObjectType, UnqualLookup,
4948 /*AllowInjectedClassName*/true);
4949 if (Template.isNull())
4950 return nullptr;
4951
4952 Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
4953 SpecTL,
4954 Template,
4955 SS);
4956 } else {
4957 // Nothing special needs to be done for these.
4958 Result = getDerived().TransformType(TLB, TL);
4959 }
4960
4961 if (Result.isNull())
4962 return nullptr;
4963
4964 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
4965 }
4966
4967 template <class TyLoc> static inline
TransformTypeSpecType(TypeLocBuilder & TLB,TyLoc T)4968 QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
4969 TyLoc NewT = TLB.push<TyLoc>(T.getType());
4970 NewT.setNameLoc(T.getNameLoc());
4971 return T.getType();
4972 }
4973
4974 template<typename Derived>
TransformBuiltinType(TypeLocBuilder & TLB,BuiltinTypeLoc T)4975 QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
4976 BuiltinTypeLoc T) {
4977 BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
4978 NewT.setBuiltinLoc(T.getBuiltinLoc());
4979 if (T.needsExtraLocalData())
4980 NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
4981 return T.getType();
4982 }
4983
4984 template<typename Derived>
TransformComplexType(TypeLocBuilder & TLB,ComplexTypeLoc T)4985 QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
4986 ComplexTypeLoc T) {
4987 // FIXME: recurse?
4988 return TransformTypeSpecType(TLB, T);
4989 }
4990
4991 template <typename Derived>
TransformAdjustedType(TypeLocBuilder & TLB,AdjustedTypeLoc TL)4992 QualType TreeTransform<Derived>::TransformAdjustedType(TypeLocBuilder &TLB,
4993 AdjustedTypeLoc TL) {
4994 // Adjustments applied during transformation are handled elsewhere.
4995 return getDerived().TransformType(TLB, TL.getOriginalLoc());
4996 }
4997
4998 template<typename Derived>
TransformDecayedType(TypeLocBuilder & TLB,DecayedTypeLoc TL)4999 QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB,
5000 DecayedTypeLoc TL) {
5001 QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc());
5002 if (OriginalType.isNull())
5003 return QualType();
5004
5005 QualType Result = TL.getType();
5006 if (getDerived().AlwaysRebuild() ||
5007 OriginalType != TL.getOriginalLoc().getType())
5008 Result = SemaRef.Context.getDecayedType(OriginalType);
5009 TLB.push<DecayedTypeLoc>(Result);
5010 // Nothing to set for DecayedTypeLoc.
5011 return Result;
5012 }
5013
5014 template<typename Derived>
TransformPointerType(TypeLocBuilder & TLB,PointerTypeLoc TL)5015 QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
5016 PointerTypeLoc TL) {
5017 QualType PointeeType
5018 = getDerived().TransformType(TLB, TL.getPointeeLoc());
5019 if (PointeeType.isNull())
5020 return QualType();
5021
5022 QualType Result = TL.getType();
5023 if (PointeeType->getAs<ObjCObjectType>()) {
5024 // A dependent pointer type 'T *' has is being transformed such
5025 // that an Objective-C class type is being replaced for 'T'. The
5026 // resulting pointer type is an ObjCObjectPointerType, not a
5027 // PointerType.
5028 Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
5029
5030 ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
5031 NewT.setStarLoc(TL.getStarLoc());
5032 return Result;
5033 }
5034
5035 if (getDerived().AlwaysRebuild() ||
5036 PointeeType != TL.getPointeeLoc().getType()) {
5037 Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
5038 if (Result.isNull())
5039 return QualType();
5040 }
5041
5042 // Objective-C ARC can add lifetime qualifiers to the type that we're
5043 // pointing to.
5044 TLB.TypeWasModifiedSafely(Result->getPointeeType());
5045
5046 PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
5047 NewT.setSigilLoc(TL.getSigilLoc());
5048 return Result;
5049 }
5050
5051 template<typename Derived>
5052 QualType
TransformBlockPointerType(TypeLocBuilder & TLB,BlockPointerTypeLoc TL)5053 TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
5054 BlockPointerTypeLoc TL) {
5055 QualType PointeeType
5056 = getDerived().TransformType(TLB, TL.getPointeeLoc());
5057 if (PointeeType.isNull())
5058 return QualType();
5059
5060 QualType Result = TL.getType();
5061 if (getDerived().AlwaysRebuild() ||
5062 PointeeType != TL.getPointeeLoc().getType()) {
5063 Result = getDerived().RebuildBlockPointerType(PointeeType,
5064 TL.getSigilLoc());
5065 if (Result.isNull())
5066 return QualType();
5067 }
5068
5069 BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
5070 NewT.setSigilLoc(TL.getSigilLoc());
5071 return Result;
5072 }
5073
5074 /// Transforms a reference type. Note that somewhat paradoxically we
5075 /// don't care whether the type itself is an l-value type or an r-value
5076 /// type; we only care if the type was *written* as an l-value type
5077 /// or an r-value type.
5078 template<typename Derived>
5079 QualType
TransformReferenceType(TypeLocBuilder & TLB,ReferenceTypeLoc TL)5080 TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
5081 ReferenceTypeLoc TL) {
5082 const ReferenceType *T = TL.getTypePtr();
5083
5084 // Note that this works with the pointee-as-written.
5085 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
5086 if (PointeeType.isNull())
5087 return QualType();
5088
5089 QualType Result = TL.getType();
5090 if (getDerived().AlwaysRebuild() ||
5091 PointeeType != T->getPointeeTypeAsWritten()) {
5092 Result = getDerived().RebuildReferenceType(PointeeType,
5093 T->isSpelledAsLValue(),
5094 TL.getSigilLoc());
5095 if (Result.isNull())
5096 return QualType();
5097 }
5098
5099 // Objective-C ARC can add lifetime qualifiers to the type that we're
5100 // referring to.
5101 TLB.TypeWasModifiedSafely(
5102 Result->castAs<ReferenceType>()->getPointeeTypeAsWritten());
5103
5104 // r-value references can be rebuilt as l-value references.
5105 ReferenceTypeLoc NewTL;
5106 if (isa<LValueReferenceType>(Result))
5107 NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
5108 else
5109 NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
5110 NewTL.setSigilLoc(TL.getSigilLoc());
5111
5112 return Result;
5113 }
5114
5115 template<typename Derived>
5116 QualType
TransformLValueReferenceType(TypeLocBuilder & TLB,LValueReferenceTypeLoc TL)5117 TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
5118 LValueReferenceTypeLoc TL) {
5119 return TransformReferenceType(TLB, TL);
5120 }
5121
5122 template<typename Derived>
5123 QualType
TransformRValueReferenceType(TypeLocBuilder & TLB,RValueReferenceTypeLoc TL)5124 TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
5125 RValueReferenceTypeLoc TL) {
5126 return TransformReferenceType(TLB, TL);
5127 }
5128
5129 template<typename Derived>
5130 QualType
TransformMemberPointerType(TypeLocBuilder & TLB,MemberPointerTypeLoc TL)5131 TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
5132 MemberPointerTypeLoc TL) {
5133 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
5134 if (PointeeType.isNull())
5135 return QualType();
5136
5137 TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
5138 TypeSourceInfo *NewClsTInfo = nullptr;
5139 if (OldClsTInfo) {
5140 NewClsTInfo = getDerived().TransformType(OldClsTInfo);
5141 if (!NewClsTInfo)
5142 return QualType();
5143 }
5144
5145 const MemberPointerType *T = TL.getTypePtr();
5146 QualType OldClsType = QualType(T->getClass(), 0);
5147 QualType NewClsType;
5148 if (NewClsTInfo)
5149 NewClsType = NewClsTInfo->getType();
5150 else {
5151 NewClsType = getDerived().TransformType(OldClsType);
5152 if (NewClsType.isNull())
5153 return QualType();
5154 }
5155
5156 QualType Result = TL.getType();
5157 if (getDerived().AlwaysRebuild() ||
5158 PointeeType != T->getPointeeType() ||
5159 NewClsType != OldClsType) {
5160 Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
5161 TL.getStarLoc());
5162 if (Result.isNull())
5163 return QualType();
5164 }
5165
5166 // If we had to adjust the pointee type when building a member pointer, make
5167 // sure to push TypeLoc info for it.
5168 const MemberPointerType *MPT = Result->getAs<MemberPointerType>();
5169 if (MPT && PointeeType != MPT->getPointeeType()) {
5170 assert(isa<AdjustedType>(MPT->getPointeeType()));
5171 TLB.push<AdjustedTypeLoc>(MPT->getPointeeType());
5172 }
5173
5174 MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
5175 NewTL.setSigilLoc(TL.getSigilLoc());
5176 NewTL.setClassTInfo(NewClsTInfo);
5177
5178 return Result;
5179 }
5180
5181 template<typename Derived>
5182 QualType
TransformConstantArrayType(TypeLocBuilder & TLB,ConstantArrayTypeLoc TL)5183 TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
5184 ConstantArrayTypeLoc TL) {
5185 const ConstantArrayType *T = TL.getTypePtr();
5186 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5187 if (ElementType.isNull())
5188 return QualType();
5189
5190 // Prefer the expression from the TypeLoc; the other may have been uniqued.
5191 Expr *OldSize = TL.getSizeExpr();
5192 if (!OldSize)
5193 OldSize = const_cast<Expr*>(T->getSizeExpr());
5194 Expr *NewSize = nullptr;
5195 if (OldSize) {
5196 EnterExpressionEvaluationContext Unevaluated(
5197 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5198 NewSize = getDerived().TransformExpr(OldSize).template getAs<Expr>();
5199 NewSize = SemaRef.ActOnConstantExpression(NewSize).get();
5200 }
5201
5202 QualType Result = TL.getType();
5203 if (getDerived().AlwaysRebuild() ||
5204 ElementType != T->getElementType() ||
5205 (T->getSizeExpr() && NewSize != OldSize)) {
5206 Result = getDerived().RebuildConstantArrayType(ElementType,
5207 T->getSizeModifier(),
5208 T->getSize(), NewSize,
5209 T->getIndexTypeCVRQualifiers(),
5210 TL.getBracketsRange());
5211 if (Result.isNull())
5212 return QualType();
5213 }
5214
5215 // We might have either a ConstantArrayType or a VariableArrayType now:
5216 // a ConstantArrayType is allowed to have an element type which is a
5217 // VariableArrayType if the type is dependent. Fortunately, all array
5218 // types have the same location layout.
5219 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
5220 NewTL.setLBracketLoc(TL.getLBracketLoc());
5221 NewTL.setRBracketLoc(TL.getRBracketLoc());
5222 NewTL.setSizeExpr(NewSize);
5223
5224 return Result;
5225 }
5226
5227 template<typename Derived>
TransformIncompleteArrayType(TypeLocBuilder & TLB,IncompleteArrayTypeLoc TL)5228 QualType TreeTransform<Derived>::TransformIncompleteArrayType(
5229 TypeLocBuilder &TLB,
5230 IncompleteArrayTypeLoc TL) {
5231 const IncompleteArrayType *T = TL.getTypePtr();
5232 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5233 if (ElementType.isNull())
5234 return QualType();
5235
5236 QualType Result = TL.getType();
5237 if (getDerived().AlwaysRebuild() ||
5238 ElementType != T->getElementType()) {
5239 Result = getDerived().RebuildIncompleteArrayType(ElementType,
5240 T->getSizeModifier(),
5241 T->getIndexTypeCVRQualifiers(),
5242 TL.getBracketsRange());
5243 if (Result.isNull())
5244 return QualType();
5245 }
5246
5247 IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
5248 NewTL.setLBracketLoc(TL.getLBracketLoc());
5249 NewTL.setRBracketLoc(TL.getRBracketLoc());
5250 NewTL.setSizeExpr(nullptr);
5251
5252 return Result;
5253 }
5254
5255 template<typename Derived>
5256 QualType
TransformVariableArrayType(TypeLocBuilder & TLB,VariableArrayTypeLoc TL)5257 TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
5258 VariableArrayTypeLoc TL) {
5259 const VariableArrayType *T = TL.getTypePtr();
5260 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5261 if (ElementType.isNull())
5262 return QualType();
5263
5264 ExprResult SizeResult;
5265 {
5266 EnterExpressionEvaluationContext Context(
5267 SemaRef, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
5268 SizeResult = getDerived().TransformExpr(T->getSizeExpr());
5269 }
5270 if (SizeResult.isInvalid())
5271 return QualType();
5272 SizeResult =
5273 SemaRef.ActOnFinishFullExpr(SizeResult.get(), /*DiscardedValue*/ false);
5274 if (SizeResult.isInvalid())
5275 return QualType();
5276
5277 Expr *Size = SizeResult.get();
5278
5279 QualType Result = TL.getType();
5280 if (getDerived().AlwaysRebuild() ||
5281 ElementType != T->getElementType() ||
5282 Size != T->getSizeExpr()) {
5283 Result = getDerived().RebuildVariableArrayType(ElementType,
5284 T->getSizeModifier(),
5285 Size,
5286 T->getIndexTypeCVRQualifiers(),
5287 TL.getBracketsRange());
5288 if (Result.isNull())
5289 return QualType();
5290 }
5291
5292 // We might have constant size array now, but fortunately it has the same
5293 // location layout.
5294 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
5295 NewTL.setLBracketLoc(TL.getLBracketLoc());
5296 NewTL.setRBracketLoc(TL.getRBracketLoc());
5297 NewTL.setSizeExpr(Size);
5298
5299 return Result;
5300 }
5301
5302 template<typename Derived>
5303 QualType
TransformDependentSizedArrayType(TypeLocBuilder & TLB,DependentSizedArrayTypeLoc TL)5304 TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
5305 DependentSizedArrayTypeLoc TL) {
5306 const DependentSizedArrayType *T = TL.getTypePtr();
5307 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5308 if (ElementType.isNull())
5309 return QualType();
5310
5311 // Array bounds are constant expressions.
5312 EnterExpressionEvaluationContext Unevaluated(
5313 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5314
5315 // Prefer the expression from the TypeLoc; the other may have been uniqued.
5316 Expr *origSize = TL.getSizeExpr();
5317 if (!origSize) origSize = T->getSizeExpr();
5318
5319 ExprResult sizeResult
5320 = getDerived().TransformExpr(origSize);
5321 sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
5322 if (sizeResult.isInvalid())
5323 return QualType();
5324
5325 Expr *size = sizeResult.get();
5326
5327 QualType Result = TL.getType();
5328 if (getDerived().AlwaysRebuild() ||
5329 ElementType != T->getElementType() ||
5330 size != origSize) {
5331 Result = getDerived().RebuildDependentSizedArrayType(ElementType,
5332 T->getSizeModifier(),
5333 size,
5334 T->getIndexTypeCVRQualifiers(),
5335 TL.getBracketsRange());
5336 if (Result.isNull())
5337 return QualType();
5338 }
5339
5340 // We might have any sort of array type now, but fortunately they
5341 // all have the same location layout.
5342 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
5343 NewTL.setLBracketLoc(TL.getLBracketLoc());
5344 NewTL.setRBracketLoc(TL.getRBracketLoc());
5345 NewTL.setSizeExpr(size);
5346
5347 return Result;
5348 }
5349
5350 template <typename Derived>
TransformDependentVectorType(TypeLocBuilder & TLB,DependentVectorTypeLoc TL)5351 QualType TreeTransform<Derived>::TransformDependentVectorType(
5352 TypeLocBuilder &TLB, DependentVectorTypeLoc TL) {
5353 const DependentVectorType *T = TL.getTypePtr();
5354 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5355 if (ElementType.isNull())
5356 return QualType();
5357
5358 EnterExpressionEvaluationContext Unevaluated(
5359 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5360
5361 ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
5362 Size = SemaRef.ActOnConstantExpression(Size);
5363 if (Size.isInvalid())
5364 return QualType();
5365
5366 QualType Result = TL.getType();
5367 if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() ||
5368 Size.get() != T->getSizeExpr()) {
5369 Result = getDerived().RebuildDependentVectorType(
5370 ElementType, Size.get(), T->getAttributeLoc(), T->getVectorKind());
5371 if (Result.isNull())
5372 return QualType();
5373 }
5374
5375 // Result might be dependent or not.
5376 if (isa<DependentVectorType>(Result)) {
5377 DependentVectorTypeLoc NewTL =
5378 TLB.push<DependentVectorTypeLoc>(Result);
5379 NewTL.setNameLoc(TL.getNameLoc());
5380 } else {
5381 VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
5382 NewTL.setNameLoc(TL.getNameLoc());
5383 }
5384
5385 return Result;
5386 }
5387
5388 template<typename Derived>
TransformDependentSizedExtVectorType(TypeLocBuilder & TLB,DependentSizedExtVectorTypeLoc TL)5389 QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
5390 TypeLocBuilder &TLB,
5391 DependentSizedExtVectorTypeLoc TL) {
5392 const DependentSizedExtVectorType *T = TL.getTypePtr();
5393
5394 // FIXME: ext vector locs should be nested
5395 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5396 if (ElementType.isNull())
5397 return QualType();
5398
5399 // Vector sizes are constant expressions.
5400 EnterExpressionEvaluationContext Unevaluated(
5401 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5402
5403 ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
5404 Size = SemaRef.ActOnConstantExpression(Size);
5405 if (Size.isInvalid())
5406 return QualType();
5407
5408 QualType Result = TL.getType();
5409 if (getDerived().AlwaysRebuild() ||
5410 ElementType != T->getElementType() ||
5411 Size.get() != T->getSizeExpr()) {
5412 Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
5413 Size.get(),
5414 T->getAttributeLoc());
5415 if (Result.isNull())
5416 return QualType();
5417 }
5418
5419 // Result might be dependent or not.
5420 if (isa<DependentSizedExtVectorType>(Result)) {
5421 DependentSizedExtVectorTypeLoc NewTL
5422 = TLB.push<DependentSizedExtVectorTypeLoc>(Result);
5423 NewTL.setNameLoc(TL.getNameLoc());
5424 } else {
5425 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
5426 NewTL.setNameLoc(TL.getNameLoc());
5427 }
5428
5429 return Result;
5430 }
5431
5432 template <typename Derived>
5433 QualType
TransformConstantMatrixType(TypeLocBuilder & TLB,ConstantMatrixTypeLoc TL)5434 TreeTransform<Derived>::TransformConstantMatrixType(TypeLocBuilder &TLB,
5435 ConstantMatrixTypeLoc TL) {
5436 const ConstantMatrixType *T = TL.getTypePtr();
5437 QualType ElementType = getDerived().TransformType(T->getElementType());
5438 if (ElementType.isNull())
5439 return QualType();
5440
5441 QualType Result = TL.getType();
5442 if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) {
5443 Result = getDerived().RebuildConstantMatrixType(
5444 ElementType, T->getNumRows(), T->getNumColumns());
5445 if (Result.isNull())
5446 return QualType();
5447 }
5448
5449 ConstantMatrixTypeLoc NewTL = TLB.push<ConstantMatrixTypeLoc>(Result);
5450 NewTL.setAttrNameLoc(TL.getAttrNameLoc());
5451 NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5452 NewTL.setAttrRowOperand(TL.getAttrRowOperand());
5453 NewTL.setAttrColumnOperand(TL.getAttrColumnOperand());
5454
5455 return Result;
5456 }
5457
5458 template <typename Derived>
TransformDependentSizedMatrixType(TypeLocBuilder & TLB,DependentSizedMatrixTypeLoc TL)5459 QualType TreeTransform<Derived>::TransformDependentSizedMatrixType(
5460 TypeLocBuilder &TLB, DependentSizedMatrixTypeLoc TL) {
5461 const DependentSizedMatrixType *T = TL.getTypePtr();
5462
5463 QualType ElementType = getDerived().TransformType(T->getElementType());
5464 if (ElementType.isNull()) {
5465 return QualType();
5466 }
5467
5468 // Matrix dimensions are constant expressions.
5469 EnterExpressionEvaluationContext Unevaluated(
5470 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5471
5472 Expr *origRows = TL.getAttrRowOperand();
5473 if (!origRows)
5474 origRows = T->getRowExpr();
5475 Expr *origColumns = TL.getAttrColumnOperand();
5476 if (!origColumns)
5477 origColumns = T->getColumnExpr();
5478
5479 ExprResult rowResult = getDerived().TransformExpr(origRows);
5480 rowResult = SemaRef.ActOnConstantExpression(rowResult);
5481 if (rowResult.isInvalid())
5482 return QualType();
5483
5484 ExprResult columnResult = getDerived().TransformExpr(origColumns);
5485 columnResult = SemaRef.ActOnConstantExpression(columnResult);
5486 if (columnResult.isInvalid())
5487 return QualType();
5488
5489 Expr *rows = rowResult.get();
5490 Expr *columns = columnResult.get();
5491
5492 QualType Result = TL.getType();
5493 if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() ||
5494 rows != origRows || columns != origColumns) {
5495 Result = getDerived().RebuildDependentSizedMatrixType(
5496 ElementType, rows, columns, T->getAttributeLoc());
5497
5498 if (Result.isNull())
5499 return QualType();
5500 }
5501
5502 // We might have any sort of matrix type now, but fortunately they
5503 // all have the same location layout.
5504 MatrixTypeLoc NewTL = TLB.push<MatrixTypeLoc>(Result);
5505 NewTL.setAttrNameLoc(TL.getAttrNameLoc());
5506 NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5507 NewTL.setAttrRowOperand(rows);
5508 NewTL.setAttrColumnOperand(columns);
5509 return Result;
5510 }
5511
5512 template <typename Derived>
TransformDependentAddressSpaceType(TypeLocBuilder & TLB,DependentAddressSpaceTypeLoc TL)5513 QualType TreeTransform<Derived>::TransformDependentAddressSpaceType(
5514 TypeLocBuilder &TLB, DependentAddressSpaceTypeLoc TL) {
5515 const DependentAddressSpaceType *T = TL.getTypePtr();
5516
5517 QualType pointeeType = getDerived().TransformType(T->getPointeeType());
5518
5519 if (pointeeType.isNull())
5520 return QualType();
5521
5522 // Address spaces are constant expressions.
5523 EnterExpressionEvaluationContext Unevaluated(
5524 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5525
5526 ExprResult AddrSpace = getDerived().TransformExpr(T->getAddrSpaceExpr());
5527 AddrSpace = SemaRef.ActOnConstantExpression(AddrSpace);
5528 if (AddrSpace.isInvalid())
5529 return QualType();
5530
5531 QualType Result = TL.getType();
5532 if (getDerived().AlwaysRebuild() || pointeeType != T->getPointeeType() ||
5533 AddrSpace.get() != T->getAddrSpaceExpr()) {
5534 Result = getDerived().RebuildDependentAddressSpaceType(
5535 pointeeType, AddrSpace.get(), T->getAttributeLoc());
5536 if (Result.isNull())
5537 return QualType();
5538 }
5539
5540 // Result might be dependent or not.
5541 if (isa<DependentAddressSpaceType>(Result)) {
5542 DependentAddressSpaceTypeLoc NewTL =
5543 TLB.push<DependentAddressSpaceTypeLoc>(Result);
5544
5545 NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5546 NewTL.setAttrExprOperand(TL.getAttrExprOperand());
5547 NewTL.setAttrNameLoc(TL.getAttrNameLoc());
5548
5549 } else {
5550 TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(
5551 Result, getDerived().getBaseLocation());
5552 TransformType(TLB, DI->getTypeLoc());
5553 }
5554
5555 return Result;
5556 }
5557
5558 template <typename Derived>
TransformVectorType(TypeLocBuilder & TLB,VectorTypeLoc TL)5559 QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
5560 VectorTypeLoc TL) {
5561 const VectorType *T = TL.getTypePtr();
5562 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5563 if (ElementType.isNull())
5564 return QualType();
5565
5566 QualType Result = TL.getType();
5567 if (getDerived().AlwaysRebuild() ||
5568 ElementType != T->getElementType()) {
5569 Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
5570 T->getVectorKind());
5571 if (Result.isNull())
5572 return QualType();
5573 }
5574
5575 VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
5576 NewTL.setNameLoc(TL.getNameLoc());
5577
5578 return Result;
5579 }
5580
5581 template<typename Derived>
TransformExtVectorType(TypeLocBuilder & TLB,ExtVectorTypeLoc TL)5582 QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
5583 ExtVectorTypeLoc TL) {
5584 const VectorType *T = TL.getTypePtr();
5585 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5586 if (ElementType.isNull())
5587 return QualType();
5588
5589 QualType Result = TL.getType();
5590 if (getDerived().AlwaysRebuild() ||
5591 ElementType != T->getElementType()) {
5592 Result = getDerived().RebuildExtVectorType(ElementType,
5593 T->getNumElements(),
5594 /*FIXME*/ SourceLocation());
5595 if (Result.isNull())
5596 return QualType();
5597 }
5598
5599 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
5600 NewTL.setNameLoc(TL.getNameLoc());
5601
5602 return Result;
5603 }
5604
5605 template <typename Derived>
TransformFunctionTypeParam(ParmVarDecl * OldParm,int indexAdjustment,Optional<unsigned> NumExpansions,bool ExpectParameterPack)5606 ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
5607 ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions,
5608 bool ExpectParameterPack) {
5609 TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
5610 TypeSourceInfo *NewDI = nullptr;
5611
5612 if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
5613 // If we're substituting into a pack expansion type and we know the
5614 // length we want to expand to, just substitute for the pattern.
5615 TypeLoc OldTL = OldDI->getTypeLoc();
5616 PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
5617
5618 TypeLocBuilder TLB;
5619 TypeLoc NewTL = OldDI->getTypeLoc();
5620 TLB.reserve(NewTL.getFullDataSize());
5621
5622 QualType Result = getDerived().TransformType(TLB,
5623 OldExpansionTL.getPatternLoc());
5624 if (Result.isNull())
5625 return nullptr;
5626
5627 Result = RebuildPackExpansionType(Result,
5628 OldExpansionTL.getPatternLoc().getSourceRange(),
5629 OldExpansionTL.getEllipsisLoc(),
5630 NumExpansions);
5631 if (Result.isNull())
5632 return nullptr;
5633
5634 PackExpansionTypeLoc NewExpansionTL
5635 = TLB.push<PackExpansionTypeLoc>(Result);
5636 NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
5637 NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
5638 } else
5639 NewDI = getDerived().TransformType(OldDI);
5640 if (!NewDI)
5641 return nullptr;
5642
5643 if (NewDI == OldDI && indexAdjustment == 0)
5644 return OldParm;
5645
5646 ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
5647 OldParm->getDeclContext(),
5648 OldParm->getInnerLocStart(),
5649 OldParm->getLocation(),
5650 OldParm->getIdentifier(),
5651 NewDI->getType(),
5652 NewDI,
5653 OldParm->getStorageClass(),
5654 /* DefArg */ nullptr);
5655 newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
5656 OldParm->getFunctionScopeIndex() + indexAdjustment);
5657 transformedLocalDecl(OldParm, {newParm});
5658 return newParm;
5659 }
5660
5661 template <typename Derived>
TransformFunctionTypeParams(SourceLocation Loc,ArrayRef<ParmVarDecl * > Params,const QualType * ParamTypes,const FunctionProtoType::ExtParameterInfo * ParamInfos,SmallVectorImpl<QualType> & OutParamTypes,SmallVectorImpl<ParmVarDecl * > * PVars,Sema::ExtParameterInfoBuilder & PInfos)5662 bool TreeTransform<Derived>::TransformFunctionTypeParams(
5663 SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
5664 const QualType *ParamTypes,
5665 const FunctionProtoType::ExtParameterInfo *ParamInfos,
5666 SmallVectorImpl<QualType> &OutParamTypes,
5667 SmallVectorImpl<ParmVarDecl *> *PVars,
5668 Sema::ExtParameterInfoBuilder &PInfos) {
5669 int indexAdjustment = 0;
5670
5671 unsigned NumParams = Params.size();
5672 for (unsigned i = 0; i != NumParams; ++i) {
5673 if (ParmVarDecl *OldParm = Params[i]) {
5674 assert(OldParm->getFunctionScopeIndex() == i);
5675
5676 Optional<unsigned> NumExpansions;
5677 ParmVarDecl *NewParm = nullptr;
5678 if (OldParm->isParameterPack()) {
5679 // We have a function parameter pack that may need to be expanded.
5680 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
5681
5682 // Find the parameter packs that could be expanded.
5683 TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
5684 PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
5685 TypeLoc Pattern = ExpansionTL.getPatternLoc();
5686 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
5687
5688 // Determine whether we should expand the parameter packs.
5689 bool ShouldExpand = false;
5690 bool RetainExpansion = false;
5691 Optional<unsigned> OrigNumExpansions;
5692 if (Unexpanded.size() > 0) {
5693 OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions();
5694 NumExpansions = OrigNumExpansions;
5695 if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
5696 Pattern.getSourceRange(),
5697 Unexpanded,
5698 ShouldExpand,
5699 RetainExpansion,
5700 NumExpansions)) {
5701 return true;
5702 }
5703 } else {
5704 #ifndef NDEBUG
5705 const AutoType *AT =
5706 Pattern.getType().getTypePtr()->getContainedAutoType();
5707 assert((AT && (!AT->isDeduced() || AT->getDeducedType().isNull())) &&
5708 "Could not find parameter packs or undeduced auto type!");
5709 #endif
5710 }
5711
5712 if (ShouldExpand) {
5713 // Expand the function parameter pack into multiple, separate
5714 // parameters.
5715 getDerived().ExpandingFunctionParameterPack(OldParm);
5716 for (unsigned I = 0; I != *NumExpansions; ++I) {
5717 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
5718 ParmVarDecl *NewParm
5719 = getDerived().TransformFunctionTypeParam(OldParm,
5720 indexAdjustment++,
5721 OrigNumExpansions,
5722 /*ExpectParameterPack=*/false);
5723 if (!NewParm)
5724 return true;
5725
5726 if (ParamInfos)
5727 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5728 OutParamTypes.push_back(NewParm->getType());
5729 if (PVars)
5730 PVars->push_back(NewParm);
5731 }
5732
5733 // If we're supposed to retain a pack expansion, do so by temporarily
5734 // forgetting the partially-substituted parameter pack.
5735 if (RetainExpansion) {
5736 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
5737 ParmVarDecl *NewParm
5738 = getDerived().TransformFunctionTypeParam(OldParm,
5739 indexAdjustment++,
5740 OrigNumExpansions,
5741 /*ExpectParameterPack=*/false);
5742 if (!NewParm)
5743 return true;
5744
5745 if (ParamInfos)
5746 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5747 OutParamTypes.push_back(NewParm->getType());
5748 if (PVars)
5749 PVars->push_back(NewParm);
5750 }
5751
5752 // The next parameter should have the same adjustment as the
5753 // last thing we pushed, but we post-incremented indexAdjustment
5754 // on every push. Also, if we push nothing, the adjustment should
5755 // go down by one.
5756 indexAdjustment--;
5757
5758 // We're done with the pack expansion.
5759 continue;
5760 }
5761
5762 // We'll substitute the parameter now without expanding the pack
5763 // expansion.
5764 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
5765 NewParm = getDerived().TransformFunctionTypeParam(OldParm,
5766 indexAdjustment,
5767 NumExpansions,
5768 /*ExpectParameterPack=*/true);
5769 assert(NewParm->isParameterPack() &&
5770 "Parameter pack no longer a parameter pack after "
5771 "transformation.");
5772 } else {
5773 NewParm = getDerived().TransformFunctionTypeParam(
5774 OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false);
5775 }
5776
5777 if (!NewParm)
5778 return true;
5779
5780 if (ParamInfos)
5781 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5782 OutParamTypes.push_back(NewParm->getType());
5783 if (PVars)
5784 PVars->push_back(NewParm);
5785 continue;
5786 }
5787
5788 // Deal with the possibility that we don't have a parameter
5789 // declaration for this parameter.
5790 QualType OldType = ParamTypes[i];
5791 bool IsPackExpansion = false;
5792 Optional<unsigned> NumExpansions;
5793 QualType NewType;
5794 if (const PackExpansionType *Expansion
5795 = dyn_cast<PackExpansionType>(OldType)) {
5796 // We have a function parameter pack that may need to be expanded.
5797 QualType Pattern = Expansion->getPattern();
5798 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
5799 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
5800
5801 // Determine whether we should expand the parameter packs.
5802 bool ShouldExpand = false;
5803 bool RetainExpansion = false;
5804 if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
5805 Unexpanded,
5806 ShouldExpand,
5807 RetainExpansion,
5808 NumExpansions)) {
5809 return true;
5810 }
5811
5812 if (ShouldExpand) {
5813 // Expand the function parameter pack into multiple, separate
5814 // parameters.
5815 for (unsigned I = 0; I != *NumExpansions; ++I) {
5816 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
5817 QualType NewType = getDerived().TransformType(Pattern);
5818 if (NewType.isNull())
5819 return true;
5820
5821 if (NewType->containsUnexpandedParameterPack()) {
5822 NewType =
5823 getSema().getASTContext().getPackExpansionType(NewType, None);
5824
5825 if (NewType.isNull())
5826 return true;
5827 }
5828
5829 if (ParamInfos)
5830 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5831 OutParamTypes.push_back(NewType);
5832 if (PVars)
5833 PVars->push_back(nullptr);
5834 }
5835
5836 // We're done with the pack expansion.
5837 continue;
5838 }
5839
5840 // If we're supposed to retain a pack expansion, do so by temporarily
5841 // forgetting the partially-substituted parameter pack.
5842 if (RetainExpansion) {
5843 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
5844 QualType NewType = getDerived().TransformType(Pattern);
5845 if (NewType.isNull())
5846 return true;
5847
5848 if (ParamInfos)
5849 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5850 OutParamTypes.push_back(NewType);
5851 if (PVars)
5852 PVars->push_back(nullptr);
5853 }
5854
5855 // We'll substitute the parameter now without expanding the pack
5856 // expansion.
5857 OldType = Expansion->getPattern();
5858 IsPackExpansion = true;
5859 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
5860 NewType = getDerived().TransformType(OldType);
5861 } else {
5862 NewType = getDerived().TransformType(OldType);
5863 }
5864
5865 if (NewType.isNull())
5866 return true;
5867
5868 if (IsPackExpansion)
5869 NewType = getSema().Context.getPackExpansionType(NewType,
5870 NumExpansions);
5871
5872 if (ParamInfos)
5873 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5874 OutParamTypes.push_back(NewType);
5875 if (PVars)
5876 PVars->push_back(nullptr);
5877 }
5878
5879 #ifndef NDEBUG
5880 if (PVars) {
5881 for (unsigned i = 0, e = PVars->size(); i != e; ++i)
5882 if (ParmVarDecl *parm = (*PVars)[i])
5883 assert(parm->getFunctionScopeIndex() == i);
5884 }
5885 #endif
5886
5887 return false;
5888 }
5889
5890 template<typename Derived>
5891 QualType
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL)5892 TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
5893 FunctionProtoTypeLoc TL) {
5894 SmallVector<QualType, 4> ExceptionStorage;
5895 TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
5896 return getDerived().TransformFunctionProtoType(
5897 TLB, TL, nullptr, Qualifiers(),
5898 [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
5899 return This->getDerived().TransformExceptionSpec(
5900 TL.getBeginLoc(), ESI, ExceptionStorage, Changed);
5901 });
5902 }
5903
5904 template<typename Derived> template<typename Fn>
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL,CXXRecordDecl * ThisContext,Qualifiers ThisTypeQuals,Fn TransformExceptionSpec)5905 QualType TreeTransform<Derived>::TransformFunctionProtoType(
5906 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext,
5907 Qualifiers ThisTypeQuals, Fn TransformExceptionSpec) {
5908
5909 // Transform the parameters and return type.
5910 //
5911 // We are required to instantiate the params and return type in source order.
5912 // When the function has a trailing return type, we instantiate the
5913 // parameters before the return type, since the return type can then refer
5914 // to the parameters themselves (via decltype, sizeof, etc.).
5915 //
5916 SmallVector<QualType, 4> ParamTypes;
5917 SmallVector<ParmVarDecl*, 4> ParamDecls;
5918 Sema::ExtParameterInfoBuilder ExtParamInfos;
5919 const FunctionProtoType *T = TL.getTypePtr();
5920
5921 QualType ResultType;
5922
5923 if (T->hasTrailingReturn()) {
5924 if (getDerived().TransformFunctionTypeParams(
5925 TL.getBeginLoc(), TL.getParams(),
5926 TL.getTypePtr()->param_type_begin(),
5927 T->getExtParameterInfosOrNull(),
5928 ParamTypes, &ParamDecls, ExtParamInfos))
5929 return QualType();
5930
5931 {
5932 // C++11 [expr.prim.general]p3:
5933 // If a declaration declares a member function or member function
5934 // template of a class X, the expression this is a prvalue of type
5935 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5936 // and the end of the function-definition, member-declarator, or
5937 // declarator.
5938 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals);
5939
5940 ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
5941 if (ResultType.isNull())
5942 return QualType();
5943 }
5944 }
5945 else {
5946 ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
5947 if (ResultType.isNull())
5948 return QualType();
5949
5950 if (getDerived().TransformFunctionTypeParams(
5951 TL.getBeginLoc(), TL.getParams(),
5952 TL.getTypePtr()->param_type_begin(),
5953 T->getExtParameterInfosOrNull(),
5954 ParamTypes, &ParamDecls, ExtParamInfos))
5955 return QualType();
5956 }
5957
5958 FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo();
5959
5960 bool EPIChanged = false;
5961 if (TransformExceptionSpec(EPI.ExceptionSpec, EPIChanged))
5962 return QualType();
5963
5964 // Handle extended parameter information.
5965 if (auto NewExtParamInfos =
5966 ExtParamInfos.getPointerOrNull(ParamTypes.size())) {
5967 if (!EPI.ExtParameterInfos ||
5968 llvm::makeArrayRef(EPI.ExtParameterInfos, TL.getNumParams())
5969 != llvm::makeArrayRef(NewExtParamInfos, ParamTypes.size())) {
5970 EPIChanged = true;
5971 }
5972 EPI.ExtParameterInfos = NewExtParamInfos;
5973 } else if (EPI.ExtParameterInfos) {
5974 EPIChanged = true;
5975 EPI.ExtParameterInfos = nullptr;
5976 }
5977
5978 QualType Result = TL.getType();
5979 if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() ||
5980 T->getParamTypes() != llvm::makeArrayRef(ParamTypes) || EPIChanged) {
5981 Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, EPI);
5982 if (Result.isNull())
5983 return QualType();
5984 }
5985
5986 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
5987 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
5988 NewTL.setLParenLoc(TL.getLParenLoc());
5989 NewTL.setRParenLoc(TL.getRParenLoc());
5990 NewTL.setExceptionSpecRange(TL.getExceptionSpecRange());
5991 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
5992 for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i)
5993 NewTL.setParam(i, ParamDecls[i]);
5994
5995 return Result;
5996 }
5997
5998 template<typename Derived>
TransformExceptionSpec(SourceLocation Loc,FunctionProtoType::ExceptionSpecInfo & ESI,SmallVectorImpl<QualType> & Exceptions,bool & Changed)5999 bool TreeTransform<Derived>::TransformExceptionSpec(
6000 SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI,
6001 SmallVectorImpl<QualType> &Exceptions, bool &Changed) {
6002 assert(ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated);
6003
6004 // Instantiate a dynamic noexcept expression, if any.
6005 if (isComputedNoexcept(ESI.Type)) {
6006 EnterExpressionEvaluationContext Unevaluated(
6007 getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated);
6008 ExprResult NoexceptExpr = getDerived().TransformExpr(ESI.NoexceptExpr);
6009 if (NoexceptExpr.isInvalid())
6010 return true;
6011
6012 ExceptionSpecificationType EST = ESI.Type;
6013 NoexceptExpr =
6014 getSema().ActOnNoexceptSpec(NoexceptExpr.get(), EST);
6015 if (NoexceptExpr.isInvalid())
6016 return true;
6017
6018 if (ESI.NoexceptExpr != NoexceptExpr.get() || EST != ESI.Type)
6019 Changed = true;
6020 ESI.NoexceptExpr = NoexceptExpr.get();
6021 ESI.Type = EST;
6022 }
6023
6024 if (ESI.Type != EST_Dynamic)
6025 return false;
6026
6027 // Instantiate a dynamic exception specification's type.
6028 for (QualType T : ESI.Exceptions) {
6029 if (const PackExpansionType *PackExpansion =
6030 T->getAs<PackExpansionType>()) {
6031 Changed = true;
6032
6033 // We have a pack expansion. Instantiate it.
6034 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
6035 SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
6036 Unexpanded);
6037 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
6038
6039 // Determine whether the set of unexpanded parameter packs can and
6040 // should
6041 // be expanded.
6042 bool Expand = false;
6043 bool RetainExpansion = false;
6044 Optional<unsigned> NumExpansions = PackExpansion->getNumExpansions();
6045 // FIXME: Track the location of the ellipsis (and track source location
6046 // information for the types in the exception specification in general).
6047 if (getDerived().TryExpandParameterPacks(
6048 Loc, SourceRange(), Unexpanded, Expand,
6049 RetainExpansion, NumExpansions))
6050 return true;
6051
6052 if (!Expand) {
6053 // We can't expand this pack expansion into separate arguments yet;
6054 // just substitute into the pattern and create a new pack expansion
6055 // type.
6056 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
6057 QualType U = getDerived().TransformType(PackExpansion->getPattern());
6058 if (U.isNull())
6059 return true;
6060
6061 U = SemaRef.Context.getPackExpansionType(U, NumExpansions);
6062 Exceptions.push_back(U);
6063 continue;
6064 }
6065
6066 // Substitute into the pack expansion pattern for each slice of the
6067 // pack.
6068 for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
6069 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx);
6070
6071 QualType U = getDerived().TransformType(PackExpansion->getPattern());
6072 if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
6073 return true;
6074
6075 Exceptions.push_back(U);
6076 }
6077 } else {
6078 QualType U = getDerived().TransformType(T);
6079 if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
6080 return true;
6081 if (T != U)
6082 Changed = true;
6083
6084 Exceptions.push_back(U);
6085 }
6086 }
6087
6088 ESI.Exceptions = Exceptions;
6089 if (ESI.Exceptions.empty())
6090 ESI.Type = EST_DynamicNone;
6091 return false;
6092 }
6093
6094 template<typename Derived>
TransformFunctionNoProtoType(TypeLocBuilder & TLB,FunctionNoProtoTypeLoc TL)6095 QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
6096 TypeLocBuilder &TLB,
6097 FunctionNoProtoTypeLoc TL) {
6098 const FunctionNoProtoType *T = TL.getTypePtr();
6099 QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
6100 if (ResultType.isNull())
6101 return QualType();
6102
6103 QualType Result = TL.getType();
6104 if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType())
6105 Result = getDerived().RebuildFunctionNoProtoType(ResultType);
6106
6107 FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
6108 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
6109 NewTL.setLParenLoc(TL.getLParenLoc());
6110 NewTL.setRParenLoc(TL.getRParenLoc());
6111 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
6112
6113 return Result;
6114 }
6115
6116 template <typename Derived>
TransformUnresolvedUsingType(TypeLocBuilder & TLB,UnresolvedUsingTypeLoc TL)6117 QualType TreeTransform<Derived>::TransformUnresolvedUsingType(
6118 TypeLocBuilder &TLB, UnresolvedUsingTypeLoc TL) {
6119 const UnresolvedUsingType *T = TL.getTypePtr();
6120 Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
6121 if (!D)
6122 return QualType();
6123
6124 QualType Result = TL.getType();
6125 if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
6126 Result = getDerived().RebuildUnresolvedUsingType(TL.getNameLoc(), D);
6127 if (Result.isNull())
6128 return QualType();
6129 }
6130
6131 // We might get an arbitrary type spec type back. We should at
6132 // least always get a type spec type, though.
6133 TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
6134 NewTL.setNameLoc(TL.getNameLoc());
6135
6136 return Result;
6137 }
6138
6139 template <typename Derived>
TransformUsingType(TypeLocBuilder & TLB,UsingTypeLoc TL)6140 QualType TreeTransform<Derived>::TransformUsingType(TypeLocBuilder &TLB,
6141 UsingTypeLoc TL) {
6142 const UsingType *T = TL.getTypePtr();
6143
6144 auto *Found = cast_or_null<UsingShadowDecl>(getDerived().TransformDecl(
6145 TL.getLocalSourceRange().getBegin(), T->getFoundDecl()));
6146 if (!Found)
6147 return QualType();
6148
6149 QualType Underlying = getDerived().TransformType(T->desugar());
6150 if (Underlying.isNull())
6151 return QualType();
6152
6153 QualType Result = TL.getType();
6154 if (getDerived().AlwaysRebuild() || Found != T->getFoundDecl() ||
6155 Underlying != T->getUnderlyingType()) {
6156 Result = getDerived().RebuildUsingType(Found, Underlying);
6157 if (Result.isNull())
6158 return QualType();
6159 }
6160
6161 TLB.pushTypeSpec(Result).setNameLoc(TL.getNameLoc());
6162 return Result;
6163 }
6164
6165 template<typename Derived>
TransformTypedefType(TypeLocBuilder & TLB,TypedefTypeLoc TL)6166 QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
6167 TypedefTypeLoc TL) {
6168 const TypedefType *T = TL.getTypePtr();
6169 TypedefNameDecl *Typedef
6170 = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
6171 T->getDecl()));
6172 if (!Typedef)
6173 return QualType();
6174
6175 QualType Result = TL.getType();
6176 if (getDerived().AlwaysRebuild() ||
6177 Typedef != T->getDecl()) {
6178 Result = getDerived().RebuildTypedefType(Typedef);
6179 if (Result.isNull())
6180 return QualType();
6181 }
6182
6183 TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
6184 NewTL.setNameLoc(TL.getNameLoc());
6185
6186 return Result;
6187 }
6188
6189 template<typename Derived>
TransformTypeOfExprType(TypeLocBuilder & TLB,TypeOfExprTypeLoc TL)6190 QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
6191 TypeOfExprTypeLoc TL) {
6192 // typeof expressions are not potentially evaluated contexts
6193 EnterExpressionEvaluationContext Unevaluated(
6194 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
6195 Sema::ReuseLambdaContextDecl);
6196
6197 ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
6198 if (E.isInvalid())
6199 return QualType();
6200
6201 E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
6202 if (E.isInvalid())
6203 return QualType();
6204
6205 QualType Result = TL.getType();
6206 if (getDerived().AlwaysRebuild() ||
6207 E.get() != TL.getUnderlyingExpr()) {
6208 Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
6209 if (Result.isNull())
6210 return QualType();
6211 }
6212 else E.get();
6213
6214 TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
6215 NewTL.setTypeofLoc(TL.getTypeofLoc());
6216 NewTL.setLParenLoc(TL.getLParenLoc());
6217 NewTL.setRParenLoc(TL.getRParenLoc());
6218
6219 return Result;
6220 }
6221
6222 template<typename Derived>
TransformTypeOfType(TypeLocBuilder & TLB,TypeOfTypeLoc TL)6223 QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
6224 TypeOfTypeLoc TL) {
6225 TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
6226 TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
6227 if (!New_Under_TI)
6228 return QualType();
6229
6230 QualType Result = TL.getType();
6231 if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
6232 Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
6233 if (Result.isNull())
6234 return QualType();
6235 }
6236
6237 TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
6238 NewTL.setTypeofLoc(TL.getTypeofLoc());
6239 NewTL.setLParenLoc(TL.getLParenLoc());
6240 NewTL.setRParenLoc(TL.getRParenLoc());
6241 NewTL.setUnderlyingTInfo(New_Under_TI);
6242
6243 return Result;
6244 }
6245
6246 template<typename Derived>
TransformDecltypeType(TypeLocBuilder & TLB,DecltypeTypeLoc TL)6247 QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
6248 DecltypeTypeLoc TL) {
6249 const DecltypeType *T = TL.getTypePtr();
6250
6251 // decltype expressions are not potentially evaluated contexts
6252 EnterExpressionEvaluationContext Unevaluated(
6253 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, nullptr,
6254 Sema::ExpressionEvaluationContextRecord::EK_Decltype);
6255
6256 ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
6257 if (E.isInvalid())
6258 return QualType();
6259
6260 E = getSema().ActOnDecltypeExpression(E.get());
6261 if (E.isInvalid())
6262 return QualType();
6263
6264 QualType Result = TL.getType();
6265 if (getDerived().AlwaysRebuild() ||
6266 E.get() != T->getUnderlyingExpr()) {
6267 Result = getDerived().RebuildDecltypeType(E.get(), TL.getDecltypeLoc());
6268 if (Result.isNull())
6269 return QualType();
6270 }
6271 else E.get();
6272
6273 DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
6274 NewTL.setDecltypeLoc(TL.getDecltypeLoc());
6275 NewTL.setRParenLoc(TL.getRParenLoc());
6276 return Result;
6277 }
6278
6279 template<typename Derived>
TransformUnaryTransformType(TypeLocBuilder & TLB,UnaryTransformTypeLoc TL)6280 QualType TreeTransform<Derived>::TransformUnaryTransformType(
6281 TypeLocBuilder &TLB,
6282 UnaryTransformTypeLoc TL) {
6283 QualType Result = TL.getType();
6284 if (Result->isDependentType()) {
6285 const UnaryTransformType *T = TL.getTypePtr();
6286 QualType NewBase =
6287 getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
6288 Result = getDerived().RebuildUnaryTransformType(NewBase,
6289 T->getUTTKind(),
6290 TL.getKWLoc());
6291 if (Result.isNull())
6292 return QualType();
6293 }
6294
6295 UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
6296 NewTL.setKWLoc(TL.getKWLoc());
6297 NewTL.setParensRange(TL.getParensRange());
6298 NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
6299 return Result;
6300 }
6301
6302 template<typename Derived>
TransformDeducedTemplateSpecializationType(TypeLocBuilder & TLB,DeducedTemplateSpecializationTypeLoc TL)6303 QualType TreeTransform<Derived>::TransformDeducedTemplateSpecializationType(
6304 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
6305 const DeducedTemplateSpecializationType *T = TL.getTypePtr();
6306
6307 CXXScopeSpec SS;
6308 TemplateName TemplateName = getDerived().TransformTemplateName(
6309 SS, T->getTemplateName(), TL.getTemplateNameLoc());
6310 if (TemplateName.isNull())
6311 return QualType();
6312
6313 QualType OldDeduced = T->getDeducedType();
6314 QualType NewDeduced;
6315 if (!OldDeduced.isNull()) {
6316 NewDeduced = getDerived().TransformType(OldDeduced);
6317 if (NewDeduced.isNull())
6318 return QualType();
6319 }
6320
6321 QualType Result = getDerived().RebuildDeducedTemplateSpecializationType(
6322 TemplateName, NewDeduced);
6323 if (Result.isNull())
6324 return QualType();
6325
6326 DeducedTemplateSpecializationTypeLoc NewTL =
6327 TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
6328 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6329
6330 return Result;
6331 }
6332
6333 template<typename Derived>
TransformRecordType(TypeLocBuilder & TLB,RecordTypeLoc TL)6334 QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
6335 RecordTypeLoc TL) {
6336 const RecordType *T = TL.getTypePtr();
6337 RecordDecl *Record
6338 = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
6339 T->getDecl()));
6340 if (!Record)
6341 return QualType();
6342
6343 QualType Result = TL.getType();
6344 if (getDerived().AlwaysRebuild() ||
6345 Record != T->getDecl()) {
6346 Result = getDerived().RebuildRecordType(Record);
6347 if (Result.isNull())
6348 return QualType();
6349 }
6350
6351 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
6352 NewTL.setNameLoc(TL.getNameLoc());
6353
6354 return Result;
6355 }
6356
6357 template<typename Derived>
TransformEnumType(TypeLocBuilder & TLB,EnumTypeLoc TL)6358 QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
6359 EnumTypeLoc TL) {
6360 const EnumType *T = TL.getTypePtr();
6361 EnumDecl *Enum
6362 = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
6363 T->getDecl()));
6364 if (!Enum)
6365 return QualType();
6366
6367 QualType Result = TL.getType();
6368 if (getDerived().AlwaysRebuild() ||
6369 Enum != T->getDecl()) {
6370 Result = getDerived().RebuildEnumType(Enum);
6371 if (Result.isNull())
6372 return QualType();
6373 }
6374
6375 EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
6376 NewTL.setNameLoc(TL.getNameLoc());
6377
6378 return Result;
6379 }
6380
6381 template<typename Derived>
TransformInjectedClassNameType(TypeLocBuilder & TLB,InjectedClassNameTypeLoc TL)6382 QualType TreeTransform<Derived>::TransformInjectedClassNameType(
6383 TypeLocBuilder &TLB,
6384 InjectedClassNameTypeLoc TL) {
6385 Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
6386 TL.getTypePtr()->getDecl());
6387 if (!D) return QualType();
6388
6389 QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
6390 TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
6391 return T;
6392 }
6393
6394 template<typename Derived>
TransformTemplateTypeParmType(TypeLocBuilder & TLB,TemplateTypeParmTypeLoc TL)6395 QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
6396 TypeLocBuilder &TLB,
6397 TemplateTypeParmTypeLoc TL) {
6398 return TransformTypeSpecType(TLB, TL);
6399 }
6400
6401 template<typename Derived>
TransformSubstTemplateTypeParmType(TypeLocBuilder & TLB,SubstTemplateTypeParmTypeLoc TL)6402 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
6403 TypeLocBuilder &TLB,
6404 SubstTemplateTypeParmTypeLoc TL) {
6405 const SubstTemplateTypeParmType *T = TL.getTypePtr();
6406
6407 // Substitute into the replacement type, which itself might involve something
6408 // that needs to be transformed. This only tends to occur with default
6409 // template arguments of template template parameters.
