1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations. Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 // - Pointers that point to two completely different objects in memory never
27 // alias, regardless of the value of the Size component.
28 // - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 // is two pointers to constant memory. Even if they are equal, constant
30 // memory is never stored to, so there will never be any dependencies.
31 // In this and other situations, the pointers may be both NoAlias and
32 // MustAlias at the same time. The current API can only return one result,
33 // though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/Optional.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Pass.h"
46 #include <cstdint>
47 #include <functional>
48 #include <memory>
49 #include <vector>
50
51 namespace llvm {
52
53 class AnalysisUsage;
54 class AtomicCmpXchgInst;
55 class BasicAAResult;
56 class BasicBlock;
57 class CatchPadInst;
58 class CatchReturnInst;
59 class DominatorTree;
60 class FenceInst;
61 class Function;
62 class LoopInfo;
63 class PreservedAnalyses;
64 class TargetLibraryInfo;
65 class Value;
66 template <typename> class SmallPtrSetImpl;
67
68 /// The possible results of an alias query.
69 ///
70 /// These results are always computed between two MemoryLocation objects as
71 /// a query to some alias analysis.
72 ///
73 /// Note that these are unscoped enumerations because we would like to support
74 /// implicitly testing a result for the existence of any possible aliasing with
75 /// a conversion to bool, but an "enum class" doesn't support this. The
76 /// canonical names from the literature are suffixed and unique anyways, and so
77 /// they serve as global constants in LLVM for these results.
78 ///
79 /// See docs/AliasAnalysis.html for more information on the specific meanings
80 /// of these values.
81 class AliasResult {
82 private:
83 static const int OffsetBits = 23;
84 static const int AliasBits = 8;
85 static_assert(AliasBits + 1 + OffsetBits <= 32,
86 "AliasResult size is intended to be 4 bytes!");
87
88 unsigned int Alias : AliasBits;
89 unsigned int HasOffset : 1;
90 signed int Offset : OffsetBits;
91
92 public:
93 enum Kind : uint8_t {
94 /// The two locations do not alias at all.
95 ///
96 /// This value is arranged to convert to false, while all other values
97 /// convert to true. This allows a boolean context to convert the result to
98 /// a binary flag indicating whether there is the possibility of aliasing.
99 NoAlias = 0,
100 /// The two locations may or may not alias. This is the least precise
101 /// result.
102 MayAlias,
103 /// The two locations alias, but only due to a partial overlap.
104 PartialAlias,
105 /// The two locations precisely alias each other.
106 MustAlias,
107 };
108 static_assert(MustAlias < (1 << AliasBits),
109 "Not enough bit field size for the enum!");
110
111 explicit AliasResult() = delete;
AliasResult(const Kind & Alias)112 constexpr AliasResult(const Kind &Alias)
113 : Alias(Alias), HasOffset(false), Offset(0) {}
114
Kind()115 operator Kind() const { return static_cast<Kind>(Alias); }
116
hasOffset()117 constexpr bool hasOffset() const { return HasOffset; }
getOffset()118 constexpr int32_t getOffset() const {
119 assert(HasOffset && "No offset!");
120 return Offset;
121 }
setOffset(int32_t NewOffset)122 void setOffset(int32_t NewOffset) {
123 if (isInt<OffsetBits>(NewOffset)) {
124 HasOffset = true;
125 Offset = NewOffset;
126 }
127 }
128
129 /// Helper for processing AliasResult for swapped memory location pairs.
130 void swap(bool DoSwap = true) {
131 if (DoSwap && hasOffset())
132 setOffset(-getOffset());
133 }
134 };
135
136 static_assert(sizeof(AliasResult) == 4,
137 "AliasResult size is intended to be 4 bytes!");
138
139 /// << operator for AliasResult.
140 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
141
142 /// Flags indicating whether a memory access modifies or references memory.
143 ///
144 /// This is no access at all, a modification, a reference, or both
145 /// a modification and a reference. These are specifically structured such that
146 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
147 /// work with any of the possible values.
148 enum class ModRefInfo : uint8_t {
149 /// Must is provided for completeness, but no routines will return only
150 /// Must today. See definition of Must below.
151 Must = 0,
152 /// The access may reference the value stored in memory,
153 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
154 MustRef = 1,
155 /// The access may modify the value stored in memory,
156 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
157 MustMod = 2,
158 /// The access may reference, modify or both the value stored in memory,
159 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
160 MustModRef = MustRef | MustMod,
161 /// The access neither references nor modifies the value stored in memory.
162 NoModRef = 4,
163 /// The access may reference the value stored in memory.
164 Ref = NoModRef | MustRef,
165 /// The access may modify the value stored in memory.
166 Mod = NoModRef | MustMod,
167 /// The access may reference and may modify the value stored in memory.
168 ModRef = Ref | Mod,
169
170 /// About Must:
171 /// Must is set in a best effort manner.
172 /// We usually do not try our best to infer Must, instead it is merely
173 /// another piece of "free" information that is presented when available.
174 /// Must set means there was certainly a MustAlias found. For calls,
175 /// where multiple arguments are checked (argmemonly), this translates to
176 /// only MustAlias or NoAlias was found.
177 /// Must is not set for RAR accesses, even if the two locations must
178 /// alias. The reason is that two read accesses translate to an early return
179 /// of NoModRef. An additional alias check to set Must may be
180 /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
181 /// We refer to Must being *set* when the most significant bit is *cleared*.
182 /// Conversely we *clear* Must information by *setting* the Must bit to 1.
