1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Lex/LiteralSupport.h"
18 #include "clang/Parse/ParseDiagnostic.h"
19 #include "clang/Parse/Parser.h"
20 #include "clang/Parse/RAIIObjectsForParser.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/ParsedTemplate.h"
23 #include "clang/Sema/Scope.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <numeric>
26
27 using namespace clang;
28
SelectDigraphErrorMessage(tok::TokenKind Kind)29 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
30 switch (Kind) {
31 // template name
32 case tok::unknown: return 0;
33 // casts
34 case tok::kw_addrspace_cast: return 1;
35 case tok::kw_const_cast: return 2;
36 case tok::kw_dynamic_cast: return 3;
37 case tok::kw_reinterpret_cast: return 4;
38 case tok::kw_static_cast: return 5;
39 default:
40 llvm_unreachable("Unknown type for digraph error message.");
41 }
42 }
43
44 // Are the two tokens adjacent in the same source file?
areTokensAdjacent(const Token & First,const Token & Second)45 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
46 SourceManager &SM = PP.getSourceManager();
47 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
48 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
49 return FirstEnd == SM.getSpellingLoc(Second.getLocation());
50 }
51
52 // Suggest fixit for "<::" after a cast.
FixDigraph(Parser & P,Preprocessor & PP,Token & DigraphToken,Token & ColonToken,tok::TokenKind Kind,bool AtDigraph)53 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
54 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
55 // Pull '<:' and ':' off token stream.
56 if (!AtDigraph)
57 PP.Lex(DigraphToken);
58 PP.Lex(ColonToken);
59
60 SourceRange Range;
61 Range.setBegin(DigraphToken.getLocation());
62 Range.setEnd(ColonToken.getLocation());
63 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
64 << SelectDigraphErrorMessage(Kind)
65 << FixItHint::CreateReplacement(Range, "< ::");
66
67 // Update token information to reflect their change in token type.
68 ColonToken.setKind(tok::coloncolon);
69 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
70 ColonToken.setLength(2);
71 DigraphToken.setKind(tok::less);
72 DigraphToken.setLength(1);
73
74 // Push new tokens back to token stream.
75 PP.EnterToken(ColonToken, /*IsReinject*/ true);
76 if (!AtDigraph)
77 PP.EnterToken(DigraphToken, /*IsReinject*/ true);
78 }
79
80 // Check for '<::' which should be '< ::' instead of '[:' when following
81 // a template name.
CheckForTemplateAndDigraph(Token & Next,ParsedType ObjectType,bool EnteringContext,IdentifierInfo & II,CXXScopeSpec & SS)82 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
83 bool EnteringContext,
84 IdentifierInfo &II, CXXScopeSpec &SS) {
85 if (!Next.is(tok::l_square) || Next.getLength() != 2)
86 return;
87
88 Token SecondToken = GetLookAheadToken(2);
89 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
90 return;
91
92 TemplateTy Template;
93 UnqualifiedId TemplateName;
94 TemplateName.setIdentifier(&II, Tok.getLocation());
95 bool MemberOfUnknownSpecialization;
96 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
97 TemplateName, ObjectType, EnteringContext,
98 Template, MemberOfUnknownSpecialization))
99 return;
100
101 FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
102 /*AtDigraph*/false);
103 }
104
105 /// Parse global scope or nested-name-specifier if present.
106 ///
107 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
108 /// may be preceded by '::'). Note that this routine will not parse ::new or
109 /// ::delete; it will just leave them in the token stream.
110 ///
111 /// '::'[opt] nested-name-specifier
112 /// '::'
113 ///
114 /// nested-name-specifier:
115 /// type-name '::'
116 /// namespace-name '::'
117 /// nested-name-specifier identifier '::'
118 /// nested-name-specifier 'template'[opt] simple-template-id '::'
119 ///
120 ///
121 /// \param SS the scope specifier that will be set to the parsed
122 /// nested-name-specifier (or empty)
123 ///
124 /// \param ObjectType if this nested-name-specifier is being parsed following
125 /// the "." or "->" of a member access expression, this parameter provides the
126 /// type of the object whose members are being accessed.
127 ///
128 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
129 /// expression, indicates whether the original subexpressions had any errors.
130 /// When true, diagnostics for missing 'template' keyword will be supressed.
131 ///
132 /// \param EnteringContext whether we will be entering into the context of
133 /// the nested-name-specifier after parsing it.
134 ///
135 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
136 /// indicates whether this nested-name-specifier may be part of a
137 /// pseudo-destructor name. In this case, the flag will be set false
138 /// if we don't actually end up parsing a destructor name. Moreover,
139 /// if we do end up determining that we are parsing a destructor name,
140 /// the last component of the nested-name-specifier is not parsed as
141 /// part of the scope specifier.
142 ///
143 /// \param IsTypename If \c true, this nested-name-specifier is known to be
144 /// part of a type name. This is used to improve error recovery.
145 ///
146 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
147 /// filled in with the leading identifier in the last component of the
148 /// nested-name-specifier, if any.
149 ///
150 /// \param OnlyNamespace If true, only considers namespaces in lookup.
151 ///
152 ///
153 /// \returns true if there was an error parsing a scope specifier
ParseOptionalCXXScopeSpecifier(CXXScopeSpec & SS,ParsedType ObjectType,bool ObjectHadErrors,bool EnteringContext,bool * MayBePseudoDestructor,bool IsTypename,IdentifierInfo ** LastII,bool OnlyNamespace,bool InUsingDeclaration)154 bool Parser::ParseOptionalCXXScopeSpecifier(
155 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
156 bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
157 IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
158 assert(getLangOpts().CPlusPlus &&
159 "Call sites of this function should be guarded by checking for C++");
160
161 if (Tok.is(tok::annot_cxxscope)) {
162 assert(!LastII && "want last identifier but have already annotated scope");
163 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
164 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
165 Tok.getAnnotationRange(),
166 SS);
167 ConsumeAnnotationToken();
168 return false;
169 }
170
171 // Has to happen before any "return false"s in this function.
172 bool CheckForDestructor = false;
173 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
174 CheckForDestructor = true;
175 *MayBePseudoDestructor = false;
176 }
177
178 if (LastII)
179 *LastII = nullptr;
180
181 bool HasScopeSpecifier = false;
182
183 if (Tok.is(tok::coloncolon)) {
184 // ::new and ::delete aren't nested-name-specifiers.
185 tok::TokenKind NextKind = NextToken().getKind();
186 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
187 return false;
188
189 if (NextKind == tok::l_brace) {
190 // It is invalid to have :: {, consume the scope qualifier and pretend
191 // like we never saw it.
192 Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
193 } else {
194 // '::' - Global scope qualifier.
195 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
196 return true;
197
198 HasScopeSpecifier = true;
199 }
200 }
201
202 if (Tok.is(tok::kw___super)) {
203 SourceLocation SuperLoc = ConsumeToken();
204 if (!Tok.is(tok::coloncolon)) {
205 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
206 return true;
207 }
208
209 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
210 }
211
212 if (!HasScopeSpecifier &&
213 Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
214 DeclSpec DS(AttrFactory);
215 SourceLocation DeclLoc = Tok.getLocation();
216 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
217
218 SourceLocation CCLoc;
219 // Work around a standard defect: 'decltype(auto)::' is not a
220 // nested-name-specifier.
221 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
222 !TryConsumeToken(tok::coloncolon, CCLoc)) {
223 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
224 return false;
225 }
226
227 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
228 SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
229
230 HasScopeSpecifier = true;
231 }
232
233 // Preferred type might change when parsing qualifiers, we need the original.
234 auto SavedType = PreferredType;
235 while (true) {
236 if (HasScopeSpecifier) {
237 if (Tok.is(tok::code_completion)) {
238 cutOffParsing();
239 // Code completion for a nested-name-specifier, where the code
240 // completion token follows the '::'.
241 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
242 InUsingDeclaration, ObjectType.get(),
243 SavedType.get(SS.getBeginLoc()));
244 // Include code completion token into the range of the scope otherwise
245 // when we try to annotate the scope tokens the dangling code completion
246 // token will cause assertion in
247 // Preprocessor::AnnotatePreviousCachedTokens.
248 SS.setEndLoc(Tok.getLocation());
249 return true;
250 }
251
252 // C++ [basic.lookup.classref]p5:
253 // If the qualified-id has the form
254 //
255 // ::class-name-or-namespace-name::...
256 //
257 // the class-name-or-namespace-name is looked up in global scope as a
258 // class-name or namespace-name.
259 //
260 // To implement this, we clear out the object type as soon as we've
261 // seen a leading '::' or part of a nested-name-specifier.
262 ObjectType = nullptr;
263 }
264
265 // nested-name-specifier:
266 // nested-name-specifier 'template'[opt] simple-template-id '::'
267
268 // Parse the optional 'template' keyword, then make sure we have
269 // 'identifier <' after it.
270 if (Tok.is(tok::kw_template)) {
271 // If we don't have a scope specifier or an object type, this isn't a
272 // nested-name-specifier, since they aren't allowed to start with
273 // 'template'.
274 if (!HasScopeSpecifier && !ObjectType)
275 break;
276
277 TentativeParsingAction TPA(*this);
278 SourceLocation TemplateKWLoc = ConsumeToken();
279
280 UnqualifiedId TemplateName;
281 if (Tok.is(tok::identifier)) {
282 // Consume the identifier.
283 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
284 ConsumeToken();
285 } else if (Tok.is(tok::kw_operator)) {
286 // We don't need to actually parse the unqualified-id in this case,
287 // because a simple-template-id cannot start with 'operator', but
288 // go ahead and parse it anyway for consistency with the case where
289 // we already annotated the template-id.
290 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
291 TemplateName)) {
292 TPA.Commit();
293 break;
294 }
295
296 if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
297 TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
298 Diag(TemplateName.getSourceRange().getBegin(),
299 diag::err_id_after_template_in_nested_name_spec)
300 << TemplateName.getSourceRange();
301 TPA.Commit();
302 break;
303 }
304 } else {
305 TPA.Revert();
306 break;
307 }
308
309 // If the next token is not '<', we have a qualified-id that refers
310 // to a template name, such as T::template apply, but is not a
311 // template-id.
312 if (Tok.isNot(tok::less)) {
313 TPA.Revert();
314 break;
315 }
316
317 // Commit to parsing the template-id.
318 TPA.Commit();
319 TemplateTy Template;
320 TemplateNameKind TNK = Actions.ActOnTemplateName(
321 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
322 EnteringContext, Template, /*AllowInjectedClassName*/ true);
323 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
324 TemplateName, false))
325 return true;
326
327 continue;
328 }
329
330 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
331 // We have
332 //
333 // template-id '::'
334 //
335 // So we need to check whether the template-id is a simple-template-id of
336 // the right kind (it should name a type or be dependent), and then
337 // convert it into a type within the nested-name-specifier.
338 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
339 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
340 *MayBePseudoDestructor = true;
341 return false;
342 }
343
344 if (LastII)
345 *LastII = TemplateId->Name;
346
347 // Consume the template-id token.
348 ConsumeAnnotationToken();
349
350 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
351 SourceLocation CCLoc = ConsumeToken();
352
353 HasScopeSpecifier = true;
354
355 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
356 TemplateId->NumArgs);
357
358 if (TemplateId->isInvalid() ||
359 Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
360 SS,
361 TemplateId->TemplateKWLoc,
362 TemplateId->Template,
363 TemplateId->TemplateNameLoc,
364 TemplateId->LAngleLoc,
365 TemplateArgsPtr,
366 TemplateId->RAngleLoc,
367 CCLoc,
368 EnteringContext)) {
369 SourceLocation StartLoc
370 = SS.getBeginLoc().isValid()? SS.getBeginLoc()
371 : TemplateId->TemplateNameLoc;
372 SS.SetInvalid(SourceRange(StartLoc, CCLoc));
373 }
374
375 continue;
376 }
377
378 // The rest of the nested-name-specifier possibilities start with
379 // tok::identifier.
380 if (Tok.isNot(tok::identifier))
381 break;
382
383 IdentifierInfo &II = *Tok.getIdentifierInfo();
384
385 // nested-name-specifier:
386 // type-name '::'
387 // namespace-name '::'
388 // nested-name-specifier identifier '::'
389 Token Next = NextToken();
390 Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
391 ObjectType);
392
393 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
394 // and emit a fixit hint for it.
395 if (Next.is(tok::colon) && !ColonIsSacred) {
396 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
397 EnteringContext) &&
398 // If the token after the colon isn't an identifier, it's still an
399 // error, but they probably meant something else strange so don't
400 // recover like this.
401 PP.LookAhead(1).is(tok::identifier)) {
402 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
403 << FixItHint::CreateReplacement(Next.getLocation(), "::");
404 // Recover as if the user wrote '::'.
405 Next.setKind(tok::coloncolon);
406 }
407 }
408
409 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
410 // It is invalid to have :: {, consume the scope qualifier and pretend
411 // like we never saw it.
412 Token Identifier = Tok; // Stash away the identifier.
413 ConsumeToken(); // Eat the identifier, current token is now '::'.
414 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
415 << tok::identifier;
416 UnconsumeToken(Identifier); // Stick the identifier back.
417 Next = NextToken(); // Point Next at the '{' token.
418 }
419
420 if (Next.is(tok::coloncolon)) {
421 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
422 *MayBePseudoDestructor = true;
423 return false;
424 }
425
426 if (ColonIsSacred) {
427 const Token &Next2 = GetLookAheadToken(2);
428 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
429 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
430 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
431 << Next2.getName()
432 << FixItHint::CreateReplacement(Next.getLocation(), ":");
433 Token ColonColon;
434 PP.Lex(ColonColon);
435 ColonColon.setKind(tok::colon);
436 PP.EnterToken(ColonColon, /*IsReinject*/ true);
437 break;
438 }
439 }
440
441 if (LastII)
442 *LastII = &II;
443
444 // We have an identifier followed by a '::'. Lookup this name
445 // as the name in a nested-name-specifier.
446 Token Identifier = Tok;
447 SourceLocation IdLoc = ConsumeToken();
448 assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
449 "NextToken() not working properly!");
450 Token ColonColon = Tok;
451 SourceLocation CCLoc = ConsumeToken();
452
453 bool IsCorrectedToColon = false;
454 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
455 if (Actions.ActOnCXXNestedNameSpecifier(
456 getCurScope(), IdInfo, EnteringContext, SS, CorrectionFlagPtr,
457 OnlyNamespace)) {
458 // Identifier is not recognized as a nested name, but we can have
459 // mistyped '::' instead of ':'.
460 if (CorrectionFlagPtr && IsCorrectedToColon) {
461 ColonColon.setKind(tok::colon);
462 PP.EnterToken(Tok, /*IsReinject*/ true);
463 PP.EnterToken(ColonColon, /*IsReinject*/ true);
464 Tok = Identifier;
465 break;
466 }
467 SS.SetInvalid(SourceRange(IdLoc, CCLoc));
468 }
469 HasScopeSpecifier = true;
470 continue;
471 }
472
473 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
474
475 // nested-name-specifier:
476 // type-name '<'
477 if (Next.is(tok::less)) {
478
479 TemplateTy Template;
480 UnqualifiedId TemplateName;
481 TemplateName.setIdentifier(&II, Tok.getLocation());
482 bool MemberOfUnknownSpecialization;
483 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
484 /*hasTemplateKeyword=*/false,
485 TemplateName,
486 ObjectType,
487 EnteringContext,
488 Template,
489 MemberOfUnknownSpecialization)) {
490 // If lookup didn't find anything, we treat the name as a template-name
491 // anyway. C++20 requires this, and in prior language modes it improves
492 // error recovery. But before we commit to this, check that we actually
493 // have something that looks like a template-argument-list next.
494 if (!IsTypename && TNK == TNK_Undeclared_template &&
495 isTemplateArgumentList(1) == TPResult::False)
496 break;
497
498 // We have found a template name, so annotate this token
499 // with a template-id annotation. We do not permit the
500 // template-id to be translated into a type annotation,
501 // because some clients (e.g., the parsing of class template
502 // specializations) still want to see the original template-id
503 // token, and it might not be a type at all (e.g. a concept name in a
504 // type-constraint).
505 ConsumeToken();
506 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
507 TemplateName, false))
508 return true;
509 continue;
510 }
511
512 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
513 (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
514 // If we had errors before, ObjectType can be dependent even without any
515 // templates. Do not report missing template keyword in that case.
516 if (!ObjectHadErrors) {
517 // We have something like t::getAs<T>, where getAs is a
518 // member of an unknown specialization. However, this will only
519 // parse correctly as a template, so suggest the keyword 'template'
520 // before 'getAs' and treat this as a dependent template name.
521 unsigned DiagID = diag::err_missing_dependent_template_keyword;
522 if (getLangOpts().MicrosoftExt)
523 DiagID = diag::warn_missing_dependent_template_keyword;
524
525 Diag(Tok.getLocation(), DiagID)
526 << II.getName()
527 << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
528 }
529
530 SourceLocation TemplateNameLoc = ConsumeToken();
531
532 TemplateNameKind TNK = Actions.ActOnTemplateName(
533 getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
534 EnteringContext, Template, /*AllowInjectedClassName*/ true);
535 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
536 TemplateName, false))
537 return true;
538
539 continue;
540 }
541 }
542
543 // We don't have any tokens that form the beginning of a
544 // nested-name-specifier, so we're done.
