1 //===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/STLExtras.h"
10 #include "gtest/gtest.h"
11 
12 #include <climits>
13 #include <list>
14 #include <vector>
15 
16 using namespace llvm;
17 
18 namespace {
19 
f(rank<0>)20 int f(rank<0>) { return 0; }
f(rank<1>)21 int f(rank<1>) { return 1; }
f(rank<2>)22 int f(rank<2>) { return 2; }
f(rank<4>)23 int f(rank<4>) { return 4; }
24 
TEST(STLExtrasTest,Rank)25 TEST(STLExtrasTest, Rank) {
26   // We shouldn't get ambiguities and should select the overload of the same
27   // rank as the argument.
28   EXPECT_EQ(0, f(rank<0>()));
29   EXPECT_EQ(1, f(rank<1>()));
30   EXPECT_EQ(2, f(rank<2>()));
31 
32   // This overload is missing so we end up back at 2.
33   EXPECT_EQ(2, f(rank<3>()));
34 
35   // But going past 3 should work fine.
36   EXPECT_EQ(4, f(rank<4>()));
37 
38   // And we can even go higher and just fall back to the last overload.
39   EXPECT_EQ(4, f(rank<5>()));
40   EXPECT_EQ(4, f(rank<6>()));
41 }
42 
TEST(STLExtrasTest,EnumerateLValue)43 TEST(STLExtrasTest, EnumerateLValue) {
44   // Test that a simple LValue can be enumerated and gives correct results with
45   // multiple types, including the empty container.
46   std::vector<char> foo = {'a', 'b', 'c'};
47   typedef std::pair<std::size_t, char> CharPairType;
48   std::vector<CharPairType> CharResults;
49 
50   for (auto X : llvm::enumerate(foo)) {
51     CharResults.emplace_back(X.index(), X.value());
52   }
53   ASSERT_EQ(3u, CharResults.size());
54   EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
55   EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
56   EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
57 
58   // Test a const range of a different type.
59   typedef std::pair<std::size_t, int> IntPairType;
60   std::vector<IntPairType> IntResults;
61   const std::vector<int> bar = {1, 2, 3};
62   for (auto X : llvm::enumerate(bar)) {
63     IntResults.emplace_back(X.index(), X.value());
64   }
65   ASSERT_EQ(3u, IntResults.size());
66   EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
67   EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
68   EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
69 
70   // Test an empty range.
71   IntResults.clear();
72   const std::vector<int> baz{};
73   for (auto X : llvm::enumerate(baz)) {
74     IntResults.emplace_back(X.index(), X.value());
75   }
76   EXPECT_TRUE(IntResults.empty());
77 }
78 
TEST(STLExtrasTest,EnumerateModifyLValue)79 TEST(STLExtrasTest, EnumerateModifyLValue) {
80   // Test that you can modify the underlying entries of an lvalue range through
81   // the enumeration iterator.
82   std::vector<char> foo = {'a', 'b', 'c'};
83 
84   for (auto X : llvm::enumerate(foo)) {
85     ++X.value();
86   }
87   EXPECT_EQ('b', foo[0]);
88   EXPECT_EQ('c', foo[1]);
89   EXPECT_EQ('d', foo[2]);
90 }
91 
TEST(STLExtrasTest,EnumerateRValueRef)92 TEST(STLExtrasTest, EnumerateRValueRef) {
93   // Test that an rvalue can be enumerated.
94   typedef std::pair<std::size_t, int> PairType;
95   std::vector<PairType> Results;
96 
97   auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
98 
99   for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
100     Results.emplace_back(X.index(), X.value());
101   }
102 
103   ASSERT_EQ(3u, Results.size());
104   EXPECT_EQ(PairType(0u, 1), Results[0]);
105   EXPECT_EQ(PairType(1u, 2), Results[1]);
106   EXPECT_EQ(PairType(2u, 3), Results[2]);
107 }
108 
TEST(STLExtrasTest,EnumerateModifyRValue)109 TEST(STLExtrasTest, EnumerateModifyRValue) {
110   // Test that when enumerating an rvalue, modification still works (even if
111   // this isn't terribly useful, it at least shows that we haven't snuck an
112   // extra const in there somewhere.
113   typedef std::pair<std::size_t, char> PairType;
114   std::vector<PairType> Results;
115 
116   for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
117     ++X.value();
118     Results.emplace_back(X.index(), X.value());
119   }
120 
121   ASSERT_EQ(3u, Results.size());
122   EXPECT_EQ(PairType(0u, '2'), Results[0]);
123   EXPECT_EQ(PairType(1u, '3'), Results[1]);
124   EXPECT_EQ(PairType(2u, '4'), Results[2]);
125 }
126 
127 template <bool B> struct CanMove {};
128 template <> struct CanMove<false> {
129   CanMove(CanMove &&) = delete;
130 
131   CanMove() = default;
132   CanMove(const CanMove &) = default;
133 };
134 
135 template <bool B> struct CanCopy {};
136 template <> struct CanCopy<false> {
137   CanCopy(const CanCopy &) = delete;
138 
139   CanCopy() = default;
140   CanCopy(CanCopy &&) = default;
141 };
142 
143 template <bool Moveable, bool Copyable>
144 class Counted : CanMove<Moveable>, CanCopy<Copyable> {
145   int &C;
146   int &M;
147   int &D;
148 
149 public:
Counted(int & C,int & M,int & D)150   explicit Counted(int &C, int &M, int &D) : C(C), M(M), D(D) {}
Counted(const Counted & O)151   Counted(const Counted &O) : CanCopy<Copyable>(O), C(O.C), M(O.M), D(O.D) {
152     ++C;
153   }
Counted(Counted && O)154   Counted(Counted &&O)
155       : CanMove<Moveable>(std::move(O)), C(O.C), M(O.M), D(O.D) {
156     ++M;
157   }
~Counted()158   ~Counted() { ++D; }
159 };
160 
161 template <bool Moveable, bool Copyable>
162 struct Range : Counted<Moveable, Copyable> {
163   using Counted<Moveable, Copyable>::Counted;
begin__anon9f9e6dce0111::Range164   int *begin() { return nullptr; }
end__anon9f9e6dce0111::Range165   int *end() { return nullptr; }
166 };
167 
TEST(STLExtrasTest,EnumerateLifetimeSemanticsPRValue)168 TEST(STLExtrasTest, EnumerateLifetimeSemanticsPRValue) {
169   int Copies = 0;
170   int Moves = 0;
171   int Destructors = 0;
172   {
173     auto E = enumerate(Range<true, false>(Copies, Moves, Destructors));
174     (void)E;
175     // Doesn't compile.  rvalue ranges must be moveable.