183 };
184
isNoModRef(const ModRefInfo MRI)185 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
186 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
187 static_cast<int>(ModRefInfo::Must);
188 }
isModOrRefSet(const ModRefInfo MRI)189 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
190 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
191 }
isModAndRefSet(const ModRefInfo MRI)192 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
193 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
194 static_cast<int>(ModRefInfo::MustModRef);
195 }
isModSet(const ModRefInfo MRI)196 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
197 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
198 }
isRefSet(const ModRefInfo MRI)199 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
200 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
201 }
isMustSet(const ModRefInfo MRI)202 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
203 return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
204 }
205
setMod(const ModRefInfo MRI)206 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
207 return ModRefInfo(static_cast<int>(MRI) |
208 static_cast<int>(ModRefInfo::MustMod));
209 }
setRef(const ModRefInfo MRI)210 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
211 return ModRefInfo(static_cast<int>(MRI) |
212 static_cast<int>(ModRefInfo::MustRef));
213 }
setMust(const ModRefInfo MRI)214 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
215 return ModRefInfo(static_cast<int>(MRI) &
216 static_cast<int>(ModRefInfo::MustModRef));
217 }
setModAndRef(const ModRefInfo MRI)218 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
219 return ModRefInfo(static_cast<int>(MRI) |
220 static_cast<int>(ModRefInfo::MustModRef));
221 }
clearMod(const ModRefInfo MRI)222 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
223 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
224 }
clearRef(const ModRefInfo MRI)225 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
226 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
227 }
clearMust(const ModRefInfo MRI)228 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
229 return ModRefInfo(static_cast<int>(MRI) |
230 static_cast<int>(ModRefInfo::NoModRef));
231 }
unionModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)232 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
233 const ModRefInfo MRI2) {
234 return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
235 }
intersectModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)236 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
237 const ModRefInfo MRI2) {
238 return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
239 }
240
241 /// The locations at which a function might access memory.
242 ///
243 /// These are primarily used in conjunction with the \c AccessKind bits to
244 /// describe both the nature of access and the locations of access for a
245 /// function call.
246 enum FunctionModRefLocation {
247 /// Base case is no access to memory.
248 FMRL_Nowhere = 0,
249 /// Access to memory via argument pointers.
250 FMRL_ArgumentPointees = 8,
251 /// Memory that is inaccessible via LLVM IR.
252 FMRL_InaccessibleMem = 16,
253 /// Access to any memory.
254 FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
255 };
256
257 /// Summary of how a function affects memory in the program.
258 ///
259 /// Loads from constant globals are not considered memory accesses for this
260 /// interface. Also, functions may freely modify stack space local to their
261 /// invocation without having to report it through these interfaces.
262 enum FunctionModRefBehavior {
263 /// This function does not perform any non-local loads or stores to memory.
264 ///
265 /// This property corresponds to the GCC 'const' attribute.
266 /// This property corresponds to the LLVM IR 'readnone' attribute.
267 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
268 FMRB_DoesNotAccessMemory =
269 FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
270
271 /// The only memory references in this function (if it has any) are
272 /// non-volatile loads from objects pointed to by its pointer-typed
273 /// arguments, with arbitrary offsets.
274 ///
275 /// This property corresponds to the combination of the IntrReadMem
276 /// and IntrArgMemOnly LLVM intrinsic flags.
277 FMRB_OnlyReadsArgumentPointees =
278 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
279
280 /// The only memory references in this function (if it has any) are
281 /// non-volatile stores from objects pointed to by its pointer-typed
282 /// arguments, with arbitrary offsets.
283 ///
284 /// This property corresponds to the combination of the IntrWriteMem
285 /// and IntrArgMemOnly LLVM intrinsic flags.
286 FMRB_OnlyWritesArgumentPointees =
287 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Mod),
288
289 /// The only memory references in this function (if it has any) are
290 /// non-volatile loads and stores from objects pointed to by its
291 /// pointer-typed arguments, with arbitrary offsets.
292 ///
293 /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
294 FMRB_OnlyAccessesArgumentPointees =
295 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
296
297 /// The only memory references in this function (if it has any) are
298 /// reads of memory that is otherwise inaccessible via LLVM IR.
299 ///
300 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
301 FMRB_OnlyReadsInaccessibleMem =
302 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Ref),
303
304 /// The only memory references in this function (if it has any) are
305 /// writes to memory that is otherwise inaccessible via LLVM IR.
306 ///
307 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
308 FMRB_OnlyWritesInaccessibleMem =
309 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Mod),
310
311 /// The only memory references in this function (if it has any) are
312 /// references of memory that is otherwise inaccessible via LLVM IR.
313 ///
314 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
315 FMRB_OnlyAccessesInaccessibleMem =
316 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
317
318 /// The function may perform non-volatile loads from objects pointed
319 /// to by its pointer-typed arguments, with arbitrary offsets, and
320 /// it may also perform loads of memory that is otherwise
321 /// inaccessible via LLVM IR.
322 ///
323 /// This property corresponds to the LLVM IR
324 /// inaccessiblemem_or_argmemonly attribute.
325 FMRB_OnlyReadsInaccessibleOrArgMem = FMRL_InaccessibleMem |
326 FMRL_ArgumentPointees |
327 static_cast<int>(ModRefInfo::Ref),
328
329 /// The function may perform non-volatile stores to objects pointed
330 /// to by its pointer-typed arguments, with arbitrary offsets, and
331 /// it may also perform stores of memory that is otherwise
332 /// inaccessible via LLVM IR.
333 ///
334 /// This property corresponds to the LLVM IR
335 /// inaccessiblemem_or_argmemonly attribute.
336 FMRB_OnlyWritesInaccessibleOrArgMem = FMRL_InaccessibleMem |
337 FMRL_ArgumentPointees |
338 static_cast<int>(ModRefInfo::Mod),
339
340 /// The function may perform non-volatile loads and stores of objects
341 /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
342 /// it may also perform loads and stores of memory that is otherwise
343 /// inaccessible via LLVM IR.
344 ///
345 /// This property corresponds to the LLVM IR
346 /// inaccessiblemem_or_argmemonly attribute.
347 FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
348 FMRL_ArgumentPointees |
349 static_cast<int>(ModRefInfo::ModRef),
350
351 /// This function does not perform any non-local stores or volatile loads,
352 /// but may read from any memory location.
353 ///
354 /// This property corresponds to the GCC 'pure' attribute.
355 /// This property corresponds to the LLVM IR 'readonly' attribute.
356 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
357 FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
358
359 // This function does not read from memory anywhere, but may write to any
360 // memory location.