6410 TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
6411 QualType Replacement = getDerived().TransformType(T->getReplacementType());
6412 if (Replacement.isNull())
6413 return QualType();
6414
6415 // Always canonicalize the replacement type.
6416 Replacement = SemaRef.Context.getCanonicalType(Replacement);
6417 QualType Result
6418 = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
6419 Replacement);
6420
6421 // Propagate type-source information.
6422 SubstTemplateTypeParmTypeLoc NewTL
6423 = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
6424 NewTL.setNameLoc(TL.getNameLoc());
6425 return Result;
6426
6427 }
6428
6429 template<typename Derived>
TransformSubstTemplateTypeParmPackType(TypeLocBuilder & TLB,SubstTemplateTypeParmPackTypeLoc TL)6430 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
6431 TypeLocBuilder &TLB,
6432 SubstTemplateTypeParmPackTypeLoc TL) {
6433 return TransformTypeSpecType(TLB, TL);
6434 }
6435
6436 template<typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL)6437 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
6438 TypeLocBuilder &TLB,
6439 TemplateSpecializationTypeLoc TL) {
6440 const TemplateSpecializationType *T = TL.getTypePtr();
6441
6442 // The nested-name-specifier never matters in a TemplateSpecializationType,
6443 // because we can't have a dependent nested-name-specifier anyway.
6444 CXXScopeSpec SS;
6445 TemplateName Template
6446 = getDerived().TransformTemplateName(SS, T->getTemplateName(),
6447 TL.getTemplateNameLoc());
6448 if (Template.isNull())
6449 return QualType();
6450
6451 return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
6452 }
6453
6454 template<typename Derived>
TransformAtomicType(TypeLocBuilder & TLB,AtomicTypeLoc TL)6455 QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
6456 AtomicTypeLoc TL) {
6457 QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
6458 if (ValueType.isNull())
6459 return QualType();
6460
6461 QualType Result = TL.getType();
6462 if (getDerived().AlwaysRebuild() ||
6463 ValueType != TL.getValueLoc().getType()) {
6464 Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
6465 if (Result.isNull())
6466 return QualType();
6467 }
6468
6469 AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
6470 NewTL.setKWLoc(TL.getKWLoc());
6471 NewTL.setLParenLoc(TL.getLParenLoc());
6472 NewTL.setRParenLoc(TL.getRParenLoc());
6473
6474 return Result;
6475 }
6476
6477 template <typename Derived>
TransformPipeType(TypeLocBuilder & TLB,PipeTypeLoc TL)6478 QualType TreeTransform<Derived>::TransformPipeType(TypeLocBuilder &TLB,
6479 PipeTypeLoc TL) {
6480 QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
6481 if (ValueType.isNull())
6482 return QualType();
6483
6484 QualType Result = TL.getType();
6485 if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) {
6486 const PipeType *PT = Result->castAs<PipeType>();
6487 bool isReadPipe = PT->isReadOnly();
6488 Result = getDerived().RebuildPipeType(ValueType, TL.getKWLoc(), isReadPipe);
6489 if (Result.isNull())
6490 return QualType();
6491 }
6492
6493 PipeTypeLoc NewTL = TLB.push<PipeTypeLoc>(Result);
6494 NewTL.setKWLoc(TL.getKWLoc());
6495
6496 return Result;
6497 }
6498
6499 template <typename Derived>
TransformBitIntType(TypeLocBuilder & TLB,BitIntTypeLoc TL)6500 QualType TreeTransform<Derived>::TransformBitIntType(TypeLocBuilder &TLB,
6501 BitIntTypeLoc TL) {
6502 const BitIntType *EIT = TL.getTypePtr();
6503 QualType Result = TL.getType();
6504
6505 if (getDerived().AlwaysRebuild()) {
6506 Result = getDerived().RebuildBitIntType(EIT->isUnsigned(),
6507 EIT->getNumBits(), TL.getNameLoc());
6508 if (Result.isNull())
6509 return QualType();
6510 }
6511
6512 BitIntTypeLoc NewTL = TLB.push<BitIntTypeLoc>(Result);
6513 NewTL.setNameLoc(TL.getNameLoc());
6514 return Result;
6515 }
6516
6517 template <typename Derived>
TransformDependentBitIntType(TypeLocBuilder & TLB,DependentBitIntTypeLoc TL)6518 QualType TreeTransform<Derived>::TransformDependentBitIntType(
6519 TypeLocBuilder &TLB, DependentBitIntTypeLoc TL) {
6520 const DependentBitIntType *EIT = TL.getTypePtr();
6521
6522 EnterExpressionEvaluationContext Unevaluated(
6523 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6524 ExprResult BitsExpr = getDerived().TransformExpr(EIT->getNumBitsExpr());
6525 BitsExpr = SemaRef.ActOnConstantExpression(BitsExpr);
6526
6527 if (BitsExpr.isInvalid())
6528 return QualType();
6529
6530 QualType Result = TL.getType();
6531
6532 if (getDerived().AlwaysRebuild() || BitsExpr.get() != EIT->getNumBitsExpr()) {
6533 Result = getDerived().RebuildDependentBitIntType(
6534 EIT->isUnsigned(), BitsExpr.get(), TL.getNameLoc());
6535
6536 if (Result.isNull())
6537 return QualType();
6538 }
6539
6540 if (isa<DependentBitIntType>(Result)) {
6541 DependentBitIntTypeLoc NewTL = TLB.push<DependentBitIntTypeLoc>(Result);
6542 NewTL.setNameLoc(TL.getNameLoc());
6543 } else {
6544 BitIntTypeLoc NewTL = TLB.push<BitIntTypeLoc>(Result);
6545 NewTL.setNameLoc(TL.getNameLoc());
6546 }
6547 return Result;
6548 }
6549
6550 /// Simple iterator that traverses the template arguments in a
6551 /// container that provides a \c getArgLoc() member function.
6552 ///
6553 /// This iterator is intended to be used with the iterator form of
6554 /// \c TreeTransform<Derived>::TransformTemplateArguments().
6555 template<typename ArgLocContainer>
6556 class TemplateArgumentLocContainerIterator {
6557 ArgLocContainer *Container;
6558 unsigned Index;
6559
6560 public:
6561 typedef TemplateArgumentLoc value_type;
6562 typedef TemplateArgumentLoc reference;
6563 typedef int difference_type;
6564 typedef std::input_iterator_tag iterator_category;
6565
6566 class pointer {
6567 TemplateArgumentLoc Arg;
6568
6569 public:
pointer(TemplateArgumentLoc Arg)6570 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
6571
6572 const TemplateArgumentLoc *operator->() const {
6573 return &Arg;
6574 }
6575 };
6576
6577
TemplateArgumentLocContainerIterator()6578 TemplateArgumentLocContainerIterator() {}
6579
TemplateArgumentLocContainerIterator(ArgLocContainer & Container,unsigned Index)6580 TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
6581 unsigned Index)
6582 : Container(&Container), Index(Index) { }
6583
6584 TemplateArgumentLocContainerIterator &operator++() {
6585 ++Index;
6586 return *this;
6587 }
6588
6589 TemplateArgumentLocContainerIterator operator++(int) {
6590 TemplateArgumentLocContainerIterator Old(*this);
6591 ++(*this);
6592 return Old;
6593 }
6594
6595 TemplateArgumentLoc operator*() const {
6596 return Container->getArgLoc(Index);
6597 }
6598
6599 pointer operator->() const {
6600 return pointer(Container->getArgLoc(Index));
6601 }
6602
6603 friend bool operator==(const TemplateArgumentLocContainerIterator &X,
6604 const TemplateArgumentLocContainerIterator &Y) {
6605 return X.Container == Y.Container && X.Index == Y.Index;
6606 }
6607
6608 friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
6609 const TemplateArgumentLocContainerIterator &Y) {
6610 return !(X == Y);
6611 }
6612 };
6613
6614 template<typename Derived>
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)6615 QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
6616 AutoTypeLoc TL) {
6617 const AutoType *T = TL.getTypePtr();
6618 QualType OldDeduced = T->getDeducedType();
6619 QualType NewDeduced;
6620 if (!OldDeduced.isNull()) {
6621 NewDeduced = getDerived().TransformType(OldDeduced);
6622 if (NewDeduced.isNull())
6623 return QualType();
6624 }
6625
6626 ConceptDecl *NewCD = nullptr;
6627 TemplateArgumentListInfo NewTemplateArgs;
6628 NestedNameSpecifierLoc NewNestedNameSpec;
6629 if (T->isConstrained()) {
6630 NewCD = cast_or_null<ConceptDecl>(getDerived().TransformDecl(
6631 TL.getConceptNameLoc(), T->getTypeConstraintConcept()));
6632
6633 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6634 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6635 typedef TemplateArgumentLocContainerIterator<AutoTypeLoc> ArgIterator;
6636 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6637 ArgIterator(TL,
6638 TL.getNumArgs()),
6639 NewTemplateArgs))
6640 return QualType();
6641
6642 if (TL.getNestedNameSpecifierLoc()) {
6643 NewNestedNameSpec
6644 = getDerived().TransformNestedNameSpecifierLoc(
6645 TL.getNestedNameSpecifierLoc());
6646 if (!NewNestedNameSpec)
6647 return QualType();
6648 }
6649 }
6650
6651 QualType Result = TL.getType();
6652 if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
6653 T->isDependentType() || T->isConstrained()) {
6654 // FIXME: Maybe don't rebuild if all template arguments are the same.
6655 llvm::SmallVector<TemplateArgument, 4> NewArgList;
6656 NewArgList.reserve(NewTemplateArgs.size());
6657 for (const auto &ArgLoc : NewTemplateArgs.arguments())
6658 NewArgList.push_back(ArgLoc.getArgument());
6659 Result = getDerived().RebuildAutoType(NewDeduced, T->getKeyword(), NewCD,
6660 NewArgList);
6661 if (Result.isNull())
6662 return QualType();
6663 }
6664
6665 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
6666 NewTL.setNameLoc(TL.getNameLoc());
6667 NewTL.setNestedNameSpecifierLoc(NewNestedNameSpec);
6668 NewTL.setTemplateKWLoc(TL.getTemplateKWLoc());
6669 NewTL.setConceptNameLoc(TL.getConceptNameLoc());
6670 NewTL.setFoundDecl(TL.getFoundDecl());
6671 NewTL.setLAngleLoc(TL.getLAngleLoc());
6672 NewTL.setRAngleLoc(TL.getRAngleLoc());
6673 NewTL.setRParenLoc(TL.getRParenLoc());
6674 for (unsigned I = 0; I < NewTL.getNumArgs(); ++I)
6675 NewTL.setArgLocInfo(I, NewTemplateArgs.arguments()[I].getLocInfo());
6676
6677 return Result;
6678 }
6679
6680 template <typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL,TemplateName Template)6681 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
6682 TypeLocBuilder &TLB,
6683 TemplateSpecializationTypeLoc TL,
6684 TemplateName Template) {
6685 TemplateArgumentListInfo NewTemplateArgs;
6686 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6687 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6688 typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
6689 ArgIterator;
6690 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6691 ArgIterator(TL, TL.getNumArgs()),
6692 NewTemplateArgs))
6693 return QualType();
6694
6695 // FIXME: maybe don't rebuild if all the template arguments are the same.
6696
6697 QualType Result =
6698 getDerived().RebuildTemplateSpecializationType(Template,
6699 TL.getTemplateNameLoc(),
6700 NewTemplateArgs);
6701
6702 if (!Result.isNull()) {
6703 // Specializations of template template parameters are represented as
6704 // TemplateSpecializationTypes, and substitution of type alias templates
6705 // within a dependent context can transform them into
6706 // DependentTemplateSpecializationTypes.
6707 if (isa<DependentTemplateSpecializationType>(Result)) {
6708 DependentTemplateSpecializationTypeLoc NewTL
6709 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
6710 NewTL.setElaboratedKeywordLoc(SourceLocation());
6711 NewTL.setQualifierLoc(NestedNameSpecifierLoc());
6712 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6713 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6714 NewTL.setLAngleLoc(TL.getLAngleLoc());
6715 NewTL.setRAngleLoc(TL.getRAngleLoc());
6716 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6717 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6718 return Result;
6719 }
6720
6721 TemplateSpecializationTypeLoc NewTL
6722 = TLB.push<TemplateSpecializationTypeLoc>(Result);
6723 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6724 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6725 NewTL.setLAngleLoc(TL.getLAngleLoc());
6726 NewTL.setRAngleLoc(TL.getRAngleLoc());
6727 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6728 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6729 }
6730
6731 return Result;
6732 }
6733
6734 template <typename Derived>
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,TemplateName Template,CXXScopeSpec & SS)6735 QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
6736 TypeLocBuilder &TLB,
6737 DependentTemplateSpecializationTypeLoc TL,
6738 TemplateName Template,
6739 CXXScopeSpec &SS) {
6740 TemplateArgumentListInfo NewTemplateArgs;
6741 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6742 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6743 typedef TemplateArgumentLocContainerIterator<
6744 DependentTemplateSpecializationTypeLoc> ArgIterator;
6745 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6746 ArgIterator(TL, TL.getNumArgs()),
6747 NewTemplateArgs))
6748 return QualType();
6749
6750 // FIXME: maybe don't rebuild if all the template arguments are the same.
6751
6752 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6753 QualType Result
6754 = getSema().Context.getDependentTemplateSpecializationType(
6755 TL.getTypePtr()->getKeyword(),
6756 DTN->getQualifier(),
6757 DTN->getIdentifier(),
6758 NewTemplateArgs);
6759
6760 DependentTemplateSpecializationTypeLoc NewTL
6761 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
6762 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6763 NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
6764 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6765 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6766 NewTL.setLAngleLoc(TL.getLAngleLoc());
6767 NewTL.setRAngleLoc(TL.getRAngleLoc());
6768 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6769 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6770 return Result;
6771 }
6772
6773 QualType Result
6774 = getDerived().RebuildTemplateSpecializationType(Template,
6775 TL.getTemplateNameLoc(),
6776 NewTemplateArgs);
6777
6778 if (!Result.isNull()) {
6779 /// FIXME: Wrap this in an elaborated-type-specifier?
6780 TemplateSpecializationTypeLoc NewTL
6781 = TLB.push<TemplateSpecializationTypeLoc>(Result);
6782 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6783 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6784 NewTL.setLAngleLoc(TL.getLAngleLoc());
6785 NewTL.setRAngleLoc(TL.getRAngleLoc());
6786 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6787 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6788 }
6789
6790 return Result;
6791 }
6792
6793 template<typename Derived>
6794 QualType
TransformElaboratedType(TypeLocBuilder & TLB,ElaboratedTypeLoc TL)6795 TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
6796 ElaboratedTypeLoc TL) {
6797 const ElaboratedType *T = TL.getTypePtr();
6798
6799 NestedNameSpecifierLoc QualifierLoc;
6800 // NOTE: the qualifier in an ElaboratedType is optional.
6801 if (TL.getQualifierLoc()) {
6802 QualifierLoc
6803 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
6804 if (!QualifierLoc)
6805 return QualType();
6806 }
6807
6808 QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
6809 if (NamedT.isNull())
6810 return QualType();
6811
6812 // C++0x [dcl.type.elab]p2:
6813 // If the identifier resolves to a typedef-name or the simple-template-id
6814 // resolves to an alias template specialization, the
6815 // elaborated-type-specifier is ill-formed.
6816 if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
6817 if (const TemplateSpecializationType *TST =
6818 NamedT->getAs<TemplateSpecializationType>()) {
6819 TemplateName Template = TST->getTemplateName();
6820 if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null<TypeAliasTemplateDecl>(
6821 Template.getAsTemplateDecl())) {
6822 SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
6823 diag::err_tag_reference_non_tag)
6824 << TAT << Sema::NTK_TypeAliasTemplate
6825 << ElaboratedType::getTagTypeKindForKeyword(T->getKeyword());
6826 SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
6827 }
6828 }
6829 }
6830
6831 QualType Result = TL.getType();
6832 if (getDerived().AlwaysRebuild() ||
6833 QualifierLoc != TL.getQualifierLoc() ||
6834 NamedT != T->getNamedType()) {
6835 Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
6836 T->getKeyword(),
6837 QualifierLoc, NamedT);
6838 if (Result.isNull())
6839 return QualType();
6840 }
6841
6842 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
6843 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6844 NewTL.setQualifierLoc(QualifierLoc);
6845 return Result;
6846 }
6847
6848 template<typename Derived>
TransformAttributedType(TypeLocBuilder & TLB,AttributedTypeLoc TL)6849 QualType TreeTransform<Derived>::TransformAttributedType(
6850 TypeLocBuilder &TLB,
6851 AttributedTypeLoc TL) {
6852 const AttributedType *oldType = TL.getTypePtr();
6853 QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
6854 if (modifiedType.isNull())
6855 return QualType();
6856
6857 // oldAttr can be null if we started with a QualType rather than a TypeLoc.
6858 const Attr *oldAttr = TL.getAttr();
6859 const Attr *newAttr = oldAttr ? getDerived().TransformAttr(oldAttr) : nullptr;
6860 if (oldAttr && !newAttr)
6861 return QualType();
6862
6863 QualType result = TL.getType();
6864
6865 // FIXME: dependent operand expressions?
6866 if (getDerived().AlwaysRebuild() ||
6867 modifiedType != oldType->getModifiedType()) {
6868 // TODO: this is really lame; we should really be rebuilding the
6869 // equivalent type from first principles.
6870 QualType equivalentType
6871 = getDerived().TransformType(oldType->getEquivalentType());
6872 if (equivalentType.isNull())
6873 return QualType();
6874
6875 // Check whether we can add nullability; it is only represented as
6876 // type sugar, and therefore cannot be diagnosed in any other way.
6877 if (auto nullability = oldType->getImmediateNullability()) {
6878 if (!modifiedType->canHaveNullability()) {
6879 SemaRef.Diag(TL.getAttr()->getLocation(),
6880 diag::err_nullability_nonpointer)
6881 << DiagNullabilityKind(*nullability, false) << modifiedType;
6882 return QualType();
6883 }
6884 }
6885
6886 result = SemaRef.Context.getAttributedType(TL.getAttrKind(),
6887 modifiedType,
6888 equivalentType);
6889 }
6890
6891 AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
6892 newTL.setAttr(newAttr);
6893 return result;
6894 }
6895
6896 template <typename Derived>
TransformBTFTagAttributedType(TypeLocBuilder & TLB,BTFTagAttributedTypeLoc TL)6897 QualType TreeTransform<Derived>::TransformBTFTagAttributedType(
6898 TypeLocBuilder &TLB, BTFTagAttributedTypeLoc TL) {
6899 // The BTFTagAttributedType is available for C only.
6900 llvm_unreachable("Unexpected TreeTransform for BTFTagAttributedType");
6901 }
6902
6903 template<typename Derived>
6904 QualType
TransformParenType(TypeLocBuilder & TLB,ParenTypeLoc TL)6905 TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
6906 ParenTypeLoc TL) {
6907 QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
6908 if (Inner.isNull())
6909 return QualType();
6910
6911 QualType Result = TL.getType();
6912 if (getDerived().AlwaysRebuild() ||
6913 Inner != TL.getInnerLoc().getType()) {
6914 Result = getDerived().RebuildParenType(Inner);
6915 if (Result.isNull())
6916 return QualType();
6917 }
6918
6919 ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
6920 NewTL.setLParenLoc(TL.getLParenLoc());
6921 NewTL.setRParenLoc(TL.getRParenLoc());
6922 return Result;
6923 }
6924
6925 template <typename Derived>
6926 QualType
TransformMacroQualifiedType(TypeLocBuilder & TLB,MacroQualifiedTypeLoc TL)6927 TreeTransform<Derived>::TransformMacroQualifiedType(TypeLocBuilder &TLB,
6928 MacroQualifiedTypeLoc TL) {
6929 QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
6930 if (Inner.isNull())
6931 return QualType();
6932
6933 QualType Result = TL.getType();
6934 if (getDerived().AlwaysRebuild() || Inner != TL.getInnerLoc().getType()) {
6935 Result =
6936 getDerived().RebuildMacroQualifiedType(Inner, TL.getMacroIdentifier());
6937 if (Result.isNull())
6938 return QualType();
6939 }
6940
6941 MacroQualifiedTypeLoc NewTL = TLB.push<MacroQualifiedTypeLoc>(Result);
6942 NewTL.setExpansionLoc(TL.getExpansionLoc());
6943 return Result;
6944 }
6945
6946 template<typename Derived>
TransformDependentNameType(TypeLocBuilder & TLB,DependentNameTypeLoc TL)6947 QualType TreeTransform<Derived>::TransformDependentNameType(
6948 TypeLocBuilder &TLB, DependentNameTypeLoc TL) {
6949 return TransformDependentNameType(TLB, TL, false);
6950 }
6951
6952 template<typename Derived>
TransformDependentNameType(TypeLocBuilder & TLB,DependentNameTypeLoc TL,bool DeducedTSTContext)6953 QualType TreeTransform<Derived>::TransformDependentNameType(
6954 TypeLocBuilder &TLB, DependentNameTypeLoc TL, bool DeducedTSTContext) {
6955 const DependentNameType *T = TL.getTypePtr();
6956
6957 NestedNameSpecifierLoc QualifierLoc
6958 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
6959 if (!QualifierLoc)
6960 return QualType();
6961
6962 QualType Result
6963 = getDerived().RebuildDependentNameType(T->getKeyword(),
6964 TL.getElaboratedKeywordLoc(),
6965 QualifierLoc,
6966 T->getIdentifier(),
6967 TL.getNameLoc(),
6968 DeducedTSTContext);
6969 if (Result.isNull())
6970 return QualType();
6971
6972 if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
6973 QualType NamedT = ElabT->getNamedType();
6974 TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
6975
6976 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
6977 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6978 NewTL.setQualifierLoc(QualifierLoc);
6979 } else {
6980 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
6981 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6982 NewTL.setQualifierLoc(QualifierLoc);
6983 NewTL.setNameLoc(TL.getNameLoc());
6984 }
6985 return Result;
6986 }
6987
6988 template<typename Derived>
6989 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL)6990 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
6991 DependentTemplateSpecializationTypeLoc TL) {
6992 NestedNameSpecifierLoc QualifierLoc;
6993 if (TL.getQualifierLoc()) {
6994 QualifierLoc
6995 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
6996 if (!QualifierLoc)
6997 return QualType();
6998 }
6999
7000 return getDerived()
7001 .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
7002 }
7003
7004 template<typename Derived>
7005 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,NestedNameSpecifierLoc QualifierLoc)7006 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
7007 DependentTemplateSpecializationTypeLoc TL,
7008 NestedNameSpecifierLoc QualifierLoc) {
7009 const DependentTemplateSpecializationType *T = TL.getTypePtr();
7010
7011 TemplateArgumentListInfo NewTemplateArgs;
7012 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
7013 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
7014
7015 typedef TemplateArgumentLocContainerIterator<
7016 DependentTemplateSpecializationTypeLoc> ArgIterator;
7017 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
7018 ArgIterator(TL, TL.getNumArgs()),
7019 NewTemplateArgs))
7020 return QualType();
7021
7022 QualType Result = getDerived().RebuildDependentTemplateSpecializationType(
7023 T->getKeyword(), QualifierLoc, TL.getTemplateKeywordLoc(),
7024 T->getIdentifier(), TL.getTemplateNameLoc(), NewTemplateArgs,
7025 /*AllowInjectedClassName*/ false);
7026 if (Result.isNull())
7027 return QualType();
7028
7029 if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
7030 QualType NamedT = ElabT->getNamedType();
7031
7032 // Copy information relevant to the template specialization.
7033 TemplateSpecializationTypeLoc NamedTL
7034 = TLB.push<TemplateSpecializationTypeLoc>(NamedT);
7035 NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
7036 NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
7037 NamedTL.setLAngleLoc(TL.getLAngleLoc());
7038 NamedTL.setRAngleLoc(TL.getRAngleLoc());
7039 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
7040 NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
7041
7042 // Copy information relevant to the elaborated type.
7043 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
7044 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
7045 NewTL.setQualifierLoc(QualifierLoc);
7046 } else if (isa<DependentTemplateSpecializationType>(Result)) {
7047 DependentTemplateSpecializationTypeLoc SpecTL
7048 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
7049 SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
7050 SpecTL.setQualifierLoc(QualifierLoc);
7051 SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
7052 SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
7053 SpecTL.setLAngleLoc(TL.getLAngleLoc());
7054 SpecTL.setRAngleLoc(TL.getRAngleLoc());
7055 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
7056 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
7057 } else {
7058 TemplateSpecializationTypeLoc SpecTL
7059 = TLB.push<TemplateSpecializationTypeLoc>(Result);
7060 SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
7061 SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
7062 SpecTL.setLAngleLoc(TL.getLAngleLoc());
7063 SpecTL.setRAngleLoc(TL.getRAngleLoc());
7064 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
7065 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
7066 }
7067 return Result;
7068 }
7069
7070 template<typename Derived>
TransformPackExpansionType(TypeLocBuilder & TLB,PackExpansionTypeLoc TL)7071 QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
7072 PackExpansionTypeLoc TL) {
7073 QualType Pattern
7074 = getDerived().TransformType(TLB, TL.getPatternLoc());
7075 if (Pattern.isNull())
7076 return QualType();
7077
7078 QualType Result = TL.getType();
7079 if (getDerived().AlwaysRebuild() ||
7080 Pattern != TL.getPatternLoc().getType()) {
7081 Result = getDerived().RebuildPackExpansionType(Pattern,
7082 TL.getPatternLoc().getSourceRange(),
7083 TL.getEllipsisLoc(),
7084 TL.getTypePtr()->getNumExpansions());
7085 if (Result.isNull())
7086 return QualType();
7087 }
7088
7089 PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
7090 NewT.setEllipsisLoc(TL.getEllipsisLoc());
7091 return Result;
7092 }
7093
7094 template<typename Derived>
7095 QualType
TransformObjCInterfaceType(TypeLocBuilder & TLB,ObjCInterfaceTypeLoc TL)7096 TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
7097 ObjCInterfaceTypeLoc TL) {
7098 // ObjCInterfaceType is never dependent.
7099 TLB.pushFullCopy(TL);
7100 return TL.getType();
7101 }
7102
7103 template<typename Derived>
7104 QualType
TransformObjCTypeParamType(TypeLocBuilder & TLB,ObjCTypeParamTypeLoc TL)7105 TreeTransform<Derived>::TransformObjCTypeParamType(TypeLocBuilder &TLB,
7106 ObjCTypeParamTypeLoc TL) {
7107 const ObjCTypeParamType *T = TL.getTypePtr();
7108 ObjCTypeParamDecl *OTP = cast_or_null<ObjCTypeParamDecl>(
7109 getDerived().TransformDecl(T->getDecl()->getLocation(), T->getDecl()));
7110 if (!OTP)
7111 return QualType();
7112
7113 QualType Result = TL.getType();
7114 if (getDerived().AlwaysRebuild() ||
7115 OTP != T->getDecl()) {
7116 Result = getDerived().RebuildObjCTypeParamType(OTP,
7117 TL.getProtocolLAngleLoc(),
7118 llvm::makeArrayRef(TL.getTypePtr()->qual_begin(),
7119 TL.getNumProtocols()),
7120 TL.getProtocolLocs(),
7121 TL.getProtocolRAngleLoc());
7122 if (Result.isNull())
7123 return QualType();
7124 }
7125
7126 ObjCTypeParamTypeLoc NewTL = TLB.push<ObjCTypeParamTypeLoc>(Result);
7127 if (TL.getNumProtocols()) {
7128 NewTL.setProtocolLAngleLoc(TL.getProtocolLAngleLoc());
7129 for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i)
7130 NewTL.setProtocolLoc(i, TL.getProtocolLoc(i));
7131 NewTL.setProtocolRAngleLoc(TL.getProtocolRAngleLoc());
7132 }
7133 return Result;
7134 }
7135
7136 template<typename Derived>
7137 QualType
TransformObjCObjectType(TypeLocBuilder & TLB,ObjCObjectTypeLoc TL)7138 TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
7139 ObjCObjectTypeLoc TL) {
7140 // Transform base type.
7141 QualType BaseType = getDerived().TransformType(TLB, TL.getBaseLoc());
7142 if (BaseType.isNull())
7143 return QualType();
7144
7145 bool AnyChanged = BaseType != TL.getBaseLoc().getType();
7146
7147 // Transform type arguments.
7148 SmallVector<TypeSourceInfo *, 4> NewTypeArgInfos;
7149 for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) {
7150 TypeSourceInfo *TypeArgInfo = TL.getTypeArgTInfo(i);
7151 TypeLoc TypeArgLoc = TypeArgInfo->getTypeLoc();
7152 QualType TypeArg = TypeArgInfo->getType();
7153 if (auto PackExpansionLoc = TypeArgLoc.getAs<PackExpansionTypeLoc>()) {
7154 AnyChanged = true;
7155
7156 // We have a pack expansion. Instantiate it.
7157 const auto *PackExpansion = PackExpansionLoc.getType()
7158 ->castAs<PackExpansionType>();
7159 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
7160 SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
7161 Unexpanded);
7162 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
7163
7164 // Determine whether the set of unexpanded parameter packs can
7165 // and should be expanded.
7166 TypeLoc PatternLoc = PackExpansionLoc.getPatternLoc();
7167 bool Expand = false;
7168 bool RetainExpansion = false;
7169 Optional<unsigned> NumExpansions = PackExpansion->getNumExpansions();
7170 if (getDerived().TryExpandParameterPacks(
7171 PackExpansionLoc.getEllipsisLoc(), PatternLoc.getSourceRange(),
7172 Unexpanded, Expand, RetainExpansion, NumExpansions))
7173 return QualType();
7174
7175 if (!Expand) {
7176 // We can't expand this pack expansion into separate arguments yet;
7177 // just substitute into the pattern and create a new pack expansion
7178 // type.
7179 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
7180
7181 TypeLocBuilder TypeArgBuilder;
7182 TypeArgBuilder.reserve(PatternLoc.getFullDataSize());
7183 QualType NewPatternType = getDerived().TransformType(TypeArgBuilder,
7184 PatternLoc);
7185 if (NewPatternType.isNull())
7186 return QualType();
7187
7188 QualType NewExpansionType = SemaRef.Context.getPackExpansionType(
7189 NewPatternType, NumExpansions);
7190 auto NewExpansionLoc = TLB.push<PackExpansionTypeLoc>(NewExpansionType);
7191 NewExpansionLoc.setEllipsisLoc(PackExpansionLoc.getEllipsisLoc());
7192 NewTypeArgInfos.push_back(
7193 TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewExpansionType));
7194 continue;
7195 }
7196
7197 // Substitute into the pack expansion pattern for each slice of the
7198 // pack.
7199 for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
7200 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx);
7201
7202 TypeLocBuilder TypeArgBuilder;
7203 TypeArgBuilder.reserve(PatternLoc.getFullDataSize());
7204
7205 QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder,
7206 PatternLoc);
7207 if (NewTypeArg.isNull())
7208 return QualType();
7209
7210 NewTypeArgInfos.push_back(
7211 TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg));
7212 }
7213
7214 continue;
7215 }
7216
7217 TypeLocBuilder TypeArgBuilder;
7218 TypeArgBuilder.reserve(TypeArgLoc.getFullDataSize());
7219 QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder, TypeArgLoc);
7220 if (NewTypeArg.isNull())
7221 return QualType();
7222
7223 // If nothing changed, just keep the old TypeSourceInfo.
7224 if (NewTypeArg == TypeArg) {
7225 NewTypeArgInfos.push_back(TypeArgInfo);
7226 continue;
7227 }
7228
7229 NewTypeArgInfos.push_back(
7230 TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg));
7231 AnyChanged = true;
7232 }
7233
7234 QualType Result = TL.getType();
7235 if (getDerived().AlwaysRebuild() || AnyChanged) {
7236 // Rebuild the type.
7237 Result = getDerived().RebuildObjCObjectType(
7238 BaseType, TL.getBeginLoc(), TL.getTypeArgsLAngleLoc(), NewTypeArgInfos,
7239 TL.getTypeArgsRAngleLoc(), TL.getProtocolLAngleLoc(),
7240 llvm::makeArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()),
7241 TL.getProtocolLocs(), TL.getProtocolRAngleLoc());
7242
7243 if (Result.isNull())
7244 return QualType();
7245 }
7246
7247 ObjCObjectTypeLoc NewT = TLB.push<ObjCObjectTypeLoc>(Result);
7248 NewT.setHasBaseTypeAsWritten(true);
7249 NewT.setTypeArgsLAngleLoc(TL.getTypeArgsLAngleLoc());
7250 for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i)
7251 NewT.setTypeArgTInfo(i, NewTypeArgInfos[i]);
7252 NewT.setTypeArgsRAngleLoc(TL.getTypeArgsRAngleLoc());
7253 NewT.setProtocolLAngleLoc(TL.getProtocolLAngleLoc());
7254 for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i)
7255 NewT.setProtocolLoc(i, TL.getProtocolLoc(i));
7256 NewT.setProtocolRAngleLoc(TL.getProtocolRAngleLoc());
7257 return Result;
7258 }
7259
7260 template<typename Derived>
7261 QualType
TransformObjCObjectPointerType(TypeLocBuilder & TLB,ObjCObjectPointerTypeLoc TL)7262 TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
7263 ObjCObjectPointerTypeLoc TL) {
7264 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
7265 if (PointeeType.isNull())
7266 return QualType();
7267
7268 QualType Result = TL.getType();
7269 if (getDerived().AlwaysRebuild() ||
7270 PointeeType != TL.getPointeeLoc().getType()) {
7271 Result = getDerived().RebuildObjCObjectPointerType(PointeeType,
7272 TL.getStarLoc());
7273 if (Result.isNull())
7274 return QualType();
7275 }
7276
7277 ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
7278 NewT.setStarLoc(TL.getStarLoc());
7279 return Result;
7280 }
7281
7282 //===----------------------------------------------------------------------===//
7283 // Statement transformation
7284 //===----------------------------------------------------------------------===//
7285 template<typename Derived>
7286 StmtResult
TransformNullStmt(NullStmt * S)7287 TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
7288 return S;
7289 }
7290
7291 template<typename Derived>
7292 StmtResult
TransformCompoundStmt(CompoundStmt * S)7293 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
7294 return getDerived().TransformCompoundStmt(S, false);
7295 }
7296
7297 template<typename Derived>
7298 StmtResult
TransformCompoundStmt(CompoundStmt * S,bool IsStmtExpr)7299 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
7300 bool IsStmtExpr) {
7301 Sema::CompoundScopeRAII CompoundScope(getSema());
7302
7303 const Stmt *ExprResult = S->getStmtExprResult();
7304 bool SubStmtInvalid = false;
7305 bool SubStmtChanged = false;
7306 SmallVector<Stmt*, 8> Statements;
7307 for (auto *B : S->body()) {
7308 StmtResult Result = getDerived().TransformStmt(
7309 B, IsStmtExpr && B == ExprResult ? SDK_StmtExprResult : SDK_Discarded);
7310
7311 if (Result.isInvalid()) {
7312 // Immediately fail if this was a DeclStmt, since it's very
7313 // likely that this will cause problems for future statements.
7314 if (isa<DeclStmt>(B))
7315 return StmtError();
7316
7317 // Otherwise, just keep processing substatements and fail later.
7318 SubStmtInvalid = true;
7319 continue;
7320 }
7321
7322 SubStmtChanged = SubStmtChanged || Result.get() != B;
7323 Statements.push_back(Result.getAs<Stmt>());
7324 }
7325
7326 if (SubStmtInvalid)
7327 return StmtError();
7328
7329 if (!getDerived().AlwaysRebuild() &&
7330 !SubStmtChanged)
7331 return S;
7332
7333 return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
7334 Statements,
7335 S->getRBracLoc(),
7336 IsStmtExpr);
7337 }
7338
7339 template<typename Derived>
7340 StmtResult
TransformCaseStmt(CaseStmt * S)7341 TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
7342 ExprResult LHS, RHS;
7343 {
7344 EnterExpressionEvaluationContext Unevaluated(
7345 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7346
7347 // Transform the left-hand case value.
7348 LHS = getDerived().TransformExpr(S->getLHS());
7349 LHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), LHS);
7350 if (LHS.isInvalid())
7351 return StmtError();
7352
7353 // Transform the right-hand case value (for the GNU case-range extension).
7354 RHS = getDerived().TransformExpr(S->getRHS());
7355 RHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), RHS);
7356 if (RHS.isInvalid())
7357 return StmtError();
7358 }
7359
7360 // Build the case statement.
7361 // Case statements are always rebuilt so that they will attached to their
7362 // transformed switch statement.
7363 StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
7364 LHS.get(),
7365 S->getEllipsisLoc(),
7366 RHS.get(),
7367 S->getColonLoc());
7368 if (Case.isInvalid())
7369 return StmtError();
7370
7371 // Transform the statement following the case
7372 StmtResult SubStmt =
7373 getDerived().TransformStmt(S->getSubStmt());
7374 if (SubStmt.isInvalid())
7375 return StmtError();
7376
7377 // Attach the body to the case statement
7378 return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
7379 }
7380
7381 template <typename Derived>
TransformDefaultStmt(DefaultStmt * S)7382 StmtResult TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
7383 // Transform the statement following the default case
7384 StmtResult SubStmt =
7385 getDerived().TransformStmt(S->getSubStmt());
7386 if (SubStmt.isInvalid())
7387 return StmtError();
7388
7389 // Default statements are always rebuilt
7390 return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
7391 SubStmt.get());
7392 }
7393
7394 template<typename Derived>
7395 StmtResult
TransformLabelStmt(LabelStmt * S,StmtDiscardKind SDK)7396 TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S, StmtDiscardKind SDK) {
7397 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK);
7398 if (SubStmt.isInvalid())
7399 return StmtError();
7400
7401 Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
7402 S->getDecl());
7403 if (!LD)
7404 return StmtError();
7405
7406 // If we're transforming "in-place" (we're not creating new local
7407 // declarations), assume we're replacing the old label statement
7408 // and clear out the reference to it.
7409 if (LD == S->getDecl())
7410 S->getDecl()->setStmt(nullptr);
7411
7412 // FIXME: Pass the real colon location in.
7413 return getDerived().RebuildLabelStmt(S->getIdentLoc(),
7414 cast<LabelDecl>(LD), SourceLocation(),
7415 SubStmt.get());
7416 }
7417
7418 template <typename Derived>
TransformAttr(const Attr * R)7419 const Attr *TreeTransform<Derived>::TransformAttr(const Attr *R) {
7420 if (!R)
7421 return R;
7422
7423 switch (R->getKind()) {
7424 // Transform attributes with a pragma spelling by calling TransformXXXAttr.
7425 #define ATTR(X)
7426 #define PRAGMA_SPELLING_ATTR(X) \
7427 case attr::X: \
7428 return getDerived().Transform##X##Attr(cast<X##Attr>(R));
7429 #include "clang/Basic/AttrList.inc"
7430 default:
7431 return R;
7432 }
7433 }
7434
7435 template <typename Derived>
7436 StmtResult
TransformAttributedStmt(AttributedStmt * S,StmtDiscardKind SDK)7437 TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S,
7438 StmtDiscardKind SDK) {
7439 bool AttrsChanged = false;
7440 SmallVector<const Attr *, 1> Attrs;
7441
7442 // Visit attributes and keep track if any are transformed.
7443 for (const auto *I : S->getAttrs()) {
7444 const Attr *R = getDerived().TransformAttr(I);
7445 AttrsChanged |= (I != R);
7446 if (R)
7447 Attrs.push_back(R);
7448 }
7449
7450 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK);
7451 if (SubStmt.isInvalid())
7452 return StmtError();
7453
7454 if (SubStmt.get() == S->getSubStmt() && !AttrsChanged)
7455 return S;
7456
7457 // If transforming the attributes failed for all of the attributes in the
7458 // statement, don't make an AttributedStmt without attributes.
7459 if (Attrs.empty())
7460 return SubStmt;
7461
7462 return getDerived().RebuildAttributedStmt(S->getAttrLoc(), Attrs,
7463 SubStmt.get());
7464 }
7465
7466 template<typename Derived>
7467 StmtResult
TransformIfStmt(IfStmt * S)7468 TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
7469 // Transform the initialization statement
7470 StmtResult Init = getDerived().TransformStmt(S->getInit());
7471 if (Init.isInvalid())
7472 return StmtError();
7473
7474 Sema::ConditionResult Cond;
7475 if (!S->isConsteval()) {
7476 // Transform the condition
7477 Cond = getDerived().TransformCondition(
7478 S->getIfLoc(), S->getConditionVariable(), S->getCond(),
7479 S->isConstexpr() ? Sema::ConditionKind::ConstexprIf
7480 : Sema::ConditionKind::Boolean);
7481 if (Cond.isInvalid())
7482 return StmtError();
7483 }
7484
7485 // If this is a constexpr if, determine which arm we should instantiate.
7486 llvm::Optional<bool> ConstexprConditionValue;
7487 if (S->isConstexpr())
7488 ConstexprConditionValue = Cond.getKnownValue();
7489
7490 // Transform the "then" branch.
7491 StmtResult Then;
7492 if (!ConstexprConditionValue || *ConstexprConditionValue) {
7493 Then = getDerived().TransformStmt(S->getThen());
7494 if (Then.isInvalid())
7495 return StmtError();
7496 } else {
7497 Then = new (getSema().Context) NullStmt(S->getThen()->getBeginLoc());
7498 }
7499
7500 // Transform the "else" branch.
7501 StmtResult Else;
7502 if (!ConstexprConditionValue || !*ConstexprConditionValue) {
7503 Else = getDerived().TransformStmt(S->getElse());
7504 if (Else.isInvalid())
7505 return StmtError();
7506 }
7507
7508 if (!getDerived().AlwaysRebuild() &&
7509 Init.get() == S->getInit() &&
7510 Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
7511 Then.get() == S->getThen() &&
7512 Else.get() == S->getElse())
7513 return S;
7514
7515 return getDerived().RebuildIfStmt(
7516 S->getIfLoc(), S->getStatementKind(), S->getLParenLoc(), Cond,
7517 S->getRParenLoc(), Init.get(), Then.get(), S->getElseLoc(), Else.get());
7518 }
7519
7520 template<typename Derived>
7521 StmtResult
TransformSwitchStmt(SwitchStmt * S)7522 TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
7523 // Transform the initialization statement
7524 StmtResult Init = getDerived().TransformStmt(S->getInit());
7525 if (Init.isInvalid())
7526 return StmtError();
7527
7528 // Transform the condition.
7529 Sema::ConditionResult Cond = getDerived().TransformCondition(
7530 S->getSwitchLoc(), S->getConditionVariable(), S->getCond(),
7531 Sema::ConditionKind::Switch);
7532 if (Cond.isInvalid())
7533 return StmtError();
7534
7535 // Rebuild the switch statement.
7536 StmtResult Switch =
7537 getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), S->getLParenLoc(),
7538 Init.get(), Cond, S->getRParenLoc());
7539 if (Switch.isInvalid())
7540 return StmtError();
7541
7542 // Transform the body of the switch statement.
7543 StmtResult Body = getDerived().TransformStmt(S->getBody());
7544 if (Body.isInvalid())
7545 return StmtError();
7546
7547 // Complete the switch statement.
