1 /*-
2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27
28 /*
29 * Cryptographic Subsystem.
30 *
31 * This code is derived from the Openbsd Cryptographic Framework (OCF)
32 * that has the copyright shown below. Very little of the original
33 * code remains.
34 */
35
36 /*-
37 * The author of this code is Angelos D. Keromytis ([email protected])
38 *
39 * This code was written by Angelos D. Keromytis in Athens, Greece, in
40 * February 2000. Network Security Technologies Inc. (NSTI) kindly
41 * supported the development of this code.
42 *
43 * Copyright (c) 2000, 2001 Angelos D. Keromytis
44 *
45 * Permission to use, copy, and modify this software with or without fee
46 * is hereby granted, provided that this entire notice is included in
47 * all source code copies of any software which is or includes a copy or
48 * modification of this software.
49 *
50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54 * PURPOSE.
55 */
56
57 #include "opt_compat.h"
58 #include "opt_ddb.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/counter.h>
63 #include <sys/kernel.h>
64 #include <sys/kthread.h>
65 #include <sys/linker.h>
66 #include <sys/lock.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/proc.h>
72 #include <sys/refcount.h>
73 #include <sys/sdt.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/taskqueue.h>
77 #include <sys/uio.h>
78
79 #include <ddb/ddb.h>
80
81 #include <machine/vmparam.h>
82 #include <vm/uma.h>
83
84 #include <crypto/intake.h>
85 #include <opencrypto/cryptodev.h>
86 #include <opencrypto/xform_auth.h>
87 #include <opencrypto/xform_enc.h>
88
89 #include <sys/kobj.h>
90 #include <sys/bus.h>
91 #include "cryptodev_if.h"
92
93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
94 #include <machine/pcb.h>
95 #endif
96
97 SDT_PROVIDER_DEFINE(opencrypto);
98
99 /*
100 * Crypto drivers register themselves by allocating a slot in the
101 * crypto_drivers table with crypto_get_driverid() and then registering
102 * each asym algorithm they support with crypto_kregister().
103 */
104 static struct mtx crypto_drivers_mtx; /* lock on driver table */
105 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx)
106 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx)
107 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108
109 /*
110 * Crypto device/driver capabilities structure.
111 *
112 * Synchronization:
113 * (d) - protected by CRYPTO_DRIVER_LOCK()
114 * (q) - protected by CRYPTO_Q_LOCK()
115 * Not tagged fields are read-only.
116 */
117 struct cryptocap {
118 device_t cc_dev;
119 uint32_t cc_hid;
120 uint32_t cc_sessions; /* (d) # of sessions */
121 uint32_t cc_koperations; /* (d) # os asym operations */
122 uint8_t cc_kalg[CRK_ALGORITHM_MAX + 1];
123
124 int cc_flags; /* (d) flags */
125 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */
126 int cc_qblocked; /* (q) symmetric q blocked */
127 int cc_kqblocked; /* (q) asymmetric q blocked */
128 size_t cc_session_size;
129 volatile int cc_refs;
130 };
131
132 static struct cryptocap **crypto_drivers = NULL;
133 static int crypto_drivers_size = 0;
134
135 struct crypto_session {
136 struct cryptocap *cap;
137 struct crypto_session_params csp;
138 uint64_t id;
139 /* Driver softc follows. */
140 };
141
142 /*
143 * There are two queues for crypto requests; one for symmetric (e.g.
144 * cipher) operations and one for asymmetric (e.g. MOD)operations.
145 * A single mutex is used to lock access to both queues. We could
146 * have one per-queue but having one simplifies handling of block/unblock
147 * operations.
148 */
149 static int crp_sleep = 0;
150 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */
151 static TAILQ_HEAD(,cryptkop) crp_kq;
152 static struct mtx crypto_q_mtx;
153 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx)
154 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx)
155
156 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
157 "In-kernel cryptography");
158
159 /*
160 * Taskqueue used to dispatch the crypto requests
161 * that have the CRYPTO_F_ASYNC flag
162 */
163 static struct taskqueue *crypto_tq;
164
165 /*
166 * Crypto seq numbers are operated on with modular arithmetic
167 */
168 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0)
169
170 struct crypto_ret_worker {
171 struct mtx crypto_ret_mtx;
172
173 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
174 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */
175 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */
176
177 uint32_t reorder_ops; /* total ordered sym jobs received */
178 uint32_t reorder_cur_seq; /* current sym job dispatched */
179
180 struct proc *cryptoretproc;
181 };
182 static struct crypto_ret_worker *crypto_ret_workers = NULL;
183
184 #define CRYPTO_RETW(i) (&crypto_ret_workers[i])
185 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers)
186 #define FOREACH_CRYPTO_RETW(w) \
187 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
188
189 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx)
190 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx)
191 #define CRYPTO_RETW_EMPTY(w) \
192 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
193
194 static int crypto_workers_num = 0;
195 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
196 &crypto_workers_num, 0,
197 "Number of crypto workers used to dispatch crypto jobs");
198 #ifdef COMPAT_FREEBSD12
199 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
200 &crypto_workers_num, 0,
201 "Number of crypto workers used to dispatch crypto jobs");
202 #endif
203
204 static uma_zone_t cryptop_zone;
205
206 int crypto_userasymcrypto = 1;
207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
208 &crypto_userasymcrypto, 0,
209 "Enable user-mode access to asymmetric crypto support");
210 #ifdef COMPAT_FREEBSD12
211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
212 &crypto_userasymcrypto, 0,
213 "Enable/disable user-mode access to asymmetric crypto support");
214 #endif
215
216 int crypto_devallowsoft = 0;
217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
218 &crypto_devallowsoft, 0,
219 "Enable use of software crypto by /dev/crypto");
220 #ifdef COMPAT_FREEBSD12
221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
222 &crypto_devallowsoft, 0,
223 "Enable/disable use of software crypto by /dev/crypto");
224 #endif
225
226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
227
228 static void crypto_proc(void);
229 static struct proc *cryptoproc;
230 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
231 static void crypto_destroy(void);
232 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
233 static int crypto_kinvoke(struct cryptkop *krp);
234 static void crypto_task_invoke(void *ctx, int pending);
235 static void crypto_batch_enqueue(struct cryptop *crp);
236
