1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  */
30 
31 /*
32  * The objective of this program is to provide a DMU/ZAP/SPA stress test
33  * that runs entirely in userland, is easy to use, and easy to extend.
34  *
35  * The overall design of the ztest program is as follows:
36  *
37  * (1) For each major functional area (e.g. adding vdevs to a pool,
38  *     creating and destroying datasets, reading and writing objects, etc)
39  *     we have a simple routine to test that functionality.  These
40  *     individual routines do not have to do anything "stressful".
41  *
42  * (2) We turn these simple functionality tests into a stress test by
43  *     running them all in parallel, with as many threads as desired,
44  *     and spread across as many datasets, objects, and vdevs as desired.
45  *
46  * (3) While all this is happening, we inject faults into the pool to
47  *     verify that self-healing data really works.
48  *
49  * (4) Every time we open a dataset, we change its checksum and compression
50  *     functions.  Thus even individual objects vary from block to block
51  *     in which checksum they use and whether they're compressed.
52  *
53  * (5) To verify that we never lose on-disk consistency after a crash,
54  *     we run the entire test in a child of the main process.
55  *     At random times, the child self-immolates with a SIGKILL.
56  *     This is the software equivalent of pulling the power cord.
57  *     The parent then runs the test again, using the existing
58  *     storage pool, as many times as desired. If backwards compatibility
59  *     testing is enabled ztest will sometimes run the "older" version
60  *     of ztest after a SIGKILL.
61  *
62  * (6) To verify that we don't have future leaks or temporal incursions,
63  *     many of the functional tests record the transaction group number
64  *     as part of their data.  When reading old data, they verify that
65  *     the transaction group number is less than the current, open txg.
66  *     If you add a new test, please do this if applicable.
67  *
68  * (7) Threads are created with a reduced stack size, for sanity checking.
69  *     Therefore, it's important not to allocate huge buffers on the stack.
70  *
71  * When run with no arguments, ztest runs for about five minutes and
72  * produces no output if successful.  To get a little bit of information,
73  * specify -V.  To get more information, specify -VV, and so on.
74  *
75  * To turn this into an overnight stress test, use -T to specify run time.
76  *
77  * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78  * to increase the pool capacity, fanout, and overall stress level.
79  *
80  * Use the -k option to set the desired frequency of kills.
81  *
82  * When ztest invokes itself it passes all relevant information through a
83  * temporary file which is mmap-ed in the child process. This allows shared
84  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85  * stored at offset 0 of this file and contains information on the size and
86  * number of shared structures in the file. The information stored in this file
87  * must remain backwards compatible with older versions of ztest so that
88  * ztest can invoke them during backwards compatibility testing (-B).
89  */
90 
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
123 #include <sys/abd.h>
124 #include <stdio.h>
125 #include <stdlib.h>
126 #include <unistd.h>
127 #include <getopt.h>
128 #include <signal.h>
129 #include <umem.h>
130 #include <ctype.h>
131 #include <math.h>
132 #include <sys/fs/zfs.h>
133 #include <zfs_fletcher.h>
134 #include <libnvpair.h>
135 #include <libzutil.h>
136 #include <sys/crypto/icp.h>
137 #if (__GLIBC__ && !__UCLIBC__)
138 #include <execinfo.h> /* for backtrace() */
139 #endif
140 
141 static int ztest_fd_data = -1;
142 static int ztest_fd_rand = -1;
143 
144 typedef struct ztest_shared_hdr {
145 	uint64_t	zh_hdr_size;
146 	uint64_t	zh_opts_size;
147 	uint64_t	zh_size;
148 	uint64_t	zh_stats_size;
149 	uint64_t	zh_stats_count;
150 	uint64_t	zh_ds_size;
151 	uint64_t	zh_ds_count;
152 } ztest_shared_hdr_t;
153 
154 static ztest_shared_hdr_t *ztest_shared_hdr;
155 
156 enum ztest_class_state {
157 	ZTEST_VDEV_CLASS_OFF,
158 	ZTEST_VDEV_CLASS_ON,
159 	ZTEST_VDEV_CLASS_RND
160 };
161 
162 #define	ZO_GVARS_MAX_ARGLEN	((size_t)64)
163 #define	ZO_GVARS_MAX_COUNT	((size_t)10)
164 
165 typedef struct ztest_shared_opts {
166 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
167 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
168 	char zo_alt_ztest[MAXNAMELEN];
169 	char zo_alt_libpath[MAXNAMELEN];
170 	uint64_t zo_vdevs;
171 	uint64_t zo_vdevtime;
172 	size_t zo_vdev_size;
173 	int zo_ashift;
174 	int zo_mirrors;
175 	int zo_raid_children;
176 	int zo_raid_parity;
177 	char zo_raid_type[8];
178 	int zo_draid_data;
179 	int zo_draid_spares;
180 	int zo_datasets;
181 	int zo_threads;
182 	uint64_t zo_passtime;
183 	uint64_t zo_killrate;
184 	int zo_verbose;
185 	int zo_init;
186 	uint64_t zo_time;
187 	uint64_t zo_maxloops;
188 	uint64_t zo_metaslab_force_ganging;
189 	int zo_mmp_test;
190 	int zo_special_vdevs;
191 	int zo_dump_dbgmsg;
192 	int zo_gvars_count;
193 	char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
194 } ztest_shared_opts_t;
195 
196 /* Default values for command line options. */
197 #define	DEFAULT_POOL "ztest"
198 #define	DEFAULT_VDEV_DIR "/tmp"
199 #define	DEFAULT_VDEV_COUNT 5
200 #define	DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)	/* 256m default size */
201 #define	DEFAULT_VDEV_SIZE_STR "256M"
202 #define	DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
203 #define	DEFAULT_MIRRORS 2
204 #define	DEFAULT_RAID_CHILDREN 4
205 #define	DEFAULT_RAID_PARITY 1
206 #define	DEFAULT_DRAID_DATA 4
207 #define	DEFAULT_DRAID_SPARES 1
208 #define	DEFAULT_DATASETS_COUNT 7
209 #define	DEFAULT_THREADS 23
210 #define	DEFAULT_RUN_TIME 300 /* 300 seconds */
211 #define	DEFAULT_RUN_TIME_STR "300 sec"
212 #define	DEFAULT_PASS_TIME 60 /* 60 seconds */
213 #define	DEFAULT_PASS_TIME_STR "60 sec"
214 #define	DEFAULT_KILL_RATE 70 /* 70% kill rate */
215 #define	DEFAULT_KILLRATE_STR "70%"
216 #define	DEFAULT_INITS 1
217 #define	DEFAULT_MAX_LOOPS 50 /* 5 minutes */
218 #define	DEFAULT_FORCE_GANGING (64 << 10)
219 #define	DEFAULT_FORCE_GANGING_STR "64K"
220 
221 /* Simplifying assumption: -1 is not a valid default. */
222 #define	NO_DEFAULT -1
223 
224 static const ztest_shared_opts_t ztest_opts_defaults = {
225 	.zo_pool = DEFAULT_POOL,
226 	.zo_dir = DEFAULT_VDEV_DIR,
227 	.zo_alt_ztest = { '\0' },
228 	.zo_alt_libpath = { '\0' },
229 	.zo_vdevs = DEFAULT_VDEV_COUNT,
230 	.zo_ashift = DEFAULT_ASHIFT,
231 	.zo_mirrors = DEFAULT_MIRRORS,
232 	.zo_raid_children = DEFAULT_RAID_CHILDREN,
233 	.zo_raid_parity = DEFAULT_RAID_PARITY,
234 	.zo_raid_type = VDEV_TYPE_RAIDZ,
235 	.zo_vdev_size = DEFAULT_VDEV_SIZE,
236 	.zo_draid_data = DEFAULT_DRAID_DATA,	/* data drives */
237 	.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
238 	.zo_datasets = DEFAULT_DATASETS_COUNT,
239 	.zo_threads = DEFAULT_THREADS,
240 	.zo_passtime = DEFAULT_PASS_TIME,
241 	.zo_killrate = DEFAULT_KILL_RATE,
242 	.zo_verbose = 0,
243 	.zo_mmp_test = 0,
244 	.zo_init = DEFAULT_INITS,
245 	.zo_time = DEFAULT_RUN_TIME,
246 	.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
247 	.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
248 	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
249 	.zo_gvars_count = 0,
250 };
251 
252 extern uint64_t metaslab_force_ganging;
253 extern uint64_t metaslab_df_alloc_threshold;
254 extern unsigned long zfs_deadman_synctime_ms;
255 extern int metaslab_preload_limit;
256 extern boolean_t zfs_compressed_arc_enabled;
257 extern int zfs_abd_scatter_enabled;
258 extern int dmu_object_alloc_chunk_shift;
259 extern boolean_t zfs_force_some_double_word_sm_entries;
260 extern unsigned long zio_decompress_fail_fraction;
261 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
262 
263 
264 static ztest_shared_opts_t *ztest_shared_opts;
265 static ztest_shared_opts_t ztest_opts;
266 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
267 
268 typedef struct ztest_shared_ds {
269 	uint64_t	zd_seq;
270 } ztest_shared_ds_t;
271 
272 static ztest_shared_ds_t *ztest_shared_ds;
273 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
274 
275 #define	BT_MAGIC	0x123456789abcdefULL
276 #define	MAXFAULTS(zs) \
277 	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
278 
279 enum ztest_io_type {
280 	ZTEST_IO_WRITE_TAG,
281 	ZTEST_IO_WRITE_PATTERN,
282 	ZTEST_IO_WRITE_ZEROES,
283 	ZTEST_IO_TRUNCATE,
284 	ZTEST_IO_SETATTR,
285 	ZTEST_IO_REWRITE,
286 	ZTEST_IO_TYPES
287 };
288 
289 typedef struct ztest_block_tag {
290 	uint64_t	bt_magic;
291 	uint64_t	bt_objset;
292 	uint64_t	bt_object;
293 	uint64_t	bt_dnodesize;
294 	uint64_t	bt_offset;
295 	uint64_t	bt_gen;
296 	uint64_t	bt_txg;
297 	uint64_t	bt_crtxg;
298 } ztest_block_tag_t;
299 
300 typedef struct bufwad {
301 	uint64_t	bw_index;
302 	uint64_t	bw_txg;
303 	uint64_t	bw_data;
304 } bufwad_t;
305 
306 /*
307  * It would be better to use a rangelock_t per object.  Unfortunately
308  * the rangelock_t is not a drop-in replacement for rl_t, because we
309  * still need to map from object ID to rangelock_t.
310  */
311 typedef enum {
312 	RL_READER,
313 	RL_WRITER,
314 	RL_APPEND
315 } rl_type_t;
316 
317 typedef struct rll {
318 	void		*rll_writer;
319 	int		rll_readers;
320 	kmutex_t	rll_lock;
321 	kcondvar_t	rll_cv;
322 } rll_t;
323 
324 typedef struct rl {
325 	uint64_t	rl_object;
326 	uint64_t	rl_offset;
327 	uint64_t	rl_size;
328 	rll_t		*rl_lock;
329 } rl_t;
330 
331 #define	ZTEST_RANGE_LOCKS	64
332 #define	ZTEST_OBJECT_LOCKS	64
333 
334 /*
335  * Object descriptor.  Used as a template for object lookup/create/remove.
336  */
337 typedef struct ztest_od {
338 	uint64_t	od_dir;
339 	uint64_t	od_object;
340 	dmu_object_type_t od_type;
341 	dmu_object_type_t od_crtype;
342 	uint64_t	od_blocksize;
343 	uint64_t	od_crblocksize;
344 	uint64_t	od_crdnodesize;
345 	uint64_t	od_gen;
346 	uint64_t	od_crgen;
347 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
348 } ztest_od_t;
349 
350 /*
351  * Per-dataset state.
352  */
353 typedef struct ztest_ds {
354 	ztest_shared_ds_t *zd_shared;
355 	objset_t	*zd_os;
356 	pthread_rwlock_t zd_zilog_lock;
357 	zilog_t		*zd_zilog;
358 	ztest_od_t	*zd_od;		/* debugging aid */
359 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
360 	kmutex_t	zd_dirobj_lock;
361 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
362 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
363 } ztest_ds_t;
364 
365 /*
366  * Per-iteration state.
367  */
368 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
369 
370 typedef struct ztest_info {
371 	ztest_func_t	*zi_func;	/* test function */
372 	uint64_t	zi_iters;	/* iterations per execution */
373 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
374 	const char	*zi_funcname;	/* name of test function */
375 } ztest_info_t;
376 
377 typedef struct ztest_shared_callstate {
378 	uint64_t	zc_count;	/* per-pass count */
379 	uint64_t	zc_time;	/* per-pass time */
380 	uint64_t	zc_next;	/* next time to call this function */
381 } ztest_shared_callstate_t;
382 
383 static ztest_shared_callstate_t *ztest_shared_callstate;
384 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
385 
386 ztest_func_t ztest_dmu_read_write;
387 ztest_func_t ztest_dmu_write_parallel;
388 ztest_func_t ztest_dmu_object_alloc_free;
389 ztest_func_t ztest_dmu_object_next_chunk;
390 ztest_func_t ztest_dmu_commit_callbacks;
391 ztest_func_t ztest_zap;
392 ztest_func_t ztest_zap_parallel;
393 ztest_func_t ztest_zil_commit;
394 ztest_func_t ztest_zil_remount;
395 ztest_func_t ztest_dmu_read_write_zcopy;
396 ztest_func_t ztest_dmu_objset_create_destroy;
397 ztest_func_t ztest_dmu_prealloc;
398 ztest_func_t ztest_fzap;
399 ztest_func_t ztest_dmu_snapshot_create_destroy;
400 ztest_func_t ztest_dsl_prop_get_set;
401 ztest_func_t ztest_spa_prop_get_set;
402 ztest_func_t ztest_spa_create_destroy;
403 ztest_func_t ztest_fault_inject;
404 ztest_func_t ztest_dmu_snapshot_hold;
405 ztest_func_t ztest_mmp_enable_disable;
406 ztest_func_t ztest_scrub;
407 ztest_func_t ztest_dsl_dataset_promote_busy;
408 ztest_func_t ztest_vdev_attach_detach;
409 ztest_func_t ztest_vdev_LUN_growth;
410 ztest_func_t ztest_vdev_add_remove;
411 ztest_func_t ztest_vdev_class_add;
412 ztest_func_t ztest_vdev_aux_add_remove;
413 ztest_func_t ztest_split_pool;
414 ztest_func_t ztest_reguid;
415 ztest_func_t ztest_spa_upgrade;
416 ztest_func_t ztest_device_removal;
417 ztest_func_t ztest_spa_checkpoint_create_discard;
418 ztest_func_t ztest_initialize;
419 ztest_func_t ztest_trim;
420 ztest_func_t ztest_fletcher;
421 ztest_func_t ztest_fletcher_incr;
422 ztest_func_t ztest_verify_dnode_bt;
423 
424 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
425 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
426 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
427 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
428 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
429 
430 #define	ZTI_INIT(func, iters, interval) \
431 	{   .zi_func = (func), \
432 	    .zi_iters = (iters), \
433 	    .zi_interval = (interval), \
434 	    .zi_funcname = # func }
435 
436 ztest_info_t ztest_info[] = {
437 	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
438 	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
439 	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
440 	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
441 	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
442 	ZTI_INIT(ztest_zap, 30, &zopt_always),
443 	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
444 	ZTI_INIT(ztest_split_pool, 1, &zopt_always),
445 	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
446 	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
447 	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
448 	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
449 	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
450 	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
451 #if 0
452 	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
453 #endif
454 	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
455 	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
456 	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
457 	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
458 	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
459 	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
460 	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
461 	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
462 	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
463 	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
464 	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
465 	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
466 	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
467 	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
468 	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
469 	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
470 	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
471 	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
472 	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
473 	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
474 	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
475 	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
476 };
477 
478 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
479 
480 /*
481  * The following struct is used to hold a list of uncalled commit callbacks.
482  * The callbacks are ordered by txg number.
483  */
484 typedef struct ztest_cb_list {
485 	kmutex_t	zcl_callbacks_lock;
486 	list_t		zcl_callbacks;
487 } ztest_cb_list_t;
488 
489 /*
490  * Stuff we need to share writably between parent and child.
491  */
492 typedef struct ztest_shared {
493 	boolean_t	zs_do_init;
494 	hrtime_t	zs_proc_start;
495 	hrtime_t	zs_proc_stop;
496 	hrtime_t	zs_thread_start;
497 	hrtime_t	zs_thread_stop;
498 	hrtime_t	zs_thread_kill;
499 	uint64_t	zs_enospc_count;
500 	uint64_t	zs_vdev_next_leaf;
501 	uint64_t	zs_vdev_aux;
502 	uint64_t	zs_alloc;
503 	uint64_t	zs_space;
504 	uint64_t	zs_splits;
505 	uint64_t	zs_mirrors;
506 	uint64_t	zs_metaslab_sz;
507 	uint64_t	zs_metaslab_df_alloc_threshold;
508 	uint64_t	zs_guid;
509 } ztest_shared_t;
510 
511 #define	ID_PARALLEL	-1ULL
512 
513 static char ztest_dev_template[] = "%s/%s.%llua";
514 static char ztest_aux_template[] = "%s/%s.%s.%llu";
515 ztest_shared_t *ztest_shared;
516 
517 static spa_t *ztest_spa = NULL;
518 static ztest_ds_t *ztest_ds;
519 
520 static kmutex_t ztest_vdev_lock;
521 static boolean_t ztest_device_removal_active = B_FALSE;
522 static boolean_t ztest_pool_scrubbed = B_FALSE;
523 static kmutex_t ztest_checkpoint_lock;
524 
525 /*
526  * The ztest_name_lock protects the pool and dataset namespace used by
527  * the individual tests. To modify the namespace, consumers must grab
528  * this lock as writer. Grabbing the lock as reader will ensure that the
529  * namespace does not change while the lock is held.
530  */
531 static pthread_rwlock_t ztest_name_lock;
532 
533 static boolean_t ztest_dump_core = B_TRUE;
534 static boolean_t ztest_exiting;
535 
536 /* Global commit callback list */
537 static ztest_cb_list_t zcl;
538 /* Commit cb delay */
539 static uint64_t zc_min_txg_delay = UINT64_MAX;
540 static int zc_cb_counter = 0;
541 
542 /*
543  * Minimum number of commit callbacks that need to be registered for us to check
544  * whether the minimum txg delay is acceptable.
545  */
546 #define	ZTEST_COMMIT_CB_MIN_REG	100
547 
548 /*
549  * If a number of txgs equal to this threshold have been created after a commit
550  * callback has been registered but not called, then we assume there is an
551  * implementation bug.
552  */
553 #define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
554 
555 enum ztest_object {
556 	ZTEST_META_DNODE = 0,
557 	ZTEST_DIROBJ,
558 	ZTEST_OBJECTS
559 };
560 
561 static void usage(boolean_t) __NORETURN;
562 static int ztest_scrub_impl(spa_t *spa);
563 
564 /*
565  * These libumem hooks provide a reasonable set of defaults for the allocator's
566  * debugging facilities.
567  */
568 const char *
_umem_debug_init(void)569 _umem_debug_init(void)
570 {
571 	return ("default,verbose"); /* $UMEM_DEBUG setting */
572 }
573 
574 const char *
_umem_logging_init(void)575 _umem_logging_init(void)
576 {
577 	return ("fail,contents"); /* $UMEM_LOGGING setting */
578 }
579 
580 static void
dump_debug_buffer(void)581 dump_debug_buffer(void)
582 {
583 	ssize_t ret __attribute__((unused));
584 
585 	if (!ztest_opts.zo_dump_dbgmsg)
586 		return;
587 
588 	/*
589 	 * We use write() instead of printf() so that this function
590 	 * is safe to call from a signal handler.
591 	 */
592 	ret = write(STDOUT_FILENO, "\n", 1);
593 	zfs_dbgmsg_print("ztest");
594 }
595 
596 #define	BACKTRACE_SZ	100
597 
sig_handler(int signo)598 static void sig_handler(int signo)
599 {
600 	struct sigaction action;
601 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
602 	int nptrs;
603 	void *buffer[BACKTRACE_SZ];
604 
605 	nptrs = backtrace(buffer, BACKTRACE_SZ);
606 	backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
607 #endif
608 	dump_debug_buffer();
609 
610 	/*
611 	 * Restore default action and re-raise signal so SIGSEGV and
612 	 * SIGABRT can trigger a core dump.
613 	 */
614 	action.sa_handler = SIG_DFL;
615 	sigemptyset(&action.sa_mask);
616 	action.sa_flags = 0;
617 	(void) sigaction(signo, &action, NULL);
618 	raise(signo);
619 }
620 
621 #define	FATAL_MSG_SZ	1024
622 
623 char *fatal_msg;
624 
625 static void
fatal(int do_perror,char * message,...)626 fatal(int do_perror, char *message, ...)
627 {
628 	va_list args;
629 	int save_errno = errno;
630 	char *buf;
631 
632 	(void) fflush(stdout);
633 	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
634 
635 	va_start(args, message);
636 	(void) sprintf(buf, "ztest: ");
637 	/* LINTED */
638 	(void) vsprintf(buf + strlen(buf), message, args);
639 	va_end(args);
640 	if (do_perror) {
641 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
642 		    ": %s", strerror(save_errno));
643 	}
644 	(void) fprintf(stderr, "%s\n", buf);
645 	fatal_msg = buf;			/* to ease debugging */
646 
647 	if (ztest_dump_core)
648 		abort();
649 	else
650 		dump_debug_buffer();
651 
652 	exit(3);
653 }
654 
655 static int
str2shift(const char * buf)656 str2shift(const char *buf)
657 {
658 	const char *ends = "BKMGTPEZ";
659 	int i;
660 
661 	if (buf[0] == '\0')
662 		return (0);
663 	for (i = 0; i < strlen(ends); i++) {
664 		if (toupper(buf[0]) == ends[i])
665 			break;
666 	}
667 	if (i == strlen(ends)) {
668 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
669 		    buf);
670 		usage(B_FALSE);
671 	}
672 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
673 		return (10*i);
674 	}
675 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
676 	usage(B_FALSE);
677 	/* NOTREACHED */
678 }
679 
680 static uint64_t
nicenumtoull(const char * buf)681 nicenumtoull(const char *buf)
682 {
683 	char *end;
684 	uint64_t val;
685 
686 	val = strtoull(buf, &end, 0);
687 	if (end == buf) {
688 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
689 		usage(B_FALSE);
690 	} else if (end[0] == '.') {
691 		double fval = strtod(buf, &end);
692 		fval *= pow(2, str2shift(end));
693 		/*
694 		 * UINT64_MAX is not exactly representable as a double.
695 		 * The closest representation is UINT64_MAX + 1, so we
696 		 * use a >= comparison instead of > for the bounds check.
697 		 */
698 		if (fval >= (double)UINT64_MAX) {
699 			(void) fprintf(stderr, "ztest: value too large: %s\n",
700 			    buf);
701 			usage(B_FALSE);
702 		}
703 		val = (uint64_t)fval;
704 	} else {
705 		int shift = str2shift(end);
706 		if (shift >= 64 || (val << shift) >> shift != val) {
707 			(void) fprintf(stderr, "ztest: value too large: %s\n",
708 			    buf);
709 			usage(B_FALSE);
710 		}
711 		val <<= shift;
712 	}
713 	return (val);
714 }
715 
716 typedef struct ztest_option {
717 	const char	short_opt;
718 	const char	*long_opt;
719 	const char	*long_opt_param;
720 	const char	*comment;
721 	unsigned int	default_int;
722 	char		*default_str;
723 } ztest_option_t;
724 
725 /*
726  * The following option_table is used for generating the usage info as well as
727  * the long and short option information for calling getopt_long().
728  */
729 static ztest_option_t option_table[] = {
730 	{ 'v',	"vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
731 	    NULL},
732 	{ 's',	"vdev-size", "INTEGER", "Size of each vdev",
733 	    NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
734 	{ 'a',	"alignment-shift", "INTEGER",
735 	    "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
736 	{ 'm',	"mirror-copies", "INTEGER", "Number of mirror copies",
737 	    DEFAULT_MIRRORS, NULL},
738 	{ 'r',	"raid-disks", "INTEGER", "Number of raidz/draid disks",
739 	    DEFAULT_RAID_CHILDREN, NULL},
740 	{ 'R',	"raid-parity", "INTEGER", "Raid parity",
741 	    DEFAULT_RAID_PARITY, NULL},
742 	{ 'K',	"raid-kind", "raidz|draid|random", "Raid kind",
743 	    NO_DEFAULT, "random"},
744 	{ 'D',	"draid-data", "INTEGER", "Number of draid data drives",
745 	    DEFAULT_DRAID_DATA, NULL},
746 	{ 'S',	"draid-spares", "INTEGER", "Number of draid spares",
747 	    DEFAULT_DRAID_SPARES, NULL},
748 	{ 'd',	"datasets", "INTEGER", "Number of datasets",
749 	    DEFAULT_DATASETS_COUNT, NULL},
750 	{ 't',	"threads", "INTEGER", "Number of ztest threads",
751 	    DEFAULT_THREADS, NULL},
752 	{ 'g',	"gang-block-threshold", "INTEGER",
753 	    "Metaslab gang block threshold",
754 	    NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
755 	{ 'i',	"init-count", "INTEGER", "Number of times to initialize pool",
756 	    DEFAULT_INITS, NULL},
757 	{ 'k',	"kill-percentage", "INTEGER", "Kill percentage",
758 	    NO_DEFAULT, DEFAULT_KILLRATE_STR},
759 	{ 'p',	"pool-name", "STRING", "Pool name",
760 	    NO_DEFAULT, DEFAULT_POOL},
761 	{ 'f',	"vdev-file-directory", "PATH", "File directory for vdev files",
762 	    NO_DEFAULT, DEFAULT_VDEV_DIR},
763 	{ 'M',	"multi-host", NULL,
764 	    "Multi-host; simulate pool imported on remote host",
765 	    NO_DEFAULT, NULL},
766 	{ 'E',	"use-existing-pool", NULL,
767 	    "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
768 	{ 'T',	"run-time", "INTEGER", "Total run time",
769 	    NO_DEFAULT, DEFAULT_RUN_TIME_STR},
770 	{ 'P',	"pass-time", "INTEGER", "Time per pass",
771 	    NO_DEFAULT, DEFAULT_PASS_TIME_STR},
772 	{ 'F',	"freeze-loops", "INTEGER", "Max loops in spa_freeze()",
773 	    DEFAULT_MAX_LOOPS, NULL},
774 	{ 'B',	"alt-ztest", "PATH", "Alternate ztest path",
775 	    NO_DEFAULT, NULL},
776 	{ 'C',	"vdev-class-state", "on|off|random", "vdev class state",
777 	    NO_DEFAULT, "random"},
778 	{ 'o',	"option", "\"OPTION=INTEGER\"",
779 	    "Set global variable to an unsigned 32-bit integer value",
780 	    NO_DEFAULT, NULL},
781 	{ 'G',	"dump-debug-msg", NULL,
782 	    "Dump zfs_dbgmsg buffer before exiting due to an error",
783 	    NO_DEFAULT, NULL},
784 	{ 'V',	"verbose", NULL,
785 	    "Verbose (use multiple times for ever more verbosity)",
786 	    NO_DEFAULT, NULL},
787 	{ 'h',	"help",	NULL, "Show this help",
788 	    NO_DEFAULT, NULL},
789 	{0, 0, 0, 0, 0, 0}
790 };
791 
792 static struct option *long_opts = NULL;
793 static char *short_opts = NULL;
794 
795 static void
init_options(void)796 init_options(void)
797 {
798 	ASSERT3P(long_opts, ==, NULL);
799 	ASSERT3P(short_opts, ==, NULL);
800 
801 	int count = sizeof (option_table) / sizeof (option_table[0]);
802 	long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
803 
804 	short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
805 	int short_opt_index = 0;
806 
807 	for (int i = 0; i < count; i++) {
808 		long_opts[i].val = option_table[i].short_opt;
809 		long_opts[i].name = option_table[i].long_opt;
810 		long_opts[i].has_arg = option_table[i].long_opt_param != NULL
811 		    ? required_argument : no_argument;
812 		long_opts[i].flag = NULL;
813 		short_opts[short_opt_index++] = option_table[i].short_opt;
814 		if (option_table[i].long_opt_param != NULL) {
815 			short_opts[short_opt_index++] = ':';
816 		}
817 	}
818 }
819 
820 static void
fini_options(void)821 fini_options(void)
822 {
823 	int count = sizeof (option_table) / sizeof (option_table[0]);
824 
825 	umem_free(long_opts, sizeof (struct option) * count);
826 	umem_free(short_opts, sizeof (char) * 2 * count);
827 
828 	long_opts = NULL;
829 	short_opts = NULL;
830 }
831 
832 static void
usage(boolean_t requested)833 usage(boolean_t requested)
834 {
835 	char option[80];
836 	FILE *fp = requested ? stdout : stderr;
837 
838 	(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
839 	for (int i = 0; option_table[i].short_opt != 0; i++) {
840 		if (option_table[i].long_opt_param != NULL) {
841 			(void) sprintf(option, "  -%c --%s=%s",
842 			    option_table[i].short_opt,
843 			    option_table[i].long_opt,
844 			    option_table[i].long_opt_param);
845 		} else {
846 			(void) sprintf(option, "  -%c --%s",
847 			    option_table[i].short_opt,
848 			    option_table[i].long_opt);
849 		}
850 		(void) fprintf(fp, "  %-40s%s", option,
851 		    option_table[i].comment);
852 
853 		if (option_table[i].long_opt_param != NULL) {
854 			if (option_table[i].default_str != NULL) {
855 				(void) fprintf(fp, " (default: %s)",
856 				    option_table[i].default_str);
857 			} else if (option_table[i].default_int != NO_DEFAULT) {
858 				(void) fprintf(fp, " (default: %u)",
859 				    option_table[i].default_int);
860 			}
861 		}
862 		(void) fprintf(fp, "\n");
863 	}
864 	exit(requested ? 0 : 1);
865 }
866 
867 static uint64_t
ztest_random(uint64_t range)868 ztest_random(uint64_t range)
869 {
870 	uint64_t r;
871 
872 	ASSERT3S(ztest_fd_rand, >=, 0);
873 
874 	if (range == 0)
875 		return (0);
876 
877 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
878 		fatal(1, "short read from /dev/urandom");
879 
880 	return (r % range);
881 }
882 
883 static void
ztest_parse_name_value(const char * input,ztest_shared_opts_t * zo)884 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
885 {
886 	char name[32];
887 	char *value;
888 	int state = ZTEST_VDEV_CLASS_RND;
889 
890 	(void) strlcpy(name, input, sizeof (name));
891 
892 	value = strchr(name, '=');
893 	if (value == NULL) {
894 		(void) fprintf(stderr, "missing value in property=value "
895 		    "'-C' argument (%s)\n", input);
896 		usage(B_FALSE);
897 	}
898 	*(value) = '\0';
899 	value++;
900 
901 	if (strcmp(value, "on") == 0) {
902 		state = ZTEST_VDEV_CLASS_ON;
903 	} else if (strcmp(value, "off") == 0) {
904 		state = ZTEST_VDEV_CLASS_OFF;
905 	} else if (strcmp(value, "random") == 0) {
906 		state = ZTEST_VDEV_CLASS_RND;
907 	} else {
908 		(void) fprintf(stderr, "invalid property value '%s'\n", value);
909 		usage(B_FALSE);
910 	}
911 
912 	if (strcmp(name, "special") == 0) {
913 		zo->zo_special_vdevs = state;
914 	} else {
915 		(void) fprintf(stderr, "invalid property name '%s'\n", name);
916 		usage(B_FALSE);
917 	}
918 	if (zo->zo_verbose >= 3)
919 		(void) printf("%s vdev state is '%s'\n", name, value);
920 }
921 
922 static void
process_options(int argc,char ** argv)923 process_options(int argc, char **argv)
924 {
925 	char *path;
926 	ztest_shared_opts_t *zo = &ztest_opts;
927 
928 	int opt;
929 	uint64_t value;
930 	char altdir[MAXNAMELEN] = { 0 };
931 	char raid_kind[8] = { "random" };
932 
933 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
934 
935 	init_options();
936 
937 	while ((opt = getopt_long(argc, argv, short_opts, long_opts,
938 	    NULL)) != EOF) {
939 		value = 0;
940 		switch (opt) {
941 		case 'v':
942 		case 's':
943 		case 'a':
944 		case 'm':
945 		case 'r':
946 		case 'R':
947 		case 'D':
948 		case 'S':
949 		case 'd':
950 		case 't':
951 		case 'g':
952 		case 'i':
953 		case 'k':
954 		case 'T':
955 		case 'P':
956 		case 'F':
957 			value = nicenumtoull(optarg);
958 		}
959 		switch (opt) {
960 		case 'v':
961 			zo->zo_vdevs = value;
962 			break;
963 		case 's':
964 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
965 			break;
966 		case 'a':
967 			zo->zo_ashift = value;
968 			break;
969 		case 'm':
970 			zo->zo_mirrors = value;
971 			break;
972 		case 'r':
973 			zo->zo_raid_children = MAX(1, value);
974 			break;
975 		case 'R':
976 			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
977 			break;
978 		case 'K':
979 			(void) strlcpy(raid_kind, optarg, sizeof (raid_kind));
980 			break;
981 		case 'D':
982 			zo->zo_draid_data = MAX(1, value);
983 			break;
984 		case 'S':
985 			zo->zo_draid_spares = MAX(1, value);
986 			break;
987 		case 'd':
988 			zo->zo_datasets = MAX(1, value);
989 			break;
990 		case 't':
991 			zo->zo_threads = MAX(1, value);
992 			break;
993 		case 'g':
994 			zo->zo_metaslab_force_ganging =
995 			    MAX(SPA_MINBLOCKSIZE << 1, value);
996 			break;
997 		case 'i':
998 			zo->zo_init = value;
999 			break;
1000 		case 'k':
1001 			zo->zo_killrate = value;
1002 			break;
1003 		case 'p':
1004 			(void) strlcpy(zo->zo_pool, optarg,
1005 			    sizeof (zo->zo_pool));
1006 			break;
1007 		case 'f':
1008 			path = realpath(optarg, NULL);
1009 			if (path == NULL) {
1010 				(void) fprintf(stderr, "error: %s: %s\n",
1011 				    optarg, strerror(errno));
1012 				usage(B_FALSE);
1013 			} else {
1014 				(void) strlcpy(zo->zo_dir, path,
1015 				    sizeof (zo->zo_dir));
1016 				free(path);
1017 			}
1018 			break;
1019 		case 'M':
1020 			zo->zo_mmp_test = 1;
1021 			break;
1022 		case 'V':
1023 			zo->zo_verbose++;
1024 			break;
1025 		case 'E':
1026 			zo->zo_init = 0;
1027 			break;
1028 		case 'T':
1029 			zo->zo_time = value;
1030 			break;
1031 		case 'P':
1032 			zo->zo_passtime = MAX(1, value);
1033 			break;
1034 		case 'F':
1035 			zo->zo_maxloops = MAX(1, value);
1036 			break;
1037 		case 'B':
1038 			(void) strlcpy(altdir, optarg, sizeof (altdir));
1039 			break;
1040 		case 'C':
1041 			ztest_parse_name_value(optarg, zo);
1042 			break;
1043 		case 'o':
1044 			if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1045 				(void) fprintf(stderr,
1046 				    "max global var count (%zu) exceeded\n",
1047 				    ZO_GVARS_MAX_COUNT);
1048 				usage(B_FALSE);
1049 			}
1050 			char *v = zo->zo_gvars[zo->zo_gvars_count];
1051 			if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1052 			    ZO_GVARS_MAX_ARGLEN) {
1053 				(void) fprintf(stderr,
1054 				    "global var option '%s' is too long\n",
1055 				    optarg);
1056 				usage(B_FALSE);
1057 			}
1058 			zo->zo_gvars_count++;
1059 			break;
1060 		case 'G':
1061 			zo->zo_dump_dbgmsg = 1;
1062 			break;
1063 		case 'h':
1064 			usage(B_TRUE);
1065 			break;
1066 		case '?':
1067 		default:
1068 			usage(B_FALSE);
1069 			break;
1070 		}
1071 	}
1072 
1073 	fini_options();
1074 
1075 	/* When raid choice is 'random' add a draid pool 50% of the time */
1076 	if (strcmp(raid_kind, "random") == 0) {
1077 		(void) strlcpy(raid_kind, (ztest_random(2) == 0) ?
