1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the generic AliasAnalysis interface, which is used as the
11 // common interface used by all clients of alias analysis information, and
12 // implemented by all alias analysis implementations. Mod/Ref information is
13 // also captured by this interface.
14 //
15 // Implementations of this interface must implement the various virtual methods,
16 // which automatically provides functionality for the entire suite of client
17 // APIs.
18 //
19 // This API identifies memory regions with the MemoryLocation class. The pointer
20 // component specifies the base memory address of the region. The Size specifies
21 // the maximum size (in address units) of the memory region, or
22 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
23 // identifies the "type" of the memory reference; see the
24 // TypeBasedAliasAnalysis class for details.
25 //
26 // Some non-obvious details include:
27 // - Pointers that point to two completely different objects in memory never
28 // alias, regardless of the value of the Size component.
29 // - NoAlias doesn't imply inequal pointers. The most obvious example of this
30 // is two pointers to constant memory. Even if they are equal, constant
31 // memory is never stored to, so there will never be any dependencies.
32 // In this and other situations, the pointers may be both NoAlias and
33 // MustAlias at the same time. The current API can only return one result,
34 // though this is rarely a problem in practice.
35 //
36 //===----------------------------------------------------------------------===//
37
38 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
39 #define LLVM_ANALYSIS_ALIASANALYSIS_H
40
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/Pass.h"
51 #include <cstdint>
52 #include <functional>
53 #include <memory>
54 #include <vector>
55
56 namespace llvm {
57
58 class AnalysisUsage;
59 class BasicAAResult;
60 class BasicBlock;
61 class DominatorTree;
62 class OrderedBasicBlock;
63 class Value;
64
65 /// The possible results of an alias query.
66 ///
67 /// These results are always computed between two MemoryLocation objects as
68 /// a query to some alias analysis.
69 ///
70 /// Note that these are unscoped enumerations because we would like to support
71 /// implicitly testing a result for the existence of any possible aliasing with
72 /// a conversion to bool, but an "enum class" doesn't support this. The
73 /// canonical names from the literature are suffixed and unique anyways, and so
74 /// they serve as global constants in LLVM for these results.
75 ///
76 /// See docs/AliasAnalysis.html for more information on the specific meanings
77 /// of these values.
78 enum AliasResult : uint8_t {
79 /// The two locations do not alias at all.
80 ///
81 /// This value is arranged to convert to false, while all other values
82 /// convert to true. This allows a boolean context to convert the result to
83 /// a binary flag indicating whether there is the possibility of aliasing.
84 NoAlias = 0,
85 /// The two locations may or may not alias. This is the least precise result.
86 MayAlias,
87 /// The two locations alias, but only due to a partial overlap.
88 PartialAlias,
89 /// The two locations precisely alias each other.
90 MustAlias,
91 };
92
93 /// << operator for AliasResult.
94 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
95
96 /// Flags indicating whether a memory access modifies or references memory.
97 ///
98 /// This is no access at all, a modification, a reference, or both
99 /// a modification and a reference. These are specifically structured such that
100 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
101 /// work with any of the possible values.
102 enum class ModRefInfo : uint8_t {
103 /// Must is provided for completeness, but no routines will return only
104 /// Must today. See definition of Must below.
105 Must = 0,
106 /// The access may reference the value stored in memory,
107 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
108 MustRef = 1,
109 /// The access may modify the value stored in memory,
110 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
111 MustMod = 2,
112 /// The access may reference, modify or both the value stored in memory,
113 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
114 MustModRef = MustRef | MustMod,
115 /// The access neither references nor modifies the value stored in memory.
116 NoModRef = 4,
117 /// The access may reference the value stored in memory.
118 Ref = NoModRef | MustRef,
119 /// The access may modify the value stored in memory.
120 Mod = NoModRef | MustMod,
121 /// The access may reference and may modify the value stored in memory.
122 ModRef = Ref | Mod,
123
124 /// About Must:
125 /// Must is set in a best effort manner.
126 /// We usually do not try our best to infer Must, instead it is merely
127 /// another piece of "free" information that is presented when available.
128 /// Must set means there was certainly a MustAlias found. For calls,
129 /// where multiple arguments are checked (argmemonly), this translates to
130 /// only MustAlias or NoAlias was found.
131 /// Must is not set for RAR accesses, even if the two locations must
132 /// alias. The reason is that two read accesses translate to an early return
133 /// of NoModRef. An additional alias check to set Must may be
134 /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
135 /// We refer to Must being *set* when the most significant bit is *cleared*.
136 /// Conversely we *clear* Must information by *setting* the Must bit to 1.