545 break;
546 }
547
548 // Even if we didn't see any pieces of a nested-name-specifier, we
549 // still check whether there is a tilde in this position, which
550 // indicates a potential pseudo-destructor.
551 if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
552 *MayBePseudoDestructor = true;
553
554 return false;
555 }
556
tryParseCXXIdExpression(CXXScopeSpec & SS,bool isAddressOfOperand,Token & Replacement)557 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
558 bool isAddressOfOperand,
559 Token &Replacement) {
560 ExprResult E;
561
562 // We may have already annotated this id-expression.
563 switch (Tok.getKind()) {
564 case tok::annot_non_type: {
565 NamedDecl *ND = getNonTypeAnnotation(Tok);
566 SourceLocation Loc = ConsumeAnnotationToken();
567 E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
568 break;
569 }
570
571 case tok::annot_non_type_dependent: {
572 IdentifierInfo *II = getIdentifierAnnotation(Tok);
573 SourceLocation Loc = ConsumeAnnotationToken();
574
575 // This is only the direct operand of an & operator if it is not
576 // followed by a postfix-expression suffix.
577 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
578 isAddressOfOperand = false;
579
580 E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
581 isAddressOfOperand);
582 break;
583 }
584
585 case tok::annot_non_type_undeclared: {
586 assert(SS.isEmpty() &&
587 "undeclared non-type annotation should be unqualified");
588 IdentifierInfo *II = getIdentifierAnnotation(Tok);
589 SourceLocation Loc = ConsumeAnnotationToken();
590 E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
591 break;
592 }
593
594 default:
595 SourceLocation TemplateKWLoc;
596 UnqualifiedId Name;
597 if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
598 /*ObjectHadErrors=*/false,
599 /*EnteringContext=*/false,
600 /*AllowDestructorName=*/false,
601 /*AllowConstructorName=*/false,
602 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
603 return ExprError();
604
605 // This is only the direct operand of an & operator if it is not
606 // followed by a postfix-expression suffix.
607 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
608 isAddressOfOperand = false;
609
610 E = Actions.ActOnIdExpression(
611 getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
612 isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
613 &Replacement);
614 break;
615 }
616
617 if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
618 checkPotentialAngleBracket(E);
619 return E;
620 }
621
622 /// ParseCXXIdExpression - Handle id-expression.
623 ///
624 /// id-expression:
625 /// unqualified-id
626 /// qualified-id
627 ///
628 /// qualified-id:
629 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
630 /// '::' identifier
631 /// '::' operator-function-id
632 /// '::' template-id
633 ///
634 /// NOTE: The standard specifies that, for qualified-id, the parser does not
635 /// expect:
636 ///
637 /// '::' conversion-function-id
638 /// '::' '~' class-name
639 ///
640 /// This may cause a slight inconsistency on diagnostics:
641 ///
642 /// class C {};
643 /// namespace A {}
644 /// void f() {
645 /// :: A :: ~ C(); // Some Sema error about using destructor with a
646 /// // namespace.
647 /// :: ~ C(); // Some Parser error like 'unexpected ~'.
648 /// }
649 ///
650 /// We simplify the parser a bit and make it work like:
651 ///
652 /// qualified-id:
653 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
654 /// '::' unqualified-id
655 ///
656 /// That way Sema can handle and report similar errors for namespaces and the
657 /// global scope.
658 ///
659 /// The isAddressOfOperand parameter indicates that this id-expression is a
660 /// direct operand of the address-of operator. This is, besides member contexts,
661 /// the only place where a qualified-id naming a non-static class member may
662 /// appear.
663 ///
ParseCXXIdExpression(bool isAddressOfOperand)664 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
665 // qualified-id:
666 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
667 // '::' unqualified-id
668 //
669 CXXScopeSpec SS;
670 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
671 /*ObjectHasErrors=*/false,
672 /*EnteringContext=*/false);
673
674 Token Replacement;
675 ExprResult Result =
676 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
677 if (Result.isUnset()) {
678 // If the ExprResult is valid but null, then typo correction suggested a
679 // keyword replacement that needs to be reparsed.
680 UnconsumeToken(Replacement);
681 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
682 }
683 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
684 "for a previous keyword suggestion");
685 return Result;
686 }
687
688 /// ParseLambdaExpression - Parse a C++11 lambda expression.
689 ///
690 /// lambda-expression:
691 /// lambda-introducer lambda-declarator compound-statement
692 /// lambda-introducer '<' template-parameter-list '>'
693 /// requires-clause[opt] lambda-declarator compound-statement
694 ///
695 /// lambda-introducer:
696 /// '[' lambda-capture[opt] ']'
697 ///
698 /// lambda-capture:
699 /// capture-default
700 /// capture-list
701 /// capture-default ',' capture-list
702 ///
703 /// capture-default:
704 /// '&'
705 /// '='
706 ///
707 /// capture-list:
708 /// capture
709 /// capture-list ',' capture
710 ///
711 /// capture:
712 /// simple-capture
713 /// init-capture [C++1y]
714 ///
715 /// simple-capture:
716 /// identifier
717 /// '&' identifier
718 /// 'this'
719 ///
720 /// init-capture: [C++1y]
721 /// identifier initializer
722 /// '&' identifier initializer
723 ///
724 /// lambda-declarator:
725 /// lambda-specifiers [C++2b]
726 /// '(' parameter-declaration-clause ')' lambda-specifiers
727 /// requires-clause[opt]
728 ///
729 /// lambda-specifiers:
730 /// decl-specifier-seq[opt] noexcept-specifier[opt]
731 /// attribute-specifier-seq[opt] trailing-return-type[opt]
732 ///
ParseLambdaExpression()733 ExprResult Parser::ParseLambdaExpression() {
734 // Parse lambda-introducer.
735 LambdaIntroducer Intro;
736 if (ParseLambdaIntroducer(Intro)) {
737 SkipUntil(tok::r_square, StopAtSemi);
738 SkipUntil(tok::l_brace, StopAtSemi);
739 SkipUntil(tok::r_brace, StopAtSemi);
740 return ExprError();
741 }
742
743 return ParseLambdaExpressionAfterIntroducer(Intro);
744 }
745
746 /// Use lookahead and potentially tentative parsing to determine if we are
747 /// looking at a C++11 lambda expression, and parse it if we are.
748 ///
749 /// If we are not looking at a lambda expression, returns ExprError().
TryParseLambdaExpression()750 ExprResult Parser::TryParseLambdaExpression() {
751 assert(getLangOpts().CPlusPlus11
752 && Tok.is(tok::l_square)
753 && "Not at the start of a possible lambda expression.");
754
755 const Token Next = NextToken();
756 if (Next.is(tok::eof)) // Nothing else to lookup here...
757 return ExprEmpty();
758
759 const Token After = GetLookAheadToken(2);
760 // If lookahead indicates this is a lambda...
761 if (Next.is(tok::r_square) || // []
762 Next.is(tok::equal) || // [=
763 (Next.is(tok::amp) && // [&] or [&,
764 After.isOneOf(tok::r_square, tok::comma)) ||
765 (Next.is(tok::identifier) && // [identifier]
766 After.is(tok::r_square)) ||
767 Next.is(tok::ellipsis)) { // [...
768 return ParseLambdaExpression();
769 }
770
771 // If lookahead indicates an ObjC message send...
772 // [identifier identifier
773 if (Next.is(tok::identifier) && After.is(tok::identifier))
774 return ExprEmpty();
775
776 // Here, we're stuck: lambda introducers and Objective-C message sends are
777 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
778 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
779 // writing two routines to parse a lambda introducer, just try to parse
780 // a lambda introducer first, and fall back if that fails.
781 LambdaIntroducer Intro;
782 {
783 TentativeParsingAction TPA(*this);
784 LambdaIntroducerTentativeParse Tentative;
785 if (ParseLambdaIntroducer(Intro, &Tentative)) {
786 TPA.Commit();
787 return ExprError();
788 }
789
790 switch (Tentative) {
791 case LambdaIntroducerTentativeParse::Success:
792 TPA.Commit();
793 break;
794
795 case LambdaIntroducerTentativeParse::Incomplete:
796 // Didn't fully parse the lambda-introducer, try again with a
797 // non-tentative parse.
798 TPA.Revert();
799 Intro = LambdaIntroducer();
800 if (ParseLambdaIntroducer(Intro))
801 return ExprError();
802 break;
803
804 case LambdaIntroducerTentativeParse::MessageSend:
805 case LambdaIntroducerTentativeParse::Invalid:
806 // Not a lambda-introducer, might be a message send.
807 TPA.Revert();
808 return ExprEmpty();
809 }
810 }
811
812 return ParseLambdaExpressionAfterIntroducer(Intro);
813 }
814
815 /// Parse a lambda introducer.
816 /// \param Intro A LambdaIntroducer filled in with information about the
817 /// contents of the lambda-introducer.
818 /// \param Tentative If non-null, we are disambiguating between a
819 /// lambda-introducer and some other construct. In this mode, we do not
820 /// produce any diagnostics or take any other irreversible action unless
821 /// we're sure that this is a lambda-expression.
822 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
823 /// the caller should bail out / recover.
ParseLambdaIntroducer(LambdaIntroducer & Intro,LambdaIntroducerTentativeParse * Tentative)824 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
825 LambdaIntroducerTentativeParse *Tentative) {
826 if (Tentative)
827 *Tentative = LambdaIntroducerTentativeParse::Success;
828
829 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
830 BalancedDelimiterTracker T(*this, tok::l_square);
831 T.consumeOpen();
832
833 Intro.Range.setBegin(T.getOpenLocation());
834
835 bool First = true;
836
837 // Produce a diagnostic if we're not tentatively parsing; otherwise track
838 // that our parse has failed.
839 auto Invalid = [&](llvm::function_ref<void()> Action) {
840 if (Tentative) {
841 *Tentative = LambdaIntroducerTentativeParse::Invalid;
842 return false;
843 }
844 Action();
845 return true;
846 };
847
848 // Perform some irreversible action if this is a non-tentative parse;
849 // otherwise note that our actions were incomplete.
850 auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
851 if (Tentative)
852 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
853 else
854 Action();
855 };
856
857 // Parse capture-default.
858 if (Tok.is(tok::amp) &&
859 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
860 Intro.Default = LCD_ByRef;
861 Intro.DefaultLoc = ConsumeToken();
862 First = false;
863 if (!Tok.getIdentifierInfo()) {
864 // This can only be a lambda; no need for tentative parsing any more.
865 // '[[and]]' can still be an attribute, though.
866 Tentative = nullptr;
867 }
868 } else if (Tok.is(tok::equal)) {
869 Intro.Default = LCD_ByCopy;
870 Intro.DefaultLoc = ConsumeToken();
871 First = false;
872 Tentative = nullptr;
873 }
874
875 while (Tok.isNot(tok::r_square)) {
876 if (!First) {
877 if (Tok.isNot(tok::comma)) {
878 // Provide a completion for a lambda introducer here. Except
879 // in Objective-C, where this is Almost Surely meant to be a message
880 // send. In that case, fail here and let the ObjC message
881 // expression parser perform the completion.
882 if (Tok.is(tok::code_completion) &&
883 !(getLangOpts().ObjC && Tentative)) {
884 cutOffParsing();
885 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
886 /*AfterAmpersand=*/false);
887 break;
888 }
889
890 return Invalid([&] {
891 Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
892 });
893 }
894 ConsumeToken();
895 }
896
897 if (Tok.is(tok::code_completion)) {
898 cutOffParsing();
899 // If we're in Objective-C++ and we have a bare '[', then this is more
900 // likely to be a message receiver.
901 if (getLangOpts().ObjC && Tentative && First)
902 Actions.CodeCompleteObjCMessageReceiver(getCurScope());
903 else
904 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
905 /*AfterAmpersand=*/false);
906 break;
907 }
908
909 First = false;
910
911 // Parse capture.
912 LambdaCaptureKind Kind = LCK_ByCopy;
913 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
914 SourceLocation Loc;
915 IdentifierInfo *Id = nullptr;
916 SourceLocation EllipsisLocs[4];
917 ExprResult Init;
918 SourceLocation LocStart = Tok.getLocation();
919
920 if (Tok.is(tok::star)) {
921 Loc = ConsumeToken();
922 if (Tok.is(tok::kw_this)) {
923 ConsumeToken();
924 Kind = LCK_StarThis;
925 } else {
926 return Invalid([&] {
927 Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
928 });
929 }
930 } else if (Tok.is(tok::kw_this)) {
931 Kind = LCK_This;
932 Loc = ConsumeToken();
933 } else if (Tok.isOneOf(tok::amp, tok::equal) &&
934 NextToken().isOneOf(tok::comma, tok::r_square) &&
935 Intro.Default == LCD_None) {
936 // We have a lone "&" or "=" which is either a misplaced capture-default
937 // or the start of a capture (in the "&" case) with the rest of the
938 // capture missing. Both are an error but a misplaced capture-default
939 // is more likely if we don't already have a capture default.
940 return Invalid(
941 [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
942 } else {
943 TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
944
945 if (Tok.is(tok::amp)) {
946 Kind = LCK_ByRef;
947 ConsumeToken();
948
949 if (Tok.is(tok::code_completion)) {
950 cutOffParsing();
951 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
952 /*AfterAmpersand=*/true);
953 break;
954 }
955 }
956
957 TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
958
959 if (Tok.is(tok::identifier)) {
960 Id = Tok.getIdentifierInfo();
961 Loc = ConsumeToken();
962 } else if (Tok.is(tok::kw_this)) {
963 return Invalid([&] {
964 // FIXME: Suggest a fixit here.
965 Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
966 });
967 } else {
968 return Invalid([&] {
969 Diag(Tok.getLocation(), diag::err_expected_capture);
970 });
971 }
972
973 TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
974
975 if (Tok.is(tok::l_paren)) {
976 BalancedDelimiterTracker Parens(*this, tok::l_paren);
977 Parens.consumeOpen();
978
979 InitKind = LambdaCaptureInitKind::DirectInit;
980
981 ExprVector Exprs;
982 CommaLocsTy Commas;
983 if (Tentative) {
984 Parens.skipToEnd();
985 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
986 } else if (ParseExpressionList(Exprs, Commas)) {
987 Parens.skipToEnd();
988 Init = ExprError();
989 } else {
990 Parens.consumeClose();
991 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
992 Parens.getCloseLocation(),
993 Exprs);
994 }
995 } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
996 // Each lambda init-capture forms its own full expression, which clears
997 // Actions.MaybeODRUseExprs. So create an expression evaluation context
998 // to save the necessary state, and restore it later.
999 EnterExpressionEvaluationContext EC(
1000 Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1001
1002 if (TryConsumeToken(tok::equal))
1003 InitKind = LambdaCaptureInitKind::CopyInit;
1004 else
1005 InitKind = LambdaCaptureInitKind::ListInit;
1006
1007 if (!Tentative) {
1008 Init = ParseInitializer();
1009 } else if (Tok.is(tok::l_brace)) {
1010 BalancedDelimiterTracker Braces(*this, tok::l_brace);
1011 Braces.consumeOpen();
1012 Braces.skipToEnd();
1013 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1014 } else {
1015 // We're disambiguating this:
1016 //
1017 // [..., x = expr
1018 //
1019 // We need to find the end of the following expression in order to
1020 // determine whether this is an Obj-C message send's receiver, a
1021 // C99 designator, or a lambda init-capture.
1022 //
1023 // Parse the expression to find where it ends, and annotate it back
1024 // onto the tokens. We would have parsed this expression the same way
1025 // in either case: both the RHS of an init-capture and the RHS of an
1026 // assignment expression are parsed as an initializer-clause, and in
1027 // neither case can anything be added to the scope between the '[' and
1028 // here.
1029 //
1030 // FIXME: This is horrible. Adding a mechanism to skip an expression
1031 // would be much cleaner.
1032 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1033 // that instead. (And if we see a ':' with no matching '?', we can
1034 // classify this as an Obj-C message send.)
1035 SourceLocation StartLoc = Tok.getLocation();
1036 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1037 Init = ParseInitializer();
1038 if (!Init.isInvalid())
1039 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1040
1041 if (Tok.getLocation() != StartLoc) {
1042 // Back out the lexing of the token after the initializer.
1043 PP.RevertCachedTokens(1);
1044
1045 // Replace the consumed tokens with an appropriate annotation.
1046 Tok.setLocation(StartLoc);
1047 Tok.setKind(tok::annot_primary_expr);
1048 setExprAnnotation(Tok, Init);
1049 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1050 PP.AnnotateCachedTokens(Tok);
1051
1052 // Consume the annotated initializer.
1053 ConsumeAnnotationToken();
1054 }
1055 }
1056 }
1057
1058 TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1059 }
1060
1061 // Check if this is a message send before we act on a possible init-capture.
1062 if (Tentative && Tok.is(tok::identifier) &&
1063 NextToken().isOneOf(tok::colon, tok::r_square)) {
1064 // This can only be a message send. We're done with disambiguation.
