1 /*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission. M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose. It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * The kernel resource manager. This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly. Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code. The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order. Most of the resources
44 * are of this type, as it is the most familiar. The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance). The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share. RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices. That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58 #include "opt_ddb.h"
59
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/limits.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mutex.h>
70 #include <sys/bus.h> /* XXX debugging */
71 #include <machine/bus.h>
72 #include <sys/rman.h>
73 #include <sys/sysctl.h>
74
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78
79 /*
80 * We use a linked list rather than a bitmap because we need to be able to
81 * represent potentially huge objects (like all of a processor's physical
82 * address space). That is also why the indices are defined to have type
83 * `unsigned long' -- that being the largest integral type in ISO C (1990).
84 * The 1999 version of C allows `long long'; we may need to switch to that
85 * at some point in the future, particularly if we want to support 36-bit
86 * addresses on IA32 hardware.
87 */
88 struct resource_i {
89 struct resource r_r;
90 TAILQ_ENTRY(resource_i) r_link;
91 LIST_ENTRY(resource_i) r_sharelink;
92 LIST_HEAD(, resource_i) *r_sharehead;
93 rman_res_t r_start; /* index of the first entry in this resource */
94 rman_res_t r_end; /* index of the last entry (inclusive) */
95 u_int r_flags;
96 void *r_virtual; /* virtual address of this resource */
97 void *r_irq_cookie; /* interrupt cookie for this (interrupt) resource */
98 device_t r_dev; /* device which has allocated this resource */
99 struct rman *r_rm; /* resource manager from whence this came */
100 int r_rid; /* optional rid for this resource. */
101 };
102
103 static int rman_debug = 0;
104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
105 &rman_debug, 0, "rman debug");
106
107 #define DPRINTF(params) if (rman_debug) printf params
108
109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
110
111 struct rman_head rman_head;
112 static struct mtx rman_mtx; /* mutex to protect rman_head */
113 static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
114
115 static __inline struct resource_i *
int_alloc_resource(int malloc_flag)116 int_alloc_resource(int malloc_flag)
117 {
118 struct resource_i *r;
119
120 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
121 if (r != NULL) {
122 r->r_r.__r_i = r;
123 }
124 return (r);
125 }
126
127 int
rman_init(struct rman * rm)128 rman_init(struct rman *rm)
129 {
130 static int once = 0;
131
132 if (once == 0) {
133 once = 1;
134 TAILQ_INIT(&rman_head);
135 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
136 }
137
138 if (rm->rm_start == 0 && rm->rm_end == 0)
139 rm->rm_end = ~0;
140 if (rm->rm_type == RMAN_UNINIT)
141 panic("rman_init");
142 if (rm->rm_type == RMAN_GAUGE)
143 panic("implement RMAN_GAUGE");
144
145 TAILQ_INIT(&rm->rm_list);
146 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
147 if (rm->rm_mtx == NULL)
148 return ENOMEM;
149 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
150
151 mtx_lock(&rman_mtx);
152 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
153 mtx_unlock(&rman_mtx);
154 return 0;
155 }
156
157 int
rman_manage_region(struct rman * rm,rman_res_t start,rman_res_t end)158 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end)
159 {
160 struct resource_i *r, *s, *t;
161 int rv = 0;
162
163 DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n",
164 rm->rm_descr, start, end));
165 if (start < rm->rm_start || end > rm->rm_end)
166 return EINVAL;
167 r = int_alloc_resource(M_NOWAIT);
168 if (r == NULL)
169 return ENOMEM;
170 r->r_start = start;
171 r->r_end = end;
172 r->r_rm = rm;
173
174 mtx_lock(rm->rm_mtx);
175
176 /* Skip entries before us. */
177 TAILQ_FOREACH(s, &rm->rm_list, r_link) {
178 if (s->r_end == ~0)
179 break;
180 if (s->r_end + 1 >= r->r_start)
181 break;
182 }
183
184 /* If we ran off the end of the list, insert at the tail. */
185 if (s == NULL) {
186 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
187 } else {
188 /* Check for any overlap with the current region. */
189 if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
190 rv = EBUSY;
191 goto out;
192 }
193
194 /* Check for any overlap with the next region. */
195 t = TAILQ_NEXT(s, r_link);
196 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
197 rv = EBUSY;
198 goto out;
199 }
200
201 /*
202 * See if this region can be merged with the next region. If
203 * not, clear the pointer.