237 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
238 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
239 cryptostats, nitems(cryptostats),
240 "Crypto system statistics");
241
242 #define CRYPTOSTAT_INC(stat) do { \
243 counter_u64_add( \
244 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
245 1); \
246 } while (0)
247
248 static void
cryptostats_init(void * arg __unused)249 cryptostats_init(void *arg __unused)
250 {
251 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
252 }
253 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
254
255 static void
cryptostats_fini(void * arg __unused)256 cryptostats_fini(void *arg __unused)
257 {
258 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
259 }
260 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
261 NULL);
262
263 /* Try to avoid directly exposing the key buffer as a symbol */
264 static struct keybuf *keybuf;
265
266 static struct keybuf empty_keybuf = {
267 .kb_nents = 0
268 };
269
270 /* Obtain the key buffer from boot metadata */
271 static void
keybuf_init(void)272 keybuf_init(void)
273 {
274 caddr_t kmdp;
275
276 kmdp = preload_search_by_type("elf kernel");
277
278 if (kmdp == NULL)
279 kmdp = preload_search_by_type("elf64 kernel");
280
281 keybuf = (struct keybuf *)preload_search_info(kmdp,
282 MODINFO_METADATA | MODINFOMD_KEYBUF);
283
284 if (keybuf == NULL)
285 keybuf = &empty_keybuf;
286 }
287
288 /* It'd be nice if we could store these in some kind of secure memory... */
289 struct keybuf *
get_keybuf(void)290 get_keybuf(void)
291 {
292
293 return (keybuf);
294 }
295
296 static struct cryptocap *
cap_ref(struct cryptocap * cap)297 cap_ref(struct cryptocap *cap)
298 {
299
300 refcount_acquire(&cap->cc_refs);
301 return (cap);
302 }
303
304 static void
cap_rele(struct cryptocap * cap)305 cap_rele(struct cryptocap *cap)
306 {
307
308 if (refcount_release(&cap->cc_refs) == 0)
309 return;
310
311 KASSERT(cap->cc_sessions == 0,
312 ("freeing crypto driver with active sessions"));
313 KASSERT(cap->cc_koperations == 0,
314 ("freeing crypto driver with active key operations"));
315
316 free(cap, M_CRYPTO_DATA);
317 }
318
319 static int
crypto_init(void)320 crypto_init(void)
321 {
322 struct crypto_ret_worker *ret_worker;
323 int error;
324
325 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
326 MTX_DEF|MTX_QUIET);
327
328 TAILQ_INIT(&crp_q);
329 TAILQ_INIT(&crp_kq);
330 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
331
332 cryptop_zone = uma_zcreate("cryptop",
333 sizeof(struct cryptop), NULL, NULL, NULL, NULL,
334 UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
335
336 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
337 crypto_drivers = malloc(crypto_drivers_size *
338 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
339
340 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
341 crypto_workers_num = mp_ncpus;
342
343 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
344 taskqueue_thread_enqueue, &crypto_tq);
345
346 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
347 "crypto");
348
349 error = kproc_create((void (*)(void *)) crypto_proc, NULL,
350 &cryptoproc, 0, 0, "crypto");
351 if (error) {
352 printf("crypto_init: cannot start crypto thread; error %d",
353 error);
354 goto bad;
355 }
356
357 crypto_ret_workers = mallocarray(crypto_workers_num,
358 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
359
360 FOREACH_CRYPTO_RETW(ret_worker) {
361 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
362 TAILQ_INIT(&ret_worker->crp_ret_q);
363 TAILQ_INIT(&ret_worker->crp_ret_kq);
364
365 ret_worker->reorder_ops = 0;
366 ret_worker->reorder_cur_seq = 0;
367
368 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
369
370 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
371 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
372 if (error) {
373 printf("crypto_init: cannot start cryptoret thread; error %d",
374 error);
375 goto bad;
376 }
377 }
378
379 keybuf_init();
380
381 return 0;
382 bad:
383 crypto_destroy();
384 return error;
385 }
386
387 /*
388 * Signal a crypto thread to terminate. We use the driver
389 * table lock to synchronize the sleep/wakeups so that we
390 * are sure the threads have terminated before we release
391 * the data structures they use. See crypto_finis below
392 * for the other half of this song-and-dance.
393 */
394 static void
crypto_terminate(struct proc ** pp,void * q)395 crypto_terminate(struct proc **pp, void *q)
396 {
397 struct proc *p;
398
399 mtx_assert(&crypto_drivers_mtx, MA_OWNED);
400 p = *pp;
401 *pp = NULL;
402 if (p) {
403 wakeup_one(q);
404 PROC_LOCK(p); /* NB: insure we don't miss wakeup */
405 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
406 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
407 PROC_UNLOCK(p);
408 CRYPTO_DRIVER_LOCK();
409 }
410 }
411
412 static void
hmac_init_pad(const struct auth_hash * axf,const char * key,int klen,void * auth_ctx,uint8_t padval)413 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
414 void *auth_ctx, uint8_t padval)
415 {
416 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
417 u_int i;
418
419 KASSERT(axf->blocksize <= sizeof(hmac_key),
420 ("Invalid HMAC block size %d", axf->blocksize));
421
422 /*
423 * If the key is larger than the block size, use the digest of
424 * the key as the key instead.
425 */
426 memset(hmac_key, 0, sizeof(hmac_key));
427 if (klen > axf->blocksize) {
428 axf->Init(auth_ctx);
429 axf->Update(auth_ctx, key, klen);
430 axf->Final(hmac_key, auth_ctx);
431 klen = axf->hashsize;
432 } else
433 memcpy(hmac_key, key, klen);
434
435 for (i = 0; i < axf->blocksize; i++)
436 hmac_key[i] ^= padval;
437
438 axf->Init(auth_ctx);
439 axf->Update(auth_ctx, hmac_key, axf->blocksize);
440 explicit_bzero(hmac_key, sizeof(hmac_key));
441 }
442
443 void
hmac_init_ipad(const struct auth_hash * axf,const char * key,int klen,void * auth_ctx)444 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
445 void *auth_ctx)
446 {
447
448 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
449 }
450
451 void
hmac_init_opad(const struct auth_hash * axf,const char * key,int klen,void * auth_ctx)452 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
453 void *auth_ctx)
454 {
455
456 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
457 }
458
459 static void
crypto_destroy(void)460 crypto_destroy(void)
461 {
462 struct crypto_ret_worker *ret_worker;
463 int i;
464
465 /*
466 * Terminate any crypto threads.
467 */
468 if (crypto_tq != NULL)
469 taskqueue_drain_all(crypto_tq);
470 CRYPTO_DRIVER_LOCK();
471 crypto_terminate(&cryptoproc, &crp_q);
472 FOREACH_CRYPTO_RETW(ret_worker)
473 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
474 CRYPTO_DRIVER_UNLOCK();
475
476 /* XXX flush queues??? */
477
478 /*
479 * Reclaim dynamically allocated resources.