176     // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
177     EXPECT_EQ(0, Copies);
178     EXPECT_EQ(1, Moves);
179     EXPECT_EQ(1, Destructors);
180   }
181   EXPECT_EQ(0, Copies);
182   EXPECT_EQ(1, Moves);
183   EXPECT_EQ(2, Destructors);
184 }
185 
TEST(STLExtrasTest,EnumerateLifetimeSemanticsRValue)186 TEST(STLExtrasTest, EnumerateLifetimeSemanticsRValue) {
187   // With an rvalue, it should not be destroyed until the end of the scope.
188   int Copies = 0;
189   int Moves = 0;
190   int Destructors = 0;
191   {
192     Range<true, false> R(Copies, Moves, Destructors);
193     {
194       auto E = enumerate(std::move(R));
195       (void)E;
196       // Doesn't compile.  rvalue ranges must be moveable.
197       // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
198       EXPECT_EQ(0, Copies);
199       EXPECT_EQ(1, Moves);
200       EXPECT_EQ(0, Destructors);
201     }
202     EXPECT_EQ(0, Copies);
203     EXPECT_EQ(1, Moves);
204     EXPECT_EQ(1, Destructors);
205   }
206   EXPECT_EQ(0, Copies);
207   EXPECT_EQ(1, Moves);
208   EXPECT_EQ(2, Destructors);
209 }
210 
TEST(STLExtrasTest,EnumerateLifetimeSemanticsLValue)211 TEST(STLExtrasTest, EnumerateLifetimeSemanticsLValue) {
212   // With an lvalue, it should not be destroyed even after the end of the scope.
213   // lvalue ranges need be neither copyable nor moveable.
214   int Copies = 0;
215   int Moves = 0;
216   int Destructors = 0;
217   {
218     Range<false, false> R(Copies, Moves, Destructors);
219     {
220       auto E = enumerate(R);
221       (void)E;
222       EXPECT_EQ(0, Copies);
223       EXPECT_EQ(0, Moves);
224       EXPECT_EQ(0, Destructors);
225     }
226     EXPECT_EQ(0, Copies);
227     EXPECT_EQ(0, Moves);
228     EXPECT_EQ(0, Destructors);
229   }
230   EXPECT_EQ(0, Copies);
231   EXPECT_EQ(0, Moves);
232   EXPECT_EQ(1, Destructors);
233 }
234 
TEST(STLExtrasTest,ApplyTuple)235 TEST(STLExtrasTest, ApplyTuple) {
236   auto T = std::make_tuple(1, 3, 7);
237   auto U = llvm::apply_tuple(
238       [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
239       T);
240 
241   EXPECT_EQ(-2, std::get<0>(U));
242   EXPECT_EQ(-4, std::get<1>(U));
243   EXPECT_EQ(6, std::get<2>(U));
244 
245   auto V = llvm::apply_tuple(
246       [](int A, int B, int C) {
247         return std::make_tuple(std::make_pair(A, char('A' + A)),
248                                std::make_pair(B, char('A' + B)),
249                                std::make_pair(C, char('A' + C)));
250       },
251       T);
252 
253   EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
254   EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
255   EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
256 }
257 
258 class apply_variadic {
apply_one(int X)259   static int apply_one(int X) { return X + 1; }
apply_one(char C)260   static char apply_one(char C) { return C + 1; }
apply_one(StringRef S)261   static StringRef apply_one(StringRef S) { return S.drop_back(); }
262 
263 public:
operator ()(Ts &&...Items)264   template <typename... Ts> auto operator()(Ts &&... Items) {
265     return std::make_tuple(apply_one(Items)...);
266   }
267 };
268 
TEST(STLExtrasTest,ApplyTupleVariadic)269 TEST(STLExtrasTest, ApplyTupleVariadic) {
270   auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
271   auto Values = apply_tuple(apply_variadic(), Items);
272 
273   EXPECT_EQ(2, std::get<0>(Values));
274   EXPECT_EQ("Tes", std::get<1>(Values));
275   EXPECT_EQ('Y', std::get<2>(Values));
276 }
277 
TEST(STLExtrasTest,CountAdaptor)278 TEST(STLExtrasTest, CountAdaptor) {
279   std::vector<int> v;
280 
281   v.push_back(1);
282   v.push_back(2);
283   v.push_back(1);
284   v.push_back(4);
285   v.push_back(3);
286   v.push_back(2);
287   v.push_back(1);
288 
289   EXPECT_EQ(3, count(v, 1));
290   EXPECT_EQ(2, count(v, 2));
291   EXPECT_EQ(1, count(v, 3));
292   EXPECT_EQ(1, count(v, 4));
293 }
294 
TEST(STLExtrasTest,for_each)295 TEST(STLExtrasTest, for_each) {
296   std::vector<int> v{0, 1, 2, 3, 4};
297   int count = 0;
298 
299   llvm::for_each(v, [&count](int) { ++count; });
300   EXPECT_EQ(5, count);
301 }
302 