204 */
205 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
206 t = NULL;
207
208 /* See if we can merge with the current region. */
209 if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
210 /* Can we merge all 3 regions? */
211 if (t != NULL) {
212 s->r_end = t->r_end;
213 TAILQ_REMOVE(&rm->rm_list, t, r_link);
214 free(r, M_RMAN);
215 free(t, M_RMAN);
216 } else {
217 s->r_end = r->r_end;
218 free(r, M_RMAN);
219 }
220 } else if (t != NULL) {
221 /* Can we merge with just the next region? */
222 t->r_start = r->r_start;
223 free(r, M_RMAN);
224 } else if (s->r_end < r->r_start) {
225 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
226 } else {
227 TAILQ_INSERT_BEFORE(s, r, r_link);
228 }
229 }
230 out:
231 mtx_unlock(rm->rm_mtx);
232 return rv;
233 }
234
235 int
rman_init_from_resource(struct rman * rm,struct resource * r)236 rman_init_from_resource(struct rman *rm, struct resource *r)
237 {
238 int rv;
239
240 if ((rv = rman_init(rm)) != 0)
241 return (rv);
242 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
243 }
244
245 int
rman_fini(struct rman * rm)246 rman_fini(struct rman *rm)
247 {
248 struct resource_i *r;
249
250 mtx_lock(rm->rm_mtx);
251 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
252 if (r->r_flags & RF_ALLOCATED) {
253 mtx_unlock(rm->rm_mtx);
254 return EBUSY;
255 }
256 }
257
258 /*
259 * There really should only be one of these if we are in this
260 * state and the code is working properly, but it can't hurt.
261 */
262 while (!TAILQ_EMPTY(&rm->rm_list)) {
263 r = TAILQ_FIRST(&rm->rm_list);
264 TAILQ_REMOVE(&rm->rm_list, r, r_link);
265 free(r, M_RMAN);
266 }
267 mtx_unlock(rm->rm_mtx);
268 mtx_lock(&rman_mtx);
269 TAILQ_REMOVE(&rman_head, rm, rm_link);
270 mtx_unlock(&rman_mtx);
271 mtx_destroy(rm->rm_mtx);
272 free(rm->rm_mtx, M_RMAN);
273
274 return 0;
275 }
276
277 int
rman_first_free_region(struct rman * rm,rman_res_t * start,rman_res_t * end)278 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
279 {
280 struct resource_i *r;
281
282 mtx_lock(rm->rm_mtx);
283 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
284 if (!(r->r_flags & RF_ALLOCATED)) {
285 *start = r->r_start;
286 *end = r->r_end;
287 mtx_unlock(rm->rm_mtx);
288 return (0);
289 }
290 }
291 mtx_unlock(rm->rm_mtx);
292 return (ENOENT);
293 }
294
295 int
rman_last_free_region(struct rman * rm,rman_res_t * start,rman_res_t * end)296 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
297 {
298 struct resource_i *r;
299
300 mtx_lock(rm->rm_mtx);
301 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
302 if (!(r->r_flags & RF_ALLOCATED)) {
303 *start = r->r_start;
304 *end = r->r_end;
305 mtx_unlock(rm->rm_mtx);
306 return (0);
307 }
308 }
309 mtx_unlock(rm->rm_mtx);
310 return (ENOENT);
311 }
312
313 /* Shrink or extend one or both ends of an allocated resource. */
314 int
rman_adjust_resource(struct resource * rr,rman_res_t start,rman_res_t end)315 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end)
316 {
317 struct resource_i *r, *s, *t, *new;
318 struct rman *rm;
319
320 /* Not supported for shared resources. */
321 r = rr->__r_i;
322 if (r->r_flags & RF_SHAREABLE)
323 return (EINVAL);
324
325 /*
326 * This does not support wholesale moving of a resource. At
327 * least part of the desired new range must overlap with the
328 * existing resource.
329 */
330 if (end < r->r_start || r->r_end < start)
331 return (EINVAL);
332
333 /*
334 * Find the two resource regions immediately adjacent to the
335 * allocated resource.