361 //
362 // This property corresponds to the LLVM IR 'writeonly' attribute.
363 // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
364 FMRB_OnlyWritesMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
365
366 /// This indicates that the function could not be classified into one of the
367 /// behaviors above.
368 FMRB_UnknownModRefBehavior =
369 FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
370 };
371
372 // Wrapper method strips bits significant only in FunctionModRefBehavior,
373 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
374 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
375 // entry with all bits set to 1.
376 LLVM_NODISCARD inline ModRefInfo
createModRefInfo(const FunctionModRefBehavior FMRB)377 createModRefInfo(const FunctionModRefBehavior FMRB) {
378 return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
379 }
380
381 /// Virtual base class for providers of capture information.
382 struct CaptureInfo {
383 virtual ~CaptureInfo() = 0;
384 virtual bool isNotCapturedBeforeOrAt(const Value *Object,
385 const Instruction *I) = 0;
386 };
387
388 /// Context-free CaptureInfo provider, which computes and caches whether an
389 /// object is captured in the function at all, but does not distinguish whether
390 /// it was captured before or after the context instruction.
391 class SimpleCaptureInfo final : public CaptureInfo {
392 SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
393
394 public:
395 bool isNotCapturedBeforeOrAt(const Value *Object,
396 const Instruction *I) override;
397 };
398
399 /// Context-sensitive CaptureInfo provider, which computes and caches the
400 /// earliest common dominator closure of all captures. It provides a good
401 /// approximation to a precise "captures before" analysis.
402 class EarliestEscapeInfo final : public CaptureInfo {
403 DominatorTree &DT;
404 const LoopInfo &LI;
405
406 /// Map from identified local object to an instruction before which it does
407 /// not escape, or nullptr if it never escapes. The "earliest" instruction
408 /// may be a conservative approximation, e.g. the first instruction in the
409 /// function is always a legal choice.
410 DenseMap<const Value *, Instruction *> EarliestEscapes;
411
412 /// Reverse map from instruction to the objects it is the earliest escape for.
413 /// This is used for cache invalidation purposes.
414 DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
415
416 const SmallPtrSetImpl<const Value *> &EphValues;
417
418 public:
EarliestEscapeInfo(DominatorTree & DT,const LoopInfo & LI,const SmallPtrSetImpl<const Value * > & EphValues)419 EarliestEscapeInfo(DominatorTree &DT, const LoopInfo &LI,
420 const SmallPtrSetImpl<const Value *> &EphValues)
421 : DT(DT), LI(LI), EphValues(EphValues) {}
422
423 bool isNotCapturedBeforeOrAt(const Value *Object,
424 const Instruction *I) override;
425
426 void removeInstruction(Instruction *I);
427 };
428
429 /// Reduced version of MemoryLocation that only stores a pointer and size.
430 /// Used for caching AATags independent BasicAA results.
431 struct AACacheLoc {
432 const Value *Ptr;
433 LocationSize Size;
434 };
435
436 template <> struct DenseMapInfo<AACacheLoc> {
437 static inline AACacheLoc getEmptyKey() {
438 return {DenseMapInfo<const Value *>::getEmptyKey(),
439 DenseMapInfo<LocationSize>::getEmptyKey()};
440 }
441 static inline AACacheLoc getTombstoneKey() {
442 return {DenseMapInfo<const Value *>::getTombstoneKey(),
443 DenseMapInfo<LocationSize>::getTombstoneKey()};
444 }
445 static unsigned getHashValue(const AACacheLoc &Val) {
446 return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
447 DenseMapInfo<LocationSize>::getHashValue(Val.Size);
448 }
449 static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
450 return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
451 }
452 };
453
454 /// This class stores info we want to provide to or retain within an alias
455 /// query. By default, the root query is stateless and starts with a freshly
456 /// constructed info object. Specific alias analyses can use this query info to
457 /// store per-query state that is important for recursive or nested queries to
458 /// avoid recomputing. To enable preserving this state across multiple queries
459 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
460 /// The information stored in an `AAQueryInfo` is currently limitted to the
461 /// caches used by BasicAA, but can further be extended to fit other AA needs.
462 class AAQueryInfo {
463 public:
464 using LocPair = std::pair<AACacheLoc, AACacheLoc>;
465 struct CacheEntry {
466 AliasResult Result;
467 /// Number of times a NoAlias assumption has been used.
468 /// 0 for assumptions that have not been used, -1 for definitive results.
469 int NumAssumptionUses;
470 /// Whether this is a definitive (non-assumption) result.
471 bool isDefinitive() const { return NumAssumptionUses < 0; }
472 };
473 using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
474 AliasCacheT AliasCache;
475
476 CaptureInfo *CI;
477
478 /// Query depth used to distinguish recursive queries.
479 unsigned Depth = 0;
480
481 /// How many active NoAlias assumption uses there are.
482 int NumAssumptionUses = 0;
483
484 /// Location pairs for which an assumption based result is currently stored.
485 /// Used to remove all potentially incorrect results from the cache if an
486 /// assumption is disproven.
487 SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
488
489 AAQueryInfo(CaptureInfo *CI) : CI(CI) {}
490
491 /// Create a new AAQueryInfo based on this one, but with the cache cleared.
492 /// This is used for recursive queries across phis, where cache results may
493 /// not be valid.
494 AAQueryInfo withEmptyCache() {
495 AAQueryInfo NewAAQI(CI);
496 NewAAQI.Depth = Depth;
497 return NewAAQI;
498 }
499 };
500
501 /// AAQueryInfo that uses SimpleCaptureInfo.
502 class SimpleAAQueryInfo : public AAQueryInfo {
503 SimpleCaptureInfo CI;
504
505 public:
506 SimpleAAQueryInfo() : AAQueryInfo(&CI) {}
507 };
508
509 class BatchAAResults;
510
511 class AAResults {
512 public:
513 // Make these results default constructable and movable. We have to spell
514 // these out because MSVC won't synthesize them.
515 AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
516 AAResults(AAResults &&Arg);
517 ~AAResults();
518
519 /// Register a specific AA result.