1078 		    "draid" : "raidz", sizeof (raid_kind));
1079 
1080 		if (ztest_opts.zo_verbose >= 3)
1081 			(void) printf("choosing RAID type '%s'\n", raid_kind);
1082 	}
1083 
1084 	if (strcmp(raid_kind, "draid") == 0) {
1085 		uint64_t min_devsize;
1086 
1087 		/* With fewer disk use 256M, otherwise 128M is OK */
1088 		min_devsize = (ztest_opts.zo_raid_children < 16) ?
1089 		    (256ULL << 20) : (128ULL << 20);
1090 
1091 		/* No top-level mirrors with dRAID for now */
1092 		zo->zo_mirrors = 0;
1093 
1094 		/* Use more appropriate defaults for dRAID */
1095 		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1096 			zo->zo_vdevs = 1;
1097 		if (zo->zo_raid_children ==
1098 		    ztest_opts_defaults.zo_raid_children)
1099 			zo->zo_raid_children = 16;
1100 		if (zo->zo_ashift < 12)
1101 			zo->zo_ashift = 12;
1102 		if (zo->zo_vdev_size < min_devsize)
1103 			zo->zo_vdev_size = min_devsize;
1104 
1105 		if (zo->zo_draid_data + zo->zo_raid_parity >
1106 		    zo->zo_raid_children - zo->zo_draid_spares) {
1107 			(void) fprintf(stderr, "error: too few draid "
1108 			    "children (%d) for stripe width (%d)\n",
1109 			    zo->zo_raid_children,
1110 			    zo->zo_draid_data + zo->zo_raid_parity);
1111 			usage(B_FALSE);
1112 		}
1113 
1114 		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1115 		    sizeof (zo->zo_raid_type));
1116 
1117 	} else /* using raidz */ {
1118 		ASSERT0(strcmp(raid_kind, "raidz"));
1119 
1120 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1121 		    zo->zo_raid_children - 1);
1122 	}
1123 
1124 	zo->zo_vdevtime =
1125 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1126 	    UINT64_MAX >> 2);
1127 
1128 	if (strlen(altdir) > 0) {
1129 		char *cmd;
1130 		char *realaltdir;
1131 		char *bin;
1132 		char *ztest;
1133 		char *isa;
1134 		int isalen;
1135 
1136 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1137 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1138 
1139 		VERIFY3P(NULL, !=, realpath(getexecname(), cmd));
1140 		if (0 != access(altdir, F_OK)) {
1141 			ztest_dump_core = B_FALSE;
1142 			fatal(B_TRUE, "invalid alternate ztest path: %s",
1143 			    altdir);
1144 		}
1145 		VERIFY3P(NULL, !=, realpath(altdir, realaltdir));
1146 
1147 		/*
1148 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
1149 		 * We want to extract <isa> to determine if we should use
1150 		 * 32 or 64 bit binaries.
1151 		 */
1152 		bin = strstr(cmd, "/usr/bin/");
1153 		ztest = strstr(bin, "/ztest");
1154 		isa = bin + 9;
1155 		isalen = ztest - isa;
1156 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
1157 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
1158 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
1159 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
1160 
1161 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
1162 			ztest_dump_core = B_FALSE;
1163 			fatal(B_TRUE, "invalid alternate ztest: %s",
1164 			    zo->zo_alt_ztest);
1165 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
1166 			ztest_dump_core = B_FALSE;
1167 			fatal(B_TRUE, "invalid alternate lib directory %s",
1168 			    zo->zo_alt_libpath);
1169 		}
1170 
1171 		umem_free(cmd, MAXPATHLEN);
1172 		umem_free(realaltdir, MAXPATHLEN);
1173 	}
1174 }
1175 
1176 static void
ztest_kill(ztest_shared_t * zs)1177 ztest_kill(ztest_shared_t *zs)
1178 {
1179 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1180 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1181 
1182 	/*
1183 	 * Before we kill off ztest, make sure that the config is updated.
1184 	 * See comment above spa_write_cachefile().
1185 	 */
1186 	mutex_enter(&spa_namespace_lock);
1187 	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
1188 	mutex_exit(&spa_namespace_lock);
1189 
1190 	(void) kill(getpid(), SIGKILL);
1191 }
1192 
1193 /* ARGSUSED */
1194 static void
ztest_record_enospc(const char * s)1195 ztest_record_enospc(const char *s)
1196 {
1197 	ztest_shared->zs_enospc_count++;
1198 }
1199 
1200 static uint64_t
ztest_get_ashift(void)1201 ztest_get_ashift(void)
1202 {
1203 	if (ztest_opts.zo_ashift == 0)
1204 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
1205 	return (ztest_opts.zo_ashift);
1206 }
1207 
1208 static boolean_t
ztest_is_draid_spare(const char * name)1209 ztest_is_draid_spare(const char *name)
1210 {
1211 	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1212 
1213 	if (sscanf(name, VDEV_TYPE_DRAID "%llu-%llu-%llu",
1214 	    (u_longlong_t *)&parity, (u_longlong_t *)&vdev_id,
1215 	    (u_longlong_t *)&spare_id) == 3) {
1216 		return (B_TRUE);
1217 	}
1218 
1219 	return (B_FALSE);
1220 }
1221 
1222 static nvlist_t *
make_vdev_file(char * path,char * aux,char * pool,size_t size,uint64_t ashift)1223 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
1224 {
1225 	char *pathbuf;
1226 	uint64_t vdev;
1227 	nvlist_t *file;
1228 	boolean_t draid_spare = B_FALSE;
1229 
1230 	pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1231 
1232 	if (ashift == 0)
1233 		ashift = ztest_get_ashift();
1234 
1235 	if (path == NULL) {
1236 		path = pathbuf;
1237 
1238 		if (aux != NULL) {
1239 			vdev = ztest_shared->zs_vdev_aux;
1240 			(void) snprintf(path, MAXPATHLEN,
1241 			    ztest_aux_template, ztest_opts.zo_dir,
1242 			    pool == NULL ? ztest_opts.zo_pool : pool,
1243 			    aux, vdev);
1244 		} else {
1245 			vdev = ztest_shared->zs_vdev_next_leaf++;
1246 			(void) snprintf(path, MAXPATHLEN,
1247 			    ztest_dev_template, ztest_opts.zo_dir,
1248 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1249 		}
1250 	} else {
1251 		draid_spare = ztest_is_draid_spare(path);
1252 	}
1253 
1254 	if (size != 0 && !draid_spare) {
1255 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1256 		if (fd == -1)
1257 			fatal(1, "can't open %s", path);
1258 		if (ftruncate(fd, size) != 0)
1259 			fatal(1, "can't ftruncate %s", path);
1260 		(void) close(fd);
1261 	}
1262 
1263 	file = fnvlist_alloc();
1264 	fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1265 	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1266 	fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1267 	fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1268 	umem_free(pathbuf, MAXPATHLEN);
1269 
1270 	return (file);
1271 }
1272 
1273 static nvlist_t *
make_vdev_raid(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r)1274 make_vdev_raid(char *path, char *aux, char *pool, size_t size,
1275     uint64_t ashift, int r)
1276 {
1277 	nvlist_t *raid, **child;
1278 	int c;
1279 
1280 	if (r < 2)
1281 		return (make_vdev_file(path, aux, pool, size, ashift));
1282 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1283 
1284 	for (c = 0; c < r; c++)
1285 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
1286 
1287 	raid = fnvlist_alloc();
1288 	fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1289 	    ztest_opts.zo_raid_type);
1290 	fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1291 	    ztest_opts.zo_raid_parity);
1292 	fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN, child, r);
1293 
1294 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1295 		uint64_t ndata = ztest_opts.zo_draid_data;
1296 		uint64_t nparity = ztest_opts.zo_raid_parity;
1297 		uint64_t nspares = ztest_opts.zo_draid_spares;
1298 		uint64_t children = ztest_opts.zo_raid_children;
1299 		uint64_t ngroups = 1;
1300 
1301 		/*
1302 		 * Calculate the minimum number of groups required to fill a
1303 		 * slice. This is the LCM of the stripe width (data + parity)
1304 		 * and the number of data drives (children - spares).
1305 		 */
1306 		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1307 			ngroups++;
1308 
1309 		/* Store the basic dRAID configuration. */
1310 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1311 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1312 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1313 	}
1314 
1315 	for (c = 0; c < r; c++)
1316 		fnvlist_free(child[c]);
1317 
1318 	umem_free(child, r * sizeof (nvlist_t *));
1319 
1320 	return (raid);
1321 }
1322 
1323 static nvlist_t *
make_vdev_mirror(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r,int m)1324 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
1325     uint64_t ashift, int r, int m)
1326 {
1327 	nvlist_t *mirror, **child;
1328 	int c;
1329 
1330 	if (m < 1)
1331 		return (make_vdev_raid(path, aux, pool, size, ashift, r));
1332 
1333 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1334 
1335 	for (c = 0; c < m; c++)
1336 		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1337 
1338 	mirror = fnvlist_alloc();
1339 	fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1340 	fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, child, m);
1341 
1342 	for (c = 0; c < m; c++)
1343 		fnvlist_free(child[c]);
1344 
1345 	umem_free(child, m * sizeof (nvlist_t *));
1346 
1347 	return (mirror);
1348 }
1349 
1350 static nvlist_t *
make_vdev_root(char * path,char * aux,char * pool,size_t size,uint64_t ashift,const char * class,int r,int m,int t)1351 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1352     const char *class, int r, int m, int t)
1353 {
1354 	nvlist_t *root, **child;
1355 	int c;
1356 	boolean_t log;
1357 
1358 	ASSERT3S(t, >, 0);
1359 
1360 	log = (class != NULL && strcmp(class, "log") == 0);
1361 
1362 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1363 
1364 	for (c = 0; c < t; c++) {
1365 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1366 		    r, m);
1367 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1368 
1369 		if (class != NULL && class[0] != '\0') {
1370 			ASSERT(m > 1 || log);   /* expecting a mirror */
1371 			fnvlist_add_string(child[c],
1372 			    ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1373 		}
1374 	}
1375 
1376 	root = fnvlist_alloc();
1377 	fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1378 	fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1379 	    child, t);
1380 
1381 	for (c = 0; c < t; c++)
1382 		fnvlist_free(child[c]);
1383 
1384 	umem_free(child, t * sizeof (nvlist_t *));
1385 
1386 	return (root);
1387 }
1388 
1389 /*
1390  * Find a random spa version. Returns back a random spa version in the
1391  * range [initial_version, SPA_VERSION_FEATURES].
1392  */
1393 static uint64_t
ztest_random_spa_version(uint64_t initial_version)1394 ztest_random_spa_version(uint64_t initial_version)
1395 {
1396 	uint64_t version = initial_version;
1397 
1398 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1399 		version = version +
1400 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1401 	}
1402 
1403 	if (version > SPA_VERSION_BEFORE_FEATURES)
1404 		version = SPA_VERSION_FEATURES;
1405 
1406 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1407 	return (version);
1408 }
1409 
1410 static int
ztest_random_blocksize(void)1411 ztest_random_blocksize(void)
1412 {
1413 	ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1414 
1415 	/*
1416 	 * Choose a block size >= the ashift.
1417 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1418 	 */
1419 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1420 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1421 		maxbs = 20;
1422 	uint64_t block_shift =
1423 	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1424 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1425 }
1426 
1427 static int
ztest_random_dnodesize(void)1428 ztest_random_dnodesize(void)
1429 {
1430 	int slots;
1431 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1432 
1433 	if (max_slots == DNODE_MIN_SLOTS)
1434 		return (DNODE_MIN_SIZE);
1435 
1436 	/*
1437 	 * Weight the random distribution more heavily toward smaller
1438 	 * dnode sizes since that is more likely to reflect real-world
1439 	 * usage.
1440 	 */
1441 	ASSERT3U(max_slots, >, 4);
1442 	switch (ztest_random(10)) {
1443 	case 0:
1444 		slots = 5 + ztest_random(max_slots - 4);
1445 		break;
1446 	case 1 ... 4:
1447 		slots = 2 + ztest_random(3);
1448 		break;
1449 	default:
1450 		slots = 1;
1451 		break;
1452 	}
1453 
1454 	return (slots << DNODE_SHIFT);
1455 }
1456 
1457 static int
ztest_random_ibshift(void)1458 ztest_random_ibshift(void)
1459 {
1460 	return (DN_MIN_INDBLKSHIFT +
1461 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1462 }
1463 
1464 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)1465 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1466 {
1467 	uint64_t top;
1468 	vdev_t *rvd = spa->spa_root_vdev;
1469 	vdev_t *tvd;
1470 
1471 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1472 
1473 	do {
1474 		top = ztest_random(rvd->vdev_children);
1475 		tvd = rvd->vdev_child[top];
1476 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1477 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1478 
1479 	return (top);
1480 }
1481 
1482 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1483 ztest_random_dsl_prop(zfs_prop_t prop)
1484 {
1485 	uint64_t value;
1486 
1487 	do {
1488 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1489 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1490 
1491 	return (value);
1492 }
1493 
1494 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1495 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1496     boolean_t inherit)
1497 {
1498 	const char *propname = zfs_prop_to_name(prop);
1499 	const char *valname;
1500 	char *setpoint;
1501 	uint64_t curval;
1502 	int error;
1503 
1504 	error = dsl_prop_set_int(osname, propname,
1505 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1506 
1507 	if (error == ENOSPC) {
1508 		ztest_record_enospc(FTAG);
1509 		return (error);
1510 	}
1511 	ASSERT0(error);
1512 
1513 	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1514 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1515 
1516 	if (ztest_opts.zo_verbose >= 6) {
1517 		int err;
1518 
1519 		err = zfs_prop_index_to_string(prop, curval, &valname);
1520 		if (err)
1521 			(void) printf("%s %s = %llu at '%s'\n", osname,
1522 			    propname, (unsigned long long)curval, setpoint);
1523 		else
1524 			(void) printf("%s %s = %s at '%s'\n",
1525 			    osname, propname, valname, setpoint);
1526 	}
1527 	umem_free(setpoint, MAXPATHLEN);
1528 
1529 	return (error);
1530 }
1531 
1532 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1533 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1534 {
1535 	spa_t *spa = ztest_spa;
1536 	nvlist_t *props = NULL;
1537 	int error;
1538 
1539 	props = fnvlist_alloc();
1540 	fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1541 
1542 	error = spa_prop_set(spa, props);
1543 
1544 	fnvlist_free(props);
1545 
1546 	if (error == ENOSPC) {
1547 		ztest_record_enospc(FTAG);
1548 		return (error);
1549 	}
1550 	ASSERT0(error);
1551 
1552 	return (error);
1553 }
1554 
1555 static int
ztest_dmu_objset_own(const char * name,dmu_objset_type_t type,boolean_t readonly,boolean_t decrypt,void * tag,objset_t ** osp)1556 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1557     boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1558 {
1559 	int err;
1560 	char *cp = NULL;
1561 	char ddname[ZFS_MAX_DATASET_NAME_LEN];
1562 
1563 	strcpy(ddname, name);
1564 	cp = strchr(ddname, '@');
1565 	if (cp != NULL)
1566 		*cp = '\0';
1567 
1568 	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1569 	while (decrypt && err == EACCES) {
1570 		dsl_crypto_params_t *dcp;
1571 		nvlist_t *crypto_args = fnvlist_alloc();
1572 
1573 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
1574 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1575 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1576 		    crypto_args, &dcp));
1577 		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1578 		/*
1579 		 * Note: if there was an error loading, the wkey was not
1580 		 * consumed, and needs to be freed.
1581 		 */
1582 		dsl_crypto_params_free(dcp, (err != 0));
1583 		fnvlist_free(crypto_args);
1584 
1585 		if (err == EINVAL) {
1586 			/*
1587 			 * We couldn't load a key for this dataset so try
1588 			 * the parent. This loop will eventually hit the
1589 			 * encryption root since ztest only makes clones
1590 			 * as children of their origin datasets.
1591 			 */
1592 			cp = strrchr(ddname, '/');
1593 			if (cp == NULL)
1594 				return (err);
1595 
1596 			*cp = '\0';
1597 			err = EACCES;
1598 			continue;
1599 		} else if (err != 0) {
1600 			break;
1601 		}
1602 
1603 		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1604 		break;
1605 	}
1606 
1607 	return (err);
1608 }
1609 
1610 static void
ztest_rll_init(rll_t * rll)1611 ztest_rll_init(rll_t *rll)
1612 {
1613 	rll->rll_writer = NULL;
1614 	rll->rll_readers = 0;
1615 	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1616 	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1617 }
1618 
1619 static void
ztest_rll_destroy(rll_t * rll)1620 ztest_rll_destroy(rll_t *rll)
1621 {
1622 	ASSERT3P(rll->rll_writer, ==, NULL);
1623 	ASSERT0(rll->rll_readers);
1624 	mutex_destroy(&rll->rll_lock);
1625 	cv_destroy(&rll->rll_cv);
1626 }
1627 
1628 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1629 ztest_rll_lock(rll_t *rll, rl_type_t type)
1630 {
1631 	mutex_enter(&rll->rll_lock);
1632 
1633 	if (type == RL_READER) {
1634 		while (rll->rll_writer != NULL)
1635 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1636 		rll->rll_readers++;
1637 	} else {
1638 		while (rll->rll_writer != NULL || rll->rll_readers)
1639 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1640 		rll->rll_writer = curthread;
1641 	}
1642 
1643 	mutex_exit(&rll->rll_lock);
1644 }
1645 
1646 static void
ztest_rll_unlock(rll_t * rll)1647 ztest_rll_unlock(rll_t *rll)
1648 {
1649 	mutex_enter(&rll->rll_lock);
1650 
1651 	if (rll->rll_writer) {
1652 		ASSERT0(rll->rll_readers);
1653 		rll->rll_writer = NULL;
1654 	} else {
1655 		ASSERT3S(rll->rll_readers, >, 0);
1656 		ASSERT3P(rll->rll_writer, ==, NULL);
1657 		rll->rll_readers--;
1658 	}
1659 
1660 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1661 		cv_broadcast(&rll->rll_cv);
1662 
1663 	mutex_exit(&rll->rll_lock);
1664 }
1665 
1666 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1667 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1668 {
1669 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1670 
1671 	ztest_rll_lock(rll, type);
1672 }
1673 
1674 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1675 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1676 {
1677 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1678 
1679 	ztest_rll_unlock(rll);
1680 }
1681 
1682 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1683 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1684     uint64_t size, rl_type_t type)
1685 {
1686 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1687 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1688 	rl_t *rl;
1689 
1690 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1691 	rl->rl_object = object;
1692 	rl->rl_offset = offset;
1693 	rl->rl_size = size;
1694 	rl->rl_lock = rll;
1695 
1696 	ztest_rll_lock(rll, type);
1697 
1698 	return (rl);
1699 }
1700 
1701 static void
ztest_range_unlock(rl_t * rl)1702 ztest_range_unlock(rl_t *rl)
1703 {
1704 	rll_t *rll = rl->rl_lock;
1705 
1706 	ztest_rll_unlock(rll);
1707 
1708 	umem_free(rl, sizeof (*rl));
1709 }
1710 
1711 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1712 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1713 {
1714 	zd->zd_os = os;
1715 	zd->zd_zilog = dmu_objset_zil(os);
1716 	zd->zd_shared = szd;
1717 	dmu_objset_name(os, zd->zd_name);
1718 	int l;
1719 
1720 	if (zd->zd_shared != NULL)
1721 		zd->zd_shared->zd_seq = 0;
1722 
1723 	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1724 	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1725 
1726 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1727 		ztest_rll_init(&zd->zd_object_lock[l]);
1728 
1729 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1730 		ztest_rll_init(&zd->zd_range_lock[l]);
1731 }
1732 
1733 static void
ztest_zd_fini(ztest_ds_t * zd)1734 ztest_zd_fini(ztest_ds_t *zd)
1735 {
1736 	int l;
1737 
1738 	mutex_destroy(&zd->zd_dirobj_lock);
1739 	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1740 
1741 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1742 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1743 
1744 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1745 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1746 }
1747 
1748 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1749 
1750 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,uint64_t txg_how,const char * tag)1751 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1752 {
1753 	uint64_t txg;
1754 	int error;
1755 
1756 	/*
1757 	 * Attempt to assign tx to some transaction group.
1758 	 */
1759 	error = dmu_tx_assign(tx, txg_how);
1760 	if (error) {
1761 		if (error == ERESTART) {
1762 			ASSERT3U(txg_how, ==, TXG_NOWAIT);
1763 			dmu_tx_wait(tx);
1764 		} else {
1765 			ASSERT3U(error, ==, ENOSPC);
1766 			ztest_record_enospc(tag);
1767 		}
1768 		dmu_tx_abort(tx);
1769 		return (0);
1770 	}
1771 	txg = dmu_tx_get_txg(tx);
1772 	ASSERT3U(txg, !=, 0);
1773 	return (txg);
1774 }
1775 
1776 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1777 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1778     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1779     uint64_t crtxg)
1780 {
1781 	bt->bt_magic = BT_MAGIC;
1782 	bt->bt_objset = dmu_objset_id(os);
1783 	bt->bt_object = object;
1784 	bt->bt_dnodesize = dnodesize;
1785 	bt->bt_offset = offset;
1786 	bt->bt_gen = gen;
1787 	bt->bt_txg = txg;
1788 	bt->bt_crtxg = crtxg;
1789 }
1790 
1791 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1792 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1793     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1794     uint64_t crtxg)
1795 {
1796 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1797 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1798 	ASSERT3U(bt->bt_object, ==, object);
1799 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1800 	ASSERT3U(bt->bt_offset, ==, offset);
1801 	ASSERT3U(bt->bt_gen, <=, gen);
1802 	ASSERT3U(bt->bt_txg, <=, txg);
1803 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1804 }
1805 
1806 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1807 ztest_bt_bonus(dmu_buf_t *db)
1808 {
1809 	dmu_object_info_t doi;
1810 	ztest_block_tag_t *bt;
1811 
1812 	dmu_object_info_from_db(db, &doi);
1813 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1814 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1815 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1816 
1817 	return (bt);
1818 }
1819 
1820 /*
1821  * Generate a token to fill up unused bonus buffer space.  Try to make
1822  * it unique to the object, generation, and offset to verify that data
1823  * is not getting overwritten by data from other dnodes.
1824  */
1825 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1826 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1827 
1828 /*
1829  * Fill up the unused bonus buffer region before the block tag with a
1830  * verifiable pattern. Filling the whole bonus area with non-zero data
1831  * helps ensure that all dnode traversal code properly skips the
1832  * interior regions of large dnodes.
1833  */
1834 static void
ztest_fill_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1835 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1836     objset_t *os, uint64_t gen)
1837 {
1838 	uint64_t *bonusp;
1839 
1840 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1841 
1842 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1843 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1844 		    gen, bonusp - (uint64_t *)db->db_data);
1845 		*bonusp = token;
1846 	}
1847 }
1848 
1849 /*
1850  * Verify that the unused area of a bonus buffer is filled with the
1851  * expected tokens.
1852  */
1853 static void
ztest_verify_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1854 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1855     objset_t *os, uint64_t gen)
1856 {
1857 	uint64_t *bonusp;
1858 
1859 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1860 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1861 		    gen, bonusp - (uint64_t *)db->db_data);
1862 		VERIFY3U(*bonusp, ==, token);
1863 	}
1864 }
1865 
1866 /*
1867  * ZIL logging ops
1868  */
1869 
1870 #define	lrz_type	lr_mode
1871 #define	lrz_blocksize	lr_uid
1872 #define	lrz_ibshift	lr_gid
1873 #define	lrz_bonustype	lr_rdev
1874 #define	lrz_dnodesize	lr_crtime[1]
1875 
1876 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1877 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1878 {
1879 	char *name = (void *)(lr + 1);		/* name follows lr */
1880 	size_t namesize = strlen(name) + 1;
1881 	itx_t *itx;
1882 
1883 	if (zil_replaying(zd->zd_zilog, tx))
1884 		return;
1885 
1886 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1887 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1888 	    sizeof (*lr) + namesize - sizeof (lr_t));
1889 
1890 	zil_itx_assign(zd->zd_zilog, itx, tx);
1891 }
1892 
1893 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1894 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1895 {
1896 	char *name = (void *)(lr + 1);		/* name follows lr */
1897 	size_t namesize = strlen(name) + 1;
1898 	itx_t *itx;
1899 
1900 	if (zil_replaying(zd->zd_zilog, tx))
1901 		return;
1902 
1903 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1904 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1905 	    sizeof (*lr) + namesize - sizeof (lr_t));
1906 
1907 	itx->itx_oid = object;
1908 	zil_itx_assign(zd->zd_zilog, itx, tx);
1909 }
1910 
1911 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1912 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1913 {
1914 	itx_t *itx;
1915 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1916 
1917 	if (zil_replaying(zd->zd_zilog, tx))
1918 		return;
1919 
1920 	if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
1921 		write_state = WR_INDIRECT;
1922 
1923 	itx = zil_itx_create(TX_WRITE,
1924 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1925 
1926 	if (write_state == WR_COPIED &&
1927 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1928 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1929 		zil_itx_destroy(itx);
1930 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1931 		write_state = WR_NEED_COPY;
1932 	}
1933 	itx->itx_private = zd;
1934 	itx->itx_wr_state = write_state;
1935 	itx->itx_sync = (ztest_random(8) == 0);
1936 
1937 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1938 	    sizeof (*lr) - sizeof (lr_t));
1939 
1940 	zil_itx_assign(zd->zd_zilog, itx, tx);
1941 }
1942 
1943 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)1944 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1945 {
1946 	itx_t *itx;
1947 
1948 	if (zil_replaying(zd->zd_zilog, tx))
1949 		return;
1950 
1951 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1952 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1953 	    sizeof (*lr) - sizeof (lr_t));
1954 
1955 	itx->itx_sync = B_FALSE;
1956 	zil_itx_assign(zd->zd_zilog, itx, tx);
1957 }
1958 
1959 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)1960 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1961 {
1962 	itx_t *itx;
1963 
1964 	if (zil_replaying(zd->zd_zilog, tx))
1965 		return;
1966 
1967 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1968 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1969 	    sizeof (*lr) - sizeof (lr_t));
1970 
1971 	itx->itx_sync = B_FALSE;
1972 	zil_itx_assign(zd->zd_zilog, itx, tx);
1973 }
1974 
1975 /*
1976  * ZIL replay ops
1977  */
1978 static int
ztest_replay_create(void * arg1,void * arg2,boolean_t byteswap)1979 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1980 {
1981 	ztest_ds_t *zd = arg1;
1982 	lr_create_t *lr = arg2;
1983 	char *name = (void *)(lr + 1);		/* name follows lr */
1984 	objset_t *os = zd->zd_os;
1985 	ztest_block_tag_t *bbt;
1986 	dmu_buf_t *db;
1987 	dmu_tx_t *tx;
1988 	uint64_t txg;
1989 	int error = 0;
1990 	int bonuslen;
1991 
1992 	if (byteswap)
1993 		byteswap_uint64_array(lr, sizeof (*lr));
1994 
1995 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
1996 	ASSERT3S(name[0], !=, '\0');
1997 
1998 	tx = dmu_tx_create(os);
1999 
2000 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2001 
2002 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2003 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2004 	} else {
2005 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2006 	}
2007 
2008 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2009 	if (txg == 0)
2010 		return (ENOSPC);
2011 
2012 	ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2013 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2014 
2015 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2016 		if (lr->lr_foid == 0) {
2017 			lr->lr_foid = zap_create_dnsize(os,
2018 			    lr->lrz_type, lr->lrz_bonustype,
2019 			    bonuslen, lr->lrz_dnodesize, tx);
2020 		} else {
2021 			error = zap_create_claim_dnsize(os, lr->lr_foid,
2022 			    lr->lrz_type, lr->lrz_bonustype,
2023 			    bonuslen, lr->lrz_dnodesize, tx);
2024 		}
2025 	} else {
2026 		if (lr->lr_foid == 0) {
2027 			lr->lr_foid = dmu_object_alloc_dnsize(os,
2028 			    lr->lrz_type, 0, lr->lrz_bonustype,
2029 			    bonuslen, lr->lrz_dnodesize, tx);
2030 		} else {
2031 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
2032 			    lr->lrz_type, 0, lr->lrz_bonustype,
2033 			    bonuslen, lr->lrz_dnodesize, tx);
2034 		}
2035 	}
2036 
2037 	if (error) {
2038 		ASSERT3U(error, ==, EEXIST);
2039 		ASSERT(zd->zd_zilog->zl_replay);
2040 		dmu_tx_commit(tx);
2041 		return (error);
2042 	}
2043 
2044 	ASSERT3U(lr->lr_foid, !=, 0);
2045 
2046 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2047 		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2048 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
2049 
2050 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2051 	bbt = ztest_bt_bonus(db);
2052 	dmu_buf_will_dirty(db, tx);
2053 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2054 	    lr->lr_gen, txg, txg);
2055 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2056 	dmu_buf_rele(db, FTAG);
2057 
2058 	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2059 	    &lr->lr_foid, tx));
2060 
2061 	(void) ztest_log_create(zd, tx, lr);
2062 
2063 	dmu_tx_commit(tx);
2064 
2065 	return (0);
2066 }
2067 
2068 static int
ztest_replay_remove(void * arg1,void * arg2,boolean_t byteswap)2069 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2070 {
2071 	ztest_ds_t *zd = arg1;
2072 	lr_remove_t *lr = arg2;
2073 	char *name = (void *)(lr + 1);		/* name follows lr */
2074 	objset_t *os = zd->zd_os;
2075 	dmu_object_info_t doi;
2076 	dmu_tx_t *tx;
2077 	uint64_t object, txg;
2078 
2079 	if (byteswap)
2080 		byteswap_uint64_array(lr, sizeof (*lr));
2081 
2082 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2083 	ASSERT3S(name[0], !=, '\0');
2084 
2085 	VERIFY0(
2086 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2087 	ASSERT3U(object, !=, 0);
2088 
2089 	ztest_object_lock(zd, object, RL_WRITER);
2090 
2091 	VERIFY0(dmu_object_info(os, object, &doi));
2092 
2093 	tx = dmu_tx_create(os);
2094 
2095 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2096 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2097 
2098 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2099 	if (txg == 0) {
2100 		ztest_object_unlock(zd, object);
2101 		return (ENOSPC);
2102 	}
2103 
2104 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2105 		VERIFY0(zap_destroy(os, object, tx));
2106 	} else {
2107 		VERIFY0(dmu_object_free(os, object, tx));
2108 	}
2109 
2110 	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2111 
2112 	(void) ztest_log_remove(zd, tx, lr, object);
2113 
2114 	dmu_tx_commit(tx);
2115 
2116 	ztest_object_unlock(zd, object);
2117 
2118 	return (0);
2119 }
2120 
2121 static int
ztest_replay_write(void * arg1,void * arg2,boolean_t byteswap)2122 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2123 {
2124 	ztest_ds_t *zd = arg1;
2125 	lr_write_t *lr = arg2;
2126 	objset_t *os = zd->zd_os;
2127 	void *data = lr + 1;			/* data follows lr */
2128 	uint64_t offset, length;
2129 	ztest_block_tag_t *bt = data;
2130 	ztest_block_tag_t *bbt;
2131 	uint64_t gen, txg, lrtxg, crtxg;
2132 	dmu_object_info_t doi;
2133 	dmu_tx_t *tx;
2134 	dmu_buf_t *db;
2135 	arc_buf_t *abuf = NULL;
2136 	rl_t *rl;
2137 
2138 	if (byteswap)
2139 		byteswap_uint64_array(lr, sizeof (*lr));
2140 
2141 	offset = lr->lr_offset;
2142 	length = lr->lr_length;
2143 
2144 	/* If it's a dmu_sync() block, write the whole block */
2145 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2146 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2147 		if (length < blocksize) {
2148 			offset -= offset % blocksize;
2149 			length = blocksize;
2150 		}
2151 	}
2152 
2153 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2154 		byteswap_uint64_array(bt, sizeof (*bt));
2155 
2156 	if (bt->bt_magic != BT_MAGIC)
2157 		bt = NULL;
2158 
2159 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
2160 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
2161 
2162 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2163 
2164 	dmu_object_info_from_db(db, &doi);
2165 
2166 	bbt = ztest_bt_bonus(db);
2167 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2168 	gen = bbt->bt_gen;
2169 	crtxg = bbt->bt_crtxg;
2170 	lrtxg = lr->lr_common.lrc_txg;
2171 
2172 	tx = dmu_tx_create(os);
2173 
2174 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2175 
2176 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2177 	    P2PHASE(offset, length) == 0)
2178 		abuf = dmu_request_arcbuf(db, length);
2179 
2180 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2181 	if (txg == 0) {
2182 		if (abuf != NULL)
2183 			dmu_return_arcbuf(abuf);
2184 		dmu_buf_rele(db, FTAG);
2185 		ztest_range_unlock(rl);
2186 		ztest_object_unlock(zd, lr->lr_foid);
2187 		return (ENOSPC);
2188 	}
2189 
2190 	if (bt != NULL) {
2191 		/*
2192 		 * Usually, verify the old data before writing new data --
2193 		 * but not always, because we also want to verify correct
2194 		 * behavior when the data was not recently read into cache.