TEST(STLExtrasTest,ToVector)303 TEST(STLExtrasTest, ToVector) {
304   std::vector<char> v = {'a', 'b', 'c'};
305   auto Enumerated = to_vector<4>(enumerate(v));
306   ASSERT_EQ(3u, Enumerated.size());
307   for (size_t I = 0; I < v.size(); ++I) {
308     EXPECT_EQ(I, Enumerated[I].index());
309     EXPECT_EQ(v[I], Enumerated[I].value());
310   }
311 
312   auto EnumeratedImplicitSize = to_vector(enumerate(v));
313   ASSERT_EQ(3u, EnumeratedImplicitSize.size());
314   for (size_t I = 0; I < v.size(); ++I) {
315     EXPECT_EQ(I, EnumeratedImplicitSize[I].index());
316     EXPECT_EQ(v[I], EnumeratedImplicitSize[I].value());
317   }
318 }
319 
TEST(STLExtrasTest,ConcatRange)320 TEST(STLExtrasTest, ConcatRange) {
321   std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
322   std::vector<int> Test;
323 
324   std::vector<int> V1234 = {1, 2, 3, 4};
325   std::list<int> L56 = {5, 6};
326   SmallVector<int, 2> SV78 = {7, 8};
327 
328   // Use concat across different sized ranges of different types with different
329   // iterators.
330   for (int &i : concat<int>(V1234, L56, SV78))
331     Test.push_back(i);
332   EXPECT_EQ(Expected, Test);
333 
334   // Use concat between a temporary, an L-value, and an R-value to make sure
335   // complex lifetimes work well.
336   Test.clear();
337   for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
338     Test.push_back(i);
339   EXPECT_EQ(Expected, Test);
340 }
341 
TEST(STLExtrasTest,PartitionAdaptor)342 TEST(STLExtrasTest, PartitionAdaptor) {
343   std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
344 
345   auto I = partition(V, [](int i) { return i % 2 == 0; });
346   ASSERT_EQ(V.begin() + 4, I);
347 
348   // Sort the two halves as partition may have messed with the order.
349   llvm::sort(V.begin(), I);
350   llvm::sort(I, V.end());
351 
352   EXPECT_EQ(2, V[0]);
353   EXPECT_EQ(4, V[1]);
354   EXPECT_EQ(6, V[2]);
355   EXPECT_EQ(8, V[3]);
356   EXPECT_EQ(1, V[4]);
357   EXPECT_EQ(3, V[5]);
358   EXPECT_EQ(5, V[6]);
359   EXPECT_EQ(7, V[7]);
360 }
361 
TEST(STLExtrasTest,EraseIf)362 TEST(STLExtrasTest, EraseIf) {
363   std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
364 
365   erase_if(V, [](int i) { return i % 2 == 0; });
366   EXPECT_EQ(4u, V.size());
367   EXPECT_EQ(1, V[0]);
368   EXPECT_EQ(3, V[1]);
369   EXPECT_EQ(5, V[2]);
370   EXPECT_EQ(7, V[3]);
371 }
372 
TEST(STLExtrasTest,AppendRange)373 TEST(STLExtrasTest, AppendRange) {
374   auto AppendVals = {3};
375   std::vector<int> V = {1, 2};
376   append_range(V, AppendVals);
377   EXPECT_EQ(1, V[0]);
378   EXPECT_EQ(2, V[1]);
379   EXPECT_EQ(3, V[2]);
380 }
381 
382 namespace some_namespace {
383 struct some_struct {
384   std::vector<int> data;
385   std::string swap_val;
386 };
387 
begin(const some_struct & s)388 std::vector<int>::const_iterator begin(const some_struct &s) {
389   return s.data.begin();
390 }
391 
end(const some_struct & s)392 std::vector<int>::const_iterator end(const some_struct &s) {
393   return s.data.end();
394 }
395 
swap(some_struct & lhs,some_struct & rhs)396 void swap(some_struct &lhs, some_struct &rhs) {
397   // make swap visible as non-adl swap would even seem to
398   // work with std::swap which defaults to moving
399   lhs.swap_val = "lhs";
400   rhs.swap_val = "rhs";
401 }
402 } // namespace some_namespace
403 
TEST(STLExtrasTest,ADLTest)404 TEST(STLExtrasTest, ADLTest) {
405   some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
406   some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};
407 
408   EXPECT_EQ(*adl_begin(s), 1);
409   EXPECT_EQ(*(adl_end(s) - 1), 5);
410 
411   adl_swap(s, s2);
412   EXPECT_EQ(s.swap_val, "lhs");
413   EXPECT_EQ(s2.swap_val, "rhs");
414 
415   int count = 0;
416   llvm::for_each(s, [&count](int) { ++count; });
417   EXPECT_EQ(5, count);
418 }
419 
TEST(STLExtrasTest,EmptyTest)420 TEST(STLExtrasTest, EmptyTest) {
421   std::vector<void*> V;
422   EXPECT_TRUE(llvm::empty(V));
423   V.push_back(nullptr);
424   EXPECT_FALSE(llvm::empty(V));
425 
426   std::initializer_list<int> E = {};
427   std::initializer_list<int> NotE = {7, 13, 42};
428   EXPECT_TRUE(llvm::empty(E));