137 };
138
isNoModRef(const ModRefInfo MRI)139 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
140 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
141 static_cast<int>(ModRefInfo::Must);
142 }
isModOrRefSet(const ModRefInfo MRI)143 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
144 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
145 }
isModAndRefSet(const ModRefInfo MRI)146 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
147 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
148 static_cast<int>(ModRefInfo::MustModRef);
149 }
isModSet(const ModRefInfo MRI)150 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
151 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
152 }
isRefSet(const ModRefInfo MRI)153 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
154 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
155 }
isMustSet(const ModRefInfo MRI)156 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
157 return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
158 }
159
setMod(const ModRefInfo MRI)160 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
161 return ModRefInfo(static_cast<int>(MRI) |
162 static_cast<int>(ModRefInfo::MustMod));
163 }
setRef(const ModRefInfo MRI)164 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
165 return ModRefInfo(static_cast<int>(MRI) |
166 static_cast<int>(ModRefInfo::MustRef));
167 }
setMust(const ModRefInfo MRI)168 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
169 return ModRefInfo(static_cast<int>(MRI) &
170 static_cast<int>(ModRefInfo::MustModRef));
171 }
setModAndRef(const ModRefInfo MRI)172 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
173 return ModRefInfo(static_cast<int>(MRI) |
174 static_cast<int>(ModRefInfo::MustModRef));
175 }
clearMod(const ModRefInfo MRI)176 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
177 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
178 }
clearRef(const ModRefInfo MRI)179 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
180 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
181 }
clearMust(const ModRefInfo MRI)182 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
183 return ModRefInfo(static_cast<int>(MRI) |
184 static_cast<int>(ModRefInfo::NoModRef));
185 }
unionModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)186 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
187 const ModRefInfo MRI2) {
188 return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
189 }
intersectModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)190 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
191 const ModRefInfo MRI2) {
192 return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
193 }
194
195 /// The locations at which a function might access memory.
196 ///
197 /// These are primarily used in conjunction with the \c AccessKind bits to
198 /// describe both the nature of access and the locations of access for a
199 /// function call.
200 enum FunctionModRefLocation {
201 /// Base case is no access to memory.
202 FMRL_Nowhere = 0,
203 /// Access to memory via argument pointers.
204 FMRL_ArgumentPointees = 8,
205 /// Memory that is inaccessible via LLVM IR.
206 FMRL_InaccessibleMem = 16,
207 /// Access to any memory.
208 FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
209 };
210
211 /// Summary of how a function affects memory in the program.
212 ///
213 /// Loads from constant globals are not considered memory accesses for this
214 /// interface. Also, functions may freely modify stack space local to their
215 /// invocation without having to report it through these interfaces.
216 enum FunctionModRefBehavior {
217 /// This function does not perform any non-local loads or stores to memory.
218 ///
219 /// This property corresponds to the GCC 'const' attribute.
220 /// This property corresponds to the LLVM IR 'readnone' attribute.
221 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
222 FMRB_DoesNotAccessMemory =
223 FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
224
225 /// The only memory references in this function (if it has any) are
226 /// non-volatile loads from objects pointed to by its pointer-typed
227 /// arguments, with arbitrary offsets.
228 ///
229 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
230 FMRB_OnlyReadsArgumentPointees =
231 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
232
233 /// The only memory references in this function (if it has any) are
234 /// non-volatile loads and stores from objects pointed to by its
235 /// pointer-typed arguments, with arbitrary offsets.
236 ///
237 /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
238 FMRB_OnlyAccessesArgumentPointees =
239 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
240
241 /// The only memory references in this function (if it has any) are
242 /// references of memory that is otherwise inaccessible via LLVM IR.
243 ///
244 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
245 FMRB_OnlyAccessesInaccessibleMem =
246 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
247
248 /// The function may perform non-volatile loads and stores of objects
249 /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
250 /// it may also perform loads and stores of memory that is otherwise
251 /// inaccessible via LLVM IR.
252 ///
253 /// This property corresponds to the LLVM IR
254 /// inaccessiblemem_or_argmemonly attribute.
255 FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
256 FMRL_ArgumentPointees |
257 static_cast<int>(ModRefInfo::ModRef),
258
259 /// This function does not perform any non-local stores or volatile loads,
260 /// but may read from any memory location.
261 ///
262 /// This property corresponds to the GCC 'pure' attribute.
263 /// This property corresponds to the LLVM IR 'readonly' attribute.
264 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
265 FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
266
267 // This function does not read from memory anywhere, but may write to any
268 // memory location.
269 //
270 // This property corresponds to the LLVM IR 'writeonly' attribute.
271 // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
272 FMRB_DoesNotReadMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
273
274 /// This indicates that the function could not be classified into one of the
275 /// behaviors above.
276 FMRB_UnknownModRefBehavior =
277 FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
278 };
279
280 // Wrapper method strips bits significant only in FunctionModRefBehavior,
281 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
282 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
283 // entry with all bits set to 1.
284 LLVM_NODISCARD inline ModRefInfo
createModRefInfo(const FunctionModRefBehavior FMRB)285 createModRefInfo(const FunctionModRefBehavior FMRB) {
286 return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
287 }
288
289 class AAResults {
290 public:
291 // Make these results default constructable and movable. We have to spell
292 // these out because MSVC won't synthesize them.