2195 		 */
2196 		ASSERT0(offset % doi.doi_data_block_size);
2197 		if (ztest_random(4) != 0) {
2198 			int prefetch = ztest_random(2) ?
2199 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2200 			ztest_block_tag_t rbt;
2201 
2202 			VERIFY(dmu_read(os, lr->lr_foid, offset,
2203 			    sizeof (rbt), &rbt, prefetch) == 0);
2204 			if (rbt.bt_magic == BT_MAGIC) {
2205 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2206 				    offset, gen, txg, crtxg);
2207 			}
2208 		}
2209 
2210 		/*
2211 		 * Writes can appear to be newer than the bonus buffer because
2212 		 * the ztest_get_data() callback does a dmu_read() of the
2213 		 * open-context data, which may be different than the data
2214 		 * as it was when the write was generated.
2215 		 */
2216 		if (zd->zd_zilog->zl_replay) {
2217 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2218 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2219 			    bt->bt_crtxg);
2220 		}
2221 
2222 		/*
2223 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
2224 		 * so that all of the usual ASSERTs will work.
2225 		 */
2226 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2227 		    crtxg);
2228 	}
2229 
2230 	if (abuf == NULL) {
2231 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
2232 	} else {
2233 		bcopy(data, abuf->b_data, length);
2234 		dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
2235 	}
2236 
2237 	(void) ztest_log_write(zd, tx, lr);
2238 
2239 	dmu_buf_rele(db, FTAG);
2240 
2241 	dmu_tx_commit(tx);
2242 
2243 	ztest_range_unlock(rl);
2244 	ztest_object_unlock(zd, lr->lr_foid);
2245 
2246 	return (0);
2247 }
2248 
2249 static int
ztest_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)2250 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2251 {
2252 	ztest_ds_t *zd = arg1;
2253 	lr_truncate_t *lr = arg2;
2254 	objset_t *os = zd->zd_os;
2255 	dmu_tx_t *tx;
2256 	uint64_t txg;
2257 	rl_t *rl;
2258 
2259 	if (byteswap)
2260 		byteswap_uint64_array(lr, sizeof (*lr));
2261 
2262 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
2263 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2264 	    RL_WRITER);
2265 
2266 	tx = dmu_tx_create(os);
2267 
2268 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2269 
2270 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2271 	if (txg == 0) {
2272 		ztest_range_unlock(rl);
2273 		ztest_object_unlock(zd, lr->lr_foid);
2274 		return (ENOSPC);
2275 	}
2276 
2277 	VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2278 	    lr->lr_length, tx));
2279 
2280 	(void) ztest_log_truncate(zd, tx, lr);
2281 
2282 	dmu_tx_commit(tx);
2283 
2284 	ztest_range_unlock(rl);
2285 	ztest_object_unlock(zd, lr->lr_foid);
2286 
2287 	return (0);
2288 }
2289 
2290 static int
ztest_replay_setattr(void * arg1,void * arg2,boolean_t byteswap)2291 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2292 {
2293 	ztest_ds_t *zd = arg1;
2294 	lr_setattr_t *lr = arg2;
2295 	objset_t *os = zd->zd_os;
2296 	dmu_tx_t *tx;
2297 	dmu_buf_t *db;
2298 	ztest_block_tag_t *bbt;
2299 	uint64_t txg, lrtxg, crtxg, dnodesize;
2300 
2301 	if (byteswap)
2302 		byteswap_uint64_array(lr, sizeof (*lr));
2303 
2304 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2305 
2306 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2307 
2308 	tx = dmu_tx_create(os);
2309 	dmu_tx_hold_bonus(tx, lr->lr_foid);
2310 
2311 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2312 	if (txg == 0) {
2313 		dmu_buf_rele(db, FTAG);
2314 		ztest_object_unlock(zd, lr->lr_foid);
2315 		return (ENOSPC);
2316 	}
2317 
2318 	bbt = ztest_bt_bonus(db);
2319 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2320 	crtxg = bbt->bt_crtxg;
2321 	lrtxg = lr->lr_common.lrc_txg;
2322 	dnodesize = bbt->bt_dnodesize;
2323 
2324 	if (zd->zd_zilog->zl_replay) {
2325 		ASSERT3U(lr->lr_size, !=, 0);
2326 		ASSERT3U(lr->lr_mode, !=, 0);
2327 		ASSERT3U(lrtxg, !=, 0);
2328 	} else {
2329 		/*
2330 		 * Randomly change the size and increment the generation.
2331 		 */
2332 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2333 		    sizeof (*bbt);
2334 		lr->lr_mode = bbt->bt_gen + 1;
2335 		ASSERT0(lrtxg);
2336 	}
2337 
2338 	/*
2339 	 * Verify that the current bonus buffer is not newer than our txg.
2340 	 */
2341 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2342 	    MAX(txg, lrtxg), crtxg);
2343 
2344 	dmu_buf_will_dirty(db, tx);
2345 
2346 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2347 	ASSERT3U(lr->lr_size, <=, db->db_size);
2348 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2349 	bbt = ztest_bt_bonus(db);
2350 
2351 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2352 	    txg, crtxg);
2353 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2354 	dmu_buf_rele(db, FTAG);
2355 
2356 	(void) ztest_log_setattr(zd, tx, lr);
2357 
2358 	dmu_tx_commit(tx);
2359 
2360 	ztest_object_unlock(zd, lr->lr_foid);
2361 
2362 	return (0);
2363 }
2364 
2365 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2366 	NULL,			/* 0 no such transaction type */
2367 	ztest_replay_create,	/* TX_CREATE */
2368 	NULL,			/* TX_MKDIR */
2369 	NULL,			/* TX_MKXATTR */
2370 	NULL,			/* TX_SYMLINK */
2371 	ztest_replay_remove,	/* TX_REMOVE */
2372 	NULL,			/* TX_RMDIR */
2373 	NULL,			/* TX_LINK */
2374 	NULL,			/* TX_RENAME */
2375 	ztest_replay_write,	/* TX_WRITE */
2376 	ztest_replay_truncate,	/* TX_TRUNCATE */
2377 	ztest_replay_setattr,	/* TX_SETATTR */
2378 	NULL,			/* TX_ACL */
2379 	NULL,			/* TX_CREATE_ACL */
2380 	NULL,			/* TX_CREATE_ATTR */
2381 	NULL,			/* TX_CREATE_ACL_ATTR */
2382 	NULL,			/* TX_MKDIR_ACL */
2383 	NULL,			/* TX_MKDIR_ATTR */
2384 	NULL,			/* TX_MKDIR_ACL_ATTR */
2385 	NULL,			/* TX_WRITE2 */
2386 };
2387 
2388 /*
2389  * ZIL get_data callbacks
2390  */
2391 
2392 /* ARGSUSED */
2393 static void
ztest_get_done(zgd_t * zgd,int error)2394 ztest_get_done(zgd_t *zgd, int error)
2395 {
2396 	ztest_ds_t *zd = zgd->zgd_private;
2397 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2398 
2399 	if (zgd->zgd_db)
2400 		dmu_buf_rele(zgd->zgd_db, zgd);
2401 
2402 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2403 	ztest_object_unlock(zd, object);
2404 
2405 	umem_free(zgd, sizeof (*zgd));
2406 }
2407 
2408 static int
ztest_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)2409 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2410     struct lwb *lwb, zio_t *zio)
2411 {
2412 	ztest_ds_t *zd = arg;
2413 	objset_t *os = zd->zd_os;
2414 	uint64_t object = lr->lr_foid;
2415 	uint64_t offset = lr->lr_offset;
2416 	uint64_t size = lr->lr_length;
2417 	uint64_t txg = lr->lr_common.lrc_txg;
2418 	uint64_t crtxg;
2419 	dmu_object_info_t doi;
2420 	dmu_buf_t *db;
2421 	zgd_t *zgd;
2422 	int error;
2423 
2424 	ASSERT3P(lwb, !=, NULL);
2425 	ASSERT3P(zio, !=, NULL);
2426 	ASSERT3U(size, !=, 0);
2427 
2428 	ztest_object_lock(zd, object, RL_READER);
2429 	error = dmu_bonus_hold(os, object, FTAG, &db);
2430 	if (error) {
2431 		ztest_object_unlock(zd, object);
2432 		return (error);
2433 	}
2434 
2435 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2436 
2437 	if (crtxg == 0 || crtxg > txg) {
2438 		dmu_buf_rele(db, FTAG);
2439 		ztest_object_unlock(zd, object);
2440 		return (ENOENT);
2441 	}
2442 
2443 	dmu_object_info_from_db(db, &doi);
2444 	dmu_buf_rele(db, FTAG);
2445 	db = NULL;
2446 
2447 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2448 	zgd->zgd_lwb = lwb;
2449 	zgd->zgd_private = zd;
2450 
2451 	if (buf != NULL) {	/* immediate write */
2452 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2453 		    object, offset, size, RL_READER);
2454 
2455 		error = dmu_read(os, object, offset, size, buf,
2456 		    DMU_READ_NO_PREFETCH);
2457 		ASSERT0(error);
2458 	} else {
2459 		size = doi.doi_data_block_size;
2460 		if (ISP2(size)) {
2461 			offset = P2ALIGN(offset, size);
2462 		} else {
2463 			ASSERT3U(offset, <, size);
2464 			offset = 0;
2465 		}
2466 
2467 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2468 		    object, offset, size, RL_READER);
2469 
2470 		error = dmu_buf_hold(os, object, offset, zgd, &db,
2471 		    DMU_READ_NO_PREFETCH);
2472 
2473 		if (error == 0) {
2474 			blkptr_t *bp = &lr->lr_blkptr;
2475 
2476 			zgd->zgd_db = db;
2477 			zgd->zgd_bp = bp;
2478 
2479 			ASSERT3U(db->db_offset, ==, offset);
2480 			ASSERT3U(db->db_size, ==, size);
2481 
2482 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2483 			    ztest_get_done, zgd);
2484 
2485 			if (error == 0)
2486 				return (0);
2487 		}
2488 	}
2489 
2490 	ztest_get_done(zgd, error);
2491 
2492 	return (error);
2493 }
2494 
2495 static void *
ztest_lr_alloc(size_t lrsize,char * name)2496 ztest_lr_alloc(size_t lrsize, char *name)
2497 {
2498 	char *lr;
2499 	size_t namesize = name ? strlen(name) + 1 : 0;
2500 
2501 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2502 
2503 	if (name)
2504 		bcopy(name, lr + lrsize, namesize);
2505 
2506 	return (lr);
2507 }
2508 
2509 static void
ztest_lr_free(void * lr,size_t lrsize,char * name)2510 ztest_lr_free(void *lr, size_t lrsize, char *name)
2511 {
2512 	size_t namesize = name ? strlen(name) + 1 : 0;
2513 
2514 	umem_free(lr, lrsize + namesize);
2515 }
2516 
2517 /*
2518  * Lookup a bunch of objects.  Returns the number of objects not found.
2519  */
2520 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)2521 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2522 {
2523 	int missing = 0;
2524 	int error;
2525 	int i;
2526 
2527 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2528 
2529 	for (i = 0; i < count; i++, od++) {
2530 		od->od_object = 0;
2531 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2532 		    sizeof (uint64_t), 1, &od->od_object);
2533 		if (error) {
2534 			ASSERT3S(error, ==, ENOENT);
2535 			ASSERT0(od->od_object);
2536 			missing++;
2537 		} else {
2538 			dmu_buf_t *db;
2539 			ztest_block_tag_t *bbt;
2540 			dmu_object_info_t doi;
2541 
2542 			ASSERT3U(od->od_object, !=, 0);
2543 			ASSERT0(missing);	/* there should be no gaps */
2544 
2545 			ztest_object_lock(zd, od->od_object, RL_READER);
2546 			VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2547 			    FTAG, &db));
2548 			dmu_object_info_from_db(db, &doi);
2549 			bbt = ztest_bt_bonus(db);
2550 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2551 			od->od_type = doi.doi_type;
2552 			od->od_blocksize = doi.doi_data_block_size;
2553 			od->od_gen = bbt->bt_gen;
2554 			dmu_buf_rele(db, FTAG);
2555 			ztest_object_unlock(zd, od->od_object);
2556 		}
2557 	}
2558 
2559 	return (missing);
2560 }
2561 
2562 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)2563 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2564 {
2565 	int missing = 0;
2566 	int i;
2567 
2568 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2569 
2570 	for (i = 0; i < count; i++, od++) {
2571 		if (missing) {
2572 			od->od_object = 0;
2573 			missing++;
2574 			continue;
2575 		}
2576 
2577 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2578 
2579 		lr->lr_doid = od->od_dir;
2580 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2581 		lr->lrz_type = od->od_crtype;
2582 		lr->lrz_blocksize = od->od_crblocksize;
2583 		lr->lrz_ibshift = ztest_random_ibshift();
2584 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2585 		lr->lrz_dnodesize = od->od_crdnodesize;
2586 		lr->lr_gen = od->od_crgen;
2587 		lr->lr_crtime[0] = time(NULL);
2588 
2589 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2590 			ASSERT0(missing);
2591 			od->od_object = 0;
2592 			missing++;
2593 		} else {
2594 			od->od_object = lr->lr_foid;
2595 			od->od_type = od->od_crtype;
2596 			od->od_blocksize = od->od_crblocksize;
2597 			od->od_gen = od->od_crgen;
2598 			ASSERT3U(od->od_object, !=, 0);
2599 		}
2600 
2601 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2602 	}
2603 
2604 	return (missing);
2605 }
2606 
2607 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2608 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2609 {
2610 	int missing = 0;
2611 	int error;
2612 	int i;
2613 
2614 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2615 
2616 	od += count - 1;
2617 
2618 	for (i = count - 1; i >= 0; i--, od--) {
2619 		if (missing) {
2620 			missing++;
2621 			continue;
2622 		}
2623 
2624 		/*
2625 		 * No object was found.
2626 		 */
2627 		if (od->od_object == 0)
2628 			continue;
2629 
2630 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2631 
2632 		lr->lr_doid = od->od_dir;
2633 
2634 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2635 			ASSERT3U(error, ==, ENOSPC);
2636 			missing++;
2637 		} else {
2638 			od->od_object = 0;
2639 		}
2640 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2641 	}
2642 
2643 	return (missing);
2644 }
2645 
2646 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,void * data)2647 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2648     void *data)
2649 {
2650 	lr_write_t *lr;
2651 	int error;
2652 
2653 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2654 
2655 	lr->lr_foid = object;
2656 	lr->lr_offset = offset;
2657 	lr->lr_length = size;
2658 	lr->lr_blkoff = 0;
2659 	BP_ZERO(&lr->lr_blkptr);
2660 
2661 	bcopy(data, lr + 1, size);
2662 
2663 	error = ztest_replay_write(zd, lr, B_FALSE);
2664 
2665 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2666 
2667 	return (error);
2668 }
2669 
2670 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2671 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2672 {
2673 	lr_truncate_t *lr;
2674 	int error;
2675 
2676 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2677 
2678 	lr->lr_foid = object;
2679 	lr->lr_offset = offset;
2680 	lr->lr_length = size;
2681 
2682 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2683 
2684 	ztest_lr_free(lr, sizeof (*lr), NULL);
2685 
2686 	return (error);
2687 }
2688 
2689 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2690 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2691 {
2692 	lr_setattr_t *lr;
2693 	int error;
2694 
2695 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2696 
2697 	lr->lr_foid = object;
2698 	lr->lr_size = 0;
2699 	lr->lr_mode = 0;
2700 
2701 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2702 
2703 	ztest_lr_free(lr, sizeof (*lr), NULL);
2704 
2705 	return (error);
2706 }
2707 
2708 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2709 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2710 {
2711 	objset_t *os = zd->zd_os;
2712 	dmu_tx_t *tx;
2713 	uint64_t txg;
2714 	rl_t *rl;
2715 
2716 	txg_wait_synced(dmu_objset_pool(os), 0);
2717 
2718 	ztest_object_lock(zd, object, RL_READER);
2719 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2720 
2721 	tx = dmu_tx_create(os);
2722 
2723 	dmu_tx_hold_write(tx, object, offset, size);
2724 
2725 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2726 
2727 	if (txg != 0) {
2728 		dmu_prealloc(os, object, offset, size, tx);
2729 		dmu_tx_commit(tx);
2730 		txg_wait_synced(dmu_objset_pool(os), txg);
2731 	} else {
2732 		(void) dmu_free_long_range(os, object, offset, size);
2733 	}
2734 
2735 	ztest_range_unlock(rl);
2736 	ztest_object_unlock(zd, object);
2737 }
2738 
2739 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2740 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2741 {
2742 	int err;
2743 	ztest_block_tag_t wbt;
2744 	dmu_object_info_t doi;
2745 	enum ztest_io_type io_type;
2746 	uint64_t blocksize;
2747 	void *data;
2748 
2749 	VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2750 	blocksize = doi.doi_data_block_size;
2751 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2752 
2753 	/*
2754 	 * Pick an i/o type at random, biased toward writing block tags.
2755 	 */
2756 	io_type = ztest_random(ZTEST_IO_TYPES);
2757 	if (ztest_random(2) == 0)
2758 		io_type = ZTEST_IO_WRITE_TAG;
2759 
2760 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2761 
2762 	switch (io_type) {
2763 
2764 	case ZTEST_IO_WRITE_TAG:
2765 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2766 		    offset, 0, 0, 0);
2767 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2768 		break;
2769 
2770 	case ZTEST_IO_WRITE_PATTERN:
2771 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2772 		if (ztest_random(2) == 0) {
2773 			/*
2774 			 * Induce fletcher2 collisions to ensure that
2775 			 * zio_ddt_collision() detects and resolves them
2776 			 * when using fletcher2-verify for deduplication.
2777 			 */
2778 			((uint64_t *)data)[0] ^= 1ULL << 63;
2779 			((uint64_t *)data)[4] ^= 1ULL << 63;
2780 		}
2781 		(void) ztest_write(zd, object, offset, blocksize, data);
2782 		break;
2783 
2784 	case ZTEST_IO_WRITE_ZEROES:
2785 		bzero(data, blocksize);
2786 		(void) ztest_write(zd, object, offset, blocksize, data);
2787 		break;
2788 
2789 	case ZTEST_IO_TRUNCATE:
2790 		(void) ztest_truncate(zd, object, offset, blocksize);
2791 		break;
2792 
2793 	case ZTEST_IO_SETATTR:
2794 		(void) ztest_setattr(zd, object);
2795 		break;
2796 	default:
2797 		break;
2798 
2799 	case ZTEST_IO_REWRITE:
2800 		(void) pthread_rwlock_rdlock(&ztest_name_lock);
2801 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2802 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2803 		    B_FALSE);
2804 		VERIFY(err == 0 || err == ENOSPC);
2805 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2806 		    ZFS_PROP_COMPRESSION,
2807 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2808 		    B_FALSE);
2809 		VERIFY(err == 0 || err == ENOSPC);
2810 		(void) pthread_rwlock_unlock(&ztest_name_lock);
2811 
2812 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2813 		    DMU_READ_NO_PREFETCH));
2814 
2815 		(void) ztest_write(zd, object, offset, blocksize, data);
2816 		break;
2817 	}
2818 
2819 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2820 
2821 	umem_free(data, blocksize);
2822 }
2823 
2824 /*
2825  * Initialize an object description template.
2826  */
2827 static void
ztest_od_init(ztest_od_t * od,uint64_t id,char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t dnodesize,uint64_t gen)2828 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2829     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2830     uint64_t gen)
2831 {
2832 	od->od_dir = ZTEST_DIROBJ;
2833 	od->od_object = 0;
2834 
2835 	od->od_crtype = type;
2836 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2837 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2838 	od->od_crgen = gen;
2839 
2840 	od->od_type = DMU_OT_NONE;
2841 	od->od_blocksize = 0;
2842 	od->od_gen = 0;
2843 
2844 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2845 	    tag, (longlong_t)id, (u_longlong_t)index);
2846 }
2847 
2848 /*
2849  * Lookup or create the objects for a test using the od template.
2850  * If the objects do not all exist, or if 'remove' is specified,
2851  * remove any existing objects and create new ones.  Otherwise,
2852  * use the existing objects.
2853  */
2854 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2855 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2856 {
2857 	int count = size / sizeof (*od);
2858 	int rv = 0;
2859 
2860 	mutex_enter(&zd->zd_dirobj_lock);
2861 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2862 	    (ztest_remove(zd, od, count) != 0 ||
2863 	    ztest_create(zd, od, count) != 0))
2864 		rv = -1;
2865 	zd->zd_od = od;
2866 	mutex_exit(&zd->zd_dirobj_lock);
2867 
2868 	return (rv);
2869 }
2870 
2871 /* ARGSUSED */
2872 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2873 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2874 {
2875 	zilog_t *zilog = zd->zd_zilog;
2876 
2877 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2878 
2879 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2880 
2881 	/*
2882 	 * Remember the committed values in zd, which is in parent/child
2883 	 * shared memory.  If we die, the next iteration of ztest_run()
2884 	 * will verify that the log really does contain this record.
2885 	 */
2886 	mutex_enter(&zilog->zl_lock);
2887 	ASSERT3P(zd->zd_shared, !=, NULL);
2888 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2889 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2890 	mutex_exit(&zilog->zl_lock);
2891 
2892 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2893 }
2894 
2895 /*
2896  * This function is designed to simulate the operations that occur during a
2897  * mount/unmount operation.  We hold the dataset across these operations in an
2898  * attempt to expose any implicit assumptions about ZIL management.
2899  */
2900 /* ARGSUSED */
2901 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2902 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2903 {
2904 	objset_t *os = zd->zd_os;
2905 
2906 	/*
2907 	 * We hold the ztest_vdev_lock so we don't cause problems with
2908 	 * other threads that wish to remove a log device, such as
2909 	 * ztest_device_removal().
2910 	 */
2911 	mutex_enter(&ztest_vdev_lock);
2912 
2913 	/*
2914 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2915 	 * updating the zil (i.e. adding in-memory log records) and the
2916 	 * zd_zilog_lock to block any I/O.
2917 	 */
2918 	mutex_enter(&zd->zd_dirobj_lock);
2919 	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2920 
2921 	/* zfsvfs_teardown() */
2922 	zil_close(zd->zd_zilog);
2923 
2924 	/* zfsvfs_setup() */
2925 	VERIFY3P(zil_open(os, ztest_get_data), ==, zd->zd_zilog);
2926 	zil_replay(os, zd, ztest_replay_vector);
2927 
2928 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2929 	mutex_exit(&zd->zd_dirobj_lock);
2930 	mutex_exit(&ztest_vdev_lock);
2931 }
2932 
2933 /*
2934  * Verify that we can't destroy an active pool, create an existing pool,
2935  * or create a pool with a bad vdev spec.
2936  */
2937 /* ARGSUSED */
2938 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)2939 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2940 {
2941 	ztest_shared_opts_t *zo = &ztest_opts;
2942 	spa_t *spa;
2943 	nvlist_t *nvroot;
2944 
2945 	if (zo->zo_mmp_test)
2946 		return;
2947 
2948 	/*
2949 	 * Attempt to create using a bad file.
2950 	 */
2951 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2952 	VERIFY3U(ENOENT, ==,
2953 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2954 	fnvlist_free(nvroot);
2955 
2956 	/*
2957 	 * Attempt to create using a bad mirror.
2958 	 */
2959 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2960 	VERIFY3U(ENOENT, ==,
2961 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2962 	fnvlist_free(nvroot);
2963 
2964 	/*
2965 	 * Attempt to create an existing pool.  It shouldn't matter
2966 	 * what's in the nvroot; we should fail with EEXIST.
2967 	 */
2968 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
2969 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2970 	VERIFY3U(EEXIST, ==,
2971 	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2972 	fnvlist_free(nvroot);
2973 
2974 	/*
2975 	 * We open a reference to the spa and then we try to export it
2976 	 * expecting one of the following errors:
2977 	 *
2978 	 * EBUSY
2979 	 *	Because of the reference we just opened.
2980 	 *
2981 	 * ZFS_ERR_EXPORT_IN_PROGRESS
2982 	 *	For the case that there is another ztest thread doing
2983 	 *	an export concurrently.
2984 	 */
2985 	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2986 	int error = spa_destroy(zo->zo_pool);
2987 	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
2988 		fatal(0, "spa_destroy(%s) returned unexpected value %d",
2989 		    spa->spa_name, error);
2990 	}
2991 	spa_close(spa, FTAG);
2992 
2993 	(void) pthread_rwlock_unlock(&ztest_name_lock);
2994 }
2995 
2996 /*
2997  * Start and then stop the MMP threads to ensure the startup and shutdown code
2998  * works properly.  Actual protection and property-related code tested via ZTS.
2999  */
3000 /* ARGSUSED */
3001 void
ztest_mmp_enable_disable(ztest_ds_t * zd,uint64_t id)3002 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3003 {
3004 	ztest_shared_opts_t *zo = &ztest_opts;
3005 	spa_t *spa = ztest_spa;
3006 
3007 	if (zo->zo_mmp_test)
3008 		return;
3009 
3010 	/*
3011 	 * Since enabling MMP involves setting a property, it could not be done
3012 	 * while the pool is suspended.
3013 	 */
3014 	if (spa_suspended(spa))
3015 		return;
3016 
3017 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3018 	mutex_enter(&spa->spa_props_lock);
3019 
3020 	zfs_multihost_fail_intervals = 0;
3021 
3022 	if (!spa_multihost(spa)) {
3023 		spa->spa_multihost = B_TRUE;
3024 		mmp_thread_start(spa);
3025 	}
3026 
3027 	mutex_exit(&spa->spa_props_lock);
3028 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3029 
3030 	txg_wait_synced(spa_get_dsl(spa), 0);
3031 	mmp_signal_all_threads();
3032 	txg_wait_synced(spa_get_dsl(spa), 0);
3033 
3034 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3035 	mutex_enter(&spa->spa_props_lock);
3036 
3037 	if (spa_multihost(spa)) {
3038 		mmp_thread_stop(spa);
3039 		spa->spa_multihost = B_FALSE;
3040 	}
3041 
3042 	mutex_exit(&spa->spa_props_lock);
3043 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3044 }
3045 
3046 /* ARGSUSED */
3047 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)3048 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3049 {
3050 	spa_t *spa;
3051 	uint64_t initial_version = SPA_VERSION_INITIAL;
3052 	uint64_t version, newversion;
3053 	nvlist_t *nvroot, *props;
3054 	char *name;
3055 
3056 	if (ztest_opts.zo_mmp_test)
3057 		return;
3058 
3059 	/* dRAID added after feature flags, skip upgrade test. */
3060 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3061 		return;
3062 
3063 	mutex_enter(&ztest_vdev_lock);
3064 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3065 
3066 	/*
3067 	 * Clean up from previous runs.
3068 	 */
3069 	(void) spa_destroy(name);
3070 
3071 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3072 	    NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
3073 
3074 	/*
3075 	 * If we're configuring a RAIDZ device then make sure that the
3076 	 * initial version is capable of supporting that feature.