429   EXPECT_FALSE(llvm::empty(NotE));
430 
431   auto R0 = make_range(V.begin(), V.begin());
432   EXPECT_TRUE(llvm::empty(R0));
433   auto R1 = make_range(V.begin(), V.end());
434   EXPECT_FALSE(llvm::empty(R1));
435 }
436 
TEST(STLExtrasTest,DropBeginTest)437 TEST(STLExtrasTest, DropBeginTest) {
438   SmallVector<int, 5> vec{0, 1, 2, 3, 4};
439 
440   for (int n = 0; n < 5; ++n) {
441     int i = n;
442     for (auto &v : drop_begin(vec, n)) {
443       EXPECT_EQ(v, i);
444       i += 1;
445     }
446     EXPECT_EQ(i, 5);
447   }
448 }
449 
TEST(STLExtrasTest,DropBeginDefaultTest)450 TEST(STLExtrasTest, DropBeginDefaultTest) {
451   SmallVector<int, 5> vec{0, 1, 2, 3, 4};
452 
453   int i = 1;
454   for (auto &v : drop_begin(vec)) {
455     EXPECT_EQ(v, i);
456     i += 1;
457   }
458   EXPECT_EQ(i, 5);
459 }
460 
TEST(STLExtrasTest,DropEndTest)461 TEST(STLExtrasTest, DropEndTest) {
462   SmallVector<int, 5> vec{0, 1, 2, 3, 4};
463 
464   for (int n = 0; n < 5; ++n) {
465     int i = 0;
466     for (auto &v : drop_end(vec, n)) {
467       EXPECT_EQ(v, i);
468       i += 1;
469     }
470     EXPECT_EQ(i, 5 - n);
471   }
472 }
473 
TEST(STLExtrasTest,DropEndDefaultTest)474 TEST(STLExtrasTest, DropEndDefaultTest) {
475   SmallVector<int, 5> vec{0, 1, 2, 3, 4};
476 
477   int i = 0;
478   for (auto &v : drop_end(vec)) {
479     EXPECT_EQ(v, i);
480     i += 1;
481   }
482   EXPECT_EQ(i, 4);
483 }
484 
TEST(STLExtrasTest,EarlyIncrementTest)485 TEST(STLExtrasTest, EarlyIncrementTest) {
486   std::list<int> L = {1, 2, 3, 4};
487 
488   auto EIR = make_early_inc_range(L);
489 
490   auto I = EIR.begin();
491   auto EI = EIR.end();
492   EXPECT_NE(I, EI);
493 
494   EXPECT_EQ(1, *I);
495 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
496 #ifndef NDEBUG
497   // Repeated dereferences are not allowed.
498   EXPECT_DEATH(*I, "Cannot dereference");
499   // Comparison after dereference is not allowed.
500   EXPECT_DEATH((void)(I == EI), "Cannot compare");
501   EXPECT_DEATH((void)(I != EI), "Cannot compare");
502 #endif
503 #endif
504 
505   ++I;
506   EXPECT_NE(I, EI);
507 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
508 #ifndef NDEBUG
509   // You cannot increment prior to dereference.
510   EXPECT_DEATH(++I, "Cannot increment");
511 #endif
512 #endif
513   EXPECT_EQ(2, *I);
514 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
515 #ifndef NDEBUG
516   // Repeated dereferences are not allowed.
517   EXPECT_DEATH(*I, "Cannot dereference");
518 #endif
519 #endif
520 
521   // Inserting shouldn't break anything. We should be able to keep dereferencing
522   // the currrent iterator and increment. The increment to go to the "next"
523   // iterator from before we inserted.
524   L.insert(std::next(L.begin(), 2), -1);
525   ++I;
526   EXPECT_EQ(3, *I);
527 
528   // Erasing the front including the current doesn't break incrementing.
529   L.erase(L.begin(), std::prev(L.end()));
530   ++I;
531   EXPECT_EQ(4, *I);
532   ++I;
533   EXPECT_EQ(EIR.end(), I);
534 }
535 
536 // A custom iterator that returns a pointer when dereferenced. This is used to
537 // test make_early_inc_range with iterators that do not return a reference on
538 // dereferencing.
539 struct CustomPointerIterator
540     : public iterator_adaptor_base<CustomPointerIterator,
541                                    std::list<int>::iterator,
542                                    std::forward_iterator_tag> {
543   using base_type =
544       iterator_adaptor_base<CustomPointerIterator, std::list<int>::iterator,
545                             std::forward_iterator_tag>;
546 
CustomPointerIterator__anon9f9e6dce0111::CustomPointerIterator547   explicit CustomPointerIterator(std::list<int>::iterator I) : base_type(I) {}
548 
549   // Retrieve a pointer to the current int.
operator *__anon9f9e6dce0111::CustomPointerIterator550   int *operator*() const { return &*base_type::wrapped(); }
551 };
552 
553 // Make sure make_early_inc_range works with iterators that do not return a
554 // reference on dereferencing. The test is similar to EarlyIncrementTest, but
555 // uses CustomPointerIterator.