7548 return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
7549 Body.get());
7550 }
7551
7552 template<typename Derived>
7553 StmtResult
TransformWhileStmt(WhileStmt * S)7554 TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
7555 // Transform the condition
7556 Sema::ConditionResult Cond = getDerived().TransformCondition(
7557 S->getWhileLoc(), S->getConditionVariable(), S->getCond(),
7558 Sema::ConditionKind::Boolean);
7559 if (Cond.isInvalid())
7560 return StmtError();
7561
7562 // Transform the body
7563 StmtResult Body = getDerived().TransformStmt(S->getBody());
7564 if (Body.isInvalid())
7565 return StmtError();
7566
7567 if (!getDerived().AlwaysRebuild() &&
7568 Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
7569 Body.get() == S->getBody())
7570 return Owned(S);
7571
7572 return getDerived().RebuildWhileStmt(S->getWhileLoc(), S->getLParenLoc(),
7573 Cond, S->getRParenLoc(), Body.get());
7574 }
7575
7576 template<typename Derived>
7577 StmtResult
TransformDoStmt(DoStmt * S)7578 TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
7579 // Transform the body
7580 StmtResult Body = getDerived().TransformStmt(S->getBody());
7581 if (Body.isInvalid())
7582 return StmtError();
7583
7584 // Transform the condition
7585 ExprResult Cond = getDerived().TransformExpr(S->getCond());
7586 if (Cond.isInvalid())
7587 return StmtError();
7588
7589 if (!getDerived().AlwaysRebuild() &&
7590 Cond.get() == S->getCond() &&
7591 Body.get() == S->getBody())
7592 return S;
7593
7594 return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
7595 /*FIXME:*/S->getWhileLoc(), Cond.get(),
7596 S->getRParenLoc());
7597 }
7598
7599 template<typename Derived>
7600 StmtResult
TransformForStmt(ForStmt * S)7601 TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
7602 if (getSema().getLangOpts().OpenMP)
7603 getSema().startOpenMPLoop();
7604
7605 // Transform the initialization statement
7606 StmtResult Init = getDerived().TransformStmt(S->getInit());
7607 if (Init.isInvalid())
7608 return StmtError();
7609
7610 // In OpenMP loop region loop control variable must be captured and be
7611 // private. Perform analysis of first part (if any).
7612 if (getSema().getLangOpts().OpenMP && Init.isUsable())
7613 getSema().ActOnOpenMPLoopInitialization(S->getForLoc(), Init.get());
7614
7615 // Transform the condition
7616 Sema::ConditionResult Cond = getDerived().TransformCondition(
7617 S->getForLoc(), S->getConditionVariable(), S->getCond(),
7618 Sema::ConditionKind::Boolean);
7619 if (Cond.isInvalid())
7620 return StmtError();
7621
7622 // Transform the increment
7623 ExprResult Inc = getDerived().TransformExpr(S->getInc());
7624 if (Inc.isInvalid())
7625 return StmtError();
7626
7627 Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
7628 if (S->getInc() && !FullInc.get())
7629 return StmtError();
7630
7631 // Transform the body
7632 StmtResult Body = getDerived().TransformStmt(S->getBody());
7633 if (Body.isInvalid())
7634 return StmtError();
7635
7636 if (!getDerived().AlwaysRebuild() &&
7637 Init.get() == S->getInit() &&
7638 Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
7639 Inc.get() == S->getInc() &&
7640 Body.get() == S->getBody())
7641 return S;
7642
7643 return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
7644 Init.get(), Cond, FullInc,
7645 S->getRParenLoc(), Body.get());
7646 }
7647
7648 template<typename Derived>
7649 StmtResult
TransformGotoStmt(GotoStmt * S)7650 TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
7651 Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
7652 S->getLabel());
7653 if (!LD)
7654 return StmtError();
7655
7656 // Goto statements must always be rebuilt, to resolve the label.
7657 return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
7658 cast<LabelDecl>(LD));
7659 }
7660
7661 template<typename Derived>
7662 StmtResult
TransformIndirectGotoStmt(IndirectGotoStmt * S)7663 TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
7664 ExprResult Target = getDerived().TransformExpr(S->getTarget());
7665 if (Target.isInvalid())
7666 return StmtError();
7667 Target = SemaRef.MaybeCreateExprWithCleanups(Target.get());
7668
7669 if (!getDerived().AlwaysRebuild() &&
7670 Target.get() == S->getTarget())
7671 return S;
7672
7673 return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
7674 Target.get());
7675 }
7676
7677 template<typename Derived>
7678 StmtResult
TransformContinueStmt(ContinueStmt * S)7679 TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
7680 return S;
7681 }
7682
7683 template<typename Derived>
7684 StmtResult
TransformBreakStmt(BreakStmt * S)7685 TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
7686 return S;
7687 }
7688
7689 template<typename Derived>
7690 StmtResult
TransformReturnStmt(ReturnStmt * S)7691 TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
7692 ExprResult Result = getDerived().TransformInitializer(S->getRetValue(),
7693 /*NotCopyInit*/false);
7694 if (Result.isInvalid())
7695 return StmtError();
7696
7697 // FIXME: We always rebuild the return statement because there is no way
7698 // to tell whether the return type of the function has changed.
7699 return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
7700 }
7701
7702 template<typename Derived>
7703 StmtResult
TransformDeclStmt(DeclStmt * S)7704 TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
7705 bool DeclChanged = false;
7706 SmallVector<Decl *, 4> Decls;
7707 for (auto *D : S->decls()) {
7708 Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D);
7709 if (!Transformed)
7710 return StmtError();
7711
7712 if (Transformed != D)
7713 DeclChanged = true;
7714
7715 Decls.push_back(Transformed);
7716 }
7717
7718 if (!getDerived().AlwaysRebuild() && !DeclChanged)
7719 return S;
7720
7721 return getDerived().RebuildDeclStmt(Decls, S->getBeginLoc(), S->getEndLoc());
7722 }
7723
7724 template<typename Derived>
7725 StmtResult
TransformGCCAsmStmt(GCCAsmStmt * S)7726 TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
7727
7728 SmallVector<Expr*, 8> Constraints;
7729 SmallVector<Expr*, 8> Exprs;
7730 SmallVector<IdentifierInfo *, 4> Names;
7731
7732 ExprResult AsmString;
7733 SmallVector<Expr*, 8> Clobbers;
7734
7735 bool ExprsChanged = false;
7736
7737 // Go through the outputs.
7738 for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
7739 Names.push_back(S->getOutputIdentifier(I));
7740
7741 // No need to transform the constraint literal.
7742 Constraints.push_back(S->getOutputConstraintLiteral(I));
7743
7744 // Transform the output expr.
7745 Expr *OutputExpr = S->getOutputExpr(I);
7746 ExprResult Result = getDerived().TransformExpr(OutputExpr);
7747 if (Result.isInvalid())
7748 return StmtError();
7749
7750 ExprsChanged |= Result.get() != OutputExpr;
7751
7752 Exprs.push_back(Result.get());
7753 }
7754
7755 // Go through the inputs.
7756 for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
7757 Names.push_back(S->getInputIdentifier(I));
7758
7759 // No need to transform the constraint literal.
7760 Constraints.push_back(S->getInputConstraintLiteral(I));
7761
7762 // Transform the input expr.
7763 Expr *InputExpr = S->getInputExpr(I);
7764 ExprResult Result = getDerived().TransformExpr(InputExpr);
7765 if (Result.isInvalid())
7766 return StmtError();
7767
7768 ExprsChanged |= Result.get() != InputExpr;
7769
7770 Exprs.push_back(Result.get());
7771 }
7772
7773 // Go through the Labels.
7774 for (unsigned I = 0, E = S->getNumLabels(); I != E; ++I) {
7775 Names.push_back(S->getLabelIdentifier(I));
7776
7777 ExprResult Result = getDerived().TransformExpr(S->getLabelExpr(I));
7778 if (Result.isInvalid())
7779 return StmtError();
7780 ExprsChanged |= Result.get() != S->getLabelExpr(I);
7781 Exprs.push_back(Result.get());
7782 }
7783 if (!getDerived().AlwaysRebuild() && !ExprsChanged)
7784 return S;
7785
7786 // Go through the clobbers.
7787 for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
7788 Clobbers.push_back(S->getClobberStringLiteral(I));
7789
7790 // No need to transform the asm string literal.
7791 AsmString = S->getAsmString();
7792 return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
7793 S->isVolatile(), S->getNumOutputs(),
7794 S->getNumInputs(), Names.data(),
7795 Constraints, Exprs, AsmString.get(),
7796 Clobbers, S->getNumLabels(),
7797 S->getRParenLoc());
7798 }
7799
7800 template<typename Derived>
7801 StmtResult
TransformMSAsmStmt(MSAsmStmt * S)7802 TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
7803 ArrayRef<Token> AsmToks =
7804 llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks());
7805
7806 bool HadError = false, HadChange = false;
7807
7808 ArrayRef<Expr*> SrcExprs = S->getAllExprs();
7809 SmallVector<Expr*, 8> TransformedExprs;
7810 TransformedExprs.reserve(SrcExprs.size());
7811 for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) {
7812 ExprResult Result = getDerived().TransformExpr(SrcExprs[i]);
7813 if (!Result.isUsable()) {
7814 HadError = true;
7815 } else {
7816 HadChange |= (Result.get() != SrcExprs[i]);
7817 TransformedExprs.push_back(Result.get());
7818 }
7819 }
7820
7821 if (HadError) return StmtError();
7822 if (!HadChange && !getDerived().AlwaysRebuild())
7823 return Owned(S);
7824
7825 return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
7826 AsmToks, S->getAsmString(),
7827 S->getNumOutputs(), S->getNumInputs(),
7828 S->getAllConstraints(), S->getClobbers(),
7829 TransformedExprs, S->getEndLoc());
7830 }
7831
7832 // C++ Coroutines TS
7833
7834 template<typename Derived>
7835 StmtResult
TransformCoroutineBodyStmt(CoroutineBodyStmt * S)7836 TreeTransform<Derived>::TransformCoroutineBodyStmt(CoroutineBodyStmt *S) {
7837 auto *ScopeInfo = SemaRef.getCurFunction();
7838 auto *FD = cast<FunctionDecl>(SemaRef.CurContext);
7839 assert(FD && ScopeInfo && !ScopeInfo->CoroutinePromise &&
7840 ScopeInfo->NeedsCoroutineSuspends &&
7841 ScopeInfo->CoroutineSuspends.first == nullptr &&
7842 ScopeInfo->CoroutineSuspends.second == nullptr &&
7843 "expected clean scope info");
7844
7845 // Set that we have (possibly-invalid) suspend points before we do anything
7846 // that may fail.
7847 ScopeInfo->setNeedsCoroutineSuspends(false);
7848
7849 // We re-build the coroutine promise object (and the coroutine parameters its
7850 // type and constructor depend on) based on the types used in our current
7851 // function. We must do so, and set it on the current FunctionScopeInfo,
7852 // before attempting to transform the other parts of the coroutine body
7853 // statement, such as the implicit suspend statements (because those
7854 // statements reference the FunctionScopeInfo::CoroutinePromise).
7855 if (!SemaRef.buildCoroutineParameterMoves(FD->getLocation()))
7856 return StmtError();
7857 auto *Promise = SemaRef.buildCoroutinePromise(FD->getLocation());
7858 if (!Promise)
7859 return StmtError();
7860 getDerived().transformedLocalDecl(S->getPromiseDecl(), {Promise});
7861 ScopeInfo->CoroutinePromise = Promise;
7862
7863 // Transform the implicit coroutine statements constructed using dependent
7864 // types during the previous parse: initial and final suspensions, the return
7865 // object, and others. We also transform the coroutine function's body.
7866 StmtResult InitSuspend = getDerived().TransformStmt(S->getInitSuspendStmt());
7867 if (InitSuspend.isInvalid())
7868 return StmtError();
7869 StmtResult FinalSuspend =
7870 getDerived().TransformStmt(S->getFinalSuspendStmt());
7871 if (FinalSuspend.isInvalid() ||
7872 !SemaRef.checkFinalSuspendNoThrow(FinalSuspend.get()))
7873 return StmtError();
7874 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
7875 assert(isa<Expr>(InitSuspend.get()) && isa<Expr>(FinalSuspend.get()));
7876
7877 StmtResult BodyRes = getDerived().TransformStmt(S->getBody());
7878 if (BodyRes.isInvalid())
7879 return StmtError();
7880
7881 CoroutineStmtBuilder Builder(SemaRef, *FD, *ScopeInfo, BodyRes.get());
7882 if (Builder.isInvalid())
7883 return StmtError();
7884
7885 Expr *ReturnObject = S->getReturnValueInit();
7886 assert(ReturnObject && "the return object is expected to be valid");
7887 ExprResult Res = getDerived().TransformInitializer(ReturnObject,
7888 /*NoCopyInit*/ false);
7889 if (Res.isInvalid())
7890 return StmtError();
7891 Builder.ReturnValue = Res.get();
7892
7893 // If during the previous parse the coroutine still had a dependent promise
7894 // statement, we may need to build some implicit coroutine statements
7895 // (such as exception and fallthrough handlers) for the first time.
7896 if (S->hasDependentPromiseType()) {
7897 // We can only build these statements, however, if the current promise type
7898 // is not dependent.
7899 if (!Promise->getType()->isDependentType()) {
7900 assert(!S->getFallthroughHandler() && !S->getExceptionHandler() &&
7901 !S->getReturnStmtOnAllocFailure() && !S->getDeallocate() &&
7902 "these nodes should not have been built yet");
7903 if (!Builder.buildDependentStatements())
7904 return StmtError();
7905 }
7906 } else {
7907 if (auto *OnFallthrough = S->getFallthroughHandler()) {
7908 StmtResult Res = getDerived().TransformStmt(OnFallthrough);
7909 if (Res.isInvalid())
7910 return StmtError();
7911 Builder.OnFallthrough = Res.get();
7912 }
7913
7914 if (auto *OnException = S->getExceptionHandler()) {
7915 StmtResult Res = getDerived().TransformStmt(OnException);
7916 if (Res.isInvalid())
7917 return StmtError();
7918 Builder.OnException = Res.get();
7919 }
7920
7921 if (auto *OnAllocFailure = S->getReturnStmtOnAllocFailure()) {
7922 StmtResult Res = getDerived().TransformStmt(OnAllocFailure);
7923 if (Res.isInvalid())
7924 return StmtError();
7925 Builder.ReturnStmtOnAllocFailure = Res.get();
7926 }
7927
7928 // Transform any additional statements we may have already built
7929 assert(S->getAllocate() && S->getDeallocate() &&
7930 "allocation and deallocation calls must already be built");
7931 ExprResult AllocRes = getDerived().TransformExpr(S->getAllocate());
7932 if (AllocRes.isInvalid())
7933 return StmtError();
7934 Builder.Allocate = AllocRes.get();
7935
7936 ExprResult DeallocRes = getDerived().TransformExpr(S->getDeallocate());
7937 if (DeallocRes.isInvalid())
7938 return StmtError();
7939 Builder.Deallocate = DeallocRes.get();
7940
7941 if (auto *ReturnStmt = S->getReturnStmt()) {
7942 StmtResult Res = getDerived().TransformStmt(ReturnStmt);
7943 if (Res.isInvalid())
7944 return StmtError();
7945 Builder.ReturnStmt = Res.get();
7946 }
7947 }
7948
7949 return getDerived().RebuildCoroutineBodyStmt(Builder);
7950 }
7951
7952 template<typename Derived>
7953 StmtResult
TransformCoreturnStmt(CoreturnStmt * S)7954 TreeTransform<Derived>::TransformCoreturnStmt(CoreturnStmt *S) {
7955 ExprResult Result = getDerived().TransformInitializer(S->getOperand(),
7956 /*NotCopyInit*/false);
7957 if (Result.isInvalid())
7958 return StmtError();
7959
7960 // Always rebuild; we don't know if this needs to be injected into a new
7961 // context or if the promise type has changed.
7962 return getDerived().RebuildCoreturnStmt(S->getKeywordLoc(), Result.get(),
7963 S->isImplicit());
7964 }
7965
7966 template <typename Derived>
TransformCoawaitExpr(CoawaitExpr * E)7967 ExprResult TreeTransform<Derived>::TransformCoawaitExpr(CoawaitExpr *E) {
7968 ExprResult Operand = getDerived().TransformInitializer(E->getOperand(),
7969 /*NotCopyInit*/ false);
7970 if (Operand.isInvalid())
7971 return ExprError();
7972
7973 // Rebuild the common-expr from the operand rather than transforming it
7974 // separately.
7975
7976 // FIXME: getCurScope() should not be used during template instantiation.
7977 // We should pick up the set of unqualified lookup results for operator
7978 // co_await during the initial parse.
7979 ExprResult Lookup = getSema().BuildOperatorCoawaitLookupExpr(
7980 getSema().getCurScope(), E->getKeywordLoc());
7981
7982 // Always rebuild; we don't know if this needs to be injected into a new
7983 // context or if the promise type has changed.
7984 return getDerived().RebuildCoawaitExpr(
7985 E->getKeywordLoc(), Operand.get(),
7986 cast<UnresolvedLookupExpr>(Lookup.get()), E->isImplicit());
7987 }
7988
7989 template <typename Derived>
7990 ExprResult
TransformDependentCoawaitExpr(DependentCoawaitExpr * E)7991 TreeTransform<Derived>::TransformDependentCoawaitExpr(DependentCoawaitExpr *E) {
7992 ExprResult OperandResult = getDerived().TransformInitializer(E->getOperand(),
7993 /*NotCopyInit*/ false);
7994 if (OperandResult.isInvalid())
7995 return ExprError();
7996
7997 ExprResult LookupResult = getDerived().TransformUnresolvedLookupExpr(
7998 E->getOperatorCoawaitLookup());
7999
8000 if (LookupResult.isInvalid())
8001 return ExprError();
8002
8003 // Always rebuild; we don't know if this needs to be injected into a new
8004 // context or if the promise type has changed.
8005 return getDerived().RebuildDependentCoawaitExpr(
8006 E->getKeywordLoc(), OperandResult.get(),
8007 cast<UnresolvedLookupExpr>(LookupResult.get()));
8008 }
8009
8010 template<typename Derived>
8011 ExprResult
TransformCoyieldExpr(CoyieldExpr * E)8012 TreeTransform<Derived>::TransformCoyieldExpr(CoyieldExpr *E) {
8013 ExprResult Result = getDerived().TransformInitializer(E->getOperand(),
8014 /*NotCopyInit*/false);
8015 if (Result.isInvalid())
8016 return ExprError();
8017
8018 // Always rebuild; we don't know if this needs to be injected into a new
8019 // context or if the promise type has changed.
8020 return getDerived().RebuildCoyieldExpr(E->getKeywordLoc(), Result.get());
8021 }
8022
8023 // Objective-C Statements.
8024
8025 template<typename Derived>
8026 StmtResult
TransformObjCAtTryStmt(ObjCAtTryStmt * S)8027 TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
8028 // Transform the body of the @try.
8029 StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
8030 if (TryBody.isInvalid())
8031 return StmtError();
8032
8033 // Transform the @catch statements (if present).
8034 bool AnyCatchChanged = false;
8035 SmallVector<Stmt*, 8> CatchStmts;
8036 for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
8037 StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
8038 if (Catch.isInvalid())
8039 return StmtError();
8040 if (Catch.get() != S->getCatchStmt(I))
8041 AnyCatchChanged = true;
8042 CatchStmts.push_back(Catch.get());
8043 }
8044
8045 // Transform the @finally statement (if present).
8046 StmtResult Finally;
8047 if (S->getFinallyStmt()) {
8048 Finally = getDerived().TransformStmt(S->getFinallyStmt());
8049 if (Finally.isInvalid())
8050 return StmtError();
8051 }
8052
8053 // If nothing changed, just retain this statement.
8054 if (!getDerived().AlwaysRebuild() &&
8055 TryBody.get() == S->getTryBody() &&
8056 !AnyCatchChanged &&
8057 Finally.get() == S->getFinallyStmt())
8058 return S;
8059
8060 // Build a new statement.
8061 return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
8062 CatchStmts, Finally.get());
8063 }
8064
8065 template<typename Derived>
8066 StmtResult
TransformObjCAtCatchStmt(ObjCAtCatchStmt * S)8067 TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
8068 // Transform the @catch parameter, if there is one.
8069 VarDecl *Var = nullptr;
8070 if (VarDecl *FromVar = S->getCatchParamDecl()) {
8071 TypeSourceInfo *TSInfo = nullptr;
8072 if (FromVar->getTypeSourceInfo()) {
8073 TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
8074 if (!TSInfo)
8075 return StmtError();
8076 }
8077
8078 QualType T;
8079 if (TSInfo)
8080 T = TSInfo->getType();
8081 else {
8082 T = getDerived().TransformType(FromVar->getType());
8083 if (T.isNull())
8084 return StmtError();
8085 }
8086
8087 Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
8088 if (!Var)
8089 return StmtError();
8090 }
8091
8092 StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
8093 if (Body.isInvalid())
8094 return StmtError();
8095
8096 return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
8097 S->getRParenLoc(),
8098 Var, Body.get());
8099 }
8100
8101 template<typename Derived>
8102 StmtResult
TransformObjCAtFinallyStmt(ObjCAtFinallyStmt * S)8103 TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
8104 // Transform the body.
8105 StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
8106 if (Body.isInvalid())
8107 return StmtError();
8108
8109 // If nothing changed, just retain this statement.
8110 if (!getDerived().AlwaysRebuild() &&
8111 Body.get() == S->getFinallyBody())
8112 return S;
8113
8114 // Build a new statement.
8115 return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
8116 Body.get());
8117 }
8118
8119 template<typename Derived>
8120 StmtResult
TransformObjCAtThrowStmt(ObjCAtThrowStmt * S)8121 TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
8122 ExprResult Operand;
8123 if (S->getThrowExpr()) {
8124 Operand = getDerived().TransformExpr(S->getThrowExpr());
8125 if (Operand.isInvalid())
8126 return StmtError();
8127 }
8128
8129 if (!getDerived().AlwaysRebuild() &&
8130 Operand.get() == S->getThrowExpr())
8131 return S;
8132
8133 return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
8134 }
8135
8136 template<typename Derived>
8137 StmtResult
TransformObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt * S)8138 TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
8139 ObjCAtSynchronizedStmt *S) {
8140 // Transform the object we are locking.
8141 ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
8142 if (Object.isInvalid())
8143 return StmtError();
8144 Object =
8145 getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
8146 Object.get());
8147 if (Object.isInvalid())
8148 return StmtError();
8149
8150 // Transform the body.
8151 StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
8152 if (Body.isInvalid())
8153 return StmtError();
8154
8155 // If nothing change, just retain the current statement.
8156 if (!getDerived().AlwaysRebuild() &&
8157 Object.get() == S->getSynchExpr() &&
8158 Body.get() == S->getSynchBody())
8159 return S;
8160
8161 // Build a new statement.
8162 return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
8163 Object.get(), Body.get());
8164 }
8165
8166 template<typename Derived>
8167 StmtResult
TransformObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt * S)8168 TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
8169 ObjCAutoreleasePoolStmt *S) {
8170 // Transform the body.
8171 StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
8172 if (Body.isInvalid())
8173 return StmtError();
8174
8175 // If nothing changed, just retain this statement.
8176 if (!getDerived().AlwaysRebuild() &&
8177 Body.get() == S->getSubStmt())
8178 return S;
8179
8180 // Build a new statement.
8181 return getDerived().RebuildObjCAutoreleasePoolStmt(
8182 S->getAtLoc(), Body.get());
8183 }
8184
8185 template<typename Derived>
8186 StmtResult
TransformObjCForCollectionStmt(ObjCForCollectionStmt * S)8187 TreeTransform<Derived>::TransformObjCForCollectionStmt(
8188 ObjCForCollectionStmt *S) {
8189 // Transform the element statement.
8190 StmtResult Element =
8191 getDerived().TransformStmt(S->getElement(), SDK_NotDiscarded);
8192 if (Element.isInvalid())
8193 return StmtError();
8194
8195 // Transform the collection expression.
8196 ExprResult Collection = getDerived().TransformExpr(S->getCollection());
8197 if (Collection.isInvalid())
8198 return StmtError();
8199
8200 // Transform the body.
8201 StmtResult Body = getDerived().TransformStmt(S->getBody());
8202 if (Body.isInvalid())
8203 return StmtError();
8204
8205 // If nothing changed, just retain this statement.
8206 if (!getDerived().AlwaysRebuild() &&
8207 Element.get() == S->getElement() &&
8208 Collection.get() == S->getCollection() &&
8209 Body.get() == S->getBody())
8210 return S;
8211
8212 // Build a new statement.
8213 return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
8214 Element.get(),
8215 Collection.get(),
8216 S->getRParenLoc(),
8217 Body.get());
8218 }
8219
8220 template <typename Derived>
TransformCXXCatchStmt(CXXCatchStmt * S)8221 StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
8222 // Transform the exception declaration, if any.
8223 VarDecl *Var = nullptr;
8224 if (VarDecl *ExceptionDecl = S->getExceptionDecl()) {
8225 TypeSourceInfo *T =
8226 getDerived().TransformType(ExceptionDecl->getTypeSourceInfo());
8227 if (!T)
8228 return StmtError();
8229
8230 Var = getDerived().RebuildExceptionDecl(
8231 ExceptionDecl, T, ExceptionDecl->getInnerLocStart(),
8232 ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier());
8233 if (!Var || Var->isInvalidDecl())
8234 return StmtError();
8235 }
8236
8237 // Transform the actual exception handler.
8238 StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
8239 if (Handler.isInvalid())
8240 return StmtError();
8241
8242 if (!getDerived().AlwaysRebuild() && !Var &&
8243 Handler.get() == S->getHandlerBlock())
8244 return S;
8245
8246 return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get());
8247 }
8248
8249 template <typename Derived>
TransformCXXTryStmt(CXXTryStmt * S)8250 StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
8251 // Transform the try block itself.
8252 StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
8253 if (TryBlock.isInvalid())
8254 return StmtError();
8255
8256 // Transform the handlers.
8257 bool HandlerChanged = false;
8258 SmallVector<Stmt *, 8> Handlers;
8259 for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
8260 StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I));
8261 if (Handler.isInvalid())
8262 return StmtError();
8263
8264 HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
8265 Handlers.push_back(Handler.getAs<Stmt>());
8266 }
8267
8268 if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
8269 !HandlerChanged)
8270 return S;
8271
8272 return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
8273 Handlers);
8274 }
8275
8276 template<typename Derived>
8277 StmtResult
TransformCXXForRangeStmt(CXXForRangeStmt * S)8278 TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
8279 StmtResult Init =
8280 S->getInit() ? getDerived().TransformStmt(S->getInit()) : StmtResult();
8281 if (Init.isInvalid())
8282 return StmtError();
8283
8284 StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
8285 if (Range.isInvalid())
8286 return StmtError();
8287
8288 StmtResult Begin = getDerived().TransformStmt(S->getBeginStmt());
8289 if (Begin.isInvalid())
8290 return StmtError();
8291 StmtResult End = getDerived().TransformStmt(S->getEndStmt());
8292 if (End.isInvalid())
8293 return StmtError();
8294
8295 ExprResult Cond = getDerived().TransformExpr(S->getCond());
8296 if (Cond.isInvalid())
8297 return StmtError();
8298 if (Cond.get())
8299 Cond = SemaRef.CheckBooleanCondition(S->getColonLoc(), Cond.get());
8300 if (Cond.isInvalid())
8301 return StmtError();
8302 if (Cond.get())
8303 Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get());
8304
8305 ExprResult Inc = getDerived().TransformExpr(S->getInc());
8306 if (Inc.isInvalid())
8307 return StmtError();
8308 if (Inc.get())
8309 Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get());
8310
8311 StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
8312 if (LoopVar.isInvalid())
8313 return StmtError();
8314
8315 StmtResult NewStmt = S;
8316 if (getDerived().AlwaysRebuild() ||
8317 Init.get() != S->getInit() ||
8318 Range.get() != S->getRangeStmt() ||
8319 Begin.get() != S->getBeginStmt() ||
8320 End.get() != S->getEndStmt() ||
8321 Cond.get() != S->getCond() ||
8322 Inc.get() != S->getInc() ||
8323 LoopVar.get() != S->getLoopVarStmt()) {
8324 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
8325 S->getCoawaitLoc(), Init.get(),
8326 S->getColonLoc(), Range.get(),
8327 Begin.get(), End.get(),
8328 Cond.get(),
8329 Inc.get(), LoopVar.get(),
8330 S->getRParenLoc());
8331 if (NewStmt.isInvalid() && LoopVar.get() != S->getLoopVarStmt()) {
8332 // Might not have attached any initializer to the loop variable.
8333 getSema().ActOnInitializerError(
8334 cast<DeclStmt>(LoopVar.get())->getSingleDecl());
8335 return StmtError();
8336 }
8337 }
8338
8339 StmtResult Body = getDerived().TransformStmt(S->getBody());
8340 if (Body.isInvalid())
8341 return StmtError();
8342
8343 // Body has changed but we didn't rebuild the for-range statement. Rebuild
8344 // it now so we have a new statement to attach the body to.
8345 if (Body.get() != S->getBody() && NewStmt.get() == S) {
8346 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
8347 S->getCoawaitLoc(), Init.get(),
8348 S->getColonLoc(), Range.get(),
8349 Begin.get(), End.get(),
8350 Cond.get(),
8351 Inc.get(), LoopVar.get(),
8352 S->getRParenLoc());
8353 if (NewStmt.isInvalid())
8354 return StmtError();
8355 }
8356
8357 if (NewStmt.get() == S)
8358 return S;
8359
8360 return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
8361 }
8362
8363 template<typename Derived>
8364 StmtResult
TransformMSDependentExistsStmt(MSDependentExistsStmt * S)8365 TreeTransform<Derived>::TransformMSDependentExistsStmt(
8366 MSDependentExistsStmt *S) {
8367 // Transform the nested-name-specifier, if any.
8368 NestedNameSpecifierLoc QualifierLoc;
8369 if (S->getQualifierLoc()) {
8370 QualifierLoc
8371 = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
8372 if (!QualifierLoc)
8373 return StmtError();
8374 }
8375
8376 // Transform the declaration name.
8377 DeclarationNameInfo NameInfo = S->getNameInfo();
8378 if (NameInfo.getName()) {
8379 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
8380 if (!NameInfo.getName())
8381 return StmtError();
8382 }
8383
8384 // Check whether anything changed.
8385 if (!getDerived().AlwaysRebuild() &&
8386 QualifierLoc == S->getQualifierLoc() &&
8387 NameInfo.getName() == S->getNameInfo().getName())
8388 return S;
8389
8390 // Determine whether this name exists, if we can.
8391 CXXScopeSpec SS;
8392 SS.Adopt(QualifierLoc);
8393 bool Dependent = false;
8394 switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) {
8395 case Sema::IER_Exists:
8396 if (S->isIfExists())
8397 break;
8398
8399 return new (getSema().Context) NullStmt(S->getKeywordLoc());
8400
8401 case Sema::IER_DoesNotExist:
8402 if (S->isIfNotExists())
8403 break;
8404
8405 return new (getSema().Context) NullStmt(S->getKeywordLoc());
8406
8407 case Sema::IER_Dependent:
8408 Dependent = true;
8409 break;
8410
8411 case Sema::IER_Error:
8412 return StmtError();
8413 }
8414
8415 // We need to continue with the instantiation, so do so now.
8416 StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
8417 if (SubStmt.isInvalid())
8418 return StmtError();
8419
8420 // If we have resolved the name, just transform to the substatement.
8421 if (!Dependent)
8422 return SubStmt;
8423
8424 // The name is still dependent, so build a dependent expression again.
8425 return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
8426 S->isIfExists(),
8427 QualifierLoc,
8428 NameInfo,
8429 SubStmt.get());
8430 }
8431
8432 template<typename Derived>
8433 ExprResult
TransformMSPropertyRefExpr(MSPropertyRefExpr * E)8434 TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) {
8435 NestedNameSpecifierLoc QualifierLoc;
8436 if (E->getQualifierLoc()) {
8437 QualifierLoc
8438 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
8439 if (!QualifierLoc)
8440 return ExprError();
8441 }
8442
8443 MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>(
8444 getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl()));
8445 if (!PD)
8446 return ExprError();
8447
8448 ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
8449 if (Base.isInvalid())
8450 return ExprError();
8451
8452 return new (SemaRef.getASTContext())
8453 MSPropertyRefExpr(Base.get(), PD, E->isArrow(),
8454 SemaRef.getASTContext().PseudoObjectTy, VK_LValue,
8455 QualifierLoc, E->getMemberLoc());
8456 }
8457
8458 template <typename Derived>
TransformMSPropertySubscriptExpr(MSPropertySubscriptExpr * E)8459 ExprResult TreeTransform<Derived>::TransformMSPropertySubscriptExpr(
8460 MSPropertySubscriptExpr *E) {
8461 auto BaseRes = getDerived().TransformExpr(E->getBase());
8462 if (BaseRes.isInvalid())
8463 return ExprError();
8464 auto IdxRes = getDerived().TransformExpr(E->getIdx());
8465 if (IdxRes.isInvalid())
8466 return ExprError();
8467
8468 if (!getDerived().AlwaysRebuild() &&
8469 BaseRes.get() == E->getBase() &&
8470 IdxRes.get() == E->getIdx())
8471 return E;
8472
8473 return getDerived().RebuildArraySubscriptExpr(
8474 BaseRes.get(), SourceLocation(), IdxRes.get(), E->getRBracketLoc());
8475 }
8476
8477 template <typename Derived>
TransformSEHTryStmt(SEHTryStmt * S)8478 StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
8479 StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
8480 if (TryBlock.isInvalid())
8481 return StmtError();
8482
8483 StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
8484 if (Handler.isInvalid())
8485 return StmtError();
8486
8487 if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
8488 Handler.get() == S->getHandler())
8489 return S;
8490
8491 return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(),
8492 TryBlock.get(), Handler.get());
8493 }
8494
8495 template <typename Derived>
TransformSEHFinallyStmt(SEHFinallyStmt * S)8496 StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
8497 StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
8498 if (Block.isInvalid())
8499 return StmtError();
8500
8501 return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get());
8502 }
8503
8504 template <typename Derived>
TransformSEHExceptStmt(SEHExceptStmt * S)8505 StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
8506 ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
8507 if (FilterExpr.isInvalid())
8508 return StmtError();
8509
8510 StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
8511 if (Block.isInvalid())
8512 return StmtError();
8513
8514 return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(),
8515 Block.get());
8516 }
8517
8518 template <typename Derived>
TransformSEHHandler(Stmt * Handler)8519 StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
8520 if (isa<SEHFinallyStmt>(Handler))
8521 return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
8522 else
8523 return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
8524 }
8525
8526 template<typename Derived>
8527 StmtResult
TransformSEHLeaveStmt(SEHLeaveStmt * S)8528 TreeTransform<Derived>::TransformSEHLeaveStmt(SEHLeaveStmt *S) {
8529 return S;
8530 }
8531
8532 //===----------------------------------------------------------------------===//
8533 // OpenMP directive transformation
8534 //===----------------------------------------------------------------------===//
8535
8536 template <typename Derived>
8537 StmtResult
TransformOMPCanonicalLoop(OMPCanonicalLoop * L)8538 TreeTransform<Derived>::TransformOMPCanonicalLoop(OMPCanonicalLoop *L) {
8539 // OMPCanonicalLoops are eliminated during transformation, since they will be
8540 // recomputed by semantic analysis of the associated OMPLoopBasedDirective
8541 // after transformation.
8542 return getDerived().TransformStmt(L->getLoopStmt());
8543 }
8544
8545 template <typename Derived>
TransformOMPExecutableDirective(OMPExecutableDirective * D)8546 StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective(
8547 OMPExecutableDirective *D) {
8548
8549 // Transform the clauses
8550 llvm::SmallVector<OMPClause *, 16> TClauses;
8551 ArrayRef<OMPClause *> Clauses = D->clauses();
8552 TClauses.reserve(Clauses.size());
8553 for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
8554 I != E; ++I) {
8555 if (*I) {
8556 getDerived().getSema().StartOpenMPClause((*I)->getClauseKind());
8557 OMPClause *Clause = getDerived().TransformOMPClause(*I);
8558 getDerived().getSema().EndOpenMPClause();
8559 if (Clause)
8560 TClauses.push_back(Clause);
8561 } else {
8562 TClauses.push_back(nullptr);
8563 }
8564 }
8565 StmtResult AssociatedStmt;
8566 if (D->hasAssociatedStmt() && D->getAssociatedStmt()) {
8567 getDerived().getSema().ActOnOpenMPRegionStart(D->getDirectiveKind(),
8568 /*CurScope=*/nullptr);
8569 StmtResult Body;
8570 {
8571 Sema::CompoundScopeRAII CompoundScope(getSema());
8572 Stmt *CS;
8573 if (D->getDirectiveKind() == OMPD_atomic ||
8574 D->getDirectiveKind() == OMPD_critical ||
8575 D->getDirectiveKind() == OMPD_section ||
8576 D->getDirectiveKind() == OMPD_master)
8577 CS = D->getAssociatedStmt();
8578 else
8579 CS = D->getRawStmt();
8580 Body = getDerived().TransformStmt(CS);
8581 if (Body.isUsable() && isOpenMPLoopDirective(D->getDirectiveKind()) &&
8582 getSema().getLangOpts().OpenMPIRBuilder)
8583 Body = getDerived().RebuildOMPCanonicalLoop(Body.get());
8584 }
8585 AssociatedStmt =
8586 getDerived().getSema().ActOnOpenMPRegionEnd(Body, TClauses);
8587 if (AssociatedStmt.isInvalid()) {
8588 return StmtError();
8589 }
8590 }
8591 if (TClauses.size() != Clauses.size()) {
8592 return StmtError();
8593 }
8594
8595 // Transform directive name for 'omp critical' directive.
