1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  */
30 
31 /*
32  * The objective of this program is to provide a DMU/ZAP/SPA stress test
33  * that runs entirely in userland, is easy to use, and easy to extend.
34  *
35  * The overall design of the ztest program is as follows:
36  *
37  * (1) For each major functional area (e.g. adding vdevs to a pool,
38  *     creating and destroying datasets, reading and writing objects, etc)
39  *     we have a simple routine to test that functionality.  These
40  *     individual routines do not have to do anything "stressful".
41  *
42  * (2) We turn these simple functionality tests into a stress test by
43  *     running them all in parallel, with as many threads as desired,
44  *     and spread across as many datasets, objects, and vdevs as desired.
45  *
46  * (3) While all this is happening, we inject faults into the pool to
47  *     verify that self-healing data really works.
48  *
49  * (4) Every time we open a dataset, we change its checksum and compression
50  *     functions.  Thus even individual objects vary from block to block
51  *     in which checksum they use and whether they're compressed.
52  *
53  * (5) To verify that we never lose on-disk consistency after a crash,
54  *     we run the entire test in a child of the main process.
55  *     At random times, the child self-immolates with a SIGKILL.
56  *     This is the software equivalent of pulling the power cord.
57  *     The parent then runs the test again, using the existing
58  *     storage pool, as many times as desired. If backwards compatibility
59  *     testing is enabled ztest will sometimes run the "older" version
60  *     of ztest after a SIGKILL.
61  *
62  * (6) To verify that we don't have future leaks or temporal incursions,
63  *     many of the functional tests record the transaction group number
64  *     as part of their data.  When reading old data, they verify that
65  *     the transaction group number is less than the current, open txg.
66  *     If you add a new test, please do this if applicable.
67  *
68  * (7) Threads are created with a reduced stack size, for sanity checking.
69  *     Therefore, it's important not to allocate huge buffers on the stack.
70  *
71  * When run with no arguments, ztest runs for about five minutes and
72  * produces no output if successful.  To get a little bit of information,
73  * specify -V.  To get more information, specify -VV, and so on.
74  *
75  * To turn this into an overnight stress test, use -T to specify run time.
76  *
77  * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78  * to increase the pool capacity, fanout, and overall stress level.
79  *
80  * Use the -k option to set the desired frequency of kills.
81  *
82  * When ztest invokes itself it passes all relevant information through a
83  * temporary file which is mmap-ed in the child process. This allows shared
84  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85  * stored at offset 0 of this file and contains information on the size and
86  * number of shared structures in the file. The information stored in this file
87  * must remain backwards compatible with older versions of ztest so that
88  * ztest can invoke them during backwards compatibility testing (-B).
89  */
90 
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
123 #include <sys/abd.h>
124 #include <stdio.h>
125 #include <stdlib.h>
126 #include <unistd.h>
127 #include <signal.h>
128 #include <umem.h>
129 #include <ctype.h>
130 #include <math.h>
131 #include <sys/fs/zfs.h>
132 #include <zfs_fletcher.h>
133 #include <libnvpair.h>
134 #include <libzutil.h>
135 #include <sys/crypto/icp.h>
136 #ifdef __GLIBC__
137 #include <execinfo.h> /* for backtrace() */
138 #endif
139 
140 static int ztest_fd_data = -1;
141 static int ztest_fd_rand = -1;
142 
143 typedef struct ztest_shared_hdr {
144 	uint64_t	zh_hdr_size;
145 	uint64_t	zh_opts_size;
146 	uint64_t	zh_size;
147 	uint64_t	zh_stats_size;
148 	uint64_t	zh_stats_count;
149 	uint64_t	zh_ds_size;
150 	uint64_t	zh_ds_count;
151 } ztest_shared_hdr_t;
152 
153 static ztest_shared_hdr_t *ztest_shared_hdr;
154 
155 enum ztest_class_state {
156 	ZTEST_VDEV_CLASS_OFF,
157 	ZTEST_VDEV_CLASS_ON,
158 	ZTEST_VDEV_CLASS_RND
159 };
160 
161 typedef struct ztest_shared_opts {
162 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
163 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
164 	char zo_alt_ztest[MAXNAMELEN];
165 	char zo_alt_libpath[MAXNAMELEN];
166 	uint64_t zo_vdevs;
167 	uint64_t zo_vdevtime;
168 	size_t zo_vdev_size;
169 	int zo_ashift;
170 	int zo_mirrors;
171 	int zo_raid_children;
172 	int zo_raid_parity;
173 	char zo_raid_type[8];
174 	int zo_draid_data;
175 	int zo_draid_spares;
176 	int zo_datasets;
177 	int zo_threads;
178 	uint64_t zo_passtime;
179 	uint64_t zo_killrate;
180 	int zo_verbose;
181 	int zo_init;
182 	uint64_t zo_time;
183 	uint64_t zo_maxloops;
184 	uint64_t zo_metaslab_force_ganging;
185 	int zo_mmp_test;
186 	int zo_special_vdevs;
187 	int zo_dump_dbgmsg;
188 } ztest_shared_opts_t;
189 
190 static const ztest_shared_opts_t ztest_opts_defaults = {
191 	.zo_pool = "ztest",
192 	.zo_dir = "/tmp",
193 	.zo_alt_ztest = { '\0' },
194 	.zo_alt_libpath = { '\0' },
195 	.zo_vdevs = 5,
196 	.zo_ashift = SPA_MINBLOCKSHIFT,
197 	.zo_mirrors = 2,
198 	.zo_raid_children = 4,
199 	.zo_raid_parity = 1,
200 	.zo_raid_type = VDEV_TYPE_RAIDZ,
201 	.zo_vdev_size = SPA_MINDEVSIZE * 4,	/* 256m default size */
202 	.zo_draid_data = 4,		/* data drives */
203 	.zo_draid_spares = 1,		/* distributed spares */
204 	.zo_datasets = 7,
205 	.zo_threads = 23,
206 	.zo_passtime = 60,		/* 60 seconds */
207 	.zo_killrate = 70,		/* 70% kill rate */
208 	.zo_verbose = 0,
209 	.zo_mmp_test = 0,
210 	.zo_init = 1,
211 	.zo_time = 300,			/* 5 minutes */
212 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
213 	.zo_metaslab_force_ganging = 64 << 10,
214 	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
215 };
216 
217 extern uint64_t metaslab_force_ganging;
218 extern uint64_t metaslab_df_alloc_threshold;
219 extern unsigned long zfs_deadman_synctime_ms;
220 extern int metaslab_preload_limit;
221 extern boolean_t zfs_compressed_arc_enabled;
222 extern int zfs_abd_scatter_enabled;
223 extern int dmu_object_alloc_chunk_shift;
224 extern boolean_t zfs_force_some_double_word_sm_entries;
225 extern unsigned long zio_decompress_fail_fraction;
226 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
227 
228 
229 static ztest_shared_opts_t *ztest_shared_opts;
230 static ztest_shared_opts_t ztest_opts;
231 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
232 
233 typedef struct ztest_shared_ds {
234 	uint64_t	zd_seq;
235 } ztest_shared_ds_t;
236 
237 static ztest_shared_ds_t *ztest_shared_ds;
238 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
239 
240 #define	BT_MAGIC	0x123456789abcdefULL
241 #define	MAXFAULTS(zs) \
242 	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
243 
244 enum ztest_io_type {
245 	ZTEST_IO_WRITE_TAG,
246 	ZTEST_IO_WRITE_PATTERN,
247 	ZTEST_IO_WRITE_ZEROES,
248 	ZTEST_IO_TRUNCATE,
249 	ZTEST_IO_SETATTR,
250 	ZTEST_IO_REWRITE,
251 	ZTEST_IO_TYPES
252 };
253 
254 typedef struct ztest_block_tag {
255 	uint64_t	bt_magic;
256 	uint64_t	bt_objset;
257 	uint64_t	bt_object;
258 	uint64_t	bt_dnodesize;
259 	uint64_t	bt_offset;
260 	uint64_t	bt_gen;
261 	uint64_t	bt_txg;
262 	uint64_t	bt_crtxg;
263 } ztest_block_tag_t;
264 
265 typedef struct bufwad {
266 	uint64_t	bw_index;
267 	uint64_t	bw_txg;
268 	uint64_t	bw_data;
269 } bufwad_t;
270 
271 /*
272  * It would be better to use a rangelock_t per object.  Unfortunately
273  * the rangelock_t is not a drop-in replacement for rl_t, because we
274  * still need to map from object ID to rangelock_t.
275  */
276 typedef enum {
277 	RL_READER,
278 	RL_WRITER,
279 	RL_APPEND
280 } rl_type_t;
281 
282 typedef struct rll {
283 	void		*rll_writer;
284 	int		rll_readers;
285 	kmutex_t	rll_lock;
286 	kcondvar_t	rll_cv;
287 } rll_t;
288 
289 typedef struct rl {
290 	uint64_t	rl_object;
291 	uint64_t	rl_offset;
292 	uint64_t	rl_size;
293 	rll_t		*rl_lock;
294 } rl_t;
295 
296 #define	ZTEST_RANGE_LOCKS	64
297 #define	ZTEST_OBJECT_LOCKS	64
298 
299 /*
300  * Object descriptor.  Used as a template for object lookup/create/remove.
301  */
302 typedef struct ztest_od {
303 	uint64_t	od_dir;
304 	uint64_t	od_object;
305 	dmu_object_type_t od_type;
306 	dmu_object_type_t od_crtype;
307 	uint64_t	od_blocksize;
308 	uint64_t	od_crblocksize;
309 	uint64_t	od_crdnodesize;
310 	uint64_t	od_gen;
311 	uint64_t	od_crgen;
312 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
313 } ztest_od_t;
314 
315 /*
316  * Per-dataset state.
317  */
318 typedef struct ztest_ds {
319 	ztest_shared_ds_t *zd_shared;
320 	objset_t	*zd_os;
321 	pthread_rwlock_t zd_zilog_lock;
322 	zilog_t		*zd_zilog;
323 	ztest_od_t	*zd_od;		/* debugging aid */
324 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
325 	kmutex_t	zd_dirobj_lock;
326 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
327 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
328 } ztest_ds_t;
329 
330 /*
331  * Per-iteration state.
332  */
333 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
334 
335 typedef struct ztest_info {
336 	ztest_func_t	*zi_func;	/* test function */
337 	uint64_t	zi_iters;	/* iterations per execution */
338 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
339 	const char	*zi_funcname;	/* name of test function */
340 } ztest_info_t;
341 
342 typedef struct ztest_shared_callstate {
343 	uint64_t	zc_count;	/* per-pass count */
344 	uint64_t	zc_time;	/* per-pass time */
345 	uint64_t	zc_next;	/* next time to call this function */
346 } ztest_shared_callstate_t;
347 
348 static ztest_shared_callstate_t *ztest_shared_callstate;
349 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
350 
351 ztest_func_t ztest_dmu_read_write;
352 ztest_func_t ztest_dmu_write_parallel;
353 ztest_func_t ztest_dmu_object_alloc_free;
354 ztest_func_t ztest_dmu_object_next_chunk;
355 ztest_func_t ztest_dmu_commit_callbacks;
356 ztest_func_t ztest_zap;
357 ztest_func_t ztest_zap_parallel;
358 ztest_func_t ztest_zil_commit;
359 ztest_func_t ztest_zil_remount;
360 ztest_func_t ztest_dmu_read_write_zcopy;
361 ztest_func_t ztest_dmu_objset_create_destroy;
362 ztest_func_t ztest_dmu_prealloc;
363 ztest_func_t ztest_fzap;
364 ztest_func_t ztest_dmu_snapshot_create_destroy;
365 ztest_func_t ztest_dsl_prop_get_set;
366 ztest_func_t ztest_spa_prop_get_set;
367 ztest_func_t ztest_spa_create_destroy;
368 ztest_func_t ztest_fault_inject;
369 ztest_func_t ztest_dmu_snapshot_hold;
370 ztest_func_t ztest_mmp_enable_disable;
371 ztest_func_t ztest_scrub;
372 ztest_func_t ztest_dsl_dataset_promote_busy;
373 ztest_func_t ztest_vdev_attach_detach;
374 ztest_func_t ztest_vdev_LUN_growth;
375 ztest_func_t ztest_vdev_add_remove;
376 ztest_func_t ztest_vdev_class_add;
377 ztest_func_t ztest_vdev_aux_add_remove;
378 ztest_func_t ztest_split_pool;
379 ztest_func_t ztest_reguid;
380 ztest_func_t ztest_spa_upgrade;
381 ztest_func_t ztest_device_removal;
382 ztest_func_t ztest_spa_checkpoint_create_discard;
383 ztest_func_t ztest_initialize;
384 ztest_func_t ztest_trim;
385 ztest_func_t ztest_fletcher;
386 ztest_func_t ztest_fletcher_incr;
387 ztest_func_t ztest_verify_dnode_bt;
388 
389 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
390 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
391 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
392 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
393 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
394 
395 #define	ZTI_INIT(func, iters, interval) \
396 	{   .zi_func = (func), \
397 	    .zi_iters = (iters), \
398 	    .zi_interval = (interval), \
399 	    .zi_funcname = # func }
400 
401 ztest_info_t ztest_info[] = {
402 	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
403 	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
404 	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
405 	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
406 	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
407 	ZTI_INIT(ztest_zap, 30, &zopt_always),
408 	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
409 	ZTI_INIT(ztest_split_pool, 1, &zopt_always),
410 	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
411 	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
412 	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
413 	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
414 	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
415 	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
416 #if 0
417 	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
418 #endif
419 	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
420 	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
421 	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
422 	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
423 	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
424 	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
425 	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
426 	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
427 	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
428 	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
429 	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
430 	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
431 	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
432 	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
433 	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
434 	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
435 	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
436 	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
437 	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
438 	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
439 	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
440 	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
441 };
442 
443 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
444 
445 /*
446  * The following struct is used to hold a list of uncalled commit callbacks.
447  * The callbacks are ordered by txg number.
448  */
449 typedef struct ztest_cb_list {
450 	kmutex_t	zcl_callbacks_lock;
451 	list_t		zcl_callbacks;
452 } ztest_cb_list_t;
453 
454 /*
455  * Stuff we need to share writably between parent and child.
456  */
457 typedef struct ztest_shared {
458 	boolean_t	zs_do_init;
459 	hrtime_t	zs_proc_start;
460 	hrtime_t	zs_proc_stop;
461 	hrtime_t	zs_thread_start;
462 	hrtime_t	zs_thread_stop;
463 	hrtime_t	zs_thread_kill;
464 	uint64_t	zs_enospc_count;
465 	uint64_t	zs_vdev_next_leaf;
466 	uint64_t	zs_vdev_aux;
467 	uint64_t	zs_alloc;
468 	uint64_t	zs_space;
469 	uint64_t	zs_splits;
470 	uint64_t	zs_mirrors;
471 	uint64_t	zs_metaslab_sz;
472 	uint64_t	zs_metaslab_df_alloc_threshold;
473 	uint64_t	zs_guid;
474 } ztest_shared_t;
475 
476 #define	ID_PARALLEL	-1ULL
477 
478 static char ztest_dev_template[] = "%s/%s.%llua";
479 static char ztest_aux_template[] = "%s/%s.%s.%llu";
480 ztest_shared_t *ztest_shared;
481 
482 static spa_t *ztest_spa = NULL;
483 static ztest_ds_t *ztest_ds;
484 
485 static kmutex_t ztest_vdev_lock;
486 static boolean_t ztest_device_removal_active = B_FALSE;
487 static boolean_t ztest_pool_scrubbed = B_FALSE;
488 static kmutex_t ztest_checkpoint_lock;
489 
490 /*
491  * The ztest_name_lock protects the pool and dataset namespace used by
492  * the individual tests. To modify the namespace, consumers must grab
493  * this lock as writer. Grabbing the lock as reader will ensure that the
494  * namespace does not change while the lock is held.
495  */
496 static pthread_rwlock_t ztest_name_lock;
497 
498 static boolean_t ztest_dump_core = B_TRUE;
499 static boolean_t ztest_exiting;
500 
501 /* Global commit callback list */
502 static ztest_cb_list_t zcl;
503 /* Commit cb delay */
504 static uint64_t zc_min_txg_delay = UINT64_MAX;
505 static int zc_cb_counter = 0;
506 
507 /*
508  * Minimum number of commit callbacks that need to be registered for us to check
509  * whether the minimum txg delay is acceptable.
510  */
511 #define	ZTEST_COMMIT_CB_MIN_REG	100
512 
513 /*
514  * If a number of txgs equal to this threshold have been created after a commit
515  * callback has been registered but not called, then we assume there is an
516  * implementation bug.
517  */
518 #define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
519 
520 enum ztest_object {
521 	ZTEST_META_DNODE = 0,
522 	ZTEST_DIROBJ,
523 	ZTEST_OBJECTS
524 };
525 
526 static void usage(boolean_t) __NORETURN;
527 static int ztest_scrub_impl(spa_t *spa);
528 
529 /*
530  * These libumem hooks provide a reasonable set of defaults for the allocator's
531  * debugging facilities.
532  */
533 const char *
_umem_debug_init(void)534 _umem_debug_init(void)
535 {
536 	return ("default,verbose"); /* $UMEM_DEBUG setting */
537 }
538 
539 const char *
_umem_logging_init(void)540 _umem_logging_init(void)
541 {
542 	return ("fail,contents"); /* $UMEM_LOGGING setting */
543 }
544 
545 static void
dump_debug_buffer(void)546 dump_debug_buffer(void)
547 {
548 	ssize_t ret __attribute__((unused));
549 
550 	if (!ztest_opts.zo_dump_dbgmsg)
551 		return;
552 
553 	/*
554 	 * We use write() instead of printf() so that this function
555 	 * is safe to call from a signal handler.
556 	 */
557 	ret = write(STDOUT_FILENO, "\n", 1);
558 	zfs_dbgmsg_print("ztest");
559 }
560 
561 #define	BACKTRACE_SZ	100
562 
sig_handler(int signo)563 static void sig_handler(int signo)
564 {
565 	struct sigaction action;
566 #ifdef __GLIBC__ /* backtrace() is a GNU extension */
567 	int nptrs;
568 	void *buffer[BACKTRACE_SZ];
569 
570 	nptrs = backtrace(buffer, BACKTRACE_SZ);
571 	backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
572 #endif
573 	dump_debug_buffer();
574 
575 	/*
576 	 * Restore default action and re-raise signal so SIGSEGV and
577 	 * SIGABRT can trigger a core dump.
578 	 */
579 	action.sa_handler = SIG_DFL;
580 	sigemptyset(&action.sa_mask);
581 	action.sa_flags = 0;
582 	(void) sigaction(signo, &action, NULL);
583 	raise(signo);
584 }
585 
586 #define	FATAL_MSG_SZ	1024
587 
588 char *fatal_msg;
589 
590 static void
fatal(int do_perror,char * message,...)591 fatal(int do_perror, char *message, ...)
592 {
593 	va_list args;
594 	int save_errno = errno;
595 	char *buf;
596 
597 	(void) fflush(stdout);
598 	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
599 
600 	va_start(args, message);
601 	(void) sprintf(buf, "ztest: ");
602 	/* LINTED */
603 	(void) vsprintf(buf + strlen(buf), message, args);
604 	va_end(args);
605 	if (do_perror) {
606 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
607 		    ": %s", strerror(save_errno));
608 	}
609 	(void) fprintf(stderr, "%s\n", buf);
610 	fatal_msg = buf;			/* to ease debugging */
611 
612 	if (ztest_dump_core)
613 		abort();
614 	else
615 		dump_debug_buffer();
616 
617 	exit(3);
618 }
619 
620 static int
str2shift(const char * buf)621 str2shift(const char *buf)
622 {
623 	const char *ends = "BKMGTPEZ";
624 	int i;
625 
626 	if (buf[0] == '\0')
627 		return (0);
628 	for (i = 0; i < strlen(ends); i++) {
629 		if (toupper(buf[0]) == ends[i])
630 			break;
631 	}
632 	if (i == strlen(ends)) {
633 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
634 		    buf);
635 		usage(B_FALSE);
636 	}
637 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
638 		return (10*i);
639 	}
640 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
641 	usage(B_FALSE);
642 	/* NOTREACHED */
643 }
644 
645 static uint64_t
nicenumtoull(const char * buf)646 nicenumtoull(const char *buf)
647 {
648 	char *end;
649 	uint64_t val;
650 
651 	val = strtoull(buf, &end, 0);
652 	if (end == buf) {
653 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
654 		usage(B_FALSE);
655 	} else if (end[0] == '.') {
656 		double fval = strtod(buf, &end);
657 		fval *= pow(2, str2shift(end));
658 		/*
659 		 * UINT64_MAX is not exactly representable as a double.
660 		 * The closest representation is UINT64_MAX + 1, so we
661 		 * use a >= comparison instead of > for the bounds check.
662 		 */
663 		if (fval >= (double)UINT64_MAX) {
664 			(void) fprintf(stderr, "ztest: value too large: %s\n",
665 			    buf);
666 			usage(B_FALSE);
667 		}
668 		val = (uint64_t)fval;
669 	} else {
670 		int shift = str2shift(end);
671 		if (shift >= 64 || (val << shift) >> shift != val) {
672 			(void) fprintf(stderr, "ztest: value too large: %s\n",
673 			    buf);
674 			usage(B_FALSE);
675 		}
676 		val <<= shift;
677 	}
678 	return (val);
679 }
680 
681 static void
usage(boolean_t requested)682 usage(boolean_t requested)
683 {
684 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
685 
686 	char nice_vdev_size[NN_NUMBUF_SZ];
687 	char nice_force_ganging[NN_NUMBUF_SZ];
688 	FILE *fp = requested ? stdout : stderr;
689 
690 	nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
691 	nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging,
692 	    sizeof (nice_force_ganging));
693 
694 	(void) fprintf(fp, "Usage: %s\n"
695 	    "\t[-v vdevs (default: %llu)]\n"
696 	    "\t[-s size_of_each_vdev (default: %s)]\n"
697 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
698 	    "\t[-m mirror_copies (default: %d)]\n"
699 	    "\t[-r raidz_disks / draid_disks (default: %d)]\n"
700 	    "\t[-R raid_parity (default: %d)]\n"
701 	    "\t[-K raid_kind (default: random)] raidz|draid|random\n"
702 	    "\t[-D draid_data (default: %d)] in config\n"
703 	    "\t[-S draid_spares (default: %d)]\n"
704 	    "\t[-d datasets (default: %d)]\n"
705 	    "\t[-t threads (default: %d)]\n"
706 	    "\t[-g gang_block_threshold (default: %s)]\n"
707 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
708 	    "\t[-k kill_percentage (default: %llu%%)]\n"
709 	    "\t[-p pool_name (default: %s)]\n"
710 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
711 	    "\t[-M] Multi-host simulate pool imported on remote host\n"
712 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
713 	    "\t[-E] use existing pool instead of creating new one\n"
714 	    "\t[-T time (default: %llu sec)] total run time\n"
715 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
716 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
717 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
718 	    "\t[-C vdev class state (default: random)] special=on|off|random\n"
719 	    "\t[-o variable=value] ... set global variable to an unsigned\n"
720 	    "\t    32-bit integer value\n"
721 	    "\t[-G dump zfs_dbgmsg buffer before exiting due to an error\n"
722 	    "\t[-h] (print help)\n"
723 	    "",
724 	    zo->zo_pool,
725 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
726 	    nice_vdev_size,				/* -s */
727 	    zo->zo_ashift,				/* -a */
728 	    zo->zo_mirrors,				/* -m */
729 	    zo->zo_raid_children,			/* -r */
730 	    zo->zo_raid_parity,				/* -R */
731 	    zo->zo_draid_data,				/* -D */
732 	    zo->zo_draid_spares,			/* -S */
733 	    zo->zo_datasets,				/* -d */
734 	    zo->zo_threads,				/* -t */
735 	    nice_force_ganging,				/* -g */
736 	    zo->zo_init,				/* -i */
737 	    (u_longlong_t)zo->zo_killrate,		/* -k */
738 	    zo->zo_pool,				/* -p */
739 	    zo->zo_dir,					/* -f */
740 	    (u_longlong_t)zo->zo_time,			/* -T */
741 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
742 	    (u_longlong_t)zo->zo_passtime);
743 	exit(requested ? 0 : 1);
744 }
745 
746 static uint64_t
ztest_random(uint64_t range)747 ztest_random(uint64_t range)
748 {
749 	uint64_t r;
750 
751 	ASSERT3S(ztest_fd_rand, >=, 0);
752 
753 	if (range == 0)
754 		return (0);
755 
756 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
757 		fatal(1, "short read from /dev/urandom");
758 
759 	return (r % range);
760 }
761 
762 static void
ztest_parse_name_value(const char * input,ztest_shared_opts_t * zo)763 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
764 {
765 	char name[32];
766 	char *value;
767 	int state = ZTEST_VDEV_CLASS_RND;
768 
769 	(void) strlcpy(name, input, sizeof (name));
770 
771 	value = strchr(name, '=');
772 	if (value == NULL) {
773 		(void) fprintf(stderr, "missing value in property=value "
774 		    "'-C' argument (%s)\n", input);
775 		usage(B_FALSE);
776 	}
777 	*(value) = '\0';
778 	value++;
779 
780 	if (strcmp(value, "on") == 0) {
781 		state = ZTEST_VDEV_CLASS_ON;
782 	} else if (strcmp(value, "off") == 0) {
783 		state = ZTEST_VDEV_CLASS_OFF;
784 	} else if (strcmp(value, "random") == 0) {
785 		state = ZTEST_VDEV_CLASS_RND;
786 	} else {
787 		(void) fprintf(stderr, "invalid property value '%s'\n", value);
788 		usage(B_FALSE);
789 	}
790 
791 	if (strcmp(name, "special") == 0) {
792 		zo->zo_special_vdevs = state;
793 	} else {
794 		(void) fprintf(stderr, "invalid property name '%s'\n", name);
795 		usage(B_FALSE);
796 	}
797 	if (zo->zo_verbose >= 3)
798 		(void) printf("%s vdev state is '%s'\n", name, value);
799 }
800 
801 static void
process_options(int argc,char ** argv)802 process_options(int argc, char **argv)
803 {
804 	char *path;
805 	ztest_shared_opts_t *zo = &ztest_opts;
806 
807 	int opt;
808 	uint64_t value;
809 	char altdir[MAXNAMELEN] = { 0 };
810 	char raid_kind[8] = { "random" };
811 
812 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
813 
814 	while ((opt = getopt(argc, argv,
815 	    "v:s:a:m:r:R:K:D:S:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:G")) != EOF) {
816 		value = 0;
817 		switch (opt) {
818 		case 'v':
819 		case 's':
820 		case 'a':
821 		case 'm':
822 		case 'r':
823 		case 'R':
824 		case 'D':
825 		case 'S':
826 		case 'd':
827 		case 't':
828 		case 'g':
829 		case 'i':
830 		case 'k':
831 		case 'T':
832 		case 'P':
833 		case 'F':
834 			value = nicenumtoull(optarg);
835 		}
836 		switch (opt) {
837 		case 'v':
838 			zo->zo_vdevs = value;
839 			break;
840 		case 's':
841 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
842 			break;
843 		case 'a':
844 			zo->zo_ashift = value;
845 			break;
846 		case 'm':
847 			zo->zo_mirrors = value;
848 			break;
849 		case 'r':
850 			zo->zo_raid_children = MAX(1, value);
851 			break;
852 		case 'R':
853 			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
854 			break;
855 		case 'K':
856 			(void) strlcpy(raid_kind, optarg, sizeof (raid_kind));
857 			break;
858 		case 'D':
859 			zo->zo_draid_data = MAX(1, value);
860 			break;
861 		case 'S':
862 			zo->zo_draid_spares = MAX(1, value);
863 			break;
864 		case 'd':
865 			zo->zo_datasets = MAX(1, value);
866 			break;
867 		case 't':
868 			zo->zo_threads = MAX(1, value);
869 			break;
870 		case 'g':
871 			zo->zo_metaslab_force_ganging =
872 			    MAX(SPA_MINBLOCKSIZE << 1, value);
873 			break;
874 		case 'i':
875 			zo->zo_init = value;
876 			break;
877 		case 'k':
878 			zo->zo_killrate = value;
879 			break;
880 		case 'p':
881 			(void) strlcpy(zo->zo_pool, optarg,
882 			    sizeof (zo->zo_pool));
883 			break;
884 		case 'f':
885 			path = realpath(optarg, NULL);
886 			if (path == NULL) {
887 				(void) fprintf(stderr, "error: %s: %s\n",
888 				    optarg, strerror(errno));
889 				usage(B_FALSE);
890 			} else {
891 				(void) strlcpy(zo->zo_dir, path,
892 				    sizeof (zo->zo_dir));
893 				free(path);
894 			}
895 			break;
896 		case 'M':
897 			zo->zo_mmp_test = 1;
898 			break;
899 		case 'V':
900 			zo->zo_verbose++;
901 			break;
902 		case 'E':
903 			zo->zo_init = 0;
904 			break;
905 		case 'T':
906 			zo->zo_time = value;
907 			break;
908 		case 'P':
909 			zo->zo_passtime = MAX(1, value);
910 			break;
911 		case 'F':
912 			zo->zo_maxloops = MAX(1, value);
913 			break;
914 		case 'B':
915 			(void) strlcpy(altdir, optarg, sizeof (altdir));
916 			break;
917 		case 'C':
918 			ztest_parse_name_value(optarg, zo);
919 			break;
920 		case 'o':
921 			if (set_global_var(optarg) != 0)
922 				usage(B_FALSE);
923 			break;
924 		case 'G':
925 			zo->zo_dump_dbgmsg = 1;
926 			break;
927 		case 'h':
928 			usage(B_TRUE);
929 			break;
930 		case '?':
931 		default:
932 			usage(B_FALSE);
933 			break;
934 		}
935 	}
936 
937 	/* When raid choice is 'random' add a draid pool 50% of the time */
938 	if (strcmp(raid_kind, "random") == 0) {
939 		(void) strlcpy(raid_kind, (ztest_random(2) == 0) ?
940 		    "draid" : "raidz", sizeof (raid_kind));
941 
942 		if (ztest_opts.zo_verbose >= 3)
943 			(void) printf("choosing RAID type '%s'\n", raid_kind);
944 	}
945 
946 	if (strcmp(raid_kind, "draid") == 0) {
947 		uint64_t min_devsize;
948 
949 		/* With fewer disk use 256M, otherwise 128M is OK */
950 		min_devsize = (ztest_opts.zo_raid_children < 16) ?