TEST(STLExtrasTest,EarlyIncrementTestCustomPointerIterator)556 TEST(STLExtrasTest, EarlyIncrementTestCustomPointerIterator) {
557   std::list<int> L = {1, 2, 3, 4};
558 
559   auto CustomRange = make_range(CustomPointerIterator(L.begin()),
560                                 CustomPointerIterator(L.end()));
561   auto EIR = make_early_inc_range(CustomRange);
562 
563   auto I = EIR.begin();
564   auto EI = EIR.end();
565   EXPECT_NE(I, EI);
566 
567   EXPECT_EQ(&*L.begin(), *I);
568 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
569 #ifndef NDEBUG
570   // Repeated dereferences are not allowed.
571   EXPECT_DEATH(*I, "Cannot dereference");
572   // Comparison after dereference is not allowed.
573   EXPECT_DEATH((void)(I == EI), "Cannot compare");
574   EXPECT_DEATH((void)(I != EI), "Cannot compare");
575 #endif
576 #endif
577 
578   ++I;
579   EXPECT_NE(I, EI);
580 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
581 #ifndef NDEBUG
582   // You cannot increment prior to dereference.
583   EXPECT_DEATH(++I, "Cannot increment");
584 #endif
585 #endif
586   EXPECT_EQ(&*std::next(L.begin()), *I);
587 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
588 #ifndef NDEBUG
589   // Repeated dereferences are not allowed.
590   EXPECT_DEATH(*I, "Cannot dereference");
591 #endif
592 #endif
593 
594   // Inserting shouldn't break anything. We should be able to keep dereferencing
595   // the currrent iterator and increment. The increment to go to the "next"
596   // iterator from before we inserted.
597   L.insert(std::next(L.begin(), 2), -1);
598   ++I;
599   EXPECT_EQ(&*std::next(L.begin(), 3), *I);
600 
601   // Erasing the front including the current doesn't break incrementing.
602   L.erase(L.begin(), std::prev(L.end()));
603   ++I;
604   EXPECT_EQ(&*L.begin(), *I);
605   ++I;
606   EXPECT_EQ(EIR.end(), I);
607 }
608 
TEST(STLExtrasTest,splat)609 TEST(STLExtrasTest, splat) {
610   std::vector<int> V;
611   EXPECT_FALSE(is_splat(V));
612 
613   V.push_back(1);
614   EXPECT_TRUE(is_splat(V));
615 
616   V.push_back(1);
617   V.push_back(1);
618   EXPECT_TRUE(is_splat(V));
619 
620   V.push_back(2);
621   EXPECT_FALSE(is_splat(V));
622 }
623 
TEST(STLExtrasTest,to_address)624 TEST(STLExtrasTest, to_address) {
625   int *V1 = new int;
626   EXPECT_EQ(V1, to_address(V1));
627 
628   // Check fancy pointer overload for unique_ptr
629   std::unique_ptr<int> V2 = std::make_unique<int>(0);
630   EXPECT_EQ(V2.get(), llvm::to_address(V2));
631 
632   V2.reset(V1);
633   EXPECT_EQ(V1, llvm::to_address(V2));
634   V2.release();
635 
636   // Check fancy pointer overload for shared_ptr
637   std::shared_ptr<int> V3 = std::make_shared<int>(0);
638   std::shared_ptr<int> V4 = V3;
639   EXPECT_EQ(V3.get(), V4.get());
640   EXPECT_EQ(V3.get(), llvm::to_address(V3));
641   EXPECT_EQ(V4.get(), llvm::to_address(V4));
642 
643   V3.reset(V1);
644   EXPECT_EQ(V1, llvm::to_address(V3));
645 }
646 
TEST(STLExtrasTest,partition_point)647 TEST(STLExtrasTest, partition_point) {
648   std::vector<int> V = {1, 3, 5, 7, 9};
649 
650   // Range version.
651   EXPECT_EQ(V.begin() + 3,
652             partition_point(V, [](unsigned X) { return X < 7; }));
653   EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
654   EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
655 }
656 
TEST(STLExtrasTest,hasSingleElement)657 TEST(STLExtrasTest, hasSingleElement) {
658   const std::vector<int> V0 = {}, V1 = {1}, V2 = {1, 2};
659   const std::vector<int> V10(10);
660 
661   EXPECT_EQ(hasSingleElement(V0), false);
662   EXPECT_EQ(hasSingleElement(V1), true);
663   EXPECT_EQ(hasSingleElement(V2), false);
664   EXPECT_EQ(hasSingleElement(V10), false);
665 }
666 
TEST(STLExtrasTest,hasNItems)667 TEST(STLExtrasTest, hasNItems) {
668   const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
669   const std::list<int> V3 = {1, 3, 5};
670 
671   EXPECT_TRUE(hasNItems(V0, 0));
672   EXPECT_FALSE(hasNItems(V0, 2));
673   EXPECT_TRUE(hasNItems(V1, 1));
674   EXPECT_FALSE(hasNItems(V1, 2));
675 
676   EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
677   EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 0, [](int x) { return x > 10; }));
678   EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
679 }
680 
TEST(STLExtras,hasNItemsOrMore)681 TEST(STLExtras, hasNItemsOrMore) {