3077 	 */
3078 	switch (ztest_opts.zo_raid_parity) {
3079 	case 0:
3080 	case 1:
3081 		initial_version = SPA_VERSION_INITIAL;
3082 		break;
3083 	case 2:
3084 		initial_version = SPA_VERSION_RAIDZ2;
3085 		break;
3086 	case 3:
3087 		initial_version = SPA_VERSION_RAIDZ3;
3088 		break;
3089 	}
3090 
3091 	/*
3092 	 * Create a pool with a spa version that can be upgraded. Pick
3093 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3094 	 */
3095 	do {
3096 		version = ztest_random_spa_version(initial_version);
3097 	} while (version > SPA_VERSION_BEFORE_FEATURES);
3098 
3099 	props = fnvlist_alloc();
3100 	fnvlist_add_uint64(props,
3101 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3102 	VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3103 	fnvlist_free(nvroot);
3104 	fnvlist_free(props);
3105 
3106 	VERIFY0(spa_open(name, &spa, FTAG));
3107 	VERIFY3U(spa_version(spa), ==, version);
3108 	newversion = ztest_random_spa_version(version + 1);
3109 
3110 	if (ztest_opts.zo_verbose >= 4) {
3111 		(void) printf("upgrading spa version from %llu to %llu\n",
3112 		    (u_longlong_t)version, (u_longlong_t)newversion);
3113 	}
3114 
3115 	spa_upgrade(spa, newversion);
3116 	VERIFY3U(spa_version(spa), >, version);
3117 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3118 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3119 	spa_close(spa, FTAG);
3120 
3121 	kmem_strfree(name);
3122 	mutex_exit(&ztest_vdev_lock);
3123 }
3124 
3125 static void
ztest_spa_checkpoint(spa_t * spa)3126 ztest_spa_checkpoint(spa_t *spa)
3127 {
3128 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3129 
3130 	int error = spa_checkpoint(spa->spa_name);
3131 
3132 	switch (error) {
3133 	case 0:
3134 	case ZFS_ERR_DEVRM_IN_PROGRESS:
3135 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3136 	case ZFS_ERR_CHECKPOINT_EXISTS:
3137 		break;
3138 	case ENOSPC:
3139 		ztest_record_enospc(FTAG);
3140 		break;
3141 	default:
3142 		fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3143 	}
3144 }
3145 
3146 static void
ztest_spa_discard_checkpoint(spa_t * spa)3147 ztest_spa_discard_checkpoint(spa_t *spa)
3148 {
3149 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3150 
3151 	int error = spa_checkpoint_discard(spa->spa_name);
3152 
3153 	switch (error) {
3154 	case 0:
3155 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3156 	case ZFS_ERR_NO_CHECKPOINT:
3157 		break;
3158 	default:
3159 		fatal(0, "spa_discard_checkpoint(%s) = %d",
3160 		    spa->spa_name, error);
3161 	}
3162 
3163 }
3164 
3165 /* ARGSUSED */
3166 void
ztest_spa_checkpoint_create_discard(ztest_ds_t * zd,uint64_t id)3167 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3168 {
3169 	spa_t *spa = ztest_spa;
3170 
3171 	mutex_enter(&ztest_checkpoint_lock);
3172 	if (ztest_random(2) == 0) {
3173 		ztest_spa_checkpoint(spa);
3174 	} else {
3175 		ztest_spa_discard_checkpoint(spa);
3176 	}
3177 	mutex_exit(&ztest_checkpoint_lock);
3178 }
3179 
3180 
3181 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)3182 vdev_lookup_by_path(vdev_t *vd, const char *path)
3183 {
3184 	vdev_t *mvd;
3185 	int c;
3186 
3187 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3188 		return (vd);
3189 
3190 	for (c = 0; c < vd->vdev_children; c++)
3191 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3192 		    NULL)
3193 			return (mvd);
3194 
3195 	return (NULL);
3196 }
3197 
3198 static int
spa_num_top_vdevs(spa_t * spa)3199 spa_num_top_vdevs(spa_t *spa)
3200 {
3201 	vdev_t *rvd = spa->spa_root_vdev;
3202 	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3203 	return (rvd->vdev_children);
3204 }
3205 
3206 /*
3207  * Verify that vdev_add() works as expected.
3208  */
3209 /* ARGSUSED */
3210 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)3211 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3212 {
3213 	ztest_shared_t *zs = ztest_shared;
3214 	spa_t *spa = ztest_spa;
3215 	uint64_t leaves;
3216 	uint64_t guid;
3217 	nvlist_t *nvroot;
3218 	int error;
3219 
3220 	if (ztest_opts.zo_mmp_test)
3221 		return;
3222 
3223 	mutex_enter(&ztest_vdev_lock);
3224 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3225 	    ztest_opts.zo_raid_children;
3226 
3227 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3228 
3229 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3230 
3231 	/*
3232 	 * If we have slogs then remove them 1/4 of the time.
3233 	 */
3234 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3235 		metaslab_group_t *mg;
3236 
3237 		/*
3238 		 * find the first real slog in log allocation class
3239 		 */
3240 		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
3241 		while (!mg->mg_vd->vdev_islog)
3242 			mg = mg->mg_next;
3243 
3244 		guid = mg->mg_vd->vdev_guid;
3245 
3246 		spa_config_exit(spa, SCL_VDEV, FTAG);
3247 
3248 		/*
3249 		 * We have to grab the zs_name_lock as writer to
3250 		 * prevent a race between removing a slog (dmu_objset_find)
3251 		 * and destroying a dataset. Removing the slog will
3252 		 * grab a reference on the dataset which may cause
3253 		 * dsl_destroy_head() to fail with EBUSY thus
3254 		 * leaving the dataset in an inconsistent state.
3255 		 */
3256 		pthread_rwlock_wrlock(&ztest_name_lock);
3257 		error = spa_vdev_remove(spa, guid, B_FALSE);
3258 		pthread_rwlock_unlock(&ztest_name_lock);
3259 
3260 		switch (error) {
3261 		case 0:
3262 		case EEXIST:	/* Generic zil_reset() error */
3263 		case EBUSY:	/* Replay required */
3264 		case EACCES:	/* Crypto key not loaded */
3265 		case ZFS_ERR_CHECKPOINT_EXISTS:
3266 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3267 			break;
3268 		default:
3269 			fatal(0, "spa_vdev_remove() = %d", error);
3270 		}
3271 	} else {
3272 		spa_config_exit(spa, SCL_VDEV, FTAG);
3273 
3274 		/*
3275 		 * Make 1/4 of the devices be log devices
3276 		 */
3277 		nvroot = make_vdev_root(NULL, NULL, NULL,
3278 		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3279 		    "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
3280 		    1);
3281 
3282 		error = spa_vdev_add(spa, nvroot);
3283 		fnvlist_free(nvroot);
3284 
3285 		switch (error) {
3286 		case 0:
3287 			break;
3288 		case ENOSPC:
3289 			ztest_record_enospc("spa_vdev_add");
3290 			break;
3291 		default:
3292 			fatal(0, "spa_vdev_add() = %d", error);
3293 		}
3294 	}
3295 
3296 	mutex_exit(&ztest_vdev_lock);
3297 }
3298 
3299 /* ARGSUSED */
3300 void
ztest_vdev_class_add(ztest_ds_t * zd,uint64_t id)3301 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3302 {
3303 	ztest_shared_t *zs = ztest_shared;
3304 	spa_t *spa = ztest_spa;
3305 	uint64_t leaves;
3306 	nvlist_t *nvroot;
3307 	const char *class = (ztest_random(2) == 0) ?
3308 	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3309 	int error;
3310 
3311 	/*
3312 	 * By default add a special vdev 50% of the time
3313 	 */
3314 	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3315 	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3316 	    ztest_random(2) == 0)) {
3317 		return;
3318 	}
3319 
3320 	mutex_enter(&ztest_vdev_lock);
3321 
3322 	/* Only test with mirrors */
3323 	if (zs->zs_mirrors < 2) {
3324 		mutex_exit(&ztest_vdev_lock);
3325 		return;
3326 	}
3327 
3328 	/* requires feature@allocation_classes */
3329 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3330 		mutex_exit(&ztest_vdev_lock);
3331 		return;
3332 	}
3333 
3334 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3335 	    ztest_opts.zo_raid_children;
3336 
3337 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3338 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3339 	spa_config_exit(spa, SCL_VDEV, FTAG);
3340 
3341 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3342 	    class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
3343 
3344 	error = spa_vdev_add(spa, nvroot);
3345 	fnvlist_free(nvroot);
3346 
3347 	if (error == ENOSPC)
3348 		ztest_record_enospc("spa_vdev_add");
3349 	else if (error != 0)
3350 		fatal(0, "spa_vdev_add() = %d", error);
3351 
3352 	/*
3353 	 * 50% of the time allow small blocks in the special class
3354 	 */
3355 	if (error == 0 &&
3356 	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3357 		if (ztest_opts.zo_verbose >= 3)
3358 			(void) printf("Enabling special VDEV small blocks\n");
3359 		(void) ztest_dsl_prop_set_uint64(zd->zd_name,
3360 		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3361 	}
3362 
3363 	mutex_exit(&ztest_vdev_lock);
3364 
3365 	if (ztest_opts.zo_verbose >= 3) {
3366 		metaslab_class_t *mc;
3367 
3368 		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3369 			mc = spa_special_class(spa);
3370 		else
3371 			mc = spa_dedup_class(spa);
3372 		(void) printf("Added a %s mirrored vdev (of %d)\n",
3373 		    class, (int)mc->mc_groups);
3374 	}
3375 }
3376 
3377 /*
3378  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3379  */
3380 /* ARGSUSED */
3381 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)3382 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3383 {
3384 	ztest_shared_t *zs = ztest_shared;
3385 	spa_t *spa = ztest_spa;
3386 	vdev_t *rvd = spa->spa_root_vdev;
3387 	spa_aux_vdev_t *sav;
3388 	char *aux;
3389 	char *path;
3390 	uint64_t guid = 0;
3391 	int error, ignore_err = 0;
3392 
3393 	if (ztest_opts.zo_mmp_test)
3394 		return;
3395 
3396 	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3397 
3398 	if (ztest_random(2) == 0) {
3399 		sav = &spa->spa_spares;
3400 		aux = ZPOOL_CONFIG_SPARES;
3401 	} else {
3402 		sav = &spa->spa_l2cache;
3403 		aux = ZPOOL_CONFIG_L2CACHE;
3404 	}
3405 
3406 	mutex_enter(&ztest_vdev_lock);
3407 
3408 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3409 
3410 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3411 		/*
3412 		 * Pick a random device to remove.
3413 		 */
3414 		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3415 
3416 		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3417 		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3418 			ignore_err = ENOTSUP;
3419 
3420 		guid = svd->vdev_guid;
3421 	} else {
3422 		/*
3423 		 * Find an unused device we can add.
3424 		 */
3425 		zs->zs_vdev_aux = 0;
3426 		for (;;) {
3427 			int c;
3428 			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3429 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3430 			    zs->zs_vdev_aux);
3431 			for (c = 0; c < sav->sav_count; c++)
3432 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3433 				    path) == 0)
3434 					break;
3435 			if (c == sav->sav_count &&
3436 			    vdev_lookup_by_path(rvd, path) == NULL)
3437 				break;
3438 			zs->zs_vdev_aux++;
3439 		}
3440 	}
3441 
3442 	spa_config_exit(spa, SCL_VDEV, FTAG);
3443 
3444 	if (guid == 0) {
3445 		/*
3446 		 * Add a new device.
3447 		 */
3448 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3449 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3450 		error = spa_vdev_add(spa, nvroot);
3451 
3452 		switch (error) {
3453 		case 0:
3454 			break;
3455 		default:
3456 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
3457 		}
3458 		fnvlist_free(nvroot);
3459 	} else {
3460 		/*
3461 		 * Remove an existing device.  Sometimes, dirty its
3462 		 * vdev state first to make sure we handle removal
3463 		 * of devices that have pending state changes.
3464 		 */
3465 		if (ztest_random(2) == 0)
3466 			(void) vdev_online(spa, guid, 0, NULL);
3467 
3468 		error = spa_vdev_remove(spa, guid, B_FALSE);
3469 
3470 		switch (error) {
3471 		case 0:
3472 		case EBUSY:
3473 		case ZFS_ERR_CHECKPOINT_EXISTS:
3474 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3475 			break;
3476 		default:
3477 			if (error != ignore_err)
3478 				fatal(0, "spa_vdev_remove(%llu) = %d", guid,
3479 				    error);
3480 		}
3481 	}
3482 
3483 	mutex_exit(&ztest_vdev_lock);
3484 
3485 	umem_free(path, MAXPATHLEN);
3486 }
3487 
3488 /*
3489  * split a pool if it has mirror tlvdevs
3490  */
3491 /* ARGSUSED */
3492 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)3493 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3494 {
3495 	ztest_shared_t *zs = ztest_shared;
3496 	spa_t *spa = ztest_spa;
3497 	vdev_t *rvd = spa->spa_root_vdev;
3498 	nvlist_t *tree, **child, *config, *split, **schild;
3499 	uint_t c, children, schildren = 0, lastlogid = 0;
3500 	int error = 0;
3501 
3502 	if (ztest_opts.zo_mmp_test)
3503 		return;
3504 
3505 	mutex_enter(&ztest_vdev_lock);
3506 
3507 	/* ensure we have a usable config; mirrors of raidz aren't supported */
3508 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3509 		mutex_exit(&ztest_vdev_lock);
3510 		return;
3511 	}
3512 
3513 	/* clean up the old pool, if any */
3514 	(void) spa_destroy("splitp");
3515 
3516 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3517 
3518 	/* generate a config from the existing config */
3519 	mutex_enter(&spa->spa_props_lock);
3520 	tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3521 	mutex_exit(&spa->spa_props_lock);
3522 
3523 	VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3524 	    &child, &children));
3525 
3526 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3527 	for (c = 0; c < children; c++) {
3528 		vdev_t *tvd = rvd->vdev_child[c];
3529 		nvlist_t **mchild;
3530 		uint_t mchildren;
3531 
3532 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3533 			schild[schildren] = fnvlist_alloc();
3534 			fnvlist_add_string(schild[schildren],
3535 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3536 			fnvlist_add_uint64(schild[schildren],
3537 			    ZPOOL_CONFIG_IS_HOLE, 1);
3538 			if (lastlogid == 0)
3539 				lastlogid = schildren;
3540 			++schildren;
3541 			continue;
3542 		}
3543 		lastlogid = 0;
3544 		VERIFY0(nvlist_lookup_nvlist_array(child[c],
3545 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3546 		schild[schildren++] = fnvlist_dup(mchild[0]);
3547 	}
3548 
3549 	/* OK, create a config that can be used to split */
3550 	split = fnvlist_alloc();
3551 	fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3552 	fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
3553 	    lastlogid != 0 ? lastlogid : schildren);
3554 
3555 	config = fnvlist_alloc();
3556 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3557 
3558 	for (c = 0; c < schildren; c++)
3559 		fnvlist_free(schild[c]);
3560 	free(schild);
3561 	fnvlist_free(split);
3562 
3563 	spa_config_exit(spa, SCL_VDEV, FTAG);
3564 
3565 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
3566 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3567 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3568 
3569 	fnvlist_free(config);
3570 
3571 	if (error == 0) {
3572 		(void) printf("successful split - results:\n");
3573 		mutex_enter(&spa_namespace_lock);
3574 		show_pool_stats(spa);
3575 		show_pool_stats(spa_lookup("splitp"));
3576 		mutex_exit(&spa_namespace_lock);
3577 		++zs->zs_splits;
3578 		--zs->zs_mirrors;
3579 	}
3580 	mutex_exit(&ztest_vdev_lock);
3581 }
3582 
3583 /*
3584  * Verify that we can attach and detach devices.
3585  */
3586 /* ARGSUSED */
3587 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)3588 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3589 {
3590 	ztest_shared_t *zs = ztest_shared;
3591 	spa_t *spa = ztest_spa;
3592 	spa_aux_vdev_t *sav = &spa->spa_spares;
3593 	vdev_t *rvd = spa->spa_root_vdev;
3594 	vdev_t *oldvd, *newvd, *pvd;
3595 	nvlist_t *root;
3596 	uint64_t leaves;
3597 	uint64_t leaf, top;
3598 	uint64_t ashift = ztest_get_ashift();
3599 	uint64_t oldguid, pguid;
3600 	uint64_t oldsize, newsize;
3601 	char *oldpath, *newpath;
3602 	int replacing;
3603 	int oldvd_has_siblings = B_FALSE;
3604 	int newvd_is_spare = B_FALSE;
3605 	int newvd_is_dspare = B_FALSE;
3606 	int oldvd_is_log;
3607 	int error, expected_error;
3608 
3609 	if (ztest_opts.zo_mmp_test)
3610 		return;
3611 
3612 	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3613 	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3614 
3615 	mutex_enter(&ztest_vdev_lock);
3616 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
3617 
3618 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3619 
3620 	/*
3621 	 * If a vdev is in the process of being removed, its removal may
3622 	 * finish while we are in progress, leading to an unexpected error
3623 	 * value.  Don't bother trying to attach while we are in the middle
3624 	 * of removal.
3625 	 */
3626 	if (ztest_device_removal_active) {
3627 		spa_config_exit(spa, SCL_ALL, FTAG);
3628 		goto out;
3629 	}
3630 
3631 	/*
3632 	 * Decide whether to do an attach or a replace.
3633 	 */
3634 	replacing = ztest_random(2);
3635 
3636 	/*
3637 	 * Pick a random top-level vdev.
3638 	 */
3639 	top = ztest_random_vdev_top(spa, B_TRUE);
3640 
3641 	/*
3642 	 * Pick a random leaf within it.
3643 	 */
3644 	leaf = ztest_random(leaves);
3645 
3646 	/*
3647 	 * Locate this vdev.
3648 	 */
3649 	oldvd = rvd->vdev_child[top];
3650 
3651 	/* pick a child from the mirror */
3652 	if (zs->zs_mirrors >= 1) {
3653 		ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3654 		ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3655 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
3656 	}
3657 
3658 	/* pick a child out of the raidz group */
3659 	if (ztest_opts.zo_raid_children > 1) {
3660 		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3661 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3662 		else
3663 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3664 		ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
3665 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
3666 	}
3667 
3668 	/*
3669 	 * If we're already doing an attach or replace, oldvd may be a
3670 	 * mirror vdev -- in which case, pick a random child.
3671 	 */
3672 	while (oldvd->vdev_children != 0) {
3673 		oldvd_has_siblings = B_TRUE;
3674 		ASSERT3U(oldvd->vdev_children, >=, 2);
3675 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3676 	}
3677 
3678 	oldguid = oldvd->vdev_guid;
3679 	oldsize = vdev_get_min_asize(oldvd);
3680 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3681 	(void) strcpy(oldpath, oldvd->vdev_path);
3682 	pvd = oldvd->vdev_parent;
3683 	pguid = pvd->vdev_guid;
3684 
3685 	/*
3686 	 * If oldvd has siblings, then half of the time, detach it.  Prior
3687 	 * to the detach the pool is scrubbed in order to prevent creating
3688 	 * unrepairable blocks as a result of the data corruption injection.
3689 	 */
3690 	if (oldvd_has_siblings && ztest_random(2) == 0) {
3691 		spa_config_exit(spa, SCL_ALL, FTAG);
3692 
3693 		error = ztest_scrub_impl(spa);
3694 		if (error)
3695 			goto out;
3696 
3697 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3698 		if (error != 0 && error != ENODEV && error != EBUSY &&
3699 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3700 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3701 			fatal(0, "detach (%s) returned %d", oldpath, error);
3702 		goto out;
3703 	}
3704 
3705 	/*
3706 	 * For the new vdev, choose with equal probability between the two
3707 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3708 	 */
3709 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3710 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3711 		newvd_is_spare = B_TRUE;
3712 
3713 		if (newvd->vdev_ops == &vdev_draid_spare_ops)
3714 			newvd_is_dspare = B_TRUE;
3715 
3716 		(void) strcpy(newpath, newvd->vdev_path);
3717 	} else {
3718 		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3719 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3720 		    top * leaves + leaf);
3721 		if (ztest_random(2) == 0)
3722 			newpath[strlen(newpath) - 1] = 'b';
3723 		newvd = vdev_lookup_by_path(rvd, newpath);
3724 	}
3725 
3726 	if (newvd) {
3727 		/*
3728 		 * Reopen to ensure the vdev's asize field isn't stale.
3729 		 */
3730 		vdev_reopen(newvd);
3731 		newsize = vdev_get_min_asize(newvd);
3732 	} else {
3733 		/*
3734 		 * Make newsize a little bigger or smaller than oldsize.
3735 		 * If it's smaller, the attach should fail.
3736 		 * If it's larger, and we're doing a replace,
3737 		 * we should get dynamic LUN growth when we're done.
3738 		 */
3739 		newsize = 10 * oldsize / (9 + ztest_random(3));
3740 	}
3741 
3742 	/*
3743 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3744 	 * unless it's a replace; in that case any non-replacing parent is OK.
3745 	 *
3746 	 * If newvd is already part of the pool, it should fail with EBUSY.
3747 	 *
3748 	 * If newvd is too small, it should fail with EOVERFLOW.
3749 	 *
3750 	 * If newvd is a distributed spare and it's being attached to a
3751 	 * dRAID which is not its parent it should fail with EINVAL.
3752 	 */
3753 	if (pvd->vdev_ops != &vdev_mirror_ops &&
3754 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3755 	    pvd->vdev_ops == &vdev_replacing_ops ||
3756 	    pvd->vdev_ops == &vdev_spare_ops))
3757 		expected_error = ENOTSUP;
3758 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
3759 		expected_error = ENOTSUP;
3760 	else if (newvd == oldvd)
3761 		expected_error = replacing ? 0 : EBUSY;
3762 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3763 		expected_error = EBUSY;
3764 	else if (!newvd_is_dspare && newsize < oldsize)
3765 		expected_error = EOVERFLOW;
3766 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3767 		expected_error = EDOM;
3768 	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3769 		expected_error = ENOTSUP;
3770 	else
3771 		expected_error = 0;
3772 
3773 	spa_config_exit(spa, SCL_ALL, FTAG);
3774 
3775 	/*
3776 	 * Build the nvlist describing newpath.
3777 	 */
3778 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3779 	    ashift, NULL, 0, 0, 1);
3780 
3781 	/*
3782 	 * When supported select either a healing or sequential resilver.
3783 	 */
3784 	boolean_t rebuilding = B_FALSE;
3785 	if (pvd->vdev_ops == &vdev_mirror_ops ||
3786 	    pvd->vdev_ops ==  &vdev_root_ops) {
3787 		rebuilding = !!ztest_random(2);
3788 	}
3789 
3790 	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3791 
3792 	fnvlist_free(root);
3793 
3794 	/*
3795 	 * If our parent was the replacing vdev, but the replace completed,
3796 	 * then instead of failing with ENOTSUP we may either succeed,
3797 	 * fail with ENODEV, or fail with EOVERFLOW.
3798 	 */
3799 	if (expected_error == ENOTSUP &&
3800 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3801 		expected_error = error;
3802 
3803 	/*
3804 	 * If someone grew the LUN, the replacement may be too small.
3805 	 */
3806 	if (error == EOVERFLOW || error == EBUSY)
3807 		expected_error = error;
3808 
3809 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3810 	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3811 	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3812 	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
3813 		expected_error = error;
3814 
3815 	if (error != expected_error && expected_error != EBUSY) {
3816 		fatal(0, "attach (%s %llu, %s %llu, %d) "
3817 		    "returned %d, expected %d",
3818 		    oldpath, oldsize, newpath,
3819 		    newsize, replacing, error, expected_error);
3820 	}
3821 out:
3822 	mutex_exit(&ztest_vdev_lock);
3823 
3824 	umem_free(oldpath, MAXPATHLEN);
3825 	umem_free(newpath, MAXPATHLEN);
3826 }
3827 
3828 /* ARGSUSED */
3829 void
ztest_device_removal(ztest_ds_t * zd,uint64_t id)3830 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3831 {
3832 	spa_t *spa = ztest_spa;
3833 	vdev_t *vd;
3834 	uint64_t guid;
3835 	int error;
3836 
3837 	mutex_enter(&ztest_vdev_lock);
3838 
3839 	if (ztest_device_removal_active) {
3840 		mutex_exit(&ztest_vdev_lock);
3841 		return;
3842 	}
3843 
3844 	/*
3845 	 * Remove a random top-level vdev and wait for removal to finish.
3846 	 */
3847 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3848 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3849 	guid = vd->vdev_guid;
3850 	spa_config_exit(spa, SCL_VDEV, FTAG);
3851 
3852 	error = spa_vdev_remove(spa, guid, B_FALSE);
3853 	if (error == 0) {
3854 		ztest_device_removal_active = B_TRUE;
3855 		mutex_exit(&ztest_vdev_lock);
3856 
3857 		/*
3858 		 * spa->spa_vdev_removal is created in a sync task that
3859 		 * is initiated via dsl_sync_task_nowait(). Since the
3860 		 * task may not run before spa_vdev_remove() returns, we
3861 		 * must wait at least 1 txg to ensure that the removal
3862 		 * struct has been created.
3863 		 */
3864 		txg_wait_synced(spa_get_dsl(spa), 0);
3865 
3866 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
3867 			txg_wait_synced(spa_get_dsl(spa), 0);
3868 	} else {
3869 		mutex_exit(&ztest_vdev_lock);
3870 		return;
3871 	}
3872 
3873 	/*
3874 	 * The pool needs to be scrubbed after completing device removal.
3875 	 * Failure to do so may result in checksum errors due to the
3876 	 * strategy employed by ztest_fault_inject() when selecting which
3877 	 * offset are redundant and can be damaged.
3878 	 */
3879 	error = spa_scan(spa, POOL_SCAN_SCRUB);
3880 	if (error == 0) {
3881 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3882 			txg_wait_synced(spa_get_dsl(spa), 0);
3883 	}
3884 
3885 	mutex_enter(&ztest_vdev_lock);
3886 	ztest_device_removal_active = B_FALSE;
3887 	mutex_exit(&ztest_vdev_lock);
3888 }
3889 
3890 /*
3891  * Callback function which expands the physical size of the vdev.
3892  */
3893 static vdev_t *
grow_vdev(vdev_t * vd,void * arg)3894 grow_vdev(vdev_t *vd, void *arg)
3895 {
3896 	spa_t *spa __maybe_unused = vd->vdev_spa;
3897 	size_t *newsize = arg;
3898 	size_t fsize;
3899 	int fd;
3900 
3901 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3902 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3903 
3904 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3905 		return (vd);
3906 
3907 	fsize = lseek(fd, 0, SEEK_END);
3908 	VERIFY0(ftruncate(fd, *newsize));
3909 
3910 	if (ztest_opts.zo_verbose >= 6) {
3911 		(void) printf("%s grew from %lu to %lu bytes\n",
3912 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3913 	}
3914 	(void) close(fd);
3915 	return (NULL);
3916 }
3917 
3918 /*
3919  * Callback function which expands a given vdev by calling vdev_online().
3920  */
3921 /* ARGSUSED */
3922 static vdev_t *
online_vdev(vdev_t * vd,void * arg)3923 online_vdev(vdev_t *vd, void *arg)
3924 {
3925 	spa_t *spa = vd->vdev_spa;
3926 	vdev_t *tvd = vd->vdev_top;
3927 	uint64_t guid = vd->vdev_guid;
3928 	uint64_t generation = spa->spa_config_generation + 1;
3929 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3930 	int error;
3931 
3932 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3933 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3934 
3935 	/* Calling vdev_online will initialize the new metaslabs */
3936 	spa_config_exit(spa, SCL_STATE, spa);
3937 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3938 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3939 
3940 	/*
3941 	 * If vdev_online returned an error or the underlying vdev_open
3942 	 * failed then we abort the expand. The only way to know that
3943 	 * vdev_open fails is by checking the returned newstate.
3944 	 */
3945 	if (error || newstate != VDEV_STATE_HEALTHY) {
3946 		if (ztest_opts.zo_verbose >= 5) {
3947 			(void) printf("Unable to expand vdev, state %llu, "
3948 			    "error %d\n", (u_longlong_t)newstate, error);
3949 		}
3950 		return (vd);
3951 	}
3952 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3953 
3954 	/*
3955 	 * Since we dropped the lock we need to ensure that we're
3956 	 * still talking to the original vdev. It's possible this
3957 	 * vdev may have been detached/replaced while we were
3958 	 * trying to online it.
3959 	 */
3960 	if (generation != spa->spa_config_generation) {
3961 		if (ztest_opts.zo_verbose >= 5) {
3962 			(void) printf("vdev configuration has changed, "
3963 			    "guid %llu, state %llu, expected gen %llu, "
3964 			    "got gen %llu\n",
3965 			    (u_longlong_t)guid,
3966 			    (u_longlong_t)tvd->vdev_state,
3967 			    (u_longlong_t)generation,
3968 			    (u_longlong_t)spa->spa_config_generation);
3969 		}
3970 		return (vd);
3971 	}
3972 	return (NULL);
3973 }
3974 
3975 /*
3976  * Traverse the vdev tree calling the supplied function.
3977  * We continue to walk the tree until we either have walked all
3978  * children or we receive a non-NULL return from the callback.
3979  * If a NULL callback is passed, then we just return back the first
3980  * leaf vdev we encounter.
3981  */
3982 static vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)3983 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3984 {
3985 	uint_t c;
3986 
3987 	if (vd->vdev_ops->vdev_op_leaf) {
3988 		if (func == NULL)
3989 			return (vd);
3990 		else
3991 			return (func(vd, arg));
3992 	}
3993 
3994 	for (c = 0; c < vd->vdev_children; c++) {
3995 		vdev_t *cvd = vd->vdev_child[c];
3996 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3997 			return (cvd);
3998 	}
3999 	return (NULL);
4000 }
4001 
4002 /*
4003  * Verify that dynamic LUN growth works as expected.
4004  */
4005 /* ARGSUSED */
4006 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)4007 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4008 {
4009 	spa_t *spa = ztest_spa;
4010 	vdev_t *vd, *tvd;
4011 	metaslab_class_t *mc;
4012 	metaslab_group_t *mg;
4013 	size_t psize, newsize;
4014 	uint64_t top;
4015 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4016 
4017 	mutex_enter(&ztest_checkpoint_lock);
4018 	mutex_enter(&ztest_vdev_lock);
4019 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4020 
4021 	/*
4022 	 * If there is a vdev removal in progress, it could complete while
4023 	 * we are running, in which case we would not be able to verify
4024 	 * that the metaslab_class space increased (because it decreases
4025 	 * when the device removal completes).
4026 	 */
4027 	if (ztest_device_removal_active) {
4028 		spa_config_exit(spa, SCL_STATE, spa);
4029 		mutex_exit(&ztest_vdev_lock);
4030 		mutex_exit(&ztest_checkpoint_lock);
4031 		return;
4032 	}
4033 
4034 	top = ztest_random_vdev_top(spa, B_TRUE);
4035 
4036 	tvd = spa->spa_root_vdev->vdev_child[top];
4037 	mg = tvd->vdev_mg;
4038 	mc = mg->mg_class;
4039 	old_ms_count = tvd->vdev_ms_count;
4040 	old_class_space = metaslab_class_get_space(mc);
4041 
4042 	/*
4043 	 * Determine the size of the first leaf vdev associated with
4044 	 * our top-level device.
4045 	 */
4046 	vd = vdev_walk_tree(tvd, NULL, NULL);
4047 	ASSERT3P(vd, !=, NULL);
4048 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4049 
4050 	psize = vd->vdev_psize;
4051 
4052 	/*
4053 	 * We only try to expand the vdev if it's healthy, less than 4x its
4054 	 * original size, and it has a valid psize.
4055 	 */
4056 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4057 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4058 		spa_config_exit(spa, SCL_STATE, spa);
4059 		mutex_exit(&ztest_vdev_lock);
4060 		mutex_exit(&ztest_checkpoint_lock);
4061 		return;
4062 	}
4063 	ASSERT3U(psize, >, 0);
4064 	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4065 	ASSERT3U(newsize, >, psize);
4066 
4067 	if (ztest_opts.zo_verbose >= 6) {
4068 		(void) printf("Expanding LUN %s from %lu to %lu\n",
4069 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4070 	}
4071 
4072 	/*
4073 	 * Growing the vdev is a two step process:
4074 	 *	1). expand the physical size (i.e. relabel)
4075 	 *	2). online the vdev to create the new metaslabs
4076 	 */
4077 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4078 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4079 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
4080 		if (ztest_opts.zo_verbose >= 5) {
4081 			(void) printf("Could not expand LUN because "
4082 			    "the vdev configuration changed.\n");
4083 		}
4084 		spa_config_exit(spa, SCL_STATE, spa);
4085 		mutex_exit(&ztest_vdev_lock);
4086 		mutex_exit(&ztest_checkpoint_lock);
4087 		return;
4088 	}
4089 
4090 	spa_config_exit(spa, SCL_STATE, spa);
4091 
4092 	/*
4093 	 * Expanding the LUN will update the config asynchronously,
4094 	 * thus we must wait for the async thread to complete any
4095 	 * pending tasks before proceeding.