951 		    (256ULL << 20) : (128ULL << 20);
952 
953 		/* No top-level mirrors with dRAID for now */
954 		zo->zo_mirrors = 0;
955 
956 		/* Use more appropriate defaults for dRAID */
957 		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
958 			zo->zo_vdevs = 1;
959 		if (zo->zo_raid_children ==
960 		    ztest_opts_defaults.zo_raid_children)
961 			zo->zo_raid_children = 16;
962 		if (zo->zo_ashift < 12)
963 			zo->zo_ashift = 12;
964 		if (zo->zo_vdev_size < min_devsize)
965 			zo->zo_vdev_size = min_devsize;
966 
967 		if (zo->zo_draid_data + zo->zo_raid_parity >
968 		    zo->zo_raid_children - zo->zo_draid_spares) {
969 			(void) fprintf(stderr, "error: too few draid "
970 			    "children (%d) for stripe width (%d)\n",
971 			    zo->zo_raid_children,
972 			    zo->zo_draid_data + zo->zo_raid_parity);
973 			usage(B_FALSE);
974 		}
975 
976 		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
977 		    sizeof (zo->zo_raid_type));
978 
979 	} else /* using raidz */ {
980 		ASSERT0(strcmp(raid_kind, "raidz"));
981 
982 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
983 		    zo->zo_raid_children - 1);
984 	}
985 
986 	zo->zo_vdevtime =
987 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
988 	    UINT64_MAX >> 2);
989 
990 	if (strlen(altdir) > 0) {
991 		char *cmd;
992 		char *realaltdir;
993 		char *bin;
994 		char *ztest;
995 		char *isa;
996 		int isalen;
997 
998 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
999 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1000 
1001 		VERIFY(NULL != realpath(getexecname(), cmd));
1002 		if (0 != access(altdir, F_OK)) {
1003 			ztest_dump_core = B_FALSE;
1004 			fatal(B_TRUE, "invalid alternate ztest path: %s",
1005 			    altdir);
1006 		}
1007 		VERIFY(NULL != realpath(altdir, realaltdir));
1008 
1009 		/*
1010 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
1011 		 * We want to extract <isa> to determine if we should use
1012 		 * 32 or 64 bit binaries.
1013 		 */
1014 		bin = strstr(cmd, "/usr/bin/");
1015 		ztest = strstr(bin, "/ztest");
1016 		isa = bin + 9;
1017 		isalen = ztest - isa;
1018 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
1019 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
1020 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
1021 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
1022 
1023 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
1024 			ztest_dump_core = B_FALSE;
1025 			fatal(B_TRUE, "invalid alternate ztest: %s",
1026 			    zo->zo_alt_ztest);
1027 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
1028 			ztest_dump_core = B_FALSE;
1029 			fatal(B_TRUE, "invalid alternate lib directory %s",
1030 			    zo->zo_alt_libpath);
1031 		}
1032 
1033 		umem_free(cmd, MAXPATHLEN);
1034 		umem_free(realaltdir, MAXPATHLEN);
1035 	}
1036 }
1037 
1038 static void
ztest_kill(ztest_shared_t * zs)1039 ztest_kill(ztest_shared_t *zs)
1040 {
1041 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1042 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1043 
1044 	/*
1045 	 * Before we kill off ztest, make sure that the config is updated.
1046 	 * See comment above spa_write_cachefile().
1047 	 */
1048 	mutex_enter(&spa_namespace_lock);
1049 	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
1050 	mutex_exit(&spa_namespace_lock);
1051 
1052 	(void) kill(getpid(), SIGKILL);
1053 }
1054 
1055 /* ARGSUSED */
1056 static void
ztest_record_enospc(const char * s)1057 ztest_record_enospc(const char *s)
1058 {
1059 	ztest_shared->zs_enospc_count++;
1060 }
1061 
1062 static uint64_t
ztest_get_ashift(void)1063 ztest_get_ashift(void)
1064 {
1065 	if (ztest_opts.zo_ashift == 0)
1066 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
1067 	return (ztest_opts.zo_ashift);
1068 }
1069 
1070 static boolean_t
ztest_is_draid_spare(const char * name)1071 ztest_is_draid_spare(const char *name)
1072 {
1073 	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1074 
1075 	if (sscanf(name, VDEV_TYPE_DRAID "%llu-%llu-%llu",
1076 	    (u_longlong_t *)&parity, (u_longlong_t *)&vdev_id,
1077 	    (u_longlong_t *)&spare_id) == 3) {
1078 		return (B_TRUE);
1079 	}
1080 
1081 	return (B_FALSE);
1082 }
1083 
1084 static nvlist_t *
make_vdev_file(char * path,char * aux,char * pool,size_t size,uint64_t ashift)1085 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
1086 {
1087 	char *pathbuf;
1088 	uint64_t vdev;
1089 	nvlist_t *file;
1090 	boolean_t draid_spare = B_FALSE;
1091 
1092 	pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1093 
1094 	if (ashift == 0)
1095 		ashift = ztest_get_ashift();
1096 
1097 	if (path == NULL) {
1098 		path = pathbuf;
1099 
1100 		if (aux != NULL) {
1101 			vdev = ztest_shared->zs_vdev_aux;
1102 			(void) snprintf(path, MAXPATHLEN,
1103 			    ztest_aux_template, ztest_opts.zo_dir,
1104 			    pool == NULL ? ztest_opts.zo_pool : pool,
1105 			    aux, vdev);
1106 		} else {
1107 			vdev = ztest_shared->zs_vdev_next_leaf++;
1108 			(void) snprintf(path, MAXPATHLEN,
1109 			    ztest_dev_template, ztest_opts.zo_dir,
1110 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1111 		}
1112 	} else {
1113 		draid_spare = ztest_is_draid_spare(path);
1114 	}
1115 
1116 	if (size != 0 && !draid_spare) {
1117 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1118 		if (fd == -1)
1119 			fatal(1, "can't open %s", path);
1120 		if (ftruncate(fd, size) != 0)
1121 			fatal(1, "can't ftruncate %s", path);
1122 		(void) close(fd);
1123 	}
1124 
1125 	VERIFY0(nvlist_alloc(&file, NV_UNIQUE_NAME, 0));
1126 	VERIFY0(nvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1127 	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE));
1128 	VERIFY0(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path));
1129 	VERIFY0(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift));
1130 	umem_free(pathbuf, MAXPATHLEN);
1131 
1132 	return (file);
1133 }
1134 
1135 static nvlist_t *
make_vdev_raid(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r)1136 make_vdev_raid(char *path, char *aux, char *pool, size_t size,
1137     uint64_t ashift, int r)
1138 {
1139 	nvlist_t *raid, **child;
1140 	int c;
1141 
1142 	if (r < 2)
1143 		return (make_vdev_file(path, aux, pool, size, ashift));
1144 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1145 
1146 	for (c = 0; c < r; c++)
1147 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
1148 
1149 	VERIFY0(nvlist_alloc(&raid, NV_UNIQUE_NAME, 0));
1150 	VERIFY0(nvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1151 	    ztest_opts.zo_raid_type));
1152 	VERIFY0(nvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1153 	    ztest_opts.zo_raid_parity));
1154 	VERIFY0(nvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1155 	    child, r));
1156 
1157 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1158 		uint64_t ndata = ztest_opts.zo_draid_data;
1159 		uint64_t nparity = ztest_opts.zo_raid_parity;
1160 		uint64_t nspares = ztest_opts.zo_draid_spares;
1161 		uint64_t children = ztest_opts.zo_raid_children;
1162 		uint64_t ngroups = 1;
1163 
1164 		/*
1165 		 * Calculate the minimum number of groups required to fill a
1166 		 * slice. This is the LCM of the stripe width (data + parity)
1167 		 * and the number of data drives (children - spares).
1168 		 */
1169 		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1170 			ngroups++;
1171 
1172 		/* Store the basic dRAID configuration. */
1173 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1174 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1175 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1176 	}
1177 
1178 	for (c = 0; c < r; c++)
1179 		nvlist_free(child[c]);
1180 
1181 	umem_free(child, r * sizeof (nvlist_t *));
1182 
1183 	return (raid);
1184 }
1185 
1186 static nvlist_t *
make_vdev_mirror(char * path,char * aux,char * pool,size_t size,uint64_t ashift,int r,int m)1187 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
1188     uint64_t ashift, int r, int m)
1189 {
1190 	nvlist_t *mirror, **child;
1191 	int c;
1192 
1193 	if (m < 1)
1194 		return (make_vdev_raid(path, aux, pool, size, ashift, r));
1195 
1196 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1197 
1198 	for (c = 0; c < m; c++)
1199 		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1200 
1201 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
1202 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
1203 	    VDEV_TYPE_MIRROR) == 0);
1204 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1205 	    child, m) == 0);
1206 
1207 	for (c = 0; c < m; c++)
1208 		nvlist_free(child[c]);
1209 
1210 	umem_free(child, m * sizeof (nvlist_t *));
1211 
1212 	return (mirror);
1213 }
1214 
1215 static nvlist_t *
make_vdev_root(char * path,char * aux,char * pool,size_t size,uint64_t ashift,const char * class,int r,int m,int t)1216 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1217     const char *class, int r, int m, int t)
1218 {
1219 	nvlist_t *root, **child;
1220 	int c;
1221 	boolean_t log;
1222 
1223 	ASSERT(t > 0);
1224 
1225 	log = (class != NULL && strcmp(class, "log") == 0);
1226 
1227 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1228 
1229 	for (c = 0; c < t; c++) {
1230 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1231 		    r, m);
1232 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1233 		    log) == 0);
1234 
1235 		if (class != NULL && class[0] != '\0') {
1236 			ASSERT(m > 1 || log);   /* expecting a mirror */
1237 			VERIFY(nvlist_add_string(child[c],
1238 			    ZPOOL_CONFIG_ALLOCATION_BIAS, class) == 0);
1239 		}
1240 	}
1241 
1242 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
1243 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
1244 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1245 	    child, t) == 0);
1246 
1247 	for (c = 0; c < t; c++)
1248 		nvlist_free(child[c]);
1249 
1250 	umem_free(child, t * sizeof (nvlist_t *));
1251 
1252 	return (root);
1253 }
1254 
1255 /*
1256  * Find a random spa version. Returns back a random spa version in the
1257  * range [initial_version, SPA_VERSION_FEATURES].
1258  */
1259 static uint64_t
ztest_random_spa_version(uint64_t initial_version)1260 ztest_random_spa_version(uint64_t initial_version)
1261 {
1262 	uint64_t version = initial_version;
1263 
1264 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1265 		version = version +
1266 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1267 	}
1268 
1269 	if (version > SPA_VERSION_BEFORE_FEATURES)
1270 		version = SPA_VERSION_FEATURES;
1271 
1272 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1273 	return (version);
1274 }
1275 
1276 static int
ztest_random_blocksize(void)1277 ztest_random_blocksize(void)
1278 {
1279 	ASSERT(ztest_spa->spa_max_ashift != 0);
1280 
1281 	/*
1282 	 * Choose a block size >= the ashift.
1283 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1284 	 */
1285 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1286 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1287 		maxbs = 20;
1288 	uint64_t block_shift =
1289 	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1290 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1291 }
1292 
1293 static int
ztest_random_dnodesize(void)1294 ztest_random_dnodesize(void)
1295 {
1296 	int slots;
1297 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1298 
1299 	if (max_slots == DNODE_MIN_SLOTS)
1300 		return (DNODE_MIN_SIZE);
1301 
1302 	/*
1303 	 * Weight the random distribution more heavily toward smaller
1304 	 * dnode sizes since that is more likely to reflect real-world
1305 	 * usage.
1306 	 */
1307 	ASSERT3U(max_slots, >, 4);
1308 	switch (ztest_random(10)) {
1309 	case 0:
1310 		slots = 5 + ztest_random(max_slots - 4);
1311 		break;
1312 	case 1 ... 4:
1313 		slots = 2 + ztest_random(3);
1314 		break;
1315 	default:
1316 		slots = 1;
1317 		break;
1318 	}
1319 
1320 	return (slots << DNODE_SHIFT);
1321 }
1322 
1323 static int
ztest_random_ibshift(void)1324 ztest_random_ibshift(void)
1325 {
1326 	return (DN_MIN_INDBLKSHIFT +
1327 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1328 }
1329 
1330 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)1331 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1332 {
1333 	uint64_t top;
1334 	vdev_t *rvd = spa->spa_root_vdev;
1335 	vdev_t *tvd;
1336 
1337 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1338 
1339 	do {
1340 		top = ztest_random(rvd->vdev_children);
1341 		tvd = rvd->vdev_child[top];
1342 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1343 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1344 
1345 	return (top);
1346 }
1347 
1348 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1349 ztest_random_dsl_prop(zfs_prop_t prop)
1350 {
1351 	uint64_t value;
1352 
1353 	do {
1354 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1355 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1356 
1357 	return (value);
1358 }
1359 
1360 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1361 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1362     boolean_t inherit)
1363 {
1364 	const char *propname = zfs_prop_to_name(prop);
1365 	const char *valname;
1366 	char *setpoint;
1367 	uint64_t curval;
1368 	int error;
1369 
1370 	error = dsl_prop_set_int(osname, propname,
1371 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1372 
1373 	if (error == ENOSPC) {
1374 		ztest_record_enospc(FTAG);
1375 		return (error);
1376 	}
1377 	ASSERT0(error);
1378 
1379 	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1380 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1381 
1382 	if (ztest_opts.zo_verbose >= 6) {
1383 		int err;
1384 
1385 		err = zfs_prop_index_to_string(prop, curval, &valname);
1386 		if (err)
1387 			(void) printf("%s %s = %llu at '%s'\n", osname,
1388 			    propname, (unsigned long long)curval, setpoint);
1389 		else
1390 			(void) printf("%s %s = %s at '%s'\n",
1391 			    osname, propname, valname, setpoint);
1392 	}
1393 	umem_free(setpoint, MAXPATHLEN);
1394 
1395 	return (error);
1396 }
1397 
1398 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1399 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1400 {
1401 	spa_t *spa = ztest_spa;
1402 	nvlist_t *props = NULL;
1403 	int error;
1404 
1405 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1406 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1407 
1408 	error = spa_prop_set(spa, props);
1409 
1410 	nvlist_free(props);
1411 
1412 	if (error == ENOSPC) {
1413 		ztest_record_enospc(FTAG);
1414 		return (error);
1415 	}
1416 	ASSERT0(error);
1417 
1418 	return (error);
1419 }
1420 
1421 static int
ztest_dmu_objset_own(const char * name,dmu_objset_type_t type,boolean_t readonly,boolean_t decrypt,void * tag,objset_t ** osp)1422 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1423     boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1424 {
1425 	int err;
1426 	char *cp = NULL;
1427 	char ddname[ZFS_MAX_DATASET_NAME_LEN];
1428 
1429 	strcpy(ddname, name);
1430 	cp = strchr(ddname, '@');
1431 	if (cp != NULL)
1432 		*cp = '\0';
1433 
1434 	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1435 	while (decrypt && err == EACCES) {
1436 		dsl_crypto_params_t *dcp;
1437 		nvlist_t *crypto_args = fnvlist_alloc();
1438 
1439 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
1440 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1441 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1442 		    crypto_args, &dcp));
1443 		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1444 		/*
1445 		 * Note: if there was an error loading, the wkey was not
1446 		 * consumed, and needs to be freed.
1447 		 */
1448 		dsl_crypto_params_free(dcp, (err != 0));
1449 		fnvlist_free(crypto_args);
1450 
1451 		if (err == EINVAL) {
1452 			/*
1453 			 * We couldn't load a key for this dataset so try
1454 			 * the parent. This loop will eventually hit the
1455 			 * encryption root since ztest only makes clones
1456 			 * as children of their origin datasets.
1457 			 */
1458 			cp = strrchr(ddname, '/');
1459 			if (cp == NULL)
1460 				return (err);
1461 
1462 			*cp = '\0';
1463 			err = EACCES;
1464 			continue;
1465 		} else if (err != 0) {
1466 			break;
1467 		}
1468 
1469 		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1470 		break;
1471 	}
1472 
1473 	return (err);
1474 }
1475 
1476 static void
ztest_rll_init(rll_t * rll)1477 ztest_rll_init(rll_t *rll)
1478 {
1479 	rll->rll_writer = NULL;
1480 	rll->rll_readers = 0;
1481 	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1482 	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1483 }
1484 
1485 static void
ztest_rll_destroy(rll_t * rll)1486 ztest_rll_destroy(rll_t *rll)
1487 {
1488 	ASSERT(rll->rll_writer == NULL);
1489 	ASSERT(rll->rll_readers == 0);
1490 	mutex_destroy(&rll->rll_lock);
1491 	cv_destroy(&rll->rll_cv);
1492 }
1493 
1494 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1495 ztest_rll_lock(rll_t *rll, rl_type_t type)
1496 {
1497 	mutex_enter(&rll->rll_lock);
1498 
1499 	if (type == RL_READER) {
1500 		while (rll->rll_writer != NULL)
1501 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1502 		rll->rll_readers++;
1503 	} else {
1504 		while (rll->rll_writer != NULL || rll->rll_readers)
1505 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1506 		rll->rll_writer = curthread;
1507 	}
1508 
1509 	mutex_exit(&rll->rll_lock);
1510 }
1511 
1512 static void
ztest_rll_unlock(rll_t * rll)1513 ztest_rll_unlock(rll_t *rll)
1514 {
1515 	mutex_enter(&rll->rll_lock);
1516 
1517 	if (rll->rll_writer) {
1518 		ASSERT(rll->rll_readers == 0);
1519 		rll->rll_writer = NULL;
1520 	} else {
1521 		ASSERT(rll->rll_readers != 0);
1522 		ASSERT(rll->rll_writer == NULL);
1523 		rll->rll_readers--;
1524 	}
1525 
1526 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1527 		cv_broadcast(&rll->rll_cv);
1528 
1529 	mutex_exit(&rll->rll_lock);
1530 }
1531 
1532 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1533 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1534 {
1535 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1536 
1537 	ztest_rll_lock(rll, type);
1538 }
1539 
1540 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1541 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1542 {
1543 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1544 
1545 	ztest_rll_unlock(rll);
1546 }
1547 
1548 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1549 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1550     uint64_t size, rl_type_t type)
1551 {
1552 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1553 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1554 	rl_t *rl;
1555 
1556 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1557 	rl->rl_object = object;
1558 	rl->rl_offset = offset;
1559 	rl->rl_size = size;
1560 	rl->rl_lock = rll;
1561 
1562 	ztest_rll_lock(rll, type);
1563 
1564 	return (rl);
1565 }
1566 
1567 static void
ztest_range_unlock(rl_t * rl)1568 ztest_range_unlock(rl_t *rl)
1569 {
1570 	rll_t *rll = rl->rl_lock;
1571 
1572 	ztest_rll_unlock(rll);
1573 
1574 	umem_free(rl, sizeof (*rl));
1575 }
1576 
1577 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1578 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1579 {
1580 	zd->zd_os = os;
1581 	zd->zd_zilog = dmu_objset_zil(os);
1582 	zd->zd_shared = szd;
1583 	dmu_objset_name(os, zd->zd_name);
1584 	int l;
1585 
1586 	if (zd->zd_shared != NULL)
1587 		zd->zd_shared->zd_seq = 0;
1588 
1589 	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1590 	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1591 
1592 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1593 		ztest_rll_init(&zd->zd_object_lock[l]);
1594 
1595 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1596 		ztest_rll_init(&zd->zd_range_lock[l]);
1597 }
1598 
1599 static void
ztest_zd_fini(ztest_ds_t * zd)1600 ztest_zd_fini(ztest_ds_t *zd)
1601 {
1602 	int l;
1603 
1604 	mutex_destroy(&zd->zd_dirobj_lock);
1605 	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1606 
1607 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1608 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1609 
1610 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1611 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1612 }
1613 
1614 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1615 
1616 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,uint64_t txg_how,const char * tag)1617 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1618 {
1619 	uint64_t txg;
1620 	int error;
1621 
1622 	/*
1623 	 * Attempt to assign tx to some transaction group.
1624 	 */
1625 	error = dmu_tx_assign(tx, txg_how);
1626 	if (error) {
1627 		if (error == ERESTART) {
1628 			ASSERT(txg_how == TXG_NOWAIT);
1629 			dmu_tx_wait(tx);
1630 		} else {
1631 			ASSERT3U(error, ==, ENOSPC);
1632 			ztest_record_enospc(tag);
1633 		}
1634 		dmu_tx_abort(tx);
1635 		return (0);
1636 	}
1637 	txg = dmu_tx_get_txg(tx);
1638 	ASSERT(txg != 0);
1639 	return (txg);
1640 }
1641 
1642 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1643 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1644     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1645     uint64_t crtxg)
1646 {
1647 	bt->bt_magic = BT_MAGIC;
1648 	bt->bt_objset = dmu_objset_id(os);
1649 	bt->bt_object = object;
1650 	bt->bt_dnodesize = dnodesize;
1651 	bt->bt_offset = offset;
1652 	bt->bt_gen = gen;
1653 	bt->bt_txg = txg;
1654 	bt->bt_crtxg = crtxg;
1655 }
1656 
1657 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1658 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1659     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1660     uint64_t crtxg)
1661 {
1662 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1663 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1664 	ASSERT3U(bt->bt_object, ==, object);
1665 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1666 	ASSERT3U(bt->bt_offset, ==, offset);
1667 	ASSERT3U(bt->bt_gen, <=, gen);
1668 	ASSERT3U(bt->bt_txg, <=, txg);
1669 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1670 }
1671 
1672 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1673 ztest_bt_bonus(dmu_buf_t *db)
1674 {
1675 	dmu_object_info_t doi;
1676 	ztest_block_tag_t *bt;
1677 
1678 	dmu_object_info_from_db(db, &doi);
1679 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1680 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1681 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1682 
1683 	return (bt);
1684 }
1685 
1686 /*
1687  * Generate a token to fill up unused bonus buffer space.  Try to make
1688  * it unique to the object, generation, and offset to verify that data
1689  * is not getting overwritten by data from other dnodes.
1690  */
1691 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1692 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1693 
1694 /*
1695  * Fill up the unused bonus buffer region before the block tag with a
1696  * verifiable pattern. Filling the whole bonus area with non-zero data
1697  * helps ensure that all dnode traversal code properly skips the
1698  * interior regions of large dnodes.
1699  */
1700 static void
ztest_fill_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1701 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1702     objset_t *os, uint64_t gen)
1703 {
1704 	uint64_t *bonusp;
1705 
1706 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1707 
1708 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1709 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1710 		    gen, bonusp - (uint64_t *)db->db_data);
1711 		*bonusp = token;
1712 	}
1713 }
1714 
1715 /*
1716  * Verify that the unused area of a bonus buffer is filled with the
1717  * expected tokens.
1718  */
1719 static void
ztest_verify_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1720 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1721     objset_t *os, uint64_t gen)
1722 {
1723 	uint64_t *bonusp;
1724 
1725 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1726 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1727 		    gen, bonusp - (uint64_t *)db->db_data);
1728 		VERIFY3U(*bonusp, ==, token);
1729 	}
1730 }
1731 
1732 /*
1733  * ZIL logging ops
1734  */
1735 
1736 #define	lrz_type	lr_mode
1737 #define	lrz_blocksize	lr_uid
1738 #define	lrz_ibshift	lr_gid
1739 #define	lrz_bonustype	lr_rdev
1740 #define	lrz_dnodesize	lr_crtime[1]
1741 
1742 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1743 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1744 {
1745 	char *name = (void *)(lr + 1);		/* name follows lr */
1746 	size_t namesize = strlen(name) + 1;
1747 	itx_t *itx;
1748 
1749 	if (zil_replaying(zd->zd_zilog, tx))
1750 		return;
1751 
1752 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1753 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1754 	    sizeof (*lr) + namesize - sizeof (lr_t));
1755 
1756 	zil_itx_assign(zd->zd_zilog, itx, tx);
1757 }
1758 
1759 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1760 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1761 {
1762 	char *name = (void *)(lr + 1);		/* name follows lr */
1763 	size_t namesize = strlen(name) + 1;
1764 	itx_t *itx;
1765 
1766 	if (zil_replaying(zd->zd_zilog, tx))
1767 		return;
1768 
1769 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1770 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1771 	    sizeof (*lr) + namesize - sizeof (lr_t));
1772 
1773 	itx->itx_oid = object;
1774 	zil_itx_assign(zd->zd_zilog, itx, tx);
1775 }
1776 
1777 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1778 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1779 {
1780 	itx_t *itx;
1781 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1782 
1783 	if (zil_replaying(zd->zd_zilog, tx))
1784 		return;
1785 
1786 	if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
1787 		write_state = WR_INDIRECT;
1788 
1789 	itx = zil_itx_create(TX_WRITE,
1790 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1791 
1792 	if (write_state == WR_COPIED &&
1793 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1794 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1795 		zil_itx_destroy(itx);
1796 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1797 		write_state = WR_NEED_COPY;
1798 	}
1799 	itx->itx_private = zd;
1800 	itx->itx_wr_state = write_state;
1801 	itx->itx_sync = (ztest_random(8) == 0);
1802 
1803 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1804 	    sizeof (*lr) - sizeof (lr_t));
1805 
1806 	zil_itx_assign(zd->zd_zilog, itx, tx);
1807 }
1808 
1809 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)1810 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1811 {
1812 	itx_t *itx;
1813 
1814 	if (zil_replaying(zd->zd_zilog, tx))
1815 		return;
1816 
1817 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1818 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1819 	    sizeof (*lr) - sizeof (lr_t));
1820 
1821 	itx->itx_sync = B_FALSE;
1822 	zil_itx_assign(zd->zd_zilog, itx, tx);
1823 }
1824 
1825 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)1826 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1827 {
1828 	itx_t *itx;
1829 
1830 	if (zil_replaying(zd->zd_zilog, tx))
1831 		return;
1832 
1833 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1834 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1835 	    sizeof (*lr) - sizeof (lr_t));
1836 
1837 	itx->itx_sync = B_FALSE;
1838 	zil_itx_assign(zd->zd_zilog, itx, tx);
1839 }
1840 
1841 /*
1842  * ZIL replay ops
1843  */
1844 static int
ztest_replay_create(void * arg1,void * arg2,boolean_t byteswap)1845 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1846 {
1847 	ztest_ds_t *zd = arg1;
1848 	lr_create_t *lr = arg2;
1849 	char *name = (void *)(lr + 1);		/* name follows lr */
1850 	objset_t *os = zd->zd_os;
1851 	ztest_block_tag_t *bbt;
1852 	dmu_buf_t *db;
1853 	dmu_tx_t *tx;
1854 	uint64_t txg;
1855 	int error = 0;
1856 	int bonuslen;
1857 
1858 	if (byteswap)
1859 		byteswap_uint64_array(lr, sizeof (*lr));
1860 
1861 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1862 	ASSERT(name[0] != '\0');
1863 
1864 	tx = dmu_tx_create(os);
1865 
1866 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1867 
1868 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1869 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1870 	} else {
1871 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1872 	}
1873 
1874 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1875 	if (txg == 0)
1876 		return (ENOSPC);
1877 
1878 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1879 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1880 
1881 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1882 		if (lr->lr_foid == 0) {
1883 			lr->lr_foid = zap_create_dnsize(os,
1884 			    lr->lrz_type, lr->lrz_bonustype,
1885 			    bonuslen, lr->lrz_dnodesize, tx);
1886 		} else {
1887 			error = zap_create_claim_dnsize(os, lr->lr_foid,
1888 			    lr->lrz_type, lr->lrz_bonustype,
1889 			    bonuslen, lr->lrz_dnodesize, tx);
1890 		}
1891 	} else {
1892 		if (lr->lr_foid == 0) {
1893 			lr->lr_foid = dmu_object_alloc_dnsize(os,
1894 			    lr->lrz_type, 0, lr->lrz_bonustype,
1895 			    bonuslen, lr->lrz_dnodesize, tx);
1896 		} else {
1897 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
1898 			    lr->lrz_type, 0, lr->lrz_bonustype,
1899 			    bonuslen, lr->lrz_dnodesize, tx);
1900 		}
1901 	}
1902 
1903 	if (error) {
1904 		ASSERT3U(error, ==, EEXIST);
1905 		ASSERT(zd->zd_zilog->zl_replay);
1906 		dmu_tx_commit(tx);
1907 		return (error);
1908 	}
1909 
1910 	ASSERT(lr->lr_foid != 0);
1911 
1912 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1913 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1914 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1915 
1916 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1917 	bbt = ztest_bt_bonus(db);
1918 	dmu_buf_will_dirty(db, tx);
1919 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
1920 	    lr->lr_gen, txg, txg);
1921 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
1922 	dmu_buf_rele(db, FTAG);
1923 
1924 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1925 	    &lr->lr_foid, tx));
1926 
1927 	(void) ztest_log_create(zd, tx, lr);
1928 
1929 	dmu_tx_commit(tx);
1930 
1931 	return (0);
1932 }
1933 
1934 static int
ztest_replay_remove(void * arg1,void * arg2,boolean_t byteswap)1935 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1936 {
1937 	ztest_ds_t *zd = arg1;
1938 	lr_remove_t *lr = arg2;
1939 	char *name = (void *)(lr + 1);		/* name follows lr */
1940 	objset_t *os = zd->zd_os;
1941 	dmu_object_info_t doi;
1942 	dmu_tx_t *tx;
1943 	uint64_t object, txg;
1944 
1945 	if (byteswap)
1946 		byteswap_uint64_array(lr, sizeof (*lr));
1947 
1948 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1949 	ASSERT(name[0] != '\0');
1950 
1951 	VERIFY3U(0, ==,
1952 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1953 	ASSERT(object != 0);
1954 
1955 	ztest_object_lock(zd, object, RL_WRITER);
1956 
1957 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1958 
1959 	tx = dmu_tx_create(os);
1960 
1961 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1962 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1963 
1964 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1965 	if (txg == 0) {
1966 		ztest_object_unlock(zd, object);
1967 		return (ENOSPC);
1968 	}
1969 
1970 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1971 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1972 	} else {
1973 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1974 	}
1975 
1976 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1977 
1978 	(void) ztest_log_remove(zd, tx, lr, object);
1979 
1980 	dmu_tx_commit(tx);
1981 
1982 	ztest_object_unlock(zd, object);
1983 
1984 	return (0);
1985 }
1986 
1987 static int
ztest_replay_write(void * arg1,void * arg2,boolean_t byteswap)1988 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1989 {
1990 	ztest_ds_t *zd = arg1;
1991 	lr_write_t *lr = arg2;
1992 	objset_t *os = zd->zd_os;
1993 	void *data = lr + 1;			/* data follows lr */
1994 	uint64_t offset, length;
1995 	ztest_block_tag_t *bt = data;
1996 	ztest_block_tag_t *bbt;
1997 	uint64_t gen, txg, lrtxg, crtxg;
1998 	dmu_object_info_t doi;
1999 	dmu_tx_t *tx;
2000 	dmu_buf_t *db;
2001 	arc_buf_t *abuf = NULL;
2002 	rl_t *rl;
2003 
2004 	if (byteswap)
2005 		byteswap_uint64_array(lr, sizeof (*lr));
2006 
2007 	offset = lr->lr_offset;
2008 	length = lr->lr_length;
2009 
2010 	/* If it's a dmu_sync() block, write the whole block */
2011 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2012 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2013 		if (length < blocksize) {
2014 			offset -= offset % blocksize;
2015 			length = blocksize;
2016 		}
2017 	}
2018 
2019 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2020 		byteswap_uint64_array(bt, sizeof (*bt));
2021 
2022 	if (bt->bt_magic != BT_MAGIC)
2023 		bt = NULL;
2024 
2025 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
2026 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
2027 
2028 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2029 
2030 	dmu_object_info_from_db(db, &doi);
2031 
2032 	bbt = ztest_bt_bonus(db);
2033 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2034 	gen = bbt->bt_gen;
2035 	crtxg = bbt->bt_crtxg;
2036 	lrtxg = lr->lr_common.lrc_txg;
2037 
2038 	tx = dmu_tx_create(os);
2039 
2040 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2041 
2042 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2043 	    P2PHASE(offset, length) == 0)
2044 		abuf = dmu_request_arcbuf(db, length);
2045 
2046 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2047 	if (txg == 0) {
2048 		if (abuf != NULL)
2049 			dmu_return_arcbuf(abuf);
2050 		dmu_buf_rele(db, FTAG);
2051 		ztest_range_unlock(rl);
2052 		ztest_object_unlock(zd, lr->lr_foid);
2053 		return (ENOSPC);
2054 	}
2055 
2056 	if (bt != NULL) {
2057 		/*
2058 		 * Usually, verify the old data before writing new data --
2059 		 * but not always, because we also want to verify correct
2060 		 * behavior when the data was not recently read into cache.