682   const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
683   const std::list<int> V3 = {1, 3, 5};
684 
685   EXPECT_TRUE(hasNItemsOrMore(V1, 1));
686   EXPECT_FALSE(hasNItemsOrMore(V1, 2));
687 
688   EXPECT_TRUE(hasNItemsOrMore(V2, 1));
689   EXPECT_TRUE(hasNItemsOrMore(V2, 2));
690   EXPECT_FALSE(hasNItemsOrMore(V2, 3));
691 
692   EXPECT_TRUE(hasNItemsOrMore(V3, 3));
693   EXPECT_FALSE(hasNItemsOrMore(V3, 4));
694 
695   EXPECT_TRUE(
696       hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
697   EXPECT_FALSE(
698       hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x > 10; }));
699   EXPECT_TRUE(
700       hasNItemsOrMore(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
701 }
702 
TEST(STLExtras,hasNItemsOrLess)703 TEST(STLExtras, hasNItemsOrLess) {
704   const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
705   const std::list<int> V3 = {1, 3, 5};
706 
707   EXPECT_TRUE(hasNItemsOrLess(V0, 0));
708   EXPECT_TRUE(hasNItemsOrLess(V0, 1));
709   EXPECT_TRUE(hasNItemsOrLess(V0, 2));
710 
711   EXPECT_FALSE(hasNItemsOrLess(V1, 0));
712   EXPECT_TRUE(hasNItemsOrLess(V1, 1));
713   EXPECT_TRUE(hasNItemsOrLess(V1, 2));
714 
715   EXPECT_FALSE(hasNItemsOrLess(V2, 0));
716   EXPECT_FALSE(hasNItemsOrLess(V2, 1));
717   EXPECT_TRUE(hasNItemsOrLess(V2, 2));
718   EXPECT_TRUE(hasNItemsOrLess(V2, 3));
719 
720   EXPECT_FALSE(hasNItemsOrLess(V3, 0));
721   EXPECT_FALSE(hasNItemsOrLess(V3, 1));
722   EXPECT_FALSE(hasNItemsOrLess(V3, 2));
723   EXPECT_TRUE(hasNItemsOrLess(V3, 3));
724   EXPECT_TRUE(hasNItemsOrLess(V3, 4));
725 
726   EXPECT_TRUE(
727       hasNItemsOrLess(V3.begin(), V3.end(), 1, [](int x) { return x == 1; }));
728   EXPECT_TRUE(
729       hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
730   EXPECT_TRUE(
731       hasNItemsOrLess(V3.begin(), V3.end(), 5, [](int x) { return x < 5; }));
732   EXPECT_FALSE(
733       hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 10; }));
734 }
735 
TEST(STLExtras,MoveRange)736 TEST(STLExtras, MoveRange) {
737   class Foo {
738     bool A;
739 
740   public:
741     Foo() : A(true) {}
742     Foo(const Foo &) = delete;
743     Foo(Foo &&Other) : A(Other.A) { Other.A = false; }
744     Foo &operator=(const Foo &) = delete;
745     Foo &operator=(Foo &&Other) {
746       if (this != &Other) {
747         A = Other.A;
748         Other.A = false;
749       }
750       return *this;
751     }
752     operator bool() const { return A; }
753   };
754   SmallVector<Foo, 4U> V1, V2, V3, V4;
755   auto HasVal = [](const Foo &Item) { return static_cast<bool>(Item); };
756   auto Build = [&] {
757     SmallVector<Foo, 4U> Foos;
758     Foos.resize(4U);
759     return Foos;
760   };
761 
762   V1.resize(4U);
763   EXPECT_TRUE(llvm::all_of(V1, HasVal));
764 
765   llvm::move(V1, std::back_inserter(V2));
766 
767   // Ensure input container is same size, but its contents were moved out.
768   EXPECT_EQ(V1.size(), 4U);
769   EXPECT_TRUE(llvm::none_of(V1, HasVal));
770 
771   // Ensure output container has the contents of the input container.
772   EXPECT_EQ(V2.size(), 4U);
773   EXPECT_TRUE(llvm::all_of(V2, HasVal));
774 
775   llvm::move(std::move(V2), std::back_inserter(V3));
776 
777   EXPECT_TRUE(llvm::none_of(V2, HasVal));
778   EXPECT_EQ(V3.size(), 4U);
779   EXPECT_TRUE(llvm::all_of(V3, HasVal));
780 
781   llvm::move(Build(), std::back_inserter(V4));
782   EXPECT_EQ(V4.size(), 4U);
783   EXPECT_TRUE(llvm::all_of(V4, HasVal));
784 }
785 
TEST(STLExtras,Unique)786 TEST(STLExtras, Unique) {
787   std::vector<int> V = {1, 5, 5, 4, 3, 3, 3};
788 
789   auto I = llvm::unique(V, [](int a, int b) { return a == b; });
790 
791   EXPECT_EQ(I, V.begin() + 4);
792 
793   EXPECT_EQ(1, V[0]);
794   EXPECT_EQ(5, V[1]);
795   EXPECT_EQ(4, V[2]);
796   EXPECT_EQ(3, V[3]);
797 }
798 
TEST(STLExtrasTest,MakeVisitorOneCallable)799 TEST(STLExtrasTest, MakeVisitorOneCallable) {
800   auto IdentityLambda = [](auto X) { return X; };
801   auto IdentityVisitor = makeVisitor(IdentityLambda);
802   EXPECT_EQ(IdentityLambda(1), IdentityVisitor(1));
803   EXPECT_EQ(IdentityLambda(2.0f), IdentityVisitor(2.0f));
804   EXPECT_TRUE((std::is_same<decltype(IdentityLambda(IdentityLambda)),
805                             decltype(IdentityLambda)>::value));