336 */
337 rm = r->r_rm;
338 mtx_lock(rm->rm_mtx);
339 #ifdef INVARIANTS
340 TAILQ_FOREACH(s, &rm->rm_list, r_link) {
341 if (s == r)
342 break;
343 }
344 if (s == NULL)
345 panic("resource not in list");
346 #endif
347 s = TAILQ_PREV(r, resource_head, r_link);
348 t = TAILQ_NEXT(r, r_link);
349 KASSERT(s == NULL || s->r_end + 1 == r->r_start,
350 ("prev resource mismatch"));
351 KASSERT(t == NULL || r->r_end + 1 == t->r_start,
352 ("next resource mismatch"));
353
354 /*
355 * See if the changes are permitted. Shrinking is always allowed,
356 * but growing requires sufficient room in the adjacent region.
357 */
358 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
359 s->r_start > start)) {
360 mtx_unlock(rm->rm_mtx);
361 return (EBUSY);
362 }
363 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
364 t->r_end < end)) {
365 mtx_unlock(rm->rm_mtx);
366 return (EBUSY);
367 }
368
369 /*
370 * While holding the lock, grow either end of the resource as
371 * needed and shrink either end if the shrinking does not require
372 * allocating a new resource. We can safely drop the lock and then
373 * insert a new range to handle the shrinking case afterwards.
374 */
375 if (start < r->r_start ||
376 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
377 KASSERT(s->r_flags == 0, ("prev is busy"));
378 r->r_start = start;
379 if (s->r_start == start) {
380 TAILQ_REMOVE(&rm->rm_list, s, r_link);
381 free(s, M_RMAN);
382 } else
383 s->r_end = start - 1;
384 }
385 if (end > r->r_end ||
386 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
387 KASSERT(t->r_flags == 0, ("next is busy"));
388 r->r_end = end;
389 if (t->r_end == end) {
390 TAILQ_REMOVE(&rm->rm_list, t, r_link);
391 free(t, M_RMAN);
392 } else
393 t->r_start = end + 1;
394 }
395 mtx_unlock(rm->rm_mtx);
396
397 /*
398 * Handle the shrinking cases that require allocating a new
399 * resource to hold the newly-free region. We have to recheck
400 * if we still need this new region after acquiring the lock.
401 */
402 if (start > r->r_start) {
403 new = int_alloc_resource(M_WAITOK);
404 new->r_start = r->r_start;
405 new->r_end = start - 1;
406 new->r_rm = rm;
407 mtx_lock(rm->rm_mtx);
408 r->r_start = start;
409 s = TAILQ_PREV(r, resource_head, r_link);
410 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
411 s->r_end = start - 1;
412 free(new, M_RMAN);
413 } else
414 TAILQ_INSERT_BEFORE(r, new, r_link);
415 mtx_unlock(rm->rm_mtx);
416 }
417 if (end < r->r_end) {
418 new = int_alloc_resource(M_WAITOK);
419 new->r_start = end + 1;
420 new->r_end = r->r_end;
421 new->r_rm = rm;
422 mtx_lock(rm->rm_mtx);
423 r->r_end = end;
424 t = TAILQ_NEXT(r, r_link);
425 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
426 t->r_start = end + 1;
427 free(new, M_RMAN);
428 } else
429 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
430 mtx_unlock(rm->rm_mtx);
431 }
432 return (0);
433 }
434
435 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE))
436
437 struct resource *
rman_reserve_resource_bound(struct rman * rm,rman_res_t start,rman_res_t end,rman_res_t count,rman_res_t bound,u_int flags,device_t dev)438 rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end,
439 rman_res_t count, rman_res_t bound, u_int flags,
440 device_t dev)
441 {
442 u_int new_rflags;
443 struct resource_i *r, *s, *rv;
444 rman_res_t rstart, rend, amask, bmask;
445
446 rv = NULL;
447
448 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], "
449 "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end,
450 count, flags,
451 dev == NULL ? "<null>" : device_get_nameunit(dev)));
452 KASSERT((flags & RF_FIRSTSHARE) == 0,
453 ("invalid flags %#x", flags));
454 new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
455
456 mtx_lock(rm->rm_mtx);
457
458 r = TAILQ_FIRST(&rm->rm_list);
459 if (r == NULL) {
460 DPRINTF(("NULL list head\n"));
461 } else {
462 DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n",
463 r->r_end, start, count-1));
464 }
465 for (r = TAILQ_FIRST(&rm->rm_list);
466 r && r->r_end < start + count - 1;
467 r = TAILQ_NEXT(r, r_link)) {
468 ;
469 DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n",
470 r->r_end, start, count-1));
471 }
472
473 if (r == NULL) {
474 DPRINTF(("could not find a region\n"));
475 goto out;
476 }
477
478 amask = (1ull << RF_ALIGNMENT(flags)) - 1;
479 KASSERT(start <= RM_MAX_END - amask,
480 ("start (%#jx) + amask (%#jx) would wrap around", start, amask));
481
482 /* If bound is 0, bmask will also be 0 */
483 bmask = ~(bound - 1);
484 /*
485 * First try to find an acceptable totally-unshared region.