2061 		 */
2062 		ASSERT(offset % doi.doi_data_block_size == 0);
2063 		if (ztest_random(4) != 0) {
2064 			int prefetch = ztest_random(2) ?
2065 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2066 			ztest_block_tag_t rbt;
2067 
2068 			VERIFY(dmu_read(os, lr->lr_foid, offset,
2069 			    sizeof (rbt), &rbt, prefetch) == 0);
2070 			if (rbt.bt_magic == BT_MAGIC) {
2071 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2072 				    offset, gen, txg, crtxg);
2073 			}
2074 		}
2075 
2076 		/*
2077 		 * Writes can appear to be newer than the bonus buffer because
2078 		 * the ztest_get_data() callback does a dmu_read() of the
2079 		 * open-context data, which may be different than the data
2080 		 * as it was when the write was generated.
2081 		 */
2082 		if (zd->zd_zilog->zl_replay) {
2083 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2084 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2085 			    bt->bt_crtxg);
2086 		}
2087 
2088 		/*
2089 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
2090 		 * so that all of the usual ASSERTs will work.
2091 		 */
2092 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2093 		    crtxg);
2094 	}
2095 
2096 	if (abuf == NULL) {
2097 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
2098 	} else {
2099 		bcopy(data, abuf->b_data, length);
2100 		dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
2101 	}
2102 
2103 	(void) ztest_log_write(zd, tx, lr);
2104 
2105 	dmu_buf_rele(db, FTAG);
2106 
2107 	dmu_tx_commit(tx);
2108 
2109 	ztest_range_unlock(rl);
2110 	ztest_object_unlock(zd, lr->lr_foid);
2111 
2112 	return (0);
2113 }
2114 
2115 static int
ztest_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)2116 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2117 {
2118 	ztest_ds_t *zd = arg1;
2119 	lr_truncate_t *lr = arg2;
2120 	objset_t *os = zd->zd_os;
2121 	dmu_tx_t *tx;
2122 	uint64_t txg;
2123 	rl_t *rl;
2124 
2125 	if (byteswap)
2126 		byteswap_uint64_array(lr, sizeof (*lr));
2127 
2128 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
2129 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2130 	    RL_WRITER);
2131 
2132 	tx = dmu_tx_create(os);
2133 
2134 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2135 
2136 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2137 	if (txg == 0) {
2138 		ztest_range_unlock(rl);
2139 		ztest_object_unlock(zd, lr->lr_foid);
2140 		return (ENOSPC);
2141 	}
2142 
2143 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2144 	    lr->lr_length, tx) == 0);
2145 
2146 	(void) ztest_log_truncate(zd, tx, lr);
2147 
2148 	dmu_tx_commit(tx);
2149 
2150 	ztest_range_unlock(rl);
2151 	ztest_object_unlock(zd, lr->lr_foid);
2152 
2153 	return (0);
2154 }
2155 
2156 static int
ztest_replay_setattr(void * arg1,void * arg2,boolean_t byteswap)2157 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2158 {
2159 	ztest_ds_t *zd = arg1;
2160 	lr_setattr_t *lr = arg2;
2161 	objset_t *os = zd->zd_os;
2162 	dmu_tx_t *tx;
2163 	dmu_buf_t *db;
2164 	ztest_block_tag_t *bbt;
2165 	uint64_t txg, lrtxg, crtxg, dnodesize;
2166 
2167 	if (byteswap)
2168 		byteswap_uint64_array(lr, sizeof (*lr));
2169 
2170 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2171 
2172 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2173 
2174 	tx = dmu_tx_create(os);
2175 	dmu_tx_hold_bonus(tx, lr->lr_foid);
2176 
2177 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2178 	if (txg == 0) {
2179 		dmu_buf_rele(db, FTAG);
2180 		ztest_object_unlock(zd, lr->lr_foid);
2181 		return (ENOSPC);
2182 	}
2183 
2184 	bbt = ztest_bt_bonus(db);
2185 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2186 	crtxg = bbt->bt_crtxg;
2187 	lrtxg = lr->lr_common.lrc_txg;
2188 	dnodesize = bbt->bt_dnodesize;
2189 
2190 	if (zd->zd_zilog->zl_replay) {
2191 		ASSERT(lr->lr_size != 0);
2192 		ASSERT(lr->lr_mode != 0);
2193 		ASSERT(lrtxg != 0);
2194 	} else {
2195 		/*
2196 		 * Randomly change the size and increment the generation.
2197 		 */
2198 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2199 		    sizeof (*bbt);
2200 		lr->lr_mode = bbt->bt_gen + 1;
2201 		ASSERT(lrtxg == 0);
2202 	}
2203 
2204 	/*
2205 	 * Verify that the current bonus buffer is not newer than our txg.
2206 	 */
2207 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2208 	    MAX(txg, lrtxg), crtxg);
2209 
2210 	dmu_buf_will_dirty(db, tx);
2211 
2212 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2213 	ASSERT3U(lr->lr_size, <=, db->db_size);
2214 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2215 	bbt = ztest_bt_bonus(db);
2216 
2217 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2218 	    txg, crtxg);
2219 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2220 	dmu_buf_rele(db, FTAG);
2221 
2222 	(void) ztest_log_setattr(zd, tx, lr);
2223 
2224 	dmu_tx_commit(tx);
2225 
2226 	ztest_object_unlock(zd, lr->lr_foid);
2227 
2228 	return (0);
2229 }
2230 
2231 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2232 	NULL,			/* 0 no such transaction type */
2233 	ztest_replay_create,	/* TX_CREATE */
2234 	NULL,			/* TX_MKDIR */
2235 	NULL,			/* TX_MKXATTR */
2236 	NULL,			/* TX_SYMLINK */
2237 	ztest_replay_remove,	/* TX_REMOVE */
2238 	NULL,			/* TX_RMDIR */
2239 	NULL,			/* TX_LINK */
2240 	NULL,			/* TX_RENAME */
2241 	ztest_replay_write,	/* TX_WRITE */
2242 	ztest_replay_truncate,	/* TX_TRUNCATE */
2243 	ztest_replay_setattr,	/* TX_SETATTR */
2244 	NULL,			/* TX_ACL */
2245 	NULL,			/* TX_CREATE_ACL */
2246 	NULL,			/* TX_CREATE_ATTR */
2247 	NULL,			/* TX_CREATE_ACL_ATTR */
2248 	NULL,			/* TX_MKDIR_ACL */
2249 	NULL,			/* TX_MKDIR_ATTR */
2250 	NULL,			/* TX_MKDIR_ACL_ATTR */
2251 	NULL,			/* TX_WRITE2 */
2252 };
2253 
2254 /*
2255  * ZIL get_data callbacks
2256  */
2257 
2258 /* ARGSUSED */
2259 static void
ztest_get_done(zgd_t * zgd,int error)2260 ztest_get_done(zgd_t *zgd, int error)
2261 {
2262 	ztest_ds_t *zd = zgd->zgd_private;
2263 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2264 
2265 	if (zgd->zgd_db)
2266 		dmu_buf_rele(zgd->zgd_db, zgd);
2267 
2268 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2269 	ztest_object_unlock(zd, object);
2270 
2271 	umem_free(zgd, sizeof (*zgd));
2272 }
2273 
2274 static int
ztest_get_data(void * arg,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)2275 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
2276     zio_t *zio)
2277 {
2278 	ztest_ds_t *zd = arg;
2279 	objset_t *os = zd->zd_os;
2280 	uint64_t object = lr->lr_foid;
2281 	uint64_t offset = lr->lr_offset;
2282 	uint64_t size = lr->lr_length;
2283 	uint64_t txg = lr->lr_common.lrc_txg;
2284 	uint64_t crtxg;
2285 	dmu_object_info_t doi;
2286 	dmu_buf_t *db;
2287 	zgd_t *zgd;
2288 	int error;
2289 
2290 	ASSERT3P(lwb, !=, NULL);
2291 	ASSERT3P(zio, !=, NULL);
2292 	ASSERT3U(size, !=, 0);
2293 
2294 	ztest_object_lock(zd, object, RL_READER);
2295 	error = dmu_bonus_hold(os, object, FTAG, &db);
2296 	if (error) {
2297 		ztest_object_unlock(zd, object);
2298 		return (error);
2299 	}
2300 
2301 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2302 
2303 	if (crtxg == 0 || crtxg > txg) {
2304 		dmu_buf_rele(db, FTAG);
2305 		ztest_object_unlock(zd, object);
2306 		return (ENOENT);
2307 	}
2308 
2309 	dmu_object_info_from_db(db, &doi);
2310 	dmu_buf_rele(db, FTAG);
2311 	db = NULL;
2312 
2313 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2314 	zgd->zgd_lwb = lwb;
2315 	zgd->zgd_private = zd;
2316 
2317 	if (buf != NULL) {	/* immediate write */
2318 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2319 		    object, offset, size, RL_READER);
2320 
2321 		error = dmu_read(os, object, offset, size, buf,
2322 		    DMU_READ_NO_PREFETCH);
2323 		ASSERT(error == 0);
2324 	} else {
2325 		size = doi.doi_data_block_size;
2326 		if (ISP2(size)) {
2327 			offset = P2ALIGN(offset, size);
2328 		} else {
2329 			ASSERT(offset < size);
2330 			offset = 0;
2331 		}
2332 
2333 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2334 		    object, offset, size, RL_READER);
2335 
2336 		error = dmu_buf_hold(os, object, offset, zgd, &db,
2337 		    DMU_READ_NO_PREFETCH);
2338 
2339 		if (error == 0) {
2340 			blkptr_t *bp = &lr->lr_blkptr;
2341 
2342 			zgd->zgd_db = db;
2343 			zgd->zgd_bp = bp;
2344 
2345 			ASSERT(db->db_offset == offset);
2346 			ASSERT(db->db_size == size);
2347 
2348 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2349 			    ztest_get_done, zgd);
2350 
2351 			if (error == 0)
2352 				return (0);
2353 		}
2354 	}
2355 
2356 	ztest_get_done(zgd, error);
2357 
2358 	return (error);
2359 }
2360 
2361 static void *
ztest_lr_alloc(size_t lrsize,char * name)2362 ztest_lr_alloc(size_t lrsize, char *name)
2363 {
2364 	char *lr;
2365 	size_t namesize = name ? strlen(name) + 1 : 0;
2366 
2367 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2368 
2369 	if (name)
2370 		bcopy(name, lr + lrsize, namesize);
2371 
2372 	return (lr);
2373 }
2374 
2375 static void
ztest_lr_free(void * lr,size_t lrsize,char * name)2376 ztest_lr_free(void *lr, size_t lrsize, char *name)
2377 {
2378 	size_t namesize = name ? strlen(name) + 1 : 0;
2379 
2380 	umem_free(lr, lrsize + namesize);
2381 }
2382 
2383 /*
2384  * Lookup a bunch of objects.  Returns the number of objects not found.
2385  */
2386 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)2387 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2388 {
2389 	int missing = 0;
2390 	int error;
2391 	int i;
2392 
2393 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2394 
2395 	for (i = 0; i < count; i++, od++) {
2396 		od->od_object = 0;
2397 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2398 		    sizeof (uint64_t), 1, &od->od_object);
2399 		if (error) {
2400 			ASSERT(error == ENOENT);
2401 			ASSERT(od->od_object == 0);
2402 			missing++;
2403 		} else {
2404 			dmu_buf_t *db;
2405 			ztest_block_tag_t *bbt;
2406 			dmu_object_info_t doi;
2407 
2408 			ASSERT(od->od_object != 0);
2409 			ASSERT(missing == 0);	/* there should be no gaps */
2410 
2411 			ztest_object_lock(zd, od->od_object, RL_READER);
2412 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2413 			    od->od_object, FTAG, &db));
2414 			dmu_object_info_from_db(db, &doi);
2415 			bbt = ztest_bt_bonus(db);
2416 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2417 			od->od_type = doi.doi_type;
2418 			od->od_blocksize = doi.doi_data_block_size;
2419 			od->od_gen = bbt->bt_gen;
2420 			dmu_buf_rele(db, FTAG);
2421 			ztest_object_unlock(zd, od->od_object);
2422 		}
2423 	}
2424 
2425 	return (missing);
2426 }
2427 
2428 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)2429 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2430 {
2431 	int missing = 0;
2432 	int i;
2433 
2434 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2435 
2436 	for (i = 0; i < count; i++, od++) {
2437 		if (missing) {
2438 			od->od_object = 0;
2439 			missing++;
2440 			continue;
2441 		}
2442 
2443 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2444 
2445 		lr->lr_doid = od->od_dir;
2446 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2447 		lr->lrz_type = od->od_crtype;
2448 		lr->lrz_blocksize = od->od_crblocksize;
2449 		lr->lrz_ibshift = ztest_random_ibshift();
2450 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2451 		lr->lrz_dnodesize = od->od_crdnodesize;
2452 		lr->lr_gen = od->od_crgen;
2453 		lr->lr_crtime[0] = time(NULL);
2454 
2455 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2456 			ASSERT(missing == 0);
2457 			od->od_object = 0;
2458 			missing++;
2459 		} else {
2460 			od->od_object = lr->lr_foid;
2461 			od->od_type = od->od_crtype;
2462 			od->od_blocksize = od->od_crblocksize;
2463 			od->od_gen = od->od_crgen;
2464 			ASSERT(od->od_object != 0);
2465 		}
2466 
2467 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2468 	}
2469 
2470 	return (missing);
2471 }
2472 
2473 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2474 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2475 {
2476 	int missing = 0;
2477 	int error;
2478 	int i;
2479 
2480 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2481 
2482 	od += count - 1;
2483 
2484 	for (i = count - 1; i >= 0; i--, od--) {
2485 		if (missing) {
2486 			missing++;
2487 			continue;
2488 		}
2489 
2490 		/*
2491 		 * No object was found.
2492 		 */
2493 		if (od->od_object == 0)
2494 			continue;
2495 
2496 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2497 
2498 		lr->lr_doid = od->od_dir;
2499 
2500 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2501 			ASSERT3U(error, ==, ENOSPC);
2502 			missing++;
2503 		} else {
2504 			od->od_object = 0;
2505 		}
2506 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2507 	}
2508 
2509 	return (missing);
2510 }
2511 
2512 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,void * data)2513 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2514     void *data)
2515 {
2516 	lr_write_t *lr;
2517 	int error;
2518 
2519 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2520 
2521 	lr->lr_foid = object;
2522 	lr->lr_offset = offset;
2523 	lr->lr_length = size;
2524 	lr->lr_blkoff = 0;
2525 	BP_ZERO(&lr->lr_blkptr);
2526 
2527 	bcopy(data, lr + 1, size);
2528 
2529 	error = ztest_replay_write(zd, lr, B_FALSE);
2530 
2531 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2532 
2533 	return (error);
2534 }
2535 
2536 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2537 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2538 {
2539 	lr_truncate_t *lr;
2540 	int error;
2541 
2542 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2543 
2544 	lr->lr_foid = object;
2545 	lr->lr_offset = offset;
2546 	lr->lr_length = size;
2547 
2548 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2549 
2550 	ztest_lr_free(lr, sizeof (*lr), NULL);
2551 
2552 	return (error);
2553 }
2554 
2555 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2556 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2557 {
2558 	lr_setattr_t *lr;
2559 	int error;
2560 
2561 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2562 
2563 	lr->lr_foid = object;
2564 	lr->lr_size = 0;
2565 	lr->lr_mode = 0;
2566 
2567 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2568 
2569 	ztest_lr_free(lr, sizeof (*lr), NULL);
2570 
2571 	return (error);
2572 }
2573 
2574 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2575 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2576 {
2577 	objset_t *os = zd->zd_os;
2578 	dmu_tx_t *tx;
2579 	uint64_t txg;
2580 	rl_t *rl;
2581 
2582 	txg_wait_synced(dmu_objset_pool(os), 0);
2583 
2584 	ztest_object_lock(zd, object, RL_READER);
2585 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2586 
2587 	tx = dmu_tx_create(os);
2588 
2589 	dmu_tx_hold_write(tx, object, offset, size);
2590 
2591 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2592 
2593 	if (txg != 0) {
2594 		dmu_prealloc(os, object, offset, size, tx);
2595 		dmu_tx_commit(tx);
2596 		txg_wait_synced(dmu_objset_pool(os), txg);
2597 	} else {
2598 		(void) dmu_free_long_range(os, object, offset, size);
2599 	}
2600 
2601 	ztest_range_unlock(rl);
2602 	ztest_object_unlock(zd, object);
2603 }
2604 
2605 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2606 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2607 {
2608 	int err;
2609 	ztest_block_tag_t wbt;
2610 	dmu_object_info_t doi;
2611 	enum ztest_io_type io_type;
2612 	uint64_t blocksize;
2613 	void *data;
2614 
2615 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2616 	blocksize = doi.doi_data_block_size;
2617 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2618 
2619 	/*
2620 	 * Pick an i/o type at random, biased toward writing block tags.
2621 	 */
2622 	io_type = ztest_random(ZTEST_IO_TYPES);
2623 	if (ztest_random(2) == 0)
2624 		io_type = ZTEST_IO_WRITE_TAG;
2625 
2626 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2627 
2628 	switch (io_type) {
2629 
2630 	case ZTEST_IO_WRITE_TAG:
2631 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2632 		    offset, 0, 0, 0);
2633 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2634 		break;
2635 
2636 	case ZTEST_IO_WRITE_PATTERN:
2637 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2638 		if (ztest_random(2) == 0) {
2639 			/*
2640 			 * Induce fletcher2 collisions to ensure that
2641 			 * zio_ddt_collision() detects and resolves them
2642 			 * when using fletcher2-verify for deduplication.
2643 			 */
2644 			((uint64_t *)data)[0] ^= 1ULL << 63;
2645 			((uint64_t *)data)[4] ^= 1ULL << 63;
2646 		}
2647 		(void) ztest_write(zd, object, offset, blocksize, data);
2648 		break;
2649 
2650 	case ZTEST_IO_WRITE_ZEROES:
2651 		bzero(data, blocksize);
2652 		(void) ztest_write(zd, object, offset, blocksize, data);
2653 		break;
2654 
2655 	case ZTEST_IO_TRUNCATE:
2656 		(void) ztest_truncate(zd, object, offset, blocksize);
2657 		break;
2658 
2659 	case ZTEST_IO_SETATTR:
2660 		(void) ztest_setattr(zd, object);
2661 		break;
2662 	default:
2663 		break;
2664 
2665 	case ZTEST_IO_REWRITE:
2666 		(void) pthread_rwlock_rdlock(&ztest_name_lock);
2667 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2668 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2669 		    B_FALSE);
2670 		VERIFY(err == 0 || err == ENOSPC);
2671 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2672 		    ZFS_PROP_COMPRESSION,
2673 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2674 		    B_FALSE);
2675 		VERIFY(err == 0 || err == ENOSPC);
2676 		(void) pthread_rwlock_unlock(&ztest_name_lock);
2677 
2678 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2679 		    DMU_READ_NO_PREFETCH));
2680 
2681 		(void) ztest_write(zd, object, offset, blocksize, data);
2682 		break;
2683 	}
2684 
2685 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2686 
2687 	umem_free(data, blocksize);
2688 }
2689 
2690 /*
2691  * Initialize an object description template.
2692  */
2693 static void
ztest_od_init(ztest_od_t * od,uint64_t id,char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t dnodesize,uint64_t gen)2694 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2695     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2696     uint64_t gen)
2697 {
2698 	od->od_dir = ZTEST_DIROBJ;
2699 	od->od_object = 0;
2700 
2701 	od->od_crtype = type;
2702 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2703 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2704 	od->od_crgen = gen;
2705 
2706 	od->od_type = DMU_OT_NONE;
2707 	od->od_blocksize = 0;
2708 	od->od_gen = 0;
2709 
2710 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2711 	    tag, (longlong_t)id, (u_longlong_t)index);
2712 }
2713 
2714 /*
2715  * Lookup or create the objects for a test using the od template.
2716  * If the objects do not all exist, or if 'remove' is specified,
2717  * remove any existing objects and create new ones.  Otherwise,
2718  * use the existing objects.
2719  */
2720 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2721 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2722 {
2723 	int count = size / sizeof (*od);
2724 	int rv = 0;
2725 
2726 	mutex_enter(&zd->zd_dirobj_lock);
2727 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2728 	    (ztest_remove(zd, od, count) != 0 ||
2729 	    ztest_create(zd, od, count) != 0))
2730 		rv = -1;
2731 	zd->zd_od = od;
2732 	mutex_exit(&zd->zd_dirobj_lock);
2733 
2734 	return (rv);
2735 }
2736 
2737 /* ARGSUSED */
2738 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2739 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2740 {
2741 	zilog_t *zilog = zd->zd_zilog;
2742 
2743 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2744 
2745 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2746 
2747 	/*
2748 	 * Remember the committed values in zd, which is in parent/child
2749 	 * shared memory.  If we die, the next iteration of ztest_run()
2750 	 * will verify that the log really does contain this record.
2751 	 */
2752 	mutex_enter(&zilog->zl_lock);
2753 	ASSERT(zd->zd_shared != NULL);
2754 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2755 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2756 	mutex_exit(&zilog->zl_lock);
2757 
2758 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2759 }
2760 
2761 /*
2762  * This function is designed to simulate the operations that occur during a
2763  * mount/unmount operation.  We hold the dataset across these operations in an
2764  * attempt to expose any implicit assumptions about ZIL management.
2765  */
2766 /* ARGSUSED */
2767 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2768 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2769 {
2770 	objset_t *os = zd->zd_os;
2771 
2772 	/*
2773 	 * We hold the ztest_vdev_lock so we don't cause problems with
2774 	 * other threads that wish to remove a log device, such as
2775 	 * ztest_device_removal().
2776 	 */
2777 	mutex_enter(&ztest_vdev_lock);
2778 
2779 	/*
2780 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2781 	 * updating the zil (i.e. adding in-memory log records) and the
2782 	 * zd_zilog_lock to block any I/O.
2783 	 */
2784 	mutex_enter(&zd->zd_dirobj_lock);
2785 	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2786 
2787 	/* zfsvfs_teardown() */
2788 	zil_close(zd->zd_zilog);
2789 
2790 	/* zfsvfs_setup() */
2791 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2792 	zil_replay(os, zd, ztest_replay_vector);
2793 
2794 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2795 	mutex_exit(&zd->zd_dirobj_lock);
2796 	mutex_exit(&ztest_vdev_lock);
2797 }
2798 
2799 /*
2800  * Verify that we can't destroy an active pool, create an existing pool,
2801  * or create a pool with a bad vdev spec.
2802  */
2803 /* ARGSUSED */
2804 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)2805 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2806 {
2807 	ztest_shared_opts_t *zo = &ztest_opts;
2808 	spa_t *spa;
2809 	nvlist_t *nvroot;
2810 
2811 	if (zo->zo_mmp_test)
2812 		return;
2813 
2814 	/*
2815 	 * Attempt to create using a bad file.
2816 	 */
2817 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2818 	VERIFY3U(ENOENT, ==,
2819 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2820 	nvlist_free(nvroot);
2821 
2822 	/*
2823 	 * Attempt to create using a bad mirror.
2824 	 */
2825 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2826 	VERIFY3U(ENOENT, ==,
2827 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2828 	nvlist_free(nvroot);
2829 
2830 	/*
2831 	 * Attempt to create an existing pool.  It shouldn't matter
2832 	 * what's in the nvroot; we should fail with EEXIST.
2833 	 */
2834 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
2835 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2836 	VERIFY3U(EEXIST, ==,
2837 	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2838 	nvlist_free(nvroot);
2839 
2840 	/*
2841 	 * We open a reference to the spa and then we try to export it
2842 	 * expecting one of the following errors:
2843 	 *
2844 	 * EBUSY
2845 	 *	Because of the reference we just opened.
2846 	 *
2847 	 * ZFS_ERR_EXPORT_IN_PROGRESS
2848 	 *	For the case that there is another ztest thread doing
2849 	 *	an export concurrently.
2850 	 */
2851 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2852 	int error = spa_destroy(zo->zo_pool);
2853 	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
2854 		fatal(0, "spa_destroy(%s) returned unexpected value %d",
2855 		    spa->spa_name, error);
2856 	}
2857 	spa_close(spa, FTAG);
2858 
2859 	(void) pthread_rwlock_unlock(&ztest_name_lock);
2860 }
2861 
2862 /*
2863  * Start and then stop the MMP threads to ensure the startup and shutdown code
2864  * works properly.  Actual protection and property-related code tested via ZTS.
2865  */
2866 /* ARGSUSED */
2867 void
ztest_mmp_enable_disable(ztest_ds_t * zd,uint64_t id)2868 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2869 {
2870 	ztest_shared_opts_t *zo = &ztest_opts;
2871 	spa_t *spa = ztest_spa;
2872 
2873 	if (zo->zo_mmp_test)
2874 		return;
2875 
2876 	/*
2877 	 * Since enabling MMP involves setting a property, it could not be done
2878 	 * while the pool is suspended.
2879 	 */
2880 	if (spa_suspended(spa))
2881 		return;
2882 
2883 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2884 	mutex_enter(&spa->spa_props_lock);
2885 
2886 	zfs_multihost_fail_intervals = 0;
2887 
2888 	if (!spa_multihost(spa)) {
2889 		spa->spa_multihost = B_TRUE;
2890 		mmp_thread_start(spa);
2891 	}
2892 
2893 	mutex_exit(&spa->spa_props_lock);
2894 	spa_config_exit(spa, SCL_CONFIG, FTAG);
2895 
2896 	txg_wait_synced(spa_get_dsl(spa), 0);
2897 	mmp_signal_all_threads();
2898 	txg_wait_synced(spa_get_dsl(spa), 0);
2899 
2900 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2901 	mutex_enter(&spa->spa_props_lock);
2902 
2903 	if (spa_multihost(spa)) {
2904 		mmp_thread_stop(spa);
2905 		spa->spa_multihost = B_FALSE;
2906 	}
2907 
2908 	mutex_exit(&spa->spa_props_lock);
2909 	spa_config_exit(spa, SCL_CONFIG, FTAG);
2910 }
2911 
2912 /* ARGSUSED */
2913 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)2914 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2915 {
2916 	spa_t *spa;
2917 	uint64_t initial_version = SPA_VERSION_INITIAL;
2918 	uint64_t version, newversion;
2919 	nvlist_t *nvroot, *props;
2920 	char *name;
2921 
2922 	if (ztest_opts.zo_mmp_test)
2923 		return;
2924 
2925 	/* dRAID added after feature flags, skip upgrade test. */
2926 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
2927 		return;
2928 
2929 	mutex_enter(&ztest_vdev_lock);
2930 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2931 
2932 	/*
2933 	 * Clean up from previous runs.
2934 	 */
2935 	(void) spa_destroy(name);
2936 
2937 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2938 	    NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
2939 
2940 	/*
2941 	 * If we're configuring a RAIDZ device then make sure that the
2942 	 * initial version is capable of supporting that feature.
2943 	 */
2944 	switch (ztest_opts.zo_raid_parity) {
2945 	case 0:
2946 	case 1:
2947 		initial_version = SPA_VERSION_INITIAL;
2948 		break;
2949 	case 2:
2950 		initial_version = SPA_VERSION_RAIDZ2;
2951 		break;
2952 	case 3:
2953 		initial_version = SPA_VERSION_RAIDZ3;
2954 		break;
2955 	}
2956 
2957 	/*
2958 	 * Create a pool with a spa version that can be upgraded. Pick
2959 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2960 	 */
2961 	do {
2962 		version = ztest_random_spa_version(initial_version);
2963 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2964 
2965 	props = fnvlist_alloc();
2966 	fnvlist_add_uint64(props,
2967 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2968 	VERIFY3S(spa_create(name, nvroot, props, NULL, NULL), ==, 0);
2969 	fnvlist_free(nvroot);
2970 	fnvlist_free(props);
2971 
2972 	VERIFY3S(spa_open(name, &spa, FTAG), ==, 0);
2973 	VERIFY3U(spa_version(spa), ==, version);
2974 	newversion = ztest_random_spa_version(version + 1);
2975 
2976 	if (ztest_opts.zo_verbose >= 4) {
2977 		(void) printf("upgrading spa version from %llu to %llu\n",
2978 		    (u_longlong_t)version, (u_longlong_t)newversion);
2979 	}
2980 
2981 	spa_upgrade(spa, newversion);
2982 	VERIFY3U(spa_version(spa), >, version);
2983 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2984 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2985 	spa_close(spa, FTAG);
2986 
2987 	kmem_strfree(name);
2988 	mutex_exit(&ztest_vdev_lock);
2989 }
2990 
2991 static void
ztest_spa_checkpoint(spa_t * spa)2992 ztest_spa_checkpoint(spa_t *spa)
2993 {
2994 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2995 
2996 	int error = spa_checkpoint(spa->spa_name);
2997 
2998 	switch (error) {
2999 	case 0:
3000 	case ZFS_ERR_DEVRM_IN_PROGRESS:
3001 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3002 	case ZFS_ERR_CHECKPOINT_EXISTS:
3003 		break;
3004 	case ENOSPC:
3005 		ztest_record_enospc(FTAG);
3006 		break;
3007 	default:
3008 		fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3009 	}
3010 }
3011 
3012 static void
ztest_spa_discard_checkpoint(spa_t * spa)3013 ztest_spa_discard_checkpoint(spa_t *spa)
3014 {
3015 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3016 
3017 	int error = spa_checkpoint_discard(spa->spa_name);
3018 
3019 	switch (error) {
3020 	case 0:
3021 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3022 	case ZFS_ERR_NO_CHECKPOINT:
3023 		break;
3024 	default:
3025 		fatal(0, "spa_discard_checkpoint(%s) = %d",
3026 		    spa->spa_name, error);
3027 	}
3028 
3029 }
3030 
3031 /* ARGSUSED */
3032 void
ztest_spa_checkpoint_create_discard(ztest_ds_t * zd,uint64_t id)3033 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3034 {
3035 	spa_t *spa = ztest_spa;
3036 
3037 	mutex_enter(&ztest_checkpoint_lock);
3038 	if (ztest_random(2) == 0) {
3039 		ztest_spa_checkpoint(spa);
3040 	} else {
3041 		ztest_spa_discard_checkpoint(spa);
3042 	}
3043 	mutex_exit(&ztest_checkpoint_lock);
3044 }
3045 
3046 
3047 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)3048 vdev_lookup_by_path(vdev_t *vd, const char *path)
3049 {
3050 	vdev_t *mvd;
3051 	int c;
3052 
3053 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3054 		return (vd);
3055 
3056 	for (c = 0; c < vd->vdev_children; c++)
3057 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3058 		    NULL)
3059 			return (mvd);
3060 
3061 	return (NULL);
3062 }
3063 
3064 static int
spa_num_top_vdevs(spa_t * spa)3065 spa_num_top_vdevs(spa_t *spa)
3066 {
3067 	vdev_t *rvd = spa->spa_root_vdev;
3068 	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3069 	return (rvd->vdev_children);
3070 }
3071 
3072 /*
3073  * Verify that vdev_add() works as expected.