1065 *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1066 return false;
1067 }
1068
1069 // Ensure that any ellipsis was in the right place.
1070 SourceLocation EllipsisLoc;
1071 if (llvm::any_of(EllipsisLocs,
1072 [](SourceLocation Loc) { return Loc.isValid(); })) {
1073 // The '...' should appear before the identifier in an init-capture, and
1074 // after the identifier otherwise.
1075 bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1076 SourceLocation *ExpectedEllipsisLoc =
1077 !InitCapture ? &EllipsisLocs[2] :
1078 Kind == LCK_ByRef ? &EllipsisLocs[1] :
1079 &EllipsisLocs[0];
1080 EllipsisLoc = *ExpectedEllipsisLoc;
1081
1082 unsigned DiagID = 0;
1083 if (EllipsisLoc.isInvalid()) {
1084 DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1085 for (SourceLocation Loc : EllipsisLocs) {
1086 if (Loc.isValid())
1087 EllipsisLoc = Loc;
1088 }
1089 } else {
1090 unsigned NumEllipses = std::accumulate(
1091 std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1092 [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1093 if (NumEllipses > 1)
1094 DiagID = diag::err_lambda_capture_multiple_ellipses;
1095 }
1096 if (DiagID) {
1097 NonTentativeAction([&] {
1098 // Point the diagnostic at the first misplaced ellipsis.
1099 SourceLocation DiagLoc;
1100 for (SourceLocation &Loc : EllipsisLocs) {
1101 if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1102 DiagLoc = Loc;
1103 break;
1104 }
1105 }
1106 assert(DiagLoc.isValid() && "no location for diagnostic");
1107
1108 // Issue the diagnostic and produce fixits showing where the ellipsis
1109 // should have been written.
1110 auto &&D = Diag(DiagLoc, DiagID);
1111 if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1112 SourceLocation ExpectedLoc =
1113 InitCapture ? Loc
1114 : Lexer::getLocForEndOfToken(
1115 Loc, 0, PP.getSourceManager(), getLangOpts());
1116 D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1117 }
1118 for (SourceLocation &Loc : EllipsisLocs) {
1119 if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1120 D << FixItHint::CreateRemoval(Loc);
1121 }
1122 });
1123 }
1124 }
1125
1126 // Process the init-capture initializers now rather than delaying until we
1127 // form the lambda-expression so that they can be handled in the context
1128 // enclosing the lambda-expression, rather than in the context of the
1129 // lambda-expression itself.
1130 ParsedType InitCaptureType;
1131 if (Init.isUsable())
1132 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1133 if (Init.isUsable()) {
1134 NonTentativeAction([&] {
1135 // Get the pointer and store it in an lvalue, so we can use it as an
1136 // out argument.
1137 Expr *InitExpr = Init.get();
1138 // This performs any lvalue-to-rvalue conversions if necessary, which
1139 // can affect what gets captured in the containing decl-context.
1140 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1141 Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1142 Init = InitExpr;
1143 });
1144 }
1145
1146 SourceLocation LocEnd = PrevTokLocation;
1147
1148 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1149 InitCaptureType, SourceRange(LocStart, LocEnd));
1150 }
1151
1152 T.consumeClose();
1153 Intro.Range.setEnd(T.getCloseLocation());
1154 return false;
1155 }
1156
tryConsumeLambdaSpecifierToken(Parser & P,SourceLocation & MutableLoc,SourceLocation & ConstexprLoc,SourceLocation & ConstevalLoc,SourceLocation & DeclEndLoc)1157 static void tryConsumeLambdaSpecifierToken(Parser &P,
1158 SourceLocation &MutableLoc,
1159 SourceLocation &ConstexprLoc,
1160 SourceLocation &ConstevalLoc,
1161 SourceLocation &DeclEndLoc) {
1162 assert(MutableLoc.isInvalid());
1163 assert(ConstexprLoc.isInvalid());
1164 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1165 // to the final of those locations. Emit an error if we have multiple
1166 // copies of those keywords and recover.
1167
1168 while (true) {
1169 switch (P.getCurToken().getKind()) {
1170 case tok::kw_mutable: {
1171 if (MutableLoc.isValid()) {
1172 P.Diag(P.getCurToken().getLocation(),
1173 diag::err_lambda_decl_specifier_repeated)
1174 << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1175 }
1176 MutableLoc = P.ConsumeToken();
1177 DeclEndLoc = MutableLoc;
1178 break /*switch*/;
1179 }
1180 case tok::kw_constexpr:
1181 if (ConstexprLoc.isValid()) {
1182 P.Diag(P.getCurToken().getLocation(),
1183 diag::err_lambda_decl_specifier_repeated)
1184 << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1185 }
1186 ConstexprLoc = P.ConsumeToken();
1187 DeclEndLoc = ConstexprLoc;
1188 break /*switch*/;
1189 case tok::kw_consteval:
1190 if (ConstevalLoc.isValid()) {
1191 P.Diag(P.getCurToken().getLocation(),
1192 diag::err_lambda_decl_specifier_repeated)
1193 << 2 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1194 }
1195 ConstevalLoc = P.ConsumeToken();
1196 DeclEndLoc = ConstevalLoc;
1197 break /*switch*/;
1198 default:
1199 return;
1200 }
1201 }
1202 }
1203
1204 static void
addConstexprToLambdaDeclSpecifier(Parser & P,SourceLocation ConstexprLoc,DeclSpec & DS)1205 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1206 DeclSpec &DS) {
1207 if (ConstexprLoc.isValid()) {
1208 P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1209 ? diag::ext_constexpr_on_lambda_cxx17
1210 : diag::warn_cxx14_compat_constexpr_on_lambda);
1211 const char *PrevSpec = nullptr;
1212 unsigned DiagID = 0;
1213 DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1214 DiagID);
1215 assert(PrevSpec == nullptr && DiagID == 0 &&
1216 "Constexpr cannot have been set previously!");
1217 }
1218 }
1219
addConstevalToLambdaDeclSpecifier(Parser & P,SourceLocation ConstevalLoc,DeclSpec & DS)1220 static void addConstevalToLambdaDeclSpecifier(Parser &P,
1221 SourceLocation ConstevalLoc,
1222 DeclSpec &DS) {
1223 if (ConstevalLoc.isValid()) {
1224 P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1225 const char *PrevSpec = nullptr;
1226 unsigned DiagID = 0;
1227 DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1228 DiagID);
1229 if (DiagID != 0)
1230 P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1231 }
1232 }
1233
1234 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1235 /// expression.
ParseLambdaExpressionAfterIntroducer(LambdaIntroducer & Intro)1236 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1237 LambdaIntroducer &Intro) {
1238 SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1239 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1240
1241 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1242 "lambda expression parsing");
1243
1244
1245
1246 // FIXME: Call into Actions to add any init-capture declarations to the
1247 // scope while parsing the lambda-declarator and compound-statement.
1248
1249 // Parse lambda-declarator[opt].
1250 DeclSpec DS(AttrFactory);
1251 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::LambdaExpr);
1252 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1253 Actions.PushLambdaScope();
1254
1255 ParsedAttributes Attr(AttrFactory);
1256 if (getLangOpts().CUDA) {
1257 // In CUDA code, GNU attributes are allowed to appear immediately after the
1258 // "[...]", even if there is no "(...)" before the lambda body.
1259 MaybeParseGNUAttributes(D);
1260 }
1261
1262 // Helper to emit a warning if we see a CUDA host/device/global attribute
1263 // after '(...)'. nvcc doesn't accept this.
1264 auto WarnIfHasCUDATargetAttr = [&] {
1265 if (getLangOpts().CUDA)
1266 for (const ParsedAttr &A : Attr)
1267 if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1268 A.getKind() == ParsedAttr::AT_CUDAHost ||
1269 A.getKind() == ParsedAttr::AT_CUDAGlobal)
1270 Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1271 << A.getAttrName()->getName();
1272 };
1273
1274 MultiParseScope TemplateParamScope(*this);
1275 if (Tok.is(tok::less)) {
1276 Diag(Tok, getLangOpts().CPlusPlus20
1277 ? diag::warn_cxx17_compat_lambda_template_parameter_list
1278 : diag::ext_lambda_template_parameter_list);
1279
1280 SmallVector<NamedDecl*, 4> TemplateParams;
1281 SourceLocation LAngleLoc, RAngleLoc;
1282 if (ParseTemplateParameters(TemplateParamScope,
1283 CurTemplateDepthTracker.getDepth(),
1284 TemplateParams, LAngleLoc, RAngleLoc)) {
1285 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1286 return ExprError();
1287 }
1288
1289 if (TemplateParams.empty()) {
1290 Diag(RAngleLoc,
1291 diag::err_lambda_template_parameter_list_empty);
1292 } else {
1293 ExprResult RequiresClause;
1294 if (TryConsumeToken(tok::kw_requires)) {
1295 RequiresClause =
1296 Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1297 /*IsTrailingRequiresClause=*/false));
1298 if (RequiresClause.isInvalid())
1299 SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1300 }
1301
1302 Actions.ActOnLambdaExplicitTemplateParameterList(
1303 LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1304 ++CurTemplateDepthTracker;
1305 }
1306 }
1307
1308 // Implement WG21 P2173, which allows attributes immediately before the
1309 // lambda declarator and applies them to the corresponding function operator
1310 // or operator template declaration. We accept this as a conforming extension
1311 // in all language modes that support lambdas.
1312 if (isCXX11AttributeSpecifier()) {
1313 Diag(Tok, getLangOpts().CPlusPlus2b
1314 ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1315 : diag::ext_decl_attrs_on_lambda);
1316 MaybeParseCXX11Attributes(D);
1317 }
1318
1319 TypeResult TrailingReturnType;
1320 SourceLocation TrailingReturnTypeLoc;
1321
1322 auto ParseLambdaSpecifiers =
1323 [&](SourceLocation LParenLoc, SourceLocation RParenLoc,
1324 MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1325 SourceLocation EllipsisLoc) {
1326 SourceLocation DeclEndLoc = RParenLoc;
1327
1328 // GNU-style attributes must be parsed before the mutable specifier to
1329 // be compatible with GCC. MSVC-style attributes must be parsed before
1330 // the mutable specifier to be compatible with MSVC.
1331 MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attr);
1332
1333 // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1334 // the DeclEndLoc.
1335 SourceLocation MutableLoc;
1336 SourceLocation ConstexprLoc;
1337 SourceLocation ConstevalLoc;
1338 tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc,
1339 ConstevalLoc, DeclEndLoc);
1340
1341 addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1342 addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1343 // Parse exception-specification[opt].
1344 ExceptionSpecificationType ESpecType = EST_None;
1345 SourceRange ESpecRange;
1346 SmallVector<ParsedType, 2> DynamicExceptions;
1347 SmallVector<SourceRange, 2> DynamicExceptionRanges;
1348 ExprResult NoexceptExpr;
1349 CachedTokens *ExceptionSpecTokens;
1350 ESpecType = tryParseExceptionSpecification(
1351 /*Delayed=*/false, ESpecRange, DynamicExceptions,
1352 DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1353
1354 if (ESpecType != EST_None)
1355 DeclEndLoc = ESpecRange.getEnd();
1356
1357 // Parse attribute-specifier[opt].
1358 if (MaybeParseCXX11Attributes(Attr))
1359 DeclEndLoc = Attr.Range.getEnd();
1360
1361 // Parse OpenCL addr space attribute.
1362 if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1363 tok::kw___constant, tok::kw___generic)) {
1364 ParseOpenCLQualifiers(DS.getAttributes());
1365 ConsumeToken();
1366 }
1367
1368 SourceLocation FunLocalRangeEnd = DeclEndLoc;
1369
1370 // Parse trailing-return-type[opt].
1371 if (Tok.is(tok::arrow)) {
1372 FunLocalRangeEnd = Tok.getLocation();
1373 SourceRange Range;
1374 TrailingReturnType = ParseTrailingReturnType(
1375 Range, /*MayBeFollowedByDirectInit*/ false);
1376 TrailingReturnTypeLoc = Range.getBegin();
1377 if (Range.getEnd().isValid())
1378 DeclEndLoc = Range.getEnd();
1379 }
1380
1381 SourceLocation NoLoc;
1382 D.AddTypeInfo(
1383 DeclaratorChunk::getFunction(
1384 /*HasProto=*/true,
1385 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1386 ParamInfo.size(), EllipsisLoc, RParenLoc,
1387 /*RefQualifierIsLvalueRef=*/true,
1388 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1389 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1390 DynamicExceptions.size(),
1391 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1392 /*ExceptionSpecTokens*/ nullptr,
1393 /*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
1394 TrailingReturnType, TrailingReturnTypeLoc, &DS),
1395 std::move(Attr), DeclEndLoc);
1396 };
1397
1398 if (Tok.is(tok::l_paren)) {
1399 ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
1400 Scope::FunctionDeclarationScope |
1401 Scope::DeclScope);
1402
1403 BalancedDelimiterTracker T(*this, tok::l_paren);
1404 T.consumeOpen();
1405 SourceLocation LParenLoc = T.getOpenLocation();
1406
1407 // Parse parameter-declaration-clause.
1408 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1409 SourceLocation EllipsisLoc;
1410
1411 if (Tok.isNot(tok::r_paren)) {
1412 Actions.RecordParsingTemplateParameterDepth(
1413 CurTemplateDepthTracker.getOriginalDepth());
1414
1415 ParseParameterDeclarationClause(D.getContext(), Attr, ParamInfo,
1416 EllipsisLoc);
1417 // For a generic lambda, each 'auto' within the parameter declaration
1418 // clause creates a template type parameter, so increment the depth.
1419 // If we've parsed any explicit template parameters, then the depth will
1420 // have already been incremented. So we make sure that at most a single
1421 // depth level is added.
1422 if (Actions.getCurGenericLambda())
1423 CurTemplateDepthTracker.setAddedDepth(1);
1424 }
1425
1426 T.consumeClose();
1427
1428 // Parse lambda-specifiers.
1429 ParseLambdaSpecifiers(LParenLoc, /*DeclEndLoc=*/T.getCloseLocation(),
1430 ParamInfo, EllipsisLoc);
1431
1432 // Parse requires-clause[opt].
1433 if (Tok.is(tok::kw_requires))
1434 ParseTrailingRequiresClause(D);
1435 } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1436 tok::kw_constexpr, tok::kw_consteval,
1437 tok::kw___private, tok::kw___global, tok::kw___local,
1438 tok::kw___constant, tok::kw___generic,
1439 tok::kw_requires, tok::kw_noexcept) ||
1440 (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1441 if (!getLangOpts().CPlusPlus2b)
1442 // It's common to forget that one needs '()' before 'mutable', an
1443 // attribute specifier, the result type, or the requires clause. Deal with
1444 // this.
1445 Diag(Tok, diag::ext_lambda_missing_parens)
1446 << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1447
1448 SourceLocation NoLoc;
1449 // Parse lambda-specifiers.
1450 std::vector<DeclaratorChunk::ParamInfo> EmptyParamInfo;
1451 ParseLambdaSpecifiers(/*LParenLoc=*/NoLoc, /*RParenLoc=*/NoLoc,
1452 EmptyParamInfo, /*EllipsisLoc=*/NoLoc);
1453 }
1454
1455 WarnIfHasCUDATargetAttr();
1456
1457 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1458 // it.
1459 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1460 Scope::CompoundStmtScope;
1461 ParseScope BodyScope(this, ScopeFlags);
1462
1463 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1464
1465 // Parse compound-statement.
1466 if (!Tok.is(tok::l_brace)) {
1467 Diag(Tok, diag::err_expected_lambda_body);
1468 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1469 return ExprError();
1470 }
1471
1472 StmtResult Stmt(ParseCompoundStatementBody());
1473 BodyScope.Exit();
1474 TemplateParamScope.Exit();
1475
1476 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1477 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1478
1479 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1480 return ExprError();
1481 }
1482
1483 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1484 /// type.
1485 ///
1486 /// postfix-expression: [C++ 5.2p1]
1487 /// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1488 /// 'static_cast' '<' type-name '>' '(' expression ')'
1489 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1490 /// 'const_cast' '<' type-name '>' '(' expression ')'
1491 ///
1492 /// C++ for OpenCL s2.3.1 adds:
1493 /// 'addrspace_cast' '<' type-name '>' '(' expression ')'
ParseCXXCasts()1494 ExprResult Parser::ParseCXXCasts() {
1495 tok::TokenKind Kind = Tok.getKind();
1496 const char *CastName = nullptr; // For error messages
1497
1498 switch (Kind) {
1499 default: llvm_unreachable("Unknown C++ cast!");
1500 case tok::kw_addrspace_cast: CastName = "addrspace_cast"; break;
1501 case tok::kw_const_cast: CastName = "const_cast"; break;
1502 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1503 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1504 case tok::kw_static_cast: CastName = "static_cast"; break;
1505 }
1506
1507 SourceLocation OpLoc = ConsumeToken();
1508 SourceLocation LAngleBracketLoc = Tok.getLocation();
1509
1510 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1511 // diagnose error, suggest fix, and recover parsing.