486 */
487 for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
488 DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end));
489 /*
490 * The resource list is sorted, so there is no point in
491 * searching further once r_start is too large.
492 */
493 if (s->r_start > end - (count - 1)) {
494 DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n",
495 s->r_start, end));
496 break;
497 }
498 if (s->r_start > RM_MAX_END - amask) {
499 DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n",
500 s->r_start, amask));
501 break;
502 }
503 if (s->r_flags & RF_ALLOCATED) {
504 DPRINTF(("region is allocated\n"));
505 continue;
506 }
507 rstart = ummax(s->r_start, start);
508 /*
509 * Try to find a region by adjusting to boundary and alignment
510 * until both conditions are satisfied. This is not an optimal
511 * algorithm, but in most cases it isn't really bad, either.
512 */
513 do {
514 rstart = (rstart + amask) & ~amask;
515 if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
516 rstart += bound - (rstart & ~bmask);
517 } while ((rstart & amask) != 0 && rstart < end &&
518 rstart < s->r_end);
519 rend = ummin(s->r_end, ummax(rstart + count - 1, end));
520 if (rstart > rend) {
521 DPRINTF(("adjusted start exceeds end\n"));
522 continue;
523 }
524 DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n",
525 rstart, rend, (rend - rstart + 1), count));
526
527 if ((rend - rstart + 1) >= count) {
528 DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n",
529 rstart, rend, (rend - rstart + 1)));
530 if ((s->r_end - s->r_start + 1) == count) {
531 DPRINTF(("candidate region is entire chunk\n"));
532 rv = s;
533 rv->r_flags = new_rflags;
534 rv->r_dev = dev;
535 goto out;
536 }
537
538 /*
539 * If s->r_start < rstart and
540 * s->r_end > rstart + count - 1, then
541 * we need to split the region into three pieces
542 * (the middle one will get returned to the user).
543 * Otherwise, we are allocating at either the
544 * beginning or the end of s, so we only need to
545 * split it in two. The first case requires
546 * two new allocations; the second requires but one.
547 */
548 rv = int_alloc_resource(M_NOWAIT);
549 if (rv == NULL)
550 goto out;
551 rv->r_start = rstart;
552 rv->r_end = rstart + count - 1;
553 rv->r_flags = new_rflags;
554 rv->r_dev = dev;
555 rv->r_rm = rm;
556
557 if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
558 DPRINTF(("splitting region in three parts: "
559 "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n",
560 s->r_start, rv->r_start - 1,
561 rv->r_start, rv->r_end,
562 rv->r_end + 1, s->r_end));
563 /*
564 * We are allocating in the middle.
565 */
566 r = int_alloc_resource(M_NOWAIT);
567 if (r == NULL) {
568 free(rv, M_RMAN);
569 rv = NULL;
570 goto out;
571 }
572 r->r_start = rv->r_end + 1;
573 r->r_end = s->r_end;
574 r->r_flags = s->r_flags;
575 r->r_rm = rm;
576 s->r_end = rv->r_start - 1;
577 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
578 r_link);
579 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
580 r_link);
581 } else if (s->r_start == rv->r_start) {
582 DPRINTF(("allocating from the beginning\n"));
583 /*
584 * We are allocating at the beginning.
585 */
586 s->r_start = rv->r_end + 1;
587 TAILQ_INSERT_BEFORE(s, rv, r_link);
588 } else {
589 DPRINTF(("allocating at the end\n"));
590 /*
591 * We are allocating at the end.
