1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)time.h 8.5 (Berkeley) 5/4/95
32 * $FreeBSD$
33 */
34
35 #ifndef _SYS_TIME_H_
36 #define _SYS_TIME_H_
37
38 #include <sys/_timeval.h>
39 #include <sys/types.h>
40 #include <sys/timespec.h>
41
42 struct timezone {
43 int tz_minuteswest; /* minutes west of Greenwich */
44 int tz_dsttime; /* type of dst correction */
45 };
46 #define DST_NONE 0 /* not on dst */
47 #define DST_USA 1 /* USA style dst */
48 #define DST_AUST 2 /* Australian style dst */
49 #define DST_WET 3 /* Western European dst */
50 #define DST_MET 4 /* Middle European dst */
51 #define DST_EET 5 /* Eastern European dst */
52 #define DST_CAN 6 /* Canada */
53
54 #if __BSD_VISIBLE
55 struct bintime {
56 time_t sec;
57 uint64_t frac;
58 };
59
60 static __inline void
bintime_addx(struct bintime * _bt,uint64_t _x)61 bintime_addx(struct bintime *_bt, uint64_t _x)
62 {
63 uint64_t _u;
64
65 _u = _bt->frac;
66 _bt->frac += _x;
67 if (_u > _bt->frac)
68 _bt->sec++;
69 }
70
71 static __inline void
bintime_add(struct bintime * _bt,const struct bintime * _bt2)72 bintime_add(struct bintime *_bt, const struct bintime *_bt2)
73 {
74 uint64_t _u;
75
76 _u = _bt->frac;
77 _bt->frac += _bt2->frac;
78 if (_u > _bt->frac)
79 _bt->sec++;
80 _bt->sec += _bt2->sec;
81 }
82
83 static __inline void
bintime_sub(struct bintime * _bt,const struct bintime * _bt2)84 bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
85 {
86 uint64_t _u;
87
88 _u = _bt->frac;
89 _bt->frac -= _bt2->frac;
90 if (_u < _bt->frac)
91 _bt->sec--;
92 _bt->sec -= _bt2->sec;
93 }
94
95 static __inline void
bintime_mul(struct bintime * _bt,u_int _x)96 bintime_mul(struct bintime *_bt, u_int _x)
97 {
98 uint64_t _p1, _p2;
99
100 _p1 = (_bt->frac & 0xffffffffull) * _x;
101 _p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
102 _bt->sec *= _x;
103 _bt->sec += (_p2 >> 32);
104 _bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
105 }
106
107 static __inline void
bintime_shift(struct bintime * _bt,int _exp)108 bintime_shift(struct bintime *_bt, int _exp)
109 {
110
111 if (_exp > 0) {
112 _bt->sec <<= _exp;
113 _bt->sec |= _bt->frac >> (64 - _exp);
114 _bt->frac <<= _exp;
115 } else if (_exp < 0) {
116 _bt->frac >>= -_exp;
117 _bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
118 _bt->sec >>= -_exp;
119 }
120 }
121
122 #define bintime_clear(a) ((a)->sec = (a)->frac = 0)
123 #define bintime_isset(a) ((a)->sec || (a)->frac)
124 #define bintime_cmp(a, b, cmp) \
125 (((a)->sec == (b)->sec) ? \
126 ((a)->frac cmp (b)->frac) : \
127 ((a)->sec cmp (b)->sec))
128
129 #define SBT_1S ((sbintime_t)1 << 32)
130 #define SBT_1M (SBT_1S * 60)
131 #define SBT_1MS (SBT_1S / 1000)
132 #define SBT_1US (SBT_1S / 1000000)
133 #define SBT_1NS (SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
134 #define SBT_MAX 0x7fffffffffffffffLL
135
136 static __inline int
sbintime_getsec(sbintime_t _sbt)137 sbintime_getsec(sbintime_t _sbt)
138 {
139
140 return (_sbt >> 32);
141 }
142
143 static __inline sbintime_t
bttosbt(const struct bintime _bt)144 bttosbt(const struct bintime _bt)
145 {
146
147 return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
148 }
149
150 static __inline struct bintime
sbttobt(sbintime_t _sbt)151 sbttobt(sbintime_t _sbt)
152 {
153 struct bintime _bt;
154
155 _bt.sec = _sbt >> 32;
156 _bt.frac = _sbt << 32;
157 return (_bt);
158 }
159
160 /*
161 * Decimal<->sbt conversions. Multiplying or dividing by SBT_1NS results in
162 * large roundoff errors which sbttons() and nstosbt() avoid. Millisecond and
163 * microsecond functions are also provided for completeness.