3074  */
3075 /* ARGSUSED */
3076 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)3077 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3078 {
3079 	ztest_shared_t *zs = ztest_shared;
3080 	spa_t *spa = ztest_spa;
3081 	uint64_t leaves;
3082 	uint64_t guid;
3083 	nvlist_t *nvroot;
3084 	int error;
3085 
3086 	if (ztest_opts.zo_mmp_test)
3087 		return;
3088 
3089 	mutex_enter(&ztest_vdev_lock);
3090 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3091 	    ztest_opts.zo_raid_children;
3092 
3093 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3094 
3095 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3096 
3097 	/*
3098 	 * If we have slogs then remove them 1/4 of the time.
3099 	 */
3100 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3101 		metaslab_group_t *mg;
3102 
3103 		/*
3104 		 * find the first real slog in log allocation class
3105 		 */
3106 		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
3107 		while (!mg->mg_vd->vdev_islog)
3108 			mg = mg->mg_next;
3109 
3110 		guid = mg->mg_vd->vdev_guid;
3111 
3112 		spa_config_exit(spa, SCL_VDEV, FTAG);
3113 
3114 		/*
3115 		 * We have to grab the zs_name_lock as writer to
3116 		 * prevent a race between removing a slog (dmu_objset_find)
3117 		 * and destroying a dataset. Removing the slog will
3118 		 * grab a reference on the dataset which may cause
3119 		 * dsl_destroy_head() to fail with EBUSY thus
3120 		 * leaving the dataset in an inconsistent state.
3121 		 */
3122 		pthread_rwlock_wrlock(&ztest_name_lock);
3123 		error = spa_vdev_remove(spa, guid, B_FALSE);
3124 		pthread_rwlock_unlock(&ztest_name_lock);
3125 
3126 		switch (error) {
3127 		case 0:
3128 		case EEXIST:	/* Generic zil_reset() error */
3129 		case EBUSY:	/* Replay required */
3130 		case EACCES:	/* Crypto key not loaded */
3131 		case ZFS_ERR_CHECKPOINT_EXISTS:
3132 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3133 			break;
3134 		default:
3135 			fatal(0, "spa_vdev_remove() = %d", error);
3136 		}
3137 	} else {
3138 		spa_config_exit(spa, SCL_VDEV, FTAG);
3139 
3140 		/*
3141 		 * Make 1/4 of the devices be log devices
3142 		 */
3143 		nvroot = make_vdev_root(NULL, NULL, NULL,
3144 		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3145 		    "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
3146 		    1);
3147 
3148 		error = spa_vdev_add(spa, nvroot);
3149 		nvlist_free(nvroot);
3150 
3151 		switch (error) {
3152 		case 0:
3153 			break;
3154 		case ENOSPC:
3155 			ztest_record_enospc("spa_vdev_add");
3156 			break;
3157 		default:
3158 			fatal(0, "spa_vdev_add() = %d", error);
3159 		}
3160 	}
3161 
3162 	mutex_exit(&ztest_vdev_lock);
3163 }
3164 
3165 /* ARGSUSED */
3166 void
ztest_vdev_class_add(ztest_ds_t * zd,uint64_t id)3167 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3168 {
3169 	ztest_shared_t *zs = ztest_shared;
3170 	spa_t *spa = ztest_spa;
3171 	uint64_t leaves;
3172 	nvlist_t *nvroot;
3173 	const char *class = (ztest_random(2) == 0) ?
3174 	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3175 	int error;
3176 
3177 	/*
3178 	 * By default add a special vdev 50% of the time
3179 	 */
3180 	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3181 	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3182 	    ztest_random(2) == 0)) {
3183 		return;
3184 	}
3185 
3186 	mutex_enter(&ztest_vdev_lock);
3187 
3188 	/* Only test with mirrors */
3189 	if (zs->zs_mirrors < 2) {
3190 		mutex_exit(&ztest_vdev_lock);
3191 		return;
3192 	}
3193 
3194 	/* requires feature@allocation_classes */
3195 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3196 		mutex_exit(&ztest_vdev_lock);
3197 		return;
3198 	}
3199 
3200 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3201 	    ztest_opts.zo_raid_children;
3202 
3203 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3204 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3205 	spa_config_exit(spa, SCL_VDEV, FTAG);
3206 
3207 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3208 	    class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
3209 
3210 	error = spa_vdev_add(spa, nvroot);
3211 	nvlist_free(nvroot);
3212 
3213 	if (error == ENOSPC)
3214 		ztest_record_enospc("spa_vdev_add");
3215 	else if (error != 0)
3216 		fatal(0, "spa_vdev_add() = %d", error);
3217 
3218 	/*
3219 	 * 50% of the time allow small blocks in the special class
3220 	 */
3221 	if (error == 0 &&
3222 	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3223 		if (ztest_opts.zo_verbose >= 3)
3224 			(void) printf("Enabling special VDEV small blocks\n");
3225 		(void) ztest_dsl_prop_set_uint64(zd->zd_name,
3226 		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3227 	}
3228 
3229 	mutex_exit(&ztest_vdev_lock);
3230 
3231 	if (ztest_opts.zo_verbose >= 3) {
3232 		metaslab_class_t *mc;
3233 
3234 		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3235 			mc = spa_special_class(spa);
3236 		else
3237 			mc = spa_dedup_class(spa);
3238 		(void) printf("Added a %s mirrored vdev (of %d)\n",
3239 		    class, (int)mc->mc_groups);
3240 	}
3241 }
3242 
3243 /*
3244  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3245  */
3246 /* ARGSUSED */
3247 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)3248 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3249 {
3250 	ztest_shared_t *zs = ztest_shared;
3251 	spa_t *spa = ztest_spa;
3252 	vdev_t *rvd = spa->spa_root_vdev;
3253 	spa_aux_vdev_t *sav;
3254 	char *aux;
3255 	char *path;
3256 	uint64_t guid = 0;
3257 	int error, ignore_err = 0;
3258 
3259 	if (ztest_opts.zo_mmp_test)
3260 		return;
3261 
3262 	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3263 
3264 	if (ztest_random(2) == 0) {
3265 		sav = &spa->spa_spares;
3266 		aux = ZPOOL_CONFIG_SPARES;
3267 	} else {
3268 		sav = &spa->spa_l2cache;
3269 		aux = ZPOOL_CONFIG_L2CACHE;
3270 	}
3271 
3272 	mutex_enter(&ztest_vdev_lock);
3273 
3274 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3275 
3276 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3277 		/*
3278 		 * Pick a random device to remove.
3279 		 */
3280 		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3281 
3282 		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3283 		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3284 			ignore_err = ENOTSUP;
3285 
3286 		guid = svd->vdev_guid;
3287 	} else {
3288 		/*
3289 		 * Find an unused device we can add.
3290 		 */
3291 		zs->zs_vdev_aux = 0;
3292 		for (;;) {
3293 			int c;
3294 			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3295 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3296 			    zs->zs_vdev_aux);
3297 			for (c = 0; c < sav->sav_count; c++)
3298 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3299 				    path) == 0)
3300 					break;
3301 			if (c == sav->sav_count &&
3302 			    vdev_lookup_by_path(rvd, path) == NULL)
3303 				break;
3304 			zs->zs_vdev_aux++;
3305 		}
3306 	}
3307 
3308 	spa_config_exit(spa, SCL_VDEV, FTAG);
3309 
3310 	if (guid == 0) {
3311 		/*
3312 		 * Add a new device.
3313 		 */
3314 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3315 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3316 		error = spa_vdev_add(spa, nvroot);
3317 
3318 		switch (error) {
3319 		case 0:
3320 			break;
3321 		default:
3322 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
3323 		}
3324 		nvlist_free(nvroot);
3325 	} else {
3326 		/*
3327 		 * Remove an existing device.  Sometimes, dirty its
3328 		 * vdev state first to make sure we handle removal
3329 		 * of devices that have pending state changes.
3330 		 */
3331 		if (ztest_random(2) == 0)
3332 			(void) vdev_online(spa, guid, 0, NULL);
3333 
3334 		error = spa_vdev_remove(spa, guid, B_FALSE);
3335 
3336 		switch (error) {
3337 		case 0:
3338 		case EBUSY:
3339 		case ZFS_ERR_CHECKPOINT_EXISTS:
3340 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3341 			break;
3342 		default:
3343 			if (error != ignore_err)
3344 				fatal(0, "spa_vdev_remove(%llu) = %d", guid,
3345 				    error);
3346 		}
3347 	}
3348 
3349 	mutex_exit(&ztest_vdev_lock);
3350 
3351 	umem_free(path, MAXPATHLEN);
3352 }
3353 
3354 /*
3355  * split a pool if it has mirror tlvdevs
3356  */
3357 /* ARGSUSED */
3358 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)3359 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3360 {
3361 	ztest_shared_t *zs = ztest_shared;
3362 	spa_t *spa = ztest_spa;
3363 	vdev_t *rvd = spa->spa_root_vdev;
3364 	nvlist_t *tree, **child, *config, *split, **schild;
3365 	uint_t c, children, schildren = 0, lastlogid = 0;
3366 	int error = 0;
3367 
3368 	if (ztest_opts.zo_mmp_test)
3369 		return;
3370 
3371 	mutex_enter(&ztest_vdev_lock);
3372 
3373 	/* ensure we have a usable config; mirrors of raidz aren't supported */
3374 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3375 		mutex_exit(&ztest_vdev_lock);
3376 		return;
3377 	}
3378 
3379 	/* clean up the old pool, if any */
3380 	(void) spa_destroy("splitp");
3381 
3382 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3383 
3384 	/* generate a config from the existing config */
3385 	mutex_enter(&spa->spa_props_lock);
3386 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
3387 	    &tree) == 0);
3388 	mutex_exit(&spa->spa_props_lock);
3389 
3390 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
3391 	    &children) == 0);
3392 
3393 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3394 	for (c = 0; c < children; c++) {
3395 		vdev_t *tvd = rvd->vdev_child[c];
3396 		nvlist_t **mchild;
3397 		uint_t mchildren;
3398 
3399 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3400 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
3401 			    0) == 0);
3402 			VERIFY(nvlist_add_string(schild[schildren],
3403 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
3404 			VERIFY(nvlist_add_uint64(schild[schildren],
3405 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
3406 			if (lastlogid == 0)
3407 				lastlogid = schildren;
3408 			++schildren;
3409 			continue;
3410 		}
3411 		lastlogid = 0;
3412 		VERIFY(nvlist_lookup_nvlist_array(child[c],
3413 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
3414 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
3415 	}
3416 
3417 	/* OK, create a config that can be used to split */
3418 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
3419 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
3420 	    VDEV_TYPE_ROOT) == 0);
3421 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
3422 	    lastlogid != 0 ? lastlogid : schildren) == 0);
3423 
3424 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
3425 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
3426 
3427 	for (c = 0; c < schildren; c++)
3428 		nvlist_free(schild[c]);
3429 	free(schild);
3430 	nvlist_free(split);
3431 
3432 	spa_config_exit(spa, SCL_VDEV, FTAG);
3433 
3434 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
3435 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3436 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3437 
3438 	nvlist_free(config);
3439 
3440 	if (error == 0) {
3441 		(void) printf("successful split - results:\n");
3442 		mutex_enter(&spa_namespace_lock);
3443 		show_pool_stats(spa);
3444 		show_pool_stats(spa_lookup("splitp"));
3445 		mutex_exit(&spa_namespace_lock);
3446 		++zs->zs_splits;
3447 		--zs->zs_mirrors;
3448 	}
3449 	mutex_exit(&ztest_vdev_lock);
3450 }
3451 
3452 /*
3453  * Verify that we can attach and detach devices.
3454  */
3455 /* ARGSUSED */
3456 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)3457 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3458 {
3459 	ztest_shared_t *zs = ztest_shared;
3460 	spa_t *spa = ztest_spa;
3461 	spa_aux_vdev_t *sav = &spa->spa_spares;
3462 	vdev_t *rvd = spa->spa_root_vdev;
3463 	vdev_t *oldvd, *newvd, *pvd;
3464 	nvlist_t *root;
3465 	uint64_t leaves;
3466 	uint64_t leaf, top;
3467 	uint64_t ashift = ztest_get_ashift();
3468 	uint64_t oldguid, pguid;
3469 	uint64_t oldsize, newsize;
3470 	char *oldpath, *newpath;
3471 	int replacing;
3472 	int oldvd_has_siblings = B_FALSE;
3473 	int newvd_is_spare = B_FALSE;
3474 	int newvd_is_dspare = B_FALSE;
3475 	int oldvd_is_log;
3476 	int error, expected_error;
3477 
3478 	if (ztest_opts.zo_mmp_test)
3479 		return;
3480 
3481 	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3482 	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3483 
3484 	mutex_enter(&ztest_vdev_lock);
3485 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
3486 
3487 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3488 
3489 	/*
3490 	 * If a vdev is in the process of being removed, its removal may
3491 	 * finish while we are in progress, leading to an unexpected error
3492 	 * value.  Don't bother trying to attach while we are in the middle
3493 	 * of removal.
3494 	 */
3495 	if (ztest_device_removal_active) {
3496 		spa_config_exit(spa, SCL_ALL, FTAG);
3497 		goto out;
3498 	}
3499 
3500 	/*
3501 	 * Decide whether to do an attach or a replace.
3502 	 */
3503 	replacing = ztest_random(2);
3504 
3505 	/*
3506 	 * Pick a random top-level vdev.
3507 	 */
3508 	top = ztest_random_vdev_top(spa, B_TRUE);
3509 
3510 	/*
3511 	 * Pick a random leaf within it.
3512 	 */
3513 	leaf = ztest_random(leaves);
3514 
3515 	/*
3516 	 * Locate this vdev.
3517 	 */
3518 	oldvd = rvd->vdev_child[top];
3519 
3520 	/* pick a child from the mirror */
3521 	if (zs->zs_mirrors >= 1) {
3522 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
3523 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
3524 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
3525 	}
3526 
3527 	/* pick a child out of the raidz group */
3528 	if (ztest_opts.zo_raid_children > 1) {
3529 		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3530 			ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
3531 		else
3532 			ASSERT(oldvd->vdev_ops == &vdev_draid_ops);
3533 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raid_children);
3534 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
3535 	}
3536 
3537 	/*
3538 	 * If we're already doing an attach or replace, oldvd may be a
3539 	 * mirror vdev -- in which case, pick a random child.
3540 	 */
3541 	while (oldvd->vdev_children != 0) {
3542 		oldvd_has_siblings = B_TRUE;
3543 		ASSERT(oldvd->vdev_children >= 2);
3544 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3545 	}
3546 
3547 	oldguid = oldvd->vdev_guid;
3548 	oldsize = vdev_get_min_asize(oldvd);
3549 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3550 	(void) strcpy(oldpath, oldvd->vdev_path);
3551 	pvd = oldvd->vdev_parent;
3552 	pguid = pvd->vdev_guid;
3553 
3554 	/*
3555 	 * If oldvd has siblings, then half of the time, detach it.  Prior
3556 	 * to the detach the pool is scrubbed in order to prevent creating
3557 	 * unrepairable blocks as a result of the data corruption injection.
3558 	 */
3559 	if (oldvd_has_siblings && ztest_random(2) == 0) {
3560 		spa_config_exit(spa, SCL_ALL, FTAG);
3561 
3562 		error = ztest_scrub_impl(spa);
3563 		if (error)
3564 			goto out;
3565 
3566 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3567 		if (error != 0 && error != ENODEV && error != EBUSY &&
3568 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3569 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3570 			fatal(0, "detach (%s) returned %d", oldpath, error);
3571 		goto out;
3572 	}
3573 
3574 	/*
3575 	 * For the new vdev, choose with equal probability between the two
3576 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3577 	 */
3578 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3579 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3580 		newvd_is_spare = B_TRUE;
3581 
3582 		if (newvd->vdev_ops == &vdev_draid_spare_ops)
3583 			newvd_is_dspare = B_TRUE;
3584 
3585 		(void) strcpy(newpath, newvd->vdev_path);
3586 	} else {
3587 		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3588 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3589 		    top * leaves + leaf);
3590 		if (ztest_random(2) == 0)
3591 			newpath[strlen(newpath) - 1] = 'b';
3592 		newvd = vdev_lookup_by_path(rvd, newpath);
3593 	}
3594 
3595 	if (newvd) {
3596 		/*
3597 		 * Reopen to ensure the vdev's asize field isn't stale.
3598 		 */
3599 		vdev_reopen(newvd);
3600 		newsize = vdev_get_min_asize(newvd);
3601 	} else {
3602 		/*
3603 		 * Make newsize a little bigger or smaller than oldsize.
3604 		 * If it's smaller, the attach should fail.
3605 		 * If it's larger, and we're doing a replace,
3606 		 * we should get dynamic LUN growth when we're done.
3607 		 */
3608 		newsize = 10 * oldsize / (9 + ztest_random(3));
3609 	}
3610 
3611 	/*
3612 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3613 	 * unless it's a replace; in that case any non-replacing parent is OK.
3614 	 *
3615 	 * If newvd is already part of the pool, it should fail with EBUSY.
3616 	 *
3617 	 * If newvd is too small, it should fail with EOVERFLOW.
3618 	 *
3619 	 * If newvd is a distributed spare and it's being attached to a
3620 	 * dRAID which is not its parent it should fail with EINVAL.
3621 	 */
3622 	if (pvd->vdev_ops != &vdev_mirror_ops &&
3623 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3624 	    pvd->vdev_ops == &vdev_replacing_ops ||
3625 	    pvd->vdev_ops == &vdev_spare_ops))
3626 		expected_error = ENOTSUP;
3627 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
3628 		expected_error = ENOTSUP;
3629 	else if (newvd == oldvd)
3630 		expected_error = replacing ? 0 : EBUSY;
3631 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3632 		expected_error = EBUSY;
3633 	else if (!newvd_is_dspare && newsize < oldsize)
3634 		expected_error = EOVERFLOW;
3635 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3636 		expected_error = EDOM;
3637 	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3638 		expected_error = ENOTSUP;
3639 	else
3640 		expected_error = 0;
3641 
3642 	spa_config_exit(spa, SCL_ALL, FTAG);
3643 
3644 	/*
3645 	 * Build the nvlist describing newpath.
3646 	 */
3647 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3648 	    ashift, NULL, 0, 0, 1);
3649 
3650 	/*
3651 	 * When supported select either a healing or sequential resilver.
3652 	 */
3653 	boolean_t rebuilding = B_FALSE;
3654 	if (pvd->vdev_ops == &vdev_mirror_ops ||
3655 	    pvd->vdev_ops ==  &vdev_root_ops) {
3656 		rebuilding = !!ztest_random(2);
3657 	}
3658 
3659 	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3660 
3661 	nvlist_free(root);
3662 
3663 	/*
3664 	 * If our parent was the replacing vdev, but the replace completed,
3665 	 * then instead of failing with ENOTSUP we may either succeed,
3666 	 * fail with ENODEV, or fail with EOVERFLOW.
3667 	 */
3668 	if (expected_error == ENOTSUP &&
3669 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3670 		expected_error = error;
3671 
3672 	/*
3673 	 * If someone grew the LUN, the replacement may be too small.
3674 	 */
3675 	if (error == EOVERFLOW || error == EBUSY)
3676 		expected_error = error;
3677 
3678 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3679 	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3680 	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3681 	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
3682 		expected_error = error;
3683 
3684 	if (error != expected_error && expected_error != EBUSY) {
3685 		fatal(0, "attach (%s %llu, %s %llu, %d) "
3686 		    "returned %d, expected %d",
3687 		    oldpath, oldsize, newpath,
3688 		    newsize, replacing, error, expected_error);
3689 	}
3690 out:
3691 	mutex_exit(&ztest_vdev_lock);
3692 
3693 	umem_free(oldpath, MAXPATHLEN);
3694 	umem_free(newpath, MAXPATHLEN);
3695 }
3696 
3697 /* ARGSUSED */
3698 void
ztest_device_removal(ztest_ds_t * zd,uint64_t id)3699 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3700 {
3701 	spa_t *spa = ztest_spa;
3702 	vdev_t *vd;
3703 	uint64_t guid;
3704 	int error;
3705 
3706 	mutex_enter(&ztest_vdev_lock);
3707 
3708 	if (ztest_device_removal_active) {
3709 		mutex_exit(&ztest_vdev_lock);
3710 		return;
3711 	}
3712 
3713 	/*
3714 	 * Remove a random top-level vdev and wait for removal to finish.
3715 	 */
3716 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3717 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3718 	guid = vd->vdev_guid;
3719 	spa_config_exit(spa, SCL_VDEV, FTAG);
3720 
3721 	error = spa_vdev_remove(spa, guid, B_FALSE);
3722 	if (error == 0) {
3723 		ztest_device_removal_active = B_TRUE;
3724 		mutex_exit(&ztest_vdev_lock);
3725 
3726 		/*
3727 		 * spa->spa_vdev_removal is created in a sync task that
3728 		 * is initiated via dsl_sync_task_nowait(). Since the
3729 		 * task may not run before spa_vdev_remove() returns, we
3730 		 * must wait at least 1 txg to ensure that the removal
3731 		 * struct has been created.
3732 		 */
3733 		txg_wait_synced(spa_get_dsl(spa), 0);
3734 
3735 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
3736 			txg_wait_synced(spa_get_dsl(spa), 0);
3737 	} else {
3738 		mutex_exit(&ztest_vdev_lock);
3739 		return;
3740 	}
3741 
3742 	/*
3743 	 * The pool needs to be scrubbed after completing device removal.
3744 	 * Failure to do so may result in checksum errors due to the
3745 	 * strategy employed by ztest_fault_inject() when selecting which
3746 	 * offset are redundant and can be damaged.
3747 	 */
3748 	error = spa_scan(spa, POOL_SCAN_SCRUB);
3749 	if (error == 0) {
3750 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3751 			txg_wait_synced(spa_get_dsl(spa), 0);
3752 	}
3753 
3754 	mutex_enter(&ztest_vdev_lock);
3755 	ztest_device_removal_active = B_FALSE;
3756 	mutex_exit(&ztest_vdev_lock);
3757 }
3758 
3759 /*
3760  * Callback function which expands the physical size of the vdev.
3761  */
3762 static vdev_t *
grow_vdev(vdev_t * vd,void * arg)3763 grow_vdev(vdev_t *vd, void *arg)
3764 {
3765 	spa_t *spa __maybe_unused = vd->vdev_spa;
3766 	size_t *newsize = arg;
3767 	size_t fsize;
3768 	int fd;
3769 
3770 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3771 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3772 
3773 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3774 		return (vd);
3775 
3776 	fsize = lseek(fd, 0, SEEK_END);
3777 	VERIFY(ftruncate(fd, *newsize) == 0);
3778 
3779 	if (ztest_opts.zo_verbose >= 6) {
3780 		(void) printf("%s grew from %lu to %lu bytes\n",
3781 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3782 	}
3783 	(void) close(fd);
3784 	return (NULL);
3785 }
3786 
3787 /*
3788  * Callback function which expands a given vdev by calling vdev_online().
3789  */
3790 /* ARGSUSED */
3791 static vdev_t *
online_vdev(vdev_t * vd,void * arg)3792 online_vdev(vdev_t *vd, void *arg)
3793 {
3794 	spa_t *spa = vd->vdev_spa;
3795 	vdev_t *tvd = vd->vdev_top;
3796 	uint64_t guid = vd->vdev_guid;
3797 	uint64_t generation = spa->spa_config_generation + 1;
3798 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3799 	int error;
3800 
3801 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3802 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3803 
3804 	/* Calling vdev_online will initialize the new metaslabs */
3805 	spa_config_exit(spa, SCL_STATE, spa);
3806 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3807 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3808 
3809 	/*
3810 	 * If vdev_online returned an error or the underlying vdev_open
3811 	 * failed then we abort the expand. The only way to know that
3812 	 * vdev_open fails is by checking the returned newstate.
3813 	 */
3814 	if (error || newstate != VDEV_STATE_HEALTHY) {
3815 		if (ztest_opts.zo_verbose >= 5) {
3816 			(void) printf("Unable to expand vdev, state %llu, "
3817 			    "error %d\n", (u_longlong_t)newstate, error);
3818 		}
3819 		return (vd);
3820 	}
3821 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3822 
3823 	/*
3824 	 * Since we dropped the lock we need to ensure that we're
3825 	 * still talking to the original vdev. It's possible this
3826 	 * vdev may have been detached/replaced while we were
3827 	 * trying to online it.
3828 	 */
3829 	if (generation != spa->spa_config_generation) {
3830 		if (ztest_opts.zo_verbose >= 5) {
3831 			(void) printf("vdev configuration has changed, "
3832 			    "guid %llu, state %llu, expected gen %llu, "
3833 			    "got gen %llu\n",
3834 			    (u_longlong_t)guid,
3835 			    (u_longlong_t)tvd->vdev_state,
3836 			    (u_longlong_t)generation,
3837 			    (u_longlong_t)spa->spa_config_generation);
3838 		}
3839 		return (vd);
3840 	}
3841 	return (NULL);
3842 }
3843 
3844 /*
3845  * Traverse the vdev tree calling the supplied function.
3846  * We continue to walk the tree until we either have walked all
3847  * children or we receive a non-NULL return from the callback.
3848  * If a NULL callback is passed, then we just return back the first
3849  * leaf vdev we encounter.
3850  */
3851 static vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)3852 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3853 {
3854 	uint_t c;
3855 
3856 	if (vd->vdev_ops->vdev_op_leaf) {
3857 		if (func == NULL)
3858 			return (vd);
3859 		else
3860 			return (func(vd, arg));
3861 	}
3862 
3863 	for (c = 0; c < vd->vdev_children; c++) {
3864 		vdev_t *cvd = vd->vdev_child[c];
3865 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3866 			return (cvd);
3867 	}
3868 	return (NULL);
3869 }
3870 
3871 /*
3872  * Verify that dynamic LUN growth works as expected.
3873  */
3874 /* ARGSUSED */
3875 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)3876 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3877 {
3878 	spa_t *spa = ztest_spa;
3879 	vdev_t *vd, *tvd;
3880 	metaslab_class_t *mc;
3881 	metaslab_group_t *mg;
3882 	size_t psize, newsize;
3883 	uint64_t top;
3884 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3885 
3886 	mutex_enter(&ztest_checkpoint_lock);
3887 	mutex_enter(&ztest_vdev_lock);
3888 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3889 
3890 	/*
3891 	 * If there is a vdev removal in progress, it could complete while
3892 	 * we are running, in which case we would not be able to verify
3893 	 * that the metaslab_class space increased (because it decreases
3894 	 * when the device removal completes).
3895 	 */
3896 	if (ztest_device_removal_active) {
3897 		spa_config_exit(spa, SCL_STATE, spa);
3898 		mutex_exit(&ztest_vdev_lock);
3899 		mutex_exit(&ztest_checkpoint_lock);
3900 		return;
3901 	}
3902 
3903 	top = ztest_random_vdev_top(spa, B_TRUE);
3904 
3905 	tvd = spa->spa_root_vdev->vdev_child[top];
3906 	mg = tvd->vdev_mg;
3907 	mc = mg->mg_class;
3908 	old_ms_count = tvd->vdev_ms_count;
3909 	old_class_space = metaslab_class_get_space(mc);
3910 
3911 	/*
3912 	 * Determine the size of the first leaf vdev associated with
3913 	 * our top-level device.
3914 	 */
3915 	vd = vdev_walk_tree(tvd, NULL, NULL);
3916 	ASSERT3P(vd, !=, NULL);
3917 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3918 
3919 	psize = vd->vdev_psize;
3920 
3921 	/*
3922 	 * We only try to expand the vdev if it's healthy, less than 4x its
3923 	 * original size, and it has a valid psize.
3924 	 */
3925 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3926 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3927 		spa_config_exit(spa, SCL_STATE, spa);
3928 		mutex_exit(&ztest_vdev_lock);
3929 		mutex_exit(&ztest_checkpoint_lock);
3930 		return;
3931 	}
3932 	ASSERT(psize > 0);
3933 	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
3934 	ASSERT3U(newsize, >, psize);
3935 
3936 	if (ztest_opts.zo_verbose >= 6) {
3937 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3938 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3939 	}
3940 
3941 	/*
3942 	 * Growing the vdev is a two step process:
3943 	 *	1). expand the physical size (i.e. relabel)
3944 	 *	2). online the vdev to create the new metaslabs
3945 	 */
3946 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3947 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3948 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3949 		if (ztest_opts.zo_verbose >= 5) {
3950 			(void) printf("Could not expand LUN because "
3951 			    "the vdev configuration changed.\n");
3952 		}
3953 		spa_config_exit(spa, SCL_STATE, spa);
3954 		mutex_exit(&ztest_vdev_lock);
3955 		mutex_exit(&ztest_checkpoint_lock);
3956 		return;
3957 	}
3958 
3959 	spa_config_exit(spa, SCL_STATE, spa);
3960 
3961 	/*
3962 	 * Expanding the LUN will update the config asynchronously,
3963 	 * thus we must wait for the async thread to complete any
3964 	 * pending tasks before proceeding.
3965 	 */
3966 	for (;;) {
3967 		boolean_t done;
3968 		mutex_enter(&spa->spa_async_lock);
3969 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3970 		mutex_exit(&spa->spa_async_lock);
3971 		if (done)
3972 			break;
3973 		txg_wait_synced(spa_get_dsl(spa), 0);
3974 		(void) poll(NULL, 0, 100);
3975 	}
3976 
3977 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3978 
3979 	tvd = spa->spa_root_vdev->vdev_child[top];
3980 	new_ms_count = tvd->vdev_ms_count;
3981 	new_class_space = metaslab_class_get_space(mc);
3982 
3983 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3984 		if (ztest_opts.zo_verbose >= 5) {
3985 			(void) printf("Could not verify LUN expansion due to "
3986 			    "intervening vdev offline or remove.\n");
3987 		}
3988 		spa_config_exit(spa, SCL_STATE, spa);
3989 		mutex_exit(&ztest_vdev_lock);
3990 		mutex_exit(&ztest_checkpoint_lock);
3991 		return;
3992 	}
3993 
3994 	/*
3995 	 * Make sure we were able to grow the vdev.