592 */
593 s->r_end = rv->r_start - 1;
594 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
595 r_link);
596 }
597 goto out;
598 }
599 }
600
601 /*
602 * Now find an acceptable shared region, if the client's requirements
603 * allow sharing. By our implementation restriction, a candidate
604 * region must match exactly by both size and sharing type in order
605 * to be considered compatible with the client's request. (The
606 * former restriction could probably be lifted without too much
607 * additional work, but this does not seem warranted.)
608 */
609 DPRINTF(("no unshared regions found\n"));
610 if ((flags & RF_SHAREABLE) == 0)
611 goto out;
612
613 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
614 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
615 s->r_start >= start &&
616 (s->r_end - s->r_start + 1) == count &&
617 (s->r_start & amask) == 0 &&
618 ((s->r_start ^ s->r_end) & bmask) == 0) {
619 rv = int_alloc_resource(M_NOWAIT);
620 if (rv == NULL)
621 goto out;
622 rv->r_start = s->r_start;
623 rv->r_end = s->r_end;
624 rv->r_flags = new_rflags;
625 rv->r_dev = dev;
626 rv->r_rm = rm;
627 if (s->r_sharehead == NULL) {
628 s->r_sharehead = malloc(sizeof *s->r_sharehead,
629 M_RMAN, M_NOWAIT | M_ZERO);
630 if (s->r_sharehead == NULL) {
631 free(rv, M_RMAN);
632 rv = NULL;
633 goto out;
634 }
635 LIST_INIT(s->r_sharehead);
636 LIST_INSERT_HEAD(s->r_sharehead, s,
637 r_sharelink);
638 s->r_flags |= RF_FIRSTSHARE;
639 }
640 rv->r_sharehead = s->r_sharehead;
641 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
642 goto out;
643 }
644 }
645 /*
646 * We couldn't find anything.
647 */
648
649 out:
650 mtx_unlock(rm->rm_mtx);
651 return (rv == NULL ? NULL : &rv->r_r);
652 }
653
654 struct resource *
rman_reserve_resource(struct rman * rm,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags,device_t dev)655 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end,
656 rman_res_t count, u_int flags, device_t dev)
657 {
658
659 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
660 dev));
661 }
662
663 int
rman_activate_resource(struct resource * re)664 rman_activate_resource(struct resource *re)
665 {
666 struct resource_i *r;
667 struct rman *rm;
668
669 r = re->__r_i;
670 rm = r->r_rm;
671 mtx_lock(rm->rm_mtx);
672 r->r_flags |= RF_ACTIVE;
673 mtx_unlock(rm->rm_mtx);
674 return 0;
675 }
676
677 int
rman_deactivate_resource(struct resource * r)678 rman_deactivate_resource(struct resource *r)
679 {
680 struct rman *rm;
681
682 rm = r->__r_i->r_rm;
683 mtx_lock(rm->rm_mtx);
684 r->__r_i->r_flags &= ~RF_ACTIVE;
685 mtx_unlock(rm->rm_mtx);
686 return 0;
687 }
688
689 static int
int_rman_release_resource(struct rman * rm,struct resource_i * r)690 int_rman_release_resource(struct rman *rm, struct resource_i *r)
691 {
692 struct resource_i *s, *t;
693
694 if (r->r_flags & RF_ACTIVE)
695 r->r_flags &= ~RF_ACTIVE;
696
697 /*
698 * Check for a sharing list first. If there is one, then we don't
699 * have to think as hard.
700 */
701 if (r->r_sharehead) {
702 /*
703 * If a sharing list exists, then we know there are at
704 * least two sharers.
705 *
706 * If we are in the main circleq, appoint someone else.
707 */
708 LIST_REMOVE(r, r_sharelink);
709 s = LIST_FIRST(r->r_sharehead);
710 if (r->r_flags & RF_FIRSTSHARE) {
711 s->r_flags |= RF_FIRSTSHARE;
712 TAILQ_INSERT_BEFORE(r, s, r_link);
713 TAILQ_REMOVE(&rm->rm_list, r, r_link);
714 }
715
716 /*
717 * Make sure that the sharing list goes away completely
718 * if the resource is no longer being shared at all.