4096 	 */
4097 	for (;;) {
4098 		boolean_t done;
4099 		mutex_enter(&spa->spa_async_lock);
4100 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4101 		mutex_exit(&spa->spa_async_lock);
4102 		if (done)
4103 			break;
4104 		txg_wait_synced(spa_get_dsl(spa), 0);
4105 		(void) poll(NULL, 0, 100);
4106 	}
4107 
4108 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4109 
4110 	tvd = spa->spa_root_vdev->vdev_child[top];
4111 	new_ms_count = tvd->vdev_ms_count;
4112 	new_class_space = metaslab_class_get_space(mc);
4113 
4114 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4115 		if (ztest_opts.zo_verbose >= 5) {
4116 			(void) printf("Could not verify LUN expansion due to "
4117 			    "intervening vdev offline or remove.\n");
4118 		}
4119 		spa_config_exit(spa, SCL_STATE, spa);
4120 		mutex_exit(&ztest_vdev_lock);
4121 		mutex_exit(&ztest_checkpoint_lock);
4122 		return;
4123 	}
4124 
4125 	/*
4126 	 * Make sure we were able to grow the vdev.
4127 	 */
4128 	if (new_ms_count <= old_ms_count) {
4129 		fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
4130 		    old_ms_count, new_ms_count);
4131 	}
4132 
4133 	/*
4134 	 * Make sure we were able to grow the pool.
4135 	 */
4136 	if (new_class_space <= old_class_space) {
4137 		fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
4138 		    old_class_space, new_class_space);
4139 	}
4140 
4141 	if (ztest_opts.zo_verbose >= 5) {
4142 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4143 
4144 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4145 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4146 		(void) printf("%s grew from %s to %s\n",
4147 		    spa->spa_name, oldnumbuf, newnumbuf);
4148 	}
4149 
4150 	spa_config_exit(spa, SCL_STATE, spa);
4151 	mutex_exit(&ztest_vdev_lock);
4152 	mutex_exit(&ztest_checkpoint_lock);
4153 }
4154 
4155 /*
4156  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4157  */
4158 /* ARGSUSED */
4159 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)4160 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4161 {
4162 	/*
4163 	 * Create the objects common to all ztest datasets.
4164 	 */
4165 	VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4166 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4167 }
4168 
4169 static int
ztest_dataset_create(char * dsname)4170 ztest_dataset_create(char *dsname)
4171 {
4172 	int err;
4173 	uint64_t rand;
4174 	dsl_crypto_params_t *dcp = NULL;
4175 
4176 	/*
4177 	 * 50% of the time, we create encrypted datasets
4178 	 * using a random cipher suite and a hard-coded
4179 	 * wrapping key.
4180 	 */
4181 	rand = ztest_random(2);
4182 	if (rand != 0) {
4183 		nvlist_t *crypto_args = fnvlist_alloc();
4184 		nvlist_t *props = fnvlist_alloc();
4185 
4186 		/* slight bias towards the default cipher suite */
4187 		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4188 		if (rand < ZIO_CRYPT_AES_128_CCM)
4189 			rand = ZIO_CRYPT_ON;
4190 
4191 		fnvlist_add_uint64(props,
4192 		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4193 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
4194 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4195 
4196 		/*
4197 		 * These parameters aren't really used by the kernel. They
4198 		 * are simply stored so that userspace knows how to load
4199 		 * the wrapping key.
4200 		 */
4201 		fnvlist_add_uint64(props,
4202 		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4203 		fnvlist_add_string(props,
4204 		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4205 		fnvlist_add_uint64(props,
4206 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4207 		fnvlist_add_uint64(props,
4208 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4209 
4210 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4211 		    crypto_args, &dcp));
4212 
4213 		/*
4214 		 * Cycle through all available encryption implementations
4215 		 * to verify interoperability.
4216 		 */
4217 		VERIFY0(gcm_impl_set("cycle"));
4218 		VERIFY0(aes_impl_set("cycle"));
4219 
4220 		fnvlist_free(crypto_args);
4221 		fnvlist_free(props);
4222 	}
4223 
4224 	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4225 	    ztest_objset_create_cb, NULL);
4226 	dsl_crypto_params_free(dcp, !!err);
4227 
4228 	rand = ztest_random(100);
4229 	if (err || rand < 80)
4230 		return (err);
4231 
4232 	if (ztest_opts.zo_verbose >= 5)
4233 		(void) printf("Setting dataset %s to sync always\n", dsname);
4234 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4235 	    ZFS_SYNC_ALWAYS, B_FALSE));
4236 }
4237 
4238 /* ARGSUSED */
4239 static int
ztest_objset_destroy_cb(const char * name,void * arg)4240 ztest_objset_destroy_cb(const char *name, void *arg)
4241 {
4242 	objset_t *os;
4243 	dmu_object_info_t doi;
4244 	int error;
4245 
4246 	/*
4247 	 * Verify that the dataset contains a directory object.
4248 	 */
4249 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4250 	    B_TRUE, FTAG, &os));
4251 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4252 	if (error != ENOENT) {
4253 		/* We could have crashed in the middle of destroying it */
4254 		ASSERT0(error);
4255 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4256 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4257 	}
4258 	dmu_objset_disown(os, B_TRUE, FTAG);
4259 
4260 	/*
4261 	 * Destroy the dataset.
4262 	 */
4263 	if (strchr(name, '@') != NULL) {
4264 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
4265 	} else {
4266 		error = dsl_destroy_head(name);
4267 		if (error == ENOSPC) {
4268 			/* There could be checkpoint or insufficient slop */
4269 			ztest_record_enospc(FTAG);
4270 		} else if (error != EBUSY) {
4271 			/* There could be a hold on this dataset */
4272 			ASSERT0(error);
4273 		}
4274 	}
4275 	return (0);
4276 }
4277 
4278 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)4279 ztest_snapshot_create(char *osname, uint64_t id)
4280 {
4281 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4282 	int error;
4283 
4284 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
4285 
4286 	error = dmu_objset_snapshot_one(osname, snapname);
4287 	if (error == ENOSPC) {
4288 		ztest_record_enospc(FTAG);
4289 		return (B_FALSE);
4290 	}
4291 	if (error != 0 && error != EEXIST) {
4292 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
4293 		    snapname, error);
4294 	}
4295 	return (B_TRUE);
4296 }
4297 
4298 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)4299 ztest_snapshot_destroy(char *osname, uint64_t id)
4300 {
4301 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4302 	int error;
4303 
4304 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
4305 	    (u_longlong_t)id);
4306 
4307 	error = dsl_destroy_snapshot(snapname, B_FALSE);
4308 	if (error != 0 && error != ENOENT)
4309 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
4310 	return (B_TRUE);
4311 }
4312 
4313 /* ARGSUSED */
4314 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)4315 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4316 {
4317 	ztest_ds_t *zdtmp;
4318 	int iters;
4319 	int error;
4320 	objset_t *os, *os2;
4321 	char name[ZFS_MAX_DATASET_NAME_LEN];
4322 	zilog_t *zilog;
4323 	int i;
4324 
4325 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4326 
4327 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4328 
4329 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
4330 	    ztest_opts.zo_pool, (u_longlong_t)id);
4331 
4332 	/*
4333 	 * If this dataset exists from a previous run, process its replay log
4334 	 * half of the time.  If we don't replay it, then dsl_destroy_head()
4335 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4336 	 */
4337 	if (ztest_random(2) == 0 &&
4338 	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4339 	    B_TRUE, FTAG, &os) == 0) {
4340 		ztest_zd_init(zdtmp, NULL, os);
4341 		zil_replay(os, zdtmp, ztest_replay_vector);
4342 		ztest_zd_fini(zdtmp);
4343 		dmu_objset_disown(os, B_TRUE, FTAG);
4344 	}
4345 
4346 	/*
4347 	 * There may be an old instance of the dataset we're about to
4348 	 * create lying around from a previous run.  If so, destroy it
4349 	 * and all of its snapshots.
4350 	 */
4351 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4352 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4353 
4354 	/*
4355 	 * Verify that the destroyed dataset is no longer in the namespace.
4356 	 */
4357 	VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4358 	    B_TRUE, FTAG, &os));
4359 
4360 	/*
4361 	 * Verify that we can create a new dataset.
4362 	 */
4363 	error = ztest_dataset_create(name);
4364 	if (error) {
4365 		if (error == ENOSPC) {
4366 			ztest_record_enospc(FTAG);
4367 			goto out;
4368 		}
4369 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
4370 	}
4371 
4372 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4373 	    FTAG, &os));
4374 
4375 	ztest_zd_init(zdtmp, NULL, os);
4376 
4377 	/*
4378 	 * Open the intent log for it.
4379 	 */
4380 	zilog = zil_open(os, ztest_get_data);
4381 
4382 	/*
4383 	 * Put some objects in there, do a little I/O to them,
4384 	 * and randomly take a couple of snapshots along the way.
4385 	 */
4386 	iters = ztest_random(5);
4387 	for (i = 0; i < iters; i++) {
4388 		ztest_dmu_object_alloc_free(zdtmp, id);
4389 		if (ztest_random(iters) == 0)
4390 			(void) ztest_snapshot_create(name, i);
4391 	}
4392 
4393 	/*
4394 	 * Verify that we cannot create an existing dataset.
4395 	 */
4396 	VERIFY3U(EEXIST, ==,
4397 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4398 
4399 	/*
4400 	 * Verify that we can hold an objset that is also owned.
4401 	 */
4402 	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4403 	dmu_objset_rele(os2, FTAG);
4404 
4405 	/*
4406 	 * Verify that we cannot own an objset that is already owned.
4407 	 */
4408 	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4409 	    B_FALSE, B_TRUE, FTAG, &os2));
4410 
4411 	zil_close(zilog);
4412 	dmu_objset_disown(os, B_TRUE, FTAG);
4413 	ztest_zd_fini(zdtmp);
4414 out:
4415 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4416 
4417 	umem_free(zdtmp, sizeof (ztest_ds_t));
4418 }
4419 
4420 /*
4421  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4422  */
4423 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)4424 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4425 {
4426 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4427 	(void) ztest_snapshot_destroy(zd->zd_name, id);
4428 	(void) ztest_snapshot_create(zd->zd_name, id);
4429 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4430 }
4431 
4432 /*
4433  * Cleanup non-standard snapshots and clones.
4434  */
4435 static void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)4436 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4437 {
4438 	char *snap1name;
4439 	char *clone1name;
4440 	char *snap2name;
4441 	char *clone2name;
4442 	char *snap3name;
4443 	int error;
4444 
4445 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4446 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4447 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4448 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4449 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4450 
4451 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4452 	    "%s@s1_%llu", osname, (u_longlong_t)id);
4453 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4454 	    "%s/c1_%llu", osname, (u_longlong_t)id);
4455 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4456 	    "%s@s2_%llu", clone1name, (u_longlong_t)id);
4457 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4458 	    "%s/c2_%llu", osname, (u_longlong_t)id);
4459 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4460 	    "%s@s3_%llu", clone1name, (u_longlong_t)id);
4461 
4462 	error = dsl_destroy_head(clone2name);
4463 	if (error && error != ENOENT)
4464 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
4465 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
4466 	if (error && error != ENOENT)
4467 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
4468 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
4469 	if (error && error != ENOENT)
4470 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
4471 	error = dsl_destroy_head(clone1name);
4472 	if (error && error != ENOENT)
4473 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
4474 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
4475 	if (error && error != ENOENT)
4476 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
4477 
4478 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4479 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4480 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4481 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4482 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4483 }
4484 
4485 /*
4486  * Verify dsl_dataset_promote handles EBUSY
4487  */
4488 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)4489 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4490 {
4491 	objset_t *os;
4492 	char *snap1name;
4493 	char *clone1name;
4494 	char *snap2name;
4495 	char *clone2name;
4496 	char *snap3name;
4497 	char *osname = zd->zd_name;
4498 	int error;
4499 
4500 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4501 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4502 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4503 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4504 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4505 
4506 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4507 
4508 	ztest_dsl_dataset_cleanup(osname, id);
4509 
4510 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4511 	    "%s@s1_%llu", osname, (u_longlong_t)id);
4512 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4513 	    "%s/c1_%llu", osname, (u_longlong_t)id);
4514 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4515 	    "%s@s2_%llu", clone1name, (u_longlong_t)id);
4516 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4517 	    "%s/c2_%llu", osname, (u_longlong_t)id);
4518 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4519 	    "%s@s3_%llu", clone1name, (u_longlong_t)id);
4520 
4521 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4522 	if (error && error != EEXIST) {
4523 		if (error == ENOSPC) {
4524 			ztest_record_enospc(FTAG);
4525 			goto out;
4526 		}
4527 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
4528 	}
4529 
4530 	error = dmu_objset_clone(clone1name, snap1name);
4531 	if (error) {
4532 		if (error == ENOSPC) {
4533 			ztest_record_enospc(FTAG);
4534 			goto out;
4535 		}
4536 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
4537 	}
4538 
4539 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4540 	if (error && error != EEXIST) {
4541 		if (error == ENOSPC) {
4542 			ztest_record_enospc(FTAG);
4543 			goto out;
4544 		}
4545 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
4546 	}
4547 
4548 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4549 	if (error && error != EEXIST) {
4550 		if (error == ENOSPC) {
4551 			ztest_record_enospc(FTAG);
4552 			goto out;
4553 		}
4554 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
4555 	}
4556 
4557 	error = dmu_objset_clone(clone2name, snap3name);
4558 	if (error) {
4559 		if (error == ENOSPC) {
4560 			ztest_record_enospc(FTAG);
4561 			goto out;
4562 		}
4563 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
4564 	}
4565 
4566 	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4567 	    FTAG, &os);
4568 	if (error)
4569 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
4570 	error = dsl_dataset_promote(clone2name, NULL);
4571 	if (error == ENOSPC) {
4572 		dmu_objset_disown(os, B_TRUE, FTAG);
4573 		ztest_record_enospc(FTAG);
4574 		goto out;
4575 	}
4576 	if (error != EBUSY)
4577 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
4578 		    error);
4579 	dmu_objset_disown(os, B_TRUE, FTAG);
4580 
4581 out:
4582 	ztest_dsl_dataset_cleanup(osname, id);
4583 
4584 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4585 
4586 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4587 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4588 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4589 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4590 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4591 }
4592 
4593 #undef OD_ARRAY_SIZE
4594 #define	OD_ARRAY_SIZE	4
4595 
4596 /*
4597  * Verify that dmu_object_{alloc,free} work as expected.
4598  */
4599 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)4600 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4601 {
4602 	ztest_od_t *od;
4603 	int batchsize;
4604 	int size;
4605 	int b;
4606 
4607 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4608 	od = umem_alloc(size, UMEM_NOFAIL);
4609 	batchsize = OD_ARRAY_SIZE;
4610 
4611 	for (b = 0; b < batchsize; b++)
4612 		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4613 		    0, 0, 0);
4614 
4615 	/*
4616 	 * Destroy the previous batch of objects, create a new batch,
4617 	 * and do some I/O on the new objects.
4618 	 */
4619 	if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4620 		return;
4621 
4622 	while (ztest_random(4 * batchsize) != 0)
4623 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
4624 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4625 
4626 	umem_free(od, size);
4627 }
4628 
4629 /*
4630  * Rewind the global allocator to verify object allocation backfilling.
4631  */
4632 void
ztest_dmu_object_next_chunk(ztest_ds_t * zd,uint64_t id)4633 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4634 {
4635 	objset_t *os = zd->zd_os;
4636 	int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4637 	uint64_t object;
4638 
4639 	/*
4640 	 * Rewind the global allocator randomly back to a lower object number
4641 	 * to force backfilling and reclamation of recently freed dnodes.
4642 	 */
4643 	mutex_enter(&os->os_obj_lock);
4644 	object = ztest_random(os->os_obj_next_chunk);
4645 	os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4646 	mutex_exit(&os->os_obj_lock);
4647 }
4648 
4649 #undef OD_ARRAY_SIZE
4650 #define	OD_ARRAY_SIZE	2
4651 
4652 /*
4653  * Verify that dmu_{read,write} work as expected.
4654  */
4655 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)4656 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4657 {
4658 	int size;
4659 	ztest_od_t *od;
4660 
4661 	objset_t *os = zd->zd_os;
4662 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4663 	od = umem_alloc(size, UMEM_NOFAIL);
4664 	dmu_tx_t *tx;
4665 	int i, freeit, error;
4666 	uint64_t n, s, txg;
4667 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4668 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4669 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4670 	uint64_t regions = 997;
4671 	uint64_t stride = 123456789ULL;
4672 	uint64_t width = 40;
4673 	int free_percent = 5;
4674 
4675 	/*
4676 	 * This test uses two objects, packobj and bigobj, that are always
4677 	 * updated together (i.e. in the same tx) so that their contents are
4678 	 * in sync and can be compared.  Their contents relate to each other
4679 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4680 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4681 	 * for any index n, there are three bufwads that should be identical:
4682 	 *
4683 	 *	packobj, at offset n * sizeof (bufwad_t)
4684 	 *	bigobj, at the head of the nth chunk
4685 	 *	bigobj, at the tail of the nth chunk
4686 	 *
4687 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
4688 	 * and it doesn't have any relation to the object blocksize.
4689 	 * The only requirement is that it can hold at least two bufwads.
4690 	 *
4691 	 * Normally, we write the bufwad to each of these locations.
4692 	 * However, free_percent of the time we instead write zeroes to
4693 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
4694 	 * bigobj to packobj, we can verify that the DMU is correctly
4695 	 * tracking which parts of an object are allocated and free,
4696 	 * and that the contents of the allocated blocks are correct.
4697 	 */
4698 
4699 	/*
4700 	 * Read the directory info.  If it's the first time, set things up.
4701 	 */
4702 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4703 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4704 	    chunksize);
4705 
4706 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4707 		umem_free(od, size);
4708 		return;
4709 	}
4710 
4711 	bigobj = od[0].od_object;
4712 	packobj = od[1].od_object;
4713 	chunksize = od[0].od_gen;
4714 	ASSERT3U(chunksize, ==, od[1].od_gen);
4715 
4716 	/*
4717 	 * Prefetch a random chunk of the big object.
4718 	 * Our aim here is to get some async reads in flight
4719 	 * for blocks that we may free below; the DMU should
4720 	 * handle this race correctly.
4721 	 */
4722 	n = ztest_random(regions) * stride + ztest_random(width);
4723 	s = 1 + ztest_random(2 * width - 1);
4724 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4725 	    ZIO_PRIORITY_SYNC_READ);
4726 
4727 	/*
4728 	 * Pick a random index and compute the offsets into packobj and bigobj.
4729 	 */
4730 	n = ztest_random(regions) * stride + ztest_random(width);
4731 	s = 1 + ztest_random(width - 1);
4732 
4733 	packoff = n * sizeof (bufwad_t);
4734 	packsize = s * sizeof (bufwad_t);
4735 
4736 	bigoff = n * chunksize;
4737 	bigsize = s * chunksize;
4738 
4739 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4740 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4741 
4742 	/*
4743 	 * free_percent of the time, free a range of bigobj rather than
4744 	 * overwriting it.
4745 	 */
4746 	freeit = (ztest_random(100) < free_percent);
4747 
4748 	/*
4749 	 * Read the current contents of our objects.
4750 	 */
4751 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
4752 	    DMU_READ_PREFETCH);
4753 	ASSERT0(error);
4754 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4755 	    DMU_READ_PREFETCH);
4756 	ASSERT0(error);
4757 
4758 	/*
4759 	 * Get a tx for the mods to both packobj and bigobj.
4760 	 */
4761 	tx = dmu_tx_create(os);
4762 
4763 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
4764 
4765 	if (freeit)
4766 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4767 	else
4768 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4769 
4770 	/* This accounts for setting the checksum/compression. */
4771 	dmu_tx_hold_bonus(tx, bigobj);
4772 
4773 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4774 	if (txg == 0) {
4775 		umem_free(packbuf, packsize);
4776 		umem_free(bigbuf, bigsize);
4777 		umem_free(od, size);
4778 		return;
4779 	}
4780 
4781 	enum zio_checksum cksum;
4782 	do {
4783 		cksum = (enum zio_checksum)
4784 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4785 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4786 	dmu_object_set_checksum(os, bigobj, cksum, tx);
4787 
4788 	enum zio_compress comp;
4789 	do {
4790 		comp = (enum zio_compress)
4791 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4792 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4793 	dmu_object_set_compress(os, bigobj, comp, tx);
4794 
4795 	/*
4796 	 * For each index from n to n + s, verify that the existing bufwad
4797 	 * in packobj matches the bufwads at the head and tail of the
4798 	 * corresponding chunk in bigobj.  Then update all three bufwads
4799 	 * with the new values we want to write out.
4800 	 */
4801 	for (i = 0; i < s; i++) {
4802 		/* LINTED */
4803 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4804 		/* LINTED */
4805 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4806 		/* LINTED */
4807 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4808 
4809 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4810 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4811 
4812 		if (pack->bw_txg > txg)
4813 			fatal(0, "future leak: got %llx, open txg is %llx",
4814 			    pack->bw_txg, txg);
4815 
4816 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4817 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4818 			    pack->bw_index, n, i);
4819 
4820 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4821 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4822 
4823 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4824 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4825 
4826 		if (freeit) {
4827 			bzero(pack, sizeof (bufwad_t));
4828 		} else {
4829 			pack->bw_index = n + i;
4830 			pack->bw_txg = txg;
4831 			pack->bw_data = 1 + ztest_random(-2ULL);
4832 		}
4833 		*bigH = *pack;
4834 		*bigT = *pack;
4835 	}
4836 
4837 	/*
4838 	 * We've verified all the old bufwads, and made new ones.
4839 	 * Now write them out.
4840 	 */
4841 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4842 
4843 	if (freeit) {
4844 		if (ztest_opts.zo_verbose >= 7) {
4845 			(void) printf("freeing offset %llx size %llx"
4846 			    " txg %llx\n",
4847 			    (u_longlong_t)bigoff,
4848 			    (u_longlong_t)bigsize,
4849 			    (u_longlong_t)txg);
4850 		}
4851 		VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4852 	} else {
4853 		if (ztest_opts.zo_verbose >= 7) {
4854 			(void) printf("writing offset %llx size %llx"
4855 			    " txg %llx\n",
4856 			    (u_longlong_t)bigoff,
4857 			    (u_longlong_t)bigsize,
4858 			    (u_longlong_t)txg);
4859 		}
4860 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4861 	}
4862 
4863 	dmu_tx_commit(tx);
4864 
4865 	/*
4866 	 * Sanity check the stuff we just wrote.
4867 	 */
4868 	{
4869 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4870 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4871 
4872 		VERIFY0(dmu_read(os, packobj, packoff,
4873 		    packsize, packcheck, DMU_READ_PREFETCH));
4874 		VERIFY0(dmu_read(os, bigobj, bigoff,
4875 		    bigsize, bigcheck, DMU_READ_PREFETCH));
4876 
4877 		ASSERT0(bcmp(packbuf, packcheck, packsize));
4878 		ASSERT0(bcmp(bigbuf, bigcheck, bigsize));
4879 
4880 		umem_free(packcheck, packsize);
4881 		umem_free(bigcheck, bigsize);
4882 	}
4883 
4884 	umem_free(packbuf, packsize);
4885 	umem_free(bigbuf, bigsize);
4886 	umem_free(od, size);
4887 }
4888 
4889 static void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)4890 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4891     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4892 {
4893 	uint64_t i;
4894 	bufwad_t *pack;
4895 	bufwad_t *bigH;
4896 	bufwad_t *bigT;
4897 
4898 	/*
4899 	 * For each index from n to n + s, verify that the existing bufwad
4900 	 * in packobj matches the bufwads at the head and tail of the
4901 	 * corresponding chunk in bigobj.  Then update all three bufwads
4902 	 * with the new values we want to write out.
4903 	 */
4904 	for (i = 0; i < s; i++) {
4905 		/* LINTED */
4906 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4907 		/* LINTED */
4908 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4909 		/* LINTED */
4910 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4911 
4912 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4913 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4914 
4915 		if (pack->bw_txg > txg)
4916 			fatal(0, "future leak: got %llx, open txg is %llx",
4917 			    pack->bw_txg, txg);
4918 
4919 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4920 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4921 			    pack->bw_index, n, i);
4922 
4923 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4924 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4925 
4926 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4927 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4928 
4929 		pack->bw_index = n + i;
4930 		pack->bw_txg = txg;
4931 		pack->bw_data = 1 + ztest_random(-2ULL);
4932 
4933 		*bigH = *pack;
4934 		*bigT = *pack;
4935 	}
4936 }
4937 
4938 #undef OD_ARRAY_SIZE
4939 #define	OD_ARRAY_SIZE	2
4940 
4941 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)4942 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4943 {
4944 	objset_t *os = zd->zd_os;
4945 	ztest_od_t *od;
4946 	dmu_tx_t *tx;
4947 	uint64_t i;
4948 	int error;
4949 	int size;
4950 	uint64_t n, s, txg;
4951 	bufwad_t *packbuf, *bigbuf;
4952 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4953 	uint64_t blocksize = ztest_random_blocksize();
4954 	uint64_t chunksize = blocksize;
4955 	uint64_t regions = 997;
4956 	uint64_t stride = 123456789ULL;
4957 	uint64_t width = 9;
4958 	dmu_buf_t *bonus_db;
4959 	arc_buf_t **bigbuf_arcbufs;
4960 	dmu_object_info_t doi;
4961 
4962 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4963 	od = umem_alloc(size, UMEM_NOFAIL);
4964 
4965 	/*
4966 	 * This test uses two objects, packobj and bigobj, that are always
4967 	 * updated together (i.e. in the same tx) so that their contents are
4968 	 * in sync and can be compared.  Their contents relate to each other
4969 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4970 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4971 	 * for any index n, there are three bufwads that should be identical:
4972 	 *
4973 	 *	packobj, at offset n * sizeof (bufwad_t)
4974 	 *	bigobj, at the head of the nth chunk
4975 	 *	bigobj, at the tail of the nth chunk
4976 	 *
4977 	 * The chunk size is set equal to bigobj block size so that
4978 	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4979 	 */
4980 
4981 	/*
4982 	 * Read the directory info.  If it's the first time, set things up.
4983 	 */
4984 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4985 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4986 	    chunksize);
4987 
4988 
4989 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4990 		umem_free(od, size);
4991 		return;
4992 	}
4993 
4994 	bigobj = od[0].od_object;
4995 	packobj = od[1].od_object;
4996 	blocksize = od[0].od_blocksize;
4997 	chunksize = blocksize;
4998 	ASSERT3U(chunksize, ==, od[1].od_gen);
4999 
5000 	VERIFY0(dmu_object_info(os, bigobj, &doi));
5001 	VERIFY(ISP2(doi.doi_data_block_size));
5002 	VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5003 	VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5004 
5005 	/*
5006 	 * Pick a random index and compute the offsets into packobj and bigobj.
5007 	 */
5008 	n = ztest_random(regions) * stride + ztest_random(width);
5009 	s = 1 + ztest_random(width - 1);
5010 
5011 	packoff = n * sizeof (bufwad_t);
5012 	packsize = s * sizeof (bufwad_t);
5013 
5014 	bigoff = n * chunksize;
5015 	bigsize = s * chunksize;
5016 
5017 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5018 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5019 
5020 	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5021 
5022 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5023 
5024 	/*
5025 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5026 	 * Iteration 1 test zcopy to already referenced dbufs.
5027 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5028 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5029 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
5030 	 * Iteration 5 test zcopy when it can't be done.
5031 	 * Iteration 6 one more zcopy write.
5032 	 */
5033 	for (i = 0; i < 7; i++) {
5034 		uint64_t j;
5035 		uint64_t off;
5036 
5037 		/*
5038 		 * In iteration 5 (i == 5) use arcbufs
5039 		 * that don't match bigobj blksz to test
5040 		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5041 		 * assign an arcbuf to a dbuf.
5042 		 */
5043 		for (j = 0; j < s; j++) {
5044 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5045 				bigbuf_arcbufs[j] =
5046 				    dmu_request_arcbuf(bonus_db, chunksize);
5047 			} else {
5048 				bigbuf_arcbufs[2 * j] =
5049 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5050 				bigbuf_arcbufs[2 * j + 1] =
5051 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5052 			}
5053 		}
5054 
5055 		/*
5056 		 * Get a tx for the mods to both packobj and bigobj.
5057 		 */
5058 		tx = dmu_tx_create(os);
5059 
5060 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
5061 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5062 
5063 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5064 		if (txg == 0) {
5065 			umem_free(packbuf, packsize);
5066 			umem_free(bigbuf, bigsize);
5067 			for (j = 0; j < s; j++) {
5068 				if (i != 5 ||
5069 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
5070 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
5071 				} else {
5072 					dmu_return_arcbuf(
5073 					    bigbuf_arcbufs[2 * j]);
5074 					dmu_return_arcbuf(
5075 					    bigbuf_arcbufs[2 * j + 1]);
5076 				}
5077 			}
5078 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5079 			umem_free(od, size);
5080 			dmu_buf_rele(bonus_db, FTAG);
5081 			return;
5082 		}
5083 
5084 		/*
5085 		 * 50% of the time don't read objects in the 1st iteration to
5086 		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5087 		 * no existing dbufs for the specified offsets.
5088 		 */
5089 		if (i != 0 || ztest_random(2) != 0) {
5090 			error = dmu_read(os, packobj, packoff,
5091 			    packsize, packbuf, DMU_READ_PREFETCH);
5092 			ASSERT0(error);
5093 			error = dmu_read(os, bigobj, bigoff, bigsize,
5094 			    bigbuf, DMU_READ_PREFETCH);
5095 			ASSERT0(error);
5096 		}
5097 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5098 		    n, chunksize, txg);
5099 
5100 		/*
5101 		 * We've verified all the old bufwads, and made new ones.
5102 		 * Now write them out.
5103 		 */
5104 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5105 		if (ztest_opts.zo_verbose >= 7) {
5106 			(void) printf("writing offset %llx size %llx"
5107 			    " txg %llx\n",
5108 			    (u_longlong_t)bigoff,
5109 			    (u_longlong_t)bigsize,
5110 			    (u_longlong_t)txg);
5111 		}
5112 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5113 			dmu_buf_t *dbt;
5114 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5115 				bcopy((caddr_t)bigbuf + (off - bigoff),
5116 				    bigbuf_arcbufs[j]->b_data, chunksize);
5117 			} else {
5118 				bcopy((caddr_t)bigbuf + (off - bigoff),
5119 				    bigbuf_arcbufs[2 * j]->b_data,
5120 				    chunksize / 2);
5121 				bcopy((caddr_t)bigbuf + (off - bigoff) +
5122 				    chunksize / 2,
5123 				    bigbuf_arcbufs[2 * j + 1]->b_data,
5124 				    chunksize / 2);
5125 			}
5126 
5127 			if (i == 1) {
5128 				VERIFY(dmu_buf_hold(os, bigobj, off,
5129 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5130 			}
5131 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5132 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5133 				    off, bigbuf_arcbufs[j], tx));
5134 			} else {
5135 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5136 				    off, bigbuf_arcbufs[2 * j], tx));
5137 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5138 				    off + chunksize / 2,
5139 				    bigbuf_arcbufs[2 * j + 1], tx));
5140 			}
5141 			if (i == 1) {
5142 				dmu_buf_rele(dbt, FTAG);
5143 			}
5144 		}
5145 		dmu_tx_commit(tx);
5146 
5147 		/*
5148 		 * Sanity check the stuff we just wrote.