3996 	 */
3997 	if (new_ms_count <= old_ms_count) {
3998 		fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3999 		    old_ms_count, new_ms_count);
4000 	}
4001 
4002 	/*
4003 	 * Make sure we were able to grow the pool.
4004 	 */
4005 	if (new_class_space <= old_class_space) {
4006 		fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
4007 		    old_class_space, new_class_space);
4008 	}
4009 
4010 	if (ztest_opts.zo_verbose >= 5) {
4011 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4012 
4013 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4014 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4015 		(void) printf("%s grew from %s to %s\n",
4016 		    spa->spa_name, oldnumbuf, newnumbuf);
4017 	}
4018 
4019 	spa_config_exit(spa, SCL_STATE, spa);
4020 	mutex_exit(&ztest_vdev_lock);
4021 	mutex_exit(&ztest_checkpoint_lock);
4022 }
4023 
4024 /*
4025  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4026  */
4027 /* ARGSUSED */
4028 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)4029 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4030 {
4031 	/*
4032 	 * Create the objects common to all ztest datasets.
4033 	 */
4034 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
4035 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
4036 }
4037 
4038 static int
ztest_dataset_create(char * dsname)4039 ztest_dataset_create(char *dsname)
4040 {
4041 	int err;
4042 	uint64_t rand;
4043 	dsl_crypto_params_t *dcp = NULL;
4044 
4045 	/*
4046 	 * 50% of the time, we create encrypted datasets
4047 	 * using a random cipher suite and a hard-coded
4048 	 * wrapping key.
4049 	 */
4050 	rand = ztest_random(2);
4051 	if (rand != 0) {
4052 		nvlist_t *crypto_args = fnvlist_alloc();
4053 		nvlist_t *props = fnvlist_alloc();
4054 
4055 		/* slight bias towards the default cipher suite */
4056 		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4057 		if (rand < ZIO_CRYPT_AES_128_CCM)
4058 			rand = ZIO_CRYPT_ON;
4059 
4060 		fnvlist_add_uint64(props,
4061 		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4062 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
4063 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4064 
4065 		/*
4066 		 * These parameters aren't really used by the kernel. They
4067 		 * are simply stored so that userspace knows how to load
4068 		 * the wrapping key.
4069 		 */
4070 		fnvlist_add_uint64(props,
4071 		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4072 		fnvlist_add_string(props,
4073 		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4074 		fnvlist_add_uint64(props,
4075 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4076 		fnvlist_add_uint64(props,
4077 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4078 
4079 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4080 		    crypto_args, &dcp));
4081 
4082 		/*
4083 		 * Cycle through all available encryption implementations
4084 		 * to verify interoperability.
4085 		 */
4086 		VERIFY0(gcm_impl_set("cycle"));
4087 		VERIFY0(aes_impl_set("cycle"));
4088 
4089 		fnvlist_free(crypto_args);
4090 		fnvlist_free(props);
4091 	}
4092 
4093 	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4094 	    ztest_objset_create_cb, NULL);
4095 	dsl_crypto_params_free(dcp, !!err);
4096 
4097 	rand = ztest_random(100);
4098 	if (err || rand < 80)
4099 		return (err);
4100 
4101 	if (ztest_opts.zo_verbose >= 5)
4102 		(void) printf("Setting dataset %s to sync always\n", dsname);
4103 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4104 	    ZFS_SYNC_ALWAYS, B_FALSE));
4105 }
4106 
4107 /* ARGSUSED */
4108 static int
ztest_objset_destroy_cb(const char * name,void * arg)4109 ztest_objset_destroy_cb(const char *name, void *arg)
4110 {
4111 	objset_t *os;
4112 	dmu_object_info_t doi;
4113 	int error;
4114 
4115 	/*
4116 	 * Verify that the dataset contains a directory object.
4117 	 */
4118 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4119 	    B_TRUE, FTAG, &os));
4120 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4121 	if (error != ENOENT) {
4122 		/* We could have crashed in the middle of destroying it */
4123 		ASSERT0(error);
4124 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4125 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4126 	}
4127 	dmu_objset_disown(os, B_TRUE, FTAG);
4128 
4129 	/*
4130 	 * Destroy the dataset.
4131 	 */
4132 	if (strchr(name, '@') != NULL) {
4133 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
4134 	} else {
4135 		error = dsl_destroy_head(name);
4136 		if (error == ENOSPC) {
4137 			/* There could be checkpoint or insufficient slop */
4138 			ztest_record_enospc(FTAG);
4139 		} else if (error != EBUSY) {
4140 			/* There could be a hold on this dataset */
4141 			ASSERT0(error);
4142 		}
4143 	}
4144 	return (0);
4145 }
4146 
4147 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)4148 ztest_snapshot_create(char *osname, uint64_t id)
4149 {
4150 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4151 	int error;
4152 
4153 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
4154 
4155 	error = dmu_objset_snapshot_one(osname, snapname);
4156 	if (error == ENOSPC) {
4157 		ztest_record_enospc(FTAG);
4158 		return (B_FALSE);
4159 	}
4160 	if (error != 0 && error != EEXIST) {
4161 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
4162 		    snapname, error);
4163 	}
4164 	return (B_TRUE);
4165 }
4166 
4167 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)4168 ztest_snapshot_destroy(char *osname, uint64_t id)
4169 {
4170 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4171 	int error;
4172 
4173 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
4174 	    (u_longlong_t)id);
4175 
4176 	error = dsl_destroy_snapshot(snapname, B_FALSE);
4177 	if (error != 0 && error != ENOENT)
4178 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
4179 	return (B_TRUE);
4180 }
4181 
4182 /* ARGSUSED */
4183 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)4184 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4185 {
4186 	ztest_ds_t *zdtmp;
4187 	int iters;
4188 	int error;
4189 	objset_t *os, *os2;
4190 	char name[ZFS_MAX_DATASET_NAME_LEN];
4191 	zilog_t *zilog;
4192 	int i;
4193 
4194 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4195 
4196 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4197 
4198 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
4199 	    ztest_opts.zo_pool, (u_longlong_t)id);
4200 
4201 	/*
4202 	 * If this dataset exists from a previous run, process its replay log
4203 	 * half of the time.  If we don't replay it, then dsl_destroy_head()
4204 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4205 	 */
4206 	if (ztest_random(2) == 0 &&
4207 	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4208 	    B_TRUE, FTAG, &os) == 0) {
4209 		ztest_zd_init(zdtmp, NULL, os);
4210 		zil_replay(os, zdtmp, ztest_replay_vector);
4211 		ztest_zd_fini(zdtmp);
4212 		dmu_objset_disown(os, B_TRUE, FTAG);
4213 	}
4214 
4215 	/*
4216 	 * There may be an old instance of the dataset we're about to
4217 	 * create lying around from a previous run.  If so, destroy it
4218 	 * and all of its snapshots.
4219 	 */
4220 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4221 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4222 
4223 	/*
4224 	 * Verify that the destroyed dataset is no longer in the namespace.
4225 	 */
4226 	VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4227 	    B_TRUE, FTAG, &os));
4228 
4229 	/*
4230 	 * Verify that we can create a new dataset.
4231 	 */
4232 	error = ztest_dataset_create(name);
4233 	if (error) {
4234 		if (error == ENOSPC) {
4235 			ztest_record_enospc(FTAG);
4236 			goto out;
4237 		}
4238 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
4239 	}
4240 
4241 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4242 	    FTAG, &os));
4243 
4244 	ztest_zd_init(zdtmp, NULL, os);
4245 
4246 	/*
4247 	 * Open the intent log for it.
4248 	 */
4249 	zilog = zil_open(os, ztest_get_data);
4250 
4251 	/*
4252 	 * Put some objects in there, do a little I/O to them,
4253 	 * and randomly take a couple of snapshots along the way.
4254 	 */
4255 	iters = ztest_random(5);
4256 	for (i = 0; i < iters; i++) {
4257 		ztest_dmu_object_alloc_free(zdtmp, id);
4258 		if (ztest_random(iters) == 0)
4259 			(void) ztest_snapshot_create(name, i);
4260 	}
4261 
4262 	/*
4263 	 * Verify that we cannot create an existing dataset.
4264 	 */
4265 	VERIFY3U(EEXIST, ==,
4266 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4267 
4268 	/*
4269 	 * Verify that we can hold an objset that is also owned.
4270 	 */
4271 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
4272 	dmu_objset_rele(os2, FTAG);
4273 
4274 	/*
4275 	 * Verify that we cannot own an objset that is already owned.
4276 	 */
4277 	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4278 	    B_FALSE, B_TRUE, FTAG, &os2));
4279 
4280 	zil_close(zilog);
4281 	dmu_objset_disown(os, B_TRUE, FTAG);
4282 	ztest_zd_fini(zdtmp);
4283 out:
4284 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4285 
4286 	umem_free(zdtmp, sizeof (ztest_ds_t));
4287 }
4288 
4289 /*
4290  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4291  */
4292 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)4293 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4294 {
4295 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4296 	(void) ztest_snapshot_destroy(zd->zd_name, id);
4297 	(void) ztest_snapshot_create(zd->zd_name, id);
4298 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4299 }
4300 
4301 /*
4302  * Cleanup non-standard snapshots and clones.
4303  */
4304 static void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)4305 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4306 {
4307 	char *snap1name;
4308 	char *clone1name;
4309 	char *snap2name;
4310 	char *clone2name;
4311 	char *snap3name;
4312 	int error;
4313 
4314 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4315 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4316 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4317 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4318 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4319 
4320 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4321 	    "%s@s1_%llu", osname, (u_longlong_t)id);
4322 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4323 	    "%s/c1_%llu", osname, (u_longlong_t)id);
4324 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4325 	    "%s@s2_%llu", clone1name, (u_longlong_t)id);
4326 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4327 	    "%s/c2_%llu", osname, (u_longlong_t)id);
4328 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4329 	    "%s@s3_%llu", clone1name, (u_longlong_t)id);
4330 
4331 	error = dsl_destroy_head(clone2name);
4332 	if (error && error != ENOENT)
4333 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
4334 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
4335 	if (error && error != ENOENT)
4336 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
4337 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
4338 	if (error && error != ENOENT)
4339 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
4340 	error = dsl_destroy_head(clone1name);
4341 	if (error && error != ENOENT)
4342 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
4343 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
4344 	if (error && error != ENOENT)
4345 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
4346 
4347 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4348 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4349 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4350 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4351 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4352 }
4353 
4354 /*
4355  * Verify dsl_dataset_promote handles EBUSY
4356  */
4357 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)4358 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4359 {
4360 	objset_t *os;
4361 	char *snap1name;
4362 	char *clone1name;
4363 	char *snap2name;
4364 	char *clone2name;
4365 	char *snap3name;
4366 	char *osname = zd->zd_name;
4367 	int error;
4368 
4369 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4370 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4371 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4372 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4373 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4374 
4375 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4376 
4377 	ztest_dsl_dataset_cleanup(osname, id);
4378 
4379 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4380 	    "%s@s1_%llu", osname, (u_longlong_t)id);
4381 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4382 	    "%s/c1_%llu", osname, (u_longlong_t)id);
4383 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4384 	    "%s@s2_%llu", clone1name, (u_longlong_t)id);
4385 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4386 	    "%s/c2_%llu", osname, (u_longlong_t)id);
4387 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4388 	    "%s@s3_%llu", clone1name, (u_longlong_t)id);
4389 
4390 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4391 	if (error && error != EEXIST) {
4392 		if (error == ENOSPC) {
4393 			ztest_record_enospc(FTAG);
4394 			goto out;
4395 		}
4396 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
4397 	}
4398 
4399 	error = dmu_objset_clone(clone1name, snap1name);
4400 	if (error) {
4401 		if (error == ENOSPC) {
4402 			ztest_record_enospc(FTAG);
4403 			goto out;
4404 		}
4405 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
4406 	}
4407 
4408 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4409 	if (error && error != EEXIST) {
4410 		if (error == ENOSPC) {
4411 			ztest_record_enospc(FTAG);
4412 			goto out;
4413 		}
4414 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
4415 	}
4416 
4417 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4418 	if (error && error != EEXIST) {
4419 		if (error == ENOSPC) {
4420 			ztest_record_enospc(FTAG);
4421 			goto out;
4422 		}
4423 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
4424 	}
4425 
4426 	error = dmu_objset_clone(clone2name, snap3name);
4427 	if (error) {
4428 		if (error == ENOSPC) {
4429 			ztest_record_enospc(FTAG);
4430 			goto out;
4431 		}
4432 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
4433 	}
4434 
4435 	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4436 	    FTAG, &os);
4437 	if (error)
4438 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
4439 	error = dsl_dataset_promote(clone2name, NULL);
4440 	if (error == ENOSPC) {
4441 		dmu_objset_disown(os, B_TRUE, FTAG);
4442 		ztest_record_enospc(FTAG);
4443 		goto out;
4444 	}
4445 	if (error != EBUSY)
4446 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
4447 		    error);
4448 	dmu_objset_disown(os, B_TRUE, FTAG);
4449 
4450 out:
4451 	ztest_dsl_dataset_cleanup(osname, id);
4452 
4453 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4454 
4455 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4456 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4457 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4458 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4459 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4460 }
4461 
4462 #undef OD_ARRAY_SIZE
4463 #define	OD_ARRAY_SIZE	4
4464 
4465 /*
4466  * Verify that dmu_object_{alloc,free} work as expected.
4467  */
4468 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)4469 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4470 {
4471 	ztest_od_t *od;
4472 	int batchsize;
4473 	int size;
4474 	int b;
4475 
4476 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4477 	od = umem_alloc(size, UMEM_NOFAIL);
4478 	batchsize = OD_ARRAY_SIZE;
4479 
4480 	for (b = 0; b < batchsize; b++)
4481 		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4482 		    0, 0, 0);
4483 
4484 	/*
4485 	 * Destroy the previous batch of objects, create a new batch,
4486 	 * and do some I/O on the new objects.
4487 	 */
4488 	if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4489 		return;
4490 
4491 	while (ztest_random(4 * batchsize) != 0)
4492 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
4493 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4494 
4495 	umem_free(od, size);
4496 }
4497 
4498 /*
4499  * Rewind the global allocator to verify object allocation backfilling.
4500  */
4501 void
ztest_dmu_object_next_chunk(ztest_ds_t * zd,uint64_t id)4502 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4503 {
4504 	objset_t *os = zd->zd_os;
4505 	int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4506 	uint64_t object;
4507 
4508 	/*
4509 	 * Rewind the global allocator randomly back to a lower object number
4510 	 * to force backfilling and reclamation of recently freed dnodes.
4511 	 */
4512 	mutex_enter(&os->os_obj_lock);
4513 	object = ztest_random(os->os_obj_next_chunk);
4514 	os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4515 	mutex_exit(&os->os_obj_lock);
4516 }
4517 
4518 #undef OD_ARRAY_SIZE
4519 #define	OD_ARRAY_SIZE	2
4520 
4521 /*
4522  * Verify that dmu_{read,write} work as expected.
4523  */
4524 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)4525 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4526 {
4527 	int size;
4528 	ztest_od_t *od;
4529 
4530 	objset_t *os = zd->zd_os;
4531 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4532 	od = umem_alloc(size, UMEM_NOFAIL);
4533 	dmu_tx_t *tx;
4534 	int i, freeit, error;
4535 	uint64_t n, s, txg;
4536 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4537 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4538 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4539 	uint64_t regions = 997;
4540 	uint64_t stride = 123456789ULL;
4541 	uint64_t width = 40;
4542 	int free_percent = 5;
4543 
4544 	/*
4545 	 * This test uses two objects, packobj and bigobj, that are always
4546 	 * updated together (i.e. in the same tx) so that their contents are
4547 	 * in sync and can be compared.  Their contents relate to each other
4548 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4549 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4550 	 * for any index n, there are three bufwads that should be identical:
4551 	 *
4552 	 *	packobj, at offset n * sizeof (bufwad_t)
4553 	 *	bigobj, at the head of the nth chunk
4554 	 *	bigobj, at the tail of the nth chunk
4555 	 *
4556 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
4557 	 * and it doesn't have any relation to the object blocksize.
4558 	 * The only requirement is that it can hold at least two bufwads.
4559 	 *
4560 	 * Normally, we write the bufwad to each of these locations.
4561 	 * However, free_percent of the time we instead write zeroes to
4562 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
4563 	 * bigobj to packobj, we can verify that the DMU is correctly
4564 	 * tracking which parts of an object are allocated and free,
4565 	 * and that the contents of the allocated blocks are correct.
4566 	 */
4567 
4568 	/*
4569 	 * Read the directory info.  If it's the first time, set things up.
4570 	 */
4571 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4572 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4573 	    chunksize);
4574 
4575 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4576 		umem_free(od, size);
4577 		return;
4578 	}
4579 
4580 	bigobj = od[0].od_object;
4581 	packobj = od[1].od_object;
4582 	chunksize = od[0].od_gen;
4583 	ASSERT(chunksize == od[1].od_gen);
4584 
4585 	/*
4586 	 * Prefetch a random chunk of the big object.
4587 	 * Our aim here is to get some async reads in flight
4588 	 * for blocks that we may free below; the DMU should
4589 	 * handle this race correctly.
4590 	 */
4591 	n = ztest_random(regions) * stride + ztest_random(width);
4592 	s = 1 + ztest_random(2 * width - 1);
4593 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4594 	    ZIO_PRIORITY_SYNC_READ);
4595 
4596 	/*
4597 	 * Pick a random index and compute the offsets into packobj and bigobj.
4598 	 */
4599 	n = ztest_random(regions) * stride + ztest_random(width);
4600 	s = 1 + ztest_random(width - 1);
4601 
4602 	packoff = n * sizeof (bufwad_t);
4603 	packsize = s * sizeof (bufwad_t);
4604 
4605 	bigoff = n * chunksize;
4606 	bigsize = s * chunksize;
4607 
4608 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4609 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4610 
4611 	/*
4612 	 * free_percent of the time, free a range of bigobj rather than
4613 	 * overwriting it.
4614 	 */
4615 	freeit = (ztest_random(100) < free_percent);
4616 
4617 	/*
4618 	 * Read the current contents of our objects.
4619 	 */
4620 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
4621 	    DMU_READ_PREFETCH);
4622 	ASSERT0(error);
4623 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4624 	    DMU_READ_PREFETCH);
4625 	ASSERT0(error);
4626 
4627 	/*
4628 	 * Get a tx for the mods to both packobj and bigobj.
4629 	 */
4630 	tx = dmu_tx_create(os);
4631 
4632 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
4633 
4634 	if (freeit)
4635 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4636 	else
4637 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4638 
4639 	/* This accounts for setting the checksum/compression. */
4640 	dmu_tx_hold_bonus(tx, bigobj);
4641 
4642 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4643 	if (txg == 0) {
4644 		umem_free(packbuf, packsize);
4645 		umem_free(bigbuf, bigsize);
4646 		umem_free(od, size);
4647 		return;
4648 	}
4649 
4650 	enum zio_checksum cksum;
4651 	do {
4652 		cksum = (enum zio_checksum)
4653 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4654 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4655 	dmu_object_set_checksum(os, bigobj, cksum, tx);
4656 
4657 	enum zio_compress comp;
4658 	do {
4659 		comp = (enum zio_compress)
4660 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4661 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4662 	dmu_object_set_compress(os, bigobj, comp, tx);
4663 
4664 	/*
4665 	 * For each index from n to n + s, verify that the existing bufwad
4666 	 * in packobj matches the bufwads at the head and tail of the
4667 	 * corresponding chunk in bigobj.  Then update all three bufwads
4668 	 * with the new values we want to write out.
4669 	 */
4670 	for (i = 0; i < s; i++) {
4671 		/* LINTED */
4672 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4673 		/* LINTED */
4674 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4675 		/* LINTED */
4676 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4677 
4678 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4679 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4680 
4681 		if (pack->bw_txg > txg)
4682 			fatal(0, "future leak: got %llx, open txg is %llx",
4683 			    pack->bw_txg, txg);
4684 
4685 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4686 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4687 			    pack->bw_index, n, i);
4688 
4689 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4690 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4691 
4692 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4693 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4694 
4695 		if (freeit) {
4696 			bzero(pack, sizeof (bufwad_t));
4697 		} else {
4698 			pack->bw_index = n + i;
4699 			pack->bw_txg = txg;
4700 			pack->bw_data = 1 + ztest_random(-2ULL);
4701 		}
4702 		*bigH = *pack;
4703 		*bigT = *pack;
4704 	}
4705 
4706 	/*
4707 	 * We've verified all the old bufwads, and made new ones.
4708 	 * Now write them out.
4709 	 */
4710 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4711 
4712 	if (freeit) {
4713 		if (ztest_opts.zo_verbose >= 7) {
4714 			(void) printf("freeing offset %llx size %llx"
4715 			    " txg %llx\n",
4716 			    (u_longlong_t)bigoff,
4717 			    (u_longlong_t)bigsize,
4718 			    (u_longlong_t)txg);
4719 		}
4720 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4721 	} else {
4722 		if (ztest_opts.zo_verbose >= 7) {
4723 			(void) printf("writing offset %llx size %llx"
4724 			    " txg %llx\n",
4725 			    (u_longlong_t)bigoff,
4726 			    (u_longlong_t)bigsize,
4727 			    (u_longlong_t)txg);
4728 		}
4729 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4730 	}
4731 
4732 	dmu_tx_commit(tx);
4733 
4734 	/*
4735 	 * Sanity check the stuff we just wrote.
4736 	 */
4737 	{
4738 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4739 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4740 
4741 		VERIFY(0 == dmu_read(os, packobj, packoff,
4742 		    packsize, packcheck, DMU_READ_PREFETCH));
4743 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
4744 		    bigsize, bigcheck, DMU_READ_PREFETCH));
4745 
4746 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4747 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4748 
4749 		umem_free(packcheck, packsize);
4750 		umem_free(bigcheck, bigsize);
4751 	}
4752 
4753 	umem_free(packbuf, packsize);
4754 	umem_free(bigbuf, bigsize);
4755 	umem_free(od, size);
4756 }
4757 
4758 static void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)4759 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4760     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4761 {
4762 	uint64_t i;
4763 	bufwad_t *pack;
4764 	bufwad_t *bigH;
4765 	bufwad_t *bigT;
4766 
4767 	/*
4768 	 * For each index from n to n + s, verify that the existing bufwad
4769 	 * in packobj matches the bufwads at the head and tail of the
4770 	 * corresponding chunk in bigobj.  Then update all three bufwads
4771 	 * with the new values we want to write out.
4772 	 */
4773 	for (i = 0; i < s; i++) {
4774 		/* LINTED */
4775 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4776 		/* LINTED */
4777 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4778 		/* LINTED */
4779 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4780 
4781 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4782 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4783 
4784 		if (pack->bw_txg > txg)
4785 			fatal(0, "future leak: got %llx, open txg is %llx",
4786 			    pack->bw_txg, txg);
4787 
4788 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4789 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4790 			    pack->bw_index, n, i);
4791 
4792 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4793 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4794 
4795 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4796 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4797 
4798 		pack->bw_index = n + i;
4799 		pack->bw_txg = txg;
4800 		pack->bw_data = 1 + ztest_random(-2ULL);
4801 
4802 		*bigH = *pack;
4803 		*bigT = *pack;
4804 	}
4805 }
4806 
4807 #undef OD_ARRAY_SIZE
4808 #define	OD_ARRAY_SIZE	2
4809 
4810 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)4811 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4812 {
4813 	objset_t *os = zd->zd_os;
4814 	ztest_od_t *od;
4815 	dmu_tx_t *tx;
4816 	uint64_t i;
4817 	int error;
4818 	int size;
4819 	uint64_t n, s, txg;
4820 	bufwad_t *packbuf, *bigbuf;
4821 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4822 	uint64_t blocksize = ztest_random_blocksize();
4823 	uint64_t chunksize = blocksize;
4824 	uint64_t regions = 997;
4825 	uint64_t stride = 123456789ULL;
4826 	uint64_t width = 9;
4827 	dmu_buf_t *bonus_db;
4828 	arc_buf_t **bigbuf_arcbufs;
4829 	dmu_object_info_t doi;
4830 
4831 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4832 	od = umem_alloc(size, UMEM_NOFAIL);
4833 
4834 	/*
4835 	 * This test uses two objects, packobj and bigobj, that are always
4836 	 * updated together (i.e. in the same tx) so that their contents are
4837 	 * in sync and can be compared.  Their contents relate to each other
4838 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4839 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4840 	 * for any index n, there are three bufwads that should be identical:
4841 	 *
4842 	 *	packobj, at offset n * sizeof (bufwad_t)
4843 	 *	bigobj, at the head of the nth chunk
4844 	 *	bigobj, at the tail of the nth chunk
4845 	 *
4846 	 * The chunk size is set equal to bigobj block size so that
4847 	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4848 	 */
4849 
4850 	/*
4851 	 * Read the directory info.  If it's the first time, set things up.
4852 	 */
4853 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4854 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4855 	    chunksize);
4856 
4857 
4858 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4859 		umem_free(od, size);
4860 		return;
4861 	}
4862 
4863 	bigobj = od[0].od_object;
4864 	packobj = od[1].od_object;
4865 	blocksize = od[0].od_blocksize;
4866 	chunksize = blocksize;
4867 	ASSERT(chunksize == od[1].od_gen);
4868 
4869 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4870 	VERIFY(ISP2(doi.doi_data_block_size));
4871 	VERIFY(chunksize == doi.doi_data_block_size);
4872 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4873 
4874 	/*
4875 	 * Pick a random index and compute the offsets into packobj and bigobj.
4876 	 */
4877 	n = ztest_random(regions) * stride + ztest_random(width);
4878 	s = 1 + ztest_random(width - 1);
4879 
4880 	packoff = n * sizeof (bufwad_t);
4881 	packsize = s * sizeof (bufwad_t);
4882 
4883 	bigoff = n * chunksize;
4884 	bigsize = s * chunksize;
4885 
4886 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4887 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4888 
4889 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4890 
4891 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4892 
4893 	/*
4894 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4895 	 * Iteration 1 test zcopy to already referenced dbufs.
4896 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4897 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4898 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
4899 	 * Iteration 5 test zcopy when it can't be done.
4900 	 * Iteration 6 one more zcopy write.
4901 	 */
4902 	for (i = 0; i < 7; i++) {
4903 		uint64_t j;
4904 		uint64_t off;
4905 
4906 		/*
4907 		 * In iteration 5 (i == 5) use arcbufs
4908 		 * that don't match bigobj blksz to test
4909 		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
4910 		 * assign an arcbuf to a dbuf.
4911 		 */
4912 		for (j = 0; j < s; j++) {
4913 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4914 				bigbuf_arcbufs[j] =
4915 				    dmu_request_arcbuf(bonus_db, chunksize);
4916 			} else {
4917 				bigbuf_arcbufs[2 * j] =
4918 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
4919 				bigbuf_arcbufs[2 * j + 1] =
4920 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
4921 			}
4922 		}
4923 
4924 		/*
4925 		 * Get a tx for the mods to both packobj and bigobj.
4926 		 */
4927 		tx = dmu_tx_create(os);
4928 
4929 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
4930 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4931 
4932 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4933 		if (txg == 0) {
4934 			umem_free(packbuf, packsize);
4935 			umem_free(bigbuf, bigsize);
4936 			for (j = 0; j < s; j++) {
4937 				if (i != 5 ||
4938 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
4939 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
4940 				} else {
4941 					dmu_return_arcbuf(
4942 					    bigbuf_arcbufs[2 * j]);
4943 					dmu_return_arcbuf(
4944 					    bigbuf_arcbufs[2 * j + 1]);
4945 				}
4946 			}
4947 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4948 			umem_free(od, size);
4949 			dmu_buf_rele(bonus_db, FTAG);
4950 			return;
4951 		}
4952 
4953 		/*
4954 		 * 50% of the time don't read objects in the 1st iteration to
4955 		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
4956 		 * no existing dbufs for the specified offsets.
4957 		 */
4958 		if (i != 0 || ztest_random(2) != 0) {
4959 			error = dmu_read(os, packobj, packoff,
4960 			    packsize, packbuf, DMU_READ_PREFETCH);
4961 			ASSERT0(error);
4962 			error = dmu_read(os, bigobj, bigoff, bigsize,
4963 			    bigbuf, DMU_READ_PREFETCH);
4964 			ASSERT0(error);
4965 		}
4966 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4967 		    n, chunksize, txg);
4968 
4969 		/*
4970 		 * We've verified all the old bufwads, and made new ones.
4971 		 * Now write them out.
4972 		 */
4973 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4974 		if (ztest_opts.zo_verbose >= 7) {
4975 			(void) printf("writing offset %llx size %llx"
4976 			    " txg %llx\n",
4977 			    (u_longlong_t)bigoff,
4978 			    (u_longlong_t)bigsize,
4979 			    (u_longlong_t)txg);
4980 		}
4981 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4982 			dmu_buf_t *dbt;
4983 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4984 				bcopy((caddr_t)bigbuf + (off - bigoff),
4985 				    bigbuf_arcbufs[j]->b_data, chunksize);
4986 			} else {
4987 				bcopy((caddr_t)bigbuf + (off - bigoff),
4988 				    bigbuf_arcbufs[2 * j]->b_data,
4989 				    chunksize / 2);
4990 				bcopy((caddr_t)bigbuf + (off - bigoff) +
4991 				    chunksize / 2,
4992 				    bigbuf_arcbufs[2 * j + 1]->b_data,
4993 				    chunksize / 2);
4994 			}
4995 
4996 			if (i == 1) {
4997 				VERIFY(dmu_buf_hold(os, bigobj, off,
4998 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4999 			}
5000 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5001 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5002 				    off, bigbuf_arcbufs[j], tx));
5003 			} else {
5004 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5005 				    off, bigbuf_arcbufs[2 * j], tx));
5006 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5007 				    off + chunksize / 2,
5008 				    bigbuf_arcbufs[2 * j + 1], tx));
5009 			}
5010 			if (i == 1) {
5011 				dmu_buf_rele(dbt, FTAG);
5012 			}
5013 		}
5014 		dmu_tx_commit(tx);
5015 
5016 		/*
5017 		 * Sanity check the stuff we just wrote.
5018 		 */
5019 		{
5020 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5021 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5022 
5023 			VERIFY0(dmu_read(os, packobj, packoff,
5024 			    packsize, packcheck, DMU_READ_PREFETCH));
5025 			VERIFY0(dmu_read(os, bigobj, bigoff,
5026 			    bigsize, bigcheck, DMU_READ_PREFETCH));
5027 
5028 			ASSERT0(bcmp(packbuf, packcheck, packsize));
5029 			ASSERT0(bcmp(bigbuf, bigcheck, bigsize));
5030 
5031 			umem_free(packcheck, packsize);
5032 			umem_free(bigcheck, bigsize);
5033 		}
5034 		if (i == 2) {
5035 			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5036 		} else if (i == 3) {
5037 			txg_wait_synced(dmu_objset_pool(os), 0);
5038 		}
5039 	}
5040 
5041 	dmu_buf_rele(bonus_db, FTAG);
5042 	umem_free(packbuf, packsize);
5043 	umem_free(bigbuf, bigsize);
5044 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5045 	umem_free(od, size);
5046 }
5047 
5048 /* ARGSUSED */
5049 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)5050 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5051 {
5052 	ztest_od_t *od;
5053 
5054 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5055 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5056 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5057 
5058 	/*
5059 	 * Have multiple threads write to large offsets in an object
5060 	 * to verify that parallel writes to an object -- even to the
5061 	 * same blocks within the object -- doesn't cause any trouble.