806   EXPECT_TRUE((std::is_same<decltype(IdentityVisitor(IdentityVisitor)),
807                             decltype(IdentityVisitor)>::value));
808 }
809 
TEST(STLExtrasTest,MakeVisitorTwoCallables)810 TEST(STLExtrasTest, MakeVisitorTwoCallables) {
811   auto Visitor =
812       makeVisitor([](int) { return 0; }, [](std::string) { return 1; });
813   EXPECT_EQ(Visitor(42), 0);
814   EXPECT_EQ(Visitor("foo"), 1);
815 }
816 
TEST(STLExtrasTest,MakeVisitorCallableMultipleOperands)817 TEST(STLExtrasTest, MakeVisitorCallableMultipleOperands) {
818   auto Second = makeVisitor([](int I, float F) { return F; },
819                             [](float F, int I) { return I; });
820   EXPECT_EQ(Second(1.f, 1), 1);
821   EXPECT_EQ(Second(1, 1.f), 1.f);
822 }
823 
TEST(STLExtrasTest,MakeVisitorDefaultCase)824 TEST(STLExtrasTest, MakeVisitorDefaultCase) {
825   {
826     auto Visitor = makeVisitor([](int I) { return I + 100; },
827                                [](float F) { return F * 2; },
828                                [](auto) { return -1; });
829     EXPECT_EQ(Visitor(24), 124);
830     EXPECT_EQ(Visitor(2.f), 4.f);
831     EXPECT_EQ(Visitor(2.), -1);
832     EXPECT_EQ(Visitor(Visitor), -1);
833   }
834   {
835     auto Visitor = makeVisitor([](auto) { return -1; },
836                                [](int I) { return I + 100; },
837                                [](float F) { return F * 2; });
838     EXPECT_EQ(Visitor(24), 124);
839     EXPECT_EQ(Visitor(2.f), 4.f);
840     EXPECT_EQ(Visitor(2.), -1);
841     EXPECT_EQ(Visitor(Visitor), -1);
842   }
843 }
844 
845 template <bool Moveable, bool Copyable>
846 struct Functor : Counted<Moveable, Copyable> {
847   using Counted<Moveable, Copyable>::Counted;
operator ()__anon9f9e6dce0111::Functor848   void operator()() {}
849 };
850 
TEST(STLExtrasTest,MakeVisitorLifetimeSemanticsPRValue)851 TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsPRValue) {
852   int Copies = 0;
853   int Moves = 0;
854   int Destructors = 0;
855   {
856     auto V = makeVisitor(Functor<true, false>(Copies, Moves, Destructors));
857     (void)V;
858     EXPECT_EQ(0, Copies);
859     EXPECT_EQ(1, Moves);
860     EXPECT_EQ(1, Destructors);
861   }
862   EXPECT_EQ(0, Copies);
863   EXPECT_EQ(1, Moves);
864   EXPECT_EQ(2, Destructors);
865 }
866 
TEST(STLExtrasTest,MakeVisitorLifetimeSemanticsRValue)867 TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsRValue) {
868   int Copies = 0;
869   int Moves = 0;
870   int Destructors = 0;
871   {
872     Functor<true, false> F(Copies, Moves, Destructors);
873     {
874       auto V = makeVisitor(std::move(F));
875       (void)V;
876       EXPECT_EQ(0, Copies);
877       EXPECT_EQ(1, Moves);
878       EXPECT_EQ(0, Destructors);
879     }
880     EXPECT_EQ(0, Copies);
881     EXPECT_EQ(1, Moves);
882     EXPECT_EQ(1, Destructors);
883   }
884   EXPECT_EQ(0, Copies);
885   EXPECT_EQ(1, Moves);
886   EXPECT_EQ(2, Destructors);
887 }
888 
TEST(STLExtrasTest,MakeVisitorLifetimeSemanticsLValue)889 TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsLValue) {
890   int Copies = 0;
891   int Moves = 0;
892   int Destructors = 0;
893   {
894     Functor<true, true> F(Copies, Moves, Destructors);
895     {
896       auto V = makeVisitor(F);
897       (void)V;
898       EXPECT_EQ(1, Copies);
899       EXPECT_EQ(0, Moves);
900       EXPECT_EQ(0, Destructors);
901     }
902     EXPECT_EQ(1, Copies);
903     EXPECT_EQ(0, Moves);
904     EXPECT_EQ(1, Destructors);
905   }
906   EXPECT_EQ(1, Copies);
907   EXPECT_EQ(0, Moves);
908   EXPECT_EQ(2, Destructors);
909 }
910 
TEST(STLExtrasTest,AllOfZip)911 TEST(STLExtrasTest, AllOfZip) {
912   std::vector<int> v1 = {0, 4, 2, 1};
913   std::vector<int> v2 = {1, 4, 3, 6};
914   EXPECT_TRUE(all_of_zip(v1, v2, [](int v1, int v2) { return v1 <= v2; }));
915   EXPECT_FALSE(all_of_zip(v1, v2, [](int L, int R) { return L < R; }));
916 
917   // Triple vectors
918   std::vector<int> v3 = {1, 6, 5, 7};
919   EXPECT_EQ(true, all_of_zip(v1, v2, v3, [](int a, int b, int c) {
920               return a <= b && b <= c;
921             }));
922   EXPECT_EQ(false, all_of_zip(v1, v2, v3, [](int a, int b, int c) {
923               return a < b && b < c;
924             }));
925 
926   // Shorter vector should fail even with an always-true predicate.