719 */
720 if (LIST_NEXT(s, r_sharelink) == NULL) {
721 free(s->r_sharehead, M_RMAN);
722 s->r_sharehead = NULL;
723 s->r_flags &= ~RF_FIRSTSHARE;
724 }
725 goto out;
726 }
727
728 /*
729 * Look at the adjacent resources in the list and see if our
730 * segment can be merged with any of them. If either of the
731 * resources is allocated or is not exactly adjacent then they
732 * cannot be merged with our segment.
733 */
734 s = TAILQ_PREV(r, resource_head, r_link);
735 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
736 s->r_end + 1 != r->r_start))
737 s = NULL;
738 t = TAILQ_NEXT(r, r_link);
739 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
740 r->r_end + 1 != t->r_start))
741 t = NULL;
742
743 if (s != NULL && t != NULL) {
744 /*
745 * Merge all three segments.
746 */
747 s->r_end = t->r_end;
748 TAILQ_REMOVE(&rm->rm_list, r, r_link);
749 TAILQ_REMOVE(&rm->rm_list, t, r_link);
750 free(t, M_RMAN);
751 } else if (s != NULL) {
752 /*
753 * Merge previous segment with ours.
754 */
755 s->r_end = r->r_end;
756 TAILQ_REMOVE(&rm->rm_list, r, r_link);
757 } else if (t != NULL) {
758 /*
759 * Merge next segment with ours.
760 */
761 t->r_start = r->r_start;
762 TAILQ_REMOVE(&rm->rm_list, r, r_link);
763 } else {
764 /*
765 * At this point, we know there is nothing we
766 * can potentially merge with, because on each
767 * side, there is either nothing there or what is
768 * there is still allocated. In that case, we don't
769 * want to remove r from the list; we simply want to
770 * change it to an unallocated region and return
771 * without freeing anything.
772 */
773 r->r_flags &= ~RF_ALLOCATED;
774 r->r_dev = NULL;
775 return 0;
776 }
777
778 out:
779 free(r, M_RMAN);
780 return 0;
781 }
782
783 int
rman_release_resource(struct resource * re)784 rman_release_resource(struct resource *re)
785 {
786 int rv;
787 struct resource_i *r;
788 struct rman *rm;
789
790 r = re->__r_i;
791 rm = r->r_rm;
792 mtx_lock(rm->rm_mtx);
793 rv = int_rman_release_resource(rm, r);
794 mtx_unlock(rm->rm_mtx);
795 return (rv);
796 }
797
798 uint32_t
rman_make_alignment_flags(uint32_t size)799 rman_make_alignment_flags(uint32_t size)
800 {
801 int i;
802
803 /*
804 * Find the hightest bit set, and add one if more than one bit
805 * set. We're effectively computing the ceil(log2(size)) here.
806 */
807 for (i = 31; i > 0; i--)
808 if ((1 << i) & size)
809 break;
810 if (~(1 << i) & size)
811 i++;
812
813 return(RF_ALIGNMENT_LOG2(i));
814 }
815
816 void
rman_set_start(struct resource * r,rman_res_t start)817 rman_set_start(struct resource *r, rman_res_t start)
818 {
819
820 r->__r_i->r_start = start;
821 }
822
823 rman_res_t
rman_get_start(struct resource * r)824 rman_get_start(struct resource *r)
825 {
826
827 return (r->__r_i->r_start);
828 }
829
830 void
rman_set_end(struct resource * r,rman_res_t end)831 rman_set_end(struct resource *r, rman_res_t end)
832 {
833
834 r->__r_i->r_end = end;
835 }
836
837 rman_res_t
rman_get_end(struct resource * r)838 rman_get_end(struct resource *r)
839 {
840
841 return (r->__r_i->r_end);
842 }
843
844 rman_res_t
rman_get_size(struct resource * r)845 rman_get_size(struct resource *r)
846 {
847
848 return (r->__r_i->r_end - r->__r_i->r_start + 1);
849 }
850
851 u_int
rman_get_flags(struct resource * r)852 rman_get_flags(struct resource *r)
853 {
854
855 return (r->__r_i->r_flags);
856 }
857
858 void
rman_set_virtual(struct resource * r,void * v)859 rman_set_virtual(struct resource *r, void *v)
860 {
861
862 r->__r_i->r_virtual = v;
863 }
864
865 void *