5149 		 */
5150 		{
5151 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5152 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5153 
5154 			VERIFY0(dmu_read(os, packobj, packoff,
5155 			    packsize, packcheck, DMU_READ_PREFETCH));
5156 			VERIFY0(dmu_read(os, bigobj, bigoff,
5157 			    bigsize, bigcheck, DMU_READ_PREFETCH));
5158 
5159 			ASSERT0(bcmp(packbuf, packcheck, packsize));
5160 			ASSERT0(bcmp(bigbuf, bigcheck, bigsize));
5161 
5162 			umem_free(packcheck, packsize);
5163 			umem_free(bigcheck, bigsize);
5164 		}
5165 		if (i == 2) {
5166 			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5167 		} else if (i == 3) {
5168 			txg_wait_synced(dmu_objset_pool(os), 0);
5169 		}
5170 	}
5171 
5172 	dmu_buf_rele(bonus_db, FTAG);
5173 	umem_free(packbuf, packsize);
5174 	umem_free(bigbuf, bigsize);
5175 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5176 	umem_free(od, size);
5177 }
5178 
5179 /* ARGSUSED */
5180 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)5181 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5182 {
5183 	ztest_od_t *od;
5184 
5185 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5186 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5187 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5188 
5189 	/*
5190 	 * Have multiple threads write to large offsets in an object
5191 	 * to verify that parallel writes to an object -- even to the
5192 	 * same blocks within the object -- doesn't cause any trouble.
5193 	 */
5194 	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5195 
5196 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5197 		return;
5198 
5199 	while (ztest_random(10) != 0)
5200 		ztest_io(zd, od->od_object, offset);
5201 
5202 	umem_free(od, sizeof (ztest_od_t));
5203 }
5204 
5205 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)5206 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5207 {
5208 	ztest_od_t *od;
5209 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5210 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5211 	uint64_t count = ztest_random(20) + 1;
5212 	uint64_t blocksize = ztest_random_blocksize();
5213 	void *data;
5214 
5215 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5216 
5217 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5218 
5219 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5220 	    !ztest_random(2)) != 0) {
5221 		umem_free(od, sizeof (ztest_od_t));
5222 		return;
5223 	}
5224 
5225 	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5226 		umem_free(od, sizeof (ztest_od_t));
5227 		return;
5228 	}
5229 
5230 	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5231 
5232 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
5233 
5234 	while (ztest_random(count) != 0) {
5235 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
5236 		if (ztest_write(zd, od->od_object, randoff, blocksize,
5237 		    data) != 0)
5238 			break;
5239 		while (ztest_random(4) != 0)
5240 			ztest_io(zd, od->od_object, randoff);
5241 	}
5242 
5243 	umem_free(data, blocksize);
5244 	umem_free(od, sizeof (ztest_od_t));
5245 }
5246 
5247 /*
5248  * Verify that zap_{create,destroy,add,remove,update} work as expected.
5249  */
5250 #define	ZTEST_ZAP_MIN_INTS	1
5251 #define	ZTEST_ZAP_MAX_INTS	4
5252 #define	ZTEST_ZAP_MAX_PROPS	1000
5253 
5254 void
ztest_zap(ztest_ds_t * zd,uint64_t id)5255 ztest_zap(ztest_ds_t *zd, uint64_t id)
5256 {
5257 	objset_t *os = zd->zd_os;
5258 	ztest_od_t *od;
5259 	uint64_t object;
5260 	uint64_t txg, last_txg;
5261 	uint64_t value[ZTEST_ZAP_MAX_INTS];
5262 	uint64_t zl_ints, zl_intsize, prop;
5263 	int i, ints;
5264 	dmu_tx_t *tx;
5265 	char propname[100], txgname[100];
5266 	int error;
5267 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5268 
5269 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5270 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5271 
5272 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5273 	    !ztest_random(2)) != 0)
5274 		goto out;
5275 
5276 	object = od->od_object;
5277 
5278 	/*
5279 	 * Generate a known hash collision, and verify that
5280 	 * we can lookup and remove both entries.
5281 	 */
5282 	tx = dmu_tx_create(os);
5283 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5284 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5285 	if (txg == 0)
5286 		goto out;
5287 	for (i = 0; i < 2; i++) {
5288 		value[i] = i;
5289 		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5290 		    1, &value[i], tx));
5291 	}
5292 	for (i = 0; i < 2; i++) {
5293 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5294 		    sizeof (uint64_t), 1, &value[i], tx));
5295 		VERIFY0(
5296 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5297 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5298 		ASSERT3U(zl_ints, ==, 1);
5299 	}
5300 	for (i = 0; i < 2; i++) {
5301 		VERIFY0(zap_remove(os, object, hc[i], tx));
5302 	}
5303 	dmu_tx_commit(tx);
5304 
5305 	/*
5306 	 * Generate a bunch of random entries.
5307 	 */
5308 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5309 
5310 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5311 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5312 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5313 	bzero(value, sizeof (value));
5314 	last_txg = 0;
5315 
5316 	/*
5317 	 * If these zap entries already exist, validate their contents.
5318 	 */
5319 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5320 	if (error == 0) {
5321 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5322 		ASSERT3U(zl_ints, ==, 1);
5323 
5324 		VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5325 		    zl_ints, &last_txg));
5326 
5327 		VERIFY0(zap_length(os, object, propname, &zl_intsize,
5328 		    &zl_ints));
5329 
5330 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5331 		ASSERT3U(zl_ints, ==, ints);
5332 
5333 		VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5334 		    zl_ints, value));
5335 
5336 		for (i = 0; i < ints; i++) {
5337 			ASSERT3U(value[i], ==, last_txg + object + i);
5338 		}
5339 	} else {
5340 		ASSERT3U(error, ==, ENOENT);
5341 	}
5342 
5343 	/*
5344 	 * Atomically update two entries in our zap object.
5345 	 * The first is named txg_%llu, and contains the txg
5346 	 * in which the property was last updated.  The second
5347 	 * is named prop_%llu, and the nth element of its value
5348 	 * should be txg + object + n.
5349 	 */
5350 	tx = dmu_tx_create(os);
5351 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5352 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5353 	if (txg == 0)
5354 		goto out;
5355 
5356 	if (last_txg > txg)
5357 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
5358 
5359 	for (i = 0; i < ints; i++)
5360 		value[i] = txg + object + i;
5361 
5362 	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5363 	    1, &txg, tx));
5364 	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5365 	    ints, value, tx));
5366 
5367 	dmu_tx_commit(tx);
5368 
5369 	/*
5370 	 * Remove a random pair of entries.
5371 	 */
5372 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5373 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5374 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5375 
5376 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5377 
5378 	if (error == ENOENT)
5379 		goto out;
5380 
5381 	ASSERT0(error);
5382 
5383 	tx = dmu_tx_create(os);
5384 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5385 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5386 	if (txg == 0)
5387 		goto out;
5388 	VERIFY0(zap_remove(os, object, txgname, tx));
5389 	VERIFY0(zap_remove(os, object, propname, tx));
5390 	dmu_tx_commit(tx);
5391 out:
5392 	umem_free(od, sizeof (ztest_od_t));
5393 }
5394 
5395 /*
5396  * Test case to test the upgrading of a microzap to fatzap.
5397  */
5398 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)5399 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5400 {
5401 	objset_t *os = zd->zd_os;
5402 	ztest_od_t *od;
5403 	uint64_t object, txg;
5404 	int i;
5405 
5406 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5407 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5408 
5409 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5410 	    !ztest_random(2)) != 0)
5411 		goto out;
5412 	object = od->od_object;
5413 
5414 	/*
5415 	 * Add entries to this ZAP and make sure it spills over
5416 	 * and gets upgraded to a fatzap. Also, since we are adding
5417 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
5418 	 */
5419 	for (i = 0; i < 2050; i++) {
5420 		char name[ZFS_MAX_DATASET_NAME_LEN];
5421 		uint64_t value = i;
5422 		dmu_tx_t *tx;
5423 		int error;
5424 
5425 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
5426 		    (u_longlong_t)id, (u_longlong_t)value);
5427 
5428 		tx = dmu_tx_create(os);
5429 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
5430 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5431 		if (txg == 0)
5432 			goto out;
5433 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
5434 		    &value, tx);
5435 		ASSERT(error == 0 || error == EEXIST);
5436 		dmu_tx_commit(tx);
5437 	}
5438 out:
5439 	umem_free(od, sizeof (ztest_od_t));
5440 }
5441 
5442 /* ARGSUSED */
5443 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)5444 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5445 {
5446 	objset_t *os = zd->zd_os;
5447 	ztest_od_t *od;
5448 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5449 	dmu_tx_t *tx;
5450 	int i, namelen, error;
5451 	int micro = ztest_random(2);
5452 	char name[20], string_value[20];
5453 	void *data;
5454 
5455 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5456 	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5457 
5458 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5459 		umem_free(od, sizeof (ztest_od_t));
5460 		return;
5461 	}
5462 
5463 	object = od->od_object;
5464 
5465 	/*
5466 	 * Generate a random name of the form 'xxx.....' where each
5467 	 * x is a random printable character and the dots are dots.
5468 	 * There are 94 such characters, and the name length goes from
5469 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5470 	 */
5471 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5472 
5473 	for (i = 0; i < 3; i++)
5474 		name[i] = '!' + ztest_random('~' - '!' + 1);
5475 	for (; i < namelen - 1; i++)
5476 		name[i] = '.';
5477 	name[i] = '\0';
5478 
5479 	if ((namelen & 1) || micro) {
5480 		wsize = sizeof (txg);
5481 		wc = 1;
5482 		data = &txg;
5483 	} else {
5484 		wsize = 1;
5485 		wc = namelen;
5486 		data = string_value;
5487 	}
5488 
5489 	count = -1ULL;
5490 	VERIFY0(zap_count(os, object, &count));
5491 	ASSERT3S(count, !=, -1ULL);
5492 
5493 	/*
5494 	 * Select an operation: length, lookup, add, update, remove.
5495 	 */
5496 	i = ztest_random(5);
5497 
5498 	if (i >= 2) {
5499 		tx = dmu_tx_create(os);
5500 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5501 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5502 		if (txg == 0) {
5503 			umem_free(od, sizeof (ztest_od_t));
5504 			return;
5505 		}
5506 		bcopy(name, string_value, namelen);
5507 	} else {
5508 		tx = NULL;
5509 		txg = 0;
5510 		bzero(string_value, namelen);
5511 	}
5512 
5513 	switch (i) {
5514 
5515 	case 0:
5516 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5517 		if (error == 0) {
5518 			ASSERT3U(wsize, ==, zl_wsize);
5519 			ASSERT3U(wc, ==, zl_wc);
5520 		} else {
5521 			ASSERT3U(error, ==, ENOENT);
5522 		}
5523 		break;
5524 
5525 	case 1:
5526 		error = zap_lookup(os, object, name, wsize, wc, data);
5527 		if (error == 0) {
5528 			if (data == string_value &&
5529 			    bcmp(name, data, namelen) != 0)
5530 				fatal(0, "name '%s' != val '%s' len %d",
5531 				    name, data, namelen);
5532 		} else {
5533 			ASSERT3U(error, ==, ENOENT);
5534 		}
5535 		break;
5536 
5537 	case 2:
5538 		error = zap_add(os, object, name, wsize, wc, data, tx);
5539 		ASSERT(error == 0 || error == EEXIST);
5540 		break;
5541 
5542 	case 3:
5543 		VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5544 		break;
5545 
5546 	case 4:
5547 		error = zap_remove(os, object, name, tx);
5548 		ASSERT(error == 0 || error == ENOENT);
5549 		break;
5550 	}
5551 
5552 	if (tx != NULL)
5553 		dmu_tx_commit(tx);
5554 
5555 	umem_free(od, sizeof (ztest_od_t));
5556 }
5557 
5558 /*
5559  * Commit callback data.
5560  */
5561 typedef struct ztest_cb_data {
5562 	list_node_t		zcd_node;
5563 	uint64_t		zcd_txg;
5564 	int			zcd_expected_err;
5565 	boolean_t		zcd_added;
5566 	boolean_t		zcd_called;
5567 	spa_t			*zcd_spa;
5568 } ztest_cb_data_t;
5569 
5570 /* This is the actual commit callback function */
5571 static void
ztest_commit_callback(void * arg,int error)5572 ztest_commit_callback(void *arg, int error)
5573 {
5574 	ztest_cb_data_t *data = arg;
5575 	uint64_t synced_txg;
5576 
5577 	VERIFY3P(data, !=, NULL);
5578 	VERIFY3S(data->zcd_expected_err, ==, error);
5579 	VERIFY(!data->zcd_called);
5580 
5581 	synced_txg = spa_last_synced_txg(data->zcd_spa);
5582 	if (data->zcd_txg > synced_txg)
5583 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
5584 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
5585 		    synced_txg);
5586 
5587 	data->zcd_called = B_TRUE;
5588 
5589 	if (error == ECANCELED) {
5590 		ASSERT0(data->zcd_txg);
5591 		ASSERT(!data->zcd_added);
5592 
5593 		/*
5594 		 * The private callback data should be destroyed here, but
5595 		 * since we are going to check the zcd_called field after
5596 		 * dmu_tx_abort(), we will destroy it there.
5597 		 */
5598 		return;
5599 	}
5600 
5601 	ASSERT(data->zcd_added);
5602 	ASSERT3U(data->zcd_txg, !=, 0);
5603 
5604 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5605 
5606 	/* See if this cb was called more quickly */
5607 	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5608 		zc_min_txg_delay = synced_txg - data->zcd_txg;
5609 
5610 	/* Remove our callback from the list */
5611 	list_remove(&zcl.zcl_callbacks, data);
5612 
5613 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5614 
5615 	umem_free(data, sizeof (ztest_cb_data_t));
5616 }
5617 
5618 /* Allocate and initialize callback data structure */
5619 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)5620 ztest_create_cb_data(objset_t *os, uint64_t txg)
5621 {
5622 	ztest_cb_data_t *cb_data;
5623 
5624 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5625 
5626 	cb_data->zcd_txg = txg;
5627 	cb_data->zcd_spa = dmu_objset_spa(os);
5628 	list_link_init(&cb_data->zcd_node);
5629 
5630 	return (cb_data);
5631 }
5632 
5633 /*
5634  * Commit callback test.
5635  */
5636 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)5637 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5638 {
5639 	objset_t *os = zd->zd_os;
5640 	ztest_od_t *od;
5641 	dmu_tx_t *tx;
5642 	ztest_cb_data_t *cb_data[3], *tmp_cb;
5643 	uint64_t old_txg, txg;
5644 	int i, error = 0;
5645 
5646 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5647 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5648 
5649 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5650 		umem_free(od, sizeof (ztest_od_t));
5651 		return;
5652 	}
5653 
5654 	tx = dmu_tx_create(os);
5655 
5656 	cb_data[0] = ztest_create_cb_data(os, 0);
5657 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5658 
5659 	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5660 
5661 	/* Every once in a while, abort the transaction on purpose */
5662 	if (ztest_random(100) == 0)
5663 		error = -1;
5664 
5665 	if (!error)
5666 		error = dmu_tx_assign(tx, TXG_NOWAIT);
5667 
5668 	txg = error ? 0 : dmu_tx_get_txg(tx);
5669 
5670 	cb_data[0]->zcd_txg = txg;
5671 	cb_data[1] = ztest_create_cb_data(os, txg);
5672 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5673 
5674 	if (error) {
5675 		/*
5676 		 * It's not a strict requirement to call the registered
5677 		 * callbacks from inside dmu_tx_abort(), but that's what
5678 		 * it's supposed to happen in the current implementation
5679 		 * so we will check for that.
5680 		 */
5681 		for (i = 0; i < 2; i++) {
5682 			cb_data[i]->zcd_expected_err = ECANCELED;
5683 			VERIFY(!cb_data[i]->zcd_called);
5684 		}
5685 
5686 		dmu_tx_abort(tx);
5687 
5688 		for (i = 0; i < 2; i++) {
5689 			VERIFY(cb_data[i]->zcd_called);
5690 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5691 		}
5692 
5693 		umem_free(od, sizeof (ztest_od_t));
5694 		return;
5695 	}
5696 
5697 	cb_data[2] = ztest_create_cb_data(os, txg);
5698 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5699 
5700 	/*
5701 	 * Read existing data to make sure there isn't a future leak.
5702 	 */
5703 	VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5704 	    &old_txg, DMU_READ_PREFETCH));
5705 
5706 	if (old_txg > txg)
5707 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
5708 		    old_txg, txg);
5709 
5710 	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5711 
5712 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5713 
5714 	/*
5715 	 * Since commit callbacks don't have any ordering requirement and since
5716 	 * it is theoretically possible for a commit callback to be called
5717 	 * after an arbitrary amount of time has elapsed since its txg has been
5718 	 * synced, it is difficult to reliably determine whether a commit
5719 	 * callback hasn't been called due to high load or due to a flawed
5720 	 * implementation.
5721 	 *
5722 	 * In practice, we will assume that if after a certain number of txgs a
5723 	 * commit callback hasn't been called, then most likely there's an
5724 	 * implementation bug..
5725 	 */
5726 	tmp_cb = list_head(&zcl.zcl_callbacks);
5727 	if (tmp_cb != NULL &&
5728 	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5729 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
5730 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
5731 	}
5732 
5733 	/*
5734 	 * Let's find the place to insert our callbacks.
5735 	 *
5736 	 * Even though the list is ordered by txg, it is possible for the
5737 	 * insertion point to not be the end because our txg may already be
5738 	 * quiescing at this point and other callbacks in the open txg
5739 	 * (from other objsets) may have sneaked in.
5740 	 */
5741 	tmp_cb = list_tail(&zcl.zcl_callbacks);
5742 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5743 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5744 
5745 	/* Add the 3 callbacks to the list */
5746 	for (i = 0; i < 3; i++) {
5747 		if (tmp_cb == NULL)
5748 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5749 		else
5750 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5751 			    cb_data[i]);
5752 
5753 		cb_data[i]->zcd_added = B_TRUE;
5754 		VERIFY(!cb_data[i]->zcd_called);
5755 
5756 		tmp_cb = cb_data[i];
5757 	}
5758 
5759 	zc_cb_counter += 3;
5760 
5761 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5762 
5763 	dmu_tx_commit(tx);
5764 
5765 	umem_free(od, sizeof (ztest_od_t));
5766 }
5767 
5768 /*
5769  * Visit each object in the dataset. Verify that its properties
5770  * are consistent what was stored in the block tag when it was created,
5771  * and that its unused bonus buffer space has not been overwritten.
5772  */
5773 /* ARGSUSED */
5774 void
ztest_verify_dnode_bt(ztest_ds_t * zd,uint64_t id)5775 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5776 {
5777 	objset_t *os = zd->zd_os;
5778 	uint64_t obj;
5779 	int err = 0;
5780 
5781 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5782 		ztest_block_tag_t *bt = NULL;
5783 		dmu_object_info_t doi;
5784 		dmu_buf_t *db;
5785 
5786 		ztest_object_lock(zd, obj, RL_READER);
5787 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5788 			ztest_object_unlock(zd, obj);
5789 			continue;
5790 		}
5791 
5792 		dmu_object_info_from_db(db, &doi);
5793 		if (doi.doi_bonus_size >= sizeof (*bt))
5794 			bt = ztest_bt_bonus(db);
5795 
5796 		if (bt && bt->bt_magic == BT_MAGIC) {
5797 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5798 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
5799 			    bt->bt_crtxg);
5800 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5801 		}
5802 
5803 		dmu_buf_rele(db, FTAG);
5804 		ztest_object_unlock(zd, obj);
5805 	}
5806 }
5807 
5808 /* ARGSUSED */
5809 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)5810 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5811 {
5812 	zfs_prop_t proplist[] = {
5813 		ZFS_PROP_CHECKSUM,
5814 		ZFS_PROP_COMPRESSION,
5815 		ZFS_PROP_COPIES,
5816 		ZFS_PROP_DEDUP
5817 	};
5818 	int p;
5819 
5820 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5821 
5822 	for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5823 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5824 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5825 
5826 	VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5827 	    ztest_random_blocksize(), (int)ztest_random(2)));
5828 
5829 	(void) pthread_rwlock_unlock(&ztest_name_lock);
5830 }
5831 
5832 /* ARGSUSED */
5833 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)5834 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5835 {
5836 	nvlist_t *props = NULL;
5837 
5838 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5839 
5840 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5841 
5842 	VERIFY0(spa_prop_get(ztest_spa, &props));
5843 
5844 	if (ztest_opts.zo_verbose >= 6)
5845 		dump_nvlist(props, 4);
5846 
5847 	fnvlist_free(props);
5848 
5849 	(void) pthread_rwlock_unlock(&ztest_name_lock);
5850 }
5851 
5852 static int
user_release_one(const char * snapname,const char * holdname)5853 user_release_one(const char *snapname, const char *holdname)
5854 {
5855 	nvlist_t *snaps, *holds;
5856 	int error;
5857 
5858 	snaps = fnvlist_alloc();
5859 	holds = fnvlist_alloc();
5860 	fnvlist_add_boolean(holds, holdname);
5861 	fnvlist_add_nvlist(snaps, snapname, holds);
5862 	fnvlist_free(holds);
5863 	error = dsl_dataset_user_release(snaps, NULL);
5864 	fnvlist_free(snaps);
5865 	return (error);
5866 }
5867 
5868 /*
5869  * Test snapshot hold/release and deferred destroy.
5870  */
5871 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)5872 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5873 {
5874 	int error;
5875 	objset_t *os = zd->zd_os;
5876 	objset_t *origin;
5877 	char snapname[100];
5878 	char fullname[100];
5879 	char clonename[100];
5880 	char tag[100];
5881 	char osname[ZFS_MAX_DATASET_NAME_LEN];
5882 	nvlist_t *holds;
5883 
5884 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5885 
5886 	dmu_objset_name(os, osname);
5887 
5888 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
5889 	    (u_longlong_t)id);
5890 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5891 	(void) snprintf(clonename, sizeof (clonename),
5892 	    "%s/ch1_%llu", osname, (u_longlong_t)id);
5893 	(void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
5894 
5895 	/*
5896 	 * Clean up from any previous run.
5897 	 */
5898 	error = dsl_destroy_head(clonename);
5899 	if (error != ENOENT)
5900 		ASSERT0(error);
5901 	error = user_release_one(fullname, tag);
5902 	if (error != ESRCH && error != ENOENT)
5903 		ASSERT0(error);
5904 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5905 	if (error != ENOENT)
5906 		ASSERT0(error);
5907 
5908 	/*
5909 	 * Create snapshot, clone it, mark snap for deferred destroy,
5910 	 * destroy clone, verify snap was also destroyed.
5911 	 */
5912 	error = dmu_objset_snapshot_one(osname, snapname);
5913 	if (error) {
5914 		if (error == ENOSPC) {
5915 			ztest_record_enospc("dmu_objset_snapshot");
5916 			goto out;
5917 		}
5918 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5919 	}
5920 
5921 	error = dmu_objset_clone(clonename, fullname);
5922 	if (error) {
5923 		if (error == ENOSPC) {
5924 			ztest_record_enospc("dmu_objset_clone");
5925 			goto out;
5926 		}
5927 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5928 	}
5929 
5930 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5931 	if (error) {
5932 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5933 		    fullname, error);
5934 	}
5935 
5936 	error = dsl_destroy_head(clonename);
5937 	if (error)
5938 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5939 
5940 	error = dmu_objset_hold(fullname, FTAG, &origin);
5941 	if (error != ENOENT)
5942 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5943 
5944 	/*
5945 	 * Create snapshot, add temporary hold, verify that we can't
5946 	 * destroy a held snapshot, mark for deferred destroy,
5947 	 * release hold, verify snapshot was destroyed.
5948 	 */
5949 	error = dmu_objset_snapshot_one(osname, snapname);
5950 	if (error) {
5951 		if (error == ENOSPC) {
5952 			ztest_record_enospc("dmu_objset_snapshot");
5953 			goto out;
5954 		}
5955 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5956 	}
5957 
5958 	holds = fnvlist_alloc();
5959 	fnvlist_add_string(holds, fullname, tag);
5960 	error = dsl_dataset_user_hold(holds, 0, NULL);
5961 	fnvlist_free(holds);
5962 
5963 	if (error == ENOSPC) {
5964 		ztest_record_enospc("dsl_dataset_user_hold");
5965 		goto out;
5966 	} else if (error) {
5967 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5968 		    fullname, tag, error);
5969 	}
5970 
5971 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5972 	if (error != EBUSY) {
5973 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5974 		    fullname, error);
5975 	}
5976 
5977 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5978 	if (error) {
5979 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5980 		    fullname, error);
5981 	}
5982 
5983 	error = user_release_one(fullname, tag);
5984 	if (error)
5985 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5986 
5987 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5988 
5989 out:
5990 	(void) pthread_rwlock_unlock(&ztest_name_lock);
5991 }
5992 
5993 /*
5994  * Inject random faults into the on-disk data.
5995  */
5996 /* ARGSUSED */
5997 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)5998 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5999 {
6000 	ztest_shared_t *zs = ztest_shared;
6001 	spa_t *spa = ztest_spa;
6002 	int fd;
6003 	uint64_t offset;
6004 	uint64_t leaves;
6005 	uint64_t bad = 0x1990c0ffeedecadeull;
6006 	uint64_t top, leaf;
6007 	char *path0;
6008 	char *pathrand;
6009 	size_t fsize;
6010 	int bshift = SPA_MAXBLOCKSHIFT + 2;
6011 	int iters = 1000;
6012 	int maxfaults;
6013 	int mirror_save;
6014 	vdev_t *vd0 = NULL;
6015 	uint64_t guid0 = 0;
6016 	boolean_t islog = B_FALSE;
6017 
6018 	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6019 	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6020 
6021 	mutex_enter(&ztest_vdev_lock);
6022 
6023 	/*
6024 	 * Device removal is in progress, fault injection must be disabled
6025 	 * until it completes and the pool is scrubbed.  The fault injection
6026 	 * strategy for damaging blocks does not take in to account evacuated
6027 	 * blocks which may have already been damaged.
6028 	 */
6029 	if (ztest_device_removal_active) {
6030 		mutex_exit(&ztest_vdev_lock);
6031 		goto out;
6032 	}
6033 
6034 	maxfaults = MAXFAULTS(zs);
6035 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
6036 	mirror_save = zs->zs_mirrors;
6037 	mutex_exit(&ztest_vdev_lock);
6038 
6039 	ASSERT3U(leaves, >=, 1);
6040 
6041 	/*
6042 	 * While ztest is running the number of leaves will not change.  This
6043 	 * is critical for the fault injection logic as it determines where
6044 	 * errors can be safely injected such that they are always repairable.
6045 	 *
6046 	 * When restarting ztest a different number of leaves may be requested
6047 	 * which will shift the regions to be damaged.  This is fine as long
6048 	 * as the pool has been scrubbed prior to using the new mapping.
6049 	 * Failure to do can result in non-repairable damage being injected.
6050 	 */
6051 	if (ztest_pool_scrubbed == B_FALSE)
6052 		goto out;
6053 
6054 	/*
6055 	 * Grab the name lock as reader. There are some operations
6056 	 * which don't like to have their vdevs changed while
6057 	 * they are in progress (i.e. spa_change_guid). Those
6058 	 * operations will have grabbed the name lock as writer.
6059 	 */
6060 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6061 
6062 	/*
6063 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6064 	 */
6065 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6066 
6067 	if (ztest_random(2) == 0) {
6068 		/*
6069 		 * Inject errors on a normal data device or slog device.
6070 		 */
6071 		top = ztest_random_vdev_top(spa, B_TRUE);
6072 		leaf = ztest_random(leaves) + zs->zs_splits;
6073 
6074 		/*
6075 		 * Generate paths to the first leaf in this top-level vdev,
6076 		 * and to the random leaf we selected.  We'll induce transient
6077 		 * write failures and random online/offline activity on leaf 0,
6078 		 * and we'll write random garbage to the randomly chosen leaf.
6079 		 */
6080 		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6081 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6082 		    top * leaves + zs->zs_splits);
6083 		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6084 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6085 		    top * leaves + leaf);
6086 
6087 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6088 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6089 			islog = B_TRUE;
6090 
6091 		/*
6092 		 * If the top-level vdev needs to be resilvered
6093 		 * then we only allow faults on the device that is
6094 		 * resilvering.
6095 		 */
6096 		if (vd0 != NULL && maxfaults != 1 &&
6097 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6098 		    vd0->vdev_resilver_txg != 0)) {
6099 			/*
6100 			 * Make vd0 explicitly claim to be unreadable,
6101 			 * or unwritable, or reach behind its back
6102 			 * and close the underlying fd.  We can do this if
6103 			 * maxfaults == 0 because we'll fail and reexecute,
6104 			 * and we can do it if maxfaults >= 2 because we'll
6105 			 * have enough redundancy.  If maxfaults == 1, the
6106 			 * combination of this with injection of random data
6107 			 * corruption below exceeds the pool's fault tolerance.
6108 			 */
6109 			vdev_file_t *vf = vd0->vdev_tsd;
6110 
6111 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6112 			    (long long)vd0->vdev_id, (int)maxfaults);
6113 
6114 			if (vf != NULL && ztest_random(3) == 0) {
6115 				(void) close(vf->vf_file->f_fd);
6116 				vf->vf_file->f_fd = -1;
6117 			} else if (ztest_random(2) == 0) {
6118 				vd0->vdev_cant_read = B_TRUE;
6119 			} else {
6120 				vd0->vdev_cant_write = B_TRUE;
6121 			}
6122 			guid0 = vd0->vdev_guid;
6123 		}
6124 	} else {
6125 		/*
6126 		 * Inject errors on an l2cache device.
6127 		 */
6128 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
6129 
6130 		if (sav->sav_count == 0) {
6131 			spa_config_exit(spa, SCL_STATE, FTAG);
6132 			(void) pthread_rwlock_unlock(&ztest_name_lock);
6133 			goto out;
6134 		}
6135 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6136 		guid0 = vd0->vdev_guid;
6137 		(void) strcpy(path0, vd0->vdev_path);
6138 		(void) strcpy(pathrand, vd0->vdev_path);
6139 
6140 		leaf = 0;
6141 		leaves = 1;
6142 		maxfaults = INT_MAX;	/* no limit on cache devices */
6143 	}
6144 
6145 	spa_config_exit(spa, SCL_STATE, FTAG);
6146 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6147 
6148 	/*
6149 	 * If we can tolerate two or more faults, or we're dealing
6150 	 * with a slog, randomly online/offline vd0.
6151 	 */
6152 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
6153 		if (ztest_random(10) < 6) {
6154 			int flags = (ztest_random(2) == 0 ?
6155 			    ZFS_OFFLINE_TEMPORARY : 0);
6156 
6157 			/*
6158 			 * We have to grab the zs_name_lock as writer to
6159 			 * prevent a race between offlining a slog and
6160 			 * destroying a dataset. Offlining the slog will
6161 			 * grab a reference on the dataset which may cause
6162 			 * dsl_destroy_head() to fail with EBUSY thus
6163 			 * leaving the dataset in an inconsistent state.
6164 			 */
6165 			if (islog)
6166 				(void) pthread_rwlock_wrlock(&ztest_name_lock);
6167 
6168 			VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6169 
6170 			if (islog)
6171 				(void) pthread_rwlock_unlock(&ztest_name_lock);
6172 		} else {
6173 			/*
6174 			 * Ideally we would like to be able to randomly
6175 			 * call vdev_[on|off]line without holding locks
6176 			 * to force unpredictable failures but the side
6177 			 * effects of vdev_[on|off]line prevent us from
6178 			 * doing so. We grab the ztest_vdev_lock here to
6179 			 * prevent a race between injection testing and
6180 			 * aux_vdev removal.
6181 			 */
6182 			mutex_enter(&ztest_vdev_lock);
6183 			(void) vdev_online(spa, guid0, 0, NULL);
6184 			mutex_exit(&ztest_vdev_lock);
6185 		}
6186 	}
6187 
6188 	if (maxfaults == 0)
6189 		goto out;
6190 
6191 	/*
6192 	 * We have at least single-fault tolerance, so inject data corruption.
6193 	 */
6194 	fd = open(pathrand, O_RDWR);
6195 
6196 	if (fd == -1) /* we hit a gap in the device namespace */
6197 		goto out;
6198 
6199 	fsize = lseek(fd, 0, SEEK_END);
6200 
6201 	while (--iters != 0) {
6202 		/*
6203 		 * The offset must be chosen carefully to ensure that
6204 		 * we do not inject a given logical block with errors
6205 		 * on two different leaf devices, because ZFS can not
6206 		 * tolerate that (if maxfaults==1).
6207 		 *
6208 		 * To achieve this we divide each leaf device into
6209 		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6210 		 * Each chunk is further divided into error-injection
6211 		 * ranges (can accept errors) and clear ranges (we do
6212 		 * not inject errors in those). Each error-injection
6213 		 * range can accept errors only for a single leaf vdev.