1512 if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1513 Token Next = NextToken();
1514 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1515 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1516 }
1517
1518 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1519 return ExprError();
1520
1521 // Parse the common declaration-specifiers piece.
1522 DeclSpec DS(AttrFactory);
1523 ParseSpecifierQualifierList(DS);
1524
1525 // Parse the abstract-declarator, if present.
1526 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1527 DeclaratorContext::TypeName);
1528 ParseDeclarator(DeclaratorInfo);
1529
1530 SourceLocation RAngleBracketLoc = Tok.getLocation();
1531
1532 if (ExpectAndConsume(tok::greater))
1533 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1534
1535 BalancedDelimiterTracker T(*this, tok::l_paren);
1536
1537 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1538 return ExprError();
1539
1540 ExprResult Result = ParseExpression();
1541
1542 // Match the ')'.
1543 T.consumeClose();
1544
1545 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1546 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1547 LAngleBracketLoc, DeclaratorInfo,
1548 RAngleBracketLoc,
1549 T.getOpenLocation(), Result.get(),
1550 T.getCloseLocation());
1551
1552 return Result;
1553 }
1554
1555 /// ParseCXXTypeid - This handles the C++ typeid expression.
1556 ///
1557 /// postfix-expression: [C++ 5.2p1]
1558 /// 'typeid' '(' expression ')'
1559 /// 'typeid' '(' type-id ')'
1560 ///
ParseCXXTypeid()1561 ExprResult Parser::ParseCXXTypeid() {
1562 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1563
1564 SourceLocation OpLoc = ConsumeToken();
1565 SourceLocation LParenLoc, RParenLoc;
1566 BalancedDelimiterTracker T(*this, tok::l_paren);
1567
1568 // typeid expressions are always parenthesized.
1569 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1570 return ExprError();
1571 LParenLoc = T.getOpenLocation();
1572
1573 ExprResult Result;
1574
1575 // C++0x [expr.typeid]p3:
1576 // When typeid is applied to an expression other than an lvalue of a
1577 // polymorphic class type [...] The expression is an unevaluated
1578 // operand (Clause 5).
1579 //
1580 // Note that we can't tell whether the expression is an lvalue of a
1581 // polymorphic class type until after we've parsed the expression; we
1582 // speculatively assume the subexpression is unevaluated, and fix it up
1583 // later.
1584 //
1585 // We enter the unevaluated context before trying to determine whether we
1586 // have a type-id, because the tentative parse logic will try to resolve
1587 // names, and must treat them as unevaluated.
1588 EnterExpressionEvaluationContext Unevaluated(
1589 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1590 Sema::ReuseLambdaContextDecl);
1591
1592 if (isTypeIdInParens()) {
1593 TypeResult Ty = ParseTypeName();
1594
1595 // Match the ')'.
1596 T.consumeClose();
1597 RParenLoc = T.getCloseLocation();
1598 if (Ty.isInvalid() || RParenLoc.isInvalid())
1599 return ExprError();
1600
1601 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1602 Ty.get().getAsOpaquePtr(), RParenLoc);
1603 } else {
1604 Result = ParseExpression();
1605
1606 // Match the ')'.
1607 if (Result.isInvalid())
1608 SkipUntil(tok::r_paren, StopAtSemi);
1609 else {
1610 T.consumeClose();
1611 RParenLoc = T.getCloseLocation();
1612 if (RParenLoc.isInvalid())
1613 return ExprError();
1614
1615 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1616 Result.get(), RParenLoc);
1617 }
1618 }
1619
1620 return Result;
1621 }
1622
1623 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1624 ///
1625 /// '__uuidof' '(' expression ')'
1626 /// '__uuidof' '(' type-id ')'
1627 ///
ParseCXXUuidof()1628 ExprResult Parser::ParseCXXUuidof() {
1629 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1630
1631 SourceLocation OpLoc = ConsumeToken();
1632 BalancedDelimiterTracker T(*this, tok::l_paren);
1633
1634 // __uuidof expressions are always parenthesized.
1635 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1636 return ExprError();
1637
1638 ExprResult Result;
1639
1640 if (isTypeIdInParens()) {
1641 TypeResult Ty = ParseTypeName();
1642
1643 // Match the ')'.
1644 T.consumeClose();
1645
1646 if (Ty.isInvalid())
1647 return ExprError();
1648
1649 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1650 Ty.get().getAsOpaquePtr(),
1651 T.getCloseLocation());
1652 } else {
1653 EnterExpressionEvaluationContext Unevaluated(
1654 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1655 Result = ParseExpression();
1656
1657 // Match the ')'.
1658 if (Result.isInvalid())
1659 SkipUntil(tok::r_paren, StopAtSemi);
1660 else {
1661 T.consumeClose();
1662
1663 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1664 /*isType=*/false,
1665 Result.get(), T.getCloseLocation());
1666 }
1667 }
1668
1669 return Result;
1670 }
1671
1672 /// Parse a C++ pseudo-destructor expression after the base,
1673 /// . or -> operator, and nested-name-specifier have already been
1674 /// parsed. We're handling this fragment of the grammar:
1675 ///
1676 /// postfix-expression: [C++2a expr.post]
1677 /// postfix-expression . template[opt] id-expression
1678 /// postfix-expression -> template[opt] id-expression
1679 ///
1680 /// id-expression:
1681 /// qualified-id
1682 /// unqualified-id
1683 ///
1684 /// qualified-id:
1685 /// nested-name-specifier template[opt] unqualified-id
1686 ///
1687 /// nested-name-specifier:
1688 /// type-name ::
1689 /// decltype-specifier :: FIXME: not implemented, but probably only
1690 /// allowed in C++ grammar by accident
1691 /// nested-name-specifier identifier ::
1692 /// nested-name-specifier template[opt] simple-template-id ::
1693 /// [...]
1694 ///
1695 /// unqualified-id:
1696 /// ~ type-name
1697 /// ~ decltype-specifier
1698 /// [...]
1699 ///
1700 /// ... where the all but the last component of the nested-name-specifier
1701 /// has already been parsed, and the base expression is not of a non-dependent
1702 /// class type.
1703 ExprResult
ParseCXXPseudoDestructor(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,ParsedType ObjectType)1704 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1705 tok::TokenKind OpKind,
1706 CXXScopeSpec &SS,
1707 ParsedType ObjectType) {
1708 // If the last component of the (optional) nested-name-specifier is
1709 // template[opt] simple-template-id, it has already been annotated.
1710 UnqualifiedId FirstTypeName;
1711 SourceLocation CCLoc;
1712 if (Tok.is(tok::identifier)) {
1713 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1714 ConsumeToken();
1715 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1716 CCLoc = ConsumeToken();
1717 } else if (Tok.is(tok::annot_template_id)) {
1718 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1719 // FIXME: Carry on and build an AST representation for tooling.
1720 if (TemplateId->isInvalid())
1721 return ExprError();
1722 FirstTypeName.setTemplateId(TemplateId);
1723 ConsumeAnnotationToken();
1724 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1725 CCLoc = ConsumeToken();
1726 } else {
1727 assert(SS.isEmpty() && "missing last component of nested name specifier");
1728 FirstTypeName.setIdentifier(nullptr, SourceLocation());
1729 }
1730
1731 // Parse the tilde.
1732 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1733 SourceLocation TildeLoc = ConsumeToken();
1734
1735 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1736 DeclSpec DS(AttrFactory);
1737 ParseDecltypeSpecifier(DS);
1738 if (DS.getTypeSpecType() == TST_error)
1739 return ExprError();
1740 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1741 TildeLoc, DS);
1742 }
1743
1744 if (!Tok.is(tok::identifier)) {
1745 Diag(Tok, diag::err_destructor_tilde_identifier);
1746 return ExprError();
1747 }
1748
1749 // Parse the second type.
1750 UnqualifiedId SecondTypeName;
1751 IdentifierInfo *Name = Tok.getIdentifierInfo();
1752 SourceLocation NameLoc = ConsumeToken();
1753 SecondTypeName.setIdentifier(Name, NameLoc);
1754
1755 // If there is a '<', the second type name is a template-id. Parse
1756 // it as such.
1757 //
1758 // FIXME: This is not a context in which a '<' is assumed to start a template
1759 // argument list. This affects examples such as
1760 // void f(auto *p) { p->~X<int>(); }
1761 // ... but there's no ambiguity, and nowhere to write 'template' in such an
1762 // example, so we accept it anyway.
1763 if (Tok.is(tok::less) &&
1764 ParseUnqualifiedIdTemplateId(
1765 SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1766 Name, NameLoc, false, SecondTypeName,
1767 /*AssumeTemplateId=*/true))
1768 return ExprError();
1769
1770 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1771 SS, FirstTypeName, CCLoc, TildeLoc,
1772 SecondTypeName);
1773 }
1774
1775 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1776 ///
1777 /// boolean-literal: [C++ 2.13.5]
1778 /// 'true'
1779 /// 'false'
ParseCXXBoolLiteral()1780 ExprResult Parser::ParseCXXBoolLiteral() {
1781 tok::TokenKind Kind = Tok.getKind();
1782 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1783 }
1784
1785 /// ParseThrowExpression - This handles the C++ throw expression.
1786 ///
1787 /// throw-expression: [C++ 15]
1788 /// 'throw' assignment-expression[opt]
ParseThrowExpression()1789 ExprResult Parser::ParseThrowExpression() {
1790 assert(Tok.is(tok::kw_throw) && "Not throw!");
1791 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1792
1793 // If the current token isn't the start of an assignment-expression,
1794 // then the expression is not present. This handles things like:
1795 // "C ? throw : (void)42", which is crazy but legal.
1796 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1797 case tok::semi:
1798 case tok::r_paren:
1799 case tok::r_square:
1800 case tok::r_brace:
1801 case tok::colon:
1802 case tok::comma:
1803 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1804
1805 default:
1806 ExprResult Expr(ParseAssignmentExpression());
1807 if (Expr.isInvalid()) return Expr;
1808 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1809 }
1810 }
1811
1812 /// Parse the C++ Coroutines co_yield expression.
1813 ///
1814 /// co_yield-expression:
1815 /// 'co_yield' assignment-expression[opt]
ParseCoyieldExpression()1816 ExprResult Parser::ParseCoyieldExpression() {
1817 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1818
1819 SourceLocation Loc = ConsumeToken();
1820 ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1821 : ParseAssignmentExpression();
1822 if (!Expr.isInvalid())
1823 Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1824 return Expr;
1825 }
1826
1827 /// ParseCXXThis - This handles the C++ 'this' pointer.
1828 ///
1829 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1830 /// a non-lvalue expression whose value is the address of the object for which
1831 /// the function is called.
ParseCXXThis()1832 ExprResult Parser::ParseCXXThis() {
1833 assert(Tok.is(tok::kw_this) && "Not 'this'!");
1834 SourceLocation ThisLoc = ConsumeToken();
1835 return Actions.ActOnCXXThis(ThisLoc);
1836 }
1837
1838 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1839 /// Can be interpreted either as function-style casting ("int(x)")
1840 /// or class type construction ("ClassType(x,y,z)")
1841 /// or creation of a value-initialized type ("int()").
1842 /// See [C++ 5.2.3].
1843 ///
1844 /// postfix-expression: [C++ 5.2p1]
1845 /// simple-type-specifier '(' expression-list[opt] ')'
1846 /// [C++0x] simple-type-specifier braced-init-list
1847 /// typename-specifier '(' expression-list[opt] ')'
1848 /// [C++0x] typename-specifier braced-init-list
1849 ///
1850 /// In C++1z onwards, the type specifier can also be a template-name.
1851 ExprResult
ParseCXXTypeConstructExpression(const DeclSpec & DS)1852 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1853 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1854 DeclaratorContext::FunctionalCast);
1855 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1856
1857 assert((Tok.is(tok::l_paren) ||
1858 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1859 && "Expected '(' or '{'!");
1860
1861 if (Tok.is(tok::l_brace)) {
1862 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1863 ExprResult Init = ParseBraceInitializer();
1864 if (Init.isInvalid())
1865 return Init;
1866 Expr *InitList = Init.get();
1867 return Actions.ActOnCXXTypeConstructExpr(
1868 TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1869 InitList->getEndLoc(), /*ListInitialization=*/true);
1870 } else {
1871 BalancedDelimiterTracker T(*this, tok::l_paren);
1872 T.consumeOpen();
1873
1874 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1875
1876 ExprVector Exprs;
1877 CommaLocsTy CommaLocs;
1878
1879 auto RunSignatureHelp = [&]() {
1880 QualType PreferredType;
1881 if (TypeRep)
1882 PreferredType = Actions.ProduceConstructorSignatureHelp(
1883 TypeRep.get()->getCanonicalTypeInternal(), DS.getEndLoc(), Exprs,
1884 T.getOpenLocation(), /*Braced=*/false);
1885 CalledSignatureHelp = true;
1886 return PreferredType;
1887 };
1888
1889 if (Tok.isNot(tok::r_paren)) {
1890 if (ParseExpressionList(Exprs, CommaLocs, [&] {
1891 PreferredType.enterFunctionArgument(Tok.getLocation(),
1892 RunSignatureHelp);
1893 })) {
1894 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1895 RunSignatureHelp();
1896 SkipUntil(tok::r_paren, StopAtSemi);
1897 return ExprError();
1898 }
1899 }
1900
1901 // Match the ')'.
1902 T.consumeClose();
1903
1904 // TypeRep could be null, if it references an invalid typedef.
1905 if (!TypeRep)
1906 return ExprError();
1907
1908 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1909 "Unexpected number of commas!");
1910 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1911 Exprs, T.getCloseLocation(),
1912 /*ListInitialization=*/false);
1913 }
1914 }
1915
1916 Parser::DeclGroupPtrTy
ParseAliasDeclarationInInitStatement(DeclaratorContext Context,ParsedAttributes & Attrs)1917 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
1918 ParsedAttributes &Attrs) {
1919 assert(Tok.is(tok::kw_using) && "Expected using");
1920 assert((Context == DeclaratorContext::ForInit ||
1921 Context == DeclaratorContext::SelectionInit) &&
1922 "Unexpected Declarator Context");
1923 DeclGroupPtrTy DG;
1924 SourceLocation DeclStart = ConsumeToken(), DeclEnd;
1925
1926 DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
1927 if (!DG)
1928 return DG;
1929
1930 Diag(DeclStart, !getLangOpts().CPlusPlus2b
1931 ? diag::ext_alias_in_init_statement
1932 : diag::warn_cxx20_alias_in_init_statement)
1933 << SourceRange(DeclStart, DeclEnd);
1934
1935 return DG;
1936 }
1937
1938 /// ParseCXXCondition - if/switch/while condition expression.
1939 ///
1940 /// condition:
1941 /// expression
1942 /// type-specifier-seq declarator '=' assignment-expression
1943 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1944 /// [C++11] type-specifier-seq declarator braced-init-list
1945 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
1946 /// brace-or-equal-initializer
1947 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1948 /// '=' assignment-expression
1949 ///
1950 /// In C++1z, a condition may in some contexts be preceded by an
1951 /// optional init-statement. This function will parse that too.
1952 ///
1953 /// \param InitStmt If non-null, an init-statement is permitted, and if present
1954 /// will be parsed and stored here.
1955 ///
1956 /// \param Loc The location of the start of the statement that requires this
1957 /// condition, e.g., the "for" in a for loop.
1958 ///
1959 /// \param MissingOK Whether an empty condition is acceptable here. Otherwise
1960 /// it is considered an error to be recovered from.
1961 ///
1962 /// \param FRI If non-null, a for range declaration is permitted, and if
1963 /// present will be parsed and stored here, and a null result will be returned.
1964 ///
1965 /// \param EnterForConditionScope If true, enter a continue/break scope at the
1966 /// appropriate moment for a 'for' loop.
1967 ///
1968 /// \returns The parsed condition.
1969 Sema::ConditionResult
ParseCXXCondition(StmtResult * InitStmt,SourceLocation Loc,Sema::ConditionKind CK,bool MissingOK,ForRangeInfo * FRI,bool EnterForConditionScope)1970 Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc,
1971 Sema::ConditionKind CK, bool MissingOK,
1972 ForRangeInfo *FRI, bool EnterForConditionScope) {
1973 // Helper to ensure we always enter a continue/break scope if requested.
1974 struct ForConditionScopeRAII {
1975 Scope *S;
1976 void enter(bool IsConditionVariable) {
1977 if (S) {
1978 S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
1979 S->setIsConditionVarScope(IsConditionVariable);
1980 }
1981 }
1982 ~ForConditionScopeRAII() {
1983 if (S)
1984 S->setIsConditionVarScope(false);
1985 }
1986 } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
1987
1988 ParenBraceBracketBalancer BalancerRAIIObj(*this);
1989 PreferredType.enterCondition(Actions, Tok.getLocation());
1990
1991 if (Tok.is(tok::code_completion)) {
1992 cutOffParsing();
1993 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1994 return Sema::ConditionError();
1995 }
1996
1997 ParsedAttributes attrs(AttrFactory);
1998 MaybeParseCXX11Attributes(attrs);
1999
2000 const auto WarnOnInit = [this, &CK] {
2001 Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
2002 ? diag::warn_cxx14_compat_init_statement
2003 : diag::ext_init_statement)
2004 << (CK == Sema::ConditionKind::Switch);
2005 };
2006
2007 // Determine what kind of thing we have.