rman_get_virtual(struct resource * r)866 rman_get_virtual(struct resource *r)
867 {
868
869 return (r->__r_i->r_virtual);
870 }
871
872 void
rman_set_irq_cookie(struct resource * r,void * c)873 rman_set_irq_cookie(struct resource *r, void *c)
874 {
875
876 r->__r_i->r_irq_cookie = c;
877 }
878
879 void *
rman_get_irq_cookie(struct resource * r)880 rman_get_irq_cookie(struct resource *r)
881 {
882
883 return (r->__r_i->r_irq_cookie);
884 }
885
886 void
rman_set_bustag(struct resource * r,bus_space_tag_t t)887 rman_set_bustag(struct resource *r, bus_space_tag_t t)
888 {
889
890 r->r_bustag = t;
891 }
892
893 bus_space_tag_t
rman_get_bustag(struct resource * r)894 rman_get_bustag(struct resource *r)
895 {
896
897 return (r->r_bustag);
898 }
899
900 void
rman_set_bushandle(struct resource * r,bus_space_handle_t h)901 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
902 {
903
904 r->r_bushandle = h;
905 }
906
907 bus_space_handle_t
rman_get_bushandle(struct resource * r)908 rman_get_bushandle(struct resource *r)
909 {
910
911 return (r->r_bushandle);
912 }
913
914 void
rman_set_mapping(struct resource * r,struct resource_map * map)915 rman_set_mapping(struct resource *r, struct resource_map *map)
916 {
917
918 KASSERT(rman_get_size(r) == map->r_size,
919 ("rman_set_mapping: size mismatch"));
920 rman_set_bustag(r, map->r_bustag);
921 rman_set_bushandle(r, map->r_bushandle);
922 rman_set_virtual(r, map->r_vaddr);
923 }
924
925 void
rman_get_mapping(struct resource * r,struct resource_map * map)926 rman_get_mapping(struct resource *r, struct resource_map *map)
927 {
928
929 map->r_bustag = rman_get_bustag(r);
930 map->r_bushandle = rman_get_bushandle(r);
931 map->r_size = rman_get_size(r);
932 map->r_vaddr = rman_get_virtual(r);
933 }
934
935 void
rman_set_rid(struct resource * r,int rid)936 rman_set_rid(struct resource *r, int rid)
937 {
938
939 r->__r_i->r_rid = rid;
940 }
941
942 int
rman_get_rid(struct resource * r)943 rman_get_rid(struct resource *r)
944 {
945
946 return (r->__r_i->r_rid);
947 }
948
949 void
rman_set_device(struct resource * r,device_t dev)950 rman_set_device(struct resource *r, device_t dev)
951 {
952
953 r->__r_i->r_dev = dev;
954 }
955
956 device_t
rman_get_device(struct resource * r)957 rman_get_device(struct resource *r)
958 {
959
960 return (r->__r_i->r_dev);
961 }
962
963 int
rman_is_region_manager(struct resource * r,struct rman * rm)964 rman_is_region_manager(struct resource *r, struct rman *rm)
965 {
966
967 return (r->__r_i->r_rm == rm);
968 }
969
970 /*
971 * Sysctl interface for scanning the resource lists.
972 *
973 * We take two input parameters; the index into the list of resource
974 * managers, and the resource offset into the list.
975 */
976 static int
sysctl_rman(SYSCTL_HANDLER_ARGS)977 sysctl_rman(SYSCTL_HANDLER_ARGS)
978 {
979 int *name = (int *)arg1;
980 u_int namelen = arg2;
981 int rman_idx, res_idx;
982 struct rman *rm;
983 struct resource_i *res;
984 struct resource_i *sres;
985 struct u_rman urm;
986 struct u_resource ures;
987 int error;
988
989 if (namelen != 3)
990 return (EINVAL);
991
992 if (bus_data_generation_check(name[0]))
993 return (EINVAL);
994 rman_idx = name[1];
995 res_idx = name[2];
996
997 /*
998 * Find the indexed resource manager
999 */
1000 mtx_lock(&rman_mtx);
1001 TAILQ_FOREACH(rm, &rman_head, rm_link) {
1002 if (rman_idx-- == 0)
1003 break;
1004 }
1005 mtx_unlock(&rman_mtx);
1006 if (rm == NULL)
1007 return (ENOENT);
1008
1009 /*
1010 * If the resource index is -1, we want details on the
1011 * resource manager.