520 template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
521 // FIXME: We should use a much lighter weight system than the usual
522 // polymorphic pattern because we don't own AAResult. It should
523 // ideally involve two pointers and no separate allocation.
524 AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
525 }
526
527 /// Register a function analysis ID that the results aggregation depends on.
528 ///
529 /// This is used in the new pass manager to implement the invalidation logic
530 /// where we must invalidate the results aggregation if any of our component
531 /// analyses become invalid.
532 void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
533
534 /// Handle invalidation events in the new pass manager.
535 ///
536 /// The aggregation is invalidated if any of the underlying analyses is
537 /// invalidated.
538 bool invalidate(Function &F, const PreservedAnalyses &PA,
539 FunctionAnalysisManager::Invalidator &Inv);
540
541 //===--------------------------------------------------------------------===//
542 /// \name Alias Queries
543 /// @{
544
545 /// The main low level interface to the alias analysis implementation.
546 /// Returns an AliasResult indicating whether the two pointers are aliased to
547 /// each other. This is the interface that must be implemented by specific
548 /// alias analysis implementations.
549 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
550
551 /// A convenience wrapper around the primary \c alias interface.
552 AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
553 LocationSize V2Size) {
554 return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
555 }
556
557 /// A convenience wrapper around the primary \c alias interface.
558 AliasResult alias(const Value *V1, const Value *V2) {
559 return alias(MemoryLocation::getBeforeOrAfter(V1),
560 MemoryLocation::getBeforeOrAfter(V2));
561 }
562
563 /// A trivial helper function to check to see if the specified pointers are
564 /// no-alias.
565 bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
566 return alias(LocA, LocB) == AliasResult::NoAlias;
567 }
568
569 /// A convenience wrapper around the \c isNoAlias helper interface.
570 bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
571 LocationSize V2Size) {
572 return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
573 }
574
575 /// A convenience wrapper around the \c isNoAlias helper interface.
576 bool isNoAlias(const Value *V1, const Value *V2) {
577 return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
578 MemoryLocation::getBeforeOrAfter(V2));
579 }
580
581 /// A trivial helper function to check to see if the specified pointers are
582 /// must-alias.
583 bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
584 return alias(LocA, LocB) == AliasResult::MustAlias;
585 }
586
587 /// A convenience wrapper around the \c isMustAlias helper interface.
588 bool isMustAlias(const Value *V1, const Value *V2) {
589 return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
590 AliasResult::MustAlias;
591 }
592
593 /// Checks whether the given location points to constant memory, or if
594 /// \p OrLocal is true whether it points to a local alloca.
595 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
596
597 /// A convenience wrapper around the primary \c pointsToConstantMemory
598 /// interface.
599 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
600 return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
601 }
602
603 /// @}
604 //===--------------------------------------------------------------------===//
605 /// \name Simple mod/ref information
606 /// @{
607
608 /// Get the ModRef info associated with a pointer argument of a call. The
609 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
610 /// that these bits do not necessarily account for the overall behavior of
611 /// the function, but rather only provide additional per-argument
612 /// information. This never sets ModRefInfo::Must.
613 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
614
615 /// Return the behavior of the given call site.
616 FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
617
618 /// Return the behavior when calling the given function.
619 FunctionModRefBehavior getModRefBehavior(const Function *F);
620
621 /// Checks if the specified call is known to never read or write memory.
622 ///
623 /// Note that if the call only reads from known-constant memory, it is also
624 /// legal to return true. Also, calls that unwind the stack are legal for
625 /// this predicate.
626 ///
627 /// Many optimizations (such as CSE and LICM) can be performed on such calls
628 /// without worrying about aliasing properties, and many calls have this
629 /// property (e.g. calls to 'sin' and 'cos').
630 ///
631 /// This property corresponds to the GCC 'const' attribute.
632 bool doesNotAccessMemory(const CallBase *Call) {
633 return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
634 }
635
636 /// Checks if the specified function is known to never read or write memory.
637 ///
638 /// Note that if the function only reads from known-constant memory, it is
639 /// also legal to return true. Also, function that unwind the stack are legal
640 /// for this predicate.
641 ///
642 /// Many optimizations (such as CSE and LICM) can be performed on such calls
643 /// to such functions without worrying about aliasing properties, and many
644 /// functions have this property (e.g. 'sin' and 'cos').
645 ///
646 /// This property corresponds to the GCC 'const' attribute.
647 bool doesNotAccessMemory(const Function *F) {
648 return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
649 }
650
651 /// Checks if the specified call is known to only read from non-volatile
652 /// memory (or not access memory at all).
653 ///
654 /// Calls that unwind the stack are legal for this predicate.
655 ///
656 /// This property allows many common optimizations to be performed in the
657 /// absence of interfering store instructions, such as CSE of strlen calls.
658 ///
659 /// This property corresponds to the GCC 'pure' attribute.
660 bool onlyReadsMemory(const CallBase *Call) {
661 return onlyReadsMemory(getModRefBehavior(Call));
662 }
663
664 /// Checks if the specified function is known to only read from non-volatile
665 /// memory (or not access memory at all).
666 ///
667 /// Functions that unwind the stack are legal for this predicate.
668 ///
669 /// This property allows many common optimizations to be performed in the
670 /// absence of interfering store instructions, such as CSE of strlen calls.
671 ///
672 /// This property corresponds to the GCC 'pure' attribute.
673 bool onlyReadsMemory(const Function *F) {
674 return onlyReadsMemory(getModRefBehavior(F));
675 }
676
677 /// Checks if functions with the specified behavior are known to only read
678 /// from non-volatile memory (or not access memory at all).
679 static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
680 return !isModSet(createModRefInfo(MRB));
681 }
682
683 /// Checks if functions with the specified behavior are known to only write
684 /// memory (or not access memory at all).
685 static bool onlyWritesMemory(FunctionModRefBehavior MRB) {
686 return !isRefSet(createModRefInfo(MRB));
687 }
688
689 /// Checks if functions with the specified behavior are known to read and
690 /// write at most from objects pointed to by their pointer-typed arguments
691 /// (with arbitrary offsets).