480 */
481 for (i = 0; i < crypto_drivers_size; i++) {
482 if (crypto_drivers[i] != NULL)
483 cap_rele(crypto_drivers[i]);
484 }
485 free(crypto_drivers, M_CRYPTO_DATA);
486
487 if (cryptop_zone != NULL)
488 uma_zdestroy(cryptop_zone);
489 mtx_destroy(&crypto_q_mtx);
490 FOREACH_CRYPTO_RETW(ret_worker)
491 mtx_destroy(&ret_worker->crypto_ret_mtx);
492 free(crypto_ret_workers, M_CRYPTO_DATA);
493 if (crypto_tq != NULL)
494 taskqueue_free(crypto_tq);
495 mtx_destroy(&crypto_drivers_mtx);
496 }
497
498 uint32_t
crypto_ses2hid(crypto_session_t crypto_session)499 crypto_ses2hid(crypto_session_t crypto_session)
500 {
501 return (crypto_session->cap->cc_hid);
502 }
503
504 uint32_t
crypto_ses2caps(crypto_session_t crypto_session)505 crypto_ses2caps(crypto_session_t crypto_session)
506 {
507 return (crypto_session->cap->cc_flags & 0xff000000);
508 }
509
510 void *
crypto_get_driver_session(crypto_session_t crypto_session)511 crypto_get_driver_session(crypto_session_t crypto_session)
512 {
513 return (crypto_session + 1);
514 }
515
516 const struct crypto_session_params *
crypto_get_params(crypto_session_t crypto_session)517 crypto_get_params(crypto_session_t crypto_session)
518 {
519 return (&crypto_session->csp);
520 }
521
522 struct auth_hash *
crypto_auth_hash(const struct crypto_session_params * csp)523 crypto_auth_hash(const struct crypto_session_params *csp)
524 {
525
526 switch (csp->csp_auth_alg) {
527 case CRYPTO_SHA1_HMAC:
528 return (&auth_hash_hmac_sha1);
529 case CRYPTO_SHA2_224_HMAC:
530 return (&auth_hash_hmac_sha2_224);
531 case CRYPTO_SHA2_256_HMAC:
532 return (&auth_hash_hmac_sha2_256);
533 case CRYPTO_SHA2_384_HMAC:
534 return (&auth_hash_hmac_sha2_384);
535 case CRYPTO_SHA2_512_HMAC:
536 return (&auth_hash_hmac_sha2_512);
537 case CRYPTO_NULL_HMAC:
538 return (&auth_hash_null);
539 case CRYPTO_RIPEMD160_HMAC:
540 return (&auth_hash_hmac_ripemd_160);
541 case CRYPTO_SHA1:
542 return (&auth_hash_sha1);
543 case CRYPTO_SHA2_224:
544 return (&auth_hash_sha2_224);
545 case CRYPTO_SHA2_256:
546 return (&auth_hash_sha2_256);
547 case CRYPTO_SHA2_384:
548 return (&auth_hash_sha2_384);
549 case CRYPTO_SHA2_512:
550 return (&auth_hash_sha2_512);
551 case CRYPTO_AES_NIST_GMAC:
552 switch (csp->csp_auth_klen) {
553 case 128 / 8:
554 return (&auth_hash_nist_gmac_aes_128);
555 case 192 / 8:
556 return (&auth_hash_nist_gmac_aes_192);
557 case 256 / 8:
558 return (&auth_hash_nist_gmac_aes_256);
559 default:
560 return (NULL);
561 }
562 case CRYPTO_BLAKE2B:
563 return (&auth_hash_blake2b);
564 case CRYPTO_BLAKE2S:
565 return (&auth_hash_blake2s);
566 case CRYPTO_POLY1305:
567 return (&auth_hash_poly1305);
568 case CRYPTO_AES_CCM_CBC_MAC:
569 switch (csp->csp_auth_klen) {
570 case 128 / 8:
571 return (&auth_hash_ccm_cbc_mac_128);
572 case 192 / 8:
573 return (&auth_hash_ccm_cbc_mac_192);
574 case 256 / 8:
575 return (&auth_hash_ccm_cbc_mac_256);
576 default:
577 return (NULL);
578 }
579 default:
580 return (NULL);
581 }
582 }
583
584 struct enc_xform *
crypto_cipher(const struct crypto_session_params * csp)585 crypto_cipher(const struct crypto_session_params *csp)
586 {
587
588 switch (csp->csp_cipher_alg) {
589 case CRYPTO_RIJNDAEL128_CBC:
590 return (&enc_xform_rijndael128);
591 case CRYPTO_AES_XTS:
592 return (&enc_xform_aes_xts);
593 case CRYPTO_AES_ICM:
594 return (&enc_xform_aes_icm);
595 case CRYPTO_AES_NIST_GCM_16:
596 return (&enc_xform_aes_nist_gcm);
597 case CRYPTO_CAMELLIA_CBC:
598 return (&enc_xform_camellia);
599 case CRYPTO_NULL_CBC:
600 return (&enc_xform_null);
601 case CRYPTO_CHACHA20:
602 return (&enc_xform_chacha20);
603 case CRYPTO_AES_CCM_16:
604 return (&enc_xform_ccm);
605 default:
606 return (NULL);
607 }
608 }
609
610 static struct cryptocap *
crypto_checkdriver(uint32_t hid)611 crypto_checkdriver(uint32_t hid)
612 {
613
614 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
615 }
616
617 /*
618 * Select a driver for a new session that supports the specified
619 * algorithms and, optionally, is constrained according to the flags.
620 */
621 static struct cryptocap *
crypto_select_driver(const struct crypto_session_params * csp,int flags)622 crypto_select_driver(const struct crypto_session_params *csp, int flags)
623 {
624 struct cryptocap *cap, *best;
625 int best_match, error, hid;
626
627 CRYPTO_DRIVER_ASSERT();
628
629 best = NULL;
630 for (hid = 0; hid < crypto_drivers_size; hid++) {
631 /*
632 * If there is no driver for this slot, or the driver
633 * is not appropriate (hardware or software based on
634 * match), then skip.
635 */
636 cap = crypto_drivers[hid];
637 if (cap == NULL ||
638 (cap->cc_flags & flags) == 0)
639 continue;
640
641 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
642 if (error >= 0)
643 continue;
644
645 /*
646 * Use the driver with the highest probe value.
647 * Hardware drivers use a higher probe value than
648 * software. In case of a tie, prefer the driver with
649 * the fewest active sessions.