164 *
165 * These functions return the smallest sbt larger or equal to the
166 * number of seconds requested so that sbttoX(Xtosbt(y)) == y. Unlike
167 * top of second computations below, which require that we tick at the
168 * top of second, these need to be rounded up so we do whatever for at
169 * least as long as requested.
170 *
171 * The naive computation we'd do is this
172 * ((unit * 2^64 / SIFACTOR) + 2^32-1) >> 32
173 * However, that overflows. Instead, we compute
174 * ((unit * 2^63 / SIFACTOR) + 2^31-1) >> 32
175 * and use pre-computed constants that are the ceil of the 2^63 / SIFACTOR
176 * term to ensure we are using exactly the right constant. We use the lesser
177 * evil of ull rather than a uint64_t cast to ensure we have well defined
178 * right shift semantics. With these changes, we get all the ns, us and ms
179 * conversions back and forth right.
180 * Note: This file is used for both kernel and userland includes, so we can't
181 * rely on KASSERT being defined, nor can we pollute the namespace by including
182 * assert.h.
183 */
184 static __inline int64_t
sbttons(sbintime_t _sbt)185 sbttons(sbintime_t _sbt)
186 {
187 uint64_t ns;
188
189 #ifdef KASSERT
190 KASSERT(_sbt >= 0, ("Negative values illegal for sbttons: %jx", _sbt));
191 #endif
192 ns = _sbt;
193 if (ns >= SBT_1S)
194 ns = (ns >> 32) * 1000000000;
195 else
196 ns = 0;
197
198 return (ns + (1000000000 * (_sbt & 0xffffffffu) >> 32));
199 }
200
201 static __inline sbintime_t
nstosbt(int64_t _ns)202 nstosbt(int64_t _ns)
203 {
204 sbintime_t sb = 0;
205
206 #ifdef KASSERT
207 KASSERT(_ns >= 0, ("Negative values illegal for nstosbt: %jd", _ns));
208 #endif
209 if (_ns >= SBT_1S) {
210 sb = (_ns / 1000000000) * SBT_1S;
211 _ns = _ns % 1000000000;
212 }
213 /* 9223372037 = ceil(2^63 / 1000000000) */
214 sb += ((_ns * 9223372037ull) + 0x7fffffff) >> 31;
215 return (sb);
216 }
217
218 static __inline int64_t
sbttous(sbintime_t _sbt)219 sbttous(sbintime_t _sbt)
220 {
221
222 return ((1000000 * _sbt) >> 32);
223 }
224
225 static __inline sbintime_t
ustosbt(int64_t _us)226 ustosbt(int64_t _us)
227 {
228 sbintime_t sb = 0;
229
230 #ifdef KASSERT
231 KASSERT(_us >= 0, ("Negative values illegal for ustosbt: %jd", _us));
232 #endif
233 if (_us >= SBT_1S) {
234 sb = (_us / 1000000) * SBT_1S;
235 _us = _us % 1000000;
236 }
237 /* 9223372036855 = ceil(2^63 / 1000000) */
238 sb += ((_us * 9223372036855ull) + 0x7fffffff) >> 31;
239 return (sb);
240 }
241
242 static __inline int64_t
sbttoms(sbintime_t _sbt)243 sbttoms(sbintime_t _sbt)
244 {
245
246 return ((1000 * _sbt) >> 32);
247 }
248
249 static __inline sbintime_t
mstosbt(int64_t _ms)250 mstosbt(int64_t _ms)
251 {
252 sbintime_t sb = 0;
253
254 #ifdef KASSERT
255 KASSERT(_ms >= 0, ("Negative values illegal for mstosbt: %jd", _ms));
256 #endif
257 if (_ms >= SBT_1S) {
258 sb = (_ms / 1000) * SBT_1S;
259 _ms = _ms % 1000;
260 }
261 /* 9223372036854776 = ceil(2^63 / 1000) */
262 sb += ((_ms * 9223372036854776ull) + 0x7fffffff) >> 31;
263 return (sb);
264 }
265
266 /*-
267 * Background information:
268 *
269 * When converting between timestamps on parallel timescales of differing
270 * resolutions it is historical and scientific practice to round down rather
271 * than doing 4/5 rounding.
272 *
273 * The date changes at midnight, not at noon.
274 *
275 * Even at 15:59:59.999999999 it's not four'o'clock.