2008 switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
2009 case ConditionOrInitStatement::Expression: {
2010 // If this is a for loop, we're entering its condition.
2011 ForConditionScope.enter(/*IsConditionVariable=*/false);
2012
2013 ProhibitAttributes(attrs);
2014
2015 // We can have an empty expression here.
2016 // if (; true);
2017 if (InitStmt && Tok.is(tok::semi)) {
2018 WarnOnInit();
2019 SourceLocation SemiLoc = Tok.getLocation();
2020 if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2021 Diag(SemiLoc, diag::warn_empty_init_statement)
2022 << (CK == Sema::ConditionKind::Switch)
2023 << FixItHint::CreateRemoval(SemiLoc);
2024 }
2025 ConsumeToken();
2026 *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2027 return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2028 }
2029
2030 // Parse the expression.
2031 ExprResult Expr = ParseExpression(); // expression
2032 if (Expr.isInvalid())
2033 return Sema::ConditionError();
2034
2035 if (InitStmt && Tok.is(tok::semi)) {
2036 WarnOnInit();
2037 *InitStmt = Actions.ActOnExprStmt(Expr.get());
2038 ConsumeToken();
2039 return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2040 }
2041
2042 return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK,
2043 MissingOK);
2044 }
2045
2046 case ConditionOrInitStatement::InitStmtDecl: {
2047 WarnOnInit();
2048 DeclGroupPtrTy DG;
2049 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2050 if (Tok.is(tok::kw_using))
2051 DG = ParseAliasDeclarationInInitStatement(
2052 DeclaratorContext::SelectionInit, attrs);
2053 else {
2054 ParsedAttributes DeclSpecAttrs(AttrFactory);
2055 DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
2056 attrs, DeclSpecAttrs, /*RequireSemi=*/true);
2057 }
2058 *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
2059 return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2060 }
2061
2062 case ConditionOrInitStatement::ForRangeDecl: {
2063 // This is 'for (init-stmt; for-range-decl : range-expr)'.
2064 // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2065 // permitted here.
2066 assert(FRI && "should not parse a for range declaration here");
2067 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2068 ParsedAttributes DeclSpecAttrs(AttrFactory);
2069 DeclGroupPtrTy DG = ParseSimpleDeclaration(
2070 DeclaratorContext::ForInit, DeclEnd, attrs, DeclSpecAttrs, false, FRI);
2071 FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2072 assert((FRI->ColonLoc.isValid() || !DG) &&
2073 "cannot find for range declaration");
2074 return Sema::ConditionResult();
2075 }
2076
2077 case ConditionOrInitStatement::ConditionDecl:
2078 case ConditionOrInitStatement::Error:
2079 break;
2080 }
2081
2082 // If this is a for loop, we're entering its condition.
2083 ForConditionScope.enter(/*IsConditionVariable=*/true);
2084
2085 // type-specifier-seq
2086 DeclSpec DS(AttrFactory);
2087 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2088
2089 // declarator
2090 Declarator DeclaratorInfo(DS, attrs, DeclaratorContext::Condition);
2091 ParseDeclarator(DeclaratorInfo);
2092
2093 // simple-asm-expr[opt]
2094 if (Tok.is(tok::kw_asm)) {
2095 SourceLocation Loc;
2096 ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2097 if (AsmLabel.isInvalid()) {
2098 SkipUntil(tok::semi, StopAtSemi);
2099 return Sema::ConditionError();
2100 }
2101 DeclaratorInfo.setAsmLabel(AsmLabel.get());
2102 DeclaratorInfo.SetRangeEnd(Loc);
2103 }
2104
2105 // If attributes are present, parse them.
2106 MaybeParseGNUAttributes(DeclaratorInfo);
2107
2108 // Type-check the declaration itself.
2109 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2110 DeclaratorInfo);
2111 if (Dcl.isInvalid())
2112 return Sema::ConditionError();
2113 Decl *DeclOut = Dcl.get();
2114
2115 // '=' assignment-expression
2116 // If a '==' or '+=' is found, suggest a fixit to '='.
2117 bool CopyInitialization = isTokenEqualOrEqualTypo();
2118 if (CopyInitialization)
2119 ConsumeToken();
2120
2121 ExprResult InitExpr = ExprError();
2122 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2123 Diag(Tok.getLocation(),
2124 diag::warn_cxx98_compat_generalized_initializer_lists);
2125 InitExpr = ParseBraceInitializer();
2126 } else if (CopyInitialization) {
2127 PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2128 InitExpr = ParseAssignmentExpression();
2129 } else if (Tok.is(tok::l_paren)) {
2130 // This was probably an attempt to initialize the variable.
2131 SourceLocation LParen = ConsumeParen(), RParen = LParen;
2132 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2133 RParen = ConsumeParen();
2134 Diag(DeclOut->getLocation(),
2135 diag::err_expected_init_in_condition_lparen)
2136 << SourceRange(LParen, RParen);
2137 } else {
2138 Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2139 }
2140
2141 if (!InitExpr.isInvalid())
2142 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2143 else
2144 Actions.ActOnInitializerError(DeclOut);
2145
2146 Actions.FinalizeDeclaration(DeclOut);
2147 return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2148 }
2149
2150 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2151 /// This should only be called when the current token is known to be part of
2152 /// simple-type-specifier.
2153 ///
2154 /// simple-type-specifier:
2155 /// '::'[opt] nested-name-specifier[opt] type-name
2156 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2157 /// char
2158 /// wchar_t
2159 /// bool
2160 /// short
2161 /// int
2162 /// long
2163 /// signed
2164 /// unsigned
2165 /// float
2166 /// double
2167 /// void
2168 /// [GNU] typeof-specifier
2169 /// [C++0x] auto [TODO]
2170 ///
2171 /// type-name:
2172 /// class-name
2173 /// enum-name
2174 /// typedef-name
2175 ///
ParseCXXSimpleTypeSpecifier(DeclSpec & DS)2176 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2177 DS.SetRangeStart(Tok.getLocation());
2178 const char *PrevSpec;
2179 unsigned DiagID;
2180 SourceLocation Loc = Tok.getLocation();
2181 const clang::PrintingPolicy &Policy =
2182 Actions.getASTContext().getPrintingPolicy();
2183
2184 switch (Tok.getKind()) {
2185 case tok::identifier: // foo::bar
2186 case tok::coloncolon: // ::foo::bar
2187 llvm_unreachable("Annotation token should already be formed!");
2188 default:
2189 llvm_unreachable("Not a simple-type-specifier token!");
2190
2191 // type-name
2192 case tok::annot_typename: {
2193 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2194 getTypeAnnotation(Tok), Policy);
2195 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2196 ConsumeAnnotationToken();
2197
2198 DS.Finish(Actions, Policy);
2199 return;
2200 }
2201
2202 case tok::kw__ExtInt:
2203 case tok::kw__BitInt: {
2204 DiagnoseBitIntUse(Tok);
2205 ExprResult ER = ParseExtIntegerArgument();
2206 if (ER.isInvalid())
2207 DS.SetTypeSpecError();
2208 else
2209 DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2210
2211 // Do this here because we have already consumed the close paren.
2212 DS.SetRangeEnd(PrevTokLocation);
2213 DS.Finish(Actions, Policy);
2214 return;
2215 }
2216
2217 // builtin types
2218 case tok::kw_short:
2219 DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2220 Policy);
2221 break;
2222 case tok::kw_long:
2223 DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2224 Policy);
2225 break;
2226 case tok::kw___int64:
2227 DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2228 Policy);
2229 break;
2230 case tok::kw_signed:
2231 DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2232 break;
2233 case tok::kw_unsigned:
2234 DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2235 break;
2236 case tok::kw_void:
2237 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2238 break;
2239 case tok::kw_auto:
2240 DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy);
2241 break;
2242 case tok::kw_char:
2243 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2244 break;
2245 case tok::kw_int:
2246 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2247 break;
2248 case tok::kw___int128:
2249 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2250 break;
2251 case tok::kw___bf16:
2252 DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2253 break;
2254 case tok::kw_half:
2255 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2256 break;
2257 case tok::kw_float:
2258 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2259 break;
2260 case tok::kw_double:
2261 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2262 break;
2263 case tok::kw__Float16:
2264 DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2265 break;
2266 case tok::kw___float128:
2267 DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2268 break;
2269 case tok::kw___ibm128:
2270 DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2271 break;
2272 case tok::kw_wchar_t:
2273 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2274 break;
2275 case tok::kw_char8_t:
2276 DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2277 break;
2278 case tok::kw_char16_t:
2279 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2280 break;
2281 case tok::kw_char32_t:
2282 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2283 break;
2284 case tok::kw_bool:
2285 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2286 break;
2287 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
2288 case tok::kw_##ImgType##_t: \
2289 DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
2290 Policy); \
2291 break;
2292 #include "clang/Basic/OpenCLImageTypes.def"
2293
2294 case tok::annot_decltype:
2295 case tok::kw_decltype:
2296 DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2297 return DS.Finish(Actions, Policy);
2298
2299 // GNU typeof support.
2300 case tok::kw_typeof:
2301 ParseTypeofSpecifier(DS);
2302 DS.Finish(Actions, Policy);
2303 return;
2304 }
2305 ConsumeAnyToken();
2306 DS.SetRangeEnd(PrevTokLocation);
2307 DS.Finish(Actions, Policy);
2308 }
2309
2310 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2311 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2312 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2313 /// by parsing the type-specifier-seq, because these sequences are
2314 /// typically followed by some form of declarator. Returns true and
2315 /// emits diagnostics if this is not a type-specifier-seq, false
2316 /// otherwise.
2317 ///
2318 /// type-specifier-seq: [C++ 8.1]
2319 /// type-specifier type-specifier-seq[opt]
2320 ///
ParseCXXTypeSpecifierSeq(DeclSpec & DS)2321 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
2322 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
2323 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2324 return false;
2325 }
2326
2327 /// Finish parsing a C++ unqualified-id that is a template-id of
2328 /// some form.
2329 ///
2330 /// This routine is invoked when a '<' is encountered after an identifier or
2331 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2332 /// whether the unqualified-id is actually a template-id. This routine will
2333 /// then parse the template arguments and form the appropriate template-id to
2334 /// return to the caller.
2335 ///
2336 /// \param SS the nested-name-specifier that precedes this template-id, if
2337 /// we're actually parsing a qualified-id.
2338 ///
2339 /// \param ObjectType if this unqualified-id occurs within a member access
2340 /// expression, the type of the base object whose member is being accessed.
2341 ///
2342 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2343 /// expression, indicates whether the original subexpressions had any errors.
2344 ///
2345 /// \param Name for constructor and destructor names, this is the actual
2346 /// identifier that may be a template-name.
2347 ///
2348 /// \param NameLoc the location of the class-name in a constructor or
2349 /// destructor.
2350 ///
2351 /// \param EnteringContext whether we're entering the scope of the
2352 /// nested-name-specifier.
2353 ///
2354 /// \param Id as input, describes the template-name or operator-function-id
2355 /// that precedes the '<'. If template arguments were parsed successfully,
2356 /// will be updated with the template-id.
2357 ///
2358 /// \param AssumeTemplateId When true, this routine will assume that the name
2359 /// refers to a template without performing name lookup to verify.
2360 ///
2361 /// \returns true if a parse error occurred, false otherwise.
ParseUnqualifiedIdTemplateId(CXXScopeSpec & SS,ParsedType ObjectType,bool ObjectHadErrors,SourceLocation TemplateKWLoc,IdentifierInfo * Name,SourceLocation NameLoc,bool EnteringContext,UnqualifiedId & Id,bool AssumeTemplateId)2362 bool Parser::ParseUnqualifiedIdTemplateId(
2363 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2364 SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2365 bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2366 assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2367
2368 TemplateTy Template;
2369 TemplateNameKind TNK = TNK_Non_template;
2370 switch (Id.getKind()) {
2371 case UnqualifiedIdKind::IK_Identifier:
2372 case UnqualifiedIdKind::IK_OperatorFunctionId:
2373 case UnqualifiedIdKind::IK_LiteralOperatorId:
2374 if (AssumeTemplateId) {
2375 // We defer the injected-class-name checks until we've found whether
2376 // this template-id is used to form a nested-name-specifier or not.
2377 TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2378 ObjectType, EnteringContext, Template,
2379 /*AllowInjectedClassName*/ true);
2380 } else {
2381 bool MemberOfUnknownSpecialization;
2382 TNK = Actions.isTemplateName(getCurScope(), SS,
2383 TemplateKWLoc.isValid(), Id,
2384 ObjectType, EnteringContext, Template,
2385 MemberOfUnknownSpecialization);
2386 // If lookup found nothing but we're assuming that this is a template
2387 // name, double-check that makes sense syntactically before committing
2388 // to it.
2389 if (TNK == TNK_Undeclared_template &&
2390 isTemplateArgumentList(0) == TPResult::False)
2391 return false;
2392
2393 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2394 ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2395 // If we had errors before, ObjectType can be dependent even without any
2396 // templates, do not report missing template keyword in that case.
2397 if (!ObjectHadErrors) {
2398 // We have something like t->getAs<T>(), where getAs is a
2399 // member of an unknown specialization. However, this will only
2400 // parse correctly as a template, so suggest the keyword 'template'
2401 // before 'getAs' and treat this as a dependent template name.
2402 std::string Name;
2403 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2404 Name = std::string(Id.Identifier->getName());
2405 else {
2406 Name = "operator ";
2407 if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2408 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2409 else
2410 Name += Id.Identifier->getName();
2411 }
2412 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2413 << Name
2414 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2415 }
2416 TNK = Actions.ActOnTemplateName(
2417 getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2418 Template, /*AllowInjectedClassName*/ true);
2419 } else if (TNK == TNK_Non_template) {
2420 return false;
2421 }
2422 }
2423 break;
2424
2425 case UnqualifiedIdKind::IK_ConstructorName: {
2426 UnqualifiedId TemplateName;
2427 bool MemberOfUnknownSpecialization;
2428 TemplateName.setIdentifier(Name, NameLoc);
2429 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2430 TemplateName, ObjectType,
2431 EnteringContext, Template,
2432 MemberOfUnknownSpecialization);
2433 if (TNK == TNK_Non_template)
2434 return false;
2435 break;
2436 }
2437
2438 case UnqualifiedIdKind::IK_DestructorName: {
2439 UnqualifiedId TemplateName;
2440 bool MemberOfUnknownSpecialization;
2441 TemplateName.setIdentifier(Name, NameLoc);
2442 if (ObjectType) {
2443 TNK = Actions.ActOnTemplateName(
2444 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2445 EnteringContext, Template, /*AllowInjectedClassName*/ true);
2446 } else {
2447 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2448 TemplateName, ObjectType,
2449 EnteringContext, Template,
2450 MemberOfUnknownSpecialization);
2451
2452 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2453 Diag(NameLoc, diag::err_destructor_template_id)
2454 << Name << SS.getRange();
2455 // Carry on to parse the template arguments before bailing out.
2456 }
2457 }
2458 break;
2459 }
2460
2461 default:
2462 return false;
2463 }
2464
2465 // Parse the enclosed template argument list.
2466 SourceLocation LAngleLoc, RAngleLoc;
2467 TemplateArgList TemplateArgs;
2468 if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs, RAngleLoc,
2469 Template))
2470 return true;
2471
2472 // If this is a non-template, we already issued a diagnostic.
2473 if (TNK == TNK_Non_template)
2474 return true;
2475
2476 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2477 Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2478 Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2479 // Form a parsed representation of the template-id to be stored in the
2480 // UnqualifiedId.
2481
2482 // FIXME: Store name for literal operator too.
2483 IdentifierInfo *TemplateII =
2484 Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2485 : nullptr;
2486 OverloadedOperatorKind OpKind =
2487 Id.getKind() == UnqualifiedIdKind::IK_Identifier
2488 ? OO_None
2489 : Id.OperatorFunctionId.Operator;
2490
2491 TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2492 TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2493 LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2494
2495 Id.setTemplateId(TemplateId);
2496 return false;
2497 }
2498
2499 // Bundle the template arguments together.
2500 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2501
2502 // Constructor and destructor names.
2503 TypeResult Type = Actions.ActOnTemplateIdType(
2504 getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2505 TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2506 if (Type.isInvalid())
2507 return true;
2508
2509 if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2510 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2511 else
2512 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2513
2514 return false;
2515 }
2516
2517 /// Parse an operator-function-id or conversion-function-id as part
2518 /// of a C++ unqualified-id.
2519 ///
2520 /// This routine is responsible only for parsing the operator-function-id or
2521 /// conversion-function-id; it does not handle template arguments in any way.