650 */
651 if (best == NULL || error > best_match ||
652 (error == best_match &&
653 cap->cc_sessions < best->cc_sessions)) {
654 best = cap;
655 best_match = error;
656 }
657 }
658 return best;
659 }
660
661 static enum alg_type {
662 ALG_NONE = 0,
663 ALG_CIPHER,
664 ALG_DIGEST,
665 ALG_KEYED_DIGEST,
666 ALG_COMPRESSION,
667 ALG_AEAD
668 } alg_types[] = {
669 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
670 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
671 [CRYPTO_AES_CBC] = ALG_CIPHER,
672 [CRYPTO_SHA1] = ALG_DIGEST,
673 [CRYPTO_NULL_HMAC] = ALG_DIGEST,
674 [CRYPTO_NULL_CBC] = ALG_CIPHER,
675 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
676 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
677 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
678 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
679 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
680 [CRYPTO_AES_XTS] = ALG_CIPHER,
681 [CRYPTO_AES_ICM] = ALG_CIPHER,
682 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
683 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
684 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
685 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
686 [CRYPTO_CHACHA20] = ALG_CIPHER,
687 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
688 [CRYPTO_RIPEMD160] = ALG_DIGEST,
689 [CRYPTO_SHA2_224] = ALG_DIGEST,
690 [CRYPTO_SHA2_256] = ALG_DIGEST,
691 [CRYPTO_SHA2_384] = ALG_DIGEST,
692 [CRYPTO_SHA2_512] = ALG_DIGEST,
693 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
694 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
695 [CRYPTO_AES_CCM_16] = ALG_AEAD,
696 };
697
698 static enum alg_type
alg_type(int alg)699 alg_type(int alg)
700 {
701
702 if (alg < nitems(alg_types))
703 return (alg_types[alg]);
704 return (ALG_NONE);
705 }
706
707 static bool
alg_is_compression(int alg)708 alg_is_compression(int alg)
709 {
710
711 return (alg_type(alg) == ALG_COMPRESSION);
712 }
713
714 static bool
alg_is_cipher(int alg)715 alg_is_cipher(int alg)
716 {
717
718 return (alg_type(alg) == ALG_CIPHER);
719 }
720
721 static bool
alg_is_digest(int alg)722 alg_is_digest(int alg)
723 {
724
725 return (alg_type(alg) == ALG_DIGEST ||
726 alg_type(alg) == ALG_KEYED_DIGEST);
727 }
728
729 static bool
alg_is_keyed_digest(int alg)730 alg_is_keyed_digest(int alg)
731 {
732
733 return (alg_type(alg) == ALG_KEYED_DIGEST);
734 }
735
736 static bool
alg_is_aead(int alg)737 alg_is_aead(int alg)
738 {
739
740 return (alg_type(alg) == ALG_AEAD);
741 }
742
743 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
744
745 /* Various sanity checks on crypto session parameters. */
746 static bool
check_csp(const struct crypto_session_params * csp)747 check_csp(const struct crypto_session_params *csp)
748 {
749 struct auth_hash *axf;
750
751 /* Mode-independent checks. */
752 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
753 return (false);
754 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
755 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
756 return (false);
757 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
758 return (false);
759 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
760 return (false);
761
762 switch (csp->csp_mode) {
763 case CSP_MODE_COMPRESS:
764 if (!alg_is_compression(csp->csp_cipher_alg))
765 return (false);
766 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
767 return (false);
768 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
769 return (false);
770 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
771 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
772 csp->csp_auth_mlen != 0)
773 return (false);
774 break;
775 case CSP_MODE_CIPHER:
776 if (!alg_is_cipher(csp->csp_cipher_alg))
777 return (false);
778 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
779 return (false);
780 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
781 if (csp->csp_cipher_klen == 0)
782 return (false);
783 if (csp->csp_ivlen == 0)
784 return (false);
785 }
786 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
787 return (false);
788 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
789 csp->csp_auth_mlen != 0)
790 return (false);
791 break;
792 case CSP_MODE_DIGEST:
793 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
794 return (false);
795
796 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
797 return (false);
798
799 /* IV is optional for digests (e.g. GMAC). */
800 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
801 return (false);
802 if (!alg_is_digest(csp->csp_auth_alg))
803 return (false);
804
805 /* Key is optional for BLAKE2 digests. */
806 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
807 csp->csp_auth_alg == CRYPTO_BLAKE2S)
808 ;
809 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
810 if (csp->csp_auth_klen == 0)
811 return (false);
812 } else {
813 if (csp->csp_auth_klen != 0)
814 return (false);
815 }
816 if (csp->csp_auth_mlen != 0) {
817 axf = crypto_auth_hash(csp);
818 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
819 return (false);
820 }
821 break;
822 case CSP_MODE_AEAD:
823 if (!alg_is_aead(csp->csp_cipher_alg))
824 return (false);
825 if (csp->csp_cipher_klen == 0)
826 return (false);
827 if (csp->csp_ivlen == 0 ||
828 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
829 return (false);
830 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
831 return (false);
832
833 /*
834 * XXX: Would be nice to have a better way to get this
835 * value.
836 */
837 switch (csp->csp_cipher_alg) {
838 case CRYPTO_AES_NIST_GCM_16:
839 case CRYPTO_AES_CCM_16:
840 if (csp->csp_auth_mlen > 16)
841 return (false);
842 break;
843 }
844 break;
845 case CSP_MODE_ETA:
846 if (!alg_is_cipher(csp->csp_cipher_alg))
847 return (false);
848 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
849 if (csp->csp_cipher_klen == 0)
850 return (false);
851 if (csp->csp_ivlen == 0)
852 return (false);
853 }
854 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
855 return (false);
856 if (!alg_is_digest(csp->csp_auth_alg))
857 return (false);
858
859 /* Key is optional for BLAKE2 digests. */
860 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
861 csp->csp_auth_alg == CRYPTO_BLAKE2S)
862 ;
863 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
864 if (csp->csp_auth_klen == 0)
865 return (false);
866 } else {
867 if (csp->csp_auth_klen != 0)
868 return (false);
869 }
870 if (csp->csp_auth_mlen != 0) {
871 axf = crypto_auth_hash(csp);
872 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
873 return (false);
874 }
875 break;
876 default:
877 return (false);
878 }
879
880 return (true);
881 }
882
883 /*
884 * Delete a session after it has been detached from its driver.
885 */
886 static void
crypto_deletesession(crypto_session_t cses)887 crypto_deletesession(crypto_session_t cses)
888 {
889 struct cryptocap *cap;
890
891 cap = cses->cap;
892
893 zfree(cses, M_CRYPTO_DATA);
894
895 CRYPTO_DRIVER_LOCK();
896 cap->cc_sessions--;
897 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
898 wakeup(cap);
899 CRYPTO_DRIVER_UNLOCK();
900 cap_rele(cap);
901 }
902
903 /*
904 * Create a new session. The crid argument specifies a crypto
905 * driver to use or constraints on a driver to select (hardware
906 * only, software only, either). Whatever driver is selected
907 * must be capable of the requested crypto algorithms.
908 */
909 int
crypto_newsession(crypto_session_t * cses,const struct crypto_session_params * csp,int crid)910 crypto_newsession(crypto_session_t *cses,
911 const struct crypto_session_params *csp, int crid)
912 {
913 static uint64_t sessid = 0;
914 crypto_session_t res;
915 struct cryptocap *cap;
916 int err;
917
918 if (!check_csp(csp))
919 return (EINVAL);
920
921 res = NULL;
922
923 CRYPTO_DRIVER_LOCK();
924 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
925 /*
926 * Use specified driver; verify it is capable.