692 static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
693 return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
694 }
695
696 /// Checks if functions with the specified behavior are known to potentially
697 /// read or write from objects pointed to be their pointer-typed arguments
698 /// (with arbitrary offsets).
699 static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
700 return isModOrRefSet(createModRefInfo(MRB)) &&
701 ((unsigned)MRB & FMRL_ArgumentPointees);
702 }
703
704 /// Checks if functions with the specified behavior are known to read and
705 /// write at most from memory that is inaccessible from LLVM IR.
706 static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
707 return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
708 }
709
710 /// Checks if functions with the specified behavior are known to potentially
711 /// read or write from memory that is inaccessible from LLVM IR.
712 static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
713 return isModOrRefSet(createModRefInfo(MRB)) &&
714 ((unsigned)MRB & FMRL_InaccessibleMem);
715 }
716
717 /// Checks if functions with the specified behavior are known to read and
718 /// write at most from memory that is inaccessible from LLVM IR or objects
719 /// pointed to by their pointer-typed arguments (with arbitrary offsets).
720 static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
721 return !((unsigned)MRB & FMRL_Anywhere &
722 ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
723 }
724
725 /// getModRefInfo (for call sites) - Return information about whether
726 /// a particular call site modifies or reads the specified memory location.
727 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
728
729 /// getModRefInfo (for call sites) - A convenience wrapper.
730 ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
731 LocationSize Size) {
732 return getModRefInfo(Call, MemoryLocation(P, Size));
733 }
734
735 /// getModRefInfo (for loads) - Return information about whether
736 /// a particular load modifies or reads the specified memory location.
737 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
738
739 /// getModRefInfo (for loads) - A convenience wrapper.
740 ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
741 LocationSize Size) {
742 return getModRefInfo(L, MemoryLocation(P, Size));
743 }
744
745 /// getModRefInfo (for stores) - Return information about whether
746 /// a particular store modifies or reads the specified memory location.
747 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
748
749 /// getModRefInfo (for stores) - A convenience wrapper.
750 ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
751 LocationSize Size) {
752 return getModRefInfo(S, MemoryLocation(P, Size));
753 }
754
755 /// getModRefInfo (for fences) - Return information about whether
756 /// a particular store modifies or reads the specified memory location.
757 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
758
759 /// getModRefInfo (for fences) - A convenience wrapper.
760 ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
761 LocationSize Size) {
762 return getModRefInfo(S, MemoryLocation(P, Size));
763 }
764
765 /// getModRefInfo (for cmpxchges) - Return information about whether
766 /// a particular cmpxchg modifies or reads the specified memory location.
767 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
768 const MemoryLocation &Loc);
769
770 /// getModRefInfo (for cmpxchges) - A convenience wrapper.
771 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
772 LocationSize Size) {
773 return getModRefInfo(CX, MemoryLocation(P, Size));
774 }
775
776 /// getModRefInfo (for atomicrmws) - Return information about whether
777 /// a particular atomicrmw modifies or reads the specified memory location.
778 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
779
780 /// getModRefInfo (for atomicrmws) - A convenience wrapper.
781 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
782 LocationSize Size) {
783 return getModRefInfo(RMW, MemoryLocation(P, Size));
784 }
785
786 /// getModRefInfo (for va_args) - Return information about whether
787 /// a particular va_arg modifies or reads the specified memory location.
788 ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
789
790 /// getModRefInfo (for va_args) - A convenience wrapper.
791 ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
792 LocationSize Size) {
793 return getModRefInfo(I, MemoryLocation(P, Size));
794 }
795
796 /// getModRefInfo (for catchpads) - Return information about whether
797 /// a particular catchpad modifies or reads the specified memory location.
798 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
799
800 /// getModRefInfo (for catchpads) - A convenience wrapper.
801 ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
802 LocationSize Size) {
803 return getModRefInfo(I, MemoryLocation(P, Size));
804 }
805
806 /// getModRefInfo (for catchrets) - Return information about whether
807 /// a particular catchret modifies or reads the specified memory location.
808 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
809
810 /// getModRefInfo (for catchrets) - A convenience wrapper.
811 ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
812 LocationSize Size) {
813 return getModRefInfo(I, MemoryLocation(P, Size));
814 }
815
816 /// Check whether or not an instruction may read or write the optionally
817 /// specified memory location.
818 ///
819 ///
820 /// An instruction that doesn't read or write memory may be trivially LICM'd
821 /// for example.
822 ///
823 /// For function calls, this delegates to the alias-analysis specific
824 /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
825 /// helpers above.
826 ModRefInfo getModRefInfo(const Instruction *I,
827 const Optional<MemoryLocation> &OptLoc) {
828 SimpleAAQueryInfo AAQIP;
829 return getModRefInfo(I, OptLoc, AAQIP);
830 }
831
832 /// A convenience wrapper for constructing the memory location.
833 ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
834 LocationSize Size) {
835 return getModRefInfo(I, MemoryLocation(P, Size));
836 }
837
838 /// Return information about whether a call and an instruction may refer to
839 /// the same memory locations.
840 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
841
842 /// Return information about whether two call sites may refer to the same set
843 /// of memory locations. See the AA documentation for details:
844 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
845 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
846
847 /// Return information about whether a particular call site modifies
848 /// or reads the specified memory location \p MemLoc before instruction \p I
849 /// in a BasicBlock.
850 /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
851 /// set.
852 ModRefInfo callCapturesBefore(const Instruction *I,
853 const MemoryLocation &MemLoc,
854 DominatorTree *DT) {
855 SimpleAAQueryInfo AAQIP;
856 return callCapturesBefore(I, MemLoc, DT, AAQIP);
857 }
858
859 /// A convenience wrapper to synthesize a memory location.
860 ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
861 LocationSize Size, DominatorTree *DT) {
862 return callCapturesBefore(I, MemoryLocation(P, Size), DT);
863 }
864
865 /// @}
866 //===--------------------------------------------------------------------===//
867 /// \name Higher level methods for querying mod/ref information.