276 *
277 * time_second ticks after N.999999999 not after N.4999999999
278 */
279
280 static __inline void
bintime2timespec(const struct bintime * _bt,struct timespec * _ts)281 bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
282 {
283
284 _ts->tv_sec = _bt->sec;
285 _ts->tv_nsec = ((uint64_t)1000000000 *
286 (uint32_t)(_bt->frac >> 32)) >> 32;
287 }
288
289 static __inline void
timespec2bintime(const struct timespec * _ts,struct bintime * _bt)290 timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
291 {
292
293 _bt->sec = _ts->tv_sec;
294 /* 18446744073 = int(2^64 / 1000000000) */
295 _bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
296 }
297
298 static __inline void
bintime2timeval(const struct bintime * _bt,struct timeval * _tv)299 bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
300 {
301
302 _tv->tv_sec = _bt->sec;
303 _tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
304 }
305
306 static __inline void
timeval2bintime(const struct timeval * _tv,struct bintime * _bt)307 timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
308 {
309
310 _bt->sec = _tv->tv_sec;
311 /* 18446744073709 = int(2^64 / 1000000) */
312 _bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
313 }
314
315 static __inline struct timespec
sbttots(sbintime_t _sbt)316 sbttots(sbintime_t _sbt)
317 {
318 struct timespec _ts;
319
320 _ts.tv_sec = _sbt >> 32;
321 _ts.tv_nsec = sbttons((uint32_t)_sbt);
322 return (_ts);
323 }
324
325 static __inline sbintime_t
tstosbt(struct timespec _ts)326 tstosbt(struct timespec _ts)
327 {
328
329 return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
330 }
331
332 static __inline struct timeval
sbttotv(sbintime_t _sbt)333 sbttotv(sbintime_t _sbt)
334 {
335 struct timeval _tv;
336
337 _tv.tv_sec = _sbt >> 32;
338 _tv.tv_usec = sbttous((uint32_t)_sbt);
339 return (_tv);
340 }
341
342 static __inline sbintime_t
tvtosbt(struct timeval _tv)343 tvtosbt(struct timeval _tv)
344 {
345
346 return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
347 }
348 #endif /* __BSD_VISIBLE */
349
350 #ifdef _KERNEL
351 /*
352 * Simple macros to convert ticks to milliseconds
353 * or microseconds and vice-versa. The answer
354 * will always be at least 1. Note the return
355 * value is a uint32_t however we step up the
356 * operations to 64 bit to avoid any overflow/underflow
357 * problems.
358 */
359 #define TICKS_2_MSEC(t) max(1, (uint32_t)(hz == 1000) ? \
360 (t) : (((uint64_t)(t) * (uint64_t)1000)/(uint64_t)hz))
361 #define TICKS_2_USEC(t) max(1, (uint32_t)(hz == 1000) ? \
362 ((t) * 1000) : (((uint64_t)(t) * (uint64_t)1000000)/(uint64_t)hz))
363 #define MSEC_2_TICKS(m) max(1, (uint32_t)((hz == 1000) ? \
364 (m) : ((uint64_t)(m) * (uint64_t)hz)/(uint64_t)1000))
365 #define USEC_2_TICKS(u) max(1, (uint32_t)((hz == 1000) ? \
366 ((u) / 1000) : ((uint64_t)(u) * (uint64_t)hz)/(uint64_t)1000000))
367
368 #endif
369 /* Operations on timespecs */
370 #define timespecclear(tvp) ((tvp)->tv_sec = (tvp)->tv_nsec = 0)
371 #define timespecisset(tvp) ((tvp)->tv_sec || (tvp)->tv_nsec)
372 #define timespeccmp(tvp, uvp, cmp) \
373 (((tvp)->tv_sec == (uvp)->tv_sec) ? \
374 ((tvp)->tv_nsec cmp (uvp)->tv_nsec) : \
375 ((tvp)->tv_sec cmp (uvp)->tv_sec))
376
377 #define timespecadd(tsp, usp, vsp) \
378 do { \
379 (vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec; \
380 (vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec; \
381 if ((vsp)->tv_nsec >= 1000000000L) { \
382 (vsp)->tv_sec++; \
383 (vsp)->tv_nsec -= 1000000000L; \