8596 DeclarationNameInfo DirName;
8597 if (D->getDirectiveKind() == OMPD_critical) {
8598 DirName = cast<OMPCriticalDirective>(D)->getDirectiveName();
8599 DirName = getDerived().TransformDeclarationNameInfo(DirName);
8600 }
8601 OpenMPDirectiveKind CancelRegion = OMPD_unknown;
8602 if (D->getDirectiveKind() == OMPD_cancellation_point) {
8603 CancelRegion = cast<OMPCancellationPointDirective>(D)->getCancelRegion();
8604 } else if (D->getDirectiveKind() == OMPD_cancel) {
8605 CancelRegion = cast<OMPCancelDirective>(D)->getCancelRegion();
8606 }
8607
8608 return getDerived().RebuildOMPExecutableDirective(
8609 D->getDirectiveKind(), DirName, CancelRegion, TClauses,
8610 AssociatedStmt.get(), D->getBeginLoc(), D->getEndLoc());
8611 }
8612
8613 template <typename Derived>
8614 StmtResult
TransformOMPMetaDirective(OMPMetaDirective * D)8615 TreeTransform<Derived>::TransformOMPMetaDirective(OMPMetaDirective *D) {
8616 // TODO: Fix This
8617 SemaRef.Diag(D->getBeginLoc(), diag::err_omp_instantiation_not_supported)
8618 << getOpenMPDirectiveName(D->getDirectiveKind());
8619 return StmtError();
8620 }
8621
8622 template <typename Derived>
8623 StmtResult
TransformOMPParallelDirective(OMPParallelDirective * D)8624 TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) {
8625 DeclarationNameInfo DirName;
8626 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel, DirName, nullptr,
8627 D->getBeginLoc());
8628 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8629 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8630 return Res;
8631 }
8632
8633 template <typename Derived>
8634 StmtResult
TransformOMPSimdDirective(OMPSimdDirective * D)8635 TreeTransform<Derived>::TransformOMPSimdDirective(OMPSimdDirective *D) {
8636 DeclarationNameInfo DirName;
8637 getDerived().getSema().StartOpenMPDSABlock(OMPD_simd, DirName, nullptr,
8638 D->getBeginLoc());
8639 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8640 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8641 return Res;
8642 }
8643
8644 template <typename Derived>
8645 StmtResult
TransformOMPTileDirective(OMPTileDirective * D)8646 TreeTransform<Derived>::TransformOMPTileDirective(OMPTileDirective *D) {
8647 DeclarationNameInfo DirName;
8648 getDerived().getSema().StartOpenMPDSABlock(D->getDirectiveKind(), DirName,
8649 nullptr, D->getBeginLoc());
8650 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8651 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8652 return Res;
8653 }
8654
8655 template <typename Derived>
8656 StmtResult
TransformOMPUnrollDirective(OMPUnrollDirective * D)8657 TreeTransform<Derived>::TransformOMPUnrollDirective(OMPUnrollDirective *D) {
8658 DeclarationNameInfo DirName;
8659 getDerived().getSema().StartOpenMPDSABlock(D->getDirectiveKind(), DirName,
8660 nullptr, D->getBeginLoc());
8661 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8662 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8663 return Res;
8664 }
8665
8666 template <typename Derived>
8667 StmtResult
TransformOMPForDirective(OMPForDirective * D)8668 TreeTransform<Derived>::TransformOMPForDirective(OMPForDirective *D) {
8669 DeclarationNameInfo DirName;
8670 getDerived().getSema().StartOpenMPDSABlock(OMPD_for, DirName, nullptr,
8671 D->getBeginLoc());
8672 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8673 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8674 return Res;
8675 }
8676
8677 template <typename Derived>
8678 StmtResult
TransformOMPForSimdDirective(OMPForSimdDirective * D)8679 TreeTransform<Derived>::TransformOMPForSimdDirective(OMPForSimdDirective *D) {
8680 DeclarationNameInfo DirName;
8681 getDerived().getSema().StartOpenMPDSABlock(OMPD_for_simd, DirName, nullptr,
8682 D->getBeginLoc());
8683 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8684 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8685 return Res;
8686 }
8687
8688 template <typename Derived>
8689 StmtResult
TransformOMPSectionsDirective(OMPSectionsDirective * D)8690 TreeTransform<Derived>::TransformOMPSectionsDirective(OMPSectionsDirective *D) {
8691 DeclarationNameInfo DirName;
8692 getDerived().getSema().StartOpenMPDSABlock(OMPD_sections, DirName, nullptr,
8693 D->getBeginLoc());
8694 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8695 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8696 return Res;
8697 }
8698
8699 template <typename Derived>
8700 StmtResult
TransformOMPSectionDirective(OMPSectionDirective * D)8701 TreeTransform<Derived>::TransformOMPSectionDirective(OMPSectionDirective *D) {
8702 DeclarationNameInfo DirName;
8703 getDerived().getSema().StartOpenMPDSABlock(OMPD_section, DirName, nullptr,
8704 D->getBeginLoc());
8705 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8706 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8707 return Res;
8708 }
8709
8710 template <typename Derived>
8711 StmtResult
TransformOMPSingleDirective(OMPSingleDirective * D)8712 TreeTransform<Derived>::TransformOMPSingleDirective(OMPSingleDirective *D) {
8713 DeclarationNameInfo DirName;
8714 getDerived().getSema().StartOpenMPDSABlock(OMPD_single, DirName, nullptr,
8715 D->getBeginLoc());
8716 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8717 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8718 return Res;
8719 }
8720
8721 template <typename Derived>
8722 StmtResult
TransformOMPMasterDirective(OMPMasterDirective * D)8723 TreeTransform<Derived>::TransformOMPMasterDirective(OMPMasterDirective *D) {
8724 DeclarationNameInfo DirName;
8725 getDerived().getSema().StartOpenMPDSABlock(OMPD_master, DirName, nullptr,
8726 D->getBeginLoc());
8727 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8728 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8729 return Res;
8730 }
8731
8732 template <typename Derived>
8733 StmtResult
TransformOMPCriticalDirective(OMPCriticalDirective * D)8734 TreeTransform<Derived>::TransformOMPCriticalDirective(OMPCriticalDirective *D) {
8735 getDerived().getSema().StartOpenMPDSABlock(
8736 OMPD_critical, D->getDirectiveName(), nullptr, D->getBeginLoc());
8737 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8738 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8739 return Res;
8740 }
8741
8742 template <typename Derived>
TransformOMPParallelForDirective(OMPParallelForDirective * D)8743 StmtResult TreeTransform<Derived>::TransformOMPParallelForDirective(
8744 OMPParallelForDirective *D) {
8745 DeclarationNameInfo DirName;
8746 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for, DirName,
8747 nullptr, D->getBeginLoc());
8748 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8749 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8750 return Res;
8751 }
8752
8753 template <typename Derived>
TransformOMPParallelForSimdDirective(OMPParallelForSimdDirective * D)8754 StmtResult TreeTransform<Derived>::TransformOMPParallelForSimdDirective(
8755 OMPParallelForSimdDirective *D) {
8756 DeclarationNameInfo DirName;
8757 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for_simd, DirName,
8758 nullptr, D->getBeginLoc());
8759 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8760 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8761 return Res;
8762 }
8763
8764 template <typename Derived>
TransformOMPParallelMasterDirective(OMPParallelMasterDirective * D)8765 StmtResult TreeTransform<Derived>::TransformOMPParallelMasterDirective(
8766 OMPParallelMasterDirective *D) {
8767 DeclarationNameInfo DirName;
8768 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_master, DirName,
8769 nullptr, D->getBeginLoc());
8770 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8771 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8772 return Res;
8773 }
8774
8775 template <typename Derived>
TransformOMPParallelMaskedDirective(OMPParallelMaskedDirective * D)8776 StmtResult TreeTransform<Derived>::TransformOMPParallelMaskedDirective(
8777 OMPParallelMaskedDirective *D) {
8778 DeclarationNameInfo DirName;
8779 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_masked, DirName,
8780 nullptr, D->getBeginLoc());
8781 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8782 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8783 return Res;
8784 }
8785
8786 template <typename Derived>
TransformOMPParallelSectionsDirective(OMPParallelSectionsDirective * D)8787 StmtResult TreeTransform<Derived>::TransformOMPParallelSectionsDirective(
8788 OMPParallelSectionsDirective *D) {
8789 DeclarationNameInfo DirName;
8790 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_sections, DirName,
8791 nullptr, D->getBeginLoc());
8792 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8793 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8794 return Res;
8795 }
8796
8797 template <typename Derived>
8798 StmtResult
TransformOMPTaskDirective(OMPTaskDirective * D)8799 TreeTransform<Derived>::TransformOMPTaskDirective(OMPTaskDirective *D) {
8800 DeclarationNameInfo DirName;
8801 getDerived().getSema().StartOpenMPDSABlock(OMPD_task, DirName, nullptr,
8802 D->getBeginLoc());
8803 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8804 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8805 return Res;
8806 }
8807
8808 template <typename Derived>
TransformOMPTaskyieldDirective(OMPTaskyieldDirective * D)8809 StmtResult TreeTransform<Derived>::TransformOMPTaskyieldDirective(
8810 OMPTaskyieldDirective *D) {
8811 DeclarationNameInfo DirName;
8812 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskyield, DirName, nullptr,
8813 D->getBeginLoc());
8814 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8815 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8816 return Res;
8817 }
8818
8819 template <typename Derived>
8820 StmtResult
TransformOMPBarrierDirective(OMPBarrierDirective * D)8821 TreeTransform<Derived>::TransformOMPBarrierDirective(OMPBarrierDirective *D) {
8822 DeclarationNameInfo DirName;
8823 getDerived().getSema().StartOpenMPDSABlock(OMPD_barrier, DirName, nullptr,
8824 D->getBeginLoc());
8825 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8826 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8827 return Res;
8828 }
8829
8830 template <typename Derived>
8831 StmtResult
TransformOMPTaskwaitDirective(OMPTaskwaitDirective * D)8832 TreeTransform<Derived>::TransformOMPTaskwaitDirective(OMPTaskwaitDirective *D) {
8833 DeclarationNameInfo DirName;
8834 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskwait, DirName, nullptr,
8835 D->getBeginLoc());
8836 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8837 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8838 return Res;
8839 }
8840
8841 template <typename Derived>
TransformOMPTaskgroupDirective(OMPTaskgroupDirective * D)8842 StmtResult TreeTransform<Derived>::TransformOMPTaskgroupDirective(
8843 OMPTaskgroupDirective *D) {
8844 DeclarationNameInfo DirName;
8845 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskgroup, DirName, nullptr,
8846 D->getBeginLoc());
8847 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8848 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8849 return Res;
8850 }
8851
8852 template <typename Derived>
8853 StmtResult
TransformOMPFlushDirective(OMPFlushDirective * D)8854 TreeTransform<Derived>::TransformOMPFlushDirective(OMPFlushDirective *D) {
8855 DeclarationNameInfo DirName;
8856 getDerived().getSema().StartOpenMPDSABlock(OMPD_flush, DirName, nullptr,
8857 D->getBeginLoc());
8858 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8859 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8860 return Res;
8861 }
8862
8863 template <typename Derived>
8864 StmtResult
TransformOMPDepobjDirective(OMPDepobjDirective * D)8865 TreeTransform<Derived>::TransformOMPDepobjDirective(OMPDepobjDirective *D) {
8866 DeclarationNameInfo DirName;
8867 getDerived().getSema().StartOpenMPDSABlock(OMPD_depobj, DirName, nullptr,
8868 D->getBeginLoc());
8869 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8870 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8871 return Res;
8872 }
8873
8874 template <typename Derived>
8875 StmtResult
TransformOMPScanDirective(OMPScanDirective * D)8876 TreeTransform<Derived>::TransformOMPScanDirective(OMPScanDirective *D) {
8877 DeclarationNameInfo DirName;
8878 getDerived().getSema().StartOpenMPDSABlock(OMPD_scan, DirName, nullptr,
8879 D->getBeginLoc());
8880 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8881 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8882 return Res;
8883 }
8884
8885 template <typename Derived>
8886 StmtResult
TransformOMPOrderedDirective(OMPOrderedDirective * D)8887 TreeTransform<Derived>::TransformOMPOrderedDirective(OMPOrderedDirective *D) {
8888 DeclarationNameInfo DirName;
8889 getDerived().getSema().StartOpenMPDSABlock(OMPD_ordered, DirName, nullptr,
8890 D->getBeginLoc());
8891 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8892 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8893 return Res;
8894 }
8895
8896 template <typename Derived>
8897 StmtResult
TransformOMPAtomicDirective(OMPAtomicDirective * D)8898 TreeTransform<Derived>::TransformOMPAtomicDirective(OMPAtomicDirective *D) {
8899 DeclarationNameInfo DirName;
8900 getDerived().getSema().StartOpenMPDSABlock(OMPD_atomic, DirName, nullptr,
8901 D->getBeginLoc());
8902 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8903 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8904 return Res;
8905 }
8906
8907 template <typename Derived>
8908 StmtResult
TransformOMPTargetDirective(OMPTargetDirective * D)8909 TreeTransform<Derived>::TransformOMPTargetDirective(OMPTargetDirective *D) {
8910 DeclarationNameInfo DirName;
8911 getDerived().getSema().StartOpenMPDSABlock(OMPD_target, DirName, nullptr,
8912 D->getBeginLoc());
8913 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8914 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8915 return Res;
8916 }
8917
8918 template <typename Derived>
TransformOMPTargetDataDirective(OMPTargetDataDirective * D)8919 StmtResult TreeTransform<Derived>::TransformOMPTargetDataDirective(
8920 OMPTargetDataDirective *D) {
8921 DeclarationNameInfo DirName;
8922 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_data, DirName, nullptr,
8923 D->getBeginLoc());
8924 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8925 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8926 return Res;
8927 }
8928
8929 template <typename Derived>
TransformOMPTargetEnterDataDirective(OMPTargetEnterDataDirective * D)8930 StmtResult TreeTransform<Derived>::TransformOMPTargetEnterDataDirective(
8931 OMPTargetEnterDataDirective *D) {
8932 DeclarationNameInfo DirName;
8933 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_enter_data, DirName,
8934 nullptr, D->getBeginLoc());
8935 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8936 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8937 return Res;
8938 }
8939
8940 template <typename Derived>
TransformOMPTargetExitDataDirective(OMPTargetExitDataDirective * D)8941 StmtResult TreeTransform<Derived>::TransformOMPTargetExitDataDirective(
8942 OMPTargetExitDataDirective *D) {
8943 DeclarationNameInfo DirName;
8944 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_exit_data, DirName,
8945 nullptr, D->getBeginLoc());
8946 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8947 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8948 return Res;
8949 }
8950
8951 template <typename Derived>
TransformOMPTargetParallelDirective(OMPTargetParallelDirective * D)8952 StmtResult TreeTransform<Derived>::TransformOMPTargetParallelDirective(
8953 OMPTargetParallelDirective *D) {
8954 DeclarationNameInfo DirName;
8955 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel, DirName,
8956 nullptr, D->getBeginLoc());
8957 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8958 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8959 return Res;
8960 }
8961
8962 template <typename Derived>
TransformOMPTargetParallelForDirective(OMPTargetParallelForDirective * D)8963 StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForDirective(
8964 OMPTargetParallelForDirective *D) {
8965 DeclarationNameInfo DirName;
8966 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel_for, DirName,
8967 nullptr, D->getBeginLoc());
8968 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8969 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8970 return Res;
8971 }
8972
8973 template <typename Derived>
TransformOMPTargetUpdateDirective(OMPTargetUpdateDirective * D)8974 StmtResult TreeTransform<Derived>::TransformOMPTargetUpdateDirective(
8975 OMPTargetUpdateDirective *D) {
8976 DeclarationNameInfo DirName;
8977 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_update, DirName,
8978 nullptr, D->getBeginLoc());
8979 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8980 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8981 return Res;
8982 }
8983
8984 template <typename Derived>
8985 StmtResult
TransformOMPTeamsDirective(OMPTeamsDirective * D)8986 TreeTransform<Derived>::TransformOMPTeamsDirective(OMPTeamsDirective *D) {
8987 DeclarationNameInfo DirName;
8988 getDerived().getSema().StartOpenMPDSABlock(OMPD_teams, DirName, nullptr,
8989 D->getBeginLoc());
8990 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8991 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8992 return Res;
8993 }
8994
8995 template <typename Derived>
TransformOMPCancellationPointDirective(OMPCancellationPointDirective * D)8996 StmtResult TreeTransform<Derived>::TransformOMPCancellationPointDirective(
8997 OMPCancellationPointDirective *D) {
8998 DeclarationNameInfo DirName;
8999 getDerived().getSema().StartOpenMPDSABlock(OMPD_cancellation_point, DirName,
9000 nullptr, D->getBeginLoc());
9001 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9002 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9003 return Res;
9004 }
9005
9006 template <typename Derived>
9007 StmtResult
TransformOMPCancelDirective(OMPCancelDirective * D)9008 TreeTransform<Derived>::TransformOMPCancelDirective(OMPCancelDirective *D) {
9009 DeclarationNameInfo DirName;
9010 getDerived().getSema().StartOpenMPDSABlock(OMPD_cancel, DirName, nullptr,
9011 D->getBeginLoc());
9012 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9013 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9014 return Res;
9015 }
9016
9017 template <typename Derived>
9018 StmtResult
TransformOMPTaskLoopDirective(OMPTaskLoopDirective * D)9019 TreeTransform<Derived>::TransformOMPTaskLoopDirective(OMPTaskLoopDirective *D) {
9020 DeclarationNameInfo DirName;
9021 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskloop, DirName, nullptr,
9022 D->getBeginLoc());
9023 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9024 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9025 return Res;
9026 }
9027
9028 template <typename Derived>
TransformOMPTaskLoopSimdDirective(OMPTaskLoopSimdDirective * D)9029 StmtResult TreeTransform<Derived>::TransformOMPTaskLoopSimdDirective(
9030 OMPTaskLoopSimdDirective *D) {
9031 DeclarationNameInfo DirName;
9032 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskloop_simd, DirName,
9033 nullptr, D->getBeginLoc());
9034 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9035 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9036 return Res;
9037 }
9038
9039 template <typename Derived>
TransformOMPMasterTaskLoopDirective(OMPMasterTaskLoopDirective * D)9040 StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopDirective(
9041 OMPMasterTaskLoopDirective *D) {
9042 DeclarationNameInfo DirName;
9043 getDerived().getSema().StartOpenMPDSABlock(OMPD_master_taskloop, DirName,
9044 nullptr, D->getBeginLoc());
9045 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9046 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9047 return Res;
9048 }
9049
9050 template <typename Derived>
TransformOMPMaskedTaskLoopDirective(OMPMaskedTaskLoopDirective * D)9051 StmtResult TreeTransform<Derived>::TransformOMPMaskedTaskLoopDirective(
9052 OMPMaskedTaskLoopDirective *D) {
9053 DeclarationNameInfo DirName;
9054 getDerived().getSema().StartOpenMPDSABlock(OMPD_masked_taskloop, DirName,
9055 nullptr, D->getBeginLoc());
9056 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9057 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9058 return Res;
9059 }
9060
9061 template <typename Derived>
TransformOMPMasterTaskLoopSimdDirective(OMPMasterTaskLoopSimdDirective * D)9062 StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopSimdDirective(
9063 OMPMasterTaskLoopSimdDirective *D) {
9064 DeclarationNameInfo DirName;
9065 getDerived().getSema().StartOpenMPDSABlock(OMPD_master_taskloop_simd, DirName,
9066 nullptr, D->getBeginLoc());
9067 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9068 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9069 return Res;
9070 }
9071
9072 template <typename Derived>
TransformOMPMaskedTaskLoopSimdDirective(OMPMaskedTaskLoopSimdDirective * D)9073 StmtResult TreeTransform<Derived>::TransformOMPMaskedTaskLoopSimdDirective(
9074 OMPMaskedTaskLoopSimdDirective *D) {
9075 DeclarationNameInfo DirName;
9076 getDerived().getSema().StartOpenMPDSABlock(OMPD_masked_taskloop_simd, DirName,
9077 nullptr, D->getBeginLoc());
9078 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9079 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9080 return Res;
9081 }
9082
9083 template <typename Derived>
TransformOMPParallelMasterTaskLoopDirective(OMPParallelMasterTaskLoopDirective * D)9084 StmtResult TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopDirective(
9085 OMPParallelMasterTaskLoopDirective *D) {
9086 DeclarationNameInfo DirName;
9087 getDerived().getSema().StartOpenMPDSABlock(
9088 OMPD_parallel_master_taskloop, DirName, nullptr, D->getBeginLoc());
9089 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9090 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9091 return Res;
9092 }
9093
9094 template <typename Derived>
TransformOMPParallelMaskedTaskLoopDirective(OMPParallelMaskedTaskLoopDirective * D)9095 StmtResult TreeTransform<Derived>::TransformOMPParallelMaskedTaskLoopDirective(
9096 OMPParallelMaskedTaskLoopDirective *D) {
9097 DeclarationNameInfo DirName;
9098 getDerived().getSema().StartOpenMPDSABlock(
9099 OMPD_parallel_masked_taskloop, DirName, nullptr, D->getBeginLoc());
9100 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9101 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9102 return Res;
9103 }
9104
9105 template <typename Derived>
9106 StmtResult
TransformOMPParallelMasterTaskLoopSimdDirective(OMPParallelMasterTaskLoopSimdDirective * D)9107 TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopSimdDirective(
9108 OMPParallelMasterTaskLoopSimdDirective *D) {
9109 DeclarationNameInfo DirName;
9110 getDerived().getSema().StartOpenMPDSABlock(
9111 OMPD_parallel_master_taskloop_simd, DirName, nullptr, D->getBeginLoc());
9112 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9113 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9114 return Res;
9115 }
9116
9117 template <typename Derived>
9118 StmtResult
TransformOMPParallelMaskedTaskLoopSimdDirective(OMPParallelMaskedTaskLoopSimdDirective * D)9119 TreeTransform<Derived>::TransformOMPParallelMaskedTaskLoopSimdDirective(
9120 OMPParallelMaskedTaskLoopSimdDirective *D) {
9121 DeclarationNameInfo DirName;
9122 getDerived().getSema().StartOpenMPDSABlock(
9123 OMPD_parallel_masked_taskloop_simd, DirName, nullptr, D->getBeginLoc());
9124 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9125 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9126 return Res;
9127 }
9128
9129 template <typename Derived>
TransformOMPDistributeDirective(OMPDistributeDirective * D)9130 StmtResult TreeTransform<Derived>::TransformOMPDistributeDirective(
9131 OMPDistributeDirective *D) {
9132 DeclarationNameInfo DirName;
9133 getDerived().getSema().StartOpenMPDSABlock(OMPD_distribute, DirName, nullptr,
9134 D->getBeginLoc());
9135 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9136 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9137 return Res;
9138 }
9139
9140 template <typename Derived>
TransformOMPDistributeParallelForDirective(OMPDistributeParallelForDirective * D)9141 StmtResult TreeTransform<Derived>::TransformOMPDistributeParallelForDirective(
9142 OMPDistributeParallelForDirective *D) {
9143 DeclarationNameInfo DirName;
9144 getDerived().getSema().StartOpenMPDSABlock(
9145 OMPD_distribute_parallel_for, DirName, nullptr, D->getBeginLoc());
9146 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9147 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9148 return Res;
9149 }
9150
9151 template <typename Derived>
9152 StmtResult
TransformOMPDistributeParallelForSimdDirective(OMPDistributeParallelForSimdDirective * D)9153 TreeTransform<Derived>::TransformOMPDistributeParallelForSimdDirective(
9154 OMPDistributeParallelForSimdDirective *D) {
9155 DeclarationNameInfo DirName;
9156 getDerived().getSema().StartOpenMPDSABlock(
9157 OMPD_distribute_parallel_for_simd, DirName, nullptr, D->getBeginLoc());
9158 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9159 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9160 return Res;
9161 }
9162
9163 template <typename Derived>
TransformOMPDistributeSimdDirective(OMPDistributeSimdDirective * D)9164 StmtResult TreeTransform<Derived>::TransformOMPDistributeSimdDirective(
9165 OMPDistributeSimdDirective *D) {
9166 DeclarationNameInfo DirName;
9167 getDerived().getSema().StartOpenMPDSABlock(OMPD_distribute_simd, DirName,
9168 nullptr, D->getBeginLoc());
9169 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9170 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9171 return Res;
9172 }
9173
9174 template <typename Derived>
TransformOMPTargetParallelForSimdDirective(OMPTargetParallelForSimdDirective * D)9175 StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForSimdDirective(
9176 OMPTargetParallelForSimdDirective *D) {
9177 DeclarationNameInfo DirName;
9178 getDerived().getSema().StartOpenMPDSABlock(
9179 OMPD_target_parallel_for_simd, DirName, nullptr, D->getBeginLoc());
9180 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9181 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9182 return Res;
9183 }
9184
9185 template <typename Derived>
TransformOMPTargetSimdDirective(OMPTargetSimdDirective * D)9186 StmtResult TreeTransform<Derived>::TransformOMPTargetSimdDirective(
9187 OMPTargetSimdDirective *D) {
9188 DeclarationNameInfo DirName;
9189 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_simd, DirName, nullptr,
9190 D->getBeginLoc());
9191 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9192 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9193 return Res;
9194 }
9195
9196 template <typename Derived>
TransformOMPTeamsDistributeDirective(OMPTeamsDistributeDirective * D)9197 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeDirective(
9198 OMPTeamsDistributeDirective *D) {
9199 DeclarationNameInfo DirName;
9200 getDerived().getSema().StartOpenMPDSABlock(OMPD_teams_distribute, DirName,
9201 nullptr, D->getBeginLoc());
9202 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9203 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9204 return Res;
9205 }
9206
9207 template <typename Derived>
TransformOMPTeamsDistributeSimdDirective(OMPTeamsDistributeSimdDirective * D)9208 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeSimdDirective(
9209 OMPTeamsDistributeSimdDirective *D) {
9210 DeclarationNameInfo DirName;
9211 getDerived().getSema().StartOpenMPDSABlock(
9212 OMPD_teams_distribute_simd, DirName, nullptr, D->getBeginLoc());
9213 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9214 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9215 return Res;
9216 }
9217
9218 template <typename Derived>
TransformOMPTeamsDistributeParallelForSimdDirective(OMPTeamsDistributeParallelForSimdDirective * D)9219 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForSimdDirective(
9220 OMPTeamsDistributeParallelForSimdDirective *D) {
9221 DeclarationNameInfo DirName;
9222 getDerived().getSema().StartOpenMPDSABlock(
9223 OMPD_teams_distribute_parallel_for_simd, DirName, nullptr,
9224 D->getBeginLoc());
9225 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9226 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9227 return Res;
9228 }
9229
9230 template <typename Derived>
TransformOMPTeamsDistributeParallelForDirective(OMPTeamsDistributeParallelForDirective * D)9231 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForDirective(
9232 OMPTeamsDistributeParallelForDirective *D) {
9233 DeclarationNameInfo DirName;
9234 getDerived().getSema().StartOpenMPDSABlock(
9235 OMPD_teams_distribute_parallel_for, DirName, nullptr, D->getBeginLoc());
9236 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9237 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9238 return Res;
9239 }
9240
9241 template <typename Derived>
TransformOMPTargetTeamsDirective(OMPTargetTeamsDirective * D)9242 StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDirective(
9243 OMPTargetTeamsDirective *D) {
9244 DeclarationNameInfo DirName;
9245 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_teams, DirName,
9246 nullptr, D->getBeginLoc());
9247 auto Res = getDerived().TransformOMPExecutableDirective(D);
9248 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9249 return Res;
9250 }
9251
9252 template <typename Derived>
TransformOMPTargetTeamsDistributeDirective(OMPTargetTeamsDistributeDirective * D)9253 StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDistributeDirective(
9254 OMPTargetTeamsDistributeDirective *D) {
9255 DeclarationNameInfo DirName;
9256 getDerived().getSema().StartOpenMPDSABlock(
9257 OMPD_target_teams_distribute, DirName, nullptr, D->getBeginLoc());
9258 auto Res = getDerived().TransformOMPExecutableDirective(D);
9259 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9260 return Res;
9261 }
9262
9263 template <typename Derived>
9264 StmtResult
TransformOMPTargetTeamsDistributeParallelForDirective(OMPTargetTeamsDistributeParallelForDirective * D)9265 TreeTransform<Derived>::TransformOMPTargetTeamsDistributeParallelForDirective(
9266 OMPTargetTeamsDistributeParallelForDirective *D) {
9267 DeclarationNameInfo DirName;
9268 getDerived().getSema().StartOpenMPDSABlock(
9269 OMPD_target_teams_distribute_parallel_for, DirName, nullptr,
9270 D->getBeginLoc());
9271 auto Res = getDerived().TransformOMPExecutableDirective(D);
9272 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9273 return Res;
9274 }
9275
9276 template <typename Derived>
9277 StmtResult TreeTransform<Derived>::
TransformOMPTargetTeamsDistributeParallelForSimdDirective(OMPTargetTeamsDistributeParallelForSimdDirective * D)9278 TransformOMPTargetTeamsDistributeParallelForSimdDirective(
9279 OMPTargetTeamsDistributeParallelForSimdDirective *D) {
9280 DeclarationNameInfo DirName;
9281 getDerived().getSema().StartOpenMPDSABlock(
9282 OMPD_target_teams_distribute_parallel_for_simd, DirName, nullptr,
9283 D->getBeginLoc());
9284 auto Res = getDerived().TransformOMPExecutableDirective(D);
9285 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9286 return Res;
9287 }
9288
9289 template <typename Derived>
9290 StmtResult
TransformOMPTargetTeamsDistributeSimdDirective(OMPTargetTeamsDistributeSimdDirective * D)9291 TreeTransform<Derived>::TransformOMPTargetTeamsDistributeSimdDirective(
9292 OMPTargetTeamsDistributeSimdDirective *D) {
9293 DeclarationNameInfo DirName;
9294 getDerived().getSema().StartOpenMPDSABlock(
9295 OMPD_target_teams_distribute_simd, DirName, nullptr, D->getBeginLoc());
9296 auto Res = getDerived().TransformOMPExecutableDirective(D);
9297 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9298 return Res;
9299 }
9300
9301 template <typename Derived>
9302 StmtResult
TransformOMPInteropDirective(OMPInteropDirective * D)9303 TreeTransform<Derived>::TransformOMPInteropDirective(OMPInteropDirective *D) {
9304 DeclarationNameInfo DirName;
9305 getDerived().getSema().StartOpenMPDSABlock(OMPD_interop, DirName, nullptr,
9306 D->getBeginLoc());
9307 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9308 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9309 return Res;
9310 }
9311
9312 template <typename Derived>
9313 StmtResult
TransformOMPDispatchDirective(OMPDispatchDirective * D)9314 TreeTransform<Derived>::TransformOMPDispatchDirective(OMPDispatchDirective *D) {
9315 DeclarationNameInfo DirName;
9316 getDerived().getSema().StartOpenMPDSABlock(OMPD_dispatch, DirName, nullptr,
9317 D->getBeginLoc());
9318 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9319 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9320 return Res;
9321 }
9322
9323 template <typename Derived>
9324 StmtResult
TransformOMPMaskedDirective(OMPMaskedDirective * D)9325 TreeTransform<Derived>::TransformOMPMaskedDirective(OMPMaskedDirective *D) {
9326 DeclarationNameInfo DirName;
9327 getDerived().getSema().StartOpenMPDSABlock(OMPD_masked, DirName, nullptr,
9328 D->getBeginLoc());
9329 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9330 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9331 return Res;
9332 }
9333
9334 template <typename Derived>
TransformOMPGenericLoopDirective(OMPGenericLoopDirective * D)9335 StmtResult TreeTransform<Derived>::TransformOMPGenericLoopDirective(
9336 OMPGenericLoopDirective *D) {
9337 DeclarationNameInfo DirName;
9338 getDerived().getSema().StartOpenMPDSABlock(OMPD_loop, DirName, nullptr,
9339 D->getBeginLoc());
9340 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9341 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9342 return Res;
9343 }
9344
9345 template <typename Derived>
TransformOMPTeamsGenericLoopDirective(OMPTeamsGenericLoopDirective * D)9346 StmtResult TreeTransform<Derived>::TransformOMPTeamsGenericLoopDirective(
9347 OMPTeamsGenericLoopDirective *D) {
9348 DeclarationNameInfo DirName;
9349 getDerived().getSema().StartOpenMPDSABlock(OMPD_teams_loop, DirName, nullptr,
9350 D->getBeginLoc());
9351 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9352 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9353 return Res;
9354 }
9355
9356 template <typename Derived>
TransformOMPTargetTeamsGenericLoopDirective(OMPTargetTeamsGenericLoopDirective * D)9357 StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsGenericLoopDirective(
9358 OMPTargetTeamsGenericLoopDirective *D) {
9359 DeclarationNameInfo DirName;
9360 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_teams_loop, DirName,
9361 nullptr, D->getBeginLoc());
9362 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9363 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9364 return Res;
9365 }
9366
9367 template <typename Derived>
TransformOMPParallelGenericLoopDirective(OMPParallelGenericLoopDirective * D)9368 StmtResult TreeTransform<Derived>::TransformOMPParallelGenericLoopDirective(
9369 OMPParallelGenericLoopDirective *D) {
9370 DeclarationNameInfo DirName;
9371 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_loop, DirName,
9372 nullptr, D->getBeginLoc());
9373 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9374 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9375 return Res;
9376 }
9377
9378 template <typename Derived>
9379 StmtResult
TransformOMPTargetParallelGenericLoopDirective(OMPTargetParallelGenericLoopDirective * D)9380 TreeTransform<Derived>::TransformOMPTargetParallelGenericLoopDirective(
9381 OMPTargetParallelGenericLoopDirective *D) {
9382 DeclarationNameInfo DirName;
9383 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel_loop, DirName,
9384 nullptr, D->getBeginLoc());
9385 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9386 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9387 return Res;
9388 }
9389
9390 //===----------------------------------------------------------------------===//
9391 // OpenMP clause transformation
9392 //===----------------------------------------------------------------------===//
9393 template <typename Derived>
TransformOMPIfClause(OMPIfClause * C)9394 OMPClause *TreeTransform<Derived>::TransformOMPIfClause(OMPIfClause *C) {
9395 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
9396 if (Cond.isInvalid())
9397 return nullptr;
9398 return getDerived().RebuildOMPIfClause(
9399 C->getNameModifier(), Cond.get(), C->getBeginLoc(), C->getLParenLoc(),
9400 C->getNameModifierLoc(), C->getColonLoc(), C->getEndLoc());
9401 }
9402
9403 template <typename Derived>
TransformOMPFinalClause(OMPFinalClause * C)9404 OMPClause *TreeTransform<Derived>::TransformOMPFinalClause(OMPFinalClause *C) {
9405 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
9406 if (Cond.isInvalid())
9407 return nullptr;
9408 return getDerived().RebuildOMPFinalClause(Cond.get(), C->getBeginLoc(),
9409 C->getLParenLoc(), C->getEndLoc());
9410 }
9411
9412 template <typename Derived>
9413 OMPClause *
TransformOMPNumThreadsClause(OMPNumThreadsClause * C)9414 TreeTransform<Derived>::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) {
9415 ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads());
9416 if (NumThreads.isInvalid())
9417 return nullptr;
9418 return getDerived().RebuildOMPNumThreadsClause(
9419 NumThreads.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9420 }
9421
9422 template <typename Derived>
9423 OMPClause *
TransformOMPSafelenClause(OMPSafelenClause * C)9424 TreeTransform<Derived>::TransformOMPSafelenClause(OMPSafelenClause *C) {
9425 ExprResult E = getDerived().TransformExpr(C->getSafelen());
9426 if (E.isInvalid())
9427 return nullptr;
9428 return getDerived().RebuildOMPSafelenClause(
9429 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9430 }
9431
9432 template <typename Derived>
9433 OMPClause *
TransformOMPAllocatorClause(OMPAllocatorClause * C)9434 TreeTransform<Derived>::TransformOMPAllocatorClause(OMPAllocatorClause *C) {
9435 ExprResult E = getDerived().TransformExpr(C->getAllocator());
9436 if (E.isInvalid())
9437 return nullptr;
9438 return getDerived().RebuildOMPAllocatorClause(
9439 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9440 }
9441
9442 template <typename Derived>
9443 OMPClause *
TransformOMPSimdlenClause(OMPSimdlenClause * C)9444 TreeTransform<Derived>::TransformOMPSimdlenClause(OMPSimdlenClause *C) {
9445 ExprResult E = getDerived().TransformExpr(C->getSimdlen());
9446 if (E.isInvalid())
9447 return nullptr;
9448 return getDerived().RebuildOMPSimdlenClause(
9449 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9450 }
9451
9452 template <typename Derived>
TransformOMPSizesClause(OMPSizesClause * C)9453 OMPClause *TreeTransform<Derived>::TransformOMPSizesClause(OMPSizesClause *C) {
9454 SmallVector<Expr *, 4> TransformedSizes;
9455 TransformedSizes.reserve(C->getNumSizes());
9456 bool Changed = false;
9457 for (Expr *E : C->getSizesRefs()) {
9458 if (!E) {
9459 TransformedSizes.push_back(nullptr);
9460 continue;
9461 }
9462
9463 ExprResult T = getDerived().TransformExpr(E);
9464 if (T.isInvalid())
9465 return nullptr;
9466 if (E != T.get())
9467 Changed = true;
9468 TransformedSizes.push_back(T.get());
9469 }
9470
9471 if (!Changed && !getDerived().AlwaysRebuild())
9472 return C;
9473 return RebuildOMPSizesClause(TransformedSizes, C->getBeginLoc(),
9474 C->getLParenLoc(), C->getEndLoc());
9475 }
9476
9477 template <typename Derived>
TransformOMPFullClause(OMPFullClause * C)9478 OMPClause *TreeTransform<Derived>::TransformOMPFullClause(OMPFullClause *C) {
9479 if (!getDerived().AlwaysRebuild())
9480 return C;
9481 return RebuildOMPFullClause(C->getBeginLoc(), C->getEndLoc());
9482 }
9483
9484 template <typename Derived>
9485 OMPClause *
TransformOMPPartialClause(OMPPartialClause * C)9486 TreeTransform<Derived>::TransformOMPPartialClause(OMPPartialClause *C) {
9487 ExprResult T = getDerived().TransformExpr(C->getFactor());
9488 if (T.isInvalid())
9489 return nullptr;
9490 Expr *Factor = T.get();
9491 bool Changed = Factor != C->getFactor();
9492
9493 if (!Changed && !getDerived().AlwaysRebuild())
9494 return C;
9495 return RebuildOMPPartialClause(Factor, C->getBeginLoc(), C->getLParenLoc(),
9496 C->getEndLoc());
9497 }
9498
9499 template <typename Derived>
9500 OMPClause *
TransformOMPCollapseClause(OMPCollapseClause * C)9501 TreeTransform<Derived>::TransformOMPCollapseClause(OMPCollapseClause *C) {
9502 ExprResult E = getDerived().TransformExpr(C->getNumForLoops());
9503 if (E.isInvalid())
9504 return nullptr;
9505 return getDerived().RebuildOMPCollapseClause(
9506 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9507 }
9508
9509 template <typename Derived>
9510 OMPClause *
TransformOMPDefaultClause(OMPDefaultClause * C)9511 TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) {
9512 return getDerived().RebuildOMPDefaultClause(
9513 C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getBeginLoc(),
9514 C->getLParenLoc(), C->getEndLoc());
9515 }
9516
9517 template <typename Derived>
9518 OMPClause *
TransformOMPProcBindClause(OMPProcBindClause * C)9519 TreeTransform<Derived>::TransformOMPProcBindClause(OMPProcBindClause *C) {
9520 return getDerived().RebuildOMPProcBindClause(
9521 C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getBeginLoc(),
9522 C->getLParenLoc(), C->getEndLoc());
9523 }
9524
9525 template <typename Derived>
9526 OMPClause *
TransformOMPScheduleClause(OMPScheduleClause * C)9527 TreeTransform<Derived>::TransformOMPScheduleClause(OMPScheduleClause *C) {
9528 ExprResult E = getDerived().TransformExpr(C->getChunkSize());
9529 if (E.isInvalid())
9530 return nullptr;
9531 return getDerived().RebuildOMPScheduleClause(
9532 C->getFirstScheduleModifier(), C->getSecondScheduleModifier(),
9533 C->getScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
9534 C->getFirstScheduleModifierLoc(), C->getSecondScheduleModifierLoc(),
9535 C->getScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc());
9536 }
9537
9538 template <typename Derived>
9539 OMPClause *
TransformOMPOrderedClause(OMPOrderedClause * C)9540 TreeTransform<Derived>::TransformOMPOrderedClause(OMPOrderedClause *C) {
9541 ExprResult E;
9542 if (auto *Num = C->getNumForLoops()) {
9543 E = getDerived().TransformExpr(Num);
9544 if (E.isInvalid())
9545 return nullptr;
9546 }
9547 return getDerived().RebuildOMPOrderedClause(C->getBeginLoc(), C->getEndLoc(),
9548 C->getLParenLoc(), E.get());
9549 }
9550
9551 template <typename Derived>
9552 OMPClause *
TransformOMPDetachClause(OMPDetachClause * C)9553 TreeTransform<Derived>::TransformOMPDetachClause(OMPDetachClause *C) {
9554 ExprResult E;
9555 if (Expr *Evt = C->getEventHandler()) {
9556 E = getDerived().TransformExpr(Evt);
9557 if (E.isInvalid())
9558 return nullptr;
9559 }
9560 return getDerived().RebuildOMPDetachClause(E.get(), C->getBeginLoc(),
9561 C->getLParenLoc(), C->getEndLoc());
9562 }
9563
9564 template <typename Derived>
9565 OMPClause *
TransformOMPNowaitClause(OMPNowaitClause * C)9566 TreeTransform<Derived>::TransformOMPNowaitClause(OMPNowaitClause *C) {
9567 // No need to rebuild this clause, no template-dependent parameters.
9568 return C;
9569 }
9570
9571 template <typename Derived>
9572 OMPClause *
TransformOMPUntiedClause(OMPUntiedClause * C)9573 TreeTransform<Derived>::TransformOMPUntiedClause(OMPUntiedClause *C) {
9574 // No need to rebuild this clause, no template-dependent parameters.
9575 return C;
9576 }
9577
9578 template <typename Derived>
9579 OMPClause *
TransformOMPMergeableClause(OMPMergeableClause * C)9580 TreeTransform<Derived>::TransformOMPMergeableClause(OMPMergeableClause *C) {
9581 // No need to rebuild this clause, no template-dependent parameters.
9582 return C;
9583 }
9584
9585 template <typename Derived>
TransformOMPReadClause(OMPReadClause * C)9586 OMPClause *TreeTransform<Derived>::TransformOMPReadClause(OMPReadClause *C) {
9587 // No need to rebuild this clause, no template-dependent parameters.
9588 return C;
9589 }
9590
9591 template <typename Derived>
TransformOMPWriteClause(OMPWriteClause * C)9592 OMPClause *TreeTransform<Derived>::TransformOMPWriteClause(OMPWriteClause *C) {
9593 // No need to rebuild this clause, no template-dependent parameters.
9594 return C;
9595 }
9596
9597 template <typename Derived>
9598 OMPClause *
TransformOMPUpdateClause(OMPUpdateClause * C)9599 TreeTransform<Derived>::TransformOMPUpdateClause(OMPUpdateClause *C) {
9600 // No need to rebuild this clause, no template-dependent parameters.
9601 return C;
9602 }
9603
9604 template <typename Derived>
9605 OMPClause *
TransformOMPCaptureClause(OMPCaptureClause * C)9606 TreeTransform<Derived>::TransformOMPCaptureClause(OMPCaptureClause *C) {
9607 // No need to rebuild this clause, no template-dependent parameters.
9608 return C;
9609 }
9610
9611 template <typename Derived>
9612 OMPClause *
TransformOMPCompareClause(OMPCompareClause * C)9613 TreeTransform<Derived>::TransformOMPCompareClause(OMPCompareClause *C) {
9614 // No need to rebuild this clause, no template-dependent parameters.
9615 return C;
9616 }
9617
9618 template <typename Derived>
9619 OMPClause *
TransformOMPSeqCstClause(OMPSeqCstClause * C)9620 TreeTransform<Derived>::TransformOMPSeqCstClause(OMPSeqCstClause *C) {
9621 // No need to rebuild this clause, no template-dependent parameters.
9622 return C;
9623 }
9624
9625 template <typename Derived>
9626 OMPClause *
TransformOMPAcqRelClause(OMPAcqRelClause * C)9627 TreeTransform<Derived>::TransformOMPAcqRelClause(OMPAcqRelClause *C) {
9628 // No need to rebuild this clause, no template-dependent parameters.
9629 return C;
9630 }
9631
9632 template <typename Derived>
9633 OMPClause *
TransformOMPAcquireClause(OMPAcquireClause * C)9634 TreeTransform<Derived>::TransformOMPAcquireClause(OMPAcquireClause *C) {
9635 // No need to rebuild this clause, no template-dependent parameters.
9636 return C;
9637 }
9638
9639 template <typename Derived>
9640 OMPClause *
TransformOMPReleaseClause(OMPReleaseClause * C)9641 TreeTransform<Derived>::TransformOMPReleaseClause(OMPReleaseClause *C) {
9642 // No need to rebuild this clause, no template-dependent parameters.
9643 return C;
9644 }
9645
9646 template <typename Derived>
9647 OMPClause *
TransformOMPRelaxedClause(OMPRelaxedClause * C)9648 TreeTransform<Derived>::TransformOMPRelaxedClause(OMPRelaxedClause *C) {
9649 // No need to rebuild this clause, no template-dependent parameters.
9650 return C;
9651 }
9652
9653 template <typename Derived>
9654 OMPClause *
TransformOMPThreadsClause(OMPThreadsClause * C)9655 TreeTransform<Derived>::TransformOMPThreadsClause(OMPThreadsClause *C) {
9656 // No need to rebuild this clause, no template-dependent parameters.
9657 return C;
9658 }
9659
9660 template <typename Derived>
TransformOMPSIMDClause(OMPSIMDClause * C)9661 OMPClause *TreeTransform<Derived>::TransformOMPSIMDClause(OMPSIMDClause *C) {
9662 // No need to rebuild this clause, no template-dependent parameters.
9663 return C;
9664 }
9665
9666 template <typename Derived>
9667 OMPClause *
TransformOMPNogroupClause(OMPNogroupClause * C)9668 TreeTransform<Derived>::TransformOMPNogroupClause(OMPNogroupClause *C) {
9669 // No need to rebuild this clause, no template-dependent parameters.
9670 return C;
9671 }
9672
9673 template <typename Derived>
TransformOMPInitClause(OMPInitClause * C)9674 OMPClause *TreeTransform<Derived>::TransformOMPInitClause(OMPInitClause *C) {
9675 ExprResult IVR = getDerived().TransformExpr(C->getInteropVar());
9676 if (IVR.isInvalid())
9677 return nullptr;
9678
9679 llvm::SmallVector<Expr *, 8> PrefExprs;
9680 PrefExprs.reserve(C->varlist_size() - 1);
9681 for (Expr *E : llvm::drop_begin(C->varlists())) {
9682 ExprResult ER = getDerived().TransformExpr(cast<Expr>(E));
9683 if (ER.isInvalid())
9684 return nullptr;
9685 PrefExprs.push_back(ER.get());
9686 }
9687 return getDerived().RebuildOMPInitClause(
9688 IVR.get(), PrefExprs, C->getIsTarget(), C->getIsTargetSync(),
9689 C->getBeginLoc(), C->getLParenLoc(), C->getVarLoc(), C->getEndLoc());
9690 }
9691
9692 template <typename Derived>
TransformOMPUseClause(OMPUseClause * C)9693 OMPClause *TreeTransform<Derived>::TransformOMPUseClause(OMPUseClause *C) {
9694 ExprResult ER = getDerived().TransformExpr(C->getInteropVar());
9695 if (ER.isInvalid())
9696 return nullptr;
9697 return getDerived().RebuildOMPUseClause(ER.get(), C->getBeginLoc(),
9698 C->getLParenLoc(), C->getVarLoc(),
9699 C->getEndLoc());
9700 }
9701
9702 template <typename Derived>
9703 OMPClause *
TransformOMPDestroyClause(OMPDestroyClause * C)9704 TreeTransform<Derived>::TransformOMPDestroyClause(OMPDestroyClause *C) {
9705 ExprResult ER;
9706 if (Expr *IV = C->getInteropVar()) {
9707 ER = getDerived().TransformExpr(IV);
9708 if (ER.isInvalid())
9709 return nullptr;
9710 }
9711 return getDerived().RebuildOMPDestroyClause(ER.get(), C->getBeginLoc(),
9712 C->getLParenLoc(), C->getVarLoc(),
9713 C->getEndLoc());
9714 }
9715
9716 template <typename Derived>
9717 OMPClause *
TransformOMPNovariantsClause(OMPNovariantsClause * C)9718 TreeTransform<Derived>::TransformOMPNovariantsClause(OMPNovariantsClause *C) {
9719 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
9720 if (Cond.isInvalid())
9721 return nullptr;
9722 return getDerived().RebuildOMPNovariantsClause(
9723 Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9724 }
9725
9726 template <typename Derived>
9727 OMPClause *
TransformOMPNocontextClause(OMPNocontextClause * C)9728 TreeTransform<Derived>::TransformOMPNocontextClause(OMPNocontextClause *C) {
9729 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
9730 if (Cond.isInvalid())
9731 return nullptr;
9732 return getDerived().RebuildOMPNocontextClause(
9733 Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9734 }
9735
9736 template <typename Derived>
9737 OMPClause *
TransformOMPFilterClause(OMPFilterClause * C)9738 TreeTransform<Derived>::TransformOMPFilterClause(OMPFilterClause *C) {
9739 ExprResult ThreadID = getDerived().TransformExpr(C->getThreadID());
9740 if (ThreadID.isInvalid())
9741 return nullptr;
9742 return getDerived().RebuildOMPFilterClause(ThreadID.get(), C->getBeginLoc(),
9743 C->getLParenLoc(), C->getEndLoc());
9744 }
9745
9746 template <typename Derived>
TransformOMPAlignClause(OMPAlignClause * C)9747 OMPClause *TreeTransform<Derived>::TransformOMPAlignClause(OMPAlignClause *C) {
9748 ExprResult E = getDerived().TransformExpr(C->getAlignment());
9749 if (E.isInvalid())
9750 return nullptr;
9751 return getDerived().RebuildOMPAlignClause(E.get(), C->getBeginLoc(),
9752 C->getLParenLoc(), C->getEndLoc());
9753 }
9754
9755 template <typename Derived>
TransformOMPUnifiedAddressClause(OMPUnifiedAddressClause * C)9756 OMPClause *TreeTransform<Derived>::TransformOMPUnifiedAddressClause(
9757 OMPUnifiedAddressClause *C) {
9758 llvm_unreachable("unified_address clause cannot appear in dependent context");
9759 }
9760
9761 template <typename Derived>
TransformOMPUnifiedSharedMemoryClause(OMPUnifiedSharedMemoryClause * C)9762 OMPClause *TreeTransform<Derived>::TransformOMPUnifiedSharedMemoryClause(
9763 OMPUnifiedSharedMemoryClause *C) {
9764 llvm_unreachable(
9765 "unified_shared_memory clause cannot appear in dependent context");
9766 }
9767
9768 template <typename Derived>
TransformOMPReverseOffloadClause(OMPReverseOffloadClause * C)9769 OMPClause *TreeTransform<Derived>::TransformOMPReverseOffloadClause(
9770 OMPReverseOffloadClause *C) {
9771 llvm_unreachable("reverse_offload clause cannot appear in dependent context");
9772 }
9773
9774 template <typename Derived>
TransformOMPDynamicAllocatorsClause(OMPDynamicAllocatorsClause * C)9775 OMPClause *TreeTransform<Derived>::TransformOMPDynamicAllocatorsClause(
9776 OMPDynamicAllocatorsClause *C) {
9777 llvm_unreachable(
9778 "dynamic_allocators clause cannot appear in dependent context");
9779 }
9780
9781 template <typename Derived>
TransformOMPAtomicDefaultMemOrderClause(OMPAtomicDefaultMemOrderClause * C)9782 OMPClause *TreeTransform<Derived>::TransformOMPAtomicDefaultMemOrderClause(
9783 OMPAtomicDefaultMemOrderClause *C) {
9784 llvm_unreachable(
9785 "atomic_default_mem_order clause cannot appear in dependent context");
9786 }
9787
9788 template <typename Derived>
9789 OMPClause *
TransformOMPPrivateClause(OMPPrivateClause * C)9790 TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) {
9791 llvm::SmallVector<Expr *, 16> Vars;
9792 Vars.reserve(C->varlist_size());
9793 for (auto *VE : C->varlists()) {
9794 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9795 if (EVar.isInvalid())
9796 return nullptr;
9797 Vars.push_back(EVar.get());
9798 }
9799 return getDerived().RebuildOMPPrivateClause(
9800 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9801 }
9802
9803 template <typename Derived>
TransformOMPFirstprivateClause(OMPFirstprivateClause * C)9804 OMPClause *TreeTransform<Derived>::TransformOMPFirstprivateClause(
9805 OMPFirstprivateClause *C) {
9806 llvm::SmallVector<Expr *, 16> Vars;
9807 Vars.reserve(C->varlist_size());
9808 for (auto *VE : C->varlists()) {
9809 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9810 if (EVar.isInvalid())
9811 return nullptr;
9812 Vars.push_back(EVar.get());
9813 }
9814 return getDerived().RebuildOMPFirstprivateClause(
9815 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9816 }
9817
9818 template <typename Derived>
9819 OMPClause *
TransformOMPLastprivateClause(OMPLastprivateClause * C)9820 TreeTransform<Derived>::TransformOMPLastprivateClause(OMPLastprivateClause *C) {
9821 llvm::SmallVector<Expr *, 16> Vars;
9822 Vars.reserve(C->varlist_size());
9823 for (auto *VE : C->varlists()) {
9824 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9825 if (EVar.isInvalid())
9826 return nullptr;
9827 Vars.push_back(EVar.get());
9828 }
9829 return getDerived().RebuildOMPLastprivateClause(
9830 Vars, C->getKind(), C->getKindLoc(), C->getColonLoc(), C->getBeginLoc(),
9831 C->getLParenLoc(), C->getEndLoc());
9832 }
9833
9834 template <typename Derived>
9835 OMPClause *
TransformOMPSharedClause(OMPSharedClause * C)9836 TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) {
9837 llvm::SmallVector<Expr *, 16> Vars;
9838 Vars.reserve(C->varlist_size());
9839 for (auto *VE : C->varlists()) {
9840 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9841 if (EVar.isInvalid())
9842 return nullptr;
9843 Vars.push_back(EVar.get());
9844 }
9845 return getDerived().RebuildOMPSharedClause(Vars, C->getBeginLoc(),
9846 C->getLParenLoc(), C->getEndLoc());
9847 }
9848
9849 template <typename Derived>
9850 OMPClause *
TransformOMPReductionClause(OMPReductionClause * C)9851 TreeTransform<Derived>::TransformOMPReductionClause(OMPReductionClause *C) {
9852 llvm::SmallVector<Expr *, 16> Vars;
9853 Vars.reserve(C->varlist_size());
9854 for (auto *VE : C->varlists()) {
9855 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9856 if (EVar.isInvalid())
9857 return nullptr;
9858 Vars.push_back(EVar.get());
9859 }
9860 CXXScopeSpec ReductionIdScopeSpec;
9861 ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
9862
9863 DeclarationNameInfo NameInfo = C->getNameInfo();
9864 if (NameInfo.getName()) {
9865 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9866 if (!NameInfo.getName())
9867 return nullptr;
9868 }
9869 // Build a list of all UDR decls with the same names ranged by the Scopes.
9870 // The Scope boundary is a duplication of the previous decl.
9871 llvm::SmallVector<Expr *, 16> UnresolvedReductions;
9872 for (auto *E : C->reduction_ops()) {
9873 // Transform all the decls.
9874 if (E) {
9875 auto *ULE = cast<UnresolvedLookupExpr>(E);
9876 UnresolvedSet<8> Decls;
9877 for (auto *D : ULE->decls()) {
9878 NamedDecl *InstD =
9879 cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
9880 Decls.addDecl(InstD, InstD->getAccess());
9881 }
9882 UnresolvedReductions.push_back(
9883 UnresolvedLookupExpr::Create(
9884 SemaRef.Context, /*NamingClass=*/nullptr,
9885 ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context),
9886 NameInfo, /*ADL=*/true, ULE->isOverloaded(),
9887 Decls.begin(), Decls.end()));
9888 } else
9889 UnresolvedReductions.push_back(nullptr);
9890 }
9891 return getDerived().RebuildOMPReductionClause(
9892 Vars, C->getModifier(), C->getBeginLoc(), C->getLParenLoc(),
9893 C->getModifierLoc(), C->getColonLoc(), C->getEndLoc(),
9894 ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
9895 }
9896
9897 template <typename Derived>
TransformOMPTaskReductionClause(OMPTaskReductionClause * C)9898 OMPClause *TreeTransform<Derived>::TransformOMPTaskReductionClause(
9899 OMPTaskReductionClause *C) {
9900 llvm::SmallVector<Expr *, 16> Vars;
9901 Vars.reserve(C->varlist_size());
9902 for (auto *VE : C->varlists()) {
9903 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9904 if (EVar.isInvalid())
9905 return nullptr;
9906 Vars.push_back(EVar.get());
9907 }
9908 CXXScopeSpec ReductionIdScopeSpec;
9909 ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
9910
9911 DeclarationNameInfo NameInfo = C->getNameInfo();
9912 if (NameInfo.getName()) {
9913 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9914 if (!NameInfo.getName())
9915 return nullptr;
9916 }
9917 // Build a list of all UDR decls with the same names ranged by the Scopes.
9918 // The Scope boundary is a duplication of the previous decl.
9919 llvm::SmallVector<Expr *, 16> UnresolvedReductions;
9920 for (auto *E : C->reduction_ops()) {
9921 // Transform all the decls.
9922 if (E) {
9923 auto *ULE = cast<UnresolvedLookupExpr>(E);
9924 UnresolvedSet<8> Decls;
9925 for (auto *D : ULE->decls()) {
9926 NamedDecl *InstD =
9927 cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
9928 Decls.addDecl(InstD, InstD->getAccess());
9929 }
9930 UnresolvedReductions.push_back(UnresolvedLookupExpr::Create(
9931 SemaRef.Context, /*NamingClass=*/nullptr,
9932 ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo,
9933 /*ADL=*/true, ULE->isOverloaded(), Decls.begin(), Decls.end()));
9934 } else
9935 UnresolvedReductions.push_back(nullptr);
9936 }
9937 return getDerived().RebuildOMPTaskReductionClause(
9938 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
9939 C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
9940 }
9941
9942 template <typename Derived>
9943 OMPClause *
TransformOMPInReductionClause(OMPInReductionClause * C)9944 TreeTransform<Derived>::TransformOMPInReductionClause(OMPInReductionClause *C) {
9945 llvm::SmallVector<Expr *, 16> Vars;
9946 Vars.reserve(C->varlist_size());
9947 for (auto *VE : C->varlists()) {
9948 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9949 if (EVar.isInvalid())
9950 return nullptr;
9951 Vars.push_back(EVar.get());
9952 }
9953 CXXScopeSpec ReductionIdScopeSpec;
9954 ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
9955
9956 DeclarationNameInfo NameInfo = C->getNameInfo();
9957 if (NameInfo.getName()) {
9958 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9959 if (!NameInfo.getName())
9960 return nullptr;
9961 }
9962 // Build a list of all UDR decls with the same names ranged by the Scopes.
9963 // The Scope boundary is a duplication of the previous decl.
9964 llvm::SmallVector<Expr *, 16> UnresolvedReductions;
9965 for (auto *E : C->reduction_ops()) {
9966 // Transform all the decls.