AAResults(const TargetLibraryInfo & TLI)293 AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
294 AAResults(AAResults &&Arg);
295 ~AAResults();
296
297 /// Register a specific AA result.
addAAResult(AAResultT & AAResult)298 template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
299 // FIXME: We should use a much lighter weight system than the usual
300 // polymorphic pattern because we don't own AAResult. It should
301 // ideally involve two pointers and no separate allocation.
302 AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
303 }
304
305 /// Register a function analysis ID that the results aggregation depends on.
306 ///
307 /// This is used in the new pass manager to implement the invalidation logic
308 /// where we must invalidate the results aggregation if any of our component
309 /// analyses become invalid.
addAADependencyID(AnalysisKey * ID)310 void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
311
312 /// Handle invalidation events in the new pass manager.
313 ///
314 /// The aggregation is invalidated if any of the underlying analyses is
315 /// invalidated.
316 bool invalidate(Function &F, const PreservedAnalyses &PA,
317 FunctionAnalysisManager::Invalidator &Inv);
318
319 //===--------------------------------------------------------------------===//
320 /// \name Alias Queries
321 /// @{
322
323 /// The main low level interface to the alias analysis implementation.
324 /// Returns an AliasResult indicating whether the two pointers are aliased to
325 /// each other. This is the interface that must be implemented by specific
326 /// alias analysis implementations.
327 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
328
329 /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)330 AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
331 LocationSize V2Size) {
332 return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
333 }
334
335 /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,const Value * V2)336 AliasResult alias(const Value *V1, const Value *V2) {
337 return alias(V1, LocationSize::unknown(), V2, LocationSize::unknown());
338 }
339
340 /// A trivial helper function to check to see if the specified pointers are
341 /// no-alias.
isNoAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)342 bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
343 return alias(LocA, LocB) == NoAlias;
344 }
345
346 /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)347 bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
348 LocationSize V2Size) {
349 return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
350 }
351
352 /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,const Value * V2)353 bool isNoAlias(const Value *V1, const Value *V2) {
354 return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
355 }
356
357 /// A trivial helper function to check to see if the specified pointers are
358 /// must-alias.
isMustAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)359 bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
360 return alias(LocA, LocB) == MustAlias;
361 }
362
363 /// A convenience wrapper around the \c isMustAlias helper interface.
isMustAlias(const Value * V1,const Value * V2)364 bool isMustAlias(const Value *V1, const Value *V2) {
365 return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
366 MustAlias;
367 }
368
369 /// Checks whether the given location points to constant memory, or if
370 /// \p OrLocal is true whether it points to a local alloca.
371 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
372
373 /// A convenience wrapper around the primary \c pointsToConstantMemory
374 /// interface.
375 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
376 return pointsToConstantMemory(MemoryLocation(P), OrLocal);
377 }
378
379 /// @}
380 //===--------------------------------------------------------------------===//
381 /// \name Simple mod/ref information
382 /// @{
383
384 /// Get the ModRef info associated with a pointer argument of a call. The
385 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
386 /// that these bits do not necessarily account for the overall behavior of
387 /// the function, but rather only provide additional per-argument
388 /// information. This never sets ModRefInfo::Must.
389 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
390
391 /// Return the behavior of the given call site.
392 FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
393
394 /// Return the behavior when calling the given function.
395 FunctionModRefBehavior getModRefBehavior(const Function *F);
396
397 /// Checks if the specified call is known to never read or write memory.
398 ///
399 /// Note that if the call only reads from known-constant memory, it is also
400 /// legal to return true. Also, calls that unwind the stack are legal for
401 /// this predicate.
402 ///
403 /// Many optimizations (such as CSE and LICM) can be performed on such calls
404 /// without worrying about aliasing properties, and many calls have this
405 /// property (e.g. calls to 'sin' and 'cos').
406 ///
407 /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const CallBase * Call)408 bool doesNotAccessMemory(const CallBase *Call) {
409 return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
410 }
411
412 /// Checks if the specified function is known to never read or write memory.
413 ///
414 /// Note that if the function only reads from known-constant memory, it is
415 /// also legal to return true. Also, function that unwind the stack are legal
416 /// for this predicate.
417 ///
418 /// Many optimizations (such as CSE and LICM) can be performed on such calls
419 /// to such functions without worrying about aliasing properties, and many
420 /// functions have this property (e.g. 'sin' and 'cos').
421 ///
422 /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const Function * F)423 bool doesNotAccessMemory(const Function *F) {
424 return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
425 }
426
427 /// Checks if the specified call is known to only read from non-volatile
428 /// memory (or not access memory at all).
429 ///
430 /// Calls that unwind the stack are legal for this predicate.
431 ///
432 /// This property allows many common optimizations to be performed in the
433 /// absence of interfering store instructions, such as CSE of strlen calls.