1012 */
1013 if (res_idx == -1) {
1014 bzero(&urm, sizeof(urm));
1015 urm.rm_handle = (uintptr_t)rm;
1016 if (rm->rm_descr != NULL)
1017 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
1018 urm.rm_start = rm->rm_start;
1019 urm.rm_size = rm->rm_end - rm->rm_start + 1;
1020 urm.rm_type = rm->rm_type;
1021
1022 error = SYSCTL_OUT(req, &urm, sizeof(urm));
1023 return (error);
1024 }
1025
1026 /*
1027 * Find the indexed resource and return it.
1028 */
1029 mtx_lock(rm->rm_mtx);
1030 TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1031 if (res->r_sharehead != NULL) {
1032 LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1033 if (res_idx-- == 0) {
1034 res = sres;
1035 goto found;
1036 }
1037 }
1038 else if (res_idx-- == 0)
1039 goto found;
1040 }
1041 mtx_unlock(rm->rm_mtx);
1042 return (ENOENT);
1043
1044 found:
1045 bzero(&ures, sizeof(ures));
1046 ures.r_handle = (uintptr_t)res;
1047 ures.r_parent = (uintptr_t)res->r_rm;
1048 ures.r_device = (uintptr_t)res->r_dev;
1049 if (res->r_dev != NULL) {
1050 if (device_get_name(res->r_dev) != NULL) {
1051 snprintf(ures.r_devname, RM_TEXTLEN,
1052 "%s%d",
1053 device_get_name(res->r_dev),
1054 device_get_unit(res->r_dev));
1055 } else {
1056 strlcpy(ures.r_devname, "nomatch",
1057 RM_TEXTLEN);
1058 }
1059 } else {
1060 ures.r_devname[0] = '\0';
1061 }
1062 ures.r_start = res->r_start;
1063 ures.r_size = res->r_end - res->r_start + 1;
1064 ures.r_flags = res->r_flags;
1065
1066 mtx_unlock(rm->rm_mtx);
1067 error = SYSCTL_OUT(req, &ures, sizeof(ures));
1068 return (error);
1069 }
1070
1071 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE,
1072 sysctl_rman,
1073 "kernel resource manager");
1074
1075 #ifdef DDB
1076 static void
dump_rman_header(struct rman * rm)1077 dump_rman_header(struct rman *rm)
1078 {
1079
1080 if (db_pager_quit)
1081 return;
1082 db_printf("rman %p: %s (0x%jx-0x%jx full range)\n",
1083 rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end);
1084 }
1085
1086 static void
dump_rman(struct rman * rm)1087 dump_rman(struct rman *rm)
1088 {
1089 struct resource_i *r;
1090 const char *devname;
1091
1092 if (db_pager_quit)
1093 return;
1094 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1095 if (r->r_dev != NULL) {
1096 devname = device_get_nameunit(r->r_dev);
1097 if (devname == NULL)
1098 devname = "nomatch";
1099 } else
1100 devname = NULL;
1101 db_printf(" 0x%jx-0x%jx (RID=%d) ",
1102 r->r_start, r->r_end, r->r_rid);
1103 if (devname != NULL)
1104 db_printf("(%s)\n", devname);
1105 else
1106 db_printf("----\n");
1107 if (db_pager_quit)
1108 return;
1109 }
1110 }
1111
DB_SHOW_COMMAND(rman,db_show_rman)1112 DB_SHOW_COMMAND(rman, db_show_rman)
1113 {
1114
1115 if (have_addr) {
1116 dump_rman_header((struct rman *)addr);
1117 dump_rman((struct rman *)addr);
1118 }
1119 }
1120
DB_SHOW_COMMAND(rmans,db_show_rmans)1121 DB_SHOW_COMMAND(rmans, db_show_rmans)
1122 {
1123 struct rman *rm;
1124
1125 TAILQ_FOREACH(rm, &rman_head, rm_link) {
1126 dump_rman_header(rm);
1127 }
1128 }
1129
DB_SHOW_ALL_COMMAND(rman,db_show_all_rman)1130 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1131 {
1132 struct rman *rm;
1133
1134 TAILQ_FOREACH(rm, &rman_head, rm_link) {
1135 dump_rman_header(rm);
1136 dump_rman(rm);
1137 }
1138 }
1139 DB_SHOW_ALIAS(allrman, db_show_all_rman);
1140 #endif
1141