9967 if (E) {
9968 auto *ULE = cast<UnresolvedLookupExpr>(E);
9969 UnresolvedSet<8> Decls;
9970 for (auto *D : ULE->decls()) {
9971 NamedDecl *InstD =
9972 cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
9973 Decls.addDecl(InstD, InstD->getAccess());
9974 }
9975 UnresolvedReductions.push_back(UnresolvedLookupExpr::Create(
9976 SemaRef.Context, /*NamingClass=*/nullptr,
9977 ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo,
9978 /*ADL=*/true, ULE->isOverloaded(), Decls.begin(), Decls.end()));
9979 } else
9980 UnresolvedReductions.push_back(nullptr);
9981 }
9982 return getDerived().RebuildOMPInReductionClause(
9983 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
9984 C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
9985 }
9986
9987 template <typename Derived>
9988 OMPClause *
TransformOMPLinearClause(OMPLinearClause * C)9989 TreeTransform<Derived>::TransformOMPLinearClause(OMPLinearClause *C) {
9990 llvm::SmallVector<Expr *, 16> Vars;
9991 Vars.reserve(C->varlist_size());
9992 for (auto *VE : C->varlists()) {
9993 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9994 if (EVar.isInvalid())
9995 return nullptr;
9996 Vars.push_back(EVar.get());
9997 }
9998 ExprResult Step = getDerived().TransformExpr(C->getStep());
9999 if (Step.isInvalid())
10000 return nullptr;
10001 return getDerived().RebuildOMPLinearClause(
10002 Vars, Step.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifier(),
10003 C->getModifierLoc(), C->getColonLoc(), C->getEndLoc());
10004 }
10005
10006 template <typename Derived>
10007 OMPClause *
TransformOMPAlignedClause(OMPAlignedClause * C)10008 TreeTransform<Derived>::TransformOMPAlignedClause(OMPAlignedClause *C) {
10009 llvm::SmallVector<Expr *, 16> Vars;
10010 Vars.reserve(C->varlist_size());
10011 for (auto *VE : C->varlists()) {
10012 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10013 if (EVar.isInvalid())
10014 return nullptr;
10015 Vars.push_back(EVar.get());
10016 }
10017 ExprResult Alignment = getDerived().TransformExpr(C->getAlignment());
10018 if (Alignment.isInvalid())
10019 return nullptr;
10020 return getDerived().RebuildOMPAlignedClause(
10021 Vars, Alignment.get(), C->getBeginLoc(), C->getLParenLoc(),
10022 C->getColonLoc(), C->getEndLoc());
10023 }
10024
10025 template <typename Derived>
10026 OMPClause *
TransformOMPCopyinClause(OMPCopyinClause * C)10027 TreeTransform<Derived>::TransformOMPCopyinClause(OMPCopyinClause *C) {
10028 llvm::SmallVector<Expr *, 16> Vars;
10029 Vars.reserve(C->varlist_size());
10030 for (auto *VE : C->varlists()) {
10031 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10032 if (EVar.isInvalid())
10033 return nullptr;
10034 Vars.push_back(EVar.get());
10035 }
10036 return getDerived().RebuildOMPCopyinClause(Vars, C->getBeginLoc(),
10037 C->getLParenLoc(), C->getEndLoc());
10038 }
10039
10040 template <typename Derived>
10041 OMPClause *
TransformOMPCopyprivateClause(OMPCopyprivateClause * C)10042 TreeTransform<Derived>::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) {
10043 llvm::SmallVector<Expr *, 16> Vars;
10044 Vars.reserve(C->varlist_size());
10045 for (auto *VE : C->varlists()) {
10046 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10047 if (EVar.isInvalid())
10048 return nullptr;
10049 Vars.push_back(EVar.get());
10050 }
10051 return getDerived().RebuildOMPCopyprivateClause(
10052 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10053 }
10054
10055 template <typename Derived>
TransformOMPFlushClause(OMPFlushClause * C)10056 OMPClause *TreeTransform<Derived>::TransformOMPFlushClause(OMPFlushClause *C) {
10057 llvm::SmallVector<Expr *, 16> Vars;
10058 Vars.reserve(C->varlist_size());
10059 for (auto *VE : C->varlists()) {
10060 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10061 if (EVar.isInvalid())
10062 return nullptr;
10063 Vars.push_back(EVar.get());
10064 }
10065 return getDerived().RebuildOMPFlushClause(Vars, C->getBeginLoc(),
10066 C->getLParenLoc(), C->getEndLoc());
10067 }
10068
10069 template <typename Derived>
10070 OMPClause *
TransformOMPDepobjClause(OMPDepobjClause * C)10071 TreeTransform<Derived>::TransformOMPDepobjClause(OMPDepobjClause *C) {
10072 ExprResult E = getDerived().TransformExpr(C->getDepobj());
10073 if (E.isInvalid())
10074 return nullptr;
10075 return getDerived().RebuildOMPDepobjClause(E.get(), C->getBeginLoc(),
10076 C->getLParenLoc(), C->getEndLoc());
10077 }
10078
10079 template <typename Derived>
10080 OMPClause *
TransformOMPDependClause(OMPDependClause * C)10081 TreeTransform<Derived>::TransformOMPDependClause(OMPDependClause *C) {
10082 llvm::SmallVector<Expr *, 16> Vars;
10083 Expr *DepModifier = C->getModifier();
10084 if (DepModifier) {
10085 ExprResult DepModRes = getDerived().TransformExpr(DepModifier);
10086 if (DepModRes.isInvalid())
10087 return nullptr;
10088 DepModifier = DepModRes.get();
10089 }
10090 Vars.reserve(C->varlist_size());
10091 for (auto *VE : C->varlists()) {
10092 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10093 if (EVar.isInvalid())
10094 return nullptr;
10095 Vars.push_back(EVar.get());
10096 }
10097 return getDerived().RebuildOMPDependClause(
10098 {C->getDependencyKind(), C->getDependencyLoc(), C->getColonLoc(),
10099 C->getOmpAllMemoryLoc()},
10100 DepModifier, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10101 }
10102
10103 template <typename Derived>
10104 OMPClause *
TransformOMPDeviceClause(OMPDeviceClause * C)10105 TreeTransform<Derived>::TransformOMPDeviceClause(OMPDeviceClause *C) {
10106 ExprResult E = getDerived().TransformExpr(C->getDevice());
10107 if (E.isInvalid())
10108 return nullptr;
10109 return getDerived().RebuildOMPDeviceClause(
10110 C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
10111 C->getModifierLoc(), C->getEndLoc());
10112 }
10113
10114 template <typename Derived, class T>
transformOMPMappableExprListClause(TreeTransform<Derived> & TT,OMPMappableExprListClause<T> * C,llvm::SmallVectorImpl<Expr * > & Vars,CXXScopeSpec & MapperIdScopeSpec,DeclarationNameInfo & MapperIdInfo,llvm::SmallVectorImpl<Expr * > & UnresolvedMappers)10115 bool transformOMPMappableExprListClause(
10116 TreeTransform<Derived> &TT, OMPMappableExprListClause<T> *C,
10117 llvm::SmallVectorImpl<Expr *> &Vars, CXXScopeSpec &MapperIdScopeSpec,
10118 DeclarationNameInfo &MapperIdInfo,
10119 llvm::SmallVectorImpl<Expr *> &UnresolvedMappers) {
10120 // Transform expressions in the list.
10121 Vars.reserve(C->varlist_size());
10122 for (auto *VE : C->varlists()) {
10123 ExprResult EVar = TT.getDerived().TransformExpr(cast<Expr>(VE));
10124 if (EVar.isInvalid())
10125 return true;
10126 Vars.push_back(EVar.get());
10127 }
10128 // Transform mapper scope specifier and identifier.
10129 NestedNameSpecifierLoc QualifierLoc;
10130 if (C->getMapperQualifierLoc()) {
10131 QualifierLoc = TT.getDerived().TransformNestedNameSpecifierLoc(
10132 C->getMapperQualifierLoc());
10133 if (!QualifierLoc)
10134 return true;
10135 }
10136 MapperIdScopeSpec.Adopt(QualifierLoc);
10137 MapperIdInfo = C->getMapperIdInfo();
10138 if (MapperIdInfo.getName()) {
10139 MapperIdInfo = TT.getDerived().TransformDeclarationNameInfo(MapperIdInfo);
10140 if (!MapperIdInfo.getName())
10141 return true;
10142 }
10143 // Build a list of all candidate OMPDeclareMapperDecls, which is provided by
10144 // the previous user-defined mapper lookup in dependent environment.
10145 for (auto *E : C->mapperlists()) {
10146 // Transform all the decls.
10147 if (E) {
10148 auto *ULE = cast<UnresolvedLookupExpr>(E);
10149 UnresolvedSet<8> Decls;
10150 for (auto *D : ULE->decls()) {
10151 NamedDecl *InstD =
10152 cast<NamedDecl>(TT.getDerived().TransformDecl(E->getExprLoc(), D));
10153 Decls.addDecl(InstD, InstD->getAccess());
10154 }
10155 UnresolvedMappers.push_back(UnresolvedLookupExpr::Create(
10156 TT.getSema().Context, /*NamingClass=*/nullptr,
10157 MapperIdScopeSpec.getWithLocInContext(TT.getSema().Context),
10158 MapperIdInfo, /*ADL=*/true, ULE->isOverloaded(), Decls.begin(),
10159 Decls.end()));
10160 } else {
10161 UnresolvedMappers.push_back(nullptr);
10162 }
10163 }
10164 return false;
10165 }
10166
10167 template <typename Derived>
TransformOMPMapClause(OMPMapClause * C)10168 OMPClause *TreeTransform<Derived>::TransformOMPMapClause(OMPMapClause *C) {
10169 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10170 llvm::SmallVector<Expr *, 16> Vars;
10171 CXXScopeSpec MapperIdScopeSpec;
10172 DeclarationNameInfo MapperIdInfo;
10173 llvm::SmallVector<Expr *, 16> UnresolvedMappers;
10174 if (transformOMPMappableExprListClause<Derived, OMPMapClause>(
10175 *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
10176 return nullptr;
10177 return getDerived().RebuildOMPMapClause(
10178 C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(), MapperIdScopeSpec,
10179 MapperIdInfo, C->getMapType(), C->isImplicitMapType(), C->getMapLoc(),
10180 C->getColonLoc(), Vars, Locs, UnresolvedMappers);
10181 }
10182
10183 template <typename Derived>
10184 OMPClause *
TransformOMPAllocateClause(OMPAllocateClause * C)10185 TreeTransform<Derived>::TransformOMPAllocateClause(OMPAllocateClause *C) {
10186 Expr *Allocator = C->getAllocator();
10187 if (Allocator) {
10188 ExprResult AllocatorRes = getDerived().TransformExpr(Allocator);
10189 if (AllocatorRes.isInvalid())
10190 return nullptr;
10191 Allocator = AllocatorRes.get();
10192 }
10193 llvm::SmallVector<Expr *, 16> Vars;
10194 Vars.reserve(C->varlist_size());
10195 for (auto *VE : C->varlists()) {
10196 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10197 if (EVar.isInvalid())
10198 return nullptr;
10199 Vars.push_back(EVar.get());
10200 }
10201 return getDerived().RebuildOMPAllocateClause(
10202 Allocator, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
10203 C->getEndLoc());
10204 }
10205
10206 template <typename Derived>
10207 OMPClause *
TransformOMPNumTeamsClause(OMPNumTeamsClause * C)10208 TreeTransform<Derived>::TransformOMPNumTeamsClause(OMPNumTeamsClause *C) {
10209 ExprResult E = getDerived().TransformExpr(C->getNumTeams());
10210 if (E.isInvalid())
10211 return nullptr;
10212 return getDerived().RebuildOMPNumTeamsClause(
10213 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10214 }
10215
10216 template <typename Derived>
10217 OMPClause *
TransformOMPThreadLimitClause(OMPThreadLimitClause * C)10218 TreeTransform<Derived>::TransformOMPThreadLimitClause(OMPThreadLimitClause *C) {
10219 ExprResult E = getDerived().TransformExpr(C->getThreadLimit());
10220 if (E.isInvalid())
10221 return nullptr;
10222 return getDerived().RebuildOMPThreadLimitClause(
10223 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10224 }
10225
10226 template <typename Derived>
10227 OMPClause *
TransformOMPPriorityClause(OMPPriorityClause * C)10228 TreeTransform<Derived>::TransformOMPPriorityClause(OMPPriorityClause *C) {
10229 ExprResult E = getDerived().TransformExpr(C->getPriority());
10230 if (E.isInvalid())
10231 return nullptr;
10232 return getDerived().RebuildOMPPriorityClause(
10233 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10234 }
10235
10236 template <typename Derived>
10237 OMPClause *
TransformOMPGrainsizeClause(OMPGrainsizeClause * C)10238 TreeTransform<Derived>::TransformOMPGrainsizeClause(OMPGrainsizeClause *C) {
10239 ExprResult E = getDerived().TransformExpr(C->getGrainsize());
10240 if (E.isInvalid())
10241 return nullptr;
10242 return getDerived().RebuildOMPGrainsizeClause(
10243 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10244 }
10245
10246 template <typename Derived>
10247 OMPClause *
TransformOMPNumTasksClause(OMPNumTasksClause * C)10248 TreeTransform<Derived>::TransformOMPNumTasksClause(OMPNumTasksClause *C) {
10249 ExprResult E = getDerived().TransformExpr(C->getNumTasks());
10250 if (E.isInvalid())
10251 return nullptr;
10252 return getDerived().RebuildOMPNumTasksClause(
10253 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10254 }
10255
10256 template <typename Derived>
TransformOMPHintClause(OMPHintClause * C)10257 OMPClause *TreeTransform<Derived>::TransformOMPHintClause(OMPHintClause *C) {
10258 ExprResult E = getDerived().TransformExpr(C->getHint());
10259 if (E.isInvalid())
10260 return nullptr;
10261 return getDerived().RebuildOMPHintClause(E.get(), C->getBeginLoc(),
10262 C->getLParenLoc(), C->getEndLoc());
10263 }
10264
10265 template <typename Derived>
TransformOMPDistScheduleClause(OMPDistScheduleClause * C)10266 OMPClause *TreeTransform<Derived>::TransformOMPDistScheduleClause(
10267 OMPDistScheduleClause *C) {
10268 ExprResult E = getDerived().TransformExpr(C->getChunkSize());
10269 if (E.isInvalid())
10270 return nullptr;
10271 return getDerived().RebuildOMPDistScheduleClause(
10272 C->getDistScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
10273 C->getDistScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc());
10274 }
10275
10276 template <typename Derived>
10277 OMPClause *
TransformOMPDefaultmapClause(OMPDefaultmapClause * C)10278 TreeTransform<Derived>::TransformOMPDefaultmapClause(OMPDefaultmapClause *C) {
10279 // Rebuild Defaultmap Clause since we need to invoke the checking of
10280 // defaultmap(none:variable-category) after template initialization.
10281 return getDerived().RebuildOMPDefaultmapClause(C->getDefaultmapModifier(),
10282 C->getDefaultmapKind(),
10283 C->getBeginLoc(),
10284 C->getLParenLoc(),
10285 C->getDefaultmapModifierLoc(),
10286 C->getDefaultmapKindLoc(),
10287 C->getEndLoc());
10288 }
10289
10290 template <typename Derived>
TransformOMPToClause(OMPToClause * C)10291 OMPClause *TreeTransform<Derived>::TransformOMPToClause(OMPToClause *C) {
10292 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10293 llvm::SmallVector<Expr *, 16> Vars;
10294 CXXScopeSpec MapperIdScopeSpec;
10295 DeclarationNameInfo MapperIdInfo;
10296 llvm::SmallVector<Expr *, 16> UnresolvedMappers;
10297 if (transformOMPMappableExprListClause<Derived, OMPToClause>(
10298 *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
10299 return nullptr;
10300 return getDerived().RebuildOMPToClause(
10301 C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec,
10302 MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers);
10303 }
10304
10305 template <typename Derived>
TransformOMPFromClause(OMPFromClause * C)10306 OMPClause *TreeTransform<Derived>::TransformOMPFromClause(OMPFromClause *C) {
10307 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10308 llvm::SmallVector<Expr *, 16> Vars;
10309 CXXScopeSpec MapperIdScopeSpec;
10310 DeclarationNameInfo MapperIdInfo;
10311 llvm::SmallVector<Expr *, 16> UnresolvedMappers;
10312 if (transformOMPMappableExprListClause<Derived, OMPFromClause>(
10313 *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
10314 return nullptr;
10315 return getDerived().RebuildOMPFromClause(
10316 C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec,
10317 MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers);
10318 }
10319
10320 template <typename Derived>
TransformOMPUseDevicePtrClause(OMPUseDevicePtrClause * C)10321 OMPClause *TreeTransform<Derived>::TransformOMPUseDevicePtrClause(
10322 OMPUseDevicePtrClause *C) {
10323 llvm::SmallVector<Expr *, 16> Vars;
10324 Vars.reserve(C->varlist_size());
10325 for (auto *VE : C->varlists()) {
10326 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10327 if (EVar.isInvalid())
10328 return nullptr;
10329 Vars.push_back(EVar.get());
10330 }
10331 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10332 return getDerived().RebuildOMPUseDevicePtrClause(Vars, Locs);
10333 }
10334
10335 template <typename Derived>
TransformOMPUseDeviceAddrClause(OMPUseDeviceAddrClause * C)10336 OMPClause *TreeTransform<Derived>::TransformOMPUseDeviceAddrClause(
10337 OMPUseDeviceAddrClause *C) {
10338 llvm::SmallVector<Expr *, 16> Vars;
10339 Vars.reserve(C->varlist_size());
10340 for (auto *VE : C->varlists()) {
10341 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10342 if (EVar.isInvalid())
10343 return nullptr;
10344 Vars.push_back(EVar.get());
10345 }
10346 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10347 return getDerived().RebuildOMPUseDeviceAddrClause(Vars, Locs);
10348 }
10349
10350 template <typename Derived>
10351 OMPClause *
TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause * C)10352 TreeTransform<Derived>::TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause *C) {
10353 llvm::SmallVector<Expr *, 16> Vars;
10354 Vars.reserve(C->varlist_size());
10355 for (auto *VE : C->varlists()) {
10356 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10357 if (EVar.isInvalid())
10358 return nullptr;
10359 Vars.push_back(EVar.get());
10360 }
10361 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10362 return getDerived().RebuildOMPIsDevicePtrClause(Vars, Locs);
10363 }
10364
10365 template <typename Derived>
TransformOMPHasDeviceAddrClause(OMPHasDeviceAddrClause * C)10366 OMPClause *TreeTransform<Derived>::TransformOMPHasDeviceAddrClause(
10367 OMPHasDeviceAddrClause *C) {
10368 llvm::SmallVector<Expr *, 16> Vars;
10369 Vars.reserve(C->varlist_size());
10370 for (auto *VE : C->varlists()) {
10371 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10372 if (EVar.isInvalid())
10373 return nullptr;
10374 Vars.push_back(EVar.get());
10375 }
10376 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10377 return getDerived().RebuildOMPHasDeviceAddrClause(Vars, Locs);
10378 }
10379
10380 template <typename Derived>
10381 OMPClause *
TransformOMPNontemporalClause(OMPNontemporalClause * C)10382 TreeTransform<Derived>::TransformOMPNontemporalClause(OMPNontemporalClause *C) {
10383 llvm::SmallVector<Expr *, 16> Vars;
10384 Vars.reserve(C->varlist_size());
10385 for (auto *VE : C->varlists()) {
10386 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10387 if (EVar.isInvalid())
10388 return nullptr;
10389 Vars.push_back(EVar.get());
10390 }
10391 return getDerived().RebuildOMPNontemporalClause(
10392 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10393 }
10394
10395 template <typename Derived>
10396 OMPClause *
TransformOMPInclusiveClause(OMPInclusiveClause * C)10397 TreeTransform<Derived>::TransformOMPInclusiveClause(OMPInclusiveClause *C) {
10398 llvm::SmallVector<Expr *, 16> Vars;
10399 Vars.reserve(C->varlist_size());
10400 for (auto *VE : C->varlists()) {
10401 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10402 if (EVar.isInvalid())
10403 return nullptr;
10404 Vars.push_back(EVar.get());
10405 }
10406 return getDerived().RebuildOMPInclusiveClause(
10407 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10408 }
10409
10410 template <typename Derived>
10411 OMPClause *
TransformOMPExclusiveClause(OMPExclusiveClause * C)10412 TreeTransform<Derived>::TransformOMPExclusiveClause(OMPExclusiveClause *C) {
10413 llvm::SmallVector<Expr *, 16> Vars;
10414 Vars.reserve(C->varlist_size());
10415 for (auto *VE : C->varlists()) {
10416 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10417 if (EVar.isInvalid())
10418 return nullptr;
10419 Vars.push_back(EVar.get());
10420 }
10421 return getDerived().RebuildOMPExclusiveClause(
10422 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10423 }
10424
10425 template <typename Derived>
TransformOMPUsesAllocatorsClause(OMPUsesAllocatorsClause * C)10426 OMPClause *TreeTransform<Derived>::TransformOMPUsesAllocatorsClause(
10427 OMPUsesAllocatorsClause *C) {
10428 SmallVector<Sema::UsesAllocatorsData, 16> Data;
10429 Data.reserve(C->getNumberOfAllocators());
10430 for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
10431 OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
10432 ExprResult Allocator = getDerived().TransformExpr(D.Allocator);
10433 if (Allocator.isInvalid())
10434 continue;
10435 ExprResult AllocatorTraits;
10436 if (Expr *AT = D.AllocatorTraits) {
10437 AllocatorTraits = getDerived().TransformExpr(AT);
10438 if (AllocatorTraits.isInvalid())
10439 continue;
10440 }
10441 Sema::UsesAllocatorsData &NewD = Data.emplace_back();
10442 NewD.Allocator = Allocator.get();
10443 NewD.AllocatorTraits = AllocatorTraits.get();
10444 NewD.LParenLoc = D.LParenLoc;
10445 NewD.RParenLoc = D.RParenLoc;
10446 }
10447 return getDerived().RebuildOMPUsesAllocatorsClause(
10448 Data, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10449 }
10450
10451 template <typename Derived>
10452 OMPClause *
TransformOMPAffinityClause(OMPAffinityClause * C)10453 TreeTransform<Derived>::TransformOMPAffinityClause(OMPAffinityClause *C) {
10454 SmallVector<Expr *, 4> Locators;
10455 Locators.reserve(C->varlist_size());
10456 ExprResult ModifierRes;
10457 if (Expr *Modifier = C->getModifier()) {
10458 ModifierRes = getDerived().TransformExpr(Modifier);
10459 if (ModifierRes.isInvalid())
10460 return nullptr;
10461 }
10462 for (Expr *E : C->varlists()) {
10463 ExprResult Locator = getDerived().TransformExpr(E);
10464 if (Locator.isInvalid())
10465 continue;
10466 Locators.push_back(Locator.get());
10467 }
10468 return getDerived().RebuildOMPAffinityClause(
10469 C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc(),
10470 ModifierRes.get(), Locators);
10471 }
10472
10473 template <typename Derived>
TransformOMPOrderClause(OMPOrderClause * C)10474 OMPClause *TreeTransform<Derived>::TransformOMPOrderClause(OMPOrderClause *C) {
10475 return getDerived().RebuildOMPOrderClause(C->getKind(), C->getKindKwLoc(),
10476 C->getBeginLoc(), C->getLParenLoc(),
10477 C->getEndLoc());
10478 }
10479
10480 template <typename Derived>
TransformOMPBindClause(OMPBindClause * C)10481 OMPClause *TreeTransform<Derived>::TransformOMPBindClause(OMPBindClause *C) {
10482 return getDerived().RebuildOMPBindClause(
10483 C->getBindKind(), C->getBindKindLoc(), C->getBeginLoc(),
10484 C->getLParenLoc(), C->getEndLoc());
10485 }
10486
10487 //===----------------------------------------------------------------------===//
10488 // Expression transformation
10489 //===----------------------------------------------------------------------===//
10490 template<typename Derived>
10491 ExprResult
TransformConstantExpr(ConstantExpr * E)10492 TreeTransform<Derived>::TransformConstantExpr(ConstantExpr *E) {
10493 return TransformExpr(E->getSubExpr());
10494 }
10495
10496 template <typename Derived>
TransformSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr * E)10497 ExprResult TreeTransform<Derived>::TransformSYCLUniqueStableNameExpr(
10498 SYCLUniqueStableNameExpr *E) {
10499 if (!E->isTypeDependent())
10500 return E;
10501
10502 TypeSourceInfo *NewT = getDerived().TransformType(E->getTypeSourceInfo());
10503
10504 if (!NewT)
10505 return ExprError();
10506
10507 if (!getDerived().AlwaysRebuild() && E->getTypeSourceInfo() == NewT)
10508 return E;
10509
10510 return getDerived().RebuildSYCLUniqueStableNameExpr(
10511 E->getLocation(), E->getLParenLocation(), E->getRParenLocation(), NewT);
10512 }
10513
10514 template<typename Derived>
10515 ExprResult
TransformPredefinedExpr(PredefinedExpr * E)10516 TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
10517 if (!E->isTypeDependent())
10518 return E;
10519
10520 return getDerived().RebuildPredefinedExpr(E->getLocation(),
10521 E->getIdentKind());
10522 }
10523
10524 template<typename Derived>
10525 ExprResult
TransformDeclRefExpr(DeclRefExpr * E)10526 TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
10527 NestedNameSpecifierLoc QualifierLoc;
10528 if (E->getQualifierLoc()) {
10529 QualifierLoc
10530 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
10531 if (!QualifierLoc)
10532 return ExprError();
10533 }
10534
10535 ValueDecl *ND
10536 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
10537 E->getDecl()));
10538 if (!ND)
10539 return ExprError();
10540
10541 NamedDecl *Found = ND;
10542 if (E->getFoundDecl() != E->getDecl()) {
10543 Found = cast_or_null<NamedDecl>(
10544 getDerived().TransformDecl(E->getLocation(), E->getFoundDecl()));
10545 if (!Found)
10546 return ExprError();
10547 }
10548
10549 DeclarationNameInfo NameInfo = E->getNameInfo();
10550 if (NameInfo.getName()) {
10551 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
10552 if (!NameInfo.getName())
10553 return ExprError();
10554 }
10555
10556 if (!getDerived().AlwaysRebuild() &&
10557 QualifierLoc == E->getQualifierLoc() &&
10558 ND == E->getDecl() &&
10559 Found == E->getFoundDecl() &&
10560 NameInfo.getName() == E->getDecl()->getDeclName() &&
10561 !E->hasExplicitTemplateArgs()) {
10562
10563 // Mark it referenced in the new context regardless.
10564 // FIXME: this is a bit instantiation-specific.
10565 SemaRef.MarkDeclRefReferenced(E);
10566
10567 return E;
10568 }
10569
10570 TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr;
10571 if (E->hasExplicitTemplateArgs()) {
10572 TemplateArgs = &TransArgs;
10573 TransArgs.setLAngleLoc(E->getLAngleLoc());
10574 TransArgs.setRAngleLoc(E->getRAngleLoc());
10575 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
10576 E->getNumTemplateArgs(),
10577 TransArgs))
10578 return ExprError();
10579 }
10580
10581 return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
10582 Found, TemplateArgs);
10583 }
10584
10585 template<typename Derived>
10586 ExprResult
TransformIntegerLiteral(IntegerLiteral * E)10587 TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
10588 return E;
10589 }
10590
10591 template <typename Derived>
TransformFixedPointLiteral(FixedPointLiteral * E)10592 ExprResult TreeTransform<Derived>::TransformFixedPointLiteral(
10593 FixedPointLiteral *E) {
10594 return E;
10595 }
10596
10597 template<typename Derived>
10598 ExprResult
TransformFloatingLiteral(FloatingLiteral * E)10599 TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
10600 return E;
10601 }
10602
10603 template<typename Derived>
10604 ExprResult
TransformImaginaryLiteral(ImaginaryLiteral * E)10605 TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
10606 return E;
10607 }
10608
10609 template<typename Derived>
10610 ExprResult
TransformStringLiteral(StringLiteral * E)10611 TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
10612 return E;
10613 }
10614
10615 template<typename Derived>
10616 ExprResult
TransformCharacterLiteral(CharacterLiteral * E)10617 TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
10618 return E;
10619 }
10620
10621 template<typename Derived>
10622 ExprResult
TransformUserDefinedLiteral(UserDefinedLiteral * E)10623 TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
10624 return getDerived().TransformCallExpr(E);
10625 }
10626
10627 template<typename Derived>
10628 ExprResult
TransformGenericSelectionExpr(GenericSelectionExpr * E)10629 TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
10630 ExprResult ControllingExpr =
10631 getDerived().TransformExpr(E->getControllingExpr());
10632 if (ControllingExpr.isInvalid())
10633 return ExprError();
10634
10635 SmallVector<Expr *, 4> AssocExprs;
10636 SmallVector<TypeSourceInfo *, 4> AssocTypes;
10637 for (const GenericSelectionExpr::Association Assoc : E->associations()) {
10638 TypeSourceInfo *TSI = Assoc.getTypeSourceInfo();
10639 if (TSI) {
10640 TypeSourceInfo *AssocType = getDerived().TransformType(TSI);
10641 if (!AssocType)
10642 return ExprError();
10643 AssocTypes.push_back(AssocType);
10644 } else {
10645 AssocTypes.push_back(nullptr);
10646 }
10647
10648 ExprResult AssocExpr =
10649 getDerived().TransformExpr(Assoc.getAssociationExpr());
10650 if (AssocExpr.isInvalid())
10651 return ExprError();
10652 AssocExprs.push_back(AssocExpr.get());
10653 }
10654
10655 return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
10656 E->getDefaultLoc(),
10657 E->getRParenLoc(),
10658 ControllingExpr.get(),
10659 AssocTypes,
10660 AssocExprs);
10661 }
10662
10663 template<typename Derived>
10664 ExprResult
TransformParenExpr(ParenExpr * E)10665 TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
10666 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
10667 if (SubExpr.isInvalid())
10668 return ExprError();
10669
10670 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
10671 return E;
10672
10673 return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
10674 E->getRParen());
10675 }
10676
10677 /// The operand of a unary address-of operator has special rules: it's
10678 /// allowed to refer to a non-static member of a class even if there's no 'this'
10679 /// object available.
10680 template<typename Derived>
10681 ExprResult
TransformAddressOfOperand(Expr * E)10682 TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
10683 if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
10684 return getDerived().TransformDependentScopeDeclRefExpr(DRE, true, nullptr);
10685 else
10686 return getDerived().TransformExpr(E);
10687 }
10688
10689 template<typename Derived>
10690 ExprResult
TransformUnaryOperator(UnaryOperator * E)10691 TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
10692 ExprResult SubExpr;
10693 if (E->getOpcode() == UO_AddrOf)
10694 SubExpr = TransformAddressOfOperand(E->getSubExpr());
10695 else
10696 SubExpr = TransformExpr(E->getSubExpr());
10697 if (SubExpr.isInvalid())
10698 return ExprError();
10699
10700 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
10701 return E;
10702
10703 return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
10704 E->getOpcode(),
10705 SubExpr.get());
10706 }
10707
10708 template<typename Derived>
10709 ExprResult
TransformOffsetOfExpr(OffsetOfExpr * E)10710 TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
10711 // Transform the type.
10712 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
10713 if (!Type)
10714 return ExprError();
10715
10716 // Transform all of the components into components similar to what the
10717 // parser uses.
10718 // FIXME: It would be slightly more efficient in the non-dependent case to
10719 // just map FieldDecls, rather than requiring the rebuilder to look for
10720 // the fields again. However, __builtin_offsetof is rare enough in
10721 // template code that we don't care.
10722 bool ExprChanged = false;
10723 typedef Sema::OffsetOfComponent Component;
10724 SmallVector<Component, 4> Components;
10725 for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
10726 const OffsetOfNode &ON = E->getComponent(I);
10727 Component Comp;
10728 Comp.isBrackets = true;
10729 Comp.LocStart = ON.getSourceRange().getBegin();
10730 Comp.LocEnd = ON.getSourceRange().getEnd();
10731 switch (ON.getKind()) {
10732 case OffsetOfNode::Array: {
10733 Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
10734 ExprResult Index = getDerived().TransformExpr(FromIndex);
10735 if (Index.isInvalid())
10736 return ExprError();
10737
10738 ExprChanged = ExprChanged || Index.get() != FromIndex;
10739 Comp.isBrackets = true;
10740 Comp.U.E = Index.get();
10741 break;
10742 }
10743
10744 case OffsetOfNode::Field:
10745 case OffsetOfNode::Identifier:
10746 Comp.isBrackets = false;
10747 Comp.U.IdentInfo = ON.getFieldName();
10748 if (!Comp.U.IdentInfo)
10749 continue;
10750
10751 break;
10752
10753 case OffsetOfNode::Base:
10754 // Will be recomputed during the rebuild.
10755 continue;
10756 }
10757
10758 Components.push_back(Comp);
10759 }
10760
10761 // If nothing changed, retain the existing expression.
10762 if (!getDerived().AlwaysRebuild() &&
10763 Type == E->getTypeSourceInfo() &&
10764 !ExprChanged)
10765 return E;
10766
10767 // Build a new offsetof expression.
10768 return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
10769 Components, E->getRParenLoc());
10770 }
10771
10772 template<typename Derived>
10773 ExprResult
TransformOpaqueValueExpr(OpaqueValueExpr * E)10774 TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
10775 assert((!E->getSourceExpr() || getDerived().AlreadyTransformed(E->getType())) &&
10776 "opaque value expression requires transformation");
10777 return E;
10778 }
10779
10780 template<typename Derived>
10781 ExprResult
TransformTypoExpr(TypoExpr * E)10782 TreeTransform<Derived>::TransformTypoExpr(TypoExpr *E) {
10783 return E;
10784 }
10785
10786 template <typename Derived>
TransformRecoveryExpr(RecoveryExpr * E)10787 ExprResult TreeTransform<Derived>::TransformRecoveryExpr(RecoveryExpr *E) {
10788 llvm::SmallVector<Expr *, 8> Children;
10789 bool Changed = false;
10790 for (Expr *C : E->subExpressions()) {
10791 ExprResult NewC = getDerived().TransformExpr(C);
10792 if (NewC.isInvalid())
10793 return ExprError();
10794 Children.push_back(NewC.get());
10795
10796 Changed |= NewC.get() != C;
10797 }
10798 if (!getDerived().AlwaysRebuild() && !Changed)
10799 return E;
10800 return getDerived().RebuildRecoveryExpr(E->getBeginLoc(), E->getEndLoc(),
10801 Children, E->getType());
10802 }
10803
10804 template<typename Derived>
10805 ExprResult
TransformPseudoObjectExpr(PseudoObjectExpr * E)10806 TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
10807 // Rebuild the syntactic form. The original syntactic form has
10808 // opaque-value expressions in it, so strip those away and rebuild
10809 // the result. This is a really awful way of doing this, but the
10810 // better solution (rebuilding the semantic expressions and
10811 // rebinding OVEs as necessary) doesn't work; we'd need
10812 // TreeTransform to not strip away implicit conversions.
10813 Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E);
10814 ExprResult result = getDerived().TransformExpr(newSyntacticForm);
10815 if (result.isInvalid()) return ExprError();
10816
10817 // If that gives us a pseudo-object result back, the pseudo-object
10818 // expression must have been an lvalue-to-rvalue conversion which we
10819 // should reapply.
10820 if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
10821 result = SemaRef.checkPseudoObjectRValue(result.get());
10822
10823 return result;
10824 }
10825
10826 template<typename Derived>
10827 ExprResult
TransformUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr * E)10828 TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
10829 UnaryExprOrTypeTraitExpr *E) {
10830 if (E->isArgumentType()) {
10831 TypeSourceInfo *OldT = E->getArgumentTypeInfo();
10832
10833 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
10834 if (!NewT)
10835 return ExprError();
10836
10837 if (!getDerived().AlwaysRebuild() && OldT == NewT)
10838 return E;
10839
10840 return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
10841 E->getKind(),
10842 E->getSourceRange());
10843 }
10844
10845 // C++0x [expr.sizeof]p1:
10846 // The operand is either an expression, which is an unevaluated operand
10847 // [...]
10848 EnterExpressionEvaluationContext Unevaluated(
10849 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
10850 Sema::ReuseLambdaContextDecl);
10851
10852 // Try to recover if we have something like sizeof(T::X) where X is a type.
10853 // Notably, there must be *exactly* one set of parens if X is a type.
10854 TypeSourceInfo *RecoveryTSI = nullptr;
10855 ExprResult SubExpr;
10856 auto *PE = dyn_cast<ParenExpr>(E->getArgumentExpr());
10857 if (auto *DRE =
10858 PE ? dyn_cast<DependentScopeDeclRefExpr>(PE->getSubExpr()) : nullptr)
10859 SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr(
10860 PE, DRE, false, &RecoveryTSI);
10861 else
10862 SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
10863
10864 if (RecoveryTSI) {
10865 return getDerived().RebuildUnaryExprOrTypeTrait(
10866 RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange());
10867 } else if (SubExpr.isInvalid())
10868 return ExprError();
10869
10870 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
10871 return E;
10872
10873 return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
10874 E->getOperatorLoc(),
10875 E->getKind(),
10876 E->getSourceRange());
10877 }
10878
10879 template<typename Derived>
10880 ExprResult
TransformArraySubscriptExpr(ArraySubscriptExpr * E)10881 TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
10882 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
10883 if (LHS.isInvalid())
10884 return ExprError();
10885
10886 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
10887 if (RHS.isInvalid())
10888 return ExprError();
10889
10890
10891 if (!getDerived().AlwaysRebuild() &&
10892 LHS.get() == E->getLHS() &&
10893 RHS.get() == E->getRHS())
10894 return E;
10895
10896 return getDerived().RebuildArraySubscriptExpr(
10897 LHS.get(),
10898 /*FIXME:*/ E->getLHS()->getBeginLoc(), RHS.get(), E->getRBracketLoc());
10899 }
10900
10901 template <typename Derived>
10902 ExprResult
TransformMatrixSubscriptExpr(MatrixSubscriptExpr * E)10903 TreeTransform<Derived>::TransformMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
10904 ExprResult Base = getDerived().TransformExpr(E->getBase());
10905 if (Base.isInvalid())
10906 return ExprError();
10907
10908 ExprResult RowIdx = getDerived().TransformExpr(E->getRowIdx());
10909 if (RowIdx.isInvalid())
10910 return ExprError();
10911
10912 ExprResult ColumnIdx = getDerived().TransformExpr(E->getColumnIdx());
10913 if (ColumnIdx.isInvalid())
10914 return ExprError();
10915
10916 if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() &&
10917 RowIdx.get() == E->getRowIdx() && ColumnIdx.get() == E->getColumnIdx())
10918 return E;
10919
10920 return getDerived().RebuildMatrixSubscriptExpr(
10921 Base.get(), RowIdx.get(), ColumnIdx.get(), E->getRBracketLoc());
10922 }
10923
10924 template <typename Derived>
10925 ExprResult
TransformOMPArraySectionExpr(OMPArraySectionExpr * E)10926 TreeTransform<Derived>::TransformOMPArraySectionExpr(OMPArraySectionExpr *E) {
10927 ExprResult Base = getDerived().TransformExpr(E->getBase());
10928 if (Base.isInvalid())
10929 return ExprError();
10930
10931 ExprResult LowerBound;
10932 if (E->getLowerBound()) {
10933 LowerBound = getDerived().TransformExpr(E->getLowerBound());
10934 if (LowerBound.isInvalid())
10935 return ExprError();
10936 }
10937
10938 ExprResult Length;
10939 if (E->getLength()) {
10940 Length = getDerived().TransformExpr(E->getLength());
10941 if (Length.isInvalid())
10942 return ExprError();
10943 }
10944
10945 ExprResult Stride;
10946 if (Expr *Str = E->getStride()) {
10947 Stride = getDerived().TransformExpr(Str);
10948 if (Stride.isInvalid())
10949 return ExprError();
10950 }
10951
10952 if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() &&
10953 LowerBound.get() == E->getLowerBound() && Length.get() == E->getLength())
10954 return E;
10955
10956 return getDerived().RebuildOMPArraySectionExpr(
10957 Base.get(), E->getBase()->getEndLoc(), LowerBound.get(),
10958 E->getColonLocFirst(), E->getColonLocSecond(), Length.get(), Stride.get(),
10959 E->getRBracketLoc());
10960 }
10961
10962 template <typename Derived>
10963 ExprResult
TransformOMPArrayShapingExpr(OMPArrayShapingExpr * E)10964 TreeTransform<Derived>::TransformOMPArrayShapingExpr(OMPArrayShapingExpr *E) {
10965 ExprResult Base = getDerived().TransformExpr(E->getBase());
10966 if (Base.isInvalid())
10967 return ExprError();
10968
10969 SmallVector<Expr *, 4> Dims;
10970 bool ErrorFound = false;
10971 for (Expr *Dim : E->getDimensions()) {
10972 ExprResult DimRes = getDerived().TransformExpr(Dim);
10973 if (DimRes.isInvalid()) {
10974 ErrorFound = true;
10975 continue;
10976 }
10977 Dims.push_back(DimRes.get());
10978 }
10979
10980 if (ErrorFound)
10981 return ExprError();
10982 return getDerived().RebuildOMPArrayShapingExpr(Base.get(), E->getLParenLoc(),
10983 E->getRParenLoc(), Dims,
10984 E->getBracketsRanges());
10985 }
10986
10987 template <typename Derived>
10988 ExprResult
TransformOMPIteratorExpr(OMPIteratorExpr * E)10989 TreeTransform<Derived>::TransformOMPIteratorExpr(OMPIteratorExpr *E) {
10990 unsigned NumIterators = E->numOfIterators();
10991 SmallVector<Sema::OMPIteratorData, 4> Data(NumIterators);
10992
10993 bool ErrorFound = false;
10994 bool NeedToRebuild = getDerived().AlwaysRebuild();
10995 for (unsigned I = 0; I < NumIterators; ++I) {
10996 auto *D = cast<VarDecl>(E->getIteratorDecl(I));
10997 Data[I].DeclIdent = D->getIdentifier();
10998 Data[I].DeclIdentLoc = D->getLocation();
10999 if (D->getLocation() == D->getBeginLoc()) {
11000 assert(SemaRef.Context.hasSameType(D->getType(), SemaRef.Context.IntTy) &&
11001 "Implicit type must be int.");
11002 } else {
11003 TypeSourceInfo *TSI = getDerived().TransformType(D->getTypeSourceInfo());
11004 QualType DeclTy = getDerived().TransformType(D->getType());
11005 Data[I].Type = SemaRef.CreateParsedType(DeclTy, TSI);
11006 }
11007 OMPIteratorExpr::IteratorRange Range = E->getIteratorRange(I);
11008 ExprResult Begin = getDerived().TransformExpr(Range.Begin);
11009 ExprResult End = getDerived().TransformExpr(Range.End);
11010 ExprResult Step = getDerived().TransformExpr(Range.Step);
11011 ErrorFound = ErrorFound ||
11012 !(!D->getTypeSourceInfo() || (Data[I].Type.getAsOpaquePtr() &&
11013 !Data[I].Type.get().isNull())) ||
11014 Begin.isInvalid() || End.isInvalid() || Step.isInvalid();
11015 if (ErrorFound)
11016 continue;
11017 Data[I].Range.Begin = Begin.get();
11018 Data[I].Range.End = End.get();
11019 Data[I].Range.Step = Step.get();
11020 Data[I].AssignLoc = E->getAssignLoc(I);
11021 Data[I].ColonLoc = E->getColonLoc(I);
11022 Data[I].SecColonLoc = E->getSecondColonLoc(I);
11023 NeedToRebuild =
11024 NeedToRebuild ||
11025 (D->getTypeSourceInfo() && Data[I].Type.get().getTypePtrOrNull() !=
11026 D->getType().getTypePtrOrNull()) ||
11027 Range.Begin != Data[I].Range.Begin || Range.End != Data[I].Range.End ||
11028 Range.Step != Data[I].Range.Step;
11029 }
11030 if (ErrorFound)
11031 return ExprError();
11032 if (!NeedToRebuild)
11033 return E;
11034
11035 ExprResult Res = getDerived().RebuildOMPIteratorExpr(
11036 E->getIteratorKwLoc(), E->getLParenLoc(), E->getRParenLoc(), Data);
11037 if (!Res.isUsable())
11038 return Res;
11039 auto *IE = cast<OMPIteratorExpr>(Res.get());
11040 for (unsigned I = 0; I < NumIterators; ++I)
11041 getDerived().transformedLocalDecl(E->getIteratorDecl(I),
11042 IE->getIteratorDecl(I));
11043 return Res;
11044 }
11045
11046 template<typename Derived>
11047 ExprResult
TransformCallExpr(CallExpr * E)11048 TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
11049 // Transform the callee.
11050 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
11051 if (Callee.isInvalid())
11052 return ExprError();
11053
11054 // Transform arguments.
11055 bool ArgChanged = false;
11056 SmallVector<Expr*, 8> Args;
11057 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
11058 &ArgChanged))
11059 return ExprError();
11060
11061 if (!getDerived().AlwaysRebuild() &&
11062 Callee.get() == E->getCallee() &&
11063 !ArgChanged)
11064 return SemaRef.MaybeBindToTemporary(E);
11065
11066 // FIXME: Wrong source location information for the '('.
11067 SourceLocation FakeLParenLoc
11068 = ((Expr *)Callee.get())->getSourceRange().getBegin();
11069
11070 Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
11071 if (E->hasStoredFPFeatures()) {
11072 FPOptionsOverride NewOverrides = E->getFPFeatures();
11073 getSema().CurFPFeatures =
11074 NewOverrides.applyOverrides(getSema().getLangOpts());
11075 getSema().FpPragmaStack.CurrentValue = NewOverrides;
11076 }
11077
11078 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
11079 Args,
11080 E->getRParenLoc());
11081 }
11082
11083 template<typename Derived>
11084 ExprResult
TransformMemberExpr(MemberExpr * E)11085 TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
11086 ExprResult Base = getDerived().TransformExpr(E->getBase());
11087 if (Base.isInvalid())
11088 return ExprError();
11089
11090 NestedNameSpecifierLoc QualifierLoc;
11091 if (E->hasQualifier()) {
11092 QualifierLoc
11093 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
11094
11095 if (!QualifierLoc)
11096 return ExprError();
11097 }
11098 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
11099
11100 ValueDecl *Member
11101 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
11102 E->getMemberDecl()));
11103 if (!Member)
11104 return ExprError();
11105
11106 NamedDecl *FoundDecl = E->getFoundDecl();
11107 if (FoundDecl == E->getMemberDecl()) {
11108 FoundDecl = Member;
11109 } else {
11110 FoundDecl = cast_or_null<NamedDecl>(
11111 getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
11112 if (!FoundDecl)
11113 return ExprError();
11114 }
11115
11116 if (!getDerived().AlwaysRebuild() &&
11117 Base.get() == E->getBase() &&
11118 QualifierLoc == E->getQualifierLoc() &&
11119 Member == E->getMemberDecl() &&
11120 FoundDecl == E->getFoundDecl() &&
11121 !E->hasExplicitTemplateArgs()) {
11122
11123 // Skip for member expression of (this->f), rebuilt thisi->f is needed
11124 // for Openmp where the field need to be privatizized in the case.
11125 if (!(isa<CXXThisExpr>(E->getBase()) &&
11126 getSema().isOpenMPRebuildMemberExpr(cast<ValueDecl>(Member)))) {
11127 // Mark it referenced in the new context regardless.
11128 // FIXME: this is a bit instantiation-specific.
11129 SemaRef.MarkMemberReferenced(E);
11130 return E;
11131 }
11132 }
11133
11134 TemplateArgumentListInfo TransArgs;
11135 if (E->hasExplicitTemplateArgs()) {
11136 TransArgs.setLAngleLoc(E->getLAngleLoc());
11137 TransArgs.setRAngleLoc(E->getRAngleLoc());
11138 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
11139 E->getNumTemplateArgs(),
11140 TransArgs))
11141 return ExprError();
11142 }
11143
11144 // FIXME: Bogus source location for the operator
11145 SourceLocation FakeOperatorLoc =
11146 SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
11147
11148 // FIXME: to do this check properly, we will need to preserve the
11149 // first-qualifier-in-scope here, just in case we had a dependent
11150 // base (and therefore couldn't do the check) and a
11151 // nested-name-qualifier (and therefore could do the lookup).