2522 ///
2523 /// \code
2524 /// operator-function-id: [C++ 13.5]
2525 /// 'operator' operator
2526 ///
2527 /// operator: one of
2528 /// new delete new[] delete[]
2529 /// + - * / % ^ & | ~
2530 /// ! = < > += -= *= /= %=
2531 /// ^= &= |= << >> >>= <<= == !=
2532 /// <= >= && || ++ -- , ->* ->
2533 /// () [] <=>
2534 ///
2535 /// conversion-function-id: [C++ 12.3.2]
2536 /// operator conversion-type-id
2537 ///
2538 /// conversion-type-id:
2539 /// type-specifier-seq conversion-declarator[opt]
2540 ///
2541 /// conversion-declarator:
2542 /// ptr-operator conversion-declarator[opt]
2543 /// \endcode
2544 ///
2545 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2546 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2547 ///
2548 /// \param EnteringContext whether we are entering the scope of the
2549 /// nested-name-specifier.
2550 ///
2551 /// \param ObjectType if this unqualified-id occurs within a member access
2552 /// expression, the type of the base object whose member is being accessed.
2553 ///
2554 /// \param Result on a successful parse, contains the parsed unqualified-id.
2555 ///
2556 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedIdOperator(CXXScopeSpec & SS,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Result)2557 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2558 ParsedType ObjectType,
2559 UnqualifiedId &Result) {
2560 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2561
2562 // Consume the 'operator' keyword.
2563 SourceLocation KeywordLoc = ConsumeToken();
2564
2565 // Determine what kind of operator name we have.
2566 unsigned SymbolIdx = 0;
2567 SourceLocation SymbolLocations[3];
2568 OverloadedOperatorKind Op = OO_None;
2569 switch (Tok.getKind()) {
2570 case tok::kw_new:
2571 case tok::kw_delete: {
2572 bool isNew = Tok.getKind() == tok::kw_new;
2573 // Consume the 'new' or 'delete'.
2574 SymbolLocations[SymbolIdx++] = ConsumeToken();
2575 // Check for array new/delete.
2576 if (Tok.is(tok::l_square) &&
2577 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2578 // Consume the '[' and ']'.
2579 BalancedDelimiterTracker T(*this, tok::l_square);
2580 T.consumeOpen();
2581 T.consumeClose();
2582 if (T.getCloseLocation().isInvalid())
2583 return true;
2584
2585 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2586 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2587 Op = isNew? OO_Array_New : OO_Array_Delete;
2588 } else {
2589 Op = isNew? OO_New : OO_Delete;
2590 }
2591 break;
2592 }
2593
2594 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2595 case tok::Token: \
2596 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2597 Op = OO_##Name; \
2598 break;
2599 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2600 #include "clang/Basic/OperatorKinds.def"
2601
2602 case tok::l_paren: {
2603 // Consume the '(' and ')'.
2604 BalancedDelimiterTracker T(*this, tok::l_paren);
2605 T.consumeOpen();
2606 T.consumeClose();
2607 if (T.getCloseLocation().isInvalid())
2608 return true;
2609
2610 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2611 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2612 Op = OO_Call;
2613 break;
2614 }
2615
2616 case tok::l_square: {
2617 // Consume the '[' and ']'.
2618 BalancedDelimiterTracker T(*this, tok::l_square);
2619 T.consumeOpen();
2620 T.consumeClose();
2621 if (T.getCloseLocation().isInvalid())
2622 return true;
2623
2624 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2625 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2626 Op = OO_Subscript;
2627 break;
2628 }
2629
2630 case tok::code_completion: {
2631 // Don't try to parse any further.
2632 cutOffParsing();
2633 // Code completion for the operator name.
2634 Actions.CodeCompleteOperatorName(getCurScope());
2635 return true;
2636 }
2637
2638 default:
2639 break;
2640 }
2641
2642 if (Op != OO_None) {
2643 // We have parsed an operator-function-id.
2644 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2645 return false;
2646 }
2647
2648 // Parse a literal-operator-id.
2649 //
2650 // literal-operator-id: C++11 [over.literal]
2651 // operator string-literal identifier
2652 // operator user-defined-string-literal
2653
2654 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2655 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2656
2657 SourceLocation DiagLoc;
2658 unsigned DiagId = 0;
2659
2660 // We're past translation phase 6, so perform string literal concatenation
2661 // before checking for "".
2662 SmallVector<Token, 4> Toks;
2663 SmallVector<SourceLocation, 4> TokLocs;
2664 while (isTokenStringLiteral()) {
2665 if (!Tok.is(tok::string_literal) && !DiagId) {
2666 // C++11 [over.literal]p1:
2667 // The string-literal or user-defined-string-literal in a
2668 // literal-operator-id shall have no encoding-prefix [...].
2669 DiagLoc = Tok.getLocation();
2670 DiagId = diag::err_literal_operator_string_prefix;
2671 }
2672 Toks.push_back(Tok);
2673 TokLocs.push_back(ConsumeStringToken());
2674 }
2675
2676 StringLiteralParser Literal(Toks, PP);
2677 if (Literal.hadError)
2678 return true;
2679
2680 // Grab the literal operator's suffix, which will be either the next token
2681 // or a ud-suffix from the string literal.
2682 bool IsUDSuffix = !Literal.getUDSuffix().empty();
2683 IdentifierInfo *II = nullptr;
2684 SourceLocation SuffixLoc;
2685 if (IsUDSuffix) {
2686 II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2687 SuffixLoc =
2688 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2689 Literal.getUDSuffixOffset(),
2690 PP.getSourceManager(), getLangOpts());
2691 } else if (Tok.is(tok::identifier)) {
2692 II = Tok.getIdentifierInfo();
2693 SuffixLoc = ConsumeToken();
2694 TokLocs.push_back(SuffixLoc);
2695 } else {
2696 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2697 return true;
2698 }
2699
2700 // The string literal must be empty.
2701 if (!Literal.GetString().empty() || Literal.Pascal) {
2702 // C++11 [over.literal]p1:
2703 // The string-literal or user-defined-string-literal in a
2704 // literal-operator-id shall [...] contain no characters
2705 // other than the implicit terminating '\0'.
2706 DiagLoc = TokLocs.front();
2707 DiagId = diag::err_literal_operator_string_not_empty;
2708 }
2709
2710 if (DiagId) {
2711 // This isn't a valid literal-operator-id, but we think we know
2712 // what the user meant. Tell them what they should have written.
2713 SmallString<32> Str;
2714 Str += "\"\"";
2715 Str += II->getName();
2716 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2717 SourceRange(TokLocs.front(), TokLocs.back()), Str);
2718 }
2719
2720 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2721
2722 return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2723 }
2724
2725 // Parse a conversion-function-id.
2726 //
2727 // conversion-function-id: [C++ 12.3.2]
2728 // operator conversion-type-id
2729 //
2730 // conversion-type-id:
2731 // type-specifier-seq conversion-declarator[opt]
2732 //
2733 // conversion-declarator:
2734 // ptr-operator conversion-declarator[opt]
2735
2736 // Parse the type-specifier-seq.
2737 DeclSpec DS(AttrFactory);
2738 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2739 return true;
2740
2741 // Parse the conversion-declarator, which is merely a sequence of
2742 // ptr-operators.
2743 Declarator D(DS, ParsedAttributesView::none(),
2744 DeclaratorContext::ConversionId);
2745 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2746
2747 // Finish up the type.
2748 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2749 if (Ty.isInvalid())
2750 return true;
2751
2752 // Note that this is a conversion-function-id.
2753 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2754 D.getSourceRange().getEnd());
2755 return false;
2756 }
2757
2758 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2759 /// name of an entity.
2760 ///
2761 /// \code
2762 /// unqualified-id: [C++ expr.prim.general]
2763 /// identifier
2764 /// operator-function-id
2765 /// conversion-function-id
2766 /// [C++0x] literal-operator-id [TODO]
2767 /// ~ class-name
2768 /// template-id
2769 ///
2770 /// \endcode
2771 ///
2772 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2773 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2774 ///
2775 /// \param ObjectType if this unqualified-id occurs within a member access
2776 /// expression, the type of the base object whose member is being accessed.
2777 ///
2778 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2779 /// expression, indicates whether the original subexpressions had any errors.
2780 /// When true, diagnostics for missing 'template' keyword will be supressed.
2781 ///
2782 /// \param EnteringContext whether we are entering the scope of the
2783 /// nested-name-specifier.
2784 ///
2785 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2786 ///
2787 /// \param AllowConstructorName whether we allow parsing a constructor name.
2788 ///
2789 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2790 ///
2791 /// \param Result on a successful parse, contains the parsed unqualified-id.
2792 ///
2793 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedId(CXXScopeSpec & SS,ParsedType ObjectType,bool ObjectHadErrors,bool EnteringContext,bool AllowDestructorName,bool AllowConstructorName,bool AllowDeductionGuide,SourceLocation * TemplateKWLoc,UnqualifiedId & Result)2794 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2795 bool ObjectHadErrors, bool EnteringContext,
2796 bool AllowDestructorName,
2797 bool AllowConstructorName,
2798 bool AllowDeductionGuide,
2799 SourceLocation *TemplateKWLoc,
2800 UnqualifiedId &Result) {
2801 if (TemplateKWLoc)
2802 *TemplateKWLoc = SourceLocation();
2803
2804 // Handle 'A::template B'. This is for template-ids which have not
2805 // already been annotated by ParseOptionalCXXScopeSpecifier().
2806 bool TemplateSpecified = false;
2807 if (Tok.is(tok::kw_template)) {
2808 if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2809 TemplateSpecified = true;
2810 *TemplateKWLoc = ConsumeToken();
2811 } else {
2812 SourceLocation TemplateLoc = ConsumeToken();
2813 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2814 << FixItHint::CreateRemoval(TemplateLoc);
2815 }
2816 }
2817
2818 // unqualified-id:
2819 // identifier
2820 // template-id (when it hasn't already been annotated)
2821 if (Tok.is(tok::identifier)) {
2822 // Consume the identifier.
2823 IdentifierInfo *Id = Tok.getIdentifierInfo();
2824 SourceLocation IdLoc = ConsumeToken();
2825
2826 if (!getLangOpts().CPlusPlus) {
2827 // If we're not in C++, only identifiers matter. Record the
2828 // identifier and return.
2829 Result.setIdentifier(Id, IdLoc);
2830 return false;
2831 }
2832
2833 ParsedTemplateTy TemplateName;
2834 if (AllowConstructorName &&
2835 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2836 // We have parsed a constructor name.
2837 ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2838 EnteringContext);
2839 if (!Ty)
2840 return true;
2841 Result.setConstructorName(Ty, IdLoc, IdLoc);
2842 } else if (getLangOpts().CPlusPlus17 &&
2843 AllowDeductionGuide && SS.isEmpty() &&
2844 Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
2845 &TemplateName)) {
2846 // We have parsed a template-name naming a deduction guide.
2847 Result.setDeductionGuideName(TemplateName, IdLoc);
2848 } else {
2849 // We have parsed an identifier.
2850 Result.setIdentifier(Id, IdLoc);
2851 }
2852
2853 // If the next token is a '<', we may have a template.
2854 TemplateTy Template;
2855 if (Tok.is(tok::less))
2856 return ParseUnqualifiedIdTemplateId(
2857 SS, ObjectType, ObjectHadErrors,
2858 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2859 EnteringContext, Result, TemplateSpecified);
2860 else if (TemplateSpecified &&
2861 Actions.ActOnTemplateName(
2862 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2863 EnteringContext, Template,
2864 /*AllowInjectedClassName*/ true) == TNK_Non_template)
2865 return true;
2866
2867 return false;
2868 }
2869
2870 // unqualified-id:
2871 // template-id (already parsed and annotated)
2872 if (Tok.is(tok::annot_template_id)) {
2873 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2874
2875 // FIXME: Consider passing invalid template-ids on to callers; they may
2876 // be able to recover better than we can.
2877 if (TemplateId->isInvalid()) {
2878 ConsumeAnnotationToken();
2879 return true;
2880 }
2881
2882 // If the template-name names the current class, then this is a constructor
2883 if (AllowConstructorName && TemplateId->Name &&
2884 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2885 if (SS.isSet()) {
2886 // C++ [class.qual]p2 specifies that a qualified template-name
2887 // is taken as the constructor name where a constructor can be
2888 // declared. Thus, the template arguments are extraneous, so
2889 // complain about them and remove them entirely.
2890 Diag(TemplateId->TemplateNameLoc,
2891 diag::err_out_of_line_constructor_template_id)
2892 << TemplateId->Name
2893 << FixItHint::CreateRemoval(
2894 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2895 ParsedType Ty = Actions.getConstructorName(
2896 *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2897 EnteringContext);
2898 if (!Ty)
2899 return true;
2900 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2901 TemplateId->RAngleLoc);
2902 ConsumeAnnotationToken();
2903 return false;
2904 }
2905
2906 Result.setConstructorTemplateId(TemplateId);
2907 ConsumeAnnotationToken();
2908 return false;
2909 }
2910
2911 // We have already parsed a template-id; consume the annotation token as
2912 // our unqualified-id.
2913 Result.setTemplateId(TemplateId);
2914 SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2915 if (TemplateLoc.isValid()) {
2916 if (TemplateKWLoc && (ObjectType || SS.isSet()))
2917 *TemplateKWLoc = TemplateLoc;
2918 else
2919 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2920 << FixItHint::CreateRemoval(TemplateLoc);
2921 }
2922 ConsumeAnnotationToken();
2923 return false;
2924 }
2925
2926 // unqualified-id:
2927 // operator-function-id
2928 // conversion-function-id
2929 if (Tok.is(tok::kw_operator)) {
2930 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2931 return true;
2932
2933 // If we have an operator-function-id or a literal-operator-id and the next
2934 // token is a '<', we may have a
2935 //
2936 // template-id:
2937 // operator-function-id < template-argument-list[opt] >
2938 TemplateTy Template;
2939 if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2940 Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
2941 Tok.is(tok::less))
2942 return ParseUnqualifiedIdTemplateId(
2943 SS, ObjectType, ObjectHadErrors,
2944 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
2945 SourceLocation(), EnteringContext, Result, TemplateSpecified);
2946 else if (TemplateSpecified &&
2947 Actions.ActOnTemplateName(
2948 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2949 EnteringContext, Template,
2950 /*AllowInjectedClassName*/ true) == TNK_Non_template)
2951 return true;
2952
2953 return false;
2954 }
2955
2956 if (getLangOpts().CPlusPlus &&
2957 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2958 // C++ [expr.unary.op]p10:
2959 // There is an ambiguity in the unary-expression ~X(), where X is a
2960 // class-name. The ambiguity is resolved in favor of treating ~ as a
2961 // unary complement rather than treating ~X as referring to a destructor.
2962
2963 // Parse the '~'.
2964 SourceLocation TildeLoc = ConsumeToken();
2965
2966 if (TemplateSpecified) {
2967 // C++ [temp.names]p3:
2968 // A name prefixed by the keyword template shall be a template-id [...]
2969 //
2970 // A template-id cannot begin with a '~' token. This would never work
2971 // anyway: x.~A<int>() would specify that the destructor is a template,
2972 // not that 'A' is a template.
2973 //
2974 // FIXME: Suggest replacing the attempted destructor name with a correct
2975 // destructor name and recover. (This is not trivial if this would become
2976 // a pseudo-destructor name).
2977 Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
2978 << Tok.getLocation();
2979 return true;
2980 }
2981
2982 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2983 DeclSpec DS(AttrFactory);
2984 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2985 if (ParsedType Type =
2986 Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
2987 Result.setDestructorName(TildeLoc, Type, EndLoc);
2988 return false;
2989 }
2990 return true;
2991 }
2992
2993 // Parse the class-name.
2994 if (Tok.isNot(tok::identifier)) {
2995 Diag(Tok, diag::err_destructor_tilde_identifier);
2996 return true;
2997 }
2998
2999 // If the user wrote ~T::T, correct it to T::~T.
3000 DeclaratorScopeObj DeclScopeObj(*this, SS);
3001 if (NextToken().is(tok::coloncolon)) {
3002 // Don't let ParseOptionalCXXScopeSpecifier() "correct"
3003 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
3004 // it will confuse this recovery logic.
3005 ColonProtectionRAIIObject ColonRAII(*this, false);
3006
3007 if (SS.isSet()) {
3008 AnnotateScopeToken(SS, /*NewAnnotation*/true);
3009 SS.clear();
3010 }
3011 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
3012 EnteringContext))
3013 return true;
3014 if (SS.isNotEmpty())
3015 ObjectType = nullptr;
3016 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
3017 !SS.isSet()) {
3018 Diag(TildeLoc, diag::err_destructor_tilde_scope);
3019 return true;
3020 }
3021
3022 // Recover as if the tilde had been written before the identifier.
3023 Diag(TildeLoc, diag::err_destructor_tilde_scope)
3024 << FixItHint::CreateRemoval(TildeLoc)
3025 << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3026
3027 // Temporarily enter the scope for the rest of this function.
3028 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3029 DeclScopeObj.EnterDeclaratorScope();
3030 }
3031
3032 // Parse the class-name (or template-name in a simple-template-id).
3033 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3034 SourceLocation ClassNameLoc = ConsumeToken();
3035
3036 if (Tok.is(tok::less)) {
3037 Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
3038 return ParseUnqualifiedIdTemplateId(
3039 SS, ObjectType, ObjectHadErrors,
3040 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3041 ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3042 }
3043
3044 // Note that this is a destructor name.