384 } \
385 } while (0)
386 #define timespecsub(tsp, usp, vsp) \
387 do { \
388 (vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec; \
389 (vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec; \
390 if ((vsp)->tv_nsec < 0) { \
391 (vsp)->tv_sec--; \
392 (vsp)->tv_nsec += 1000000000L; \
393 } \
394 } while (0)
395
396 #ifdef _KERNEL
397
398 /* Operations on timevals. */
399
400 #define timevalclear(tvp) ((tvp)->tv_sec = (tvp)->tv_usec = 0)
401 #define timevalisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)
402 #define timevalcmp(tvp, uvp, cmp) \
403 (((tvp)->tv_sec == (uvp)->tv_sec) ? \
404 ((tvp)->tv_usec cmp (uvp)->tv_usec) : \
405 ((tvp)->tv_sec cmp (uvp)->tv_sec))
406
407 /* timevaladd and timevalsub are not inlined */
408
409 #endif /* _KERNEL */
410
411 #ifndef _KERNEL /* NetBSD/OpenBSD compatible interfaces */
412
413 #define timerclear(tvp) ((tvp)->tv_sec = (tvp)->tv_usec = 0)
414 #define timerisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)
415 #define timercmp(tvp, uvp, cmp) \
416 (((tvp)->tv_sec == (uvp)->tv_sec) ? \
417 ((tvp)->tv_usec cmp (uvp)->tv_usec) : \
418 ((tvp)->tv_sec cmp (uvp)->tv_sec))
419 #define timeradd(tvp, uvp, vvp) \
420 do { \
421 (vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec; \
422 (vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec; \
423 if ((vvp)->tv_usec >= 1000000) { \
424 (vvp)->tv_sec++; \
425 (vvp)->tv_usec -= 1000000; \
426 } \
427 } while (0)
428 #define timersub(tvp, uvp, vvp) \
429 do { \
430 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
431 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
432 if ((vvp)->tv_usec < 0) { \
433 (vvp)->tv_sec--; \
434 (vvp)->tv_usec += 1000000; \
435 } \
436 } while (0)
437 #endif
438
439 /*
440 * Names of the interval timers, and structure
441 * defining a timer setting.
442 */
443 #define ITIMER_REAL 0
444 #define ITIMER_VIRTUAL 1
445 #define ITIMER_PROF 2
446
447 struct itimerval {
448 struct timeval it_interval; /* timer interval */
449 struct timeval it_value; /* current value */
450 };
451
452 /*
453 * Getkerninfo clock information structure
454 */
455 struct clockinfo {
456 int hz; /* clock frequency */
457 int tick; /* micro-seconds per hz tick */
458 int spare;
459 int stathz; /* statistics clock frequency */
460 int profhz; /* profiling clock frequency */
461 };
462
463 /* These macros are also in time.h. */
464 #ifndef CLOCK_REALTIME
465 #define CLOCK_REALTIME 0
466 #endif
467 #ifndef CLOCK_VIRTUAL
468 #define CLOCK_VIRTUAL 1
469 #define CLOCK_PROF 2
470 #endif
471 #ifndef CLOCK_MONOTONIC
472 #define CLOCK_MONOTONIC 4
473 #define CLOCK_UPTIME 5 /* FreeBSD-specific. */
474 #define CLOCK_UPTIME_PRECISE 7 /* FreeBSD-specific. */
475 #define CLOCK_UPTIME_FAST 8 /* FreeBSD-specific. */
476 #define CLOCK_REALTIME_PRECISE 9 /* FreeBSD-specific. */
477 #define CLOCK_REALTIME_FAST 10 /* FreeBSD-specific. */
478 #define CLOCK_MONOTONIC_PRECISE 11 /* FreeBSD-specific. */
479 #define CLOCK_MONOTONIC_FAST 12 /* FreeBSD-specific. */
480 #define CLOCK_SECOND 13 /* FreeBSD-specific. */
481 #define CLOCK_THREAD_CPUTIME_ID 14
482 #define CLOCK_PROCESS_CPUTIME_ID 15
483 #endif
484
485 #ifndef TIMER_ABSTIME
486 #define TIMER_RELTIME 0x0 /* relative timer */
487 #define TIMER_ABSTIME 0x1 /* absolute timer */
488 #endif
489
490 #if __BSD_VISIBLE
491 #define CPUCLOCK_WHICH_PID 0
492 #define CPUCLOCK_WHICH_TID 1
493 #endif
494
495 #if defined(_KERNEL) || defined(_STANDALONE)
496
497 /*
498 * Kernel to clock driver interface.