11152 NamedDecl *FirstQualifierInScope = nullptr;
11153 DeclarationNameInfo MemberNameInfo = E->getMemberNameInfo();
11154 if (MemberNameInfo.getName()) {
11155 MemberNameInfo = getDerived().TransformDeclarationNameInfo(MemberNameInfo);
11156 if (!MemberNameInfo.getName())
11157 return ExprError();
11158 }
11159
11160 return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
11161 E->isArrow(),
11162 QualifierLoc,
11163 TemplateKWLoc,
11164 MemberNameInfo,
11165 Member,
11166 FoundDecl,
11167 (E->hasExplicitTemplateArgs()
11168 ? &TransArgs : nullptr),
11169 FirstQualifierInScope);
11170 }
11171
11172 template<typename Derived>
11173 ExprResult
TransformBinaryOperator(BinaryOperator * E)11174 TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
11175 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
11176 if (LHS.isInvalid())
11177 return ExprError();
11178
11179 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
11180 if (RHS.isInvalid())
11181 return ExprError();
11182
11183 if (!getDerived().AlwaysRebuild() &&
11184 LHS.get() == E->getLHS() &&
11185 RHS.get() == E->getRHS())
11186 return E;
11187
11188 if (E->isCompoundAssignmentOp())
11189 // FPFeatures has already been established from trailing storage
11190 return getDerived().RebuildBinaryOperator(
11191 E->getOperatorLoc(), E->getOpcode(), LHS.get(), RHS.get());
11192 Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
11193 FPOptionsOverride NewOverrides(E->getFPFeatures(getSema().getLangOpts()));
11194 getSema().CurFPFeatures =
11195 NewOverrides.applyOverrides(getSema().getLangOpts());
11196 getSema().FpPragmaStack.CurrentValue = NewOverrides;
11197 return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
11198 LHS.get(), RHS.get());
11199 }
11200
11201 template <typename Derived>
TransformCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)11202 ExprResult TreeTransform<Derived>::TransformCXXRewrittenBinaryOperator(
11203 CXXRewrittenBinaryOperator *E) {
11204 CXXRewrittenBinaryOperator::DecomposedForm Decomp = E->getDecomposedForm();
11205
11206 ExprResult LHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.LHS));
11207 if (LHS.isInvalid())
11208 return ExprError();
11209
11210 ExprResult RHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.RHS));
11211 if (RHS.isInvalid())
11212 return ExprError();
11213
11214 // Extract the already-resolved callee declarations so that we can restrict
11215 // ourselves to using them as the unqualified lookup results when rebuilding.
11216 UnresolvedSet<2> UnqualLookups;
11217 bool ChangedAnyLookups = false;
11218 Expr *PossibleBinOps[] = {E->getSemanticForm(),
11219 const_cast<Expr *>(Decomp.InnerBinOp)};
11220 for (Expr *PossibleBinOp : PossibleBinOps) {
11221 auto *Op = dyn_cast<CXXOperatorCallExpr>(PossibleBinOp->IgnoreImplicit());
11222 if (!Op)
11223 continue;
11224 auto *Callee = dyn_cast<DeclRefExpr>(Op->getCallee()->IgnoreImplicit());
11225 if (!Callee || isa<CXXMethodDecl>(Callee->getDecl()))
11226 continue;
11227
11228 // Transform the callee in case we built a call to a local extern
11229 // declaration.
11230 NamedDecl *Found = cast_or_null<NamedDecl>(getDerived().TransformDecl(
11231 E->getOperatorLoc(), Callee->getFoundDecl()));
11232 if (!Found)
11233 return ExprError();
11234 if (Found != Callee->getFoundDecl())
11235 ChangedAnyLookups = true;
11236 UnqualLookups.addDecl(Found);
11237 }
11238
11239 if (!getDerived().AlwaysRebuild() && !ChangedAnyLookups &&
11240 LHS.get() == Decomp.LHS && RHS.get() == Decomp.RHS) {
11241 // Mark all functions used in the rewrite as referenced. Note that when
11242 // a < b is rewritten to (a <=> b) < 0, both the <=> and the < might be
11243 // function calls, and/or there might be a user-defined conversion sequence
11244 // applied to the operands of the <.
11245 // FIXME: this is a bit instantiation-specific.
11246 const Expr *StopAt[] = {Decomp.LHS, Decomp.RHS};
11247 SemaRef.MarkDeclarationsReferencedInExpr(E, false, StopAt);
11248 return E;
11249 }
11250
11251 return getDerived().RebuildCXXRewrittenBinaryOperator(
11252 E->getOperatorLoc(), Decomp.Opcode, UnqualLookups, LHS.get(), RHS.get());
11253 }
11254
11255 template<typename Derived>
11256 ExprResult
TransformCompoundAssignOperator(CompoundAssignOperator * E)11257 TreeTransform<Derived>::TransformCompoundAssignOperator(
11258 CompoundAssignOperator *E) {
11259 Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
11260 FPOptionsOverride NewOverrides(E->getFPFeatures(getSema().getLangOpts()));
11261 getSema().CurFPFeatures =
11262 NewOverrides.applyOverrides(getSema().getLangOpts());
11263 getSema().FpPragmaStack.CurrentValue = NewOverrides;
11264 return getDerived().TransformBinaryOperator(E);
11265 }
11266
11267 template<typename Derived>
11268 ExprResult TreeTransform<Derived>::
TransformBinaryConditionalOperator(BinaryConditionalOperator * e)11269 TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
11270 // Just rebuild the common and RHS expressions and see whether we
11271 // get any changes.
11272
11273 ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
11274 if (commonExpr.isInvalid())
11275 return ExprError();
11276
11277 ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
11278 if (rhs.isInvalid())
11279 return ExprError();
11280
11281 if (!getDerived().AlwaysRebuild() &&
11282 commonExpr.get() == e->getCommon() &&
11283 rhs.get() == e->getFalseExpr())
11284 return e;
11285
11286 return getDerived().RebuildConditionalOperator(commonExpr.get(),
11287 e->getQuestionLoc(),
11288 nullptr,
11289 e->getColonLoc(),
11290 rhs.get());
11291 }
11292
11293 template<typename Derived>
11294 ExprResult
TransformConditionalOperator(ConditionalOperator * E)11295 TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
11296 ExprResult Cond = getDerived().TransformExpr(E->getCond());
11297 if (Cond.isInvalid())
11298 return ExprError();
11299
11300 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
11301 if (LHS.isInvalid())
11302 return ExprError();
11303
11304 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
11305 if (RHS.isInvalid())
11306 return ExprError();
11307
11308 if (!getDerived().AlwaysRebuild() &&
11309 Cond.get() == E->getCond() &&
11310 LHS.get() == E->getLHS() &&
11311 RHS.get() == E->getRHS())
11312 return E;
11313
11314 return getDerived().RebuildConditionalOperator(Cond.get(),
11315 E->getQuestionLoc(),
11316 LHS.get(),
11317 E->getColonLoc(),
11318 RHS.get());
11319 }
11320
11321 template<typename Derived>
11322 ExprResult
TransformImplicitCastExpr(ImplicitCastExpr * E)11323 TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
11324 // Implicit casts are eliminated during transformation, since they
11325 // will be recomputed by semantic analysis after transformation.
11326 return getDerived().TransformExpr(E->getSubExprAsWritten());
11327 }
11328
11329 template<typename Derived>
11330 ExprResult
TransformCStyleCastExpr(CStyleCastExpr * E)11331 TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
11332 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
11333 if (!Type)
11334 return ExprError();
11335
11336 ExprResult SubExpr
11337 = getDerived().TransformExpr(E->getSubExprAsWritten());
11338 if (SubExpr.isInvalid())
11339 return ExprError();
11340
11341 if (!getDerived().AlwaysRebuild() &&
11342 Type == E->getTypeInfoAsWritten() &&
11343 SubExpr.get() == E->getSubExpr())
11344 return E;
11345
11346 return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
11347 Type,
11348 E->getRParenLoc(),
11349 SubExpr.get());
11350 }
11351
11352 template<typename Derived>
11353 ExprResult
TransformCompoundLiteralExpr(CompoundLiteralExpr * E)11354 TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
11355 TypeSourceInfo *OldT = E->getTypeSourceInfo();
11356 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
11357 if (!NewT)
11358 return ExprError();
11359
11360 ExprResult Init = getDerived().TransformExpr(E->getInitializer());
11361 if (Init.isInvalid())
11362 return ExprError();
11363
11364 if (!getDerived().AlwaysRebuild() &&
11365 OldT == NewT &&
11366 Init.get() == E->getInitializer())
11367 return SemaRef.MaybeBindToTemporary(E);
11368
11369 // Note: the expression type doesn't necessarily match the
11370 // type-as-written, but that's okay, because it should always be
11371 // derivable from the initializer.
11372
11373 return getDerived().RebuildCompoundLiteralExpr(
11374 E->getLParenLoc(), NewT,
11375 /*FIXME:*/ E->getInitializer()->getEndLoc(), Init.get());
11376 }
11377
11378 template<typename Derived>
11379 ExprResult
TransformExtVectorElementExpr(ExtVectorElementExpr * E)11380 TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
11381 ExprResult Base = getDerived().TransformExpr(E->getBase());
11382 if (Base.isInvalid())
11383 return ExprError();
11384
11385 if (!getDerived().AlwaysRebuild() &&
11386 Base.get() == E->getBase())
11387 return E;
11388
11389 // FIXME: Bad source location
11390 SourceLocation FakeOperatorLoc =
11391 SemaRef.getLocForEndOfToken(E->getBase()->getEndLoc());
11392 return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
11393 E->getAccessorLoc(),
11394 E->getAccessor());
11395 }
11396
11397 template<typename Derived>
11398 ExprResult
TransformInitListExpr(InitListExpr * E)11399 TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
11400 if (InitListExpr *Syntactic = E->getSyntacticForm())
11401 E = Syntactic;
11402
11403 bool InitChanged = false;
11404
11405 EnterExpressionEvaluationContext Context(
11406 getSema(), EnterExpressionEvaluationContext::InitList);
11407
11408 SmallVector<Expr*, 4> Inits;
11409 if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
11410 Inits, &InitChanged))
11411 return ExprError();
11412
11413 if (!getDerived().AlwaysRebuild() && !InitChanged) {
11414 // FIXME: Attempt to reuse the existing syntactic form of the InitListExpr
11415 // in some cases. We can't reuse it in general, because the syntactic and
11416 // semantic forms are linked, and we can't know that semantic form will
11417 // match even if the syntactic form does.
11418 }
11419
11420 return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
11421 E->getRBraceLoc());
11422 }
11423
11424 template<typename Derived>
11425 ExprResult
TransformDesignatedInitExpr(DesignatedInitExpr * E)11426 TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
11427 Designation Desig;
11428
11429 // transform the initializer value
11430 ExprResult Init = getDerived().TransformExpr(E->getInit());
11431 if (Init.isInvalid())
11432 return ExprError();
11433
11434 // transform the designators.
11435 SmallVector<Expr*, 4> ArrayExprs;
11436 bool ExprChanged = false;
11437 for (const DesignatedInitExpr::Designator &D : E->designators()) {
11438 if (D.isFieldDesignator()) {
11439 Desig.AddDesignator(Designator::getField(D.getFieldName(),
11440 D.getDotLoc(),
11441 D.getFieldLoc()));
11442 if (D.getField()) {
11443 FieldDecl *Field = cast_or_null<FieldDecl>(
11444 getDerived().TransformDecl(D.getFieldLoc(), D.getField()));
11445 if (Field != D.getField())
11446 // Rebuild the expression when the transformed FieldDecl is
11447 // different to the already assigned FieldDecl.
11448 ExprChanged = true;
11449 } else {
11450 // Ensure that the designator expression is rebuilt when there isn't
11451 // a resolved FieldDecl in the designator as we don't want to assign
11452 // a FieldDecl to a pattern designator that will be instantiated again.
11453 ExprChanged = true;
11454 }
11455 continue;
11456 }
11457
11458 if (D.isArrayDesignator()) {
11459 ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(D));
11460 if (Index.isInvalid())
11461 return ExprError();
11462
11463 Desig.AddDesignator(
11464 Designator::getArray(Index.get(), D.getLBracketLoc()));
11465
11466 ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(D);
11467 ArrayExprs.push_back(Index.get());
11468 continue;
11469 }
11470
11471 assert(D.isArrayRangeDesignator() && "New kind of designator?");
11472 ExprResult Start
11473 = getDerived().TransformExpr(E->getArrayRangeStart(D));
11474 if (Start.isInvalid())
11475 return ExprError();
11476
11477 ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(D));
11478 if (End.isInvalid())
11479 return ExprError();
11480
11481 Desig.AddDesignator(Designator::getArrayRange(Start.get(),
11482 End.get(),
11483 D.getLBracketLoc(),
11484 D.getEllipsisLoc()));
11485
11486 ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(D) ||
11487 End.get() != E->getArrayRangeEnd(D);
11488
11489 ArrayExprs.push_back(Start.get());
11490 ArrayExprs.push_back(End.get());
11491 }
11492
11493 if (!getDerived().AlwaysRebuild() &&
11494 Init.get() == E->getInit() &&
11495 !ExprChanged)
11496 return E;
11497
11498 return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
11499 E->getEqualOrColonLoc(),
11500 E->usesGNUSyntax(), Init.get());
11501 }
11502
11503 // Seems that if TransformInitListExpr() only works on the syntactic form of an
11504 // InitListExpr, then a DesignatedInitUpdateExpr is not encountered.
11505 template<typename Derived>
11506 ExprResult
TransformDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)11507 TreeTransform<Derived>::TransformDesignatedInitUpdateExpr(
11508 DesignatedInitUpdateExpr *E) {
11509 llvm_unreachable("Unexpected DesignatedInitUpdateExpr in syntactic form of "
11510 "initializer");
11511 return ExprError();
11512 }
11513
11514 template<typename Derived>
11515 ExprResult
TransformNoInitExpr(NoInitExpr * E)11516 TreeTransform<Derived>::TransformNoInitExpr(
11517 NoInitExpr *E) {
11518 llvm_unreachable("Unexpected NoInitExpr in syntactic form of initializer");
11519 return ExprError();
11520 }
11521
11522 template<typename Derived>
11523 ExprResult
TransformArrayInitLoopExpr(ArrayInitLoopExpr * E)11524 TreeTransform<Derived>::TransformArrayInitLoopExpr(ArrayInitLoopExpr *E) {
11525 llvm_unreachable("Unexpected ArrayInitLoopExpr outside of initializer");
11526 return ExprError();
11527 }
11528
11529 template<typename Derived>
11530 ExprResult
TransformArrayInitIndexExpr(ArrayInitIndexExpr * E)11531 TreeTransform<Derived>::TransformArrayInitIndexExpr(ArrayInitIndexExpr *E) {
11532 llvm_unreachable("Unexpected ArrayInitIndexExpr outside of initializer");
11533 return ExprError();
11534 }
11535
11536 template<typename Derived>
11537 ExprResult
TransformImplicitValueInitExpr(ImplicitValueInitExpr * E)11538 TreeTransform<Derived>::TransformImplicitValueInitExpr(
11539 ImplicitValueInitExpr *E) {
11540 TemporaryBase Rebase(*this, E->getBeginLoc(), DeclarationName());
11541
11542 // FIXME: Will we ever have proper type location here? Will we actually
11543 // need to transform the type?
11544 QualType T = getDerived().TransformType(E->getType());
11545 if (T.isNull())
11546 return ExprError();
11547
11548 if (!getDerived().AlwaysRebuild() &&
11549 T == E->getType())
11550 return E;
11551
11552 return getDerived().RebuildImplicitValueInitExpr(T);
11553 }
11554
11555 template<typename Derived>
11556 ExprResult
TransformVAArgExpr(VAArgExpr * E)11557 TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
11558 TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
11559 if (!TInfo)
11560 return ExprError();
11561
11562 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
11563 if (SubExpr.isInvalid())
11564 return ExprError();
11565
11566 if (!getDerived().AlwaysRebuild() &&
11567 TInfo == E->getWrittenTypeInfo() &&
11568 SubExpr.get() == E->getSubExpr())
11569 return E;
11570
11571 return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
11572 TInfo, E->getRParenLoc());
11573 }
11574
11575 template<typename Derived>
11576 ExprResult
TransformParenListExpr(ParenListExpr * E)11577 TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
11578 bool ArgumentChanged = false;
11579 SmallVector<Expr*, 4> Inits;
11580 if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
11581 &ArgumentChanged))
11582 return ExprError();
11583
11584 return getDerived().RebuildParenListExpr(E->getLParenLoc(),
11585 Inits,
11586 E->getRParenLoc());
11587 }
11588
11589 /// Transform an address-of-label expression.
11590 ///
11591 /// By default, the transformation of an address-of-label expression always
11592 /// rebuilds the expression, so that the label identifier can be resolved to
11593 /// the corresponding label statement by semantic analysis.
11594 template<typename Derived>
11595 ExprResult
TransformAddrLabelExpr(AddrLabelExpr * E)11596 TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
11597 Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
11598 E->getLabel());
11599 if (!LD)
11600 return ExprError();
11601
11602 return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
11603 cast<LabelDecl>(LD));
11604 }
11605
11606 template<typename Derived>
11607 ExprResult
TransformStmtExpr(StmtExpr * E)11608 TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
11609 SemaRef.ActOnStartStmtExpr();
11610 StmtResult SubStmt
11611 = getDerived().TransformCompoundStmt(E->getSubStmt(), true);
11612 if (SubStmt.isInvalid()) {
11613 SemaRef.ActOnStmtExprError();
11614 return ExprError();
11615 }
11616
11617 unsigned OldDepth = E->getTemplateDepth();
11618 unsigned NewDepth = getDerived().TransformTemplateDepth(OldDepth);
11619
11620 if (!getDerived().AlwaysRebuild() && OldDepth == NewDepth &&
11621 SubStmt.get() == E->getSubStmt()) {
11622 // Calling this an 'error' is unintuitive, but it does the right thing.
11623 SemaRef.ActOnStmtExprError();
11624 return SemaRef.MaybeBindToTemporary(E);
11625 }
11626
11627 return getDerived().RebuildStmtExpr(E->getLParenLoc(), SubStmt.get(),
11628 E->getRParenLoc(), NewDepth);
11629 }
11630
11631 template<typename Derived>
11632 ExprResult
TransformChooseExpr(ChooseExpr * E)11633 TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
11634 ExprResult Cond = getDerived().TransformExpr(E->getCond());
11635 if (Cond.isInvalid())
11636 return ExprError();
11637
11638 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
11639 if (LHS.isInvalid())
11640 return ExprError();
11641
11642 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
11643 if (RHS.isInvalid())
11644 return ExprError();
11645
11646 if (!getDerived().AlwaysRebuild() &&
11647 Cond.get() == E->getCond() &&
11648 LHS.get() == E->getLHS() &&
11649 RHS.get() == E->getRHS())
11650 return E;
11651
11652 return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
11653 Cond.get(), LHS.get(), RHS.get(),
11654 E->getRParenLoc());
11655 }
11656
11657 template<typename Derived>
11658 ExprResult
TransformGNUNullExpr(GNUNullExpr * E)11659 TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
11660 return E;
11661 }
11662
11663 template<typename Derived>
11664 ExprResult
TransformCXXOperatorCallExpr(CXXOperatorCallExpr * E)11665 TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11666 switch (E->getOperator()) {
11667 case OO_New:
11668 case OO_Delete:
11669 case OO_Array_New:
11670 case OO_Array_Delete:
11671 llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
11672
11673 case OO_Subscript:
11674 case OO_Call: {
11675 // This is a call to an object's operator().
11676 assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
11677
11678 // Transform the object itself.
11679 ExprResult Object = getDerived().TransformExpr(E->getArg(0));
11680 if (Object.isInvalid())
11681 return ExprError();
11682
11683 // FIXME: Poor location information
11684 SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken(
11685 static_cast<Expr *>(Object.get())->getEndLoc());
11686
11687 // Transform the call arguments.
11688 SmallVector<Expr*, 8> Args;
11689 if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
11690 Args))
11691 return ExprError();
11692
11693 if (E->getOperator() == OO_Subscript)
11694 return getDerived().RebuildCxxSubscriptExpr(Object.get(), FakeLParenLoc,
11695 Args, E->getEndLoc());
11696
11697 return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc, Args,
11698 E->getEndLoc());
11699 }
11700
11701 #define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \
11702 case OO_##Name: \
11703 break;
11704
11705 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
11706 #include "clang/Basic/OperatorKinds.def"
11707
11708 case OO_Conditional:
11709 llvm_unreachable("conditional operator is not actually overloadable");
11710
11711 case OO_None:
11712 case NUM_OVERLOADED_OPERATORS:
11713 llvm_unreachable("not an overloaded operator?");
11714 }
11715
11716 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
11717 if (Callee.isInvalid())
11718 return ExprError();
11719
11720 ExprResult First;
11721 if (E->getOperator() == OO_Amp)
11722 First = getDerived().TransformAddressOfOperand(E->getArg(0));
11723 else
11724 First = getDerived().TransformExpr(E->getArg(0));
11725 if (First.isInvalid())
11726 return ExprError();
11727
11728 ExprResult Second;
11729 if (E->getNumArgs() == 2) {
11730 Second = getDerived().TransformExpr(E->getArg(1));
11731 if (Second.isInvalid())
11732 return ExprError();
11733 }
11734
11735 if (!getDerived().AlwaysRebuild() &&
11736 Callee.get() == E->getCallee() &&
11737 First.get() == E->getArg(0) &&
11738 (E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
11739 return SemaRef.MaybeBindToTemporary(E);
11740
11741 Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
11742 FPOptionsOverride NewOverrides(E->getFPFeatures());
11743 getSema().CurFPFeatures =
11744 NewOverrides.applyOverrides(getSema().getLangOpts());
11745 getSema().FpPragmaStack.CurrentValue = NewOverrides;
11746
11747 return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
11748 E->getOperatorLoc(),
11749 Callee.get(),
11750 First.get(),
11751 Second.get());
11752 }
11753
11754 template<typename Derived>
11755 ExprResult
TransformCXXMemberCallExpr(CXXMemberCallExpr * E)11756 TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
11757 return getDerived().TransformCallExpr(E);
11758 }
11759
11760 template <typename Derived>
TransformSourceLocExpr(SourceLocExpr * E)11761 ExprResult TreeTransform<Derived>::TransformSourceLocExpr(SourceLocExpr *E) {
11762 bool NeedRebuildFunc = E->getIdentKind() == SourceLocExpr::Function &&
11763 getSema().CurContext != E->getParentContext();
11764
11765 if (!getDerived().AlwaysRebuild() && !NeedRebuildFunc)
11766 return E;
11767
11768 return getDerived().RebuildSourceLocExpr(E->getIdentKind(), E->getType(),
11769 E->getBeginLoc(), E->getEndLoc(),
11770 getSema().CurContext);
11771 }
11772
11773 template<typename Derived>
11774 ExprResult
TransformCUDAKernelCallExpr(CUDAKernelCallExpr * E)11775 TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
11776 // Transform the callee.
11777 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
11778 if (Callee.isInvalid())
11779 return ExprError();
11780
11781 // Transform exec config.
11782 ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
11783 if (EC.isInvalid())
11784 return ExprError();
11785
11786 // Transform arguments.
11787 bool ArgChanged = false;
11788 SmallVector<Expr*, 8> Args;
11789 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
11790 &ArgChanged))
11791 return ExprError();
11792
11793 if (!getDerived().AlwaysRebuild() &&
11794 Callee.get() == E->getCallee() &&
11795 !ArgChanged)
11796 return SemaRef.MaybeBindToTemporary(E);
11797
11798 // FIXME: Wrong source location information for the '('.
11799 SourceLocation FakeLParenLoc
11800 = ((Expr *)Callee.get())->getSourceRange().getBegin();
11801 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
11802 Args,
11803 E->getRParenLoc(), EC.get());
11804 }
11805
11806 template<typename Derived>
11807 ExprResult
TransformCXXNamedCastExpr(CXXNamedCastExpr * E)11808 TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
11809 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
11810 if (!Type)
11811 return ExprError();
11812
11813 ExprResult SubExpr
11814 = getDerived().TransformExpr(E->getSubExprAsWritten());
11815 if (SubExpr.isInvalid())
11816 return ExprError();
11817
11818 if (!getDerived().AlwaysRebuild() &&
11819 Type == E->getTypeInfoAsWritten() &&
11820 SubExpr.get() == E->getSubExpr())
11821 return E;
11822 return getDerived().RebuildCXXNamedCastExpr(
11823 E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(),
11824 Type, E->getAngleBrackets().getEnd(),
11825 // FIXME. this should be '(' location
11826 E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc());
11827 }
11828
11829 template<typename Derived>
11830 ExprResult
TransformBuiltinBitCastExpr(BuiltinBitCastExpr * BCE)11831 TreeTransform<Derived>::TransformBuiltinBitCastExpr(BuiltinBitCastExpr *BCE) {
11832 TypeSourceInfo *TSI =
11833 getDerived().TransformType(BCE->getTypeInfoAsWritten());
11834 if (!TSI)
11835 return ExprError();
11836
11837 ExprResult Sub = getDerived().TransformExpr(BCE->getSubExpr());
11838 if (Sub.isInvalid())
11839 return ExprError();
11840
11841 return getDerived().RebuildBuiltinBitCastExpr(BCE->getBeginLoc(), TSI,
11842 Sub.get(), BCE->getEndLoc());
11843 }
11844
11845 template<typename Derived>
11846 ExprResult
TransformCXXStaticCastExpr(CXXStaticCastExpr * E)11847 TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
11848 return getDerived().TransformCXXNamedCastExpr(E);
11849 }
11850
11851 template<typename Derived>
11852 ExprResult
TransformCXXDynamicCastExpr(CXXDynamicCastExpr * E)11853 TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
11854 return getDerived().TransformCXXNamedCastExpr(E);
11855 }
11856
11857 template<typename Derived>
11858 ExprResult
TransformCXXReinterpretCastExpr(CXXReinterpretCastExpr * E)11859 TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
11860 CXXReinterpretCastExpr *E) {
11861 return getDerived().TransformCXXNamedCastExpr(E);
11862 }
11863
11864 template<typename Derived>
11865 ExprResult
TransformCXXConstCastExpr(CXXConstCastExpr * E)11866 TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
11867 return getDerived().TransformCXXNamedCastExpr(E);
11868 }
11869
11870 template<typename Derived>
11871 ExprResult
TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr * E)11872 TreeTransform<Derived>::TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr *E) {
11873 return getDerived().TransformCXXNamedCastExpr(E);
11874 }
11875
11876 template<typename Derived>
11877 ExprResult
TransformCXXFunctionalCastExpr(CXXFunctionalCastExpr * E)11878 TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
11879 CXXFunctionalCastExpr *E) {
11880 TypeSourceInfo *Type =
11881 getDerived().TransformTypeWithDeducedTST(E->getTypeInfoAsWritten());
11882 if (!Type)
11883 return ExprError();
11884
11885 ExprResult SubExpr
11886 = getDerived().TransformExpr(E->getSubExprAsWritten());
11887 if (SubExpr.isInvalid())
11888 return ExprError();
11889
11890 if (!getDerived().AlwaysRebuild() &&
11891 Type == E->getTypeInfoAsWritten() &&
11892 SubExpr.get() == E->getSubExpr())
11893 return E;
11894
11895 return getDerived().RebuildCXXFunctionalCastExpr(Type,
11896 E->getLParenLoc(),
11897 SubExpr.get(),
11898 E->getRParenLoc(),
11899 E->isListInitialization());
11900 }
11901
11902 template<typename Derived>
11903 ExprResult
TransformCXXTypeidExpr(CXXTypeidExpr * E)11904 TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
11905 if (E->isTypeOperand()) {
11906 TypeSourceInfo *TInfo
11907 = getDerived().TransformType(E->getTypeOperandSourceInfo());
11908 if (!TInfo)
11909 return ExprError();
11910
11911 if (!getDerived().AlwaysRebuild() &&
11912 TInfo == E->getTypeOperandSourceInfo())
11913 return E;
11914
11915 return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(),
11916 TInfo, E->getEndLoc());
11917 }
11918
11919 // Typeid's operand is an unevaluated context, unless it's a polymorphic
11920 // type. We must not unilaterally enter unevaluated context here, as then
11921 // semantic processing can re-transform an already transformed operand.
11922 Expr *Op = E->getExprOperand();
11923 auto EvalCtx = Sema::ExpressionEvaluationContext::Unevaluated;
11924 if (E->isGLValue())
11925 if (auto *RecordT = Op->getType()->getAs<RecordType>())
11926 if (cast<CXXRecordDecl>(RecordT->getDecl())->isPolymorphic())
11927 EvalCtx = SemaRef.ExprEvalContexts.back().Context;
11928
11929 EnterExpressionEvaluationContext Unevaluated(SemaRef, EvalCtx,
11930 Sema::ReuseLambdaContextDecl);
11931
11932 ExprResult SubExpr = getDerived().TransformExpr(Op);
11933 if (SubExpr.isInvalid())
11934 return ExprError();
11935
11936 if (!getDerived().AlwaysRebuild() &&
11937 SubExpr.get() == E->getExprOperand())
11938 return E;
11939
11940 return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(),
11941 SubExpr.get(), E->getEndLoc());
11942 }
11943
11944 template<typename Derived>
11945 ExprResult
TransformCXXUuidofExpr(CXXUuidofExpr * E)11946 TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
11947 if (E->isTypeOperand()) {
11948 TypeSourceInfo *TInfo
11949 = getDerived().TransformType(E->getTypeOperandSourceInfo());
11950 if (!TInfo)
11951 return ExprError();
11952
11953 if (!getDerived().AlwaysRebuild() &&
11954 TInfo == E->getTypeOperandSourceInfo())
11955 return E;
11956
11957 return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(),
11958 TInfo, E->getEndLoc());
11959 }
11960
11961 EnterExpressionEvaluationContext Unevaluated(
11962 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
11963
11964 ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
11965 if (SubExpr.isInvalid())
11966 return ExprError();
11967
11968 if (!getDerived().AlwaysRebuild() &&
11969 SubExpr.get() == E->getExprOperand())
11970 return E;
11971
11972 return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(),
11973 SubExpr.get(), E->getEndLoc());
11974 }
11975
11976 template<typename Derived>
11977 ExprResult
TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)11978 TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
11979 return E;
11980 }
11981
11982 template<typename Derived>
11983 ExprResult
TransformCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr * E)11984 TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
11985 CXXNullPtrLiteralExpr *E) {
11986 return E;
11987 }
11988
11989 template<typename Derived>
11990 ExprResult
TransformCXXThisExpr(CXXThisExpr * E)11991 TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
11992 QualType T = getSema().getCurrentThisType();
11993
11994 if (!getDerived().AlwaysRebuild() && T == E->getType()) {
11995 // Mark it referenced in the new context regardless.
11996 // FIXME: this is a bit instantiation-specific.
11997 getSema().MarkThisReferenced(E);
11998 return E;
11999 }
12000
12001 return getDerived().RebuildCXXThisExpr(E->getBeginLoc(), T, E->isImplicit());
12002 }
12003
12004 template<typename Derived>
12005 ExprResult
TransformCXXThrowExpr(CXXThrowExpr * E)12006 TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
12007 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
12008 if (SubExpr.isInvalid())
12009 return ExprError();
12010
12011 if (!getDerived().AlwaysRebuild() &&
12012 SubExpr.get() == E->getSubExpr())
12013 return E;
12014
12015 return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
12016 E->isThrownVariableInScope());
12017 }
12018
12019 template<typename Derived>
12020 ExprResult
TransformCXXDefaultArgExpr(CXXDefaultArgExpr * E)12021 TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
12022 ParmVarDecl *Param = cast_or_null<ParmVarDecl>(
12023 getDerived().TransformDecl(E->getBeginLoc(), E->getParam()));
12024 if (!Param)
12025 return ExprError();
12026
12027 if (!getDerived().AlwaysRebuild() && Param == E->getParam() &&
12028 E->getUsedContext() == SemaRef.CurContext)
12029 return E;
12030
12031 return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
12032 }
12033
12034 template<typename Derived>
12035 ExprResult
TransformCXXDefaultInitExpr(CXXDefaultInitExpr * E)12036 TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
12037 FieldDecl *Field = cast_or_null<FieldDecl>(
12038 getDerived().TransformDecl(E->getBeginLoc(), E->getField()));
12039 if (!Field)
12040 return ExprError();
12041
12042 if (!getDerived().AlwaysRebuild() && Field == E->getField() &&
12043 E->getUsedContext() == SemaRef.CurContext)
12044 return E;
12045
12046 return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field);
12047 }
12048
12049 template<typename Derived>
12050 ExprResult
TransformCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)12051 TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
12052 CXXScalarValueInitExpr *E) {
12053 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
12054 if (!T)
12055 return ExprError();
12056
12057 if (!getDerived().AlwaysRebuild() &&
12058 T == E->getTypeSourceInfo())
12059 return E;
12060
12061 return getDerived().RebuildCXXScalarValueInitExpr(T,
12062 /*FIXME:*/T->getTypeLoc().getEndLoc(),
12063 E->getRParenLoc());
12064 }
12065
12066 template<typename Derived>
12067 ExprResult
TransformCXXNewExpr(CXXNewExpr * E)12068 TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
12069 // Transform the type that we're allocating
12070 TypeSourceInfo *AllocTypeInfo =
12071 getDerived().TransformTypeWithDeducedTST(E->getAllocatedTypeSourceInfo());
12072 if (!AllocTypeInfo)
12073 return ExprError();
12074
12075 // Transform the size of the array we're allocating (if any).
12076 Optional<Expr *> ArraySize;
12077 if (E->isArray()) {
12078 ExprResult NewArraySize;
12079 if (Optional<Expr *> OldArraySize = E->getArraySize()) {
12080 NewArraySize = getDerived().TransformExpr(*OldArraySize);
12081 if (NewArraySize.isInvalid())
12082 return ExprError();
12083 }
12084 ArraySize = NewArraySize.get();
12085 }
12086
12087 // Transform the placement arguments (if any).
12088 bool ArgumentChanged = false;
12089 SmallVector<Expr*, 8> PlacementArgs;
12090 if (getDerived().TransformExprs(E->getPlacementArgs(),
12091 E->getNumPlacementArgs(), true,
12092 PlacementArgs, &ArgumentChanged))
12093 return ExprError();
12094
12095 // Transform the initializer (if any).
12096 Expr *OldInit = E->getInitializer();
12097 ExprResult NewInit;
12098 if (OldInit)
12099 NewInit = getDerived().TransformInitializer(OldInit, true);
12100 if (NewInit.isInvalid())
12101 return ExprError();
12102
12103 // Transform new operator and delete operator.
12104 FunctionDecl *OperatorNew = nullptr;
12105 if (E->getOperatorNew()) {
12106 OperatorNew = cast_or_null<FunctionDecl>(
12107 getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorNew()));
12108 if (!OperatorNew)
12109 return ExprError();
12110 }
12111
12112 FunctionDecl *OperatorDelete = nullptr;
12113 if (E->getOperatorDelete()) {
12114 OperatorDelete = cast_or_null<FunctionDecl>(
12115 getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete()));
12116 if (!OperatorDelete)
12117 return ExprError();
12118 }
12119
12120 if (!getDerived().AlwaysRebuild() &&
12121 AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
12122 ArraySize == E->getArraySize() &&
12123 NewInit.get() == OldInit &&
12124 OperatorNew == E->getOperatorNew() &&
12125 OperatorDelete == E->getOperatorDelete() &&
12126 !ArgumentChanged) {
12127 // Mark any declarations we need as referenced.
12128 // FIXME: instantiation-specific.
12129 if (OperatorNew)
12130 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorNew);
12131 if (OperatorDelete)
12132 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete);
12133
12134 if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
12135 QualType ElementType
12136 = SemaRef.Context.getBaseElementType(E->getAllocatedType());
12137 if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
12138 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
12139 if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
12140 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Destructor);
12141 }
12142 }
12143 }
12144
12145 return E;
12146 }
12147
12148 QualType AllocType = AllocTypeInfo->getType();
12149 if (!ArraySize) {
12150 // If no array size was specified, but the new expression was
12151 // instantiated with an array type (e.g., "new T" where T is
12152 // instantiated with "int[4]"), extract the outer bound from the
12153 // array type as our array size. We do this with constant and
12154 // dependently-sized array types.
12155 const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
12156 if (!ArrayT) {
12157 // Do nothing
12158 } else if (const ConstantArrayType *ConsArrayT
12159 = dyn_cast<ConstantArrayType>(ArrayT)) {
12160 ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(),
12161 SemaRef.Context.getSizeType(),
12162 /*FIXME:*/ E->getBeginLoc());
12163 AllocType = ConsArrayT->getElementType();
12164 } else if (const DependentSizedArrayType *DepArrayT
12165 = dyn_cast<DependentSizedArrayType>(ArrayT)) {
12166 if (DepArrayT->getSizeExpr()) {
12167 ArraySize = DepArrayT->getSizeExpr();
12168 AllocType = DepArrayT->getElementType();
12169 }
12170 }
12171 }
12172
12173 return getDerived().RebuildCXXNewExpr(
12174 E->getBeginLoc(), E->isGlobalNew(),
12175 /*FIXME:*/ E->getBeginLoc(), PlacementArgs,
12176 /*FIXME:*/ E->getBeginLoc(), E->getTypeIdParens(), AllocType,
12177 AllocTypeInfo, ArraySize, E->getDirectInitRange(), NewInit.get());
12178 }
12179
12180 template<typename Derived>
12181 ExprResult
TransformCXXDeleteExpr(CXXDeleteExpr * E)12182 TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
12183 ExprResult Operand = getDerived().TransformExpr(E->getArgument());
12184 if (Operand.isInvalid())
12185 return ExprError();
12186
12187 // Transform the delete operator, if known.
12188 FunctionDecl *OperatorDelete = nullptr;
12189 if (E->getOperatorDelete()) {
12190 OperatorDelete = cast_or_null<FunctionDecl>(
12191 getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete()));
12192 if (!OperatorDelete)
12193 return ExprError();
12194 }
12195
12196 if (!getDerived().AlwaysRebuild() &&
12197 Operand.get() == E->getArgument() &&
12198 OperatorDelete == E->getOperatorDelete()) {
12199 // Mark any declarations we need as referenced.
12200 // FIXME: instantiation-specific.
12201 if (OperatorDelete)
12202 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete);
12203
12204 if (!E->getArgument()->isTypeDependent()) {
12205 QualType Destroyed = SemaRef.Context.getBaseElementType(
12206 E->getDestroyedType());
12207 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
12208 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
12209 SemaRef.MarkFunctionReferenced(E->getBeginLoc(),
12210 SemaRef.LookupDestructor(Record));
12211 }
12212 }
12213
12214 return E;
12215 }
12216
12217 return getDerived().RebuildCXXDeleteExpr(
12218 E->getBeginLoc(), E->isGlobalDelete(), E->isArrayForm(), Operand.get());
12219 }
12220
12221 template<typename Derived>
12222 ExprResult
TransformCXXPseudoDestructorExpr(CXXPseudoDestructorExpr * E)12223 TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
12224 CXXPseudoDestructorExpr *E) {
12225 ExprResult Base = getDerived().TransformExpr(E->getBase());
12226 if (Base.isInvalid())
12227 return ExprError();
12228
12229 ParsedType ObjectTypePtr;
12230 bool MayBePseudoDestructor = false;
12231 Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
12232 E->getOperatorLoc(),
12233 E->isArrow()? tok::arrow : tok::period,
12234 ObjectTypePtr,
12235 MayBePseudoDestructor);
12236 if (Base.isInvalid())
12237 return ExprError();
12238
12239 QualType ObjectType = ObjectTypePtr.get();
12240 NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
12241 if (QualifierLoc) {
12242 QualifierLoc
12243 = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
12244 if (!QualifierLoc)
12245 return ExprError();
12246 }
12247 CXXScopeSpec SS;
12248 SS.Adopt(QualifierLoc);
12249
12250 PseudoDestructorTypeStorage Destroyed;
12251 if (E->getDestroyedTypeInfo()) {
12252 TypeSourceInfo *DestroyedTypeInfo
12253 = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
12254 ObjectType, nullptr, SS);
12255 if (!DestroyedTypeInfo)
12256 return ExprError();
12257 Destroyed = DestroyedTypeInfo;
12258 } else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
12259 // We aren't likely to be able to resolve the identifier down to a type
12260 // now anyway, so just retain the identifier.
12261 Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
12262 E->getDestroyedTypeLoc());
12263 } else {
12264 // Look for a destructor known with the given name.
12265 ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
12266 *E->getDestroyedTypeIdentifier(),
12267 E->getDestroyedTypeLoc(),
12268 /*Scope=*/nullptr,
12269 SS, ObjectTypePtr,
12270 false);
12271 if (!T)
12272 return ExprError();
12273
12274 Destroyed
12275 = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
12276 E->getDestroyedTypeLoc());
12277 }
12278
12279 TypeSourceInfo *ScopeTypeInfo = nullptr;
12280 if (E->getScopeTypeInfo()) {
12281 CXXScopeSpec EmptySS;
12282 ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
12283 E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS);
12284 if (!ScopeTypeInfo)
12285 return ExprError();
12286 }
12287
12288 return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
12289 E->getOperatorLoc(),
12290 E->isArrow(),
12291 SS,
12292 ScopeTypeInfo,
12293 E->getColonColonLoc(),
12294 E->getTildeLoc(),
12295 Destroyed);
12296 }
12297
12298 template <typename Derived>
TransformOverloadExprDecls(OverloadExpr * Old,bool RequiresADL,LookupResult & R)12299 bool TreeTransform<Derived>::TransformOverloadExprDecls(OverloadExpr *Old,
12300 bool RequiresADL,
12301 LookupResult &R) {
12302 // Transform all the decls.
12303 bool AllEmptyPacks = true;
12304 for (auto *OldD : Old->decls()) {
12305 Decl *InstD = getDerived().TransformDecl(Old->getNameLoc(), OldD);
12306 if (!InstD) {
12307 // Silently ignore these if a UsingShadowDecl instantiated to nothing.
12308 // This can happen because of dependent hiding.
12309 if (isa<UsingShadowDecl>(OldD))
12310 continue;
12311 else {
12312 R.clear();
12313 return true;
12314 }
12315 }
12316
12317 // Expand using pack declarations.
12318 NamedDecl *SingleDecl = cast<NamedDecl>(InstD);
12319 ArrayRef<NamedDecl*> Decls = SingleDecl;
12320 if (auto *UPD = dyn_cast<UsingPackDecl>(InstD))
12321 Decls = UPD->expansions();
12322
12323 // Expand using declarations.
12324 for (auto *D : Decls) {
12325 if (auto *UD = dyn_cast<UsingDecl>(D)) {
12326 for (auto *SD : UD->shadows())
12327 R.addDecl(SD);
12328 } else {
12329 R.addDecl(D);
12330 }
12331 }
12332
12333 AllEmptyPacks &= Decls.empty();
12334 };
12335
12336 // C++ [temp.res]/8.4.2:
12337 // The program is ill-formed, no diagnostic required, if [...] lookup for
12338 // a name in the template definition found a using-declaration, but the
12339 // lookup in the corresponding scope in the instantiation odoes not find
12340 // any declarations because the using-declaration was a pack expansion and
12341 // the corresponding pack is empty
12342 if (AllEmptyPacks && !RequiresADL) {
12343 getSema().Diag(Old->getNameLoc(), diag::err_using_pack_expansion_empty)
12344 << isa<UnresolvedMemberExpr>(Old) << Old->getName();
12345 return true;
12346 }
12347
12348 // Resolve a kind, but don't do any further analysis. If it's
12349 // ambiguous, the callee needs to deal with it.
12350 R.resolveKind();
12351 return false;
12352 }
12353
12354 template<typename Derived>
12355 ExprResult
TransformUnresolvedLookupExpr(UnresolvedLookupExpr * Old)12356 TreeTransform<Derived>::TransformUnresolvedLookupExpr(
12357 UnresolvedLookupExpr *Old) {
12358 LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
12359 Sema::LookupOrdinaryName);
12360
12361 // Transform the declaration set.
12362 if (TransformOverloadExprDecls(Old, Old->requiresADL(), R))
12363 return ExprError();
12364
12365 // Rebuild the nested-name qualifier, if present.
12366 CXXScopeSpec SS;
12367 if (Old->getQualifierLoc()) {
12368 NestedNameSpecifierLoc QualifierLoc
12369 = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
12370 if (!QualifierLoc)
12371 return ExprError();
12372
12373 SS.Adopt(QualifierLoc);
12374 }
12375
12376 if (Old->getNamingClass()) {
12377 CXXRecordDecl *NamingClass
12378 = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
12379 Old->getNameLoc(),
12380 Old->getNamingClass()));
12381 if (!NamingClass) {
12382 R.clear();
12383 return ExprError();
12384 }
12385
12386 R.setNamingClass(NamingClass);
12387 }
12388
12389 SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
12390
12391 // If we have neither explicit template arguments, nor the template keyword,
12392 // it's a normal declaration name or member reference.
12393 if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid()) {
12394 NamedDecl *D = R.getAsSingle<NamedDecl>();
12395 // In a C++11 unevaluated context, an UnresolvedLookupExpr might refer to an
12396 // instance member. In other contexts, BuildPossibleImplicitMemberExpr will
12397 // give a good diagnostic.
12398 if (D && D->isCXXInstanceMember()) {
12399 return SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12400 /*TemplateArgs=*/nullptr,
12401 /*Scope=*/nullptr);
12402 }
12403
12404 return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
12405 }
12406
12407 // If we have template arguments, rebuild them, then rebuild the
12408 // templateid expression.
12409 TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
12410 if (Old->hasExplicitTemplateArgs() &&
12411 getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
12412 Old->getNumTemplateArgs(),
12413 TransArgs)) {
12414 R.clear();
12415 return ExprError();
12416 }
12417
12418 return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
12419 Old->requiresADL(), &TransArgs);
12420 }
12421
12422 template<typename Derived>
12423 ExprResult
TransformTypeTraitExpr(TypeTraitExpr * E)12424 TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
12425 bool ArgChanged = false;
12426 SmallVector<TypeSourceInfo *, 4> Args;
12427 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
12428 TypeSourceInfo *From = E->getArg(I);
12429 TypeLoc FromTL = From->getTypeLoc();
12430 if (!FromTL.getAs<PackExpansionTypeLoc>()) {
12431 TypeLocBuilder TLB;
12432 TLB.reserve(FromTL.getFullDataSize());
12433 QualType To = getDerived().TransformType(TLB, FromTL);
12434 if (To.isNull())
12435 return ExprError();
12436
12437 if (To == From->getType())
12438 Args.push_back(From);
12439 else {
12440 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
12441 ArgChanged = true;
12442 }
12443 continue;
12444 }
12445
12446 ArgChanged = true;
12447
12448 // We have a pack expansion. Instantiate it.
12449 PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
12450 TypeLoc PatternTL = ExpansionTL.getPatternLoc();
12451 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12452 SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
12453
12454 // Determine whether the set of unexpanded parameter packs can and should
12455 // be expanded.
12456 bool Expand = true;
12457 bool RetainExpansion = false;
12458 Optional<unsigned> OrigNumExpansions =
12459 ExpansionTL.getTypePtr()->getNumExpansions();
12460 Optional<unsigned> NumExpansions = OrigNumExpansions;
12461 if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
12462 PatternTL.getSourceRange(),
12463 Unexpanded,
12464 Expand, RetainExpansion,
12465 NumExpansions))
12466 return ExprError();
12467
12468 if (!Expand) {
12469 // The transform has determined that we should perform a simple
12470 // transformation on the pack expansion, producing another pack
12471 // expansion.
12472 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
12473
12474 TypeLocBuilder TLB;
12475 TLB.reserve(From->getTypeLoc().getFullDataSize());
12476
12477 QualType To = getDerived().TransformType(TLB, PatternTL);
12478 if (To.isNull())
12479 return ExprError();
12480
12481 To = getDerived().RebuildPackExpansionType(To,
12482 PatternTL.getSourceRange(),
12483 ExpansionTL.getEllipsisLoc(),
12484 NumExpansions);
12485 if (To.isNull())
12486 return ExprError();
12487
12488 PackExpansionTypeLoc ToExpansionTL
12489 = TLB.push<PackExpansionTypeLoc>(To);
12490 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
12491 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
12492 continue;
12493 }
12494
12495 // Expand the pack expansion by substituting for each argument in the
12496 // pack(s).
12497 for (unsigned I = 0; I != *NumExpansions; ++I) {
12498 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
12499 TypeLocBuilder TLB;
12500 TLB.reserve(PatternTL.getFullDataSize());
12501 QualType To = getDerived().TransformType(TLB, PatternTL);
12502 if (To.isNull())
12503 return ExprError();
12504
12505 if (To->containsUnexpandedParameterPack()) {
12506 To = getDerived().RebuildPackExpansionType(To,
12507 PatternTL.getSourceRange(),
12508 ExpansionTL.getEllipsisLoc(),
12509 NumExpansions);
12510 if (To.isNull())
12511 return ExprError();
12512
12513 PackExpansionTypeLoc ToExpansionTL
12514 = TLB.push<PackExpansionTypeLoc>(To);
12515 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
12516 }
12517
12518 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
12519 }
12520
12521 if (!RetainExpansion)
12522 continue;
12523
12524 // If we're supposed to retain a pack expansion, do so by temporarily
12525 // forgetting the partially-substituted parameter pack.