3045 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
3046 ClassNameLoc, getCurScope(),
3047 SS, ObjectType,
3048 EnteringContext);
3049 if (!Ty)
3050 return true;
3051
3052 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3053 return false;
3054 }
3055
3056 Diag(Tok, diag::err_expected_unqualified_id)
3057 << getLangOpts().CPlusPlus;
3058 return true;
3059 }
3060
3061 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3062 /// memory in a typesafe manner and call constructors.
3063 ///
3064 /// This method is called to parse the new expression after the optional :: has
3065 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
3066 /// is its location. Otherwise, "Start" is the location of the 'new' token.
3067 ///
3068 /// new-expression:
3069 /// '::'[opt] 'new' new-placement[opt] new-type-id
3070 /// new-initializer[opt]
3071 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3072 /// new-initializer[opt]
3073 ///
3074 /// new-placement:
3075 /// '(' expression-list ')'
3076 ///
3077 /// new-type-id:
3078 /// type-specifier-seq new-declarator[opt]
3079 /// [GNU] attributes type-specifier-seq new-declarator[opt]
3080 ///
3081 /// new-declarator:
3082 /// ptr-operator new-declarator[opt]
3083 /// direct-new-declarator
3084 ///
3085 /// new-initializer:
3086 /// '(' expression-list[opt] ')'
3087 /// [C++0x] braced-init-list
3088 ///
3089 ExprResult
ParseCXXNewExpression(bool UseGlobal,SourceLocation Start)3090 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3091 assert(Tok.is(tok::kw_new) && "expected 'new' token");
3092 ConsumeToken(); // Consume 'new'
3093
3094 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3095 // second form of new-expression. It can't be a new-type-id.
3096
3097 ExprVector PlacementArgs;
3098 SourceLocation PlacementLParen, PlacementRParen;
3099
3100 SourceRange TypeIdParens;
3101 DeclSpec DS(AttrFactory);
3102 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3103 DeclaratorContext::CXXNew);
3104 if (Tok.is(tok::l_paren)) {
3105 // If it turns out to be a placement, we change the type location.
3106 BalancedDelimiterTracker T(*this, tok::l_paren);
3107 T.consumeOpen();
3108 PlacementLParen = T.getOpenLocation();
3109 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3110 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3111 return ExprError();
3112 }
3113
3114 T.consumeClose();
3115 PlacementRParen = T.getCloseLocation();
3116 if (PlacementRParen.isInvalid()) {
3117 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3118 return ExprError();
3119 }
3120
3121 if (PlacementArgs.empty()) {
3122 // Reset the placement locations. There was no placement.
3123 TypeIdParens = T.getRange();
3124 PlacementLParen = PlacementRParen = SourceLocation();
3125 } else {
3126 // We still need the type.
3127 if (Tok.is(tok::l_paren)) {
3128 BalancedDelimiterTracker T(*this, tok::l_paren);
3129 T.consumeOpen();
3130 MaybeParseGNUAttributes(DeclaratorInfo);
3131 ParseSpecifierQualifierList(DS);
3132 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3133 ParseDeclarator(DeclaratorInfo);
3134 T.consumeClose();
3135 TypeIdParens = T.getRange();
3136 } else {
3137 MaybeParseGNUAttributes(DeclaratorInfo);
3138 if (ParseCXXTypeSpecifierSeq(DS))
3139 DeclaratorInfo.setInvalidType(true);
3140 else {
3141 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3142 ParseDeclaratorInternal(DeclaratorInfo,
3143 &Parser::ParseDirectNewDeclarator);
3144 }
3145 }
3146 }
3147 } else {
3148 // A new-type-id is a simplified type-id, where essentially the
3149 // direct-declarator is replaced by a direct-new-declarator.
3150 MaybeParseGNUAttributes(DeclaratorInfo);
3151 if (ParseCXXTypeSpecifierSeq(DS))
3152 DeclaratorInfo.setInvalidType(true);
3153 else {
3154 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3155 ParseDeclaratorInternal(DeclaratorInfo,
3156 &Parser::ParseDirectNewDeclarator);
3157 }
3158 }
3159 if (DeclaratorInfo.isInvalidType()) {
3160 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3161 return ExprError();
3162 }
3163
3164 ExprResult Initializer;
3165
3166 if (Tok.is(tok::l_paren)) {
3167 SourceLocation ConstructorLParen, ConstructorRParen;
3168 ExprVector ConstructorArgs;
3169 BalancedDelimiterTracker T(*this, tok::l_paren);
3170 T.consumeOpen();
3171 ConstructorLParen = T.getOpenLocation();
3172 if (Tok.isNot(tok::r_paren)) {
3173 CommaLocsTy CommaLocs;
3174 auto RunSignatureHelp = [&]() {
3175 ParsedType TypeRep =
3176 Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3177 QualType PreferredType;
3178 // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3179 // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3180 // `new decltype(invalid) (^)`.
3181 if (TypeRep)
3182 PreferredType = Actions.ProduceConstructorSignatureHelp(
3183 TypeRep.get()->getCanonicalTypeInternal(),
3184 DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen,
3185 /*Braced=*/false);
3186 CalledSignatureHelp = true;
3187 return PreferredType;
3188 };
3189 if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
3190 PreferredType.enterFunctionArgument(Tok.getLocation(),
3191 RunSignatureHelp);
3192 })) {
3193 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3194 RunSignatureHelp();
3195 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3196 return ExprError();
3197 }
3198 }
3199 T.consumeClose();
3200 ConstructorRParen = T.getCloseLocation();
3201 if (ConstructorRParen.isInvalid()) {
3202 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3203 return ExprError();
3204 }
3205 Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3206 ConstructorRParen,
3207 ConstructorArgs);
3208 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3209 Diag(Tok.getLocation(),
3210 diag::warn_cxx98_compat_generalized_initializer_lists);
3211 Initializer = ParseBraceInitializer();
3212 }
3213 if (Initializer.isInvalid())
3214 return Initializer;
3215
3216 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3217 PlacementArgs, PlacementRParen,
3218 TypeIdParens, DeclaratorInfo, Initializer.get());
3219 }
3220
3221 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3222 /// passed to ParseDeclaratorInternal.
3223 ///
3224 /// direct-new-declarator:
3225 /// '[' expression[opt] ']'
3226 /// direct-new-declarator '[' constant-expression ']'
3227 ///
ParseDirectNewDeclarator(Declarator & D)3228 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3229 // Parse the array dimensions.
3230 bool First = true;
3231 while (Tok.is(tok::l_square)) {
3232 // An array-size expression can't start with a lambda.
3233 if (CheckProhibitedCXX11Attribute())
3234 continue;
3235
3236 BalancedDelimiterTracker T(*this, tok::l_square);
3237 T.consumeOpen();
3238
3239 ExprResult Size =
3240 First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3241 : ParseConstantExpression();
3242 if (Size.isInvalid()) {
3243 // Recover
3244 SkipUntil(tok::r_square, StopAtSemi);
3245 return;
3246 }
3247 First = false;
3248
3249 T.consumeClose();
3250
3251 // Attributes here appertain to the array type. C++11 [expr.new]p5.
3252 ParsedAttributes Attrs(AttrFactory);
3253 MaybeParseCXX11Attributes(Attrs);
3254
3255 D.AddTypeInfo(DeclaratorChunk::getArray(0,
3256 /*isStatic=*/false, /*isStar=*/false,
3257 Size.get(), T.getOpenLocation(),
3258 T.getCloseLocation()),
3259 std::move(Attrs), T.getCloseLocation());
3260
3261 if (T.getCloseLocation().isInvalid())
3262 return;
3263 }
3264 }
3265
3266 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3267 /// This ambiguity appears in the syntax of the C++ new operator.
3268 ///
3269 /// new-expression:
3270 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3271 /// new-initializer[opt]
3272 ///
3273 /// new-placement:
3274 /// '(' expression-list ')'
3275 ///
ParseExpressionListOrTypeId(SmallVectorImpl<Expr * > & PlacementArgs,Declarator & D)3276 bool Parser::ParseExpressionListOrTypeId(
3277 SmallVectorImpl<Expr*> &PlacementArgs,
3278 Declarator &D) {
3279 // The '(' was already consumed.
3280 if (isTypeIdInParens()) {
3281 ParseSpecifierQualifierList(D.getMutableDeclSpec());
3282 D.SetSourceRange(D.getDeclSpec().getSourceRange());
3283 ParseDeclarator(D);
3284 return D.isInvalidType();
3285 }
3286
3287 // It's not a type, it has to be an expression list.
3288 // Discard the comma locations - ActOnCXXNew has enough parameters.
3289 CommaLocsTy CommaLocs;
3290 return ParseExpressionList(PlacementArgs, CommaLocs);
3291 }
3292
3293 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3294 /// to free memory allocated by new.
3295 ///
3296 /// This method is called to parse the 'delete' expression after the optional
3297 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
3298 /// and "Start" is its location. Otherwise, "Start" is the location of the
3299 /// 'delete' token.
3300 ///
3301 /// delete-expression:
3302 /// '::'[opt] 'delete' cast-expression
3303 /// '::'[opt] 'delete' '[' ']' cast-expression
3304 ExprResult
ParseCXXDeleteExpression(bool UseGlobal,SourceLocation Start)3305 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3306 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3307 ConsumeToken(); // Consume 'delete'
3308
3309 // Array delete?
3310 bool ArrayDelete = false;
3311 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3312 // C++11 [expr.delete]p1:
3313 // Whenever the delete keyword is followed by empty square brackets, it
3314 // shall be interpreted as [array delete].
3315 // [Footnote: A lambda expression with a lambda-introducer that consists
3316 // of empty square brackets can follow the delete keyword if
3317 // the lambda expression is enclosed in parentheses.]
3318
3319 const Token Next = GetLookAheadToken(2);
3320
3321 // Basic lookahead to check if we have a lambda expression.
3322 if (Next.isOneOf(tok::l_brace, tok::less) ||
3323 (Next.is(tok::l_paren) &&
3324 (GetLookAheadToken(3).is(tok::r_paren) ||
3325 (GetLookAheadToken(3).is(tok::identifier) &&
3326 GetLookAheadToken(4).is(tok::identifier))))) {
3327 TentativeParsingAction TPA(*this);
3328 SourceLocation LSquareLoc = Tok.getLocation();
3329 SourceLocation RSquareLoc = NextToken().getLocation();
3330
3331 // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3332 // case.
3333 SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3334 SourceLocation RBraceLoc;
3335 bool EmitFixIt = false;
3336 if (Tok.is(tok::l_brace)) {
3337 ConsumeBrace();
3338 SkipUntil(tok::r_brace, StopBeforeMatch);
3339 RBraceLoc = Tok.getLocation();
3340 EmitFixIt = true;
3341 }
3342
3343 TPA.Revert();
3344
3345 if (EmitFixIt)
3346 Diag(Start, diag::err_lambda_after_delete)
3347 << SourceRange(Start, RSquareLoc)
3348 << FixItHint::CreateInsertion(LSquareLoc, "(")
3349 << FixItHint::CreateInsertion(
3350 Lexer::getLocForEndOfToken(
3351 RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3352 ")");
3353 else
3354 Diag(Start, diag::err_lambda_after_delete)
3355 << SourceRange(Start, RSquareLoc);
3356
3357 // Warn that the non-capturing lambda isn't surrounded by parentheses
3358 // to disambiguate it from 'delete[]'.
3359 ExprResult Lambda = ParseLambdaExpression();
3360 if (Lambda.isInvalid())
3361 return ExprError();
3362
3363 // Evaluate any postfix expressions used on the lambda.
3364 Lambda = ParsePostfixExpressionSuffix(Lambda);
3365 if (Lambda.isInvalid())
3366 return ExprError();
3367 return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3368 Lambda.get());
3369 }
3370
3371 ArrayDelete = true;
3372 BalancedDelimiterTracker T(*this, tok::l_square);
3373
3374 T.consumeOpen();
3375 T.consumeClose();
3376 if (T.getCloseLocation().isInvalid())
3377 return ExprError();
3378 }
3379
3380 ExprResult Operand(ParseCastExpression(AnyCastExpr));
3381 if (Operand.isInvalid())
3382 return Operand;
3383
3384 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3385 }
3386
3387 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3388 /// C++2a [expr.prim.req]p1
3389 /// A requires-expression provides a concise way to express requirements on
3390 /// template arguments. A requirement is one that can be checked by name
3391 /// lookup (6.4) or by checking properties of types and expressions.
3392 ///
3393 /// requires-expression:
3394 /// 'requires' requirement-parameter-list[opt] requirement-body
3395 ///
3396 /// requirement-parameter-list:
3397 /// '(' parameter-declaration-clause[opt] ')'
3398 ///
3399 /// requirement-body:
3400 /// '{' requirement-seq '}'
3401 ///
3402 /// requirement-seq:
3403 /// requirement
3404 /// requirement-seq requirement
3405 ///
3406 /// requirement:
3407 /// simple-requirement
3408 /// type-requirement
3409 /// compound-requirement
3410 /// nested-requirement
ParseRequiresExpression()3411 ExprResult Parser::ParseRequiresExpression() {
3412 assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3413 SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3414
3415 llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3416 if (Tok.is(tok::l_paren)) {
3417 // requirement parameter list is present.
3418 ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3419 Scope::DeclScope);
3420 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3421 Parens.consumeOpen();
3422 if (!Tok.is(tok::r_paren)) {
3423 ParsedAttributes FirstArgAttrs(getAttrFactory());
3424 SourceLocation EllipsisLoc;
3425 llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3426 ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3427 FirstArgAttrs, LocalParameters,
3428 EllipsisLoc);
3429 if (EllipsisLoc.isValid())
3430 Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3431 for (auto &ParamInfo : LocalParameters)
3432 LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3433 }
3434 Parens.consumeClose();
3435 }
3436
3437 BalancedDelimiterTracker Braces(*this, tok::l_brace);
3438 if (Braces.expectAndConsume())
3439 return ExprError();
3440
3441 // Start of requirement list
3442 llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3443
3444 // C++2a [expr.prim.req]p2
3445 // Expressions appearing within a requirement-body are unevaluated operands.
3446 EnterExpressionEvaluationContext Ctx(
3447 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3448
3449 ParseScope BodyScope(this, Scope::DeclScope);
3450 RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3451 RequiresKWLoc, LocalParameterDecls, getCurScope());
3452
3453 if (Tok.is(tok::r_brace)) {
3454 // Grammar does not allow an empty body.
3455 // requirement-body:
3456 // { requirement-seq }
3457 // requirement-seq:
3458 // requirement
3459 // requirement-seq requirement
3460 Diag(Tok, diag::err_empty_requires_expr);
3461 // Continue anyway and produce a requires expr with no requirements.
3462 } else {
3463 while (!Tok.is(tok::r_brace)) {
3464 switch (Tok.getKind()) {
3465 case tok::l_brace: {
3466 // Compound requirement
3467 // C++ [expr.prim.req.compound]
3468 // compound-requirement:
3469 // '{' expression '}' 'noexcept'[opt]
3470 // return-type-requirement[opt] ';'
3471 // return-type-requirement:
3472 // trailing-return-type
3473 // '->' cv-qualifier-seq[opt] constrained-parameter
3474 // cv-qualifier-seq[opt] abstract-declarator[opt]
3475 BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3476 ExprBraces.consumeOpen();
3477 ExprResult Expression =
3478 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3479 if (!Expression.isUsable()) {
3480 ExprBraces.skipToEnd();
3481 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3482 break;
3483 }
3484 if (ExprBraces.consumeClose())
3485 ExprBraces.skipToEnd();
3486
3487 concepts::Requirement *Req = nullptr;
3488 SourceLocation NoexceptLoc;
3489 TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3490 if (Tok.is(tok::semi)) {
3491 Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3492 if (Req)
3493 Requirements.push_back(Req);
3494 break;
3495 }
3496 if (!TryConsumeToken(tok::arrow))
3497 // User probably forgot the arrow, remind them and try to continue.
3498 Diag(Tok, diag::err_requires_expr_missing_arrow)
3499 << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3500 // Try to parse a 'type-constraint'
3501 if (TryAnnotateTypeConstraint()) {
3502 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3503 break;
3504 }
3505 if (!isTypeConstraintAnnotation()) {
3506 Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3507 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3508 break;
3509 }
3510 CXXScopeSpec SS;
3511 if (Tok.is(tok::annot_cxxscope)) {
3512 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3513 Tok.getAnnotationRange(),
3514 SS);
3515 ConsumeAnnotationToken();
3516 }
3517
3518 Req = Actions.ActOnCompoundRequirement(
3519 Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3520 TemplateParameterDepth);
3521 ConsumeAnnotationToken();
3522 if (Req)
3523 Requirements.push_back(Req);
3524 break;
3525 }
3526 default: {
3527 bool PossibleRequiresExprInSimpleRequirement = false;
3528 if (Tok.is(tok::kw_requires)) {
3529 auto IsNestedRequirement = [&] {
3530 RevertingTentativeParsingAction TPA(*this);
3531 ConsumeToken(); // 'requires'
3532 if (Tok.is(tok::l_brace))
3533 // This is a requires expression
3534 // requires (T t) {
3535 // requires { t++; };
3536 // ... ^
3537 // }
3538 return false;
3539 if (Tok.is(tok::l_paren)) {
3540 // This might be the parameter list of a requires expression
3541 ConsumeParen();
3542 auto Res = TryParseParameterDeclarationClause();
3543 if (Res != TPResult::False) {
3544 // Skip to the closing parenthesis
3545 // FIXME: Don't traverse these tokens twice (here and in
3546 // TryParseParameterDeclarationClause).