499 */
500 void inittodr(time_t base);
501 void resettodr(void);
502
503 extern volatile time_t time_second;
504 extern volatile time_t time_uptime;
505 extern struct bintime tc_tick_bt;
506 extern sbintime_t tc_tick_sbt;
507 extern struct bintime tick_bt;
508 extern sbintime_t tick_sbt;
509 extern int tc_precexp;
510 extern int tc_timepercentage;
511 extern struct bintime bt_timethreshold;
512 extern struct bintime bt_tickthreshold;
513 extern sbintime_t sbt_timethreshold;
514 extern sbintime_t sbt_tickthreshold;
515
516 extern volatile int rtc_generation;
517
518 /*
519 * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
520 *
521 * Functions without the "get" prefix returns the best timestamp
522 * we can produce in the given format.
523 *
524 * "bin" == struct bintime == seconds + 64 bit fraction of seconds.
525 * "nano" == struct timespec == seconds + nanoseconds.
526 * "micro" == struct timeval == seconds + microseconds.
527 *
528 * Functions containing "up" returns time relative to boot and
529 * should be used for calculating time intervals.
530 *
531 * Functions without "up" returns UTC time.
532 *
533 * Functions with the "get" prefix returns a less precise result
534 * much faster than the functions without "get" prefix and should
535 * be used where a precision of 1/hz seconds is acceptable or where
536 * performance is priority. (NB: "precision", _not_ "resolution" !)
537 */
538
539 void binuptime(struct bintime *bt);
540 void nanouptime(struct timespec *tsp);
541 void microuptime(struct timeval *tvp);
542
543 static __inline sbintime_t
sbinuptime(void)544 sbinuptime(void)
545 {
546 struct bintime _bt;
547
548 binuptime(&_bt);
549 return (bttosbt(_bt));
550 }
551
552 void bintime(struct bintime *bt);
553 void nanotime(struct timespec *tsp);
554 void microtime(struct timeval *tvp);
555
556 void getbinuptime(struct bintime *bt);
557 void getnanouptime(struct timespec *tsp);
558 void getmicrouptime(struct timeval *tvp);
559
560 static __inline sbintime_t
getsbinuptime(void)561 getsbinuptime(void)
562 {
563 struct bintime _bt;
564
565 getbinuptime(&_bt);
566 return (bttosbt(_bt));
567 }
568
569 void getbintime(struct bintime *bt);
570 void getnanotime(struct timespec *tsp);
571 void getmicrotime(struct timeval *tvp);
572
573 void getboottime(struct timeval *boottime);
574 void getboottimebin(struct bintime *boottimebin);
575
576 /* Other functions */
577 int itimerdecr(struct itimerval *itp, int usec);
578 int itimerfix(struct timeval *tv);
579 int ppsratecheck(struct timeval *, int *, int);
580 int ratecheck(struct timeval *, const struct timeval *);
581 void timevaladd(struct timeval *t1, const struct timeval *t2);
582 void timevalsub(struct timeval *t1, const struct timeval *t2);
583 int tvtohz(struct timeval *tv);
584
585 #define TC_DEFAULTPERC 5
586
587 #define BT2FREQ(bt) \
588 (((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) / \
589 ((bt)->frac >> 1))
590
591 #define SBT2FREQ(sbt) ((SBT_1S + ((sbt) >> 1)) / (sbt))
592
593 #define FREQ2BT(freq, bt) \
594 { \
595 (bt)->sec = 0; \
596 (bt)->frac = ((uint64_t)0x8000000000000000 / (freq)) << 1; \
597 }
598
599 #define TIMESEL(sbt, sbt2) \
600 (((sbt2) >= sbt_timethreshold) ? \
601 ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
602
603 #else /* !_KERNEL && !_STANDALONE */
604 #include <time.h>
605
606 #include <sys/cdefs.h>
607 #include <sys/select.h>
608
609 __BEGIN_DECLS
610 int setitimer(int, const struct itimerval *, struct itimerval *);
611 int utimes(const char *, const struct timeval *);
612
613 #if __BSD_VISIBLE
614 int adjtime(const struct timeval *, struct timeval *);
615 int clock_getcpuclockid2(id_t, int, clockid_t *);
616 int futimes(int, const struct timeval *);
617 int futimesat(int, const char *, const struct timeval [2]);
618 int lutimes(const char *, const struct timeval *);
619 int settimeofday(const struct timeval *, const struct timezone *);
620 #endif
621
622 #if __XSI_VISIBLE
623 int getitimer(int, struct itimerval *);
624 int gettimeofday(struct timeval *, struct timezone *);
625 #endif
626
627 __END_DECLS
628
629 #endif /* !_KERNEL */
630
631 #endif /* !_SYS_TIME_H_ */
632