434 ///
435 /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const CallBase * Call)436 bool onlyReadsMemory(const CallBase *Call) {
437 return onlyReadsMemory(getModRefBehavior(Call));
438 }
439
440 /// Checks if the specified function is known to only read from non-volatile
441 /// memory (or not access memory at all).
442 ///
443 /// Functions that unwind the stack are legal for this predicate.
444 ///
445 /// This property allows many common optimizations to be performed in the
446 /// absence of interfering store instructions, such as CSE of strlen calls.
447 ///
448 /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const Function * F)449 bool onlyReadsMemory(const Function *F) {
450 return onlyReadsMemory(getModRefBehavior(F));
451 }
452
453 /// Checks if functions with the specified behavior are known to only read
454 /// from non-volatile memory (or not access memory at all).
onlyReadsMemory(FunctionModRefBehavior MRB)455 static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
456 return !isModSet(createModRefInfo(MRB));
457 }
458
459 /// Checks if functions with the specified behavior are known to only write
460 /// memory (or not access memory at all).
doesNotReadMemory(FunctionModRefBehavior MRB)461 static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
462 return !isRefSet(createModRefInfo(MRB));
463 }
464
465 /// Checks if functions with the specified behavior are known to read and
466 /// write at most from objects pointed to by their pointer-typed arguments
467 /// (with arbitrary offsets).
onlyAccessesArgPointees(FunctionModRefBehavior MRB)468 static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
469 return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
470 }
471
472 /// Checks if functions with the specified behavior are known to potentially
473 /// read or write from objects pointed to be their pointer-typed arguments
474 /// (with arbitrary offsets).
doesAccessArgPointees(FunctionModRefBehavior MRB)475 static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
476 return isModOrRefSet(createModRefInfo(MRB)) &&
477 (MRB & FMRL_ArgumentPointees);
478 }
479
480 /// Checks if functions with the specified behavior are known to read and
481 /// write at most from memory that is inaccessible from LLVM IR.
onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB)482 static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
483 return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
484 }
485
486 /// Checks if functions with the specified behavior are known to potentially
487 /// read or write from memory that is inaccessible from LLVM IR.
doesAccessInaccessibleMem(FunctionModRefBehavior MRB)488 static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
489 return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem);
490 }
491
492 /// Checks if functions with the specified behavior are known to read and
493 /// write at most from memory that is inaccessible from LLVM IR or objects
494 /// pointed to by their pointer-typed arguments (with arbitrary offsets).
onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB)495 static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
496 return !(MRB & FMRL_Anywhere &
497 ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
498 }
499
500 /// getModRefInfo (for call sites) - Return information about whether
501 /// a particular call site modifies or reads the specified memory location.
502 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
503
504 /// getModRefInfo (for call sites) - A convenience wrapper.
getModRefInfo(const CallBase * Call,const Value * P,LocationSize Size)505 ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
506 LocationSize Size) {
507 return getModRefInfo(Call, MemoryLocation(P, Size));
508 }
509
510 /// getModRefInfo (for loads) - Return information about whether
511 /// a particular load modifies or reads the specified memory location.
512 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
513
514 /// getModRefInfo (for loads) - A convenience wrapper.
getModRefInfo(const LoadInst * L,const Value * P,LocationSize Size)515 ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
516 LocationSize Size) {
517 return getModRefInfo(L, MemoryLocation(P, Size));
518 }
519
520 /// getModRefInfo (for stores) - Return information about whether
521 /// a particular store modifies or reads the specified memory location.
522 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
523
524 /// getModRefInfo (for stores) - A convenience wrapper.
getModRefInfo(const StoreInst * S,const Value * P,LocationSize Size)525 ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
526 LocationSize Size) {
527 return getModRefInfo(S, MemoryLocation(P, Size));
528 }
529
530 /// getModRefInfo (for fences) - Return information about whether
531 /// a particular store modifies or reads the specified memory location.
532 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
533
534 /// getModRefInfo (for fences) - A convenience wrapper.
getModRefInfo(const FenceInst * S,const Value * P,LocationSize Size)535 ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
536 LocationSize Size) {
537 return getModRefInfo(S, MemoryLocation(P, Size));
538 }
539
540 /// getModRefInfo (for cmpxchges) - Return information about whether
541 /// a particular cmpxchg modifies or reads the specified memory location.
542 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
543 const MemoryLocation &Loc);
544
545 /// getModRefInfo (for cmpxchges) - A convenience wrapper.
getModRefInfo(const AtomicCmpXchgInst * CX,const Value * P,LocationSize Size)546 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
547 LocationSize Size) {
548 return getModRefInfo(CX, MemoryLocation(P, Size));
549 }
550
551 /// getModRefInfo (for atomicrmws) - Return information about whether
552 /// a particular atomicrmw modifies or reads the specified memory location.