3547 unsigned Depth = 1;
3548 while (Depth != 0) {
3549 if (Tok.is(tok::l_paren))
3550 Depth++;
3551 else if (Tok.is(tok::r_paren))
3552 Depth--;
3553 ConsumeAnyToken();
3554 }
3555 // requires (T t) {
3556 // requires () ?
3557 // ... ^
3558 // - OR -
3559 // requires (int x) ?
3560 // ... ^
3561 // }
3562 if (Tok.is(tok::l_brace))
3563 // requires (...) {
3564 // ^ - a requires expression as a
3565 // simple-requirement.
3566 return false;
3567 }
3568 }
3569 return true;
3570 };
3571 if (IsNestedRequirement()) {
3572 ConsumeToken();
3573 // Nested requirement
3574 // C++ [expr.prim.req.nested]
3575 // nested-requirement:
3576 // 'requires' constraint-expression ';'
3577 ExprResult ConstraintExpr =
3578 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3579 if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3580 SkipUntil(tok::semi, tok::r_brace,
3581 SkipUntilFlags::StopBeforeMatch);
3582 break;
3583 }
3584 if (auto *Req =
3585 Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3586 Requirements.push_back(Req);
3587 else {
3588 SkipUntil(tok::semi, tok::r_brace,
3589 SkipUntilFlags::StopBeforeMatch);
3590 break;
3591 }
3592 break;
3593 } else
3594 PossibleRequiresExprInSimpleRequirement = true;
3595 } else if (Tok.is(tok::kw_typename)) {
3596 // This might be 'typename T::value_type;' (a type requirement) or
3597 // 'typename T::value_type{};' (a simple requirement).
3598 TentativeParsingAction TPA(*this);
3599
3600 // We need to consume the typename to allow 'requires { typename a; }'
3601 SourceLocation TypenameKWLoc = ConsumeToken();
3602 if (TryAnnotateOptionalCXXScopeToken()) {
3603 TPA.Commit();
3604 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3605 break;
3606 }
3607 CXXScopeSpec SS;
3608 if (Tok.is(tok::annot_cxxscope)) {
3609 Actions.RestoreNestedNameSpecifierAnnotation(
3610 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3611 ConsumeAnnotationToken();
3612 }
3613
3614 if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3615 !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3616 TPA.Commit();
3617 SourceLocation NameLoc = Tok.getLocation();
3618 IdentifierInfo *II = nullptr;
3619 TemplateIdAnnotation *TemplateId = nullptr;
3620 if (Tok.is(tok::identifier)) {
3621 II = Tok.getIdentifierInfo();
3622 ConsumeToken();
3623 } else {
3624 TemplateId = takeTemplateIdAnnotation(Tok);
3625 ConsumeAnnotationToken();
3626 if (TemplateId->isInvalid())
3627 break;
3628 }
3629
3630 if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3631 NameLoc, II,
3632 TemplateId)) {
3633 Requirements.push_back(Req);
3634 }
3635 break;
3636 }
3637 TPA.Revert();
3638 }
3639 // Simple requirement
3640 // C++ [expr.prim.req.simple]
3641 // simple-requirement:
3642 // expression ';'
3643 SourceLocation StartLoc = Tok.getLocation();
3644 ExprResult Expression =
3645 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3646 if (!Expression.isUsable()) {
3647 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3648 break;
3649 }
3650 if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3651 Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3652 << FixItHint::CreateInsertion(StartLoc, "requires");
3653 if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3654 Requirements.push_back(Req);
3655 else {
3656 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3657 break;
3658 }
3659 // User may have tried to put some compound requirement stuff here
3660 if (Tok.is(tok::kw_noexcept)) {
3661 Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3662 << FixItHint::CreateInsertion(StartLoc, "{")
3663 << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3664 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3665 break;
3666 }
3667 break;
3668 }
3669 }
3670 if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3671 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3672 TryConsumeToken(tok::semi);
3673 break;
3674 }
3675 }
3676 if (Requirements.empty()) {
3677 // Don't emit an empty requires expr here to avoid confusing the user with
3678 // other diagnostics quoting an empty requires expression they never
3679 // wrote.
3680 Braces.consumeClose();
3681 Actions.ActOnFinishRequiresExpr();
3682 return ExprError();
3683 }
3684 }
3685 Braces.consumeClose();
3686 Actions.ActOnFinishRequiresExpr();
3687 return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
3688 Requirements, Braces.getCloseLocation());
3689 }
3690
TypeTraitFromTokKind(tok::TokenKind kind)3691 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3692 switch (kind) {
3693 default: llvm_unreachable("Not a known type trait");
3694 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3695 case tok::kw_ ## Spelling: return UTT_ ## Name;
3696 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3697 case tok::kw_ ## Spelling: return BTT_ ## Name;
3698 #include "clang/Basic/TokenKinds.def"
3699 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3700 case tok::kw_ ## Spelling: return TT_ ## Name;
3701 #include "clang/Basic/TokenKinds.def"
3702 }
3703 }
3704
ArrayTypeTraitFromTokKind(tok::TokenKind kind)3705 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3706 switch (kind) {
3707 default:
3708 llvm_unreachable("Not a known array type trait");
3709 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
3710 case tok::kw_##Spelling: \
3711 return ATT_##Name;
3712 #include "clang/Basic/TokenKinds.def"
3713 }
3714 }
3715
ExpressionTraitFromTokKind(tok::TokenKind kind)3716 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3717 switch (kind) {
3718 default:
3719 llvm_unreachable("Not a known unary expression trait.");
3720 #define EXPRESSION_TRAIT(Spelling, Name, Key) \
3721 case tok::kw_##Spelling: \
3722 return ET_##Name;
3723 #include "clang/Basic/TokenKinds.def"
3724 }
3725 }
3726
TypeTraitArity(tok::TokenKind kind)3727 static unsigned TypeTraitArity(tok::TokenKind kind) {
3728 switch (kind) {
3729 default: llvm_unreachable("Not a known type trait");
3730 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
3731 #include "clang/Basic/TokenKinds.def"
3732 }
3733 }
3734
3735 /// Parse the built-in type-trait pseudo-functions that allow
3736 /// implementation of the TR1/C++11 type traits templates.
3737 ///
3738 /// primary-expression:
3739 /// unary-type-trait '(' type-id ')'
3740 /// binary-type-trait '(' type-id ',' type-id ')'
3741 /// type-trait '(' type-id-seq ')'
3742 ///
3743 /// type-id-seq:
3744 /// type-id ...[opt] type-id-seq[opt]
3745 ///
ParseTypeTrait()3746 ExprResult Parser::ParseTypeTrait() {
3747 tok::TokenKind Kind = Tok.getKind();
3748 unsigned Arity = TypeTraitArity(Kind);
3749
3750 SourceLocation Loc = ConsumeToken();
3751
3752 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3753 if (Parens.expectAndConsume())
3754 return ExprError();
3755
3756 SmallVector<ParsedType, 2> Args;
3757 do {
3758 // Parse the next type.
3759 TypeResult Ty = ParseTypeName();
3760 if (Ty.isInvalid()) {
3761 Parens.skipToEnd();
3762 return ExprError();
3763 }
3764
3765 // Parse the ellipsis, if present.
3766 if (Tok.is(tok::ellipsis)) {
3767 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3768 if (Ty.isInvalid()) {
3769 Parens.skipToEnd();
3770 return ExprError();
3771 }
3772 }
3773
3774 // Add this type to the list of arguments.
3775 Args.push_back(Ty.get());
3776 } while (TryConsumeToken(tok::comma));
3777
3778 if (Parens.consumeClose())
3779 return ExprError();
3780
3781 SourceLocation EndLoc = Parens.getCloseLocation();
3782
3783 if (Arity && Args.size() != Arity) {
3784 Diag(EndLoc, diag::err_type_trait_arity)
3785 << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
3786 return ExprError();
3787 }
3788
3789 if (!Arity && Args.empty()) {
3790 Diag(EndLoc, diag::err_type_trait_arity)
3791 << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
3792 return ExprError();
3793 }
3794
3795 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3796 }
3797
3798 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3799 /// pseudo-functions.
3800 ///
3801 /// primary-expression:
3802 /// [Embarcadero] '__array_rank' '(' type-id ')'
3803 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
3804 ///
ParseArrayTypeTrait()3805 ExprResult Parser::ParseArrayTypeTrait() {
3806 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3807 SourceLocation Loc = ConsumeToken();
3808
3809 BalancedDelimiterTracker T(*this, tok::l_paren);
3810 if (T.expectAndConsume())
3811 return ExprError();
3812
3813 TypeResult Ty = ParseTypeName();
3814 if (Ty.isInvalid()) {
3815 SkipUntil(tok::comma, StopAtSemi);
3816 SkipUntil(tok::r_paren, StopAtSemi);
3817 return ExprError();
3818 }
3819
3820 switch (ATT) {
3821 case ATT_ArrayRank: {
3822 T.consumeClose();
3823 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3824 T.getCloseLocation());
3825 }
3826 case ATT_ArrayExtent: {
3827 if (ExpectAndConsume(tok::comma)) {
3828 SkipUntil(tok::r_paren, StopAtSemi);
3829 return ExprError();
3830 }
3831
3832 ExprResult DimExpr = ParseExpression();
3833 T.consumeClose();
3834
3835 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3836 T.getCloseLocation());
3837 }
3838 }
3839 llvm_unreachable("Invalid ArrayTypeTrait!");
3840 }
3841
3842 /// ParseExpressionTrait - Parse built-in expression-trait
3843 /// pseudo-functions like __is_lvalue_expr( xxx ).
3844 ///
3845 /// primary-expression:
3846 /// [Embarcadero] expression-trait '(' expression ')'
3847 ///
ParseExpressionTrait()3848 ExprResult Parser::ParseExpressionTrait() {
3849 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3850 SourceLocation Loc = ConsumeToken();
3851
3852 BalancedDelimiterTracker T(*this, tok::l_paren);
3853 if (T.expectAndConsume())
3854 return ExprError();
3855
3856 ExprResult Expr = ParseExpression();
3857
3858 T.consumeClose();
3859
3860 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3861 T.getCloseLocation());
3862 }
3863
3864
3865 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3866 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3867 /// based on the context past the parens.
3868 ExprResult
ParseCXXAmbiguousParenExpression(ParenParseOption & ExprType,ParsedType & CastTy,BalancedDelimiterTracker & Tracker,ColonProtectionRAIIObject & ColonProt)3869 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3870 ParsedType &CastTy,
3871 BalancedDelimiterTracker &Tracker,
3872 ColonProtectionRAIIObject &ColonProt) {
3873 assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3874 assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3875 assert(isTypeIdInParens() && "Not a type-id!");
3876
3877 ExprResult Result(true);
3878 CastTy = nullptr;
3879
3880 // We need to disambiguate a very ugly part of the C++ syntax:
3881 //
3882 // (T())x; - type-id
3883 // (T())*x; - type-id
3884 // (T())/x; - expression
3885 // (T()); - expression
3886 //
3887 // The bad news is that we cannot use the specialized tentative parser, since
3888 // it can only verify that the thing inside the parens can be parsed as
3889 // type-id, it is not useful for determining the context past the parens.
3890 //
3891 // The good news is that the parser can disambiguate this part without
3892 // making any unnecessary Action calls.
3893 //
3894 // It uses a scheme similar to parsing inline methods. The parenthesized
3895 // tokens are cached, the context that follows is determined (possibly by
3896 // parsing a cast-expression), and then we re-introduce the cached tokens
3897 // into the token stream and parse them appropriately.
3898
3899 ParenParseOption ParseAs;
3900 CachedTokens Toks;
3901
3902 // Store the tokens of the parentheses. We will parse them after we determine
3903 // the context that follows them.
3904 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3905 // We didn't find the ')' we expected.
3906 Tracker.consumeClose();
3907 return ExprError();
3908 }
3909
3910 if (Tok.is(tok::l_brace)) {
3911 ParseAs = CompoundLiteral;
3912 } else {
3913 bool NotCastExpr;
3914 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3915 NotCastExpr = true;
3916 } else {
3917 // Try parsing the cast-expression that may follow.
3918 // If it is not a cast-expression, NotCastExpr will be true and no token
3919 // will be consumed.
3920 ColonProt.restore();
3921 Result = ParseCastExpression(AnyCastExpr,
3922 false/*isAddressofOperand*/,
3923 NotCastExpr,
3924 // type-id has priority.
3925 IsTypeCast);
3926 }
3927
3928 // If we parsed a cast-expression, it's really a type-id, otherwise it's
3929 // an expression.
3930 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3931 }
3932
3933 // Create a fake EOF to mark end of Toks buffer.
3934 Token AttrEnd;
3935 AttrEnd.startToken();
3936 AttrEnd.setKind(tok::eof);
3937 AttrEnd.setLocation(Tok.getLocation());
3938 AttrEnd.setEofData(Toks.data());
3939 Toks.push_back(AttrEnd);
3940
3941 // The current token should go after the cached tokens.
3942 Toks.push_back(Tok);
3943 // Re-enter the stored parenthesized tokens into the token stream, so we may
3944 // parse them now.
3945 PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
3946 /*IsReinject*/ true);
3947 // Drop the current token and bring the first cached one. It's the same token
3948 // as when we entered this function.
3949 ConsumeAnyToken();
3950
3951 if (ParseAs >= CompoundLiteral) {
3952 // Parse the type declarator.
3953 DeclSpec DS(AttrFactory);
3954 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3955 DeclaratorContext::TypeName);
3956 {
3957 ColonProtectionRAIIObject InnerColonProtection(*this);
3958 ParseSpecifierQualifierList(DS);
3959 ParseDeclarator(DeclaratorInfo);
3960 }
3961
3962 // Match the ')'.
3963 Tracker.consumeClose();
3964 ColonProt.restore();
3965
3966 // Consume EOF marker for Toks buffer.
3967 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3968 ConsumeAnyToken();
3969
3970 if (ParseAs == CompoundLiteral) {
3971 ExprType = CompoundLiteral;
3972 if (DeclaratorInfo.isInvalidType())
3973 return ExprError();
3974
3975 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3976 return ParseCompoundLiteralExpression(Ty.get(),
3977 Tracker.getOpenLocation(),
3978 Tracker.getCloseLocation());
3979 }
3980
3981 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3982 assert(ParseAs == CastExpr);
3983
3984 if (DeclaratorInfo.isInvalidType())
3985 return ExprError();
3986
3987 // Result is what ParseCastExpression returned earlier.
3988 if (!Result.isInvalid())
3989 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3990 DeclaratorInfo, CastTy,
3991 Tracker.getCloseLocation(), Result.get());
3992 return Result;
3993 }
3994
3995 // Not a compound literal, and not followed by a cast-expression.
3996 assert(ParseAs == SimpleExpr);
3997
3998 ExprType = SimpleExpr;
3999 Result = ParseExpression();
4000 if (!Result.isInvalid() && Tok.is(tok::r_paren))
4001 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
4002 Tok.getLocation(), Result.get());
4003
4004 // Match the ')'.
4005 if (Result.isInvalid()) {
4006 while (Tok.isNot(tok::eof))
4007 ConsumeAnyToken();
4008 assert(Tok.getEofData() == AttrEnd.getEofData());
4009 ConsumeAnyToken();
4010 return ExprError();
4011 }
4012
4013 Tracker.consumeClose();
4014 // Consume EOF marker for Toks buffer.
4015 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4016 ConsumeAnyToken();
4017 return Result;
4018 }
4019
4020 /// Parse a __builtin_bit_cast(T, E).
ParseBuiltinBitCast()4021 ExprResult Parser::ParseBuiltinBitCast() {
4022 SourceLocation KWLoc = ConsumeToken();
4023
4024 BalancedDelimiterTracker T(*this, tok::l_paren);
4025 if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4026 return ExprError();
4027
4028 // Parse the common declaration-specifiers piece.
4029 DeclSpec DS(AttrFactory);
4030 ParseSpecifierQualifierList(DS);
4031
4032 // Parse the abstract-declarator, if present.
4033 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4034 DeclaratorContext::TypeName);
4035 ParseDeclarator(DeclaratorInfo);
4036
4037 if (ExpectAndConsume(tok::comma)) {
4038 Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4039 SkipUntil(tok::r_paren, StopAtSemi);
4040 return ExprError();
4041 }
4042
4043 ExprResult Operand = ParseExpression();
4044
4045 if (T.consumeClose())
4046 return ExprError();
4047
4048 if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4049 return ExprError();
4050
4051 return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4052 T.getCloseLocation());
4053 }
4054