927 */
928 cap = crypto_checkdriver(crid);
929 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
930 cap = NULL;
931 } else {
932 /*
933 * No requested driver; select based on crid flags.
934 */
935 cap = crypto_select_driver(csp, crid);
936 }
937 if (cap == NULL) {
938 CRYPTO_DRIVER_UNLOCK();
939 CRYPTDEB("no driver");
940 return (EOPNOTSUPP);
941 }
942 cap_ref(cap);
943 cap->cc_sessions++;
944 CRYPTO_DRIVER_UNLOCK();
945
946 /* Allocate a single block for the generic session and driver softc. */
947 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
948 M_WAITOK | M_ZERO);
949 res->cap = cap;
950 res->csp = *csp;
951 res->id = atomic_fetchadd_64(&sessid, 1);
952
953 /* Call the driver initialization routine. */
954 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
955 if (err != 0) {
956 CRYPTDEB("dev newsession failed: %d", err);
957 crypto_deletesession(res);
958 return (err);
959 }
960
961 *cses = res;
962 return (0);
963 }
964
965 /*
966 * Delete an existing session (or a reserved session on an unregistered
967 * driver).
968 */
969 void
crypto_freesession(crypto_session_t cses)970 crypto_freesession(crypto_session_t cses)
971 {
972 struct cryptocap *cap;
973
974 if (cses == NULL)
975 return;
976
977 cap = cses->cap;
978
979 /* Call the driver cleanup routine, if available. */
980 CRYPTODEV_FREESESSION(cap->cc_dev, cses);
981
982 crypto_deletesession(cses);
983 }
984
985 /*
986 * Return a new driver id. Registers a driver with the system so that
987 * it can be probed by subsequent sessions.
988 */
989 int32_t
crypto_get_driverid(device_t dev,size_t sessionsize,int flags)990 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
991 {
992 struct cryptocap *cap, **newdrv;
993 int i;
994
995 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
996 device_printf(dev,
997 "no flags specified when registering driver\n");
998 return -1;
999 }
1000
1001 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1002 cap->cc_dev = dev;
1003 cap->cc_session_size = sessionsize;
1004 cap->cc_flags = flags;
1005 refcount_init(&cap->cc_refs, 1);
1006
1007 CRYPTO_DRIVER_LOCK();
1008 for (;;) {
1009 for (i = 0; i < crypto_drivers_size; i++) {
1010 if (crypto_drivers[i] == NULL)
1011 break;
1012 }
1013
1014 if (i < crypto_drivers_size)
1015 break;
1016
1017 /* Out of entries, allocate some more. */
1018
1019 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1020 CRYPTO_DRIVER_UNLOCK();
1021 printf("crypto: driver count wraparound!\n");
1022 cap_rele(cap);
1023 return (-1);
1024 }
1025 CRYPTO_DRIVER_UNLOCK();
1026
1027 newdrv = malloc(2 * crypto_drivers_size *
1028 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1029
1030 CRYPTO_DRIVER_LOCK();
1031 memcpy(newdrv, crypto_drivers,
1032 crypto_drivers_size * sizeof(*crypto_drivers));
1033
1034 crypto_drivers_size *= 2;
1035
1036 free(crypto_drivers, M_CRYPTO_DATA);
1037 crypto_drivers = newdrv;
1038 }
1039
1040 cap->cc_hid = i;
1041 crypto_drivers[i] = cap;
1042 CRYPTO_DRIVER_UNLOCK();
1043
1044 if (bootverbose)
1045 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1046 device_get_nameunit(dev), i, flags);
1047
1048 return i;
1049 }
1050
1051 /*
1052 * Lookup a driver by name. We match against the full device
1053 * name and unit, and against just the name. The latter gives
1054 * us a simple widlcarding by device name. On success return the
1055 * driver/hardware identifier; otherwise return -1.
1056 */
1057 int
crypto_find_driver(const char * match)1058 crypto_find_driver(const char *match)
1059 {
1060 struct cryptocap *cap;
1061 int i, len = strlen(match);
1062
1063 CRYPTO_DRIVER_LOCK();
1064 for (i = 0; i < crypto_drivers_size; i++) {
1065 if (crypto_drivers[i] == NULL)
1066 continue;
1067 cap = crypto_drivers[i];
1068 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1069 strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1070 CRYPTO_DRIVER_UNLOCK();
1071 return (i);
1072 }
1073 }
1074 CRYPTO_DRIVER_UNLOCK();
1075 return (-1);
1076 }
1077
1078 /*
1079 * Return the device_t for the specified driver or NULL
1080 * if the driver identifier is invalid.
1081 */
1082 device_t
crypto_find_device_byhid(int hid)1083 crypto_find_device_byhid(int hid)
1084 {
1085 struct cryptocap *cap;
1086 device_t dev;
1087
1088 dev = NULL;
1089 CRYPTO_DRIVER_LOCK();
1090 cap = crypto_checkdriver(hid);
1091 if (cap != NULL)
1092 dev = cap->cc_dev;
1093 CRYPTO_DRIVER_UNLOCK();
1094 return (dev);
1095 }
1096
1097 /*
1098 * Return the device/driver capabilities.
1099 */
1100 int
crypto_getcaps(int hid)1101 crypto_getcaps(int hid)
1102 {
1103 struct cryptocap *cap;
1104 int flags;
1105
1106 flags = 0;
1107 CRYPTO_DRIVER_LOCK();
1108 cap = crypto_checkdriver(hid);
1109 if (cap != NULL)
1110 flags = cap->cc_flags;
1111 CRYPTO_DRIVER_UNLOCK();
1112 return (flags);
1113 }
1114
1115 /*
1116 * Register support for a key-related algorithm. This routine
1117 * is called once for each algorithm supported a driver.
1118 */
1119 int
crypto_kregister(uint32_t driverid,int kalg,uint32_t flags)1120 crypto_kregister(uint32_t driverid, int kalg, uint32_t flags)
1121 {
1122 struct cryptocap *cap;
1123 int err;
1124
1125 CRYPTO_DRIVER_LOCK();
1126
1127 cap = crypto_checkdriver(driverid);
1128 if (cap != NULL &&
1129 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1130 /*
1131 * XXX Do some performance testing to determine placing.
1132 * XXX We probably need an auxiliary data structure that
1133 * XXX describes relative performances.
1134 */
1135
1136 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1137 if (bootverbose)
1138 printf("crypto: %s registers key alg %u flags %u\n"
1139 , device_get_nameunit(cap->cc_dev)
1140 , kalg
1141 , flags
1142 );
1143 gone_in_dev(cap->cc_dev, 14, "asymmetric crypto");
1144 err = 0;
1145 } else
1146 err = EINVAL;
1147
1148 CRYPTO_DRIVER_UNLOCK();
1149 return err;
1150 }
1151
1152 /*
1153 * Unregister all algorithms associated with a crypto driver.