12526 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
12527
12528 TypeLocBuilder TLB;
12529 TLB.reserve(From->getTypeLoc().getFullDataSize());
12530
12531 QualType To = getDerived().TransformType(TLB, PatternTL);
12532 if (To.isNull())
12533 return ExprError();
12534
12535 To = getDerived().RebuildPackExpansionType(To,
12536 PatternTL.getSourceRange(),
12537 ExpansionTL.getEllipsisLoc(),
12538 NumExpansions);
12539 if (To.isNull())
12540 return ExprError();
12541
12542 PackExpansionTypeLoc ToExpansionTL
12543 = TLB.push<PackExpansionTypeLoc>(To);
12544 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
12545 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
12546 }
12547
12548 if (!getDerived().AlwaysRebuild() && !ArgChanged)
12549 return E;
12550
12551 return getDerived().RebuildTypeTrait(E->getTrait(), E->getBeginLoc(), Args,
12552 E->getEndLoc());
12553 }
12554
12555 template<typename Derived>
12556 ExprResult
TransformConceptSpecializationExpr(ConceptSpecializationExpr * E)12557 TreeTransform<Derived>::TransformConceptSpecializationExpr(
12558 ConceptSpecializationExpr *E) {
12559 const ASTTemplateArgumentListInfo *Old = E->getTemplateArgsAsWritten();
12560 TemplateArgumentListInfo TransArgs(Old->LAngleLoc, Old->RAngleLoc);
12561 if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
12562 Old->NumTemplateArgs, TransArgs))
12563 return ExprError();
12564
12565 return getDerived().RebuildConceptSpecializationExpr(
12566 E->getNestedNameSpecifierLoc(), E->getTemplateKWLoc(),
12567 E->getConceptNameInfo(), E->getFoundDecl(), E->getNamedConcept(),
12568 &TransArgs);
12569 }
12570
12571 template<typename Derived>
12572 ExprResult
TransformRequiresExpr(RequiresExpr * E)12573 TreeTransform<Derived>::TransformRequiresExpr(RequiresExpr *E) {
12574 SmallVector<ParmVarDecl*, 4> TransParams;
12575 SmallVector<QualType, 4> TransParamTypes;
12576 Sema::ExtParameterInfoBuilder ExtParamInfos;
12577
12578 // C++2a [expr.prim.req]p2
12579 // Expressions appearing within a requirement-body are unevaluated operands.
12580 EnterExpressionEvaluationContext Ctx(
12581 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
12582
12583 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(
12584 getSema().Context, getSema().CurContext,
12585 E->getBody()->getBeginLoc());
12586
12587 Sema::ContextRAII SavedContext(getSema(), Body, /*NewThisContext*/false);
12588
12589 if (getDerived().TransformFunctionTypeParams(E->getRequiresKWLoc(),
12590 E->getLocalParameters(),
12591 /*ParamTypes=*/nullptr,
12592 /*ParamInfos=*/nullptr,
12593 TransParamTypes, &TransParams,
12594 ExtParamInfos))
12595 return ExprError();
12596
12597 for (ParmVarDecl *Param : TransParams)
12598 Param->setDeclContext(Body);
12599
12600 SmallVector<concepts::Requirement *, 4> TransReqs;
12601 if (getDerived().TransformRequiresExprRequirements(E->getRequirements(),
12602 TransReqs))
12603 return ExprError();
12604
12605 for (concepts::Requirement *Req : TransReqs) {
12606 if (auto *ER = dyn_cast<concepts::ExprRequirement>(Req)) {
12607 if (ER->getReturnTypeRequirement().isTypeConstraint()) {
12608 ER->getReturnTypeRequirement()
12609 .getTypeConstraintTemplateParameterList()->getParam(0)
12610 ->setDeclContext(Body);
12611 }
12612 }
12613 }
12614
12615 return getDerived().RebuildRequiresExpr(E->getRequiresKWLoc(), Body,
12616 TransParams, TransReqs,
12617 E->getRBraceLoc());
12618 }
12619
12620 template<typename Derived>
TransformRequiresExprRequirements(ArrayRef<concepts::Requirement * > Reqs,SmallVectorImpl<concepts::Requirement * > & Transformed)12621 bool TreeTransform<Derived>::TransformRequiresExprRequirements(
12622 ArrayRef<concepts::Requirement *> Reqs,
12623 SmallVectorImpl<concepts::Requirement *> &Transformed) {
12624 for (concepts::Requirement *Req : Reqs) {
12625 concepts::Requirement *TransReq = nullptr;
12626 if (auto *TypeReq = dyn_cast<concepts::TypeRequirement>(Req))
12627 TransReq = getDerived().TransformTypeRequirement(TypeReq);
12628 else if (auto *ExprReq = dyn_cast<concepts::ExprRequirement>(Req))
12629 TransReq = getDerived().TransformExprRequirement(ExprReq);
12630 else
12631 TransReq = getDerived().TransformNestedRequirement(
12632 cast<concepts::NestedRequirement>(Req));
12633 if (!TransReq)
12634 return true;
12635 Transformed.push_back(TransReq);
12636 }
12637 return false;
12638 }
12639
12640 template<typename Derived>
12641 concepts::TypeRequirement *
TransformTypeRequirement(concepts::TypeRequirement * Req)12642 TreeTransform<Derived>::TransformTypeRequirement(
12643 concepts::TypeRequirement *Req) {
12644 if (Req->isSubstitutionFailure()) {
12645 if (getDerived().AlwaysRebuild())
12646 return getDerived().RebuildTypeRequirement(
12647 Req->getSubstitutionDiagnostic());
12648 return Req;
12649 }
12650 TypeSourceInfo *TransType = getDerived().TransformType(Req->getType());
12651 if (!TransType)
12652 return nullptr;
12653 return getDerived().RebuildTypeRequirement(TransType);
12654 }
12655
12656 template<typename Derived>
12657 concepts::ExprRequirement *
TransformExprRequirement(concepts::ExprRequirement * Req)12658 TreeTransform<Derived>::TransformExprRequirement(concepts::ExprRequirement *Req) {
12659 llvm::PointerUnion<Expr *, concepts::Requirement::SubstitutionDiagnostic *> TransExpr;
12660 if (Req->isExprSubstitutionFailure())
12661 TransExpr = Req->getExprSubstitutionDiagnostic();
12662 else {
12663 ExprResult TransExprRes = getDerived().TransformExpr(Req->getExpr());
12664 if (TransExprRes.isUsable() && TransExprRes.get()->hasPlaceholderType())
12665 TransExprRes = SemaRef.CheckPlaceholderExpr(TransExprRes.get());
12666 if (TransExprRes.isInvalid())
12667 return nullptr;
12668 TransExpr = TransExprRes.get();
12669 }
12670
12671 llvm::Optional<concepts::ExprRequirement::ReturnTypeRequirement> TransRetReq;
12672 const auto &RetReq = Req->getReturnTypeRequirement();
12673 if (RetReq.isEmpty())
12674 TransRetReq.emplace();
12675 else if (RetReq.isSubstitutionFailure())
12676 TransRetReq.emplace(RetReq.getSubstitutionDiagnostic());
12677 else if (RetReq.isTypeConstraint()) {
12678 TemplateParameterList *OrigTPL =
12679 RetReq.getTypeConstraintTemplateParameterList();
12680 TemplateParameterList *TPL =
12681 getDerived().TransformTemplateParameterList(OrigTPL);
12682 if (!TPL)
12683 return nullptr;
12684 TransRetReq.emplace(TPL);
12685 }
12686 assert(TransRetReq && "All code paths leading here must set TransRetReq");
12687 if (Expr *E = TransExpr.dyn_cast<Expr *>())
12688 return getDerived().RebuildExprRequirement(E, Req->isSimple(),
12689 Req->getNoexceptLoc(),
12690 std::move(*TransRetReq));
12691 return getDerived().RebuildExprRequirement(
12692 TransExpr.get<concepts::Requirement::SubstitutionDiagnostic *>(),
12693 Req->isSimple(), Req->getNoexceptLoc(), std::move(*TransRetReq));
12694 }
12695
12696 template<typename Derived>
12697 concepts::NestedRequirement *
TransformNestedRequirement(concepts::NestedRequirement * Req)12698 TreeTransform<Derived>::TransformNestedRequirement(
12699 concepts::NestedRequirement *Req) {
12700 if (Req->isSubstitutionFailure()) {
12701 if (getDerived().AlwaysRebuild())
12702 return getDerived().RebuildNestedRequirement(
12703 Req->getSubstitutionDiagnostic());
12704 return Req;
12705 }
12706 ExprResult TransConstraint =
12707 getDerived().TransformExpr(Req->getConstraintExpr());
12708 if (TransConstraint.isInvalid())
12709 return nullptr;
12710 return getDerived().RebuildNestedRequirement(TransConstraint.get());
12711 }
12712
12713 template<typename Derived>
12714 ExprResult
TransformArrayTypeTraitExpr(ArrayTypeTraitExpr * E)12715 TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
12716 TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
12717 if (!T)
12718 return ExprError();
12719
12720 if (!getDerived().AlwaysRebuild() &&
12721 T == E->getQueriedTypeSourceInfo())
12722 return E;
12723
12724 ExprResult SubExpr;
12725 {
12726 EnterExpressionEvaluationContext Unevaluated(
12727 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
12728 SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
12729 if (SubExpr.isInvalid())
12730 return ExprError();
12731
12732 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
12733 return E;
12734 }
12735
12736 return getDerived().RebuildArrayTypeTrait(E->getTrait(), E->getBeginLoc(), T,
12737 SubExpr.get(), E->getEndLoc());
12738 }
12739
12740 template<typename Derived>
12741 ExprResult
TransformExpressionTraitExpr(ExpressionTraitExpr * E)12742 TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
12743 ExprResult SubExpr;
12744 {
12745 EnterExpressionEvaluationContext Unevaluated(
12746 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
12747 SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
12748 if (SubExpr.isInvalid())
12749 return ExprError();
12750
12751 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
12752 return E;
12753 }
12754
12755 return getDerived().RebuildExpressionTrait(E->getTrait(), E->getBeginLoc(),
12756 SubExpr.get(), E->getEndLoc());
12757 }
12758
12759 template <typename Derived>
TransformParenDependentScopeDeclRefExpr(ParenExpr * PE,DependentScopeDeclRefExpr * DRE,bool AddrTaken,TypeSourceInfo ** RecoveryTSI)12760 ExprResult TreeTransform<Derived>::TransformParenDependentScopeDeclRefExpr(
12761 ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken,
12762 TypeSourceInfo **RecoveryTSI) {
12763 ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr(
12764 DRE, AddrTaken, RecoveryTSI);
12765
12766 // Propagate both errors and recovered types, which return ExprEmpty.
12767 if (!NewDRE.isUsable())
12768 return NewDRE;
12769
12770 // We got an expr, wrap it up in parens.
12771 if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE)
12772 return PE;
12773 return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(),
12774 PE->getRParen());
12775 }
12776
12777 template <typename Derived>
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E)12778 ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
12779 DependentScopeDeclRefExpr *E) {
12780 return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false,
12781 nullptr);
12782 }
12783
12784 template <typename Derived>
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E,bool IsAddressOfOperand,TypeSourceInfo ** RecoveryTSI)12785 ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
12786 DependentScopeDeclRefExpr *E, bool IsAddressOfOperand,
12787 TypeSourceInfo **RecoveryTSI) {
12788 assert(E->getQualifierLoc());
12789 NestedNameSpecifierLoc QualifierLoc =
12790 getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
12791 if (!QualifierLoc)
12792 return ExprError();
12793 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
12794
12795 // TODO: If this is a conversion-function-id, verify that the
12796 // destination type name (if present) resolves the same way after
12797 // instantiation as it did in the local scope.
12798
12799 DeclarationNameInfo NameInfo =
12800 getDerived().TransformDeclarationNameInfo(E->getNameInfo());
12801 if (!NameInfo.getName())
12802 return ExprError();
12803
12804 if (!E->hasExplicitTemplateArgs()) {
12805 if (!getDerived().AlwaysRebuild() && QualifierLoc == E->getQualifierLoc() &&
12806 // Note: it is sufficient to compare the Name component of NameInfo:
12807 // if name has not changed, DNLoc has not changed either.
12808 NameInfo.getName() == E->getDeclName())
12809 return E;
12810
12811 return getDerived().RebuildDependentScopeDeclRefExpr(
12812 QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr,
12813 IsAddressOfOperand, RecoveryTSI);
12814 }
12815
12816 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
12817 if (getDerived().TransformTemplateArguments(
12818 E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs))
12819 return ExprError();
12820
12821 return getDerived().RebuildDependentScopeDeclRefExpr(
12822 QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand,
12823 RecoveryTSI);
12824 }
12825
12826 template<typename Derived>
12827 ExprResult
TransformCXXConstructExpr(CXXConstructExpr * E)12828 TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
12829 // CXXConstructExprs other than for list-initialization and
12830 // CXXTemporaryObjectExpr are always implicit, so when we have
12831 // a 1-argument construction we just transform that argument.
12832 if (getDerived().AllowSkippingCXXConstructExpr() &&
12833 ((E->getNumArgs() == 1 ||
12834 (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
12835 (!getDerived().DropCallArgument(E->getArg(0))) &&
12836 !E->isListInitialization()))
12837 return getDerived().TransformInitializer(E->getArg(0),
12838 /*DirectInit*/ false);
12839
12840 TemporaryBase Rebase(*this, /*FIXME*/ E->getBeginLoc(), DeclarationName());
12841
12842 QualType T = getDerived().TransformType(E->getType());
12843 if (T.isNull())
12844 return ExprError();
12845
12846 CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
12847 getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
12848 if (!Constructor)
12849 return ExprError();
12850
12851 bool ArgumentChanged = false;
12852 SmallVector<Expr*, 8> Args;
12853 {
12854 EnterExpressionEvaluationContext Context(
12855 getSema(), EnterExpressionEvaluationContext::InitList,
12856 E->isListInitialization());
12857 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
12858 &ArgumentChanged))
12859 return ExprError();
12860 }
12861
12862 if (!getDerived().AlwaysRebuild() &&
12863 T == E->getType() &&
12864 Constructor == E->getConstructor() &&
12865 !ArgumentChanged) {
12866 // Mark the constructor as referenced.
12867 // FIXME: Instantiation-specific
12868 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
12869 return E;
12870 }
12871
12872 return getDerived().RebuildCXXConstructExpr(
12873 T, /*FIXME:*/ E->getBeginLoc(), Constructor, E->isElidable(), Args,
12874 E->hadMultipleCandidates(), E->isListInitialization(),
12875 E->isStdInitListInitialization(), E->requiresZeroInitialization(),
12876 E->getConstructionKind(), E->getParenOrBraceRange());
12877 }
12878
12879 template<typename Derived>
TransformCXXInheritedCtorInitExpr(CXXInheritedCtorInitExpr * E)12880 ExprResult TreeTransform<Derived>::TransformCXXInheritedCtorInitExpr(
12881 CXXInheritedCtorInitExpr *E) {
12882 QualType T = getDerived().TransformType(E->getType());
12883 if (T.isNull())
12884 return ExprError();
12885
12886 CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
12887 getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
12888 if (!Constructor)
12889 return ExprError();
12890
12891 if (!getDerived().AlwaysRebuild() &&
12892 T == E->getType() &&
12893 Constructor == E->getConstructor()) {
12894 // Mark the constructor as referenced.
12895 // FIXME: Instantiation-specific
12896 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
12897 return E;
12898 }
12899
12900 return getDerived().RebuildCXXInheritedCtorInitExpr(
12901 T, E->getLocation(), Constructor,
12902 E->constructsVBase(), E->inheritedFromVBase());
12903 }
12904
12905 /// Transform a C++ temporary-binding expression.
12906 ///
12907 /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
12908 /// transform the subexpression and return that.
12909 template<typename Derived>
12910 ExprResult
TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)12911 TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
12912 if (auto *Dtor = E->getTemporary()->getDestructor())
12913 SemaRef.MarkFunctionReferenced(E->getBeginLoc(),
12914 const_cast<CXXDestructorDecl *>(Dtor));
12915 return getDerived().TransformExpr(E->getSubExpr());
12916 }
12917
12918 /// Transform a C++ expression that contains cleanups that should
12919 /// be run after the expression is evaluated.
12920 ///
12921 /// Since ExprWithCleanups nodes are implicitly generated, we
12922 /// just transform the subexpression and return that.
12923 template<typename Derived>
12924 ExprResult
TransformExprWithCleanups(ExprWithCleanups * E)12925 TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
12926 return getDerived().TransformExpr(E->getSubExpr());
12927 }
12928
12929 template<typename Derived>
12930 ExprResult
TransformCXXTemporaryObjectExpr(CXXTemporaryObjectExpr * E)12931 TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
12932 CXXTemporaryObjectExpr *E) {
12933 TypeSourceInfo *T =
12934 getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo());
12935 if (!T)
12936 return ExprError();
12937
12938 CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
12939 getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
12940 if (!Constructor)
12941 return ExprError();
12942
12943 bool ArgumentChanged = false;
12944 SmallVector<Expr*, 8> Args;
12945 Args.reserve(E->getNumArgs());
12946 {
12947 EnterExpressionEvaluationContext Context(
12948 getSema(), EnterExpressionEvaluationContext::InitList,
12949 E->isListInitialization());
12950 if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
12951 &ArgumentChanged))
12952 return ExprError();
12953 }
12954
12955 if (!getDerived().AlwaysRebuild() &&
12956 T == E->getTypeSourceInfo() &&
12957 Constructor == E->getConstructor() &&
12958 !ArgumentChanged) {
12959 // FIXME: Instantiation-specific
12960 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
12961 return SemaRef.MaybeBindToTemporary(E);
12962 }
12963
12964 // FIXME: We should just pass E->isListInitialization(), but we're not
12965 // prepared to handle list-initialization without a child InitListExpr.
12966 SourceLocation LParenLoc = T->getTypeLoc().getEndLoc();
12967 return getDerived().RebuildCXXTemporaryObjectExpr(
12968 T, LParenLoc, Args, E->getEndLoc(),
12969 /*ListInitialization=*/LParenLoc.isInvalid());
12970 }
12971
12972 template<typename Derived>
12973 ExprResult
TransformLambdaExpr(LambdaExpr * E)12974 TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
12975 // Transform any init-capture expressions before entering the scope of the
12976 // lambda body, because they are not semantically within that scope.
12977 typedef std::pair<ExprResult, QualType> InitCaptureInfoTy;
12978 struct TransformedInitCapture {
12979 // The location of the ... if the result is retaining a pack expansion.
12980 SourceLocation EllipsisLoc;
12981 // Zero or more expansions of the init-capture.
12982 SmallVector<InitCaptureInfoTy, 4> Expansions;
12983 };
12984 SmallVector<TransformedInitCapture, 4> InitCaptures;
12985 InitCaptures.resize(E->explicit_capture_end() - E->explicit_capture_begin());
12986 for (LambdaExpr::capture_iterator C = E->capture_begin(),
12987 CEnd = E->capture_end();
12988 C != CEnd; ++C) {
12989 if (!E->isInitCapture(C))
12990 continue;
12991
12992 TransformedInitCapture &Result = InitCaptures[C - E->capture_begin()];
12993 VarDecl *OldVD = C->getCapturedVar();
12994
12995 auto SubstInitCapture = [&](SourceLocation EllipsisLoc,
12996 Optional<unsigned> NumExpansions) {
12997 ExprResult NewExprInitResult = getDerived().TransformInitializer(
12998 OldVD->getInit(), OldVD->getInitStyle() == VarDecl::CallInit);
12999
13000 if (NewExprInitResult.isInvalid()) {
13001 Result.Expansions.push_back(InitCaptureInfoTy(ExprError(), QualType()));
13002 return;
13003 }
13004 Expr *NewExprInit = NewExprInitResult.get();
13005
13006 QualType NewInitCaptureType =
13007 getSema().buildLambdaInitCaptureInitialization(
13008 C->getLocation(), OldVD->getType()->isReferenceType(),
13009 EllipsisLoc, NumExpansions, OldVD->getIdentifier(),
13010 C->getCapturedVar()->getInitStyle() != VarDecl::CInit,
13011 NewExprInit);
13012 Result.Expansions.push_back(
13013 InitCaptureInfoTy(NewExprInit, NewInitCaptureType));
13014 };
13015
13016 // If this is an init-capture pack, consider expanding the pack now.
13017 if (OldVD->isParameterPack()) {
13018 PackExpansionTypeLoc ExpansionTL = OldVD->getTypeSourceInfo()
13019 ->getTypeLoc()
13020 .castAs<PackExpansionTypeLoc>();
13021 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13022 SemaRef.collectUnexpandedParameterPacks(OldVD->getInit(), Unexpanded);
13023
13024 // Determine whether the set of unexpanded parameter packs can and should
13025 // be expanded.
13026 bool Expand = true;
13027 bool RetainExpansion = false;
13028 Optional<unsigned> OrigNumExpansions =
13029 ExpansionTL.getTypePtr()->getNumExpansions();
13030 Optional<unsigned> NumExpansions = OrigNumExpansions;
13031 if (getDerived().TryExpandParameterPacks(
13032 ExpansionTL.getEllipsisLoc(),
13033 OldVD->getInit()->getSourceRange(), Unexpanded, Expand,
13034 RetainExpansion, NumExpansions))
13035 return ExprError();
13036 if (Expand) {
13037 for (unsigned I = 0; I != *NumExpansions; ++I) {
13038 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
13039 SubstInitCapture(SourceLocation(), None);
13040 }
13041 }
13042 if (!Expand || RetainExpansion) {
13043 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
13044 SubstInitCapture(ExpansionTL.getEllipsisLoc(), NumExpansions);
13045 Result.EllipsisLoc = ExpansionTL.getEllipsisLoc();
13046 }
13047 } else {
13048 SubstInitCapture(SourceLocation(), None);
13049 }
13050 }
13051
13052 LambdaScopeInfo *LSI = getSema().PushLambdaScope();
13053 Sema::FunctionScopeRAII FuncScopeCleanup(getSema());
13054
13055 // Transform the template parameters, and add them to the current
13056 // instantiation scope. The null case is handled correctly.
13057 auto TPL = getDerived().TransformTemplateParameterList(
13058 E->getTemplateParameterList());
13059 LSI->GLTemplateParameterList = TPL;
13060
13061 // Transform the type of the original lambda's call operator.
13062 // The transformation MUST be done in the CurrentInstantiationScope since
13063 // it introduces a mapping of the original to the newly created
13064 // transformed parameters.
13065 TypeSourceInfo *NewCallOpTSI = nullptr;
13066 {
13067 TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo();
13068 FunctionProtoTypeLoc OldCallOpFPTL =
13069 OldCallOpTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
13070
13071 TypeLocBuilder NewCallOpTLBuilder;
13072 SmallVector<QualType, 4> ExceptionStorage;
13073 TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
13074 QualType NewCallOpType = TransformFunctionProtoType(
13075 NewCallOpTLBuilder, OldCallOpFPTL, nullptr, Qualifiers(),
13076 [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
13077 return This->TransformExceptionSpec(OldCallOpFPTL.getBeginLoc(), ESI,
13078 ExceptionStorage, Changed);
13079 });
13080 if (NewCallOpType.isNull())
13081 return ExprError();
13082 NewCallOpTSI = NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context,
13083 NewCallOpType);
13084 }
13085
13086 // Transform the trailing requires clause
13087 ExprResult NewTrailingRequiresClause;
13088 if (Expr *TRC = E->getCallOperator()->getTrailingRequiresClause())
13089 // FIXME: Concepts: Substitution into requires clause should only happen
13090 // when checking satisfaction.
13091 NewTrailingRequiresClause = getDerived().TransformExpr(TRC);
13092
13093 // Create the local class that will describe the lambda.
13094
13095 // FIXME: DependencyKind below is wrong when substituting inside a templated
13096 // context that isn't a DeclContext (such as a variable template), or when
13097 // substituting an unevaluated lambda inside of a function's parameter's type
13098 // - as parameter types are not instantiated from within a function's DC. We
13099 // use isUnevaluatedContext() to distinguish the function parameter case.
13100 CXXRecordDecl::LambdaDependencyKind DependencyKind =
13101 CXXRecordDecl::LDK_Unknown;
13102 if (getSema().isUnevaluatedContext() &&
13103 (getSema().CurContext->isFileContext() ||
13104 !getSema().CurContext->getParent()->isDependentContext()))
13105 DependencyKind = CXXRecordDecl::LDK_NeverDependent;
13106
13107 CXXRecordDecl *OldClass = E->getLambdaClass();
13108 CXXRecordDecl *Class =
13109 getSema().createLambdaClosureType(E->getIntroducerRange(), NewCallOpTSI,
13110 DependencyKind, E->getCaptureDefault());
13111
13112 getDerived().transformedLocalDecl(OldClass, {Class});
13113
13114 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling;
13115 if (getDerived().ReplacingOriginal())
13116 Mangling = std::make_tuple(OldClass->hasKnownLambdaInternalLinkage(),
13117 OldClass->getLambdaManglingNumber(),
13118 OldClass->getDeviceLambdaManglingNumber(),
13119 OldClass->getLambdaContextDecl());
13120
13121 // Build the call operator.
13122 CXXMethodDecl *NewCallOperator = getSema().startLambdaDefinition(
13123 Class, E->getIntroducerRange(), NewCallOpTSI,
13124 E->getCallOperator()->getEndLoc(),
13125 NewCallOpTSI->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(),
13126 E->getCallOperator()->getConstexprKind(),
13127 NewTrailingRequiresClause.get());
13128
13129 LSI->CallOperator = NewCallOperator;
13130
13131 getDerived().transformAttrs(E->getCallOperator(), NewCallOperator);
13132 getDerived().transformedLocalDecl(E->getCallOperator(), {NewCallOperator});
13133
13134 // Number the lambda for linkage purposes if necessary.
13135 getSema().handleLambdaNumbering(Class, NewCallOperator, Mangling);
13136
13137 // Introduce the context of the call operator.
13138 Sema::ContextRAII SavedContext(getSema(), NewCallOperator,
13139 /*NewThisContext*/false);
13140
13141 // Enter the scope of the lambda.
13142 getSema().buildLambdaScope(LSI, NewCallOperator,
13143 E->getIntroducerRange(),
13144 E->getCaptureDefault(),
13145 E->getCaptureDefaultLoc(),
13146 E->hasExplicitParameters(),
13147 E->hasExplicitResultType(),
13148 E->isMutable());
13149
13150 bool Invalid = false;
13151
13152 // Transform captures.
13153 for (LambdaExpr::capture_iterator C = E->capture_begin(),
13154 CEnd = E->capture_end();
13155 C != CEnd; ++C) {
13156 // When we hit the first implicit capture, tell Sema that we've finished
13157 // the list of explicit captures.
13158 if (C->isImplicit())
13159 break;
13160
13161 // Capturing 'this' is trivial.
13162 if (C->capturesThis()) {
13163 getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(),
13164 /*BuildAndDiagnose*/ true, nullptr,
13165 C->getCaptureKind() == LCK_StarThis);
13166 continue;
13167 }
13168 // Captured expression will be recaptured during captured variables
13169 // rebuilding.
13170 if (C->capturesVLAType())
13171 continue;
13172
13173 // Rebuild init-captures, including the implied field declaration.
13174 if (E->isInitCapture(C)) {
13175 TransformedInitCapture &NewC = InitCaptures[C - E->capture_begin()];
13176
13177 VarDecl *OldVD = C->getCapturedVar();
13178 llvm::SmallVector<Decl*, 4> NewVDs;
13179
13180 for (InitCaptureInfoTy &Info : NewC.Expansions) {
13181 ExprResult Init = Info.first;
13182 QualType InitQualType = Info.second;
13183 if (Init.isInvalid() || InitQualType.isNull()) {
13184 Invalid = true;
13185 break;
13186 }
13187 VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl(
13188 OldVD->getLocation(), InitQualType, NewC.EllipsisLoc,
13189 OldVD->getIdentifier(), OldVD->getInitStyle(), Init.get());
13190 if (!NewVD) {
13191 Invalid = true;
13192 break;
13193 }
13194 NewVDs.push_back(NewVD);
13195 getSema().addInitCapture(LSI, NewVD);
13196 }
13197
13198 if (Invalid)
13199 break;
13200
13201 getDerived().transformedLocalDecl(OldVD, NewVDs);
13202 continue;
13203 }
13204
13205 assert(C->capturesVariable() && "unexpected kind of lambda capture");
13206
13207 // Determine the capture kind for Sema.
13208 Sema::TryCaptureKind Kind
13209 = C->isImplicit()? Sema::TryCapture_Implicit
13210 : C->getCaptureKind() == LCK_ByCopy
13211 ? Sema::TryCapture_ExplicitByVal
13212 : Sema::TryCapture_ExplicitByRef;
13213 SourceLocation EllipsisLoc;
13214 if (C->isPackExpansion()) {
13215 UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
13216 bool ShouldExpand = false;
13217 bool RetainExpansion = false;
13218 Optional<unsigned> NumExpansions;
13219 if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
13220 C->getLocation(),
13221 Unexpanded,
13222 ShouldExpand, RetainExpansion,
13223 NumExpansions)) {
13224 Invalid = true;
13225 continue;
13226 }
13227
13228 if (ShouldExpand) {
13229 // The transform has determined that we should perform an expansion;
13230 // transform and capture each of the arguments.
13231 // expansion of the pattern. Do so.
13232 VarDecl *Pack = C->getCapturedVar();
13233 for (unsigned I = 0; I != *NumExpansions; ++I) {
13234 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
13235 VarDecl *CapturedVar
13236 = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
13237 Pack));
13238 if (!CapturedVar) {
13239 Invalid = true;
13240 continue;
13241 }
13242
13243 // Capture the transformed variable.
13244 getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
13245 }
13246
13247 // FIXME: Retain a pack expansion if RetainExpansion is true.
13248
13249 continue;
13250 }
13251
13252 EllipsisLoc = C->getEllipsisLoc();
13253 }
13254
13255 // Transform the captured variable.
13256 VarDecl *CapturedVar
13257 = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
13258 C->getCapturedVar()));
13259 if (!CapturedVar || CapturedVar->isInvalidDecl()) {
13260 Invalid = true;
13261 continue;
13262 }
13263
13264 // Capture the transformed variable.
13265 getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind,
13266 EllipsisLoc);
13267 }
13268 getSema().finishLambdaExplicitCaptures(LSI);
13269
13270 // FIXME: Sema's lambda-building mechanism expects us to push an expression
13271 // evaluation context even if we're not transforming the function body.
13272 getSema().PushExpressionEvaluationContext(
13273 Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
13274
13275 // Instantiate the body of the lambda expression.
13276 StmtResult Body =
13277 Invalid ? StmtError() : getDerived().TransformLambdaBody(E, E->getBody());
13278
13279 // ActOnLambda* will pop the function scope for us.
13280 FuncScopeCleanup.disable();
13281
13282 if (Body.isInvalid()) {
13283 SavedContext.pop();
13284 getSema().ActOnLambdaError(E->getBeginLoc(), /*CurScope=*/nullptr,
13285 /*IsInstantiation=*/true);
13286 return ExprError();
13287 }
13288
13289 // Copy the LSI before ActOnFinishFunctionBody removes it.
13290 // FIXME: This is dumb. Store the lambda information somewhere that outlives
13291 // the call operator.
13292 auto LSICopy = *LSI;
13293 getSema().ActOnFinishFunctionBody(NewCallOperator, Body.get(),
13294 /*IsInstantiation*/ true);
13295 SavedContext.pop();
13296
13297 return getSema().BuildLambdaExpr(E->getBeginLoc(), Body.get()->getEndLoc(),
13298 &LSICopy);
13299 }
13300
13301 template<typename Derived>
13302 StmtResult
TransformLambdaBody(LambdaExpr * E,Stmt * S)13303 TreeTransform<Derived>::TransformLambdaBody(LambdaExpr *E, Stmt *S) {
13304 return TransformStmt(S);
13305 }
13306
13307 template<typename Derived>
13308 StmtResult
SkipLambdaBody(LambdaExpr * E,Stmt * S)13309 TreeTransform<Derived>::SkipLambdaBody(LambdaExpr *E, Stmt *S) {
13310 // Transform captures.
13311 for (LambdaExpr::capture_iterator C = E->capture_begin(),
13312 CEnd = E->capture_end();
13313 C != CEnd; ++C) {
13314 // When we hit the first implicit capture, tell Sema that we've finished
13315 // the list of explicit captures.
13316 if (!C->isImplicit())
13317 continue;
13318
13319 // Capturing 'this' is trivial.
13320 if (C->capturesThis()) {
13321 getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(),
13322 /*BuildAndDiagnose*/ true, nullptr,
13323 C->getCaptureKind() == LCK_StarThis);
13324 continue;
13325 }
13326 // Captured expression will be recaptured during captured variables
13327 // rebuilding.
13328 if (C->capturesVLAType())
13329 continue;
13330
13331 assert(C->capturesVariable() && "unexpected kind of lambda capture");
13332 assert(!E->isInitCapture(C) && "implicit init-capture?");
13333
13334 // Transform the captured variable.
13335 VarDecl *CapturedVar = cast_or_null<VarDecl>(
13336 getDerived().TransformDecl(C->getLocation(), C->getCapturedVar()));
13337 if (!CapturedVar || CapturedVar->isInvalidDecl())
13338 return StmtError();
13339
13340 // Capture the transformed variable.
13341 getSema().tryCaptureVariable(CapturedVar, C->getLocation());
13342 }
13343
13344 return S;
13345 }
13346
13347 template<typename Derived>
13348 ExprResult
TransformCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr * E)13349 TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
13350 CXXUnresolvedConstructExpr *E) {
13351 TypeSourceInfo *T =
13352 getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo());
13353 if (!T)
13354 return ExprError();
13355
13356 bool ArgumentChanged = false;
13357 SmallVector<Expr*, 8> Args;
13358 Args.reserve(E->getNumArgs());
13359 {
13360 EnterExpressionEvaluationContext Context(
13361 getSema(), EnterExpressionEvaluationContext::InitList,
13362 E->isListInitialization());
13363 if (getDerived().TransformExprs(E->arg_begin(), E->getNumArgs(), true, Args,
13364 &ArgumentChanged))
13365 return ExprError();
13366 }
13367
13368 if (!getDerived().AlwaysRebuild() &&
13369 T == E->getTypeSourceInfo() &&
13370 !ArgumentChanged)
13371 return E;
13372
13373 // FIXME: we're faking the locations of the commas
13374 return getDerived().RebuildCXXUnresolvedConstructExpr(
13375 T, E->getLParenLoc(), Args, E->getRParenLoc(), E->isListInitialization());
13376 }
13377
13378 template<typename Derived>
13379 ExprResult
TransformCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr * E)13380 TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
13381 CXXDependentScopeMemberExpr *E) {
13382 // Transform the base of the expression.
13383 ExprResult Base((Expr*) nullptr);
13384 Expr *OldBase;
13385 QualType BaseType;
13386 QualType ObjectType;
13387 if (!E->isImplicitAccess()) {
13388 OldBase = E->getBase();
13389 Base = getDerived().TransformExpr(OldBase);
13390 if (Base.isInvalid())
13391 return ExprError();
13392
13393 // Start the member reference and compute the object's type.
13394 ParsedType ObjectTy;
13395 bool MayBePseudoDestructor = false;
13396 Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
13397 E->getOperatorLoc(),
13398 E->isArrow()? tok::arrow : tok::period,
13399 ObjectTy,
13400 MayBePseudoDestructor);
13401 if (Base.isInvalid())
13402 return ExprError();
13403
13404 ObjectType = ObjectTy.get();
13405 BaseType = ((Expr*) Base.get())->getType();
13406 } else {
13407 OldBase = nullptr;
13408 BaseType = getDerived().TransformType(E->getBaseType());
13409 ObjectType = BaseType->castAs<PointerType>()->getPointeeType();
13410 }
13411
13412 // Transform the first part of the nested-name-specifier that qualifies
13413 // the member name.
13414 NamedDecl *FirstQualifierInScope
13415 = getDerived().TransformFirstQualifierInScope(
13416 E->getFirstQualifierFoundInScope(),
13417 E->getQualifierLoc().getBeginLoc());
13418
13419 NestedNameSpecifierLoc QualifierLoc;
13420 if (E->getQualifier()) {
13421 QualifierLoc
13422 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
13423 ObjectType,
13424 FirstQualifierInScope);
13425 if (!QualifierLoc)
13426 return ExprError();
13427 }
13428
13429 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
13430
13431 // TODO: If this is a conversion-function-id, verify that the
13432 // destination type name (if present) resolves the same way after
13433 // instantiation as it did in the local scope.
13434
13435 DeclarationNameInfo NameInfo
13436 = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
13437 if (!NameInfo.getName())
13438 return ExprError();
13439
13440 if (!E->hasExplicitTemplateArgs()) {
13441 // This is a reference to a member without an explicitly-specified
13442 // template argument list. Optimize for this common case.
13443 if (!getDerived().AlwaysRebuild() &&
13444 Base.get() == OldBase &&
13445 BaseType == E->getBaseType() &&
13446 QualifierLoc == E->getQualifierLoc() &&
13447 NameInfo.getName() == E->getMember() &&
13448 FirstQualifierInScope == E->getFirstQualifierFoundInScope())
13449 return E;
13450
13451 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
13452 BaseType,
13453 E->isArrow(),
13454 E->getOperatorLoc(),
13455 QualifierLoc,
13456 TemplateKWLoc,
13457 FirstQualifierInScope,
13458 NameInfo,
13459 /*TemplateArgs*/nullptr);
13460 }
13461
13462 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
13463 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
13464 E->getNumTemplateArgs(),
13465 TransArgs))
13466 return ExprError();
13467
13468 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
13469 BaseType,
13470 E->isArrow(),
13471 E->getOperatorLoc(),
13472 QualifierLoc,
13473 TemplateKWLoc,
13474 FirstQualifierInScope,
13475 NameInfo,
13476 &TransArgs);
13477 }
13478
13479 template <typename Derived>
TransformUnresolvedMemberExpr(UnresolvedMemberExpr * Old)13480 ExprResult TreeTransform<Derived>::TransformUnresolvedMemberExpr(
13481 UnresolvedMemberExpr *Old) {
13482 // Transform the base of the expression.
13483 ExprResult Base((Expr *)nullptr);
13484 QualType BaseType;
13485 if (!Old->isImplicitAccess()) {
13486 Base = getDerived().TransformExpr(Old->getBase());
13487 if (Base.isInvalid())
13488 return ExprError();
13489 Base =
13490 getSema().PerformMemberExprBaseConversion(Base.get(), Old->isArrow());
13491 if (Base.isInvalid())
13492 return ExprError();
13493 BaseType = Base.get()->getType();
13494 } else {
13495 BaseType = getDerived().TransformType(Old->getBaseType());
13496 }
13497
13498 NestedNameSpecifierLoc QualifierLoc;
13499 if (Old->getQualifierLoc()) {
13500 QualifierLoc =
13501 getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
13502 if (!QualifierLoc)
13503 return ExprError();
13504 }
13505
13506 SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
13507
13508 LookupResult R(SemaRef, Old->getMemberNameInfo(), Sema::LookupOrdinaryName);
13509
13510 // Transform the declaration set.
13511 if (TransformOverloadExprDecls(Old, /*RequiresADL*/ false, R))
13512 return ExprError();
13513
13514 // Determine the naming class.
13515 if (Old->getNamingClass()) {
13516 CXXRecordDecl *NamingClass = cast_or_null<CXXRecordDecl>(
13517 getDerived().TransformDecl(Old->getMemberLoc(), Old->getNamingClass()));
13518 if (!NamingClass)
13519 return ExprError();
13520
13521 R.setNamingClass(NamingClass);
13522 }
13523
13524 TemplateArgumentListInfo TransArgs;
13525 if (Old->hasExplicitTemplateArgs()) {
13526 TransArgs.setLAngleLoc(Old->getLAngleLoc());
13527 TransArgs.setRAngleLoc(Old->getRAngleLoc());
13528 if (getDerived().TransformTemplateArguments(
13529 Old->getTemplateArgs(), Old->getNumTemplateArgs(), TransArgs))
13530 return ExprError();
13531 }
13532
13533 // FIXME: to do this check properly, we will need to preserve the
13534 // first-qualifier-in-scope here, just in case we had a dependent
13535 // base (and therefore couldn't do the check) and a
13536 // nested-name-qualifier (and therefore could do the lookup).
13537 NamedDecl *FirstQualifierInScope = nullptr;
13538
13539 return getDerived().RebuildUnresolvedMemberExpr(
13540 Base.get(), BaseType, Old->getOperatorLoc(), Old->isArrow(), QualifierLoc,
13541 TemplateKWLoc, FirstQualifierInScope, R,
13542 (Old->hasExplicitTemplateArgs() ? &TransArgs : nullptr));
13543 }
13544
13545 template<typename Derived>
13546 ExprResult
TransformCXXNoexceptExpr(CXXNoexceptExpr * E)13547 TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
13548 EnterExpressionEvaluationContext Unevaluated(
13549 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
13550 ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
13551 if (SubExpr.isInvalid())
13552 return ExprError();
13553
13554 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
13555 return E;
13556
13557 return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
13558 }
13559
13560 template<typename Derived>
13561 ExprResult
TransformPackExpansionExpr(PackExpansionExpr * E)13562 TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
13563 ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
13564 if (Pattern.isInvalid())
13565 return ExprError();
13566
13567 if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
13568 return E;
13569
13570 return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
13571 E->getNumExpansions());
13572 }
13573
13574 template<typename Derived>
13575 ExprResult
TransformSizeOfPackExpr(SizeOfPackExpr * E)13576 TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
13577 // If E is not value-dependent, then nothing will change when we transform it.
13578 // Note: This is an instantiation-centric view.
13579 if (!E->isValueDependent())
13580 return E;
13581
13582 EnterExpressionEvaluationContext Unevaluated(
13583 getSema(), Sema::ExpressionEvaluationContext::Unevaluated);
13584
13585 ArrayRef<TemplateArgument> PackArgs;
13586 TemplateArgument ArgStorage;
13587
13588 // Find the argument list to transform.
13589 if (E->isPartiallySubstituted()) {
13590 PackArgs = E->getPartialArguments();
13591 } else if (E->isValueDependent()) {
13592 UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
13593 bool ShouldExpand = false;
13594 bool RetainExpansion = false;
13595 Optional<unsigned> NumExpansions;
13596 if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
13597 Unexpanded,
13598 ShouldExpand, RetainExpansion,
13599 NumExpansions))
13600 return ExprError();
13601
13602 // If we need to expand the pack, build a template argument from it and
13603 // expand that.
13604 if (ShouldExpand) {
13605 auto *Pack = E->getPack();
13606 if (auto *TTPD = dyn_cast<TemplateTypeParmDecl>(Pack)) {
13607 ArgStorage = getSema().Context.getPackExpansionType(
13608 getSema().Context.getTypeDeclType(TTPD), None);
13609 } else if (auto *TTPD = dyn_cast<TemplateTemplateParmDecl>(Pack)) {
13610 ArgStorage = TemplateArgument(TemplateName(TTPD), None);
13611 } else {
13612 auto *VD = cast<ValueDecl>(Pack);
13613 ExprResult DRE = getSema().BuildDeclRefExpr(
13614 VD, VD->getType().getNonLValueExprType(getSema().Context),
13615 VD->getType()->isReferenceType() ? VK_LValue : VK_PRValue,
13616 E->getPackLoc());
13617 if (DRE.isInvalid())
13618 return ExprError();
13619 ArgStorage = new (getSema().Context) PackExpansionExpr(
13620 getSema().Context.DependentTy, DRE.get(), E->getPackLoc(), None);
13621 }
13622 PackArgs = ArgStorage;
13623 }
13624 }
13625
13626 // If we're not expanding the pack, just transform the decl.
13627 if (!PackArgs.size()) {
13628 auto *Pack = cast_or_null<NamedDecl>(
13629 getDerived().TransformDecl(E->getPackLoc(), E->getPack()));
13630 if (!Pack)
13631 return ExprError();
13632 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack,
13633 E->getPackLoc(),
13634 E->getRParenLoc(), None, None);
13635 }
13636
13637 // Try to compute the result without performing a partial substitution.
13638 Optional<unsigned> Result = 0;
13639 for (const TemplateArgument &Arg : PackArgs) {
13640 if (!Arg.isPackExpansion()) {
13641 Result = *Result + 1;
13642 continue;
13643 }
13644
13645 TemplateArgumentLoc ArgLoc;
13646 InventTemplateArgumentLoc(Arg, ArgLoc);
13647
13648 // Find the pattern of the pack expansion.
13649 SourceLocation Ellipsis;
13650 Optional<unsigned> OrigNumExpansions;
13651 TemplateArgumentLoc Pattern =
13652 getSema().getTemplateArgumentPackExpansionPattern(ArgLoc, Ellipsis,
13653 OrigNumExpansions);
13654
13655 // Substitute under the pack expansion. Do not expand the pack (yet).
13656 TemplateArgumentLoc OutPattern;
13657 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
13658 if (getDerived().TransformTemplateArgument(Pattern, OutPattern,
13659 /*Uneval*/ true))
13660 return true;
13661
13662 // See if we can determine the number of arguments from the result.
13663 Optional<unsigned> NumExpansions =
13664 getSema().getFullyPackExpandedSize(OutPattern.getArgument());
13665 if (!NumExpansions) {
13666 // No: we must be in an alias template expansion, and we're going to need
13667 // to actually expand the packs.
13668 Result = None;
13669 break;
13670 }
13671
13672 Result = *Result + *NumExpansions;
13673 }
13674
13675 // Common case: we could determine the number of expansions without
13676 // substituting.
13677 if (Result)
13678 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
13679 E->getPackLoc(),
13680 E->getRParenLoc(), *Result, None);
13681
13682 TemplateArgumentListInfo TransformedPackArgs(E->getPackLoc(),
13683 E->getPackLoc());
13684 {
13685 TemporaryBase Rebase(*this, E->getPackLoc(), getBaseEntity());
13686 typedef TemplateArgumentLocInventIterator<
13687 Derived, const TemplateArgument*> PackLocIterator;
13688 if (TransformTemplateArguments(PackLocIterator(*this, PackArgs.begin()),
13689 PackLocIterator(*this, PackArgs.end()),
13690 TransformedPackArgs, /*Uneval*/true))
13691 return ExprError();
13692 }
13693
13694 // Check whether we managed to fully-expand the pack.
13695 // FIXME: Is it possible for us to do so and not hit the early exit path?
13696 SmallVector<TemplateArgument, 8> Args;
13697 bool PartialSubstitution = false;
13698 for (auto &Loc : TransformedPackArgs.arguments()) {
13699 Args.push_back(Loc.getArgument());
13700 if (Loc.getArgument().isPackExpansion())
13701 PartialSubstitution = true;
13702 }
13703
13704 if (PartialSubstitution)
13705 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
13706 E->getPackLoc(),
13707 E->getRParenLoc(), None, Args);
13708
13709 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
13710 E->getPackLoc(), E->getRParenLoc(),
13711 Args.size(), None);
13712 }
13713
13714 template<typename Derived>
13715 ExprResult
TransformSubstNonTypeTemplateParmPackExpr(SubstNonTypeTemplateParmPackExpr * E)13716 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
13717 SubstNonTypeTemplateParmPackExpr *E) {
13718 // Default behavior is to do nothing with this transformation.
13719 return E;
13720 }
13721
13722 template<typename Derived>
13723 ExprResult
TransformSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)13724 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
13725 SubstNonTypeTemplateParmExpr *E) {
13726 // Default behavior is to do nothing with this transformation.
13727 return E;
13728 }
13729
13730 template<typename Derived>
13731 ExprResult
TransformFunctionParmPackExpr(FunctionParmPackExpr * E)13732 TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
13733 // Default behavior is to do nothing with this transformation.
13734 return E;
13735 }
13736
13737 template<typename Derived>
13738 ExprResult
TransformMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)13739 TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
13740 MaterializeTemporaryExpr *E) {
13741 return getDerived().TransformExpr(E->getSubExpr());
13742 }
13743
13744 template<typename Derived>
13745 ExprResult
TransformCXXFoldExpr(CXXFoldExpr * E)13746 TreeTransform<Derived>::TransformCXXFoldExpr(CXXFoldExpr *E) {
13747 UnresolvedLookupExpr *Callee = nullptr;
13748 if (Expr *OldCallee = E->getCallee()) {
13749 ExprResult CalleeResult = getDerived().TransformExpr(OldCallee);
13750 if (CalleeResult.isInvalid())
13751 return ExprError();
13752 Callee = cast<UnresolvedLookupExpr>(CalleeResult.get());
13753 }
13754
13755 Expr *Pattern = E->getPattern();
13756
13757 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13758 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
13759 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
13760
13761 // Determine whether the set of unexpanded parameter packs can and should
13762 // be expanded.