927   std::vector<int> v_short = {1, 4};
928   EXPECT_EQ(false, all_of_zip(v1, v_short, [](int, int) { return true; }));
929   EXPECT_EQ(false,
930             all_of_zip(v1, v2, v_short, [](int, int, int) { return true; }));
931 }
932 
TEST(STLExtrasTest,TypesAreDistinct)933 TEST(STLExtrasTest, TypesAreDistinct) {
934   EXPECT_TRUE((llvm::TypesAreDistinct<>::value));
935   EXPECT_TRUE((llvm::TypesAreDistinct<int>::value));
936   EXPECT_FALSE((llvm::TypesAreDistinct<int, int>::value));
937   EXPECT_TRUE((llvm::TypesAreDistinct<int, float>::value));
938   EXPECT_FALSE((llvm::TypesAreDistinct<int, float, int>::value));
939   EXPECT_TRUE((llvm::TypesAreDistinct<int, float, double>::value));
940   EXPECT_FALSE((llvm::TypesAreDistinct<int, float, double, float>::value));
941   EXPECT_TRUE((llvm::TypesAreDistinct<int, int *>::value));
942   EXPECT_TRUE((llvm::TypesAreDistinct<int, int &>::value));
943   EXPECT_TRUE((llvm::TypesAreDistinct<int, int &&>::value));
944   EXPECT_TRUE((llvm::TypesAreDistinct<int, const int>::value));
945 }
946 
TEST(STLExtrasTest,FirstIndexOfType)947 TEST(STLExtrasTest, FirstIndexOfType) {
948   EXPECT_EQ((llvm::FirstIndexOfType<int, int>::value), 0u);
949   EXPECT_EQ((llvm::FirstIndexOfType<int, int, int>::value), 0u);
950   EXPECT_EQ((llvm::FirstIndexOfType<int, float, int>::value), 1u);
951   EXPECT_EQ((llvm::FirstIndexOfType<int const *, float, int, int const *,
952                                     const int>::value),
953             2u);
954 }
955 
TEST(STLExtrasTest,TypeAtIndex)956 TEST(STLExtrasTest, TypeAtIndex) {
957   EXPECT_TRUE((std::is_same<int, llvm::TypeAtIndex<0, int>>::value));
958   EXPECT_TRUE((std::is_same<int, llvm::TypeAtIndex<0, int, float>>::value));
959   EXPECT_TRUE((std::is_same<float, llvm::TypeAtIndex<1, int, float>>::value));
960   EXPECT_TRUE(
961       (std::is_same<float, llvm::TypeAtIndex<1, int, float, double>>::value));
962   EXPECT_TRUE(
963       (std::is_same<float, llvm::TypeAtIndex<1, int, float, double>>::value));
964   EXPECT_TRUE(
965       (std::is_same<double, llvm::TypeAtIndex<2, int, float, double>>::value));
966 }
967 
968 enum Doggos {
969   Floofer,
970   Woofer,
971   SubWoofer,
972   Pupper,
973   Pupperino,
974   Longboi,
975 };
976 
TEST(STLExtrasTest,IsContainedInitializerList)977 TEST(STLExtrasTest, IsContainedInitializerList) {
978   EXPECT_TRUE(is_contained({Woofer, SubWoofer}, Woofer));
979   EXPECT_TRUE(is_contained({Woofer, SubWoofer}, SubWoofer));
980   EXPECT_FALSE(is_contained({Woofer, SubWoofer}, Pupper));
981   EXPECT_FALSE(is_contained({}, Longboi));
982 
983   static_assert(is_contained({Woofer, SubWoofer}, SubWoofer), "SubWoofer!");
984   static_assert(!is_contained({Woofer, SubWoofer}, Pupper), "Missing Pupper!");
985 
986   EXPECT_TRUE(is_contained({1, 2, 3, 4}, 3));
987   EXPECT_FALSE(is_contained({1, 2, 3, 4}, 5));
988 
989   static_assert(is_contained({1, 2, 3, 4}, 3), "It's there!");
990   static_assert(!is_contained({1, 2, 3, 4}, 5), "It's not there :(");
991 }
992 
TEST(STLExtrasTest,addEnumValues)993 TEST(STLExtrasTest, addEnumValues) {
994   enum A { Zero = 0, One = 1 };
995   enum B { IntMax = INT_MAX, ULongLongMax = ULLONG_MAX };
996   enum class C : unsigned { Two = 2 };
997 
998   // Non-fixed underlying types, with same underlying types
999   static_assert(addEnumValues(Zero, One) == 1,
1000                 "addEnumValues(Zero, One) failed.");
1001   static_assert(addEnumValues(IntMax, ULongLongMax) ==
1002                     INT_MAX + static_cast<unsigned long long>(ULLONG_MAX),
1003                 "addEnumValues(IntMax, ULongLongMax) failed.");
1004   // Non-fixed underlying types, with different underlying types
1005   static_assert(addEnumValues(Zero, IntMax) == INT_MAX,
1006                 "addEnumValues(Zero, IntMax) failed.");
1007   static_assert(addEnumValues(One, ULongLongMax) ==
1008                     1 + static_cast<unsigned long long>(ULLONG_MAX),
1009                 "addEnumValues(One, ULongLongMax) failed.");
1010   // Non-fixed underlying type enum and fixed underlying type enum, with same
1011   // underlying types
1012   static_assert(addEnumValues(One, C::Two) == 3,
1013                 "addEnumValues(One, C::Two) failed.");
1014   // Non-fixed underlying type enum and fixed underlying type enum, with
1015   // different underlying types
1016   static_assert(addEnumValues(ULongLongMax, C::Two) ==
1017                     static_cast<unsigned long long>(ULLONG_MAX) + 2,
1018                 "addEnumValues(ULongLongMax, C::Two) failed.");
1019 }
1020 
1021 } // namespace
1022