5062 	 */
5063 	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5064 
5065 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5066 		return;
5067 
5068 	while (ztest_random(10) != 0)
5069 		ztest_io(zd, od->od_object, offset);
5070 
5071 	umem_free(od, sizeof (ztest_od_t));
5072 }
5073 
5074 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)5075 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5076 {
5077 	ztest_od_t *od;
5078 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5079 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5080 	uint64_t count = ztest_random(20) + 1;
5081 	uint64_t blocksize = ztest_random_blocksize();
5082 	void *data;
5083 
5084 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5085 
5086 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5087 
5088 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5089 	    !ztest_random(2)) != 0) {
5090 		umem_free(od, sizeof (ztest_od_t));
5091 		return;
5092 	}
5093 
5094 	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5095 		umem_free(od, sizeof (ztest_od_t));
5096 		return;
5097 	}
5098 
5099 	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5100 
5101 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
5102 
5103 	while (ztest_random(count) != 0) {
5104 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
5105 		if (ztest_write(zd, od->od_object, randoff, blocksize,
5106 		    data) != 0)
5107 			break;
5108 		while (ztest_random(4) != 0)
5109 			ztest_io(zd, od->od_object, randoff);
5110 	}
5111 
5112 	umem_free(data, blocksize);
5113 	umem_free(od, sizeof (ztest_od_t));
5114 }
5115 
5116 /*
5117  * Verify that zap_{create,destroy,add,remove,update} work as expected.
5118  */
5119 #define	ZTEST_ZAP_MIN_INTS	1
5120 #define	ZTEST_ZAP_MAX_INTS	4
5121 #define	ZTEST_ZAP_MAX_PROPS	1000
5122 
5123 void
ztest_zap(ztest_ds_t * zd,uint64_t id)5124 ztest_zap(ztest_ds_t *zd, uint64_t id)
5125 {
5126 	objset_t *os = zd->zd_os;
5127 	ztest_od_t *od;
5128 	uint64_t object;
5129 	uint64_t txg, last_txg;
5130 	uint64_t value[ZTEST_ZAP_MAX_INTS];
5131 	uint64_t zl_ints, zl_intsize, prop;
5132 	int i, ints;
5133 	dmu_tx_t *tx;
5134 	char propname[100], txgname[100];
5135 	int error;
5136 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5137 
5138 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5139 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5140 
5141 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5142 	    !ztest_random(2)) != 0)
5143 		goto out;
5144 
5145 	object = od->od_object;
5146 
5147 	/*
5148 	 * Generate a known hash collision, and verify that
5149 	 * we can lookup and remove both entries.
5150 	 */
5151 	tx = dmu_tx_create(os);
5152 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5153 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5154 	if (txg == 0)
5155 		goto out;
5156 	for (i = 0; i < 2; i++) {
5157 		value[i] = i;
5158 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
5159 		    1, &value[i], tx));
5160 	}
5161 	for (i = 0; i < 2; i++) {
5162 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5163 		    sizeof (uint64_t), 1, &value[i], tx));
5164 		VERIFY3U(0, ==,
5165 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5166 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5167 		ASSERT3U(zl_ints, ==, 1);
5168 	}
5169 	for (i = 0; i < 2; i++) {
5170 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
5171 	}
5172 	dmu_tx_commit(tx);
5173 
5174 	/*
5175 	 * Generate a bunch of random entries.
5176 	 */
5177 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5178 
5179 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5180 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5181 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5182 	bzero(value, sizeof (value));
5183 	last_txg = 0;
5184 
5185 	/*
5186 	 * If these zap entries already exist, validate their contents.
5187 	 */
5188 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5189 	if (error == 0) {
5190 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5191 		ASSERT3U(zl_ints, ==, 1);
5192 
5193 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
5194 		    zl_ints, &last_txg) == 0);
5195 
5196 		VERIFY(zap_length(os, object, propname, &zl_intsize,
5197 		    &zl_ints) == 0);
5198 
5199 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5200 		ASSERT3U(zl_ints, ==, ints);
5201 
5202 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
5203 		    zl_ints, value) == 0);
5204 
5205 		for (i = 0; i < ints; i++) {
5206 			ASSERT3U(value[i], ==, last_txg + object + i);
5207 		}
5208 	} else {
5209 		ASSERT3U(error, ==, ENOENT);
5210 	}
5211 
5212 	/*
5213 	 * Atomically update two entries in our zap object.
5214 	 * The first is named txg_%llu, and contains the txg
5215 	 * in which the property was last updated.  The second
5216 	 * is named prop_%llu, and the nth element of its value
5217 	 * should be txg + object + n.
5218 	 */
5219 	tx = dmu_tx_create(os);
5220 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5221 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5222 	if (txg == 0)
5223 		goto out;
5224 
5225 	if (last_txg > txg)
5226 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
5227 
5228 	for (i = 0; i < ints; i++)
5229 		value[i] = txg + object + i;
5230 
5231 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
5232 	    1, &txg, tx));
5233 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
5234 	    ints, value, tx));
5235 
5236 	dmu_tx_commit(tx);
5237 
5238 	/*
5239 	 * Remove a random pair of entries.
5240 	 */
5241 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5242 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5243 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5244 
5245 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5246 
5247 	if (error == ENOENT)
5248 		goto out;
5249 
5250 	ASSERT0(error);
5251 
5252 	tx = dmu_tx_create(os);
5253 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5254 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5255 	if (txg == 0)
5256 		goto out;
5257 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
5258 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
5259 	dmu_tx_commit(tx);
5260 out:
5261 	umem_free(od, sizeof (ztest_od_t));
5262 }
5263 
5264 /*
5265  * Test case to test the upgrading of a microzap to fatzap.
5266  */
5267 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)5268 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5269 {
5270 	objset_t *os = zd->zd_os;
5271 	ztest_od_t *od;
5272 	uint64_t object, txg;
5273 	int i;
5274 
5275 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5276 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5277 
5278 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5279 	    !ztest_random(2)) != 0)
5280 		goto out;
5281 	object = od->od_object;
5282 
5283 	/*
5284 	 * Add entries to this ZAP and make sure it spills over
5285 	 * and gets upgraded to a fatzap. Also, since we are adding
5286 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
5287 	 */
5288 	for (i = 0; i < 2050; i++) {
5289 		char name[ZFS_MAX_DATASET_NAME_LEN];
5290 		uint64_t value = i;
5291 		dmu_tx_t *tx;
5292 		int error;
5293 
5294 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
5295 		    (u_longlong_t)id, (u_longlong_t)value);
5296 
5297 		tx = dmu_tx_create(os);
5298 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
5299 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5300 		if (txg == 0)
5301 			goto out;
5302 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
5303 		    &value, tx);
5304 		ASSERT(error == 0 || error == EEXIST);
5305 		dmu_tx_commit(tx);
5306 	}
5307 out:
5308 	umem_free(od, sizeof (ztest_od_t));
5309 }
5310 
5311 /* ARGSUSED */
5312 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)5313 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5314 {
5315 	objset_t *os = zd->zd_os;
5316 	ztest_od_t *od;
5317 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5318 	dmu_tx_t *tx;
5319 	int i, namelen, error;
5320 	int micro = ztest_random(2);
5321 	char name[20], string_value[20];
5322 	void *data;
5323 
5324 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5325 	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5326 
5327 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5328 		umem_free(od, sizeof (ztest_od_t));
5329 		return;
5330 	}
5331 
5332 	object = od->od_object;
5333 
5334 	/*
5335 	 * Generate a random name of the form 'xxx.....' where each
5336 	 * x is a random printable character and the dots are dots.
5337 	 * There are 94 such characters, and the name length goes from
5338 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5339 	 */
5340 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5341 
5342 	for (i = 0; i < 3; i++)
5343 		name[i] = '!' + ztest_random('~' - '!' + 1);
5344 	for (; i < namelen - 1; i++)
5345 		name[i] = '.';
5346 	name[i] = '\0';
5347 
5348 	if ((namelen & 1) || micro) {
5349 		wsize = sizeof (txg);
5350 		wc = 1;
5351 		data = &txg;
5352 	} else {
5353 		wsize = 1;
5354 		wc = namelen;
5355 		data = string_value;
5356 	}
5357 
5358 	count = -1ULL;
5359 	VERIFY0(zap_count(os, object, &count));
5360 	ASSERT(count != -1ULL);
5361 
5362 	/*
5363 	 * Select an operation: length, lookup, add, update, remove.
5364 	 */
5365 	i = ztest_random(5);
5366 
5367 	if (i >= 2) {
5368 		tx = dmu_tx_create(os);
5369 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5370 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5371 		if (txg == 0) {
5372 			umem_free(od, sizeof (ztest_od_t));
5373 			return;
5374 		}
5375 		bcopy(name, string_value, namelen);
5376 	} else {
5377 		tx = NULL;
5378 		txg = 0;
5379 		bzero(string_value, namelen);
5380 	}
5381 
5382 	switch (i) {
5383 
5384 	case 0:
5385 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5386 		if (error == 0) {
5387 			ASSERT3U(wsize, ==, zl_wsize);
5388 			ASSERT3U(wc, ==, zl_wc);
5389 		} else {
5390 			ASSERT3U(error, ==, ENOENT);
5391 		}
5392 		break;
5393 
5394 	case 1:
5395 		error = zap_lookup(os, object, name, wsize, wc, data);
5396 		if (error == 0) {
5397 			if (data == string_value &&
5398 			    bcmp(name, data, namelen) != 0)
5399 				fatal(0, "name '%s' != val '%s' len %d",
5400 				    name, data, namelen);
5401 		} else {
5402 			ASSERT3U(error, ==, ENOENT);
5403 		}
5404 		break;
5405 
5406 	case 2:
5407 		error = zap_add(os, object, name, wsize, wc, data, tx);
5408 		ASSERT(error == 0 || error == EEXIST);
5409 		break;
5410 
5411 	case 3:
5412 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
5413 		break;
5414 
5415 	case 4:
5416 		error = zap_remove(os, object, name, tx);
5417 		ASSERT(error == 0 || error == ENOENT);
5418 		break;
5419 	}
5420 
5421 	if (tx != NULL)
5422 		dmu_tx_commit(tx);
5423 
5424 	umem_free(od, sizeof (ztest_od_t));
5425 }
5426 
5427 /*
5428  * Commit callback data.
5429  */
5430 typedef struct ztest_cb_data {
5431 	list_node_t		zcd_node;
5432 	uint64_t		zcd_txg;
5433 	int			zcd_expected_err;
5434 	boolean_t		zcd_added;
5435 	boolean_t		zcd_called;
5436 	spa_t			*zcd_spa;
5437 } ztest_cb_data_t;
5438 
5439 /* This is the actual commit callback function */
5440 static void
ztest_commit_callback(void * arg,int error)5441 ztest_commit_callback(void *arg, int error)
5442 {
5443 	ztest_cb_data_t *data = arg;
5444 	uint64_t synced_txg;
5445 
5446 	VERIFY(data != NULL);
5447 	VERIFY3S(data->zcd_expected_err, ==, error);
5448 	VERIFY(!data->zcd_called);
5449 
5450 	synced_txg = spa_last_synced_txg(data->zcd_spa);
5451 	if (data->zcd_txg > synced_txg)
5452 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
5453 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
5454 		    synced_txg);
5455 
5456 	data->zcd_called = B_TRUE;
5457 
5458 	if (error == ECANCELED) {
5459 		ASSERT0(data->zcd_txg);
5460 		ASSERT(!data->zcd_added);
5461 
5462 		/*
5463 		 * The private callback data should be destroyed here, but
5464 		 * since we are going to check the zcd_called field after
5465 		 * dmu_tx_abort(), we will destroy it there.
5466 		 */
5467 		return;
5468 	}
5469 
5470 	ASSERT(data->zcd_added);
5471 	ASSERT3U(data->zcd_txg, !=, 0);
5472 
5473 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5474 
5475 	/* See if this cb was called more quickly */
5476 	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5477 		zc_min_txg_delay = synced_txg - data->zcd_txg;
5478 
5479 	/* Remove our callback from the list */
5480 	list_remove(&zcl.zcl_callbacks, data);
5481 
5482 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5483 
5484 	umem_free(data, sizeof (ztest_cb_data_t));
5485 }
5486 
5487 /* Allocate and initialize callback data structure */
5488 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)5489 ztest_create_cb_data(objset_t *os, uint64_t txg)
5490 {
5491 	ztest_cb_data_t *cb_data;
5492 
5493 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5494 
5495 	cb_data->zcd_txg = txg;
5496 	cb_data->zcd_spa = dmu_objset_spa(os);
5497 	list_link_init(&cb_data->zcd_node);
5498 
5499 	return (cb_data);
5500 }
5501 
5502 /*
5503  * Commit callback test.
5504  */
5505 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)5506 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5507 {
5508 	objset_t *os = zd->zd_os;
5509 	ztest_od_t *od;
5510 	dmu_tx_t *tx;
5511 	ztest_cb_data_t *cb_data[3], *tmp_cb;
5512 	uint64_t old_txg, txg;
5513 	int i, error = 0;
5514 
5515 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5516 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5517 
5518 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5519 		umem_free(od, sizeof (ztest_od_t));
5520 		return;
5521 	}
5522 
5523 	tx = dmu_tx_create(os);
5524 
5525 	cb_data[0] = ztest_create_cb_data(os, 0);
5526 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5527 
5528 	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5529 
5530 	/* Every once in a while, abort the transaction on purpose */
5531 	if (ztest_random(100) == 0)
5532 		error = -1;
5533 
5534 	if (!error)
5535 		error = dmu_tx_assign(tx, TXG_NOWAIT);
5536 
5537 	txg = error ? 0 : dmu_tx_get_txg(tx);
5538 
5539 	cb_data[0]->zcd_txg = txg;
5540 	cb_data[1] = ztest_create_cb_data(os, txg);
5541 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5542 
5543 	if (error) {
5544 		/*
5545 		 * It's not a strict requirement to call the registered
5546 		 * callbacks from inside dmu_tx_abort(), but that's what
5547 		 * it's supposed to happen in the current implementation
5548 		 * so we will check for that.
5549 		 */
5550 		for (i = 0; i < 2; i++) {
5551 			cb_data[i]->zcd_expected_err = ECANCELED;
5552 			VERIFY(!cb_data[i]->zcd_called);
5553 		}
5554 
5555 		dmu_tx_abort(tx);
5556 
5557 		for (i = 0; i < 2; i++) {
5558 			VERIFY(cb_data[i]->zcd_called);
5559 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5560 		}
5561 
5562 		umem_free(od, sizeof (ztest_od_t));
5563 		return;
5564 	}
5565 
5566 	cb_data[2] = ztest_create_cb_data(os, txg);
5567 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5568 
5569 	/*
5570 	 * Read existing data to make sure there isn't a future leak.
5571 	 */
5572 	VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5573 	    &old_txg, DMU_READ_PREFETCH));
5574 
5575 	if (old_txg > txg)
5576 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
5577 		    old_txg, txg);
5578 
5579 	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5580 
5581 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
5582 
5583 	/*
5584 	 * Since commit callbacks don't have any ordering requirement and since
5585 	 * it is theoretically possible for a commit callback to be called
5586 	 * after an arbitrary amount of time has elapsed since its txg has been
5587 	 * synced, it is difficult to reliably determine whether a commit
5588 	 * callback hasn't been called due to high load or due to a flawed
5589 	 * implementation.
5590 	 *
5591 	 * In practice, we will assume that if after a certain number of txgs a
5592 	 * commit callback hasn't been called, then most likely there's an
5593 	 * implementation bug..
5594 	 */
5595 	tmp_cb = list_head(&zcl.zcl_callbacks);
5596 	if (tmp_cb != NULL &&
5597 	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5598 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
5599 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
5600 	}
5601 
5602 	/*
5603 	 * Let's find the place to insert our callbacks.
5604 	 *
5605 	 * Even though the list is ordered by txg, it is possible for the
5606 	 * insertion point to not be the end because our txg may already be
5607 	 * quiescing at this point and other callbacks in the open txg
5608 	 * (from other objsets) may have sneaked in.
5609 	 */
5610 	tmp_cb = list_tail(&zcl.zcl_callbacks);
5611 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5612 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5613 
5614 	/* Add the 3 callbacks to the list */
5615 	for (i = 0; i < 3; i++) {
5616 		if (tmp_cb == NULL)
5617 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5618 		else
5619 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5620 			    cb_data[i]);
5621 
5622 		cb_data[i]->zcd_added = B_TRUE;
5623 		VERIFY(!cb_data[i]->zcd_called);
5624 
5625 		tmp_cb = cb_data[i];
5626 	}
5627 
5628 	zc_cb_counter += 3;
5629 
5630 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
5631 
5632 	dmu_tx_commit(tx);
5633 
5634 	umem_free(od, sizeof (ztest_od_t));
5635 }
5636 
5637 /*
5638  * Visit each object in the dataset. Verify that its properties
5639  * are consistent what was stored in the block tag when it was created,
5640  * and that its unused bonus buffer space has not been overwritten.
5641  */
5642 /* ARGSUSED */
5643 void
ztest_verify_dnode_bt(ztest_ds_t * zd,uint64_t id)5644 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5645 {
5646 	objset_t *os = zd->zd_os;
5647 	uint64_t obj;
5648 	int err = 0;
5649 
5650 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5651 		ztest_block_tag_t *bt = NULL;
5652 		dmu_object_info_t doi;
5653 		dmu_buf_t *db;
5654 
5655 		ztest_object_lock(zd, obj, RL_READER);
5656 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5657 			ztest_object_unlock(zd, obj);
5658 			continue;
5659 		}
5660 
5661 		dmu_object_info_from_db(db, &doi);
5662 		if (doi.doi_bonus_size >= sizeof (*bt))
5663 			bt = ztest_bt_bonus(db);
5664 
5665 		if (bt && bt->bt_magic == BT_MAGIC) {
5666 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5667 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
5668 			    bt->bt_crtxg);
5669 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5670 		}
5671 
5672 		dmu_buf_rele(db, FTAG);
5673 		ztest_object_unlock(zd, obj);
5674 	}
5675 }
5676 
5677 /* ARGSUSED */
5678 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)5679 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5680 {
5681 	zfs_prop_t proplist[] = {
5682 		ZFS_PROP_CHECKSUM,
5683 		ZFS_PROP_COMPRESSION,
5684 		ZFS_PROP_COPIES,
5685 		ZFS_PROP_DEDUP
5686 	};
5687 	int p;
5688 
5689 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5690 
5691 	for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5692 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5693 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5694 
5695 	VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5696 	    ztest_random_blocksize(), (int)ztest_random(2)));
5697 
5698 	(void) pthread_rwlock_unlock(&ztest_name_lock);
5699 }
5700 
5701 /* ARGSUSED */
5702 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)5703 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5704 {
5705 	nvlist_t *props = NULL;
5706 
5707 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5708 
5709 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5710 
5711 	VERIFY0(spa_prop_get(ztest_spa, &props));
5712 
5713 	if (ztest_opts.zo_verbose >= 6)
5714 		dump_nvlist(props, 4);
5715 
5716 	nvlist_free(props);
5717 
5718 	(void) pthread_rwlock_unlock(&ztest_name_lock);
5719 }
5720 
5721 static int
user_release_one(const char * snapname,const char * holdname)5722 user_release_one(const char *snapname, const char *holdname)
5723 {
5724 	nvlist_t *snaps, *holds;
5725 	int error;
5726 
5727 	snaps = fnvlist_alloc();
5728 	holds = fnvlist_alloc();
5729 	fnvlist_add_boolean(holds, holdname);
5730 	fnvlist_add_nvlist(snaps, snapname, holds);
5731 	fnvlist_free(holds);
5732 	error = dsl_dataset_user_release(snaps, NULL);
5733 	fnvlist_free(snaps);
5734 	return (error);
5735 }
5736 
5737 /*
5738  * Test snapshot hold/release and deferred destroy.
5739  */
5740 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)5741 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5742 {
5743 	int error;
5744 	objset_t *os = zd->zd_os;
5745 	objset_t *origin;
5746 	char snapname[100];
5747 	char fullname[100];
5748 	char clonename[100];
5749 	char tag[100];
5750 	char osname[ZFS_MAX_DATASET_NAME_LEN];
5751 	nvlist_t *holds;
5752 
5753 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5754 
5755 	dmu_objset_name(os, osname);
5756 
5757 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
5758 	    (u_longlong_t)id);
5759 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5760 	(void) snprintf(clonename, sizeof (clonename),
5761 	    "%s/ch1_%llu", osname, (u_longlong_t)id);
5762 	(void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
5763 
5764 	/*
5765 	 * Clean up from any previous run.
5766 	 */
5767 	error = dsl_destroy_head(clonename);
5768 	if (error != ENOENT)
5769 		ASSERT0(error);
5770 	error = user_release_one(fullname, tag);
5771 	if (error != ESRCH && error != ENOENT)
5772 		ASSERT0(error);
5773 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5774 	if (error != ENOENT)
5775 		ASSERT0(error);
5776 
5777 	/*
5778 	 * Create snapshot, clone it, mark snap for deferred destroy,
5779 	 * destroy clone, verify snap was also destroyed.
5780 	 */
5781 	error = dmu_objset_snapshot_one(osname, snapname);
5782 	if (error) {
5783 		if (error == ENOSPC) {
5784 			ztest_record_enospc("dmu_objset_snapshot");
5785 			goto out;
5786 		}
5787 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5788 	}
5789 
5790 	error = dmu_objset_clone(clonename, fullname);
5791 	if (error) {
5792 		if (error == ENOSPC) {
5793 			ztest_record_enospc("dmu_objset_clone");
5794 			goto out;
5795 		}
5796 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5797 	}
5798 
5799 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5800 	if (error) {
5801 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5802 		    fullname, error);
5803 	}
5804 
5805 	error = dsl_destroy_head(clonename);
5806 	if (error)
5807 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5808 
5809 	error = dmu_objset_hold(fullname, FTAG, &origin);
5810 	if (error != ENOENT)
5811 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5812 
5813 	/*
5814 	 * Create snapshot, add temporary hold, verify that we can't
5815 	 * destroy a held snapshot, mark for deferred destroy,
5816 	 * release hold, verify snapshot was destroyed.
5817 	 */
5818 	error = dmu_objset_snapshot_one(osname, snapname);
5819 	if (error) {
5820 		if (error == ENOSPC) {
5821 			ztest_record_enospc("dmu_objset_snapshot");
5822 			goto out;
5823 		}
5824 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5825 	}
5826 
5827 	holds = fnvlist_alloc();
5828 	fnvlist_add_string(holds, fullname, tag);
5829 	error = dsl_dataset_user_hold(holds, 0, NULL);
5830 	fnvlist_free(holds);
5831 
5832 	if (error == ENOSPC) {
5833 		ztest_record_enospc("dsl_dataset_user_hold");
5834 		goto out;
5835 	} else if (error) {
5836 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5837 		    fullname, tag, error);
5838 	}
5839 
5840 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5841 	if (error != EBUSY) {
5842 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5843 		    fullname, error);
5844 	}
5845 
5846 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5847 	if (error) {
5848 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5849 		    fullname, error);
5850 	}
5851 
5852 	error = user_release_one(fullname, tag);
5853 	if (error)
5854 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5855 
5856 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5857 
5858 out:
5859 	(void) pthread_rwlock_unlock(&ztest_name_lock);
5860 }
5861 
5862 /*
5863  * Inject random faults into the on-disk data.
5864  */
5865 /* ARGSUSED */
5866 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)5867 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5868 {
5869 	ztest_shared_t *zs = ztest_shared;
5870 	spa_t *spa = ztest_spa;
5871 	int fd;
5872 	uint64_t offset;
5873 	uint64_t leaves;
5874 	uint64_t bad = 0x1990c0ffeedecadeull;
5875 	uint64_t top, leaf;
5876 	char *path0;
5877 	char *pathrand;
5878 	size_t fsize;
5879 	int bshift = SPA_MAXBLOCKSHIFT + 2;
5880 	int iters = 1000;
5881 	int maxfaults;
5882 	int mirror_save;
5883 	vdev_t *vd0 = NULL;
5884 	uint64_t guid0 = 0;
5885 	boolean_t islog = B_FALSE;
5886 
5887 	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5888 	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5889 
5890 	mutex_enter(&ztest_vdev_lock);
5891 
5892 	/*
5893 	 * Device removal is in progress, fault injection must be disabled
5894 	 * until it completes and the pool is scrubbed.  The fault injection
5895 	 * strategy for damaging blocks does not take in to account evacuated
5896 	 * blocks which may have already been damaged.
5897 	 */
5898 	if (ztest_device_removal_active) {
5899 		mutex_exit(&ztest_vdev_lock);
5900 		goto out;
5901 	}
5902 
5903 	maxfaults = MAXFAULTS(zs);
5904 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
5905 	mirror_save = zs->zs_mirrors;
5906 	mutex_exit(&ztest_vdev_lock);
5907 
5908 	ASSERT(leaves >= 1);
5909 
5910 	/*
5911 	 * While ztest is running the number of leaves will not change.  This
5912 	 * is critical for the fault injection logic as it determines where
5913 	 * errors can be safely injected such that they are always repairable.
5914 	 *
5915 	 * When restarting ztest a different number of leaves may be requested
5916 	 * which will shift the regions to be damaged.  This is fine as long
5917 	 * as the pool has been scrubbed prior to using the new mapping.
5918 	 * Failure to do can result in non-repairable damage being injected.
5919 	 */
5920 	if (ztest_pool_scrubbed == B_FALSE)
5921 		goto out;
5922 
5923 	/*
5924 	 * Grab the name lock as reader. There are some operations
5925 	 * which don't like to have their vdevs changed while
5926 	 * they are in progress (i.e. spa_change_guid). Those
5927 	 * operations will have grabbed the name lock as writer.
5928 	 */
5929 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
5930 
5931 	/*
5932 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5933 	 */
5934 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5935 
5936 	if (ztest_random(2) == 0) {
5937 		/*
5938 		 * Inject errors on a normal data device or slog device.
5939 		 */
5940 		top = ztest_random_vdev_top(spa, B_TRUE);
5941 		leaf = ztest_random(leaves) + zs->zs_splits;
5942 
5943 		/*
5944 		 * Generate paths to the first leaf in this top-level vdev,
5945 		 * and to the random leaf we selected.  We'll induce transient
5946 		 * write failures and random online/offline activity on leaf 0,
5947 		 * and we'll write random garbage to the randomly chosen leaf.
5948 		 */
5949 		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
5950 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
5951 		    top * leaves + zs->zs_splits);
5952 		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
5953 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
5954 		    top * leaves + leaf);
5955 
5956 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5957 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5958 			islog = B_TRUE;
5959 
5960 		/*
5961 		 * If the top-level vdev needs to be resilvered
5962 		 * then we only allow faults on the device that is
5963 		 * resilvering.
5964 		 */
5965 		if (vd0 != NULL && maxfaults != 1 &&
5966 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5967 		    vd0->vdev_resilver_txg != 0)) {
5968 			/*
5969 			 * Make vd0 explicitly claim to be unreadable,
5970 			 * or unwriteable, or reach behind its back
5971 			 * and close the underlying fd.  We can do this if
5972 			 * maxfaults == 0 because we'll fail and reexecute,
5973 			 * and we can do it if maxfaults >= 2 because we'll
5974 			 * have enough redundancy.  If maxfaults == 1, the
5975 			 * combination of this with injection of random data
5976 			 * corruption below exceeds the pool's fault tolerance.
5977 			 */
5978 			vdev_file_t *vf = vd0->vdev_tsd;
5979 
5980 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
5981 			    (long long)vd0->vdev_id, (int)maxfaults);
5982 
5983 			if (vf != NULL && ztest_random(3) == 0) {
5984 				(void) close(vf->vf_file->f_fd);
5985 				vf->vf_file->f_fd = -1;
5986 			} else if (ztest_random(2) == 0) {
5987 				vd0->vdev_cant_read = B_TRUE;
5988 			} else {
5989 				vd0->vdev_cant_write = B_TRUE;
5990 			}
5991 			guid0 = vd0->vdev_guid;
5992 		}
5993 	} else {
5994 		/*
5995 		 * Inject errors on an l2cache device.
5996 		 */
5997 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
5998 
5999 		if (sav->sav_count == 0) {
6000 			spa_config_exit(spa, SCL_STATE, FTAG);
6001 			(void) pthread_rwlock_unlock(&ztest_name_lock);
6002 			goto out;
6003 		}
6004 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6005 		guid0 = vd0->vdev_guid;
6006 		(void) strcpy(path0, vd0->vdev_path);
6007 		(void) strcpy(pathrand, vd0->vdev_path);
6008 
6009 		leaf = 0;
6010 		leaves = 1;
6011 		maxfaults = INT_MAX;	/* no limit on cache devices */
6012 	}
6013 
6014 	spa_config_exit(spa, SCL_STATE, FTAG);
6015 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6016 
6017 	/*
6018 	 * If we can tolerate two or more faults, or we're dealing
6019 	 * with a slog, randomly online/offline vd0.
6020 	 */
6021 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
6022 		if (ztest_random(10) < 6) {
6023 			int flags = (ztest_random(2) == 0 ?
6024 			    ZFS_OFFLINE_TEMPORARY : 0);
6025 
6026 			/*
6027 			 * We have to grab the zs_name_lock as writer to
6028 			 * prevent a race between offlining a slog and
6029 			 * destroying a dataset. Offlining the slog will
6030 			 * grab a reference on the dataset which may cause
6031 			 * dsl_destroy_head() to fail with EBUSY thus
6032 			 * leaving the dataset in an inconsistent state.
6033 			 */
6034 			if (islog)
6035 				(void) pthread_rwlock_wrlock(&ztest_name_lock);
6036 
6037 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
6038 
6039 			if (islog)
6040 				(void) pthread_rwlock_unlock(&ztest_name_lock);
6041 		} else {
6042 			/*
6043 			 * Ideally we would like to be able to randomly
6044 			 * call vdev_[on|off]line without holding locks
6045 			 * to force unpredictable failures but the side
6046 			 * effects of vdev_[on|off]line prevent us from
6047 			 * doing so. We grab the ztest_vdev_lock here to
6048 			 * prevent a race between injection testing and
6049 			 * aux_vdev removal.
6050 			 */
6051 			mutex_enter(&ztest_vdev_lock);
6052 			(void) vdev_online(spa, guid0, 0, NULL);
6053 			mutex_exit(&ztest_vdev_lock);
6054 		}
6055 	}
6056 
6057 	if (maxfaults == 0)
6058 		goto out;
6059 
6060 	/*
6061 	 * We have at least single-fault tolerance, so inject data corruption.
6062 	 */
6063 	fd = open(pathrand, O_RDWR);
6064 
6065 	if (fd == -1) /* we hit a gap in the device namespace */
6066 		goto out;
6067 
6068 	fsize = lseek(fd, 0, SEEK_END);
6069 
6070 	while (--iters != 0) {
6071 		/*
6072 		 * The offset must be chosen carefully to ensure that
6073 		 * we do not inject a given logical block with errors
6074 		 * on two different leaf devices, because ZFS can not
6075 		 * tolerate that (if maxfaults==1).