868 /// @{
869
870 /// Check if it is possible for execution of the specified basic block to
871 /// modify the location Loc.
872 bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
873
874 /// A convenience wrapper synthesizing a memory location.
875 bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
876 LocationSize Size) {
877 return canBasicBlockModify(BB, MemoryLocation(P, Size));
878 }
879
880 /// Check if it is possible for the execution of the specified instructions
881 /// to mod\ref (according to the mode) the location Loc.
882 ///
883 /// The instructions to consider are all of the instructions in the range of
884 /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
885 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
886 const MemoryLocation &Loc,
887 const ModRefInfo Mode);
888
889 /// A convenience wrapper synthesizing a memory location.
890 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
891 const Value *Ptr, LocationSize Size,
892 const ModRefInfo Mode) {
893 return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
894 }
895
896 private:
897 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
898 AAQueryInfo &AAQI);
899 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
900 bool OrLocal = false);
901 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
902 AAQueryInfo &AAQIP);
903 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
904 AAQueryInfo &AAQI);
905 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
906 AAQueryInfo &AAQI);
907 ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
908 AAQueryInfo &AAQI);
909 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
910 AAQueryInfo &AAQI);
911 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
912 AAQueryInfo &AAQI);
913 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
914 AAQueryInfo &AAQI);
915 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
916 const MemoryLocation &Loc, AAQueryInfo &AAQI);
917 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
918 AAQueryInfo &AAQI);
919 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
920 AAQueryInfo &AAQI);
921 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
922 AAQueryInfo &AAQI);
923 ModRefInfo getModRefInfo(const Instruction *I,
924 const Optional<MemoryLocation> &OptLoc,
925 AAQueryInfo &AAQIP);
926 ModRefInfo callCapturesBefore(const Instruction *I,
927 const MemoryLocation &MemLoc, DominatorTree *DT,
928 AAQueryInfo &AAQIP);
929
930 class Concept;
931
932 template <typename T> class Model;
933
934 template <typename T> friend class AAResultBase;
935
936 const TargetLibraryInfo &TLI;
937
938 std::vector<std::unique_ptr<Concept>> AAs;
939
940 std::vector<AnalysisKey *> AADeps;
941
942 friend class BatchAAResults;
943 };
944
945 /// This class is a wrapper over an AAResults, and it is intended to be used
946 /// only when there are no IR changes inbetween queries. BatchAAResults is
947 /// reusing the same `AAQueryInfo` to preserve the state across queries,
948 /// esentially making AA work in "batch mode". The internal state cannot be
949 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
950 /// or create a new BatchAAResults.
951 class BatchAAResults {
952 AAResults &AA;
953 AAQueryInfo AAQI;
954 SimpleCaptureInfo SimpleCI;
955
956 public:
957 BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(&SimpleCI) {}
958 BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(CI) {}
959
960 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
961 return AA.alias(LocA, LocB, AAQI);
962 }
963 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
964 return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
965 }
966 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
967 return AA.getModRefInfo(Call, Loc, AAQI);
968 }
969 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
970 return AA.getModRefInfo(Call1, Call2, AAQI);
971 }
972 ModRefInfo getModRefInfo(const Instruction *I,
973 const Optional<MemoryLocation> &OptLoc) {
974 return AA.getModRefInfo(I, OptLoc, AAQI);
975 }
976 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
977 return AA.getModRefInfo(I, Call2, AAQI);
978 }
979 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
980 return AA.getArgModRefInfo(Call, ArgIdx);
981 }
982 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
983 return AA.getModRefBehavior(Call);
984 }
985 bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
986 return alias(LocA, LocB) == AliasResult::MustAlias;
987 }
988 bool isMustAlias(const Value *V1, const Value *V2) {
989 return alias(MemoryLocation(V1, LocationSize::precise(1)),
990 MemoryLocation(V2, LocationSize::precise(1))) ==
991 AliasResult::MustAlias;
992 }
993 ModRefInfo callCapturesBefore(const Instruction *I,
994 const MemoryLocation &MemLoc,
995 DominatorTree *DT) {
996 return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
997 }
998 };
999
1000 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
1001 /// pointer or reference.
1002 using AliasAnalysis = AAResults;
1003
1004 /// A private abstract base class describing the concept of an individual alias
1005 /// analysis implementation.
1006 ///
1007 /// This interface is implemented by any \c Model instantiation. It is also the
1008 /// interface which a type used to instantiate the model must provide.
1009 ///
1010 /// All of these methods model methods by the same name in the \c
1011 /// AAResults class. Only differences and specifics to how the
1012 /// implementations are called are documented here.
1013 class AAResults::Concept {
1014 public:
1015 virtual ~Concept() = 0;
1016
1017 /// An update API used internally by the AAResults to provide
1018 /// a handle back to the top level aggregation.
1019 virtual void setAAResults(AAResults *NewAAR) = 0;
1020
1021 //===--------------------------------------------------------------------===//
1022 /// \name Alias Queries
1023 /// @{
1024
1025 /// The main low level interface to the alias analysis implementation.
1026 /// Returns an AliasResult indicating whether the two pointers are aliased to
1027 /// each other. This is the interface that must be implemented by specific
1028 /// alias analysis implementations.
1029 virtual AliasResult alias(const MemoryLocation &LocA,
1030 const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
1031
1032 /// Checks whether the given location points to constant memory, or if
1033 /// \p OrLocal is true whether it points to a local alloca.
1034 virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
1035 AAQueryInfo &AAQI, bool OrLocal) = 0;
1036
1037 /// @}
1038 //===--------------------------------------------------------------------===//
1039 /// \name Simple mod/ref information
1040 /// @{
1041
1042 /// Get the ModRef info associated with a pointer argument of a callsite. The
1043 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
1044 /// that these bits do not necessarily account for the overall behavior of
1045 /// the function, but rather only provide additional per-argument
1046 /// information.
1047 virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
1048 unsigned ArgIdx) = 0;
1049
1050 /// Return the behavior of the given call site.