553 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
554
555 /// getModRefInfo (for atomicrmws) - A convenience wrapper.
getModRefInfo(const AtomicRMWInst * RMW,const Value * P,LocationSize Size)556 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
557 LocationSize Size) {
558 return getModRefInfo(RMW, MemoryLocation(P, Size));
559 }
560
561 /// getModRefInfo (for va_args) - Return information about whether
562 /// a particular va_arg modifies or reads the specified memory location.
563 ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
564
565 /// getModRefInfo (for va_args) - A convenience wrapper.
getModRefInfo(const VAArgInst * I,const Value * P,LocationSize Size)566 ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
567 LocationSize Size) {
568 return getModRefInfo(I, MemoryLocation(P, Size));
569 }
570
571 /// getModRefInfo (for catchpads) - Return information about whether
572 /// a particular catchpad modifies or reads the specified memory location.
573 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
574
575 /// getModRefInfo (for catchpads) - A convenience wrapper.
getModRefInfo(const CatchPadInst * I,const Value * P,LocationSize Size)576 ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
577 LocationSize Size) {
578 return getModRefInfo(I, MemoryLocation(P, Size));
579 }
580
581 /// getModRefInfo (for catchrets) - Return information about whether
582 /// a particular catchret modifies or reads the specified memory location.
583 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
584
585 /// getModRefInfo (for catchrets) - A convenience wrapper.
getModRefInfo(const CatchReturnInst * I,const Value * P,LocationSize Size)586 ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
587 LocationSize Size) {
588 return getModRefInfo(I, MemoryLocation(P, Size));
589 }
590
591 /// Check whether or not an instruction may read or write the optionally
592 /// specified memory location.
593 ///
594 ///
595 /// An instruction that doesn't read or write memory may be trivially LICM'd
596 /// for example.
597 ///
598 /// For function calls, this delegates to the alias-analysis specific
599 /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
600 /// helpers above.
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc)601 ModRefInfo getModRefInfo(const Instruction *I,
602 const Optional<MemoryLocation> &OptLoc) {
603 if (OptLoc == None) {
604 if (const auto *Call = dyn_cast<CallBase>(I)) {
605 return createModRefInfo(getModRefBehavior(Call));
606 }
607 }
608
609 const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
610
611 switch (I->getOpcode()) {
612 case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
613 case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
614 case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
615 case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
616 case Instruction::AtomicCmpXchg:
617 return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
618 case Instruction::AtomicRMW:
619 return getModRefInfo((const AtomicRMWInst*)I, Loc);
620 case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
621 case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
622 case Instruction::CatchPad:
623 return getModRefInfo((const CatchPadInst *)I, Loc);
624 case Instruction::CatchRet:
625 return getModRefInfo((const CatchReturnInst *)I, Loc);
626 default:
627 return ModRefInfo::NoModRef;
628 }
629 }
630
631 /// A convenience wrapper for constructing the memory location.
getModRefInfo(const Instruction * I,const Value * P,LocationSize Size)632 ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
633 LocationSize Size) {
634 return getModRefInfo(I, MemoryLocation(P, Size));
635 }
636
637 /// Return information about whether a call and an instruction may refer to
638 /// the same memory locations.
639 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
640
641 /// Return information about whether two call sites may refer to the same set
642 /// of memory locations. See the AA documentation for details:
643 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
644 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
645
646 /// Return information about whether a particular call site modifies
647 /// or reads the specified memory location \p MemLoc before instruction \p I
648 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
649 /// instruction ordering queries inside the BasicBlock containing \p I.
650 /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
651 /// set.
652 ModRefInfo callCapturesBefore(const Instruction *I,
653 const MemoryLocation &MemLoc, DominatorTree *DT,
654 OrderedBasicBlock *OBB = nullptr);
655
656 /// A convenience wrapper to synthesize a memory location.
657 ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
658 LocationSize Size, DominatorTree *DT,
659 OrderedBasicBlock *OBB = nullptr) {
660 return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
661 }
662
663 /// @}
664 //===--------------------------------------------------------------------===//
665 /// \name Higher level methods for querying mod/ref information.
666 /// @{
667
668 /// Check if it is possible for execution of the specified basic block to
669 /// modify the location Loc.
670 bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
671
672 /// A convenience wrapper synthesizing a memory location.
canBasicBlockModify(const BasicBlock & BB,const Value * P,LocationSize Size)673 bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
674 LocationSize Size) {
675 return canBasicBlockModify(BB, MemoryLocation(P, Size));
676 }
677
678 /// Check if it is possible for the execution of the specified instructions
679 /// to mod\ref (according to the mode) the location Loc.