1154 * If there are pending sessions using it, leave enough information
1155 * around so that subsequent calls using those sessions will
1156 * correctly detect the driver has been unregistered and reroute
1157 * requests.
1158 */
1159 int
crypto_unregister_all(uint32_t driverid)1160 crypto_unregister_all(uint32_t driverid)
1161 {
1162 struct cryptocap *cap;
1163
1164 CRYPTO_DRIVER_LOCK();
1165 cap = crypto_checkdriver(driverid);
1166 if (cap == NULL) {
1167 CRYPTO_DRIVER_UNLOCK();
1168 return (EINVAL);
1169 }
1170
1171 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1172 crypto_drivers[driverid] = NULL;
1173
1174 /*
1175 * XXX: This doesn't do anything to kick sessions that
1176 * have no pending operations.
1177 */
1178 while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1179 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1180 CRYPTO_DRIVER_UNLOCK();
1181 cap_rele(cap);
1182
1183 return (0);
1184 }
1185
1186 /*
1187 * Clear blockage on a driver. The what parameter indicates whether
1188 * the driver is now ready for cryptop's and/or cryptokop's.
1189 */
1190 int
crypto_unblock(uint32_t driverid,int what)1191 crypto_unblock(uint32_t driverid, int what)
1192 {
1193 struct cryptocap *cap;
1194 int err;
1195
1196 CRYPTO_Q_LOCK();
1197 cap = crypto_checkdriver(driverid);
1198 if (cap != NULL) {
1199 if (what & CRYPTO_SYMQ)
1200 cap->cc_qblocked = 0;
1201 if (what & CRYPTO_ASYMQ)
1202 cap->cc_kqblocked = 0;
1203 if (crp_sleep)
1204 wakeup_one(&crp_q);
1205 err = 0;
1206 } else
1207 err = EINVAL;
1208 CRYPTO_Q_UNLOCK();
1209
1210 return err;
1211 }
1212
1213 size_t
crypto_buffer_len(struct crypto_buffer * cb)1214 crypto_buffer_len(struct crypto_buffer *cb)
1215 {
1216 switch (cb->cb_type) {
1217 case CRYPTO_BUF_CONTIG:
1218 return (cb->cb_buf_len);
1219 case CRYPTO_BUF_MBUF:
1220 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1221 return (cb->cb_mbuf->m_pkthdr.len);
1222 return (m_length(cb->cb_mbuf, NULL));
1223 case CRYPTO_BUF_VMPAGE:
1224 return (cb->cb_vm_page_len);
1225 case CRYPTO_BUF_UIO:
1226 return (cb->cb_uio->uio_resid);
1227 default:
1228 return (0);
1229 }
1230 }
1231
1232 #ifdef INVARIANTS
1233 /* Various sanity checks on crypto requests. */
1234 static void
cb_sanity(struct crypto_buffer * cb,const char * name)1235 cb_sanity(struct crypto_buffer *cb, const char *name)
1236 {
1237 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1238 ("incoming crp with invalid %s buffer type", name));
1239 switch (cb->cb_type) {
1240 case CRYPTO_BUF_CONTIG:
1241 KASSERT(cb->cb_buf_len >= 0,
1242 ("incoming crp with -ve %s buffer length", name));
1243 break;
1244 case CRYPTO_BUF_VMPAGE:
1245 KASSERT(CRYPTO_HAS_VMPAGE,
1246 ("incoming crp uses dmap on supported arch"));
1247 KASSERT(cb->cb_vm_page_len >= 0,
1248 ("incoming crp with -ve %s buffer length", name));
1249 KASSERT(cb->cb_vm_page_offset >= 0,
1250 ("incoming crp with -ve %s buffer offset", name));
1251 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1252 ("incoming crp with %s buffer offset greater than page size"
1253 , name));
1254 break;
1255 default:
1256 break;
1257 }
1258 }
1259
1260 static void
crp_sanity(struct cryptop * crp)1261 crp_sanity(struct cryptop *crp)
1262 {
1263 struct crypto_session_params *csp;
1264 struct crypto_buffer *out;
1265 size_t ilen, len, olen;
1266
1267 KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1268 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1269 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1270 ("incoming crp with invalid output buffer type"));
1271 KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1272 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1273 ("incoming crp already done"));
1274
1275 csp = &crp->crp_session->csp;
1276 cb_sanity(&crp->crp_buf, "input");
1277 ilen = crypto_buffer_len(&crp->crp_buf);
1278 olen = ilen;
1279 out = NULL;
1280 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1281 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1282 cb_sanity(&crp->crp_obuf, "output");
1283 out = &crp->crp_obuf;
1284 olen = crypto_buffer_len(out);
1285 }
1286 } else
1287 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1288 ("incoming crp with separate output buffer "
1289 "but no session support"));
1290
1291 switch (csp->csp_mode) {
1292 case CSP_MODE_COMPRESS:
1293 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1294 crp->crp_op == CRYPTO_OP_DECOMPRESS,
1295 ("invalid compression op %x", crp->crp_op));
1296 break;
1297 case CSP_MODE_CIPHER:
1298 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1299 crp->crp_op == CRYPTO_OP_DECRYPT,
1300 ("invalid cipher op %x", crp->crp_op));
1301 break;
1302 case CSP_MODE_DIGEST:
1303 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1304 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1305 ("invalid digest op %x", crp->crp_op));
1306 break;
1307 case CSP_MODE_AEAD:
1308 KASSERT(crp->crp_op ==
1309 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1310 crp->crp_op ==
1311 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1312 ("invalid AEAD op %x", crp->crp_op));
1313 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1314 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1315 ("GCM without a separate IV"));
1316 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1317 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1318 ("CCM without a separate IV"));
1319 break;
1320 case CSP_MODE_ETA:
1321 KASSERT(crp->crp_op ==
1322 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1323 crp->crp_op ==
1324 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1325 ("invalid ETA op %x", crp->crp_op));
1326 break;
1327 }
1328 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1329 if (crp->crp_aad == NULL) {
1330 KASSERT(crp->crp_aad_start == 0 ||
1331 crp->crp_aad_start < ilen,
1332 ("invalid AAD start"));
1333 KASSERT(crp->crp_aad_length != 0 ||
1334 crp->crp_aad_start == 0,
1335 ("AAD with zero length and non-zero start"));
1336 KASSERT(crp->crp_aad_length == 0 ||
1337 crp->crp_aad_start + crp->crp_aad_length <= ilen,
1338 ("AAD outside input length"));
1339 } else {
1340 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1341 ("session doesn't support separate AAD buffer"));
1342 KASSERT(crp->crp_aad_start == 0,