1051 virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
1052
1053 /// Return the behavior when calling the given function.
1054 virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
1055
1056 /// getModRefInfo (for call sites) - Return information about whether
1057 /// a particular call site modifies or reads the specified memory location.
1058 virtual ModRefInfo getModRefInfo(const CallBase *Call,
1059 const MemoryLocation &Loc,
1060 AAQueryInfo &AAQI) = 0;
1061
1062 /// Return information about whether two call sites may refer to the same set
1063 /// of memory locations. See the AA documentation for details:
1064 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
1065 virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1066 AAQueryInfo &AAQI) = 0;
1067
1068 /// @}
1069 };
1070
1071 /// A private class template which derives from \c Concept and wraps some other
1072 /// type.
1073 ///
1074 /// This models the concept by directly forwarding each interface point to the
1075 /// wrapped type which must implement a compatible interface. This provides
1076 /// a type erased binding.
1077 template <typename AAResultT> class AAResults::Model final : public Concept {
1078 AAResultT &Result;
1079
1080 public:
1081 explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
1082 Result.setAAResults(&AAR);
1083 }
1084 ~Model() override = default;
1085
1086 void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
1087
1088 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1089 AAQueryInfo &AAQI) override {
1090 return Result.alias(LocA, LocB, AAQI);
1091 }
1092
1093 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1094 bool OrLocal) override {
1095 return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
1096 }
1097
1098 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
1099 return Result.getArgModRefInfo(Call, ArgIdx);
1100 }
1101
1102 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
1103 return Result.getModRefBehavior(Call);
1104 }
1105
1106 FunctionModRefBehavior getModRefBehavior(const Function *F) override {
1107 return Result.getModRefBehavior(F);
1108 }
1109
1110 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1111 AAQueryInfo &AAQI) override {
1112 return Result.getModRefInfo(Call, Loc, AAQI);
1113 }
1114
1115 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1116 AAQueryInfo &AAQI) override {
1117 return Result.getModRefInfo(Call1, Call2, AAQI);
1118 }
1119 };
1120
1121 /// A CRTP-driven "mixin" base class to help implement the function alias
1122 /// analysis results concept.
1123 ///
1124 /// Because of the nature of many alias analysis implementations, they often
1125 /// only implement a subset of the interface. This base class will attempt to
1126 /// implement the remaining portions of the interface in terms of simpler forms
1127 /// of the interface where possible, and otherwise provide conservatively
1128 /// correct fallback implementations.
1129 ///
1130 /// Implementors of an alias analysis should derive from this CRTP, and then
1131 /// override specific methods that they wish to customize. There is no need to
1132 /// use virtual anywhere, the CRTP base class does static dispatch to the
1133 /// derived type passed into it.
1134 template <typename DerivedT> class AAResultBase {
1135 // Expose some parts of the interface only to the AAResults::Model
1136 // for wrapping. Specifically, this allows the model to call our
1137 // setAAResults method without exposing it as a fully public API.
1138 friend class AAResults::Model<DerivedT>;
1139
1140 /// A pointer to the AAResults object that this AAResult is
1141 /// aggregated within. May be null if not aggregated.
1142 AAResults *AAR = nullptr;
1143
1144 /// Helper to dispatch calls back through the derived type.
1145 DerivedT &derived() { return static_cast<DerivedT &>(*this); }
1146
1147 /// A setter for the AAResults pointer, which is used to satisfy the
1148 /// AAResults::Model contract.
1149 void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
1150
1151 protected:
1152 /// This proxy class models a common pattern where we delegate to either the
1153 /// top-level \c AAResults aggregation if one is registered, or to the
1154 /// current result if none are registered.
1155 class AAResultsProxy {
1156 AAResults *AAR;
1157 DerivedT &CurrentResult;
1158
1159 public:
1160 AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
1161 : AAR(AAR), CurrentResult(CurrentResult) {}
1162
1163 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1164 AAQueryInfo &AAQI) {
1165 return AAR ? AAR->alias(LocA, LocB, AAQI)
1166 : CurrentResult.alias(LocA, LocB, AAQI);
1167 }
1168
1169 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1170 bool OrLocal) {
1171 return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
1172 : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
1173 }
1174
1175 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1176 return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
1177 : CurrentResult.getArgModRefInfo(Call, ArgIdx);
1178 }
1179
1180 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1181 return AAR ? AAR->getModRefBehavior(Call)
1182 : CurrentResult.getModRefBehavior(Call);
1183 }
1184
1185 FunctionModRefBehavior getModRefBehavior(const Function *F) {
1186 return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
1187 }
1188
1189 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1190 AAQueryInfo &AAQI) {
1191 return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1192 : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1193 }
1194
1195 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1196 AAQueryInfo &AAQI) {
1197 return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1198 : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1199 }
1200 };
1201
1202 explicit AAResultBase() = default;
1203
1204 // Provide all the copy and move constructors so that derived types aren't
1205 // constrained.
1206 AAResultBase(const AAResultBase &Arg) {}
1207 AAResultBase(AAResultBase &&Arg) {}
1208
1209 /// Get a proxy for the best AA result set to query at this time.
1210 ///
1211 /// When this result is part of a larger aggregation, this will proxy to that
1212 /// aggregation. When this result is used in isolation, it will just delegate
1213 /// back to the derived class's implementation.
1214 ///
1215 /// Note that callers of this need to take considerable care to not cause
1216 /// performance problems when they use this routine, in the case of a large
1217 /// number of alias analyses being aggregated, it can be expensive to walk
1218 /// back across the chain.
1219 AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1220
1221 public:
1222 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1223 AAQueryInfo &AAQI) {
1224 return AliasResult::MayAlias;
1225 }
1226
1227 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1228 bool OrLocal) {
1229 return false;
1230 }
1231
1232 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1233 return ModRefInfo::ModRef;
1234 }
1235
1236 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1237 return FMRB_UnknownModRefBehavior;
1238 }
1239
1240 FunctionModRefBehavior getModRefBehavior(const Function *F) {
1241 return FMRB_UnknownModRefBehavior;
1242 }
1243
1244 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1245 AAQueryInfo &AAQI) {
1246 return ModRefInfo::ModRef;
1247 }
1248
1249 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1250 AAQueryInfo &AAQI) {
1251 return ModRefInfo::ModRef;
1252 }
1253 };
1254
1255 /// Return true if this pointer is returned by a noalias function.