680 ///
681 /// The instructions to consider are all of the instructions in the range of
682 /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
683 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
684 const MemoryLocation &Loc,
685 const ModRefInfo Mode);
686
687 /// A convenience wrapper synthesizing a memory location.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const Value * Ptr,LocationSize Size,const ModRefInfo Mode)688 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
689 const Value *Ptr, LocationSize Size,
690 const ModRefInfo Mode) {
691 return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
692 }
693
694 private:
695 class Concept;
696
697 template <typename T> class Model;
698
699 template <typename T> friend class AAResultBase;
700
701 const TargetLibraryInfo &TLI;
702
703 std::vector<std::unique_ptr<Concept>> AAs;
704
705 std::vector<AnalysisKey *> AADeps;
706 };
707
708 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
709 /// pointer or reference.
710 using AliasAnalysis = AAResults;
711
712 /// A private abstract base class describing the concept of an individual alias
713 /// analysis implementation.
714 ///
715 /// This interface is implemented by any \c Model instantiation. It is also the
716 /// interface which a type used to instantiate the model must provide.
717 ///
718 /// All of these methods model methods by the same name in the \c
719 /// AAResults class. Only differences and specifics to how the
720 /// implementations are called are documented here.
721 class AAResults::Concept {
722 public:
723 virtual ~Concept() = 0;
724
725 /// An update API used internally by the AAResults to provide
726 /// a handle back to the top level aggregation.
727 virtual void setAAResults(AAResults *NewAAR) = 0;
728
729 //===--------------------------------------------------------------------===//
730 /// \name Alias Queries
731 /// @{
732
733 /// The main low level interface to the alias analysis implementation.
734 /// Returns an AliasResult indicating whether the two pointers are aliased to
735 /// each other. This is the interface that must be implemented by specific
736 /// alias analysis implementations.
737 virtual AliasResult alias(const MemoryLocation &LocA,
738 const MemoryLocation &LocB) = 0;
739
740 /// Checks whether the given location points to constant memory, or if
741 /// \p OrLocal is true whether it points to a local alloca.
742 virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
743 bool OrLocal) = 0;
744
745 /// @}
746 //===--------------------------------------------------------------------===//
747 /// \name Simple mod/ref information
748 /// @{
749
750 /// Get the ModRef info associated with a pointer argument of a callsite. The
751 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
752 /// that these bits do not necessarily account for the overall behavior of
753 /// the function, but rather only provide additional per-argument
754 /// information.
755 virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
756 unsigned ArgIdx) = 0;
757
758 /// Return the behavior of the given call site.
759 virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
760
761 /// Return the behavior when calling the given function.
762 virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
763
764 /// getModRefInfo (for call sites) - Return information about whether
765 /// a particular call site modifies or reads the specified memory location.
766 virtual ModRefInfo getModRefInfo(const CallBase *Call,
767 const MemoryLocation &Loc) = 0;
768
769 /// Return information about whether two call sites may refer to the same set
770 /// of memory locations. See the AA documentation for details:
771 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
772 virtual ModRefInfo getModRefInfo(const CallBase *Call1,
773 const CallBase *Call2) = 0;
774
775 /// @}
776 };
777
778 /// A private class template which derives from \c Concept and wraps some other
779 /// type.
780 ///
781 /// This models the concept by directly forwarding each interface point to the
782 /// wrapped type which must implement a compatible interface. This provides
783 /// a type erased binding.
784 template <typename AAResultT> class AAResults::Model final : public Concept {
785 AAResultT &Result;
786
787 public:
Model(AAResultT & Result,AAResults & AAR)788 explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
789 Result.setAAResults(&AAR);
790 }
791 ~Model() override = default;
792
setAAResults(AAResults * NewAAR)793 void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
794
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)795 AliasResult alias(const MemoryLocation &LocA,
796 const MemoryLocation &LocB) override {
797 return Result.alias(LocA, LocB);
798 }
799
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)800 bool pointsToConstantMemory(const MemoryLocation &Loc,
801 bool OrLocal) override {
802 return Result.pointsToConstantMemory(Loc, OrLocal);
803 }
804
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)805 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
806 return Result.getArgModRefInfo(Call, ArgIdx);
807 }
808
getModRefBehavior(const CallBase * Call)809 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
810 return Result.getModRefBehavior(Call);
811 }
812
getModRefBehavior(const Function * F)813 FunctionModRefBehavior getModRefBehavior(const Function *F) override {
814 return Result.getModRefBehavior(F);
815 }
816
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc)817 ModRefInfo getModRefInfo(const CallBase *Call,
818 const MemoryLocation &Loc) override {
819 return Result.getModRefInfo(Call, Loc);
820 }
821
getModRefInfo(const CallBase * Call1,const CallBase * Call2)822 ModRefInfo getModRefInfo(const CallBase *Call1,
823 const CallBase *Call2) override {
824 return Result.getModRefInfo(Call1, Call2);
825 }
826 };
827
828 /// A CRTP-driven "mixin" base class to help implement the function alias
829 /// analysis results concept.
830 ///
831 /// Because of the nature of many alias analysis implementations, they often
832 /// only implement a subset of the interface. This base class will attempt to
833 /// implement the remaining portions of the interface in terms of simpler forms
834 /// of the interface where possible, and otherwise provide conservatively
835 /// correct fallback implementations.