1343 ("separate AAD buffer with non-zero AAD start"));
1344 KASSERT(crp->crp_aad_length != 0,
1345 ("separate AAD buffer with zero length"));
1346 }
1347 } else {
1348 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1349 crp->crp_aad_length == 0,
1350 ("AAD region in request not supporting AAD"));
1351 }
1352 if (csp->csp_ivlen == 0) {
1353 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1354 ("IV_SEPARATE set when IV isn't used"));
1355 KASSERT(crp->crp_iv_start == 0,
1356 ("crp_iv_start set when IV isn't used"));
1357 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1358 KASSERT(crp->crp_iv_start == 0,
1359 ("IV_SEPARATE used with non-zero IV start"));
1360 } else {
1361 KASSERT(crp->crp_iv_start < ilen,
1362 ("invalid IV start"));
1363 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1364 ("IV outside buffer length"));
1365 }
1366 /* XXX: payload_start of 0 should always be < ilen? */
1367 KASSERT(crp->crp_payload_start == 0 ||
1368 crp->crp_payload_start < ilen,
1369 ("invalid payload start"));
1370 KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1371 ilen, ("payload outside input buffer"));
1372 if (out == NULL) {
1373 KASSERT(crp->crp_payload_output_start == 0,
1374 ("payload output start non-zero without output buffer"));
1375 } else {
1376 KASSERT(crp->crp_payload_output_start < olen,
1377 ("invalid payload output start"));
1378 KASSERT(crp->crp_payload_output_start +
1379 crp->crp_payload_length <= olen,
1380 ("payload outside output buffer"));
1381 }
1382 if (csp->csp_mode == CSP_MODE_DIGEST ||
1383 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1384 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1385 len = ilen;
1386 else
1387 len = olen;
1388 KASSERT(crp->crp_digest_start == 0 ||
1389 crp->crp_digest_start < len,
1390 ("invalid digest start"));
1391 /* XXX: For the mlen == 0 case this check isn't perfect. */
1392 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1393 ("digest outside buffer"));
1394 } else {
1395 KASSERT(crp->crp_digest_start == 0,
1396 ("non-zero digest start for request without a digest"));
1397 }
1398 if (csp->csp_cipher_klen != 0)
1399 KASSERT(csp->csp_cipher_key != NULL ||
1400 crp->crp_cipher_key != NULL,
1401 ("cipher request without a key"));
1402 if (csp->csp_auth_klen != 0)
1403 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1404 ("auth request without a key"));
1405 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1406 }
1407 #endif
1408
1409 /*
1410 * Add a crypto request to a queue, to be processed by the kernel thread.
1411 */
1412 int
crypto_dispatch(struct cryptop * crp)1413 crypto_dispatch(struct cryptop *crp)
1414 {
1415 struct cryptocap *cap;
1416 int result;
1417
1418 #ifdef INVARIANTS
1419 crp_sanity(crp);
1420 #endif
1421
1422 CRYPTOSTAT_INC(cs_ops);
1423
1424 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1425
1426 if (CRYPTOP_ASYNC(crp)) {
1427 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1428 struct crypto_ret_worker *ret_worker;
1429
1430 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1431
1432 CRYPTO_RETW_LOCK(ret_worker);
1433 crp->crp_seq = ret_worker->reorder_ops++;
1434 CRYPTO_RETW_UNLOCK(ret_worker);
1435 }
1436
1437 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1438 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1439 return (0);
1440 }
1441
1442 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1443 /*
1444 * Caller marked the request to be processed
1445 * immediately; dispatch it directly to the
1446 * driver unless the driver is currently blocked.
1447 */
1448 cap = crp->crp_session->cap;
1449 if (!cap->cc_qblocked) {
1450 result = crypto_invoke(cap, crp, 0);
1451 if (result != ERESTART)
1452 return (result);
1453 /*
1454 * The driver ran out of resources, put the request on
1455 * the queue.
1456 */
1457 }
1458 }
1459 crypto_batch_enqueue(crp);
1460 return 0;
1461 }
1462
1463 void
crypto_batch_enqueue(struct cryptop * crp)1464 crypto_batch_enqueue(struct cryptop *crp)
1465 {
1466
1467 CRYPTO_Q_LOCK();
1468 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1469 if (crp_sleep)
1470 wakeup_one(&crp_q);
1471 CRYPTO_Q_UNLOCK();
1472 }
1473
1474 /*
1475 * Add an asymetric crypto request to a queue,
1476 * to be processed by the kernel thread.
1477 */
1478 int
crypto_kdispatch(struct cryptkop * krp)1479 crypto_kdispatch(struct cryptkop *krp)
1480 {
1481 int error;
1482
1483 CRYPTOSTAT_INC(cs_kops);
1484
1485 krp->krp_cap = NULL;
1486 error = crypto_kinvoke(krp);
1487 if (error == ERESTART) {
1488 CRYPTO_Q_LOCK();
1489 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1490 if (crp_sleep)
1491 wakeup_one(&crp_q);
1492 CRYPTO_Q_UNLOCK();
1493 error = 0;
1494 }
1495 return error;
1496 }
1497
1498 /*
1499 * Verify a driver is suitable for the specified operation.
1500 */
1501 static __inline int
kdriver_suitable(const struct cryptocap * cap,const struct cryptkop * krp)1502 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1503 {
1504 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1505 }
1506
1507 /*
1508 * Select a driver for an asym operation. The driver must
1509 * support the necessary algorithm. The caller can constrain
1510 * which device is selected with the flags parameter. The
1511 * algorithm we use here is pretty stupid; just use the first
1512 * driver that supports the algorithms we need. If there are
1513 * multiple suitable drivers we choose the driver with the
1514 * fewest active operations. We prefer hardware-backed
1515 * drivers to software ones when either may be used.
1516 */
1517 static struct cryptocap *
crypto_select_kdriver(const struct cryptkop * krp,int flags)1518 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1519 {
1520 struct cryptocap *cap, *best;
1521 int match, hid;
1522
1523 CRYPTO_DRIVER_ASSERT();
1524
1525 /*
1526 * Look first for hardware crypto devices if permitted.
1527 */
1528 if (flags & CRYPTOCAP_F_HARDWARE)
1529 match = CRYPTOCAP_F_HARDWARE;
1530 else
1531 match = CRYPTOCAP_F_SOFTWARE;
1532 best = NULL;
1533 again:
1534 for (hid = 0; hid < crypto_drivers_size; hid++) {
1535 /*
1536 * If there is no driver for this slot, or the driver
1537 * is not appropriate (hardware or software based on
1538 * match), then skip.