6076 		 *
6077 		 * To achieve this we divide each leaf device into
6078 		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6079 		 * Each chunk is further divided into error-injection
6080 		 * ranges (can accept errors) and clear ranges (we do
6081 		 * not inject errors in those). Each error-injection
6082 		 * range can accept errors only for a single leaf vdev.
6083 		 * Error-injection ranges are separated by clear ranges.
6084 		 *
6085 		 * For example, with 3 leaves, each chunk looks like:
6086 		 *    0 to  32M: injection range for leaf 0
6087 		 *  32M to  64M: clear range - no injection allowed
6088 		 *  64M to  96M: injection range for leaf 1
6089 		 *  96M to 128M: clear range - no injection allowed
6090 		 * 128M to 160M: injection range for leaf 2
6091 		 * 160M to 192M: clear range - no injection allowed
6092 		 *
6093 		 * Each clear range must be large enough such that a
6094 		 * single block cannot straddle it. This way a block
6095 		 * can't be a target in two different injection ranges
6096 		 * (on different leaf vdevs).
6097 		 */
6098 		offset = ztest_random(fsize / (leaves << bshift)) *
6099 		    (leaves << bshift) + (leaf << bshift) +
6100 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6101 
6102 		/*
6103 		 * Only allow damage to the labels at one end of the vdev.
6104 		 *
6105 		 * If all labels are damaged, the device will be totally
6106 		 * inaccessible, which will result in loss of data,
6107 		 * because we also damage (parts of) the other side of
6108 		 * the mirror/raidz.
6109 		 *
6110 		 * Additionally, we will always have both an even and an
6111 		 * odd label, so that we can handle crashes in the
6112 		 * middle of vdev_config_sync().
6113 		 */
6114 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6115 			continue;
6116 
6117 		/*
6118 		 * The two end labels are stored at the "end" of the disk, but
6119 		 * the end of the disk (vdev_psize) is aligned to
6120 		 * sizeof (vdev_label_t).
6121 		 */
6122 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6123 		if ((leaf & 1) == 1 &&
6124 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6125 			continue;
6126 
6127 		mutex_enter(&ztest_vdev_lock);
6128 		if (mirror_save != zs->zs_mirrors) {
6129 			mutex_exit(&ztest_vdev_lock);
6130 			(void) close(fd);
6131 			goto out;
6132 		}
6133 
6134 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6135 			fatal(1, "can't inject bad word at 0x%llx in %s",
6136 			    offset, pathrand);
6137 
6138 		mutex_exit(&ztest_vdev_lock);
6139 
6140 		if (ztest_opts.zo_verbose >= 7)
6141 			(void) printf("injected bad word into %s,"
6142 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
6143 	}
6144 
6145 	(void) close(fd);
6146 out:
6147 	umem_free(path0, MAXPATHLEN);
6148 	umem_free(pathrand, MAXPATHLEN);
6149 }
6150 
6151 /*
6152  * By design ztest will never inject uncorrectable damage in to the pool.
6153  * Issue a scrub, wait for it to complete, and verify there is never any
6154  * persistent damage.
6155  *
6156  * Only after a full scrub has been completed is it safe to start injecting
6157  * data corruption.  See the comment in zfs_fault_inject().
6158  */
6159 static int
ztest_scrub_impl(spa_t * spa)6160 ztest_scrub_impl(spa_t *spa)
6161 {
6162 	int error = spa_scan(spa, POOL_SCAN_SCRUB);
6163 	if (error)
6164 		return (error);
6165 
6166 	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6167 		txg_wait_synced(spa_get_dsl(spa), 0);
6168 
6169 	if (spa_get_errlog_size(spa) > 0)
6170 		return (ECKSUM);
6171 
6172 	ztest_pool_scrubbed = B_TRUE;
6173 
6174 	return (0);
6175 }
6176 
6177 /*
6178  * Scrub the pool.
6179  */
6180 /* ARGSUSED */
6181 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)6182 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6183 {
6184 	spa_t *spa = ztest_spa;
6185 	int error;
6186 
6187 	/*
6188 	 * Scrub in progress by device removal.
6189 	 */
6190 	if (ztest_device_removal_active)
6191 		return;
6192 
6193 	/*
6194 	 * Start a scrub, wait a moment, then force a restart.
6195 	 */
6196 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
6197 	(void) poll(NULL, 0, 100);
6198 
6199 	error = ztest_scrub_impl(spa);
6200 	if (error == EBUSY)
6201 		error = 0;
6202 	ASSERT0(error);
6203 }
6204 
6205 /*
6206  * Change the guid for the pool.
6207  */
6208 /* ARGSUSED */
6209 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)6210 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6211 {
6212 	spa_t *spa = ztest_spa;
6213 	uint64_t orig, load;
6214 	int error;
6215 
6216 	if (ztest_opts.zo_mmp_test)
6217 		return;
6218 
6219 	orig = spa_guid(spa);
6220 	load = spa_load_guid(spa);
6221 
6222 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
6223 	error = spa_change_guid(spa);
6224 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6225 
6226 	if (error != 0)
6227 		return;
6228 
6229 	if (ztest_opts.zo_verbose >= 4) {
6230 		(void) printf("Changed guid old %llu -> %llu\n",
6231 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
6232 	}
6233 
6234 	VERIFY3U(orig, !=, spa_guid(spa));
6235 	VERIFY3U(load, ==, spa_load_guid(spa));
6236 }
6237 
6238 void
ztest_fletcher(ztest_ds_t * zd,uint64_t id)6239 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6240 {
6241 	hrtime_t end = gethrtime() + NANOSEC;
6242 
6243 	while (gethrtime() <= end) {
6244 		int run_count = 100;
6245 		void *buf;
6246 		struct abd *abd_data, *abd_meta;
6247 		uint32_t size;
6248 		int *ptr;
6249 		int i;
6250 		zio_cksum_t zc_ref;
6251 		zio_cksum_t zc_ref_byteswap;
6252 
6253 		size = ztest_random_blocksize();
6254 
6255 		buf = umem_alloc(size, UMEM_NOFAIL);
6256 		abd_data = abd_alloc(size, B_FALSE);
6257 		abd_meta = abd_alloc(size, B_TRUE);
6258 
6259 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6260 			*ptr = ztest_random(UINT_MAX);
6261 
6262 		abd_copy_from_buf_off(abd_data, buf, 0, size);
6263 		abd_copy_from_buf_off(abd_meta, buf, 0, size);
6264 
6265 		VERIFY0(fletcher_4_impl_set("scalar"));
6266 		fletcher_4_native(buf, size, NULL, &zc_ref);
6267 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6268 
6269 		VERIFY0(fletcher_4_impl_set("cycle"));
6270 		while (run_count-- > 0) {
6271 			zio_cksum_t zc;
6272 			zio_cksum_t zc_byteswap;
6273 
6274 			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6275 			fletcher_4_native(buf, size, NULL, &zc);
6276 
6277 			VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6278 			VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6279 			    sizeof (zc_byteswap)));
6280 
6281 			/* Test ABD - data */
6282 			abd_fletcher_4_byteswap(abd_data, size, NULL,
6283 			    &zc_byteswap);
6284 			abd_fletcher_4_native(abd_data, size, NULL, &zc);
6285 
6286 			VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6287 			VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6288 			    sizeof (zc_byteswap)));
6289 
6290 			/* Test ABD - metadata */
6291 			abd_fletcher_4_byteswap(abd_meta, size, NULL,
6292 			    &zc_byteswap);
6293 			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6294 
6295 			VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6296 			VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6297 			    sizeof (zc_byteswap)));
6298 
6299 		}
6300 
6301 		umem_free(buf, size);
6302 		abd_free(abd_data);
6303 		abd_free(abd_meta);
6304 	}
6305 }
6306 
6307 void
ztest_fletcher_incr(ztest_ds_t * zd,uint64_t id)6308 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6309 {
6310 	void *buf;
6311 	size_t size;
6312 	int *ptr;
6313 	int i;
6314 	zio_cksum_t zc_ref;
6315 	zio_cksum_t zc_ref_bswap;
6316 
6317 	hrtime_t end = gethrtime() + NANOSEC;
6318 
6319 	while (gethrtime() <= end) {
6320 		int run_count = 100;
6321 
6322 		size = ztest_random_blocksize();
6323 		buf = umem_alloc(size, UMEM_NOFAIL);
6324 
6325 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6326 			*ptr = ztest_random(UINT_MAX);
6327 
6328 		VERIFY0(fletcher_4_impl_set("scalar"));
6329 		fletcher_4_native(buf, size, NULL, &zc_ref);
6330 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6331 
6332 		VERIFY0(fletcher_4_impl_set("cycle"));
6333 
6334 		while (run_count-- > 0) {
6335 			zio_cksum_t zc;
6336 			zio_cksum_t zc_bswap;
6337 			size_t pos = 0;
6338 
6339 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6340 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6341 
6342 			while (pos < size) {
6343 				size_t inc = 64 * ztest_random(size / 67);
6344 				/* sometimes add few bytes to test non-simd */
6345 				if (ztest_random(100) < 10)
6346 					inc += P2ALIGN(ztest_random(64),
6347 					    sizeof (uint32_t));
6348 
6349 				if (inc > (size - pos))
6350 					inc = size - pos;
6351 
6352 				fletcher_4_incremental_native(buf + pos, inc,
6353 				    &zc);
6354 				fletcher_4_incremental_byteswap(buf + pos, inc,
6355 				    &zc_bswap);
6356 
6357 				pos += inc;
6358 			}
6359 
6360 			VERIFY3U(pos, ==, size);
6361 
6362 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6363 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6364 
6365 			/*
6366 			 * verify if incremental on the whole buffer is
6367 			 * equivalent to non-incremental version
6368 			 */
6369 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6370 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6371 
6372 			fletcher_4_incremental_native(buf, size, &zc);
6373 			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6374 
6375 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6376 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6377 		}
6378 
6379 		umem_free(buf, size);
6380 	}
6381 }
6382 
6383 static int
ztest_check_path(char * path)6384 ztest_check_path(char *path)
6385 {
6386 	struct stat s;
6387 	/* return true on success */
6388 	return (!stat(path, &s));
6389 }
6390 
6391 static void
ztest_get_zdb_bin(char * bin,int len)6392 ztest_get_zdb_bin(char *bin, int len)
6393 {
6394 	char *zdb_path;
6395 	/*
6396 	 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
6397 	 * let popen to search through PATH.
6398 	 */
6399 	if ((zdb_path = getenv("ZDB_PATH"))) {
6400 		strlcpy(bin, zdb_path, len); /* In env */
6401 		if (!ztest_check_path(bin)) {
6402 			ztest_dump_core = 0;
6403 			fatal(1, "invalid ZDB_PATH '%s'", bin);
6404 		}
6405 		return;
6406 	}
6407 
6408 	VERIFY(realpath(getexecname(), bin) != NULL);
6409 	if (strstr(bin, "/ztest/")) {
6410 		strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
6411 		strcat(bin, "/zdb/zdb");
6412 		if (ztest_check_path(bin))
6413 			return;
6414 	}
6415 	strcpy(bin, "zdb");
6416 }
6417 
6418 static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t * vd)6419 ztest_random_concrete_vdev_leaf(vdev_t *vd)
6420 {
6421 	if (vd == NULL)
6422 		return (NULL);
6423 
6424 	if (vd->vdev_children == 0)
6425 		return (vd);
6426 
6427 	vdev_t *eligible[vd->vdev_children];
6428 	int eligible_idx = 0, i;
6429 	for (i = 0; i < vd->vdev_children; i++) {
6430 		vdev_t *cvd = vd->vdev_child[i];
6431 		if (cvd->vdev_top->vdev_removing)
6432 			continue;
6433 		if (cvd->vdev_children > 0 ||
6434 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6435 			eligible[eligible_idx++] = cvd;
6436 		}
6437 	}
6438 	VERIFY(eligible_idx > 0);
6439 
6440 	uint64_t child_no = ztest_random(eligible_idx);
6441 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6442 }
6443 
6444 /* ARGSUSED */
6445 void
ztest_initialize(ztest_ds_t * zd,uint64_t id)6446 ztest_initialize(ztest_ds_t *zd, uint64_t id)
6447 {
6448 	spa_t *spa = ztest_spa;
6449 	int error = 0;
6450 
6451 	mutex_enter(&ztest_vdev_lock);
6452 
6453 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6454 
6455 	/* Random leaf vdev */
6456 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6457 	if (rand_vd == NULL) {
6458 		spa_config_exit(spa, SCL_VDEV, FTAG);
6459 		mutex_exit(&ztest_vdev_lock);
6460 		return;
6461 	}
6462 
6463 	/*
6464 	 * The random vdev we've selected may change as soon as we
6465 	 * drop the spa_config_lock. We create local copies of things
6466 	 * we're interested in.
6467 	 */
6468 	uint64_t guid = rand_vd->vdev_guid;
6469 	char *path = strdup(rand_vd->vdev_path);
6470 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6471 
6472 	zfs_dbgmsg("vd %px, guid %llu", rand_vd, guid);
6473 	spa_config_exit(spa, SCL_VDEV, FTAG);
6474 
6475 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6476 
6477 	nvlist_t *vdev_guids = fnvlist_alloc();
6478 	nvlist_t *vdev_errlist = fnvlist_alloc();
6479 	fnvlist_add_uint64(vdev_guids, path, guid);
6480 	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6481 	fnvlist_free(vdev_guids);
6482 	fnvlist_free(vdev_errlist);
6483 
6484 	switch (cmd) {
6485 	case POOL_INITIALIZE_CANCEL:
6486 		if (ztest_opts.zo_verbose >= 4) {
6487 			(void) printf("Cancel initialize %s", path);
6488 			if (!active)
6489 				(void) printf(" failed (no initialize active)");
6490 			(void) printf("\n");
6491 		}
6492 		break;
6493 	case POOL_INITIALIZE_START:
6494 		if (ztest_opts.zo_verbose >= 4) {
6495 			(void) printf("Start initialize %s", path);
6496 			if (active && error == 0)
6497 				(void) printf(" failed (already active)");
6498 			else if (error != 0)
6499 				(void) printf(" failed (error %d)", error);
6500 			(void) printf("\n");
6501 		}
6502 		break;
6503 	case POOL_INITIALIZE_SUSPEND:
6504 		if (ztest_opts.zo_verbose >= 4) {
6505 			(void) printf("Suspend initialize %s", path);
6506 			if (!active)
6507 				(void) printf(" failed (no initialize active)");
6508 			(void) printf("\n");
6509 		}
6510 		break;
6511 	}
6512 	free(path);
6513 	mutex_exit(&ztest_vdev_lock);
6514 }
6515 
6516 /* ARGSUSED */
6517 void
ztest_trim(ztest_ds_t * zd,uint64_t id)6518 ztest_trim(ztest_ds_t *zd, uint64_t id)
6519 {
6520 	spa_t *spa = ztest_spa;
6521 	int error = 0;
6522 
6523 	mutex_enter(&ztest_vdev_lock);
6524 
6525 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6526 
6527 	/* Random leaf vdev */
6528 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6529 	if (rand_vd == NULL) {
6530 		spa_config_exit(spa, SCL_VDEV, FTAG);
6531 		mutex_exit(&ztest_vdev_lock);
6532 		return;
6533 	}
6534 
6535 	/*
6536 	 * The random vdev we've selected may change as soon as we
6537 	 * drop the spa_config_lock. We create local copies of things
6538 	 * we're interested in.
6539 	 */
6540 	uint64_t guid = rand_vd->vdev_guid;
6541 	char *path = strdup(rand_vd->vdev_path);
6542 	boolean_t active = rand_vd->vdev_trim_thread != NULL;
6543 
6544 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid);
6545 	spa_config_exit(spa, SCL_VDEV, FTAG);
6546 
6547 	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6548 	uint64_t rate = 1 << ztest_random(30);
6549 	boolean_t partial = (ztest_random(5) > 0);
6550 	boolean_t secure = (ztest_random(5) > 0);
6551 
6552 	nvlist_t *vdev_guids = fnvlist_alloc();
6553 	nvlist_t *vdev_errlist = fnvlist_alloc();
6554 	fnvlist_add_uint64(vdev_guids, path, guid);
6555 	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6556 	    secure, vdev_errlist);
6557 	fnvlist_free(vdev_guids);
6558 	fnvlist_free(vdev_errlist);
6559 
6560 	switch (cmd) {
6561 	case POOL_TRIM_CANCEL:
6562 		if (ztest_opts.zo_verbose >= 4) {
6563 			(void) printf("Cancel TRIM %s", path);
6564 			if (!active)
6565 				(void) printf(" failed (no TRIM active)");
6566 			(void) printf("\n");
6567 		}
6568 		break;
6569 	case POOL_TRIM_START:
6570 		if (ztest_opts.zo_verbose >= 4) {
6571 			(void) printf("Start TRIM %s", path);
6572 			if (active && error == 0)
6573 				(void) printf(" failed (already active)");
6574 			else if (error != 0)
6575 				(void) printf(" failed (error %d)", error);
6576 			(void) printf("\n");
6577 		}
6578 		break;
6579 	case POOL_TRIM_SUSPEND:
6580 		if (ztest_opts.zo_verbose >= 4) {
6581 			(void) printf("Suspend TRIM %s", path);
6582 			if (!active)
6583 				(void) printf(" failed (no TRIM active)");
6584 			(void) printf("\n");
6585 		}
6586 		break;
6587 	}
6588 	free(path);
6589 	mutex_exit(&ztest_vdev_lock);
6590 }
6591 
6592 /*
6593  * Verify pool integrity by running zdb.
6594  */
6595 static void
ztest_run_zdb(char * pool)6596 ztest_run_zdb(char *pool)
6597 {
6598 	int status;
6599 	char *bin;
6600 	char *zdb;
6601 	char *zbuf;
6602 	const int len = MAXPATHLEN + MAXNAMELEN + 20;
6603 	FILE *fp;
6604 
6605 	bin = umem_alloc(len, UMEM_NOFAIL);
6606 	zdb = umem_alloc(len, UMEM_NOFAIL);
6607 	zbuf = umem_alloc(1024, UMEM_NOFAIL);
6608 
6609 	ztest_get_zdb_bin(bin, len);
6610 
6611 	(void) sprintf(zdb,
6612 	    "%s -bcc%s%s -G -d -Y -e -y -p %s %s",
6613 	    bin,
6614 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
6615 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
6616 	    ztest_opts.zo_dir,
6617 	    pool);
6618 
6619 	if (ztest_opts.zo_verbose >= 5)
6620 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
6621 
6622 	fp = popen(zdb, "r");
6623 
6624 	while (fgets(zbuf, 1024, fp) != NULL)
6625 		if (ztest_opts.zo_verbose >= 3)
6626 			(void) printf("%s", zbuf);
6627 
6628 	status = pclose(fp);
6629 
6630 	if (status == 0)
6631 		goto out;
6632 
6633 	ztest_dump_core = 0;
6634 	if (WIFEXITED(status))
6635 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6636 	else
6637 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
6638 out:
6639 	umem_free(bin, len);
6640 	umem_free(zdb, len);
6641 	umem_free(zbuf, 1024);
6642 }
6643 
6644 static void
ztest_walk_pool_directory(char * header)6645 ztest_walk_pool_directory(char *header)
6646 {
6647 	spa_t *spa = NULL;
6648 
6649 	if (ztest_opts.zo_verbose >= 6)
6650 		(void) printf("%s\n", header);
6651 
6652 	mutex_enter(&spa_namespace_lock);
6653 	while ((spa = spa_next(spa)) != NULL)
6654 		if (ztest_opts.zo_verbose >= 6)
6655 			(void) printf("\t%s\n", spa_name(spa));
6656 	mutex_exit(&spa_namespace_lock);
6657 }
6658 
6659 static void
ztest_spa_import_export(char * oldname,char * newname)6660 ztest_spa_import_export(char *oldname, char *newname)
6661 {
6662 	nvlist_t *config, *newconfig;
6663 	uint64_t pool_guid;
6664 	spa_t *spa;
6665 	int error;
6666 
6667 	if (ztest_opts.zo_verbose >= 4) {
6668 		(void) printf("import/export: old = %s, new = %s\n",
6669 		    oldname, newname);
6670 	}
6671 
6672 	/*
6673 	 * Clean up from previous runs.
6674 	 */
6675 	(void) spa_destroy(newname);
6676 
6677 	/*
6678 	 * Get the pool's configuration and guid.
6679 	 */
6680 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
6681 
6682 	/*
6683 	 * Kick off a scrub to tickle scrub/export races.
6684 	 */
6685 	if (ztest_random(2) == 0)
6686 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
6687 
6688 	pool_guid = spa_guid(spa);
6689 	spa_close(spa, FTAG);
6690 
6691 	ztest_walk_pool_directory("pools before export");
6692 
6693 	/*
6694 	 * Export it.
6695 	 */
6696 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
6697 
6698 	ztest_walk_pool_directory("pools after export");
6699 
6700 	/*
6701 	 * Try to import it.
6702 	 */
6703 	newconfig = spa_tryimport(config);
6704 	ASSERT(newconfig != NULL);
6705 	nvlist_free(newconfig);
6706 
6707 	/*
6708 	 * Import it under the new name.
6709 	 */
6710 	error = spa_import(newname, config, NULL, 0);
6711 	if (error != 0) {
6712 		dump_nvlist(config, 0);
6713 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6714 		    oldname, newname, error);
6715 	}
6716 
6717 	ztest_walk_pool_directory("pools after import");
6718 
6719 	/*
6720 	 * Try to import it again -- should fail with EEXIST.
6721 	 */
6722 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6723 
6724 	/*
6725 	 * Try to import it under a different name -- should fail with EEXIST.
6726 	 */
6727 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6728 
6729 	/*
6730 	 * Verify that the pool is no longer visible under the old name.
6731 	 */
6732 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6733 
6734 	/*
6735 	 * Verify that we can open and close the pool using the new name.
6736 	 */
6737 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
6738 	ASSERT(pool_guid == spa_guid(spa));
6739 	spa_close(spa, FTAG);
6740 
6741 	nvlist_free(config);
6742 }
6743 
6744 static void
ztest_resume(spa_t * spa)6745 ztest_resume(spa_t *spa)
6746 {
6747 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6748 		(void) printf("resuming from suspended state\n");
6749 	spa_vdev_state_enter(spa, SCL_NONE);
6750 	vdev_clear(spa, NULL);
6751 	(void) spa_vdev_state_exit(spa, NULL, 0);
6752 	(void) zio_resume(spa);
6753 }
6754 
6755 static void
ztest_resume_thread(void * arg)6756 ztest_resume_thread(void *arg)
6757 {
6758 	spa_t *spa = arg;
6759 
6760 	while (!ztest_exiting) {
6761 		if (spa_suspended(spa))
6762 			ztest_resume(spa);
6763 		(void) poll(NULL, 0, 100);
6764 
6765 		/*
6766 		 * Periodically change the zfs_compressed_arc_enabled setting.
6767 		 */
6768 		if (ztest_random(10) == 0)
6769 			zfs_compressed_arc_enabled = ztest_random(2);
6770 
6771 		/*
6772 		 * Periodically change the zfs_abd_scatter_enabled setting.
6773 		 */
6774 		if (ztest_random(10) == 0)
6775 			zfs_abd_scatter_enabled = ztest_random(2);
6776 	}
6777 
6778 	thread_exit();
6779 }
6780 
6781 static void
ztest_deadman_thread(void * arg)6782 ztest_deadman_thread(void *arg)
6783 {
6784 	ztest_shared_t *zs = arg;
6785 	spa_t *spa = ztest_spa;
6786 	hrtime_t delay, overdue, last_run = gethrtime();
6787 
6788 	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
6789 	    MSEC2NSEC(zfs_deadman_synctime_ms);
6790 
6791 	while (!ztest_exiting) {
6792 		/*
6793 		 * Wait for the delay timer while checking occasionally
6794 		 * if we should stop.
6795 		 */
6796 		if (gethrtime() < last_run + delay) {
6797 			(void) poll(NULL, 0, 1000);
6798 			continue;
6799 		}
6800 
6801 		/*
6802 		 * If the pool is suspended then fail immediately. Otherwise,
6803 		 * check to see if the pool is making any progress. If
6804 		 * vdev_deadman() discovers that there hasn't been any recent
6805 		 * I/Os then it will end up aborting the tests.
6806 		 */
6807 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
6808 			fatal(0, "aborting test after %llu seconds because "
6809 			    "pool has transitioned to a suspended state.",
6810 			    zfs_deadman_synctime_ms / 1000);
6811 		}
6812 		vdev_deadman(spa->spa_root_vdev, FTAG);
6813 
6814 		/*
6815 		 * If the process doesn't complete within a grace period of
6816 		 * zfs_deadman_synctime_ms over the expected finish time,
6817 		 * then it may be hung and is terminated.
6818 		 */
6819 		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
6820 		if (gethrtime() > overdue) {
6821 			fatal(0, "aborting test after %llu seconds because "
6822 			    "the process is overdue for termination.",
6823 			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
6824 		}
6825 
6826 		(void) printf("ztest has been running for %lld seconds\n",
6827 		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
6828 
6829 		last_run = gethrtime();
6830 		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
6831 	}
6832 
6833 	thread_exit();
6834 }
6835 
6836 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)6837 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
6838 {
6839 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
6840 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
6841 	hrtime_t functime = gethrtime();
6842 	int i;
6843 
6844 	for (i = 0; i < zi->zi_iters; i++)
6845 		zi->zi_func(zd, id);
6846 
6847 	functime = gethrtime() - functime;
6848 
6849 	atomic_add_64(&zc->zc_count, 1);
6850 	atomic_add_64(&zc->zc_time, functime);
6851 
6852 	if (ztest_opts.zo_verbose >= 4)
6853 		(void) printf("%6.2f sec in %s\n",
6854 		    (double)functime / NANOSEC, zi->zi_funcname);
6855 }
6856 
6857 static void
ztest_thread(void * arg)6858 ztest_thread(void *arg)
6859 {
6860 	int rand;
6861 	uint64_t id = (uintptr_t)arg;
6862 	ztest_shared_t *zs = ztest_shared;
6863 	uint64_t call_next;
6864 	hrtime_t now;
6865 	ztest_info_t *zi;
6866 	ztest_shared_callstate_t *zc;
6867 
6868 	while ((now = gethrtime()) < zs->zs_thread_stop) {
6869 		/*
6870 		 * See if it's time to force a crash.
6871 		 */
6872 		if (now > zs->zs_thread_kill)
6873 			ztest_kill(zs);
6874 
6875 		/*
6876 		 * If we're getting ENOSPC with some regularity, stop.
6877 		 */
6878 		if (zs->zs_enospc_count > 10)
6879 			break;
6880 
6881 		/*
6882 		 * Pick a random function to execute.
6883 		 */
6884 		rand = ztest_random(ZTEST_FUNCS);
6885 		zi = &ztest_info[rand];
6886 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
6887 		call_next = zc->zc_next;
6888 
6889 		if (now >= call_next &&
6890 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
6891 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
6892 			ztest_execute(rand, zi, id);
6893 		}
6894 	}
6895 
6896 	thread_exit();
6897 }
6898 
6899 static void
ztest_dataset_name(char * dsname,char * pool,int d)6900 ztest_dataset_name(char *dsname, char *pool, int d)
6901 {
6902 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
6903 }
6904 
6905 static void
ztest_dataset_destroy(int d)6906 ztest_dataset_destroy(int d)
6907 {
6908 	char name[ZFS_MAX_DATASET_NAME_LEN];
6909 	int t;
6910 
6911 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
6912 
6913 	if (ztest_opts.zo_verbose >= 3)
6914 		(void) printf("Destroying %s to free up space\n", name);
6915 
6916 	/*
6917 	 * Cleanup any non-standard clones and snapshots.  In general,
6918 	 * ztest thread t operates on dataset (t % zopt_datasets),
6919 	 * so there may be more than one thing to clean up.
6920 	 */
6921 	for (t = d; t < ztest_opts.zo_threads;
6922 	    t += ztest_opts.zo_datasets)
6923 		ztest_dsl_dataset_cleanup(name, t);
6924 
6925 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
6926 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
6927 }
6928 
6929 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)6930 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
6931 {
6932 	uint64_t usedobjs, dirobjs, scratch;
6933 
6934 	/*
6935 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
6936 	 * Therefore, the number of objects in use should equal the
6937 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
6938 	 * If not, we have an object leak.
6939 	 *
6940 	 * Note that we can only check this in ztest_dataset_open(),
6941 	 * when the open-context and syncing-context values agree.
6942 	 * That's because zap_count() returns the open-context value,
6943 	 * while dmu_objset_space() returns the rootbp fill count.
6944 	 */
6945 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
6946 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
6947 	ASSERT3U(dirobjs + 1, ==, usedobjs);
6948 }
6949 
6950 static int
ztest_dataset_open(int d)6951 ztest_dataset_open(int d)
6952 {
6953 	ztest_ds_t *zd = &ztest_ds[d];
6954 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
6955 	objset_t *os;
6956 	zilog_t *zilog;
6957 	char name[ZFS_MAX_DATASET_NAME_LEN];
6958 	int error;
6959 
6960 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
6961 
6962 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6963 
6964 	error = ztest_dataset_create(name);
6965 	if (error == ENOSPC) {
6966 		(void) pthread_rwlock_unlock(&ztest_name_lock);
6967 		ztest_record_enospc(FTAG);
6968 		return (error);
6969 	}
6970 	ASSERT(error == 0 || error == EEXIST);
6971 
6972 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
6973 	    B_TRUE, zd, &os));
6974 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6975 
6976 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
6977 
6978 	zilog = zd->zd_zilog;
6979 
6980 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
6981 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
6982 		fatal(0, "missing log records: claimed %llu < committed %llu",
6983 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
6984 
6985 	ztest_dataset_dirobj_verify(zd);
6986 
6987 	zil_replay(os, zd, ztest_replay_vector);
6988 
6989 	ztest_dataset_dirobj_verify(zd);
6990 
6991 	if (ztest_opts.zo_verbose >= 6)
6992 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
6993 		    zd->zd_name,
6994 		    (u_longlong_t)zilog->zl_parse_blk_count,
6995 		    (u_longlong_t)zilog->zl_parse_lr_count,
6996 		    (u_longlong_t)zilog->zl_replaying_seq);
6997 
6998 	zilog = zil_open(os, ztest_get_data);
6999 
7000 	if (zilog->zl_replaying_seq != 0 &&
7001 	    zilog->zl_replaying_seq < committed_seq)
7002 		fatal(0, "missing log records: replayed %llu < committed %llu",
7003 		    zilog->zl_replaying_seq, committed_seq);
7004 
7005 	return (0);
7006 }
7007 
7008 static void
ztest_dataset_close(int d)7009 ztest_dataset_close(int d)
7010 {
7011 	ztest_ds_t *zd = &ztest_ds[d];
7012 
7013 	zil_close(zd->zd_zilog);
7014 	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7015 
7016 	ztest_zd_fini(zd);
7017 }
7018 
7019 /* ARGSUSED */
7020 static int
ztest_replay_zil_cb(const char * name,void * arg)7021 ztest_replay_zil_cb(const char *name, void *arg)
7022 {
7023 	objset_t *os;
7024 	ztest_ds_t *zdtmp;
7025 
7026 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7027 	    B_TRUE, FTAG, &os));
7028 
7029 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7030 
7031 	ztest_zd_init(zdtmp, NULL, os);
7032 	zil_replay(os, zdtmp, ztest_replay_vector);
7033 	ztest_zd_fini(zdtmp);
7034 
7035 	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7036 	    ztest_opts.zo_verbose >= 6) {
7037 		zilog_t *zilog = dmu_objset_zil(os);
7038 
7039 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
7040 		    name,
7041 		    (u_longlong_t)zilog->zl_parse_blk_count,
7042 		    (u_longlong_t)zilog->zl_parse_lr_count,
7043 		    (u_longlong_t)zilog->zl_replaying_seq);
7044 	}
7045 
7046 	umem_free(zdtmp, sizeof (ztest_ds_t));
7047 
7048 	dmu_objset_disown(os, B_TRUE, FTAG);
7049 	return (0);
7050 }
7051 
7052 static void
ztest_freeze(void)7053 ztest_freeze(void)
7054 {
7055 	ztest_ds_t *zd = &ztest_ds[0];
7056 	spa_t *spa;
7057 	int numloops = 0;
7058 
7059 	if (ztest_opts.zo_verbose >= 3)
7060 		(void) printf("testing spa_freeze()...\n");
7061 
7062 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7063 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
7064 	VERIFY3U(0, ==, ztest_dataset_open(0));
7065 	ztest_spa = spa;
7066 
7067 	/*
7068 	 * Force the first log block to be transactionally allocated.