13763 bool Expand = true;
13764 bool RetainExpansion = false;
13765 Optional<unsigned> OrigNumExpansions = E->getNumExpansions(),
13766 NumExpansions = OrigNumExpansions;
13767 if (getDerived().TryExpandParameterPacks(E->getEllipsisLoc(),
13768 Pattern->getSourceRange(),
13769 Unexpanded,
13770 Expand, RetainExpansion,
13771 NumExpansions))
13772 return true;
13773
13774 if (!Expand) {
13775 // Do not expand any packs here, just transform and rebuild a fold
13776 // expression.
13777 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
13778
13779 ExprResult LHS =
13780 E->getLHS() ? getDerived().TransformExpr(E->getLHS()) : ExprResult();
13781 if (LHS.isInvalid())
13782 return true;
13783
13784 ExprResult RHS =
13785 E->getRHS() ? getDerived().TransformExpr(E->getRHS()) : ExprResult();
13786 if (RHS.isInvalid())
13787 return true;
13788
13789 if (!getDerived().AlwaysRebuild() &&
13790 LHS.get() == E->getLHS() && RHS.get() == E->getRHS())
13791 return E;
13792
13793 return getDerived().RebuildCXXFoldExpr(
13794 Callee, E->getBeginLoc(), LHS.get(), E->getOperator(),
13795 E->getEllipsisLoc(), RHS.get(), E->getEndLoc(), NumExpansions);
13796 }
13797
13798 // Formally a fold expression expands to nested parenthesized expressions.
13799 // Enforce this limit to avoid creating trees so deep we can't safely traverse
13800 // them.
13801 if (NumExpansions && SemaRef.getLangOpts().BracketDepth < NumExpansions) {
13802 SemaRef.Diag(E->getEllipsisLoc(),
13803 clang::diag::err_fold_expression_limit_exceeded)
13804 << *NumExpansions << SemaRef.getLangOpts().BracketDepth
13805 << E->getSourceRange();
13806 SemaRef.Diag(E->getEllipsisLoc(), diag::note_bracket_depth);
13807 return ExprError();
13808 }
13809
13810 // The transform has determined that we should perform an elementwise
13811 // expansion of the pattern. Do so.
13812 ExprResult Result = getDerived().TransformExpr(E->getInit());
13813 if (Result.isInvalid())
13814 return true;
13815 bool LeftFold = E->isLeftFold();
13816
13817 // If we're retaining an expansion for a right fold, it is the innermost
13818 // component and takes the init (if any).
13819 if (!LeftFold && RetainExpansion) {
13820 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
13821
13822 ExprResult Out = getDerived().TransformExpr(Pattern);
13823 if (Out.isInvalid())
13824 return true;
13825
13826 Result = getDerived().RebuildCXXFoldExpr(
13827 Callee, E->getBeginLoc(), Out.get(), E->getOperator(),
13828 E->getEllipsisLoc(), Result.get(), E->getEndLoc(), OrigNumExpansions);
13829 if (Result.isInvalid())
13830 return true;
13831 }
13832
13833 for (unsigned I = 0; I != *NumExpansions; ++I) {
13834 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(
13835 getSema(), LeftFold ? I : *NumExpansions - I - 1);
13836 ExprResult Out = getDerived().TransformExpr(Pattern);
13837 if (Out.isInvalid())
13838 return true;
13839
13840 if (Out.get()->containsUnexpandedParameterPack()) {
13841 // We still have a pack; retain a pack expansion for this slice.
13842 Result = getDerived().RebuildCXXFoldExpr(
13843 Callee, E->getBeginLoc(), LeftFold ? Result.get() : Out.get(),
13844 E->getOperator(), E->getEllipsisLoc(),
13845 LeftFold ? Out.get() : Result.get(), E->getEndLoc(),
13846 OrigNumExpansions);
13847 } else if (Result.isUsable()) {
13848 // We've got down to a single element; build a binary operator.
13849 Expr *LHS = LeftFold ? Result.get() : Out.get();
13850 Expr *RHS = LeftFold ? Out.get() : Result.get();
13851 if (Callee)
13852 Result = getDerived().RebuildCXXOperatorCallExpr(
13853 BinaryOperator::getOverloadedOperator(E->getOperator()),
13854 E->getEllipsisLoc(), Callee, LHS, RHS);
13855 else
13856 Result = getDerived().RebuildBinaryOperator(E->getEllipsisLoc(),
13857 E->getOperator(), LHS, RHS);
13858 } else
13859 Result = Out;
13860
13861 if (Result.isInvalid())
13862 return true;
13863 }
13864
13865 // If we're retaining an expansion for a left fold, it is the outermost
13866 // component and takes the complete expansion so far as its init (if any).
13867 if (LeftFold && RetainExpansion) {
13868 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
13869
13870 ExprResult Out = getDerived().TransformExpr(Pattern);
13871 if (Out.isInvalid())
13872 return true;
13873
13874 Result = getDerived().RebuildCXXFoldExpr(
13875 Callee, E->getBeginLoc(), Result.get(), E->getOperator(),
13876 E->getEllipsisLoc(), Out.get(), E->getEndLoc(), OrigNumExpansions);
13877 if (Result.isInvalid())
13878 return true;
13879 }
13880
13881 // If we had no init and an empty pack, and we're not retaining an expansion,
13882 // then produce a fallback value or error.
13883 if (Result.isUnset())
13884 return getDerived().RebuildEmptyCXXFoldExpr(E->getEllipsisLoc(),
13885 E->getOperator());
13886
13887 return Result;
13888 }
13889
13890 template<typename Derived>
13891 ExprResult
TransformCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)13892 TreeTransform<Derived>::TransformCXXStdInitializerListExpr(
13893 CXXStdInitializerListExpr *E) {
13894 return getDerived().TransformExpr(E->getSubExpr());
13895 }
13896
13897 template<typename Derived>
13898 ExprResult
TransformObjCStringLiteral(ObjCStringLiteral * E)13899 TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
13900 return SemaRef.MaybeBindToTemporary(E);
13901 }
13902
13903 template<typename Derived>
13904 ExprResult
TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr * E)13905 TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
13906 return E;
13907 }
13908
13909 template<typename Derived>
13910 ExprResult
TransformObjCBoxedExpr(ObjCBoxedExpr * E)13911 TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
13912 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
13913 if (SubExpr.isInvalid())
13914 return ExprError();
13915
13916 if (!getDerived().AlwaysRebuild() &&
13917 SubExpr.get() == E->getSubExpr())
13918 return E;
13919
13920 return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
13921 }
13922
13923 template<typename Derived>
13924 ExprResult
TransformObjCArrayLiteral(ObjCArrayLiteral * E)13925 TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
13926 // Transform each of the elements.
13927 SmallVector<Expr *, 8> Elements;
13928 bool ArgChanged = false;
13929 if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
13930 /*IsCall=*/false, Elements, &ArgChanged))
13931 return ExprError();
13932
13933 if (!getDerived().AlwaysRebuild() && !ArgChanged)
13934 return SemaRef.MaybeBindToTemporary(E);
13935
13936 return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
13937 Elements.data(),
13938 Elements.size());
13939 }
13940
13941 template<typename Derived>
13942 ExprResult
TransformObjCDictionaryLiteral(ObjCDictionaryLiteral * E)13943 TreeTransform<Derived>::TransformObjCDictionaryLiteral(
13944 ObjCDictionaryLiteral *E) {
13945 // Transform each of the elements.
13946 SmallVector<ObjCDictionaryElement, 8> Elements;
13947 bool ArgChanged = false;
13948 for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
13949 ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
13950
13951 if (OrigElement.isPackExpansion()) {
13952 // This key/value element is a pack expansion.
13953 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13954 getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
13955 getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
13956 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
13957
13958 // Determine whether the set of unexpanded parameter packs can
13959 // and should be expanded.
13960 bool Expand = true;
13961 bool RetainExpansion = false;
13962 Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions;
13963 Optional<unsigned> NumExpansions = OrigNumExpansions;
13964 SourceRange PatternRange(OrigElement.Key->getBeginLoc(),
13965 OrigElement.Value->getEndLoc());
13966 if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
13967 PatternRange, Unexpanded, Expand,
13968 RetainExpansion, NumExpansions))
13969 return ExprError();
13970
13971 if (!Expand) {
13972 // The transform has determined that we should perform a simple
13973 // transformation on the pack expansion, producing another pack
13974 // expansion.
13975 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
13976 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
13977 if (Key.isInvalid())
13978 return ExprError();
13979
13980 if (Key.get() != OrigElement.Key)
13981 ArgChanged = true;
13982
13983 ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
13984 if (Value.isInvalid())
13985 return ExprError();
13986
13987 if (Value.get() != OrigElement.Value)
13988 ArgChanged = true;
13989
13990 ObjCDictionaryElement Expansion = {
13991 Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
13992 };
13993 Elements.push_back(Expansion);
13994 continue;
13995 }
13996
13997 // Record right away that the argument was changed. This needs
13998 // to happen even if the array expands to nothing.
13999 ArgChanged = true;
14000
14001 // The transform has determined that we should perform an elementwise
14002 // expansion of the pattern. Do so.
14003 for (unsigned I = 0; I != *NumExpansions; ++I) {
14004 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
14005 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
14006 if (Key.isInvalid())
14007 return ExprError();
14008
14009 ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
14010 if (Value.isInvalid())
14011 return ExprError();
14012
14013 ObjCDictionaryElement Element = {
14014 Key.get(), Value.get(), SourceLocation(), NumExpansions
14015 };
14016
14017 // If any unexpanded parameter packs remain, we still have a
14018 // pack expansion.
14019 // FIXME: Can this really happen?
14020 if (Key.get()->containsUnexpandedParameterPack() ||
14021 Value.get()->containsUnexpandedParameterPack())
14022 Element.EllipsisLoc = OrigElement.EllipsisLoc;
14023
14024 Elements.push_back(Element);
14025 }
14026
14027 // FIXME: Retain a pack expansion if RetainExpansion is true.
14028
14029 // We've finished with this pack expansion.
14030 continue;
14031 }
14032
14033 // Transform and check key.
14034 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
14035 if (Key.isInvalid())
14036 return ExprError();
14037
14038 if (Key.get() != OrigElement.Key)
14039 ArgChanged = true;
14040
14041 // Transform and check value.
14042 ExprResult Value
14043 = getDerived().TransformExpr(OrigElement.Value);
14044 if (Value.isInvalid())
14045 return ExprError();
14046
14047 if (Value.get() != OrigElement.Value)
14048 ArgChanged = true;
14049
14050 ObjCDictionaryElement Element = {
14051 Key.get(), Value.get(), SourceLocation(), None
14052 };
14053 Elements.push_back(Element);
14054 }
14055
14056 if (!getDerived().AlwaysRebuild() && !ArgChanged)
14057 return SemaRef.MaybeBindToTemporary(E);
14058
14059 return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
14060 Elements);
14061 }
14062
14063 template<typename Derived>
14064 ExprResult
TransformObjCEncodeExpr(ObjCEncodeExpr * E)14065 TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
14066 TypeSourceInfo *EncodedTypeInfo
14067 = getDerived().TransformType(E->getEncodedTypeSourceInfo());
14068 if (!EncodedTypeInfo)
14069 return ExprError();
14070
14071 if (!getDerived().AlwaysRebuild() &&
14072 EncodedTypeInfo == E->getEncodedTypeSourceInfo())
14073 return E;
14074
14075 return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
14076 EncodedTypeInfo,
14077 E->getRParenLoc());
14078 }
14079
14080 template<typename Derived>
14081 ExprResult TreeTransform<Derived>::
TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr * E)14082 TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
14083 // This is a kind of implicit conversion, and it needs to get dropped
14084 // and recomputed for the same general reasons that ImplicitCastExprs
14085 // do, as well a more specific one: this expression is only valid when
14086 // it appears *immediately* as an argument expression.
14087 return getDerived().TransformExpr(E->getSubExpr());
14088 }
14089
14090 template<typename Derived>
14091 ExprResult TreeTransform<Derived>::
TransformObjCBridgedCastExpr(ObjCBridgedCastExpr * E)14092 TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
14093 TypeSourceInfo *TSInfo
14094 = getDerived().TransformType(E->getTypeInfoAsWritten());
14095 if (!TSInfo)
14096 return ExprError();
14097
14098 ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
14099 if (Result.isInvalid())
14100 return ExprError();
14101
14102 if (!getDerived().AlwaysRebuild() &&
14103 TSInfo == E->getTypeInfoAsWritten() &&
14104 Result.get() == E->getSubExpr())
14105 return E;
14106
14107 return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
14108 E->getBridgeKeywordLoc(), TSInfo,
14109 Result.get());
14110 }
14111
14112 template <typename Derived>
TransformObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr * E)14113 ExprResult TreeTransform<Derived>::TransformObjCAvailabilityCheckExpr(
14114 ObjCAvailabilityCheckExpr *E) {
14115 return E;
14116 }
14117
14118 template<typename Derived>
14119 ExprResult
TransformObjCMessageExpr(ObjCMessageExpr * E)14120 TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
14121 // Transform arguments.
14122 bool ArgChanged = false;
14123 SmallVector<Expr*, 8> Args;
14124 Args.reserve(E->getNumArgs());
14125 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
14126 &ArgChanged))
14127 return ExprError();
14128
14129 if (E->getReceiverKind() == ObjCMessageExpr::Class) {
14130 // Class message: transform the receiver type.
14131 TypeSourceInfo *ReceiverTypeInfo
14132 = getDerived().TransformType(E->getClassReceiverTypeInfo());
14133 if (!ReceiverTypeInfo)
14134 return ExprError();
14135
14136 // If nothing changed, just retain the existing message send.
14137 if (!getDerived().AlwaysRebuild() &&
14138 ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
14139 return SemaRef.MaybeBindToTemporary(E);
14140
14141 // Build a new class message send.
14142 SmallVector<SourceLocation, 16> SelLocs;
14143 E->getSelectorLocs(SelLocs);
14144 return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
14145 E->getSelector(),
14146 SelLocs,
14147 E->getMethodDecl(),
14148 E->getLeftLoc(),
14149 Args,
14150 E->getRightLoc());
14151 }
14152 else if (E->getReceiverKind() == ObjCMessageExpr::SuperClass ||
14153 E->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
14154 if (!E->getMethodDecl())
14155 return ExprError();
14156
14157 // Build a new class message send to 'super'.
14158 SmallVector<SourceLocation, 16> SelLocs;
14159 E->getSelectorLocs(SelLocs);
14160 return getDerived().RebuildObjCMessageExpr(E->getSuperLoc(),
14161 E->getSelector(),
14162 SelLocs,
14163 E->getReceiverType(),
14164 E->getMethodDecl(),
14165 E->getLeftLoc(),
14166 Args,
14167 E->getRightLoc());
14168 }
14169
14170 // Instance message: transform the receiver
14171 assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
14172 "Only class and instance messages may be instantiated");
14173 ExprResult Receiver
14174 = getDerived().TransformExpr(E->getInstanceReceiver());
14175 if (Receiver.isInvalid())
14176 return ExprError();
14177
14178 // If nothing changed, just retain the existing message send.
14179 if (!getDerived().AlwaysRebuild() &&
14180 Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
14181 return SemaRef.MaybeBindToTemporary(E);
14182
14183 // Build a new instance message send.
14184 SmallVector<SourceLocation, 16> SelLocs;
14185 E->getSelectorLocs(SelLocs);
14186 return getDerived().RebuildObjCMessageExpr(Receiver.get(),
14187 E->getSelector(),
14188 SelLocs,
14189 E->getMethodDecl(),
14190 E->getLeftLoc(),
14191 Args,
14192 E->getRightLoc());
14193 }
14194
14195 template<typename Derived>
14196 ExprResult
TransformObjCSelectorExpr(ObjCSelectorExpr * E)14197 TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
14198 return E;
14199 }
14200
14201 template<typename Derived>
14202 ExprResult
TransformObjCProtocolExpr(ObjCProtocolExpr * E)14203 TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
14204 return E;
14205 }
14206
14207 template<typename Derived>
14208 ExprResult
TransformObjCIvarRefExpr(ObjCIvarRefExpr * E)14209 TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
14210 // Transform the base expression.
14211 ExprResult Base = getDerived().TransformExpr(E->getBase());
14212 if (Base.isInvalid())
14213 return ExprError();
14214
14215 // We don't need to transform the ivar; it will never change.
14216
14217 // If nothing changed, just retain the existing expression.
14218 if (!getDerived().AlwaysRebuild() &&
14219 Base.get() == E->getBase())
14220 return E;
14221
14222 return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
14223 E->getLocation(),
14224 E->isArrow(), E->isFreeIvar());
14225 }
14226
14227 template<typename Derived>
14228 ExprResult
TransformObjCPropertyRefExpr(ObjCPropertyRefExpr * E)14229 TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
14230 // 'super' and types never change. Property never changes. Just
14231 // retain the existing expression.
14232 if (!E->isObjectReceiver())
14233 return E;
14234
14235 // Transform the base expression.
14236 ExprResult Base = getDerived().TransformExpr(E->getBase());
14237 if (Base.isInvalid())
14238 return ExprError();
14239
14240 // We don't need to transform the property; it will never change.
14241
14242 // If nothing changed, just retain the existing expression.
14243 if (!getDerived().AlwaysRebuild() &&
14244 Base.get() == E->getBase())
14245 return E;
14246
14247 if (E->isExplicitProperty())
14248 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
14249 E->getExplicitProperty(),
14250 E->getLocation());
14251
14252 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
14253 SemaRef.Context.PseudoObjectTy,
14254 E->getImplicitPropertyGetter(),
14255 E->getImplicitPropertySetter(),
14256 E->getLocation());
14257 }
14258
14259 template<typename Derived>
14260 ExprResult
TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr * E)14261 TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
14262 // Transform the base expression.
14263 ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
14264 if (Base.isInvalid())
14265 return ExprError();
14266
14267 // Transform the key expression.
14268 ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
14269 if (Key.isInvalid())
14270 return ExprError();
14271
14272 // If nothing changed, just retain the existing expression.
14273 if (!getDerived().AlwaysRebuild() &&
14274 Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
14275 return E;
14276
14277 return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
14278 Base.get(), Key.get(),
14279 E->getAtIndexMethodDecl(),
14280 E->setAtIndexMethodDecl());
14281 }
14282
14283 template<typename Derived>
14284 ExprResult
TransformObjCIsaExpr(ObjCIsaExpr * E)14285 TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
14286 // Transform the base expression.
14287 ExprResult Base = getDerived().TransformExpr(E->getBase());
14288 if (Base.isInvalid())
14289 return ExprError();
14290
14291 // If nothing changed, just retain the existing expression.
14292 if (!getDerived().AlwaysRebuild() &&
14293 Base.get() == E->getBase())
14294 return E;
14295
14296 return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
14297 E->getOpLoc(),
14298 E->isArrow());
14299 }
14300
14301 template<typename Derived>
14302 ExprResult
TransformShuffleVectorExpr(ShuffleVectorExpr * E)14303 TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
14304 bool ArgumentChanged = false;
14305 SmallVector<Expr*, 8> SubExprs;
14306 SubExprs.reserve(E->getNumSubExprs());
14307 if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
14308 SubExprs, &ArgumentChanged))
14309 return ExprError();
14310
14311 if (!getDerived().AlwaysRebuild() &&
14312 !ArgumentChanged)
14313 return E;
14314
14315 return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
14316 SubExprs,
14317 E->getRParenLoc());
14318 }
14319
14320 template<typename Derived>
14321 ExprResult
TransformConvertVectorExpr(ConvertVectorExpr * E)14322 TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) {
14323 ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
14324 if (SrcExpr.isInvalid())
14325 return ExprError();
14326
14327 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
14328 if (!Type)
14329 return ExprError();
14330
14331 if (!getDerived().AlwaysRebuild() &&
14332 Type == E->getTypeSourceInfo() &&
14333 SrcExpr.get() == E->getSrcExpr())
14334 return E;
14335
14336 return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(),
14337 SrcExpr.get(), Type,
14338 E->getRParenLoc());
14339 }
14340
14341 template<typename Derived>
14342 ExprResult
TransformBlockExpr(BlockExpr * E)14343 TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
14344 BlockDecl *oldBlock = E->getBlockDecl();
14345
14346 SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr);
14347 BlockScopeInfo *blockScope = SemaRef.getCurBlock();
14348
14349 blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
14350 blockScope->TheDecl->setBlockMissingReturnType(
14351 oldBlock->blockMissingReturnType());
14352
14353 SmallVector<ParmVarDecl*, 4> params;
14354 SmallVector<QualType, 4> paramTypes;
14355
14356 const FunctionProtoType *exprFunctionType = E->getFunctionType();
14357
14358 // Parameter substitution.
14359 Sema::ExtParameterInfoBuilder extParamInfos;
14360 if (getDerived().TransformFunctionTypeParams(
14361 E->getCaretLocation(), oldBlock->parameters(), nullptr,
14362 exprFunctionType->getExtParameterInfosOrNull(), paramTypes, ¶ms,
14363 extParamInfos)) {
14364 getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
14365 return ExprError();
14366 }
14367
14368 QualType exprResultType =
14369 getDerived().TransformType(exprFunctionType->getReturnType());
14370
14371 auto epi = exprFunctionType->getExtProtoInfo();
14372 epi.ExtParameterInfos = extParamInfos.getPointerOrNull(paramTypes.size());
14373
14374 QualType functionType =
14375 getDerived().RebuildFunctionProtoType(exprResultType, paramTypes, epi);
14376 blockScope->FunctionType = functionType;
14377
14378 // Set the parameters on the block decl.
14379 if (!params.empty())
14380 blockScope->TheDecl->setParams(params);
14381
14382 if (!oldBlock->blockMissingReturnType()) {
14383 blockScope->HasImplicitReturnType = false;
14384 blockScope->ReturnType = exprResultType;
14385 }
14386
14387 // Transform the body
14388 StmtResult body = getDerived().TransformStmt(E->getBody());
14389 if (body.isInvalid()) {
14390 getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
14391 return ExprError();
14392 }
14393
14394 #ifndef NDEBUG
14395 // In builds with assertions, make sure that we captured everything we
14396 // captured before.
14397 if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
14398 for (const auto &I : oldBlock->captures()) {
14399 VarDecl *oldCapture = I.getVariable();
14400
14401 // Ignore parameter packs.
14402 if (oldCapture->isParameterPack())
14403 continue;
14404
14405 VarDecl *newCapture =
14406 cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
14407 oldCapture));
14408 assert(blockScope->CaptureMap.count(newCapture));
14409 }
14410 assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured());
14411 }
14412 #endif
14413
14414 return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
14415 /*Scope=*/nullptr);
14416 }
14417
14418 template<typename Derived>
14419 ExprResult
TransformAsTypeExpr(AsTypeExpr * E)14420 TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
14421 ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
14422 if (SrcExpr.isInvalid())
14423 return ExprError();
14424
14425 QualType Type = getDerived().TransformType(E->getType());
14426
14427 return SemaRef.BuildAsTypeExpr(SrcExpr.get(), Type, E->getBuiltinLoc(),
14428 E->getRParenLoc());
14429 }
14430
14431 template<typename Derived>
14432 ExprResult
TransformAtomicExpr(AtomicExpr * E)14433 TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
14434 bool ArgumentChanged = false;
14435 SmallVector<Expr*, 8> SubExprs;
14436 SubExprs.reserve(E->getNumSubExprs());
14437 if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
14438 SubExprs, &ArgumentChanged))
14439 return ExprError();
14440
14441 if (!getDerived().AlwaysRebuild() &&
14442 !ArgumentChanged)
14443 return E;
14444
14445 return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
14446 E->getOp(), E->getRParenLoc());
14447 }
14448
14449 //===----------------------------------------------------------------------===//
14450 // Type reconstruction
14451 //===----------------------------------------------------------------------===//
14452
14453 template<typename Derived>
RebuildPointerType(QualType PointeeType,SourceLocation Star)14454 QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
14455 SourceLocation Star) {
14456 return SemaRef.BuildPointerType(PointeeType, Star,
14457 getDerived().getBaseEntity());
14458 }
14459
14460 template<typename Derived>
RebuildBlockPointerType(QualType PointeeType,SourceLocation Star)14461 QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
14462 SourceLocation Star) {
14463 return SemaRef.BuildBlockPointerType(PointeeType, Star,
14464 getDerived().getBaseEntity());
14465 }
14466
14467 template<typename Derived>
14468 QualType
RebuildReferenceType(QualType ReferentType,bool WrittenAsLValue,SourceLocation Sigil)14469 TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
14470 bool WrittenAsLValue,
14471 SourceLocation Sigil) {
14472 return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
14473 Sigil, getDerived().getBaseEntity());
14474 }
14475
14476 template<typename Derived>
14477 QualType
RebuildMemberPointerType(QualType PointeeType,QualType ClassType,SourceLocation Sigil)14478 TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
14479 QualType ClassType,
14480 SourceLocation Sigil) {
14481 return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil,
14482 getDerived().getBaseEntity());
14483 }
14484
14485 template<typename Derived>
RebuildObjCTypeParamType(const ObjCTypeParamDecl * Decl,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc)14486 QualType TreeTransform<Derived>::RebuildObjCTypeParamType(
14487 const ObjCTypeParamDecl *Decl,
14488 SourceLocation ProtocolLAngleLoc,
14489 ArrayRef<ObjCProtocolDecl *> Protocols,
14490 ArrayRef<SourceLocation> ProtocolLocs,
14491 SourceLocation ProtocolRAngleLoc) {
14492 return SemaRef.BuildObjCTypeParamType(Decl,
14493 ProtocolLAngleLoc, Protocols,
14494 ProtocolLocs, ProtocolRAngleLoc,
14495 /*FailOnError=*/true);
14496 }
14497
14498 template<typename Derived>
RebuildObjCObjectType(QualType BaseType,SourceLocation Loc,SourceLocation TypeArgsLAngleLoc,ArrayRef<TypeSourceInfo * > TypeArgs,SourceLocation TypeArgsRAngleLoc,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc)14499 QualType TreeTransform<Derived>::RebuildObjCObjectType(
14500 QualType BaseType,
14501 SourceLocation Loc,
14502 SourceLocation TypeArgsLAngleLoc,
14503 ArrayRef<TypeSourceInfo *> TypeArgs,
14504 SourceLocation TypeArgsRAngleLoc,
14505 SourceLocation ProtocolLAngleLoc,
14506 ArrayRef<ObjCProtocolDecl *> Protocols,
14507 ArrayRef<SourceLocation> ProtocolLocs,
14508 SourceLocation ProtocolRAngleLoc) {
14509 return SemaRef.BuildObjCObjectType(BaseType, Loc, TypeArgsLAngleLoc,
14510 TypeArgs, TypeArgsRAngleLoc,
14511 ProtocolLAngleLoc, Protocols, ProtocolLocs,
14512 ProtocolRAngleLoc,
14513 /*FailOnError=*/true);
14514 }
14515
14516 template<typename Derived>
RebuildObjCObjectPointerType(QualType PointeeType,SourceLocation Star)14517 QualType TreeTransform<Derived>::RebuildObjCObjectPointerType(
14518 QualType PointeeType,
14519 SourceLocation Star) {
14520 return SemaRef.Context.getObjCObjectPointerType(PointeeType);
14521 }
14522
14523 template<typename Derived>
14524 QualType
RebuildArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt * Size,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)14525 TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
14526 ArrayType::ArraySizeModifier SizeMod,
14527 const llvm::APInt *Size,
14528 Expr *SizeExpr,
14529 unsigned IndexTypeQuals,
14530 SourceRange BracketsRange) {
14531 if (SizeExpr || !Size)
14532 return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
14533 IndexTypeQuals, BracketsRange,
14534 getDerived().getBaseEntity());
14535
14536 QualType Types[] = {
14537 SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
14538 SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
14539 SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
14540 };
14541 const unsigned NumTypes = llvm::array_lengthof(Types);
14542 QualType SizeType;
14543 for (unsigned I = 0; I != NumTypes; ++I)
14544 if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
14545 SizeType = Types[I];
14546 break;
14547 }
14548
14549 // Note that we can return a VariableArrayType here in the case where
14550 // the element type was a dependent VariableArrayType.
14551 IntegerLiteral *ArraySize
14552 = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
14553 /*FIXME*/BracketsRange.getBegin());
14554 return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
14555 IndexTypeQuals, BracketsRange,
14556 getDerived().getBaseEntity());
14557 }
14558
14559 template<typename Derived>
14560 QualType
RebuildConstantArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt & Size,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)14561 TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
14562 ArrayType::ArraySizeModifier SizeMod,
14563 const llvm::APInt &Size,
14564 Expr *SizeExpr,
14565 unsigned IndexTypeQuals,
14566 SourceRange BracketsRange) {
14567 return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, SizeExpr,
14568 IndexTypeQuals, BracketsRange);
14569 }
14570
14571 template<typename Derived>
14572 QualType
RebuildIncompleteArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,unsigned IndexTypeQuals,SourceRange BracketsRange)14573 TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
14574 ArrayType::ArraySizeModifier SizeMod,
14575 unsigned IndexTypeQuals,
14576 SourceRange BracketsRange) {
14577 return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr,
14578 IndexTypeQuals, BracketsRange);
14579 }
14580
14581 template<typename Derived>
14582 QualType
RebuildVariableArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)14583 TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
14584 ArrayType::ArraySizeModifier SizeMod,
14585 Expr *SizeExpr,
14586 unsigned IndexTypeQuals,
14587 SourceRange BracketsRange) {
14588 return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
14589 SizeExpr,
14590 IndexTypeQuals, BracketsRange);
14591 }
14592
14593 template<typename Derived>
14594 QualType
RebuildDependentSizedArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)14595 TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
14596 ArrayType::ArraySizeModifier SizeMod,
14597 Expr *SizeExpr,
14598 unsigned IndexTypeQuals,
14599 SourceRange BracketsRange) {
14600 return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
14601 SizeExpr,
14602 IndexTypeQuals, BracketsRange);
14603 }
14604
14605 template <typename Derived>
RebuildDependentAddressSpaceType(QualType PointeeType,Expr * AddrSpaceExpr,SourceLocation AttributeLoc)14606 QualType TreeTransform<Derived>::RebuildDependentAddressSpaceType(
14607 QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttributeLoc) {
14608 return SemaRef.BuildAddressSpaceAttr(PointeeType, AddrSpaceExpr,
14609 AttributeLoc);
14610 }
14611
14612 template <typename Derived>
14613 QualType
RebuildVectorType(QualType ElementType,unsigned NumElements,VectorType::VectorKind VecKind)14614 TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
14615 unsigned NumElements,
14616 VectorType::VectorKind VecKind) {
14617 // FIXME: semantic checking!
14618 return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
14619 }
14620
14621 template <typename Derived>
RebuildDependentVectorType(QualType ElementType,Expr * SizeExpr,SourceLocation AttributeLoc,VectorType::VectorKind VecKind)14622 QualType TreeTransform<Derived>::RebuildDependentVectorType(
14623 QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc,
14624 VectorType::VectorKind VecKind) {
14625 return SemaRef.BuildVectorType(ElementType, SizeExpr, AttributeLoc);
14626 }
14627
14628 template<typename Derived>
RebuildExtVectorType(QualType ElementType,unsigned NumElements,SourceLocation AttributeLoc)14629 QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
14630 unsigned NumElements,
14631 SourceLocation AttributeLoc) {
14632 llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
14633 NumElements, true);
14634 IntegerLiteral *VectorSize
14635 = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
14636 AttributeLoc);
14637 return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
14638 }
14639
14640 template<typename Derived>
14641 QualType
RebuildDependentSizedExtVectorType(QualType ElementType,Expr * SizeExpr,SourceLocation AttributeLoc)14642 TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
14643 Expr *SizeExpr,
14644 SourceLocation AttributeLoc) {
14645 return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
14646 }
14647
14648 template <typename Derived>
RebuildConstantMatrixType(QualType ElementType,unsigned NumRows,unsigned NumColumns)14649 QualType TreeTransform<Derived>::RebuildConstantMatrixType(
14650 QualType ElementType, unsigned NumRows, unsigned NumColumns) {
14651 return SemaRef.Context.getConstantMatrixType(ElementType, NumRows,
14652 NumColumns);
14653 }
14654
14655 template <typename Derived>
RebuildDependentSizedMatrixType(QualType ElementType,Expr * RowExpr,Expr * ColumnExpr,SourceLocation AttributeLoc)14656 QualType TreeTransform<Derived>::RebuildDependentSizedMatrixType(
14657 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr,
14658 SourceLocation AttributeLoc) {
14659 return SemaRef.BuildMatrixType(ElementType, RowExpr, ColumnExpr,
14660 AttributeLoc);
14661 }
14662
14663 template<typename Derived>
RebuildFunctionProtoType(QualType T,MutableArrayRef<QualType> ParamTypes,const FunctionProtoType::ExtProtoInfo & EPI)14664 QualType TreeTransform<Derived>::RebuildFunctionProtoType(
14665 QualType T,
14666 MutableArrayRef<QualType> ParamTypes,
14667 const FunctionProtoType::ExtProtoInfo &EPI) {
14668 return SemaRef.BuildFunctionType(T, ParamTypes,
14669 getDerived().getBaseLocation(),
14670 getDerived().getBaseEntity(),
14671 EPI);
14672 }
14673
14674 template<typename Derived>
RebuildFunctionNoProtoType(QualType T)14675 QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
14676 return SemaRef.Context.getFunctionNoProtoType(T);
14677 }
14678
14679 template<typename Derived>
RebuildUnresolvedUsingType(SourceLocation Loc,Decl * D)14680 QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(SourceLocation Loc,
14681 Decl *D) {
14682 assert(D && "no decl found");
14683 if (D->isInvalidDecl()) return QualType();
14684
14685 // FIXME: Doesn't account for ObjCInterfaceDecl!
14686 if (auto *UPD = dyn_cast<UsingPackDecl>(D)) {
14687 // A valid resolved using typename pack expansion decl can have multiple
14688 // UsingDecls, but they must each have exactly one type, and it must be
14689 // the same type in every case. But we must have at least one expansion!
14690 if (UPD->expansions().empty()) {
14691 getSema().Diag(Loc, diag::err_using_pack_expansion_empty)
14692 << UPD->isCXXClassMember() << UPD;
14693 return QualType();
14694 }
14695
14696 // We might still have some unresolved types. Try to pick a resolved type
14697 // if we can. The final instantiation will check that the remaining
14698 // unresolved types instantiate to the type we pick.
14699 QualType FallbackT;
14700 QualType T;
14701 for (auto *E : UPD->expansions()) {
14702 QualType ThisT = RebuildUnresolvedUsingType(Loc, E);
14703 if (ThisT.isNull())
14704 continue;
14705 else if (ThisT->getAs<UnresolvedUsingType>())
14706 FallbackT = ThisT;
14707 else if (T.isNull())
14708 T = ThisT;
14709 else
14710 assert(getSema().Context.hasSameType(ThisT, T) &&
14711 "mismatched resolved types in using pack expansion");
14712 }
14713 return T.isNull() ? FallbackT : T;
14714 } else if (auto *Using = dyn_cast<UsingDecl>(D)) {
14715 assert(Using->hasTypename() &&
14716 "UnresolvedUsingTypenameDecl transformed to non-typename using");
14717
14718 // A valid resolved using typename decl points to exactly one type decl.
14719 assert(++Using->shadow_begin() == Using->shadow_end());
14720
14721 UsingShadowDecl *Shadow = *Using->shadow_begin();
14722 if (SemaRef.DiagnoseUseOfDecl(Shadow->getTargetDecl(), Loc))
14723 return QualType();
14724 return SemaRef.Context.getUsingType(
14725 Shadow, SemaRef.Context.getTypeDeclType(
14726 cast<TypeDecl>(Shadow->getTargetDecl())));
14727 } else {
14728 assert(isa<UnresolvedUsingTypenameDecl>(D) &&
14729 "UnresolvedUsingTypenameDecl transformed to non-using decl");
14730 return SemaRef.Context.getTypeDeclType(
14731 cast<UnresolvedUsingTypenameDecl>(D));
14732 }
14733 }
14734
14735 template <typename Derived>
RebuildTypeOfExprType(Expr * E,SourceLocation)14736 QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
14737 SourceLocation) {
14738 return SemaRef.BuildTypeofExprType(E);
14739 }
14740
14741 template<typename Derived>
RebuildTypeOfType(QualType Underlying)14742 QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
14743 return SemaRef.Context.getTypeOfType(Underlying);
14744 }
14745
14746 template <typename Derived>
RebuildDecltypeType(Expr * E,SourceLocation)14747 QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E, SourceLocation) {
14748 return SemaRef.BuildDecltypeType(E);
14749 }
14750
14751 template<typename Derived>
RebuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)14752 QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
14753 UnaryTransformType::UTTKind UKind,
14754 SourceLocation Loc) {
14755 return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
14756 }
14757
14758 template<typename Derived>
RebuildTemplateSpecializationType(TemplateName Template,SourceLocation TemplateNameLoc,TemplateArgumentListInfo & TemplateArgs)14759 QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
14760 TemplateName Template,
14761 SourceLocation TemplateNameLoc,
14762 TemplateArgumentListInfo &TemplateArgs) {
14763 return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
14764 }
14765
14766 template<typename Derived>
RebuildAtomicType(QualType ValueType,SourceLocation KWLoc)14767 QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
14768 SourceLocation KWLoc) {
14769 return SemaRef.BuildAtomicType(ValueType, KWLoc);
14770 }
14771
14772 template<typename Derived>
RebuildPipeType(QualType ValueType,SourceLocation KWLoc,bool isReadPipe)14773 QualType TreeTransform<Derived>::RebuildPipeType(QualType ValueType,
14774 SourceLocation KWLoc,
14775 bool isReadPipe) {
14776 return isReadPipe ? SemaRef.BuildReadPipeType(ValueType, KWLoc)
14777 : SemaRef.BuildWritePipeType(ValueType, KWLoc);
14778 }
14779
14780 template <typename Derived>
RebuildBitIntType(bool IsUnsigned,unsigned NumBits,SourceLocation Loc)14781 QualType TreeTransform<Derived>::RebuildBitIntType(bool IsUnsigned,
14782 unsigned NumBits,
14783 SourceLocation Loc) {
14784 llvm::APInt NumBitsAP(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
14785 NumBits, true);
14786 IntegerLiteral *Bits = IntegerLiteral::Create(SemaRef.Context, NumBitsAP,
14787 SemaRef.Context.IntTy, Loc);
14788 return SemaRef.BuildBitIntType(IsUnsigned, Bits, Loc);
14789 }
14790
14791 template <typename Derived>
RebuildDependentBitIntType(bool IsUnsigned,Expr * NumBitsExpr,SourceLocation Loc)14792 QualType TreeTransform<Derived>::RebuildDependentBitIntType(
14793 bool IsUnsigned, Expr *NumBitsExpr, SourceLocation Loc) {
14794 return SemaRef.BuildBitIntType(IsUnsigned, NumBitsExpr, Loc);
14795 }
14796
14797 template<typename Derived>
14798 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,bool TemplateKW,TemplateDecl * Template)14799 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
14800 bool TemplateKW,
14801 TemplateDecl *Template) {
14802 return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
14803 TemplateName(Template));
14804 }
14805
14806 template<typename Derived>
14807 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const IdentifierInfo & Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope,bool AllowInjectedClassName)14808 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
14809 SourceLocation TemplateKWLoc,
14810 const IdentifierInfo &Name,
14811 SourceLocation NameLoc,
14812 QualType ObjectType,
14813 NamedDecl *FirstQualifierInScope,
14814 bool AllowInjectedClassName) {
14815 UnqualifiedId TemplateName;
14816 TemplateName.setIdentifier(&Name, NameLoc);
14817 Sema::TemplateTy Template;
14818 getSema().ActOnTemplateName(/*Scope=*/nullptr, SS, TemplateKWLoc,
14819 TemplateName, ParsedType::make(ObjectType),
14820 /*EnteringContext=*/false, Template,
14821 AllowInjectedClassName);
14822 return Template.get();
14823 }
14824
14825 template<typename Derived>
14826 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,OverloadedOperatorKind Operator,SourceLocation NameLoc,QualType ObjectType,bool AllowInjectedClassName)14827 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
14828 SourceLocation TemplateKWLoc,
14829 OverloadedOperatorKind Operator,
14830 SourceLocation NameLoc,
14831 QualType ObjectType,
14832 bool AllowInjectedClassName) {
14833 UnqualifiedId Name;
14834 // FIXME: Bogus location information.
14835 SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
14836 Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
14837 Sema::TemplateTy Template;
14838 getSema().ActOnTemplateName(
14839 /*Scope=*/nullptr, SS, TemplateKWLoc, Name, ParsedType::make(ObjectType),
14840 /*EnteringContext=*/false, Template, AllowInjectedClassName);
14841 return Template.get();
14842 }
14843
14844 template<typename Derived>
14845 ExprResult
RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr * OrigCallee,Expr * First,Expr * Second)14846 TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
14847 SourceLocation OpLoc,
14848 Expr *OrigCallee,
14849 Expr *First,
14850 Expr *Second) {
14851 Expr *Callee = OrigCallee->IgnoreParenCasts();
14852 bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
14853
14854 if (First->getObjectKind() == OK_ObjCProperty) {
14855 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
14856 if (BinaryOperator::isAssignmentOp(Opc))
14857 return SemaRef.checkPseudoObjectAssignment(/*Scope=*/nullptr, OpLoc, Opc,
14858 First, Second);
14859 ExprResult Result = SemaRef.CheckPlaceholderExpr(First);
14860 if (Result.isInvalid())
14861 return ExprError();
14862 First = Result.get();
14863 }
14864
14865 if (Second && Second->getObjectKind() == OK_ObjCProperty) {
14866 ExprResult Result = SemaRef.CheckPlaceholderExpr(Second);
14867 if (Result.isInvalid())
14868 return ExprError();
14869 Second = Result.get();
14870 }
14871
14872 // Determine whether this should be a builtin operation.
14873 if (Op == OO_Subscript) {
14874 if (!First->getType()->isOverloadableType() &&
14875 !Second->getType()->isOverloadableType())
14876 return getSema().CreateBuiltinArraySubscriptExpr(
14877 First, Callee->getBeginLoc(), Second, OpLoc);
14878 } else if (Op == OO_Arrow) {
14879 // It is possible that the type refers to a RecoveryExpr created earlier
14880 // in the tree transformation.
14881 if (First->getType()->isDependentType())
14882 return ExprError();
14883 // -> is never a builtin operation.
14884 return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc);
14885 } else if (Second == nullptr || isPostIncDec) {
14886 if (!First->getType()->isOverloadableType() ||
14887 (Op == OO_Amp && getSema().isQualifiedMemberAccess(First))) {
14888 // The argument is not of overloadable type, or this is an expression
14889 // of the form &Class::member, so try to create a built-in unary
14890 // operation.
14891 UnaryOperatorKind Opc
14892 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
14893
14894 return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
14895 }
14896 } else {
14897 if (!First->getType()->isOverloadableType() &&
14898 !Second->getType()->isOverloadableType()) {
14899 // Neither of the arguments is an overloadable type, so try to
14900 // create a built-in binary operation.
14901 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
14902 ExprResult Result
14903 = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
14904 if (Result.isInvalid())
14905 return ExprError();
14906
14907 return Result;
14908 }
14909 }
14910
14911 // Compute the transformed set of functions (and function templates) to be
14912 // used during overload resolution.
14913 UnresolvedSet<16> Functions;
14914 bool RequiresADL;
14915
14916 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
14917 Functions.append(ULE->decls_begin(), ULE->decls_end());
14918 // If the overload could not be resolved in the template definition
14919 // (because we had a dependent argument), ADL is performed as part of
14920 // template instantiation.
14921 RequiresADL = ULE->requiresADL();
14922 } else {
14923 // If we've resolved this to a particular non-member function, just call
14924 // that function. If we resolved it to a member function,
14925 // CreateOverloaded* will find that function for us.
14926 NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl();
14927 if (!isa<CXXMethodDecl>(ND))
14928 Functions.addDecl(ND);
14929 RequiresADL = false;
14930 }
14931
14932 // Add any functions found via argument-dependent lookup.
14933 Expr *Args[2] = { First, Second };
14934 unsigned NumArgs = 1 + (Second != nullptr);
14935
14936 // Create the overloaded operator invocation for unary operators.
14937 if (NumArgs == 1 || isPostIncDec) {
14938 UnaryOperatorKind Opc
14939 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
14940 return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First,
14941 RequiresADL);
14942 }
14943
14944 if (Op == OO_Subscript) {
14945 SourceLocation LBrace;
14946 SourceLocation RBrace;
14947
14948 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
14949 DeclarationNameLoc NameLoc = DRE->getNameInfo().getInfo();
14950 LBrace = NameLoc.getCXXOperatorNameBeginLoc();
14951 RBrace = NameLoc.getCXXOperatorNameEndLoc();
14952 } else {
14953 LBrace = Callee->getBeginLoc();
14954 RBrace = OpLoc;
14955 }
14956
14957 return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
14958 First, Second);
14959 }
14960
14961 // Create the overloaded operator invocation for binary operators.
14962 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
14963 ExprResult Result = SemaRef.CreateOverloadedBinOp(
14964 OpLoc, Opc, Functions, Args[0], Args[1], RequiresADL);
14965 if (Result.isInvalid())
14966 return ExprError();
14967
14968 return Result;
14969 }
14970
14971 template<typename Derived>
14972 ExprResult
RebuildCXXPseudoDestructorExpr(Expr * Base,SourceLocation OperatorLoc,bool isArrow,CXXScopeSpec & SS,TypeSourceInfo * ScopeType,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destroyed)14973 TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
14974 SourceLocation OperatorLoc,
14975 bool isArrow,
14976 CXXScopeSpec &SS,
14977 TypeSourceInfo *ScopeType,
14978 SourceLocation CCLoc,
14979 SourceLocation TildeLoc,
14980 PseudoDestructorTypeStorage Destroyed) {
14981 QualType BaseType = Base->getType();
14982 if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
14983 (!isArrow && !BaseType->getAs<RecordType>()) ||
14984 (isArrow && BaseType->getAs<PointerType>() &&
14985 !BaseType->castAs<PointerType>()->getPointeeType()
14986 ->template getAs<RecordType>())){
14987 // This pseudo-destructor expression is still a pseudo-destructor.
14988 return SemaRef.BuildPseudoDestructorExpr(
14989 Base, OperatorLoc, isArrow ? tok::arrow : tok::period, SS, ScopeType,
14990 CCLoc, TildeLoc, Destroyed);
14991 }
14992
14993 TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
14994 DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
14995 SemaRef.Context.getCanonicalType(DestroyedType->getType())));
14996 DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
14997 NameInfo.setNamedTypeInfo(DestroyedType);
14998
14999 // The scope type is now known to be a valid nested name specifier
15000 // component. Tack it on to the end of the nested name specifier.
15001 if (ScopeType) {
15002 if (!ScopeType->getType()->getAs<TagType>()) {
15003 getSema().Diag(ScopeType->getTypeLoc().getBeginLoc(),
15004 diag::err_expected_class_or_namespace)
15005 << ScopeType->getType() << getSema().getLangOpts().CPlusPlus;
15006 return ExprError();
15007 }
15008 SS.Extend(SemaRef.Context, SourceLocation(), ScopeType->getTypeLoc(),
15009 CCLoc);
15010 }
15011
15012 SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
15013 return getSema().BuildMemberReferenceExpr(Base, BaseType,
15014 OperatorLoc, isArrow,
15015 SS, TemplateKWLoc,
15016 /*FIXME: FirstQualifier*/ nullptr,
15017 NameInfo,
15018 /*TemplateArgs*/ nullptr,
15019 /*S*/nullptr);
15020 }
15021
15022 template<typename Derived>
15023 StmtResult
TransformCapturedStmt(CapturedStmt * S)15024 TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) {
15025 SourceLocation Loc = S->getBeginLoc();
15026 CapturedDecl *CD = S->getCapturedDecl();
15027 unsigned NumParams = CD->getNumParams();
15028 unsigned ContextParamPos = CD->getContextParamPosition();
15029 SmallVector<Sema::CapturedParamNameType, 4> Params;
15030 for (unsigned I = 0; I < NumParams; ++I) {
15031 if (I != ContextParamPos) {
15032 Params.push_back(
15033 std::make_pair(
15034 CD->getParam(I)->getName(),
15035 getDerived().TransformType(CD->getParam(I)->getType())));
15036 } else {
15037 Params.push_back(std::make_pair(StringRef(), QualType()));
15038 }
15039 }
15040 getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr,
15041 S->getCapturedRegionKind(), Params);
15042 StmtResult Body;
15043 {
15044 Sema::CompoundScopeRAII CompoundScope(getSema());
15045 Body = getDerived().TransformStmt(S->getCapturedStmt());
15046 }
15047
15048 if (Body.isInvalid()) {
15049 getSema().ActOnCapturedRegionError();
15050 return StmtError();
15051 }
15052
15053 return getSema().ActOnCapturedRegionEnd(Body.get());
15054 }
15055
15056 } // end namespace clang
15057
15058 #endif // LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
15059