836 ///
837 /// Implementors of an alias analysis should derive from this CRTP, and then
838 /// override specific methods that they wish to customize. There is no need to
839 /// use virtual anywhere, the CRTP base class does static dispatch to the
840 /// derived type passed into it.
841 template <typename DerivedT> class AAResultBase {
842 // Expose some parts of the interface only to the AAResults::Model
843 // for wrapping. Specifically, this allows the model to call our
844 // setAAResults method without exposing it as a fully public API.
845 friend class AAResults::Model<DerivedT>;
846
847 /// A pointer to the AAResults object that this AAResult is
848 /// aggregated within. May be null if not aggregated.
849 AAResults *AAR;
850
851 /// Helper to dispatch calls back through the derived type.
derived()852 DerivedT &derived() { return static_cast<DerivedT &>(*this); }
853
854 /// A setter for the AAResults pointer, which is used to satisfy the
855 /// AAResults::Model contract.
setAAResults(AAResults * NewAAR)856 void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
857
858 protected:
859 /// This proxy class models a common pattern where we delegate to either the
860 /// top-level \c AAResults aggregation if one is registered, or to the
861 /// current result if none are registered.
862 class AAResultsProxy {
863 AAResults *AAR;
864 DerivedT &CurrentResult;
865
866 public:
AAResultsProxy(AAResults * AAR,DerivedT & CurrentResult)867 AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
868 : AAR(AAR), CurrentResult(CurrentResult) {}
869
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)870 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
871 return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
872 }
873
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)874 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
875 return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
876 : CurrentResult.pointsToConstantMemory(Loc, OrLocal);
877 }
878
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)879 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
880 return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
881 : CurrentResult.getArgModRefInfo(Call, ArgIdx);
882 }
883
getModRefBehavior(const CallBase * Call)884 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
885 return AAR ? AAR->getModRefBehavior(Call)
886 : CurrentResult.getModRefBehavior(Call);
887 }
888
getModRefBehavior(const Function * F)889 FunctionModRefBehavior getModRefBehavior(const Function *F) {
890 return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
891 }
892
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc)893 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
894 return AAR ? AAR->getModRefInfo(Call, Loc)
895 : CurrentResult.getModRefInfo(Call, Loc);
896 }
897
getModRefInfo(const CallBase * Call1,const CallBase * Call2)898 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
899 return AAR ? AAR->getModRefInfo(Call1, Call2)
900 : CurrentResult.getModRefInfo(Call1, Call2);
901 }
902 };
903
904 explicit AAResultBase() = default;
905
906 // Provide all the copy and move constructors so that derived types aren't
907 // constrained.
AAResultBase(const AAResultBase & Arg)908 AAResultBase(const AAResultBase &Arg) {}
AAResultBase(AAResultBase && Arg)909 AAResultBase(AAResultBase &&Arg) {}
910
911 /// Get a proxy for the best AA result set to query at this time.
912 ///
913 /// When this result is part of a larger aggregation, this will proxy to that
914 /// aggregation. When this result is used in isolation, it will just delegate
915 /// back to the derived class's implementation.
916 ///
917 /// Note that callers of this need to take considerable care to not cause
918 /// performance problems when they use this routine, in the case of a large
919 /// number of alias analyses being aggregated, it can be expensive to walk
920 /// back across the chain.
getBestAAResults()921 AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
922
923 public:
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)924 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
925 return MayAlias;
926 }
927
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)928 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
929 return false;
930 }
931
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)932 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
933 return ModRefInfo::ModRef;
934 }
935
getModRefBehavior(const CallBase * Call)936 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
937 return FMRB_UnknownModRefBehavior;
938 }
939
getModRefBehavior(const Function * F)940 FunctionModRefBehavior getModRefBehavior(const Function *F) {
941 return FMRB_UnknownModRefBehavior;
942 }
943
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc)944 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
945 return ModRefInfo::ModRef;
946 }
947
getModRefInfo(const CallBase * Call1,const CallBase * Call2)948 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
949 return ModRefInfo::ModRef;
950 }
951 };
952
953 /// Return true if this pointer is returned by a noalias function.
954 bool isNoAliasCall(const Value *V);
955
956 /// Return true if this is an argument with the noalias attribute.
957 bool isNoAliasArgument(const Value *V);
958
959 /// Return true if this pointer refers to a distinct and identifiable object.
960 /// This returns true for:
961 /// Global Variables and Functions (but not Global Aliases)
962 /// Allocas
963 /// ByVal and NoAlias Arguments
964 /// NoAlias returns (e.g. calls to malloc)
965 ///
966 bool isIdentifiedObject(const Value *V);
967
968 /// Return true if V is umabigously identified at the function-level.
969 /// Different IdentifiedFunctionLocals can't alias.