7069 	 * We have to do this before we freeze the pool -- otherwise
7070 	 * the log chain won't be anchored.
7071 	 */
7072 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7073 		ztest_dmu_object_alloc_free(zd, 0);
7074 		zil_commit(zd->zd_zilog, 0);
7075 	}
7076 
7077 	txg_wait_synced(spa_get_dsl(spa), 0);
7078 
7079 	/*
7080 	 * Freeze the pool.  This stops spa_sync() from doing anything,
7081 	 * so that the only way to record changes from now on is the ZIL.
7082 	 */
7083 	spa_freeze(spa);
7084 
7085 	/*
7086 	 * Because it is hard to predict how much space a write will actually
7087 	 * require beforehand, we leave ourselves some fudge space to write over
7088 	 * capacity.
7089 	 */
7090 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7091 
7092 	/*
7093 	 * Run tests that generate log records but don't alter the pool config
7094 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7095 	 * We do a txg_wait_synced() after each iteration to force the txg
7096 	 * to increase well beyond the last synced value in the uberblock.
7097 	 * The ZIL should be OK with that.
7098 	 *
7099 	 * Run a random number of times less than zo_maxloops and ensure we do
7100 	 * not run out of space on the pool.
7101 	 */
7102 	while (ztest_random(10) != 0 &&
7103 	    numloops++ < ztest_opts.zo_maxloops &&
7104 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7105 		ztest_od_t od;
7106 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7107 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7108 		ztest_io(zd, od.od_object,
7109 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7110 		txg_wait_synced(spa_get_dsl(spa), 0);
7111 	}
7112 
7113 	/*
7114 	 * Commit all of the changes we just generated.
7115 	 */
7116 	zil_commit(zd->zd_zilog, 0);
7117 	txg_wait_synced(spa_get_dsl(spa), 0);
7118 
7119 	/*
7120 	 * Close our dataset and close the pool.
7121 	 */
7122 	ztest_dataset_close(0);
7123 	spa_close(spa, FTAG);
7124 	kernel_fini();
7125 
7126 	/*
7127 	 * Open and close the pool and dataset to induce log replay.
7128 	 */
7129 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7130 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
7131 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
7132 	VERIFY3U(0, ==, ztest_dataset_open(0));
7133 	ztest_spa = spa;
7134 	txg_wait_synced(spa_get_dsl(spa), 0);
7135 	ztest_dataset_close(0);
7136 	ztest_reguid(NULL, 0);
7137 
7138 	spa_close(spa, FTAG);
7139 	kernel_fini();
7140 }
7141 
7142 static void
ztest_import_impl(ztest_shared_t * zs)7143 ztest_import_impl(ztest_shared_t *zs)
7144 {
7145 	importargs_t args = { 0 };
7146 	nvlist_t *cfg = NULL;
7147 	int nsearch = 1;
7148 	char *searchdirs[nsearch];
7149 	int flags = ZFS_IMPORT_MISSING_LOG;
7150 
7151 	searchdirs[0] = ztest_opts.zo_dir;
7152 	args.paths = nsearch;
7153 	args.path = searchdirs;
7154 	args.can_be_active = B_FALSE;
7155 
7156 	VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args,
7157 	    &libzpool_config_ops));
7158 	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7159 	fnvlist_free(cfg);
7160 }
7161 
7162 /*
7163  * Import a storage pool with the given name.
7164  */
7165 static void
ztest_import(ztest_shared_t * zs)7166 ztest_import(ztest_shared_t *zs)
7167 {
7168 	spa_t *spa;
7169 
7170 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7171 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7172 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7173 
7174 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7175 
7176 	ztest_import_impl(zs);
7177 
7178 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7179 	zs->zs_metaslab_sz =
7180 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7181 	spa_close(spa, FTAG);
7182 
7183 	kernel_fini();
7184 
7185 	if (!ztest_opts.zo_mmp_test) {
7186 		ztest_run_zdb(ztest_opts.zo_pool);
7187 		ztest_freeze();
7188 		ztest_run_zdb(ztest_opts.zo_pool);
7189 	}
7190 
7191 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7192 	mutex_destroy(&ztest_vdev_lock);
7193 	mutex_destroy(&ztest_checkpoint_lock);
7194 }
7195 
7196 /*
7197  * Kick off threads to run tests on all datasets in parallel.
7198  */
7199 static void
ztest_run(ztest_shared_t * zs)7200 ztest_run(ztest_shared_t *zs)
7201 {
7202 	spa_t *spa;
7203 	objset_t *os;
7204 	kthread_t *resume_thread, *deadman_thread;
7205 	kthread_t **run_threads;
7206 	uint64_t object;
7207 	int error;
7208 	int t, d;
7209 
7210 	ztest_exiting = B_FALSE;
7211 
7212 	/*
7213 	 * Initialize parent/child shared state.
7214 	 */
7215 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7216 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7217 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7218 
7219 	zs->zs_thread_start = gethrtime();
7220 	zs->zs_thread_stop =
7221 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
7222 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
7223 	zs->zs_thread_kill = zs->zs_thread_stop;
7224 	if (ztest_random(100) < ztest_opts.zo_killrate) {
7225 		zs->zs_thread_kill -=
7226 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
7227 	}
7228 
7229 	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
7230 
7231 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
7232 	    offsetof(ztest_cb_data_t, zcd_node));
7233 
7234 	/*
7235 	 * Open our pool.  It may need to be imported first depending on
7236 	 * what tests were running when the previous pass was terminated.
7237 	 */
7238 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7239 	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
7240 	if (error) {
7241 		VERIFY3S(error, ==, ENOENT);
7242 		ztest_import_impl(zs);
7243 		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7244 		zs->zs_metaslab_sz =
7245 		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7246 	}
7247 
7248 	metaslab_preload_limit = ztest_random(20) + 1;
7249 	ztest_spa = spa;
7250 
7251 	VERIFY0(vdev_raidz_impl_set("cycle"));
7252 
7253 	dmu_objset_stats_t dds;
7254 	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
7255 	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
7256 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
7257 	dmu_objset_fast_stat(os, &dds);
7258 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
7259 	zs->zs_guid = dds.dds_guid;
7260 	dmu_objset_disown(os, B_TRUE, FTAG);
7261 
7262 	/*
7263 	 * Create a thread to periodically resume suspended I/O.
7264 	 */
7265 	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
7266 	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7267 
7268 	/*
7269 	 * Create a deadman thread and set to panic if we hang.
7270 	 */
7271 	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
7272 	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7273 
7274 	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
7275 
7276 	/*
7277 	 * Verify that we can safely inquire about any object,
7278 	 * whether it's allocated or not.  To make it interesting,
7279 	 * we probe a 5-wide window around each power of two.
7280 	 * This hits all edge cases, including zero and the max.
7281 	 */
7282 	for (t = 0; t < 64; t++) {
7283 		for (d = -5; d <= 5; d++) {
7284 			error = dmu_object_info(spa->spa_meta_objset,
7285 			    (1ULL << t) + d, NULL);
7286 			ASSERT(error == 0 || error == ENOENT ||
7287 			    error == EINVAL);
7288 		}
7289 	}
7290 
7291 	/*
7292 	 * If we got any ENOSPC errors on the previous run, destroy something.
7293 	 */
7294 	if (zs->zs_enospc_count != 0) {
7295 		int d = ztest_random(ztest_opts.zo_datasets);
7296 		ztest_dataset_destroy(d);
7297 	}
7298 	zs->zs_enospc_count = 0;
7299 
7300 	/*
7301 	 * If we were in the middle of ztest_device_removal() and were killed
7302 	 * we need to ensure the removal and scrub complete before running
7303 	 * any tests that check ztest_device_removal_active. The removal will
7304 	 * be restarted automatically when the spa is opened, but we need to
7305 	 * initiate the scrub manually if it is not already in progress. Note
7306 	 * that we always run the scrub whenever an indirect vdev exists
7307 	 * because we have no way of knowing for sure if ztest_device_removal()
7308 	 * fully completed its scrub before the pool was reimported.
7309 	 */
7310 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
7311 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7312 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
7313 			txg_wait_synced(spa_get_dsl(spa), 0);
7314 
7315 		error = ztest_scrub_impl(spa);
7316 		if (error == EBUSY)
7317 			error = 0;
7318 		ASSERT0(error);
7319 	}
7320 
7321 	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
7322 	    UMEM_NOFAIL);
7323 
7324 	if (ztest_opts.zo_verbose >= 4)
7325 		(void) printf("starting main threads...\n");
7326 
7327 	/*
7328 	 * Replay all logs of all datasets in the pool. This is primarily for
7329 	 * temporary datasets which wouldn't otherwise get replayed, which
7330 	 * can trigger failures when attempting to offline a SLOG in
7331 	 * ztest_fault_inject().
7332 	 */
7333 	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
7334 	    NULL, DS_FIND_CHILDREN);
7335 
7336 	/*
7337 	 * Kick off all the tests that run in parallel.
7338 	 */
7339 	for (t = 0; t < ztest_opts.zo_threads; t++) {
7340 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
7341 			umem_free(run_threads, ztest_opts.zo_threads *
7342 			    sizeof (kthread_t *));
7343 			return;
7344 		}
7345 
7346 		run_threads[t] = thread_create(NULL, 0, ztest_thread,
7347 		    (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
7348 		    defclsyspri);
7349 	}
7350 
7351 	/*
7352 	 * Wait for all of the tests to complete.
7353 	 */
7354 	for (t = 0; t < ztest_opts.zo_threads; t++)
7355 		VERIFY0(thread_join(run_threads[t]));
7356 
7357 	/*
7358 	 * Close all datasets. This must be done after all the threads
7359 	 * are joined so we can be sure none of the datasets are in-use
7360 	 * by any of the threads.
7361 	 */
7362 	for (t = 0; t < ztest_opts.zo_threads; t++) {
7363 		if (t < ztest_opts.zo_datasets)
7364 			ztest_dataset_close(t);
7365 	}
7366 
7367 	txg_wait_synced(spa_get_dsl(spa), 0);
7368 
7369 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7370 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7371 
7372 	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7373 
7374 	/* Kill the resume and deadman threads */
7375 	ztest_exiting = B_TRUE;
7376 	VERIFY0(thread_join(resume_thread));
7377 	VERIFY0(thread_join(deadman_thread));
7378 	ztest_resume(spa);
7379 
7380 	/*
7381 	 * Right before closing the pool, kick off a bunch of async I/O;
7382 	 * spa_close() should wait for it to complete.
7383 	 */
7384 	for (object = 1; object < 50; object++) {
7385 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7386 		    ZIO_PRIORITY_SYNC_READ);
7387 	}
7388 
7389 	/* Verify that at least one commit cb was called in a timely fashion */
7390 	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7391 		VERIFY0(zc_min_txg_delay);
7392 
7393 	spa_close(spa, FTAG);
7394 
7395 	/*
7396 	 * Verify that we can loop over all pools.
7397 	 */
7398 	mutex_enter(&spa_namespace_lock);
7399 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7400 		if (ztest_opts.zo_verbose > 3)
7401 			(void) printf("spa_next: found %s\n", spa_name(spa));
7402 	mutex_exit(&spa_namespace_lock);
7403 
7404 	/*
7405 	 * Verify that we can export the pool and reimport it under a
7406 	 * different name.
7407 	 */
7408 	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7409 		char name[ZFS_MAX_DATASET_NAME_LEN];
7410 		(void) snprintf(name, sizeof (name), "%s_import",
7411 		    ztest_opts.zo_pool);
7412 		ztest_spa_import_export(ztest_opts.zo_pool, name);
7413 		ztest_spa_import_export(name, ztest_opts.zo_pool);
7414 	}
7415 
7416 	kernel_fini();
7417 
7418 	list_destroy(&zcl.zcl_callbacks);
7419 	mutex_destroy(&zcl.zcl_callbacks_lock);
7420 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7421 	mutex_destroy(&ztest_vdev_lock);
7422 	mutex_destroy(&ztest_checkpoint_lock);
7423 }
7424 
7425 static void
print_time(hrtime_t t,char * timebuf)7426 print_time(hrtime_t t, char *timebuf)
7427 {
7428 	hrtime_t s = t / NANOSEC;
7429 	hrtime_t m = s / 60;
7430 	hrtime_t h = m / 60;
7431 	hrtime_t d = h / 24;
7432 
7433 	s -= m * 60;
7434 	m -= h * 60;
7435 	h -= d * 24;
7436 
7437 	timebuf[0] = '\0';
7438 
7439 	if (d)
7440 		(void) sprintf(timebuf,
7441 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
7442 	else if (h)
7443 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7444 	else if (m)
7445 		(void) sprintf(timebuf, "%llum%02llus", m, s);
7446 	else
7447 		(void) sprintf(timebuf, "%llus", s);
7448 }
7449 
7450 static nvlist_t *
make_random_props(void)7451 make_random_props(void)
7452 {
7453 	nvlist_t *props;
7454 
7455 	VERIFY0(nvlist_alloc(&props, NV_UNIQUE_NAME, 0));
7456 
7457 	if (ztest_random(2) == 0)
7458 		return (props);
7459 
7460 	VERIFY0(nvlist_add_uint64(props,
7461 	    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1));
7462 
7463 	return (props);
7464 }
7465 
7466 /*
7467  * Create a storage pool with the given name and initial vdev size.
7468  * Then test spa_freeze() functionality.
7469  */
7470 static void
ztest_init(ztest_shared_t * zs)7471 ztest_init(ztest_shared_t *zs)
7472 {
7473 	spa_t *spa;
7474 	nvlist_t *nvroot, *props;
7475 	int i;
7476 
7477 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7478 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7479 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7480 
7481 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7482 
7483 	/*
7484 	 * Create the storage pool.
7485 	 */
7486 	(void) spa_destroy(ztest_opts.zo_pool);
7487 	ztest_shared->zs_vdev_next_leaf = 0;
7488 	zs->zs_splits = 0;
7489 	zs->zs_mirrors = ztest_opts.zo_mirrors;
7490 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7491 	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
7492 	props = make_random_props();
7493 
7494 	/*
7495 	 * We don't expect the pool to suspend unless maxfaults == 0,
7496 	 * in which case ztest_fault_inject() temporarily takes away
7497 	 * the only valid replica.
7498 	 */
7499 	VERIFY0(nvlist_add_uint64(props,
7500 	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7501 	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT));
7502 
7503 	for (i = 0; i < SPA_FEATURES; i++) {
7504 		char *buf;
7505 
7506 		/*
7507 		 * 75% chance of using the log space map feature. We want ztest
7508 		 * to exercise both the code paths that use the log space map
7509 		 * feature and the ones that don't.
7510 		 */
7511 		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7512 			continue;
7513 
7514 		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7515 		    spa_feature_table[i].fi_uname));
7516 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
7517 		free(buf);
7518 	}
7519 
7520 	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7521 	nvlist_free(nvroot);
7522 	nvlist_free(props);
7523 
7524 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
7525 	zs->zs_metaslab_sz =
7526 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7527 	spa_close(spa, FTAG);
7528 
7529 	kernel_fini();
7530 
7531 	if (!ztest_opts.zo_mmp_test) {
7532 		ztest_run_zdb(ztest_opts.zo_pool);
7533 		ztest_freeze();
7534 		ztest_run_zdb(ztest_opts.zo_pool);
7535 	}
7536 
7537 	(void) pthread_rwlock_destroy(&ztest_name_lock);
7538 	mutex_destroy(&ztest_vdev_lock);
7539 	mutex_destroy(&ztest_checkpoint_lock);
7540 }
7541 
7542 static void
setup_data_fd(void)7543 setup_data_fd(void)
7544 {
7545 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7546 
7547 	ztest_fd_data = mkstemp(ztest_name_data);
7548 	ASSERT3S(ztest_fd_data, >=, 0);
7549 	(void) unlink(ztest_name_data);
7550 }
7551 
7552 static int
shared_data_size(ztest_shared_hdr_t * hdr)7553 shared_data_size(ztest_shared_hdr_t *hdr)
7554 {
7555 	int size;
7556 
7557 	size = hdr->zh_hdr_size;
7558 	size += hdr->zh_opts_size;
7559 	size += hdr->zh_size;
7560 	size += hdr->zh_stats_size * hdr->zh_stats_count;
7561 	size += hdr->zh_ds_size * hdr->zh_ds_count;
7562 
7563 	return (size);
7564 }
7565 
7566 static void
setup_hdr(void)7567 setup_hdr(void)
7568 {
7569 	int size;
7570 	ztest_shared_hdr_t *hdr;
7571 
7572 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7573 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7574 	ASSERT(hdr != MAP_FAILED);
7575 
7576 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7577 
7578 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7579 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7580 	hdr->zh_size = sizeof (ztest_shared_t);
7581 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7582 	hdr->zh_stats_count = ZTEST_FUNCS;
7583 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7584 	hdr->zh_ds_count = ztest_opts.zo_datasets;
7585 
7586 	size = shared_data_size(hdr);
7587 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
7588 
7589 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7590 }
7591 
7592 static void
setup_data(void)7593 setup_data(void)
7594 {
7595 	int size, offset;
7596 	ztest_shared_hdr_t *hdr;
7597 	uint8_t *buf;
7598 
7599 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7600 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7601 	ASSERT(hdr != MAP_FAILED);
7602 
7603 	size = shared_data_size(hdr);
7604 
7605 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7606 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7607 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7608 	ASSERT(hdr != MAP_FAILED);
7609 	buf = (uint8_t *)hdr;
7610 
7611 	offset = hdr->zh_hdr_size;
7612 	ztest_shared_opts = (void *)&buf[offset];
7613 	offset += hdr->zh_opts_size;
7614 	ztest_shared = (void *)&buf[offset];
7615 	offset += hdr->zh_size;
7616 	ztest_shared_callstate = (void *)&buf[offset];
7617 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
7618 	ztest_shared_ds = (void *)&buf[offset];
7619 }
7620 
7621 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)7622 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7623 {
7624 	pid_t pid;
7625 	int status;
7626 	char *cmdbuf = NULL;
7627 
7628 	pid = fork();
7629 
7630 	if (cmd == NULL) {
7631 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7632 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7633 		cmd = cmdbuf;
7634 	}
7635 
7636 	if (pid == -1)
7637 		fatal(1, "fork failed");
7638 
7639 	if (pid == 0) {	/* child */
7640 		char *emptyargv[2] = { cmd, NULL };
7641 		char fd_data_str[12];
7642 
7643 		struct rlimit rl = { 1024, 1024 };
7644 		(void) setrlimit(RLIMIT_NOFILE, &rl);
7645 
7646 		(void) close(ztest_fd_rand);
7647 		VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7648 		VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
7649 
7650 		(void) enable_extended_FILE_stdio(-1, -1);
7651 		if (libpath != NULL)
7652 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
7653 		(void) execv(cmd, emptyargv);
7654 		ztest_dump_core = B_FALSE;
7655 		fatal(B_TRUE, "exec failed: %s", cmd);
7656 	}
7657 
7658 	if (cmdbuf != NULL) {
7659 		umem_free(cmdbuf, MAXPATHLEN);
7660 		cmd = NULL;
7661 	}
7662 
7663 	while (waitpid(pid, &status, 0) != pid)
7664 		continue;
7665 	if (statusp != NULL)
7666 		*statusp = status;
7667 
7668 	if (WIFEXITED(status)) {
7669 		if (WEXITSTATUS(status) != 0) {
7670 			(void) fprintf(stderr, "child exited with code %d\n",
7671 			    WEXITSTATUS(status));
7672 			exit(2);
7673 		}
7674 		return (B_FALSE);
7675 	} else if (WIFSIGNALED(status)) {
7676 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7677 			(void) fprintf(stderr, "child died with signal %d\n",
7678 			    WTERMSIG(status));
7679 			exit(3);
7680 		}
7681 		return (B_TRUE);
7682 	} else {
7683 		(void) fprintf(stderr, "something strange happened to child\n");
7684 		exit(4);
7685 		/* NOTREACHED */
7686 	}
7687 }
7688 
7689 static void
ztest_run_init(void)7690 ztest_run_init(void)
7691 {
7692 	int i;
7693 
7694 	ztest_shared_t *zs = ztest_shared;
7695 
7696 	/*
7697 	 * Blow away any existing copy of zpool.cache
7698 	 */
7699 	(void) remove(spa_config_path);
7700 
7701 	if (ztest_opts.zo_init == 0) {
7702 		if (ztest_opts.zo_verbose >= 1)
7703 			(void) printf("Importing pool %s\n",
7704 			    ztest_opts.zo_pool);
7705 		ztest_import(zs);
7706 		return;
7707 	}
7708 
7709 	/*
7710 	 * Create and initialize our storage pool.
7711 	 */
7712 	for (i = 1; i <= ztest_opts.zo_init; i++) {
7713 		bzero(zs, sizeof (ztest_shared_t));
7714 		if (ztest_opts.zo_verbose >= 3 &&
7715 		    ztest_opts.zo_init != 1) {
7716 			(void) printf("ztest_init(), pass %d\n", i);
7717 		}
7718 		ztest_init(zs);
7719 	}
7720 }
7721 
7722 int
main(int argc,char ** argv)7723 main(int argc, char **argv)
7724 {
7725 	int kills = 0;
7726 	int iters = 0;
7727 	int older = 0;
7728 	int newer = 0;
7729 	ztest_shared_t *zs;
7730 	ztest_info_t *zi;
7731 	ztest_shared_callstate_t *zc;
7732 	char timebuf[100];
7733 	char numbuf[NN_NUMBUF_SZ];
7734 	char *cmd;
7735 	boolean_t hasalt;
7736 	int f;
7737 	char *fd_data_str = getenv("ZTEST_FD_DATA");
7738 	struct sigaction action;
7739 
7740 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
7741 
7742 	dprintf_setup(&argc, argv);
7743 	zfs_deadman_synctime_ms = 300000;
7744 	zfs_deadman_checktime_ms = 30000;
7745 	/*
7746 	 * As two-word space map entries may not come up often (especially
7747 	 * if pool and vdev sizes are small) we want to force at least some
7748 	 * of them so the feature get tested.
7749 	 */
7750 	zfs_force_some_double_word_sm_entries = B_TRUE;
7751 
7752 	/*
7753 	 * Verify that even extensively damaged split blocks with many
7754 	 * segments can be reconstructed in a reasonable amount of time
7755 	 * when reconstruction is known to be possible.
7756 	 *
7757 	 * Note: the lower this value is, the more damage we inflict, and
7758 	 * the more time ztest spends in recovering that damage. We chose
7759 	 * to induce damage 1/100th of the time so recovery is tested but
7760 	 * not so frequently that ztest doesn't get to test other code paths.
7761 	 */
7762 	zfs_reconstruct_indirect_damage_fraction = 100;
7763 
7764 	action.sa_handler = sig_handler;
7765 	sigemptyset(&action.sa_mask);
7766 	action.sa_flags = 0;
7767 
7768 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
7769 		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
7770 		    strerror(errno));
7771 		exit(EXIT_FAILURE);
7772 	}
7773 
7774 	if (sigaction(SIGABRT, &action, NULL) < 0) {
7775 		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
7776 		    strerror(errno));
7777 		exit(EXIT_FAILURE);
7778 	}
7779 
7780 	/*
7781 	 * Force random_get_bytes() to use /dev/urandom in order to prevent
7782 	 * ztest from needlessly depleting the system entropy pool.
7783 	 */
7784 	random_path = "/dev/urandom";
7785 	ztest_fd_rand = open(random_path, O_RDONLY);
7786 	ASSERT3S(ztest_fd_rand, >=, 0);
7787 
7788 	if (!fd_data_str) {
7789 		process_options(argc, argv);
7790 
7791 		setup_data_fd();
7792 		setup_hdr();
7793 		setup_data();
7794 		bcopy(&ztest_opts, ztest_shared_opts,
7795 		    sizeof (*ztest_shared_opts));
7796 	} else {
7797 		ztest_fd_data = atoi(fd_data_str);
7798 		setup_data();
7799 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
7800 	}
7801 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
7802 
7803 	/* Override location of zpool.cache */
7804 	VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
7805 	    ztest_opts.zo_dir) != -1);
7806 
7807 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
7808 	    UMEM_NOFAIL);
7809 	zs = ztest_shared;
7810 
7811 	if (fd_data_str) {
7812 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
7813 		metaslab_df_alloc_threshold =
7814 		    zs->zs_metaslab_df_alloc_threshold;
7815 
7816 		if (zs->zs_do_init)
7817 			ztest_run_init();
7818 		else
7819 			ztest_run(zs);
7820 		exit(0);
7821 	}
7822 
7823 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
7824 
7825 	if (ztest_opts.zo_verbose >= 1) {
7826 		(void) printf("%llu vdevs, %d datasets, %d threads,"
7827 		    "%d %s disks, %llu seconds...\n\n",
7828 		    (u_longlong_t)ztest_opts.zo_vdevs,
7829 		    ztest_opts.zo_datasets,
7830 		    ztest_opts.zo_threads,
7831 		    ztest_opts.zo_raid_children,
7832 		    ztest_opts.zo_raid_type,
7833 		    (u_longlong_t)ztest_opts.zo_time);
7834 	}
7835 
7836 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
7837 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
7838 
7839 	zs->zs_do_init = B_TRUE;
7840 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
7841 		if (ztest_opts.zo_verbose >= 1) {
7842 			(void) printf("Executing older ztest for "
7843 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
7844 		}
7845 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
7846 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
7847 	} else {
7848 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
7849 	}
7850 	zs->zs_do_init = B_FALSE;
7851 
7852 	zs->zs_proc_start = gethrtime();
7853 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
7854 
7855 	for (f = 0; f < ZTEST_FUNCS; f++) {
7856 		zi = &ztest_info[f];
7857 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
7858 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
7859 			zc->zc_next = UINT64_MAX;
7860 		else
7861 			zc->zc_next = zs->zs_proc_start +
7862 			    ztest_random(2 * zi->zi_interval[0] + 1);
7863 	}
7864 
7865 	/*
7866 	 * Run the tests in a loop.  These tests include fault injection
7867 	 * to verify that self-healing data works, and forced crashes
7868 	 * to verify that we never lose on-disk consistency.
7869 	 */
7870 	while (gethrtime() < zs->zs_proc_stop) {
7871 		int status;
7872 		boolean_t killed;
7873 
7874 		/*
7875 		 * Initialize the workload counters for each function.
7876 		 */
7877 		for (f = 0; f < ZTEST_FUNCS; f++) {
7878 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
7879 			zc->zc_count = 0;
7880 			zc->zc_time = 0;
7881 		}
7882 
7883 		/* Set the allocation switch size */
7884 		zs->zs_metaslab_df_alloc_threshold =
7885 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
7886 
7887 		if (!hasalt || ztest_random(2) == 0) {
7888 			if (hasalt && ztest_opts.zo_verbose >= 1) {
7889 				(void) printf("Executing newer ztest: %s\n",
7890 				    cmd);
7891 			}
7892 			newer++;
7893 			killed = exec_child(cmd, NULL, B_TRUE, &status);
7894 		} else {
7895 			if (hasalt && ztest_opts.zo_verbose >= 1) {
7896 				(void) printf("Executing older ztest: %s\n",
7897 				    ztest_opts.zo_alt_ztest);
7898 			}
7899 			older++;
7900 			killed = exec_child(ztest_opts.zo_alt_ztest,
7901 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
7902 		}
7903 
7904 		if (killed)
7905 			kills++;
7906 		iters++;
7907 
7908 		if (ztest_opts.zo_verbose >= 1) {
7909 			hrtime_t now = gethrtime();
7910 
7911 			now = MIN(now, zs->zs_proc_stop);
7912 			print_time(zs->zs_proc_stop - now, timebuf);
7913 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
7914 
7915 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
7916 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
7917 			    iters,
7918 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
7919 			    (u_longlong_t)zs->zs_enospc_count,
7920 			    100.0 * zs->zs_alloc / zs->zs_space,
7921 			    numbuf,
7922 			    100.0 * (now - zs->zs_proc_start) /
7923 			    (ztest_opts.zo_time * NANOSEC), timebuf);
7924 		}
7925 
7926 		if (ztest_opts.zo_verbose >= 2) {
7927 			(void) printf("\nWorkload summary:\n\n");
7928 			(void) printf("%7s %9s   %s\n",
7929 			    "Calls", "Time", "Function");
7930 			(void) printf("%7s %9s   %s\n",
7931 			    "-----", "----", "--------");
7932 			for (f = 0; f < ZTEST_FUNCS; f++) {
7933 				zi = &ztest_info[f];
7934 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
7935 				print_time(zc->zc_time, timebuf);
7936 				(void) printf("%7llu %9s   %s\n",
7937 				    (u_longlong_t)zc->zc_count, timebuf,
7938 				    zi->zi_funcname);
7939 			}
7940 			(void) printf("\n");
7941 		}
7942 
7943 		if (!ztest_opts.zo_mmp_test)
7944 			ztest_run_zdb(ztest_opts.zo_pool);
7945 	}
7946 
7947 	if (ztest_opts.zo_verbose >= 1) {
7948 		if (hasalt) {
7949 			(void) printf("%d runs of older ztest: %s\n", older,
7950 			    ztest_opts.zo_alt_ztest);
7951 			(void) printf("%d runs of newer ztest: %s\n", newer,
7952 			    cmd);
7953 		}
7954 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
7955 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
7956 	}
7957 
7958 	umem_free(cmd, MAXNAMELEN);
7959 
7960 	return (0);
7961 }
7962