1256 bool isNoAliasCall(const Value *V);
1257
1258 /// Return true if this pointer refers to a distinct and identifiable object.
1259 /// This returns true for:
1260 /// Global Variables and Functions (but not Global Aliases)
1261 /// Allocas
1262 /// ByVal and NoAlias Arguments
1263 /// NoAlias returns (e.g. calls to malloc)
1264 ///
1265 bool isIdentifiedObject(const Value *V);
1266
1267 /// Return true if V is umabigously identified at the function-level.
1268 /// Different IdentifiedFunctionLocals can't alias.
1269 /// Further, an IdentifiedFunctionLocal can not alias with any function
1270 /// arguments other than itself, which is not necessarily true for
1271 /// IdentifiedObjects.
1272 bool isIdentifiedFunctionLocal(const Value *V);
1273
1274 /// Returns true if the pointer is one which would have been considered an
1275 /// escape by isNonEscapingLocalObject.
1276 bool isEscapeSource(const Value *V);
1277
1278 /// Return true if Object memory is not visible after an unwind, in the sense
1279 /// that program semantics cannot depend on Object containing any particular
1280 /// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
1281 /// to true, then the memory is only not visible if the object has not been
1282 /// captured prior to the unwind. Otherwise it is not visible even if captured.
1283 bool isNotVisibleOnUnwind(const Value *Object,
1284 bool &RequiresNoCaptureBeforeUnwind);
1285
1286 /// A manager for alias analyses.
1287 ///
1288 /// This class can have analyses registered with it and when run, it will run
1289 /// all of them and aggregate their results into single AA results interface
1290 /// that dispatches across all of the alias analysis results available.
1291 ///
1292 /// Note that the order in which analyses are registered is very significant.
1293 /// That is the order in which the results will be aggregated and queried.
1294 ///
1295 /// This manager effectively wraps the AnalysisManager for registering alias
1296 /// analyses. When you register your alias analysis with this manager, it will
1297 /// ensure the analysis itself is registered with its AnalysisManager.
1298 ///
1299 /// The result of this analysis is only invalidated if one of the particular
1300 /// aggregated AA results end up being invalidated. This removes the need to
1301 /// explicitly preserve the results of `AAManager`. Note that analyses should no
1302 /// longer be registered once the `AAManager` is run.
1303 class AAManager : public AnalysisInfoMixin<AAManager> {
1304 public:
1305 using Result = AAResults;
1306
1307 /// Register a specific AA result.
1308 template <typename AnalysisT> void registerFunctionAnalysis() {
1309 ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1310 }
1311
1312 /// Register a specific AA result.
1313 template <typename AnalysisT> void registerModuleAnalysis() {
1314 ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1315 }
1316
1317 Result run(Function &F, FunctionAnalysisManager &AM);
1318
1319 private:
1320 friend AnalysisInfoMixin<AAManager>;
1321
1322 static AnalysisKey Key;
1323
1324 SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1325 AAResults &AAResults),
1326 4> ResultGetters;
1327
1328 template <typename AnalysisT>
1329 static void getFunctionAAResultImpl(Function &F,
1330 FunctionAnalysisManager &AM,
1331 AAResults &AAResults) {
1332 AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1333 AAResults.addAADependencyID(AnalysisT::ID());
1334 }
1335
1336 template <typename AnalysisT>
1337 static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1338 AAResults &AAResults) {
1339 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1340 if (auto *R =
1341 MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
1342 AAResults.addAAResult(*R);
1343 MAMProxy
1344 .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1345 }
1346 }
1347 };
1348
1349 /// A wrapper pass to provide the legacy pass manager access to a suitably
1350 /// prepared AAResults object.
1351 class AAResultsWrapperPass : public FunctionPass {
1352 std::unique_ptr<AAResults> AAR;
1353
1354 public:
1355 static char ID;
1356
1357 AAResultsWrapperPass();
1358
1359 AAResults &getAAResults() { return *AAR; }
1360 const AAResults &getAAResults() const { return *AAR; }
1361
1362 bool runOnFunction(Function &F) override;
1363
1364 void getAnalysisUsage(AnalysisUsage &AU) const override;
1365 };
1366
1367 /// A wrapper pass for external alias analyses. This just squirrels away the
1368 /// callback used to run any analyses and register their results.
1369 struct ExternalAAWrapperPass : ImmutablePass {
1370 using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1371
1372 CallbackT CB;
1373
1374 static char ID;
1375
1376 ExternalAAWrapperPass();
1377
1378 explicit ExternalAAWrapperPass(CallbackT CB);
1379
1380 void getAnalysisUsage(AnalysisUsage &AU) const override {
1381 AU.setPreservesAll();
1382 }
1383 };
1384
1385 FunctionPass *createAAResultsWrapperPass();
1386
1387 /// A wrapper pass around a callback which can be used to populate the
1388 /// AAResults in the AAResultsWrapperPass from an external AA.
1389 ///
1390 /// The callback provided here will be used each time we prepare an AAResults
1391 /// object, and will receive a reference to the function wrapper pass, the
1392 /// function, and the AAResults object to populate. This should be used when
1393 /// setting up a custom pass pipeline to inject a hook into the AA results.
1394 ImmutablePass *createExternalAAWrapperPass(
1395 std::function<void(Pass &, Function &, AAResults &)> Callback);
1396
1397 /// A helper for the legacy pass manager to create a \c AAResults
1398 /// object populated to the best of our ability for a particular function when
1399 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1400 ///
1401 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1402 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1403 /// getAnalysisUsage.
1404 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1405
1406 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1407 /// sure the analyses required by \p createLegacyPMAAResults are available.
1408 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1409
1410 } // end namespace llvm
1411
1412 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1413