6214 		 * Error-injection ranges are separated by clear ranges.
6215 		 *
6216 		 * For example, with 3 leaves, each chunk looks like:
6217 		 *    0 to  32M: injection range for leaf 0
6218 		 *  32M to  64M: clear range - no injection allowed
6219 		 *  64M to  96M: injection range for leaf 1
6220 		 *  96M to 128M: clear range - no injection allowed
6221 		 * 128M to 160M: injection range for leaf 2
6222 		 * 160M to 192M: clear range - no injection allowed
6223 		 *
6224 		 * Each clear range must be large enough such that a
6225 		 * single block cannot straddle it. This way a block
6226 		 * can't be a target in two different injection ranges
6227 		 * (on different leaf vdevs).
6228 		 */
6229 		offset = ztest_random(fsize / (leaves << bshift)) *
6230 		    (leaves << bshift) + (leaf << bshift) +
6231 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6232 
6233 		/*
6234 		 * Only allow damage to the labels at one end of the vdev.
6235 		 *
6236 		 * If all labels are damaged, the device will be totally
6237 		 * inaccessible, which will result in loss of data,
6238 		 * because we also damage (parts of) the other side of
6239 		 * the mirror/raidz.
6240 		 *
6241 		 * Additionally, we will always have both an even and an
6242 		 * odd label, so that we can handle crashes in the
6243 		 * middle of vdev_config_sync().
6244 		 */
6245 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6246 			continue;
6247 
6248 		/*
6249 		 * The two end labels are stored at the "end" of the disk, but
6250 		 * the end of the disk (vdev_psize) is aligned to
6251 		 * sizeof (vdev_label_t).
6252 		 */
6253 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6254 		if ((leaf & 1) == 1 &&
6255 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6256 			continue;
6257 
6258 		mutex_enter(&ztest_vdev_lock);
6259 		if (mirror_save != zs->zs_mirrors) {
6260 			mutex_exit(&ztest_vdev_lock);
6261 			(void) close(fd);
6262 			goto out;
6263 		}
6264 
6265 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6266 			fatal(1, "can't inject bad word at 0x%llx in %s",
6267 			    offset, pathrand);
6268 
6269 		mutex_exit(&ztest_vdev_lock);
6270 
6271 		if (ztest_opts.zo_verbose >= 7)
6272 			(void) printf("injected bad word into %s,"
6273 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
6274 	}
6275 
6276 	(void) close(fd);
6277 out:
6278 	umem_free(path0, MAXPATHLEN);
6279 	umem_free(pathrand, MAXPATHLEN);
6280 }
6281 
6282 /*
6283  * By design ztest will never inject uncorrectable damage in to the pool.
6284  * Issue a scrub, wait for it to complete, and verify there is never any
6285  * persistent damage.
6286  *
6287  * Only after a full scrub has been completed is it safe to start injecting
6288  * data corruption.  See the comment in zfs_fault_inject().
6289  */
6290 static int
ztest_scrub_impl(spa_t * spa)6291 ztest_scrub_impl(spa_t *spa)
6292 {
6293 	int error = spa_scan(spa, POOL_SCAN_SCRUB);
6294 	if (error)
6295 		return (error);
6296 
6297 	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6298 		txg_wait_synced(spa_get_dsl(spa), 0);
6299 
6300 	if (spa_get_errlog_size(spa) > 0)
6301 		return (ECKSUM);
6302 
6303 	ztest_pool_scrubbed = B_TRUE;
6304 
6305 	return (0);
6306 }
6307 
6308 /*
6309  * Scrub the pool.
6310  */
6311 /* ARGSUSED */
6312 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)6313 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6314 {
6315 	spa_t *spa = ztest_spa;
6316 	int error;
6317 
6318 	/*
6319 	 * Scrub in progress by device removal.
6320 	 */
6321 	if (ztest_device_removal_active)
6322 		return;
6323 
6324 	/*
6325 	 * Start a scrub, wait a moment, then force a restart.
6326 	 */
6327 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
6328 	(void) poll(NULL, 0, 100);
6329 
6330 	error = ztest_scrub_impl(spa);
6331 	if (error == EBUSY)
6332 		error = 0;
6333 	ASSERT0(error);
6334 }
6335 
6336 /*
6337  * Change the guid for the pool.
6338  */
6339 /* ARGSUSED */
6340 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)6341 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6342 {
6343 	spa_t *spa = ztest_spa;
6344 	uint64_t orig, load;
6345 	int error;
6346 
6347 	if (ztest_opts.zo_mmp_test)
6348 		return;
6349 
6350 	orig = spa_guid(spa);
6351 	load = spa_load_guid(spa);
6352 
6353 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
6354 	error = spa_change_guid(spa);
6355 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6356 
6357 	if (error != 0)
6358 		return;
6359 
6360 	if (ztest_opts.zo_verbose >= 4) {
6361 		(void) printf("Changed guid old %llu -> %llu\n",
6362 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
6363 	}
6364 
6365 	VERIFY3U(orig, !=, spa_guid(spa));
6366 	VERIFY3U(load, ==, spa_load_guid(spa));
6367 }
6368 
6369 void
ztest_fletcher(ztest_ds_t * zd,uint64_t id)6370 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6371 {
6372 	hrtime_t end = gethrtime() + NANOSEC;
6373 
6374 	while (gethrtime() <= end) {
6375 		int run_count = 100;
6376 		void *buf;
6377 		struct abd *abd_data, *abd_meta;
6378 		uint32_t size;
6379 		int *ptr;
6380 		int i;
6381 		zio_cksum_t zc_ref;
6382 		zio_cksum_t zc_ref_byteswap;
6383 
6384 		size = ztest_random_blocksize();
6385 
6386 		buf = umem_alloc(size, UMEM_NOFAIL);
6387 		abd_data = abd_alloc(size, B_FALSE);
6388 		abd_meta = abd_alloc(size, B_TRUE);
6389 
6390 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6391 			*ptr = ztest_random(UINT_MAX);
6392 
6393 		abd_copy_from_buf_off(abd_data, buf, 0, size);
6394 		abd_copy_from_buf_off(abd_meta, buf, 0, size);
6395 
6396 		VERIFY0(fletcher_4_impl_set("scalar"));
6397 		fletcher_4_native(buf, size, NULL, &zc_ref);
6398 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6399 
6400 		VERIFY0(fletcher_4_impl_set("cycle"));
6401 		while (run_count-- > 0) {
6402 			zio_cksum_t zc;
6403 			zio_cksum_t zc_byteswap;
6404 
6405 			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6406 			fletcher_4_native(buf, size, NULL, &zc);
6407 
6408 			VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6409 			VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6410 			    sizeof (zc_byteswap)));
6411 
6412 			/* Test ABD - data */
6413 			abd_fletcher_4_byteswap(abd_data, size, NULL,
6414 			    &zc_byteswap);
6415 			abd_fletcher_4_native(abd_data, size, NULL, &zc);
6416 
6417 			VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6418 			VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6419 			    sizeof (zc_byteswap)));
6420 
6421 			/* Test ABD - metadata */
6422 			abd_fletcher_4_byteswap(abd_meta, size, NULL,
6423 			    &zc_byteswap);
6424 			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6425 
6426 			VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6427 			VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6428 			    sizeof (zc_byteswap)));
6429 
6430 		}
6431 
6432 		umem_free(buf, size);
6433 		abd_free(abd_data);
6434 		abd_free(abd_meta);
6435 	}
6436 }
6437 
6438 void
ztest_fletcher_incr(ztest_ds_t * zd,uint64_t id)6439 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6440 {
6441 	void *buf;
6442 	size_t size;
6443 	int *ptr;
6444 	int i;
6445 	zio_cksum_t zc_ref;
6446 	zio_cksum_t zc_ref_bswap;
6447 
6448 	hrtime_t end = gethrtime() + NANOSEC;
6449 
6450 	while (gethrtime() <= end) {
6451 		int run_count = 100;
6452 
6453 		size = ztest_random_blocksize();
6454 		buf = umem_alloc(size, UMEM_NOFAIL);
6455 
6456 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6457 			*ptr = ztest_random(UINT_MAX);
6458 
6459 		VERIFY0(fletcher_4_impl_set("scalar"));
6460 		fletcher_4_native(buf, size, NULL, &zc_ref);
6461 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6462 
6463 		VERIFY0(fletcher_4_impl_set("cycle"));
6464 
6465 		while (run_count-- > 0) {
6466 			zio_cksum_t zc;
6467 			zio_cksum_t zc_bswap;
6468 			size_t pos = 0;
6469 
6470 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6471 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6472 
6473 			while (pos < size) {
6474 				size_t inc = 64 * ztest_random(size / 67);
6475 				/* sometimes add few bytes to test non-simd */
6476 				if (ztest_random(100) < 10)
6477 					inc += P2ALIGN(ztest_random(64),
6478 					    sizeof (uint32_t));
6479 
6480 				if (inc > (size - pos))
6481 					inc = size - pos;
6482 
6483 				fletcher_4_incremental_native(buf + pos, inc,
6484 				    &zc);
6485 				fletcher_4_incremental_byteswap(buf + pos, inc,
6486 				    &zc_bswap);
6487 
6488 				pos += inc;
6489 			}
6490 
6491 			VERIFY3U(pos, ==, size);
6492 
6493 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6494 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6495 
6496 			/*
6497 			 * verify if incremental on the whole buffer is
6498 			 * equivalent to non-incremental version
6499 			 */
6500 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6501 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6502 
6503 			fletcher_4_incremental_native(buf, size, &zc);
6504 			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6505 
6506 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6507 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6508 		}
6509 
6510 		umem_free(buf, size);
6511 	}
6512 }
6513 
6514 static int
ztest_set_global_vars(void)6515 ztest_set_global_vars(void)
6516 {
6517 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6518 		char *kv = ztest_opts.zo_gvars[i];
6519 		VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
6520 		VERIFY3U(strlen(kv), >, 0);
6521 		int err = set_global_var(kv);
6522 		if (ztest_opts.zo_verbose > 0) {
6523 			(void) printf("setting global var %s ... %s\n", kv,
6524 			    err ? "failed" : "ok");
6525 		}
6526 		if (err != 0) {
6527 			(void) fprintf(stderr,
6528 			    "failed to set global var '%s'\n", kv);
6529 			return (err);
6530 		}
6531 	}
6532 	return (0);
6533 }
6534 
6535 static char **
ztest_global_vars_to_zdb_args(void)6536 ztest_global_vars_to_zdb_args(void)
6537 {
6538 	char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
6539 	char **cur = args;
6540 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6541 		char *kv = ztest_opts.zo_gvars[i];
6542 		*cur = "-o";
6543 		cur++;
6544 		*cur = strdup(kv);
6545 		cur++;
6546 	}
6547 	ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
6548 	*cur = NULL;
6549 	return (args);
6550 }
6551 
6552 /* The end of strings is indicated by a NULL element */
6553 static char *
join_strings(char ** strings,const char * sep)6554 join_strings(char **strings, const char *sep)
6555 {
6556 	size_t totallen = 0;
6557 	for (char **sp = strings; *sp != NULL; sp++) {
6558 		totallen += strlen(*sp);
6559 		totallen += strlen(sep);
6560 	}
6561 	if (totallen > 0) {
6562 		ASSERT(totallen >= strlen(sep));
6563 		totallen -= strlen(sep);
6564 	}
6565 
6566 	size_t buflen = totallen + 1;
6567 	char *o = malloc(buflen); /* trailing 0 byte */
6568 	o[0] = '\0';
6569 	for (char **sp = strings; *sp != NULL; sp++) {
6570 		size_t would;
6571 		would = strlcat(o, *sp, buflen);
6572 		VERIFY3U(would, <, buflen);
6573 		if (*(sp+1) == NULL) {
6574 			break;
6575 		}
6576 		would = strlcat(o, sep, buflen);
6577 		VERIFY3U(would, <, buflen);
6578 	}
6579 	ASSERT3S(strlen(o), ==, totallen);
6580 	return (o);
6581 }
6582 
6583 static int
ztest_check_path(char * path)6584 ztest_check_path(char *path)
6585 {
6586 	struct stat s;
6587 	/* return true on success */
6588 	return (!stat(path, &s));
6589 }
6590 
6591 static void
ztest_get_zdb_bin(char * bin,int len)6592 ztest_get_zdb_bin(char *bin, int len)
6593 {
6594 	char *zdb_path;
6595 	/*
6596 	 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
6597 	 * let popen to search through PATH.
6598 	 */
6599 	if ((zdb_path = getenv("ZDB_PATH"))) {
6600 		strlcpy(bin, zdb_path, len); /* In env */
6601 		if (!ztest_check_path(bin)) {
6602 			ztest_dump_core = 0;
6603 			fatal(1, "invalid ZDB_PATH '%s'", bin);
6604 		}
6605 		return;
6606 	}
6607 
6608 	VERIFY3P(realpath(getexecname(), bin), !=, NULL);
6609 	if (strstr(bin, "/ztest/")) {
6610 		strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
6611 		strcat(bin, "/zdb/zdb");
6612 		if (ztest_check_path(bin))
6613 			return;
6614 	}
6615 	strcpy(bin, "zdb");
6616 }
6617 
6618 static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t * vd)6619 ztest_random_concrete_vdev_leaf(vdev_t *vd)
6620 {
6621 	if (vd == NULL)
6622 		return (NULL);
6623 
6624 	if (vd->vdev_children == 0)
6625 		return (vd);
6626 
6627 	vdev_t *eligible[vd->vdev_children];
6628 	int eligible_idx = 0, i;
6629 	for (i = 0; i < vd->vdev_children; i++) {
6630 		vdev_t *cvd = vd->vdev_child[i];
6631 		if (cvd->vdev_top->vdev_removing)
6632 			continue;
6633 		if (cvd->vdev_children > 0 ||
6634 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6635 			eligible[eligible_idx++] = cvd;
6636 		}
6637 	}
6638 	VERIFY3S(eligible_idx, >, 0);
6639 
6640 	uint64_t child_no = ztest_random(eligible_idx);
6641 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6642 }
6643 
6644 /* ARGSUSED */
6645 void
ztest_initialize(ztest_ds_t * zd,uint64_t id)6646 ztest_initialize(ztest_ds_t *zd, uint64_t id)
6647 {
6648 	spa_t *spa = ztest_spa;
6649 	int error = 0;
6650 
6651 	mutex_enter(&ztest_vdev_lock);
6652 
6653 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6654 
6655 	/* Random leaf vdev */
6656 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6657 	if (rand_vd == NULL) {
6658 		spa_config_exit(spa, SCL_VDEV, FTAG);
6659 		mutex_exit(&ztest_vdev_lock);
6660 		return;
6661 	}
6662 
6663 	/*
6664 	 * The random vdev we've selected may change as soon as we
6665 	 * drop the spa_config_lock. We create local copies of things
6666 	 * we're interested in.
6667 	 */
6668 	uint64_t guid = rand_vd->vdev_guid;
6669 	char *path = strdup(rand_vd->vdev_path);
6670 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6671 
6672 	zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
6673 	spa_config_exit(spa, SCL_VDEV, FTAG);
6674 
6675 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6676 
6677 	nvlist_t *vdev_guids = fnvlist_alloc();
6678 	nvlist_t *vdev_errlist = fnvlist_alloc();
6679 	fnvlist_add_uint64(vdev_guids, path, guid);
6680 	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6681 	fnvlist_free(vdev_guids);
6682 	fnvlist_free(vdev_errlist);
6683 
6684 	switch (cmd) {
6685 	case POOL_INITIALIZE_CANCEL:
6686 		if (ztest_opts.zo_verbose >= 4) {
6687 			(void) printf("Cancel initialize %s", path);
6688 			if (!active)
6689 				(void) printf(" failed (no initialize active)");
6690 			(void) printf("\n");
6691 		}
6692 		break;
6693 	case POOL_INITIALIZE_START:
6694 		if (ztest_opts.zo_verbose >= 4) {
6695 			(void) printf("Start initialize %s", path);
6696 			if (active && error == 0)
6697 				(void) printf(" failed (already active)");
6698 			else if (error != 0)
6699 				(void) printf(" failed (error %d)", error);
6700 			(void) printf("\n");
6701 		}
6702 		break;
6703 	case POOL_INITIALIZE_SUSPEND:
6704 		if (ztest_opts.zo_verbose >= 4) {
6705 			(void) printf("Suspend initialize %s", path);
6706 			if (!active)
6707 				(void) printf(" failed (no initialize active)");
6708 			(void) printf("\n");
6709 		}
6710 		break;
6711 	}
6712 	free(path);
6713 	mutex_exit(&ztest_vdev_lock);
6714 }
6715 
6716 /* ARGSUSED */
6717 void
ztest_trim(ztest_ds_t * zd,uint64_t id)6718 ztest_trim(ztest_ds_t *zd, uint64_t id)
6719 {
6720 	spa_t *spa = ztest_spa;
6721 	int error = 0;
6722 
6723 	mutex_enter(&ztest_vdev_lock);
6724 
6725 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6726 
6727 	/* Random leaf vdev */
6728 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6729 	if (rand_vd == NULL) {
6730 		spa_config_exit(spa, SCL_VDEV, FTAG);
6731 		mutex_exit(&ztest_vdev_lock);
6732 		return;
6733 	}
6734 
6735 	/*
6736 	 * The random vdev we've selected may change as soon as we
6737 	 * drop the spa_config_lock. We create local copies of things
6738 	 * we're interested in.
6739 	 */
6740 	uint64_t guid = rand_vd->vdev_guid;
6741 	char *path = strdup(rand_vd->vdev_path);
6742 	boolean_t active = rand_vd->vdev_trim_thread != NULL;
6743 
6744 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
6745 	spa_config_exit(spa, SCL_VDEV, FTAG);
6746 
6747 	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6748 	uint64_t rate = 1 << ztest_random(30);
6749 	boolean_t partial = (ztest_random(5) > 0);
6750 	boolean_t secure = (ztest_random(5) > 0);
6751 
6752 	nvlist_t *vdev_guids = fnvlist_alloc();
6753 	nvlist_t *vdev_errlist = fnvlist_alloc();
6754 	fnvlist_add_uint64(vdev_guids, path, guid);
6755 	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6756 	    secure, vdev_errlist);
6757 	fnvlist_free(vdev_guids);
6758 	fnvlist_free(vdev_errlist);
6759 
6760 	switch (cmd) {
6761 	case POOL_TRIM_CANCEL:
6762 		if (ztest_opts.zo_verbose >= 4) {
6763 			(void) printf("Cancel TRIM %s", path);
6764 			if (!active)
6765 				(void) printf(" failed (no TRIM active)");
6766 			(void) printf("\n");
6767 		}
6768 		break;
6769 	case POOL_TRIM_START:
6770 		if (ztest_opts.zo_verbose >= 4) {
6771 			(void) printf("Start TRIM %s", path);
6772 			if (active && error == 0)
6773 				(void) printf(" failed (already active)");
6774 			else if (error != 0)
6775 				(void) printf(" failed (error %d)", error);
6776 			(void) printf("\n");
6777 		}
6778 		break;
6779 	case POOL_TRIM_SUSPEND:
6780 		if (ztest_opts.zo_verbose >= 4) {
6781 			(void) printf("Suspend TRIM %s", path);
6782 			if (!active)
6783 				(void) printf(" failed (no TRIM active)");
6784 			(void) printf("\n");
6785 		}
6786 		break;
6787 	}
6788 	free(path);
6789 	mutex_exit(&ztest_vdev_lock);
6790 }
6791 
6792 /*
6793  * Verify pool integrity by running zdb.
6794  */
6795 static void
ztest_run_zdb(char * pool)6796 ztest_run_zdb(char *pool)
6797 {
6798 	int status;
6799 	char *bin;
6800 	char *zdb;
6801 	char *zbuf;
6802 	const int len = MAXPATHLEN + MAXNAMELEN + 20;
6803 	FILE *fp;
6804 
6805 	bin = umem_alloc(len, UMEM_NOFAIL);
6806 	zdb = umem_alloc(len, UMEM_NOFAIL);
6807 	zbuf = umem_alloc(1024, UMEM_NOFAIL);
6808 
6809 	ztest_get_zdb_bin(bin, len);
6810 
6811 	char **set_gvars_args = ztest_global_vars_to_zdb_args();
6812 	char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
6813 	free(set_gvars_args);
6814 
6815 	size_t would = snprintf(zdb, len,
6816 	    "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
6817 	    bin,
6818 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
6819 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
6820 	    set_gvars_args_joined,
6821 	    ztest_opts.zo_dir,
6822 	    pool);
6823 	ASSERT3U(would, <, len);
6824 
6825 	free(set_gvars_args_joined);
6826 
6827 	if (ztest_opts.zo_verbose >= 5)
6828 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
6829 
6830 	fp = popen(zdb, "r");
6831 
6832 	while (fgets(zbuf, 1024, fp) != NULL)
6833 		if (ztest_opts.zo_verbose >= 3)
6834 			(void) printf("%s", zbuf);
6835 
6836 	status = pclose(fp);
6837 
6838 	if (status == 0)
6839 		goto out;
6840 
6841 	ztest_dump_core = 0;
6842 	if (WIFEXITED(status))
6843 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6844 	else
6845 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
6846 out:
6847 	umem_free(bin, len);
6848 	umem_free(zdb, len);
6849 	umem_free(zbuf, 1024);
6850 }
6851 
6852 static void
ztest_walk_pool_directory(char * header)6853 ztest_walk_pool_directory(char *header)
6854 {
6855 	spa_t *spa = NULL;
6856 
6857 	if (ztest_opts.zo_verbose >= 6)
6858 		(void) printf("%s\n", header);
6859 
6860 	mutex_enter(&spa_namespace_lock);
6861 	while ((spa = spa_next(spa)) != NULL)
6862 		if (ztest_opts.zo_verbose >= 6)
6863 			(void) printf("\t%s\n", spa_name(spa));
6864 	mutex_exit(&spa_namespace_lock);
6865 }
6866 
6867 static void
ztest_spa_import_export(char * oldname,char * newname)6868 ztest_spa_import_export(char *oldname, char *newname)
6869 {
6870 	nvlist_t *config, *newconfig;
6871 	uint64_t pool_guid;
6872 	spa_t *spa;
6873 	int error;
6874 
6875 	if (ztest_opts.zo_verbose >= 4) {
6876 		(void) printf("import/export: old = %s, new = %s\n",
6877 		    oldname, newname);
6878 	}
6879 
6880 	/*
6881 	 * Clean up from previous runs.
6882 	 */
6883 	(void) spa_destroy(newname);
6884 
6885 	/*
6886 	 * Get the pool's configuration and guid.
6887 	 */
6888 	VERIFY0(spa_open(oldname, &spa, FTAG));
6889 
6890 	/*
6891 	 * Kick off a scrub to tickle scrub/export races.
6892 	 */
6893 	if (ztest_random(2) == 0)
6894 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
6895 
6896 	pool_guid = spa_guid(spa);
6897 	spa_close(spa, FTAG);
6898 
6899 	ztest_walk_pool_directory("pools before export");
6900 
6901 	/*
6902 	 * Export it.
6903 	 */
6904 	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
6905 
6906 	ztest_walk_pool_directory("pools after export");
6907 
6908 	/*
6909 	 * Try to import it.
6910 	 */
6911 	newconfig = spa_tryimport(config);
6912 	ASSERT3P(newconfig, !=, NULL);
6913 	fnvlist_free(newconfig);
6914 
6915 	/*
6916 	 * Import it under the new name.
6917 	 */
6918 	error = spa_import(newname, config, NULL, 0);
6919 	if (error != 0) {
6920 		dump_nvlist(config, 0);
6921 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6922 		    oldname, newname, error);
6923 	}
6924 
6925 	ztest_walk_pool_directory("pools after import");
6926 
6927 	/*
6928 	 * Try to import it again -- should fail with EEXIST.
6929 	 */
6930 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6931 
6932 	/*
6933 	 * Try to import it under a different name -- should fail with EEXIST.
6934 	 */
6935 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6936 
6937 	/*
6938 	 * Verify that the pool is no longer visible under the old name.
6939 	 */
6940 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6941 
6942 	/*
6943 	 * Verify that we can open and close the pool using the new name.
6944 	 */
6945 	VERIFY0(spa_open(newname, &spa, FTAG));
6946 	ASSERT3U(pool_guid, ==, spa_guid(spa));
6947 	spa_close(spa, FTAG);
6948 
6949 	fnvlist_free(config);
6950 }
6951 
6952 static void
ztest_resume(spa_t * spa)6953 ztest_resume(spa_t *spa)
6954 {
6955 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6956 		(void) printf("resuming from suspended state\n");
6957 	spa_vdev_state_enter(spa, SCL_NONE);
6958 	vdev_clear(spa, NULL);
6959 	(void) spa_vdev_state_exit(spa, NULL, 0);
6960 	(void) zio_resume(spa);
6961 }
6962 
6963 static void
ztest_resume_thread(void * arg)6964 ztest_resume_thread(void *arg)
6965 {
6966 	spa_t *spa = arg;
6967 
6968 	while (!ztest_exiting) {
6969 		if (spa_suspended(spa))
6970 			ztest_resume(spa);
6971 		(void) poll(NULL, 0, 100);
6972 
6973 		/*
6974 		 * Periodically change the zfs_compressed_arc_enabled setting.
6975 		 */
6976 		if (ztest_random(10) == 0)
6977 			zfs_compressed_arc_enabled = ztest_random(2);
6978 
6979 		/*
6980 		 * Periodically change the zfs_abd_scatter_enabled setting.
6981 		 */
6982 		if (ztest_random(10) == 0)
6983 			zfs_abd_scatter_enabled = ztest_random(2);
6984 	}
6985 
6986 	thread_exit();
6987 }
6988 
6989 static void
ztest_deadman_thread(void * arg)6990 ztest_deadman_thread(void *arg)
6991 {
6992 	ztest_shared_t *zs = arg;
6993 	spa_t *spa = ztest_spa;
6994 	hrtime_t delay, overdue, last_run = gethrtime();
6995 
6996 	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
6997 	    MSEC2NSEC(zfs_deadman_synctime_ms);
6998 
6999 	while (!ztest_exiting) {
7000 		/*
7001 		 * Wait for the delay timer while checking occasionally
7002 		 * if we should stop.
7003 		 */
7004 		if (gethrtime() < last_run + delay) {
7005 			(void) poll(NULL, 0, 1000);
7006 			continue;
7007 		}
7008 
7009 		/*
7010 		 * If the pool is suspended then fail immediately. Otherwise,
7011 		 * check to see if the pool is making any progress. If
7012 		 * vdev_deadman() discovers that there hasn't been any recent
7013 		 * I/Os then it will end up aborting the tests.
7014 		 */
7015 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7016 			fatal(0, "aborting test after %llu seconds because "
7017 			    "pool has transitioned to a suspended state.",
7018 			    zfs_deadman_synctime_ms / 1000);
7019 		}
7020 		vdev_deadman(spa->spa_root_vdev, FTAG);
7021 
7022 		/*
7023 		 * If the process doesn't complete within a grace period of
7024 		 * zfs_deadman_synctime_ms over the expected finish time,
7025 		 * then it may be hung and is terminated.
7026 		 */
7027 		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7028 		if (gethrtime() > overdue) {
7029 			fatal(0, "aborting test after %llu seconds because "
7030 			    "the process is overdue for termination.",
7031 			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7032 		}
7033 
7034 		(void) printf("ztest has been running for %lld seconds\n",
7035 		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7036 
7037 		last_run = gethrtime();
7038 		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7039 	}
7040 
7041 	thread_exit();
7042 }
7043 
7044 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)7045 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7046 {
7047 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7048 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7049 	hrtime_t functime = gethrtime();
7050 	int i;
7051 
7052 	for (i = 0; i < zi->zi_iters; i++)
7053 		zi->zi_func(zd, id);
7054 
7055 	functime = gethrtime() - functime;
7056 
7057 	atomic_add_64(&zc->zc_count, 1);
7058 	atomic_add_64(&zc->zc_time, functime);
7059 
7060 	if (ztest_opts.zo_verbose >= 4)
7061 		(void) printf("%6.2f sec in %s\n",
7062 		    (double)functime / NANOSEC, zi->zi_funcname);
7063 }
7064 
7065 static void
ztest_thread(void * arg)7066 ztest_thread(void *arg)
7067 {
7068 	int rand;
7069 	uint64_t id = (uintptr_t)arg;
7070 	ztest_shared_t *zs = ztest_shared;
7071 	uint64_t call_next;
7072 	hrtime_t now;
7073 	ztest_info_t *zi;
7074 	ztest_shared_callstate_t *zc;
7075 
7076 	while ((now = gethrtime()) < zs->zs_thread_stop) {
7077 		/*
7078 		 * See if it's time to force a crash.
7079 		 */
7080 		if (now > zs->zs_thread_kill)
7081 			ztest_kill(zs);
7082 
7083 		/*
7084 		 * If we're getting ENOSPC with some regularity, stop.
7085 		 */
7086 		if (zs->zs_enospc_count > 10)
7087 			break;
7088 
7089 		/*
7090 		 * Pick a random function to execute.
7091 		 */
7092 		rand = ztest_random(ZTEST_FUNCS);
7093 		zi = &ztest_info[rand];
7094 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7095 		call_next = zc->zc_next;
7096 
7097 		if (now >= call_next &&
7098 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
7099 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7100 			ztest_execute(rand, zi, id);
7101 		}
7102 	}
7103 
7104 	thread_exit();
7105 }
7106 
7107 static void
ztest_dataset_name(char * dsname,char * pool,int d)7108 ztest_dataset_name(char *dsname, char *pool, int d)
7109 {
7110 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7111 }
7112 
7113 static void
ztest_dataset_destroy(int d)7114 ztest_dataset_destroy(int d)
7115 {
7116 	char name[ZFS_MAX_DATASET_NAME_LEN];
7117 	int t;
7118 
7119 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7120 
7121 	if (ztest_opts.zo_verbose >= 3)
7122 		(void) printf("Destroying %s to free up space\n", name);
7123 
7124 	/*
7125 	 * Cleanup any non-standard clones and snapshots.  In general,
7126 	 * ztest thread t operates on dataset (t % zopt_datasets),
7127 	 * so there may be more than one thing to clean up.
7128 	 */
7129 	for (t = d; t < ztest_opts.zo_threads;
7130 	    t += ztest_opts.zo_datasets)
7131 		ztest_dsl_dataset_cleanup(name, t);
7132 
7133 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7134 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7135 }
7136 
7137 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)7138 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7139 {
7140 	uint64_t usedobjs, dirobjs, scratch;
7141 
7142 	/*
7143 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
7144 	 * Therefore, the number of objects in use should equal the
7145 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7146 	 * If not, we have an object leak.
7147 	 *
7148 	 * Note that we can only check this in ztest_dataset_open(),
7149 	 * when the open-context and syncing-context values agree.
7150 	 * That's because zap_count() returns the open-context value,
7151 	 * while dmu_objset_space() returns the rootbp fill count.