970 /// Further, an IdentifiedFunctionLocal can not alias with any function
971 /// arguments other than itself, which is not necessarily true for
972 /// IdentifiedObjects.
973 bool isIdentifiedFunctionLocal(const Value *V);
974
975 /// A manager for alias analyses.
976 ///
977 /// This class can have analyses registered with it and when run, it will run
978 /// all of them and aggregate their results into single AA results interface
979 /// that dispatches across all of the alias analysis results available.
980 ///
981 /// Note that the order in which analyses are registered is very significant.
982 /// That is the order in which the results will be aggregated and queried.
983 ///
984 /// This manager effectively wraps the AnalysisManager for registering alias
985 /// analyses. When you register your alias analysis with this manager, it will
986 /// ensure the analysis itself is registered with its AnalysisManager.
987 class AAManager : public AnalysisInfoMixin<AAManager> {
988 public:
989 using Result = AAResults;
990
991 /// Register a specific AA result.
registerFunctionAnalysis()992 template <typename AnalysisT> void registerFunctionAnalysis() {
993 ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
994 }
995
996 /// Register a specific AA result.
registerModuleAnalysis()997 template <typename AnalysisT> void registerModuleAnalysis() {
998 ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
999 }
1000
run(Function & F,FunctionAnalysisManager & AM)1001 Result run(Function &F, FunctionAnalysisManager &AM) {
1002 Result R(AM.getResult<TargetLibraryAnalysis>(F));
1003 for (auto &Getter : ResultGetters)
1004 (*Getter)(F, AM, R);
1005 return R;
1006 }
1007
1008 private:
1009 friend AnalysisInfoMixin<AAManager>;
1010
1011 static AnalysisKey Key;
1012
1013 SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1014 AAResults &AAResults),
1015 4> ResultGetters;
1016
1017 template <typename AnalysisT>
getFunctionAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1018 static void getFunctionAAResultImpl(Function &F,
1019 FunctionAnalysisManager &AM,
1020 AAResults &AAResults) {
1021 AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1022 AAResults.addAADependencyID(AnalysisT::ID());
1023 }
1024
1025 template <typename AnalysisT>
getModuleAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1026 static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1027 AAResults &AAResults) {
1028 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1029 auto &MAM = MAMProxy.getManager();
1030 if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
1031 AAResults.addAAResult(*R);
1032 MAMProxy
1033 .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1034 }
1035 }
1036 };
1037
1038 /// A wrapper pass to provide the legacy pass manager access to a suitably
1039 /// prepared AAResults object.
1040 class AAResultsWrapperPass : public FunctionPass {
1041 std::unique_ptr<AAResults> AAR;
1042
1043 public:
1044 static char ID;
1045
1046 AAResultsWrapperPass();
1047
getAAResults()1048 AAResults &getAAResults() { return *AAR; }
getAAResults()1049 const AAResults &getAAResults() const { return *AAR; }
1050
1051 bool runOnFunction(Function &F) override;
1052
1053 void getAnalysisUsage(AnalysisUsage &AU) const override;
1054 };
1055
1056 /// A wrapper pass for external alias analyses. This just squirrels away the
1057 /// callback used to run any analyses and register their results.
1058 struct ExternalAAWrapperPass : ImmutablePass {
1059 using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1060
1061 CallbackT CB;
1062
1063 static char ID;
1064
ExternalAAWrapperPassExternalAAWrapperPass1065 ExternalAAWrapperPass() : ImmutablePass(ID) {
1066 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
1067 }
1068
ExternalAAWrapperPassExternalAAWrapperPass1069 explicit ExternalAAWrapperPass(CallbackT CB)
1070 : ImmutablePass(ID), CB(std::move(CB)) {
1071 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
1072 }
1073
getAnalysisUsageExternalAAWrapperPass1074 void getAnalysisUsage(AnalysisUsage &AU) const override {
1075 AU.setPreservesAll();
1076 }
1077 };
1078
1079 FunctionPass *createAAResultsWrapperPass();
1080
1081 /// A wrapper pass around a callback which can be used to populate the
1082 /// AAResults in the AAResultsWrapperPass from an external AA.
1083 ///
1084 /// The callback provided here will be used each time we prepare an AAResults
1085 /// object, and will receive a reference to the function wrapper pass, the
1086 /// function, and the AAResults object to populate. This should be used when
1087 /// setting up a custom pass pipeline to inject a hook into the AA results.
1088 ImmutablePass *createExternalAAWrapperPass(
1089 std::function<void(Pass &, Function &, AAResults &)> Callback);
1090
1091 /// A helper for the legacy pass manager to create a \c AAResults
1092 /// object populated to the best of our ability for a particular function when
1093 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1094 ///
1095 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1096 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1097 /// getAnalysisUsage.
1098 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1099
1100 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1101 /// sure the analyses required by \p createLegacyPMAAResults are available.
1102 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1103
1104 } // end namespace llvm
1105
1106 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1107