7152 	 */
7153 	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7154 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7155 	ASSERT3U(dirobjs + 1, ==, usedobjs);
7156 }
7157 
7158 static int
ztest_dataset_open(int d)7159 ztest_dataset_open(int d)
7160 {
7161 	ztest_ds_t *zd = &ztest_ds[d];
7162 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7163 	objset_t *os;
7164 	zilog_t *zilog;
7165 	char name[ZFS_MAX_DATASET_NAME_LEN];
7166 	int error;
7167 
7168 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7169 
7170 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7171 
7172 	error = ztest_dataset_create(name);
7173 	if (error == ENOSPC) {
7174 		(void) pthread_rwlock_unlock(&ztest_name_lock);
7175 		ztest_record_enospc(FTAG);
7176 		return (error);
7177 	}
7178 	ASSERT(error == 0 || error == EEXIST);
7179 
7180 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7181 	    B_TRUE, zd, &os));
7182 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7183 
7184 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7185 
7186 	zilog = zd->zd_zilog;
7187 
7188 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7189 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
7190 		fatal(0, "missing log records: claimed %llu < committed %llu",
7191 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
7192 
7193 	ztest_dataset_dirobj_verify(zd);
7194 
7195 	zil_replay(os, zd, ztest_replay_vector);
7196 
7197 	ztest_dataset_dirobj_verify(zd);
7198 
7199 	if (ztest_opts.zo_verbose >= 6)
7200 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
7201 		    zd->zd_name,
7202 		    (u_longlong_t)zilog->zl_parse_blk_count,
7203 		    (u_longlong_t)zilog->zl_parse_lr_count,
7204 		    (u_longlong_t)zilog->zl_replaying_seq);
7205 
7206 	zilog = zil_open(os, ztest_get_data);
7207 
7208 	if (zilog->zl_replaying_seq != 0 &&
7209 	    zilog->zl_replaying_seq < committed_seq)
7210 		fatal(0, "missing log records: replayed %llu < committed %llu",
7211 		    zilog->zl_replaying_seq, committed_seq);
7212 
7213 	return (0);
7214 }
7215 
7216 static void
ztest_dataset_close(int d)7217 ztest_dataset_close(int d)
7218 {
7219 	ztest_ds_t *zd = &ztest_ds[d];
7220 
7221 	zil_close(zd->zd_zilog);
7222 	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7223 
7224 	ztest_zd_fini(zd);
7225 }
7226 
7227 /* ARGSUSED */
7228 static int
ztest_replay_zil_cb(const char * name,void * arg)7229 ztest_replay_zil_cb(const char *name, void *arg)
7230 {
7231 	objset_t *os;
7232 	ztest_ds_t *zdtmp;
7233 
7234 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7235 	    B_TRUE, FTAG, &os));
7236 
7237 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7238 
7239 	ztest_zd_init(zdtmp, NULL, os);
7240 	zil_replay(os, zdtmp, ztest_replay_vector);
7241 	ztest_zd_fini(zdtmp);
7242 
7243 	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7244 	    ztest_opts.zo_verbose >= 6) {
7245 		zilog_t *zilog = dmu_objset_zil(os);
7246 
7247 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
7248 		    name,
7249 		    (u_longlong_t)zilog->zl_parse_blk_count,
7250 		    (u_longlong_t)zilog->zl_parse_lr_count,
7251 		    (u_longlong_t)zilog->zl_replaying_seq);
7252 	}
7253 
7254 	umem_free(zdtmp, sizeof (ztest_ds_t));
7255 
7256 	dmu_objset_disown(os, B_TRUE, FTAG);
7257 	return (0);
7258 }
7259 
7260 static void
ztest_freeze(void)7261 ztest_freeze(void)
7262 {
7263 	ztest_ds_t *zd = &ztest_ds[0];
7264 	spa_t *spa;
7265 	int numloops = 0;
7266 
7267 	if (ztest_opts.zo_verbose >= 3)
7268 		(void) printf("testing spa_freeze()...\n");
7269 
7270 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7271 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7272 	VERIFY0(ztest_dataset_open(0));
7273 	ztest_spa = spa;
7274 
7275 	/*
7276 	 * Force the first log block to be transactionally allocated.
7277 	 * We have to do this before we freeze the pool -- otherwise
7278 	 * the log chain won't be anchored.
7279 	 */
7280 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7281 		ztest_dmu_object_alloc_free(zd, 0);
7282 		zil_commit(zd->zd_zilog, 0);
7283 	}
7284 
7285 	txg_wait_synced(spa_get_dsl(spa), 0);
7286 
7287 	/*
7288 	 * Freeze the pool.  This stops spa_sync() from doing anything,
7289 	 * so that the only way to record changes from now on is the ZIL.
7290 	 */
7291 	spa_freeze(spa);
7292 
7293 	/*
7294 	 * Because it is hard to predict how much space a write will actually
7295 	 * require beforehand, we leave ourselves some fudge space to write over
7296 	 * capacity.
7297 	 */
7298 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7299 
7300 	/*
7301 	 * Run tests that generate log records but don't alter the pool config
7302 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7303 	 * We do a txg_wait_synced() after each iteration to force the txg
7304 	 * to increase well beyond the last synced value in the uberblock.
7305 	 * The ZIL should be OK with that.
7306 	 *
7307 	 * Run a random number of times less than zo_maxloops and ensure we do
7308 	 * not run out of space on the pool.
7309 	 */
7310 	while (ztest_random(10) != 0 &&
7311 	    numloops++ < ztest_opts.zo_maxloops &&
7312 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7313 		ztest_od_t od;
7314 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7315 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7316 		ztest_io(zd, od.od_object,
7317 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7318 		txg_wait_synced(spa_get_dsl(spa), 0);
7319 	}
7320 
7321 	/*
7322 	 * Commit all of the changes we just generated.
7323 	 */
7324 	zil_commit(zd->zd_zilog, 0);
7325 	txg_wait_synced(spa_get_dsl(spa), 0);
7326 
7327 	/*
7328 	 * Close our dataset and close the pool.
7329 	 */
7330 	ztest_dataset_close(0);
7331 	spa_close(spa, FTAG);
7332 	kernel_fini();
7333 
7334 	/*
7335 	 * Open and close the pool and dataset to induce log replay.
7336 	 */
7337 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7338 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7339 	ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7340 	VERIFY0(ztest_dataset_open(0));
7341 	ztest_spa = spa;
7342 	txg_wait_synced(spa_get_dsl(spa), 0);
7343 	ztest_dataset_close(0);
7344 	ztest_reguid(NULL, 0);
7345 
7346 	spa_close(spa, FTAG);
7347 	kernel_fini();
7348 }
7349 
7350 static void
ztest_import_impl(ztest_shared_t * zs)7351 ztest_import_impl(ztest_shared_t *zs)
7352 {
7353 	importargs_t args = { 0 };
7354 	nvlist_t *cfg = NULL;
7355 	int nsearch = 1;
7356 	char *searchdirs[nsearch];
7357 	int flags = ZFS_IMPORT_MISSING_LOG;
7358 
7359 	searchdirs[0] = ztest_opts.zo_dir;
7360 	args.paths = nsearch;
7361 	args.path = searchdirs;
7362 	args.can_be_active = B_FALSE;
7363 
7364 	VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args,
7365 	    &libzpool_config_ops));
7366 	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7367 	fnvlist_free(cfg);
7368 }
7369 
7370 /*
7371  * Import a storage pool with the given name.
7372  */
7373 static void
ztest_import(ztest_shared_t * zs)7374 ztest_import(ztest_shared_t *zs)
7375 {
7376 	spa_t *spa;
7377 
7378 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7379 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7380 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7381 
7382 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7383 
7384 	ztest_import_impl(zs);
7385 
7386 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7387 	zs->zs_metaslab_sz =
7388 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7389 	spa_close(spa, FTAG);
7390 
7391 	kernel_fini();
7392 
7393 	if (!ztest_opts.zo_mmp_test) {
7394 		ztest_run_zdb(ztest_opts.zo_pool);
7395 		ztest_freeze();
7396 		ztest_run_zdb(ztest_opts.zo_pool);
7397 	}
7398 
7399 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7400 	mutex_destroy(&ztest_vdev_lock);
7401 	mutex_destroy(&ztest_checkpoint_lock);
7402 }
7403 
7404 /*
7405  * Kick off threads to run tests on all datasets in parallel.
7406  */
7407 static void
ztest_run(ztest_shared_t * zs)7408 ztest_run(ztest_shared_t *zs)
7409 {
7410 	spa_t *spa;
7411 	objset_t *os;
7412 	kthread_t *resume_thread, *deadman_thread;
7413 	kthread_t **run_threads;
7414 	uint64_t object;
7415 	int error;
7416 	int t, d;
7417 
7418 	ztest_exiting = B_FALSE;
7419 
7420 	/*
7421 	 * Initialize parent/child shared state.
7422 	 */
7423 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7424 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7425 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7426 
7427 	zs->zs_thread_start = gethrtime();
7428 	zs->zs_thread_stop =
7429 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
7430 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
7431 	zs->zs_thread_kill = zs->zs_thread_stop;
7432 	if (ztest_random(100) < ztest_opts.zo_killrate) {
7433 		zs->zs_thread_kill -=
7434 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
7435 	}
7436 
7437 	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
7438 
7439 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
7440 	    offsetof(ztest_cb_data_t, zcd_node));
7441 
7442 	/*
7443 	 * Open our pool.  It may need to be imported first depending on
7444 	 * what tests were running when the previous pass was terminated.
7445 	 */
7446 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7447 	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
7448 	if (error) {
7449 		VERIFY3S(error, ==, ENOENT);
7450 		ztest_import_impl(zs);
7451 		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7452 		zs->zs_metaslab_sz =
7453 		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7454 	}
7455 
7456 	metaslab_preload_limit = ztest_random(20) + 1;
7457 	ztest_spa = spa;
7458 
7459 	VERIFY0(vdev_raidz_impl_set("cycle"));
7460 
7461 	dmu_objset_stats_t dds;
7462 	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
7463 	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
7464 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
7465 	dmu_objset_fast_stat(os, &dds);
7466 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
7467 	zs->zs_guid = dds.dds_guid;
7468 	dmu_objset_disown(os, B_TRUE, FTAG);
7469 
7470 	/*
7471 	 * Create a thread to periodically resume suspended I/O.
7472 	 */
7473 	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
7474 	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7475 
7476 	/*
7477 	 * Create a deadman thread and set to panic if we hang.
7478 	 */
7479 	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
7480 	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7481 
7482 	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
7483 
7484 	/*
7485 	 * Verify that we can safely inquire about any object,
7486 	 * whether it's allocated or not.  To make it interesting,
7487 	 * we probe a 5-wide window around each power of two.
7488 	 * This hits all edge cases, including zero and the max.
7489 	 */
7490 	for (t = 0; t < 64; t++) {
7491 		for (d = -5; d <= 5; d++) {
7492 			error = dmu_object_info(spa->spa_meta_objset,
7493 			    (1ULL << t) + d, NULL);
7494 			ASSERT(error == 0 || error == ENOENT ||
7495 			    error == EINVAL);
7496 		}
7497 	}
7498 
7499 	/*
7500 	 * If we got any ENOSPC errors on the previous run, destroy something.
7501 	 */
7502 	if (zs->zs_enospc_count != 0) {
7503 		int d = ztest_random(ztest_opts.zo_datasets);
7504 		ztest_dataset_destroy(d);
7505 	}
7506 	zs->zs_enospc_count = 0;
7507 
7508 	/*
7509 	 * If we were in the middle of ztest_device_removal() and were killed
7510 	 * we need to ensure the removal and scrub complete before running
7511 	 * any tests that check ztest_device_removal_active. The removal will
7512 	 * be restarted automatically when the spa is opened, but we need to
7513 	 * initiate the scrub manually if it is not already in progress. Note
7514 	 * that we always run the scrub whenever an indirect vdev exists
7515 	 * because we have no way of knowing for sure if ztest_device_removal()
7516 	 * fully completed its scrub before the pool was reimported.
7517 	 */
7518 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
7519 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7520 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
7521 			txg_wait_synced(spa_get_dsl(spa), 0);
7522 
7523 		error = ztest_scrub_impl(spa);
7524 		if (error == EBUSY)
7525 			error = 0;
7526 		ASSERT0(error);
7527 	}
7528 
7529 	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
7530 	    UMEM_NOFAIL);
7531 
7532 	if (ztest_opts.zo_verbose >= 4)
7533 		(void) printf("starting main threads...\n");
7534 
7535 	/*
7536 	 * Replay all logs of all datasets in the pool. This is primarily for
7537 	 * temporary datasets which wouldn't otherwise get replayed, which
7538 	 * can trigger failures when attempting to offline a SLOG in
7539 	 * ztest_fault_inject().
7540 	 */
7541 	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
7542 	    NULL, DS_FIND_CHILDREN);
7543 
7544 	/*
7545 	 * Kick off all the tests that run in parallel.
7546 	 */
7547 	for (t = 0; t < ztest_opts.zo_threads; t++) {
7548 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
7549 			umem_free(run_threads, ztest_opts.zo_threads *
7550 			    sizeof (kthread_t *));
7551 			return;
7552 		}
7553 
7554 		run_threads[t] = thread_create(NULL, 0, ztest_thread,
7555 		    (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
7556 		    defclsyspri);
7557 	}
7558 
7559 	/*
7560 	 * Wait for all of the tests to complete.
7561 	 */
7562 	for (t = 0; t < ztest_opts.zo_threads; t++)
7563 		VERIFY0(thread_join(run_threads[t]));
7564 
7565 	/*
7566 	 * Close all datasets. This must be done after all the threads
7567 	 * are joined so we can be sure none of the datasets are in-use
7568 	 * by any of the threads.
7569 	 */
7570 	for (t = 0; t < ztest_opts.zo_threads; t++) {
7571 		if (t < ztest_opts.zo_datasets)
7572 			ztest_dataset_close(t);
7573 	}
7574 
7575 	txg_wait_synced(spa_get_dsl(spa), 0);
7576 
7577 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7578 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7579 
7580 	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7581 
7582 	/* Kill the resume and deadman threads */
7583 	ztest_exiting = B_TRUE;
7584 	VERIFY0(thread_join(resume_thread));
7585 	VERIFY0(thread_join(deadman_thread));
7586 	ztest_resume(spa);
7587 
7588 	/*
7589 	 * Right before closing the pool, kick off a bunch of async I/O;
7590 	 * spa_close() should wait for it to complete.
7591 	 */
7592 	for (object = 1; object < 50; object++) {
7593 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7594 		    ZIO_PRIORITY_SYNC_READ);
7595 	}
7596 
7597 	/* Verify that at least one commit cb was called in a timely fashion */
7598 	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7599 		VERIFY0(zc_min_txg_delay);
7600 
7601 	spa_close(spa, FTAG);
7602 
7603 	/*
7604 	 * Verify that we can loop over all pools.
7605 	 */
7606 	mutex_enter(&spa_namespace_lock);
7607 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7608 		if (ztest_opts.zo_verbose > 3)
7609 			(void) printf("spa_next: found %s\n", spa_name(spa));
7610 	mutex_exit(&spa_namespace_lock);
7611 
7612 	/*
7613 	 * Verify that we can export the pool and reimport it under a
7614 	 * different name.
7615 	 */
7616 	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7617 		char name[ZFS_MAX_DATASET_NAME_LEN];
7618 		(void) snprintf(name, sizeof (name), "%s_import",
7619 		    ztest_opts.zo_pool);
7620 		ztest_spa_import_export(ztest_opts.zo_pool, name);
7621 		ztest_spa_import_export(name, ztest_opts.zo_pool);
7622 	}
7623 
7624 	kernel_fini();
7625 
7626 	list_destroy(&zcl.zcl_callbacks);
7627 	mutex_destroy(&zcl.zcl_callbacks_lock);
7628 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7629 	mutex_destroy(&ztest_vdev_lock);
7630 	mutex_destroy(&ztest_checkpoint_lock);
7631 }
7632 
7633 static void
print_time(hrtime_t t,char * timebuf)7634 print_time(hrtime_t t, char *timebuf)
7635 {
7636 	hrtime_t s = t / NANOSEC;
7637 	hrtime_t m = s / 60;
7638 	hrtime_t h = m / 60;
7639 	hrtime_t d = h / 24;
7640 
7641 	s -= m * 60;
7642 	m -= h * 60;
7643 	h -= d * 24;
7644 
7645 	timebuf[0] = '\0';
7646 
7647 	if (d)
7648 		(void) sprintf(timebuf,
7649 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
7650 	else if (h)
7651 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7652 	else if (m)
7653 		(void) sprintf(timebuf, "%llum%02llus", m, s);
7654 	else
7655 		(void) sprintf(timebuf, "%llus", s);
7656 }
7657 
7658 static nvlist_t *
make_random_props(void)7659 make_random_props(void)
7660 {
7661 	nvlist_t *props;
7662 
7663 	props = fnvlist_alloc();
7664 
7665 	if (ztest_random(2) == 0)
7666 		return (props);
7667 
7668 	fnvlist_add_uint64(props,
7669 	    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
7670 
7671 	return (props);
7672 }
7673 
7674 /*
7675  * Create a storage pool with the given name and initial vdev size.
7676  * Then test spa_freeze() functionality.
7677  */
7678 static void
ztest_init(ztest_shared_t * zs)7679 ztest_init(ztest_shared_t *zs)
7680 {
7681 	spa_t *spa;
7682 	nvlist_t *nvroot, *props;
7683 	int i;
7684 
7685 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7686 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7687 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7688 
7689 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7690 
7691 	/*
7692 	 * Create the storage pool.
7693 	 */
7694 	(void) spa_destroy(ztest_opts.zo_pool);
7695 	ztest_shared->zs_vdev_next_leaf = 0;
7696 	zs->zs_splits = 0;
7697 	zs->zs_mirrors = ztest_opts.zo_mirrors;
7698 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7699 	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
7700 	props = make_random_props();
7701 
7702 	/*
7703 	 * We don't expect the pool to suspend unless maxfaults == 0,
7704 	 * in which case ztest_fault_inject() temporarily takes away
7705 	 * the only valid replica.
7706 	 */
7707 	fnvlist_add_uint64(props,
7708 	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7709 	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
7710 
7711 	for (i = 0; i < SPA_FEATURES; i++) {
7712 		char *buf;
7713 
7714 		if (!spa_feature_table[i].fi_zfs_mod_supported)
7715 			continue;
7716 
7717 		/*
7718 		 * 75% chance of using the log space map feature. We want ztest
7719 		 * to exercise both the code paths that use the log space map
7720 		 * feature and the ones that don't.
7721 		 */
7722 		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7723 			continue;
7724 
7725 		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7726 		    spa_feature_table[i].fi_uname));
7727 		fnvlist_add_uint64(props, buf, 0);
7728 		free(buf);
7729 	}
7730 
7731 	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7732 	fnvlist_free(nvroot);
7733 	fnvlist_free(props);
7734 
7735 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7736 	zs->zs_metaslab_sz =
7737 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7738 	spa_close(spa, FTAG);
7739 
7740 	kernel_fini();
7741 
7742 	if (!ztest_opts.zo_mmp_test) {
7743 		ztest_run_zdb(ztest_opts.zo_pool);
7744 		ztest_freeze();
7745 		ztest_run_zdb(ztest_opts.zo_pool);
7746 	}
7747 
7748 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7749 	mutex_destroy(&ztest_vdev_lock);
7750 	mutex_destroy(&ztest_checkpoint_lock);
7751 }
7752 
7753 static void
setup_data_fd(void)7754 setup_data_fd(void)
7755 {
7756 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7757 
7758 	ztest_fd_data = mkstemp(ztest_name_data);
7759 	ASSERT3S(ztest_fd_data, >=, 0);
7760 	(void) unlink(ztest_name_data);
7761 }
7762 
7763 static int
shared_data_size(ztest_shared_hdr_t * hdr)7764 shared_data_size(ztest_shared_hdr_t *hdr)
7765 {
7766 	int size;
7767 
7768 	size = hdr->zh_hdr_size;
7769 	size += hdr->zh_opts_size;
7770 	size += hdr->zh_size;
7771 	size += hdr->zh_stats_size * hdr->zh_stats_count;
7772 	size += hdr->zh_ds_size * hdr->zh_ds_count;
7773 
7774 	return (size);
7775 }
7776 
7777 static void
setup_hdr(void)7778 setup_hdr(void)
7779 {
7780 	int size;
7781 	ztest_shared_hdr_t *hdr;
7782 
7783 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7784 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7785 	ASSERT3P(hdr, !=, MAP_FAILED);
7786 
7787 	VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7788 
7789 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7790 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7791 	hdr->zh_size = sizeof (ztest_shared_t);
7792 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7793 	hdr->zh_stats_count = ZTEST_FUNCS;
7794 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7795 	hdr->zh_ds_count = ztest_opts.zo_datasets;
7796 
7797 	size = shared_data_size(hdr);
7798 	VERIFY0(ftruncate(ztest_fd_data, size));
7799 
7800 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7801 }
7802 
7803 static void
setup_data(void)7804 setup_data(void)
7805 {
7806 	int size, offset;
7807 	ztest_shared_hdr_t *hdr;
7808 	uint8_t *buf;
7809 
7810 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7811 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7812 	ASSERT3P(hdr, !=, MAP_FAILED);
7813 
7814 	size = shared_data_size(hdr);
7815 
7816 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7817 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7818 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7819 	ASSERT3P(hdr, !=, MAP_FAILED);
7820 	buf = (uint8_t *)hdr;
7821 
7822 	offset = hdr->zh_hdr_size;
7823 	ztest_shared_opts = (void *)&buf[offset];
7824 	offset += hdr->zh_opts_size;
7825 	ztest_shared = (void *)&buf[offset];
7826 	offset += hdr->zh_size;
7827 	ztest_shared_callstate = (void *)&buf[offset];
7828 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
7829 	ztest_shared_ds = (void *)&buf[offset];
7830 }
7831 
7832 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)7833 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7834 {
7835 	pid_t pid;
7836 	int status;
7837 	char *cmdbuf = NULL;
7838 
7839 	pid = fork();
7840 
7841 	if (cmd == NULL) {
7842 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7843 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7844 		cmd = cmdbuf;
7845 	}
7846 
7847 	if (pid == -1)
7848 		fatal(1, "fork failed");
7849 
7850 	if (pid == 0) {	/* child */
7851 		char *emptyargv[2] = { cmd, NULL };
7852 		char fd_data_str[12];
7853 
7854 		struct rlimit rl = { 1024, 1024 };
7855 		(void) setrlimit(RLIMIT_NOFILE, &rl);
7856 
7857 		(void) close(ztest_fd_rand);
7858 		VERIFY3S(11, >=,
7859 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7860 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
7861 
7862 		(void) enable_extended_FILE_stdio(-1, -1);
7863 		if (libpath != NULL)
7864 			VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
7865 		(void) execv(cmd, emptyargv);
7866 		ztest_dump_core = B_FALSE;
7867 		fatal(B_TRUE, "exec failed: %s", cmd);
7868 	}
7869 
7870 	if (cmdbuf != NULL) {
7871 		umem_free(cmdbuf, MAXPATHLEN);
7872 		cmd = NULL;
7873 	}
7874 
7875 	while (waitpid(pid, &status, 0) != pid)
7876 		continue;
7877 	if (statusp != NULL)
7878 		*statusp = status;
7879 
7880 	if (WIFEXITED(status)) {
7881 		if (WEXITSTATUS(status) != 0) {
7882 			(void) fprintf(stderr, "child exited with code %d\n",
7883 			    WEXITSTATUS(status));
7884 			exit(2);
7885 		}
7886 		return (B_FALSE);
7887 	} else if (WIFSIGNALED(status)) {
7888 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7889 			(void) fprintf(stderr, "child died with signal %d\n",
7890 			    WTERMSIG(status));
7891 			exit(3);
7892 		}
7893 		return (B_TRUE);
7894 	} else {
7895 		(void) fprintf(stderr, "something strange happened to child\n");
7896 		exit(4);
7897 		/* NOTREACHED */
7898 	}
7899 }
7900 
7901 static void
ztest_run_init(void)7902 ztest_run_init(void)
7903 {
7904 	int i;
7905 
7906 	ztest_shared_t *zs = ztest_shared;
7907 
7908 	/*
7909 	 * Blow away any existing copy of zpool.cache
7910 	 */
7911 	(void) remove(spa_config_path);
7912 
7913 	if (ztest_opts.zo_init == 0) {
7914 		if (ztest_opts.zo_verbose >= 1)
7915 			(void) printf("Importing pool %s\n",
7916 			    ztest_opts.zo_pool);
7917 		ztest_import(zs);
7918 		return;
7919 	}
7920 
7921 	/*
7922 	 * Create and initialize our storage pool.
7923 	 */
7924 	for (i = 1; i <= ztest_opts.zo_init; i++) {
7925 		bzero(zs, sizeof (ztest_shared_t));
7926 		if (ztest_opts.zo_verbose >= 3 &&
7927 		    ztest_opts.zo_init != 1) {
7928 			(void) printf("ztest_init(), pass %d\n", i);
7929 		}
7930 		ztest_init(zs);
7931 	}
7932 }
7933 
7934 int
main(int argc,char ** argv)7935 main(int argc, char **argv)
7936 {
7937 	int kills = 0;
7938 	int iters = 0;
7939 	int older = 0;
7940 	int newer = 0;
7941 	ztest_shared_t *zs;
7942 	ztest_info_t *zi;
7943 	ztest_shared_callstate_t *zc;
7944 	char timebuf[100];
7945 	char numbuf[NN_NUMBUF_SZ];
7946 	char *cmd;
7947 	boolean_t hasalt;
7948 	int f, err;
7949 	char *fd_data_str = getenv("ZTEST_FD_DATA");
7950 	struct sigaction action;
7951 
7952 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
7953 
7954 	dprintf_setup(&argc, argv);
7955 	zfs_deadman_synctime_ms = 300000;
7956 	zfs_deadman_checktime_ms = 30000;
7957 	/*
7958 	 * As two-word space map entries may not come up often (especially
7959 	 * if pool and vdev sizes are small) we want to force at least some
7960 	 * of them so the feature get tested.
7961 	 */
7962 	zfs_force_some_double_word_sm_entries = B_TRUE;
7963 
7964 	/*
7965 	 * Verify that even extensively damaged split blocks with many
7966 	 * segments can be reconstructed in a reasonable amount of time
7967 	 * when reconstruction is known to be possible.
7968 	 *
7969 	 * Note: the lower this value is, the more damage we inflict, and
7970 	 * the more time ztest spends in recovering that damage. We chose
7971 	 * to induce damage 1/100th of the time so recovery is tested but
7972 	 * not so frequently that ztest doesn't get to test other code paths.
7973 	 */
7974 	zfs_reconstruct_indirect_damage_fraction = 100;
7975 
7976 	action.sa_handler = sig_handler;
7977 	sigemptyset(&action.sa_mask);
7978 	action.sa_flags = 0;
7979 
7980 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
7981 		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
7982 		    strerror(errno));
7983 		exit(EXIT_FAILURE);
7984 	}
7985 
7986 	if (sigaction(SIGABRT, &action, NULL) < 0) {
7987 		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
7988 		    strerror(errno));
7989 		exit(EXIT_FAILURE);
7990 	}
7991 
7992 	/*
7993 	 * Force random_get_bytes() to use /dev/urandom in order to prevent
7994 	 * ztest from needlessly depleting the system entropy pool.
7995 	 */
7996 	random_path = "/dev/urandom";
7997 	ztest_fd_rand = open(random_path, O_RDONLY);
7998 	ASSERT3S(ztest_fd_rand, >=, 0);
7999 
8000 	if (!fd_data_str) {
8001 		process_options(argc, argv);
8002 
8003 		setup_data_fd();
8004 		setup_hdr();
8005 		setup_data();
8006 		bcopy(&ztest_opts, ztest_shared_opts,
8007 		    sizeof (*ztest_shared_opts));
8008 	} else {
8009 		ztest_fd_data = atoi(fd_data_str);
8010 		setup_data();
8011 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
8012 	}
8013 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8014 
8015 	err = ztest_set_global_vars();
8016 	if (err != 0 && !fd_data_str) {
8017 		/* error message done by ztest_set_global_vars */
8018 		exit(EXIT_FAILURE);
8019 	} else {
8020 		/* children should not be spawned if setting gvars fails */
8021 		VERIFY3S(err, ==, 0);
8022 	}
8023 
8024 	/* Override location of zpool.cache */
8025 	VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8026 	    ztest_opts.zo_dir), !=, -1);
8027 
8028 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8029 	    UMEM_NOFAIL);
8030 	zs = ztest_shared;
8031 
8032 	if (fd_data_str) {
8033 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8034 		metaslab_df_alloc_threshold =
8035 		    zs->zs_metaslab_df_alloc_threshold;
8036 
8037 		if (zs->zs_do_init)
8038 			ztest_run_init();
8039 		else
8040 			ztest_run(zs);
8041 		exit(0);
8042 	}
8043 
8044 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8045 
8046 	if (ztest_opts.zo_verbose >= 1) {
8047 		(void) printf("%llu vdevs, %d datasets, %d threads,"
8048 		    "%d %s disks, %llu seconds...\n\n",
8049 		    (u_longlong_t)ztest_opts.zo_vdevs,
8050 		    ztest_opts.zo_datasets,
8051 		    ztest_opts.zo_threads,
8052 		    ztest_opts.zo_raid_children,
8053 		    ztest_opts.zo_raid_type,
8054 		    (u_longlong_t)ztest_opts.zo_time);
8055 	}
8056 
8057 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8058 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8059 
8060 	zs->zs_do_init = B_TRUE;
8061 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8062 		if (ztest_opts.zo_verbose >= 1) {
8063 			(void) printf("Executing older ztest for "
8064 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
8065 		}
8066 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8067 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8068 	} else {
8069 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8070 	}
8071 	zs->zs_do_init = B_FALSE;
8072 
8073 	zs->zs_proc_start = gethrtime();
8074 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8075 
8076 	for (f = 0; f < ZTEST_FUNCS; f++) {
8077 		zi = &ztest_info[f];
8078 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
8079 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8080 			zc->zc_next = UINT64_MAX;
8081 		else
8082 			zc->zc_next = zs->zs_proc_start +
8083 			    ztest_random(2 * zi->zi_interval[0] + 1);
8084 	}
8085 
8086 	/*
8087 	 * Run the tests in a loop.  These tests include fault injection
8088 	 * to verify that self-healing data works, and forced crashes
8089 	 * to verify that we never lose on-disk consistency.
8090 	 */
8091 	while (gethrtime() < zs->zs_proc_stop) {
8092 		int status;
8093 		boolean_t killed;
8094 
8095 		/*
8096 		 * Initialize the workload counters for each function.
8097 		 */
8098 		for (f = 0; f < ZTEST_FUNCS; f++) {
8099 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
8100 			zc->zc_count = 0;
8101 			zc->zc_time = 0;
8102 		}
8103 
8104 		/* Set the allocation switch size */
8105 		zs->zs_metaslab_df_alloc_threshold =
8106 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
8107 
8108 		if (!hasalt || ztest_random(2) == 0) {
8109 			if (hasalt && ztest_opts.zo_verbose >= 1) {
8110 				(void) printf("Executing newer ztest: %s\n",
8111 				    cmd);
8112 			}
8113 			newer++;
8114 			killed = exec_child(cmd, NULL, B_TRUE, &status);
8115 		} else {
8116 			if (hasalt && ztest_opts.zo_verbose >= 1) {
8117 				(void) printf("Executing older ztest: %s\n",
8118 				    ztest_opts.zo_alt_ztest);
8119 			}
8120 			older++;
8121 			killed = exec_child(ztest_opts.zo_alt_ztest,
8122 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
8123 		}
8124 
8125 		if (killed)
8126 			kills++;
8127 		iters++;
8128 
8129 		if (ztest_opts.zo_verbose >= 1) {
8130 			hrtime_t now = gethrtime();
8131 
8132 			now = MIN(now, zs->zs_proc_stop);
8133 			print_time(zs->zs_proc_stop - now, timebuf);
8134 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8135 
8136 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
8137 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8138 			    iters,
8139 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
8140 			    (u_longlong_t)zs->zs_enospc_count,
8141 			    100.0 * zs->zs_alloc / zs->zs_space,
8142 			    numbuf,
8143 			    100.0 * (now - zs->zs_proc_start) /
8144 			    (ztest_opts.zo_time * NANOSEC), timebuf);
8145 		}
8146 
8147 		if (ztest_opts.zo_verbose >= 2) {
8148 			(void) printf("\nWorkload summary:\n\n");
8149 			(void) printf("%7s %9s   %s\n",
8150 			    "Calls", "Time", "Function");
8151 			(void) printf("%7s %9s   %s\n",
8152 			    "-----", "----", "--------");
8153 			for (f = 0; f < ZTEST_FUNCS; f++) {
8154 				zi = &ztest_info[f];
8155 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
8156 				print_time(zc->zc_time, timebuf);
8157 				(void) printf("%7llu %9s   %s\n",
8158 				    (u_longlong_t)zc->zc_count, timebuf,
8159 				    zi->zi_funcname);
8160 			}
8161 			(void) printf("\n");
8162 		}
8163 
8164 		if (!ztest_opts.zo_mmp_test)
8165 			ztest_run_zdb(ztest_opts.zo_pool);
8166 	}
8167 
8168 	if (ztest_opts.zo_verbose >= 1) {
8169 		if (hasalt) {
8170 			(void) printf("%d runs of older ztest: %s\n", older,
8171 			    ztest_opts.zo_alt_ztest);
8172 			(void) printf("%d runs of newer ztest: %s\n", newer,
8173 			    cmd);
8174 		}
8175 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8176 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
8177 	}
8178 
8179 	umem_free(cmd, MAXNAMELEN);
8180 
8181 	return (0);
8182 }
8183