1539 */
1540 cap = crypto_drivers[hid];
1541 if (cap == NULL ||
1542 (cap->cc_flags & match) == 0)
1543 continue;
1544
1545 /* verify all the algorithms are supported. */
1546 if (kdriver_suitable(cap, krp)) {
1547 if (best == NULL ||
1548 cap->cc_koperations < best->cc_koperations)
1549 best = cap;
1550 }
1551 }
1552 if (best != NULL)
1553 return best;
1554 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1555 /* sort of an Algol 68-style for loop */
1556 match = CRYPTOCAP_F_SOFTWARE;
1557 goto again;
1558 }
1559 return best;
1560 }
1561
1562 /*
1563 * Choose a driver for an asymmetric crypto request.
1564 */
1565 static struct cryptocap *
crypto_lookup_kdriver(struct cryptkop * krp)1566 crypto_lookup_kdriver(struct cryptkop *krp)
1567 {
1568 struct cryptocap *cap;
1569 uint32_t crid;
1570
1571 /* If this request is requeued, it might already have a driver. */
1572 cap = krp->krp_cap;
1573 if (cap != NULL)
1574 return (cap);
1575
1576 /* Use krp_crid to choose a driver. */
1577 crid = krp->krp_crid;
1578 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1579 cap = crypto_checkdriver(crid);
1580 if (cap != NULL) {
1581 /*
1582 * Driver present, it must support the
1583 * necessary algorithm and, if s/w drivers are
1584 * excluded, it must be registered as
1585 * hardware-backed.
1586 */
1587 if (!kdriver_suitable(cap, krp) ||
1588 (!crypto_devallowsoft &&
1589 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1590 cap = NULL;
1591 }
1592 } else {
1593 /*
1594 * No requested driver; select based on crid flags.
1595 */
1596 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */
1597 crid &= ~CRYPTOCAP_F_SOFTWARE;
1598 cap = crypto_select_kdriver(krp, crid);
1599 }
1600
1601 if (cap != NULL) {
1602 krp->krp_cap = cap_ref(cap);
1603 krp->krp_hid = cap->cc_hid;
1604 }
1605 return (cap);
1606 }
1607
1608 /*
1609 * Dispatch an asymmetric crypto request.
1610 */
1611 static int
crypto_kinvoke(struct cryptkop * krp)1612 crypto_kinvoke(struct cryptkop *krp)
1613 {
1614 struct cryptocap *cap = NULL;
1615 int error;
1616
1617 KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1618 KASSERT(krp->krp_callback != NULL,
1619 ("%s: krp->crp_callback == NULL", __func__));
1620
1621 CRYPTO_DRIVER_LOCK();
1622 cap = crypto_lookup_kdriver(krp);
1623 if (cap == NULL) {
1624 CRYPTO_DRIVER_UNLOCK();
1625 krp->krp_status = ENODEV;
1626 crypto_kdone(krp);
1627 return (0);
1628 }
1629
1630 /*
1631 * If the device is blocked, return ERESTART to requeue it.
1632 */
1633 if (cap->cc_kqblocked) {
1634 /*
1635 * XXX: Previously this set krp_status to ERESTART and
1636 * invoked crypto_kdone but the caller would still
1637 * requeue it.
1638 */
1639 CRYPTO_DRIVER_UNLOCK();
1640 return (ERESTART);
1641 }
1642
1643 cap->cc_koperations++;
1644 CRYPTO_DRIVER_UNLOCK();
1645 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1646 if (error == ERESTART) {
1647 CRYPTO_DRIVER_LOCK();
1648 cap->cc_koperations--;
1649 CRYPTO_DRIVER_UNLOCK();
1650 return (error);
1651 }
1652
1653 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1654 return (0);
1655 }
1656
1657 static void
crypto_task_invoke(void * ctx,int pending)1658 crypto_task_invoke(void *ctx, int pending)
1659 {
1660 struct cryptocap *cap;
1661 struct cryptop *crp;
1662 int result;
1663
1664 crp = (struct cryptop *)ctx;
1665 cap = crp->crp_session->cap;
1666 result = crypto_invoke(cap, crp, 0);
1667 if (result == ERESTART)
1668 crypto_batch_enqueue(crp);
1669 }
1670
1671 /*
1672 * Dispatch a crypto request to the appropriate crypto devices.
1673 */
1674 static int
crypto_invoke(struct cryptocap * cap,struct cryptop * crp,int hint)1675 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1676 {
1677
1678 KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1679 KASSERT(crp->crp_callback != NULL,
1680 ("%s: crp->crp_callback == NULL", __func__));
1681 KASSERT(crp->crp_session != NULL,
1682 ("%s: crp->crp_session == NULL", __func__));
1683
1684 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1685 struct crypto_session_params csp;
1686 crypto_session_t nses;
1687
1688 /*
1689 * Driver has unregistered; migrate the session and return
1690 * an error to the caller so they'll resubmit the op.
1691 *
1692 * XXX: What if there are more already queued requests for this
1693 * session?
1694 *
1695 * XXX: Real solution is to make sessions refcounted
1696 * and force callers to hold a reference when
1697 * assigning to crp_session. Could maybe change
1698 * crypto_getreq to accept a session pointer to make
1699 * that work. Alternatively, we could abandon the
1700 * notion of rewriting crp_session in requests forcing
1701 * the caller to deal with allocating a new session.
1702 * Perhaps provide a method to allow a crp's session to
1703 * be swapped that callers could use.
1704 */
1705 csp = crp->crp_session->csp;
1706 crypto_freesession(crp->crp_session);
1707
1708 /*
1709 * XXX: Key pointers may no longer be valid. If we
1710 * really want to support this we need to define the
1711 * KPI such that 'csp' is required to be valid for the
1712 * duration of a session by the caller perhaps.
1713 *
1714 * XXX: If the keys have been changed this will reuse
1715 * the old keys. This probably suggests making
1716 * rekeying more explicit and updating the key
1717 * pointers in 'csp' when the keys change.
1718 */
1719 if (crypto_newsession(&nses, &csp,
1720 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1721 crp->crp_session = nses;
1722
1723 crp->crp_etype = EAGAIN;
1724 crypto_done(crp);
1725 return 0;
1726 } else {
1727 /*
1728 * Invoke the driver to process the request.
1729 */
1730 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1731 }
1732 }
1733
1734 void
crypto_destroyreq(struct cryptop * crp)1735 crypto_destroyreq(struct cryptop *crp)
1736 {
1737 #ifdef DIAGNOSTIC
1738 {
1739 struct cryptop *crp2;
1740 struct crypto_ret_worker *ret_worker;
1741
1742 CRYPTO_Q_LOCK();
1743 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1744 KASSERT(crp2 != crp,
1745 ("Freeing cryptop from the crypto queue (%p).",
1746 crp));
1747 }
1748 CRYPTO_Q_UNLOCK();
1749
1750 FOREACH_CRYPTO_RETW(ret_worker) {
1751 CRYPTO_RETW_LOCK(ret_worker);
1752 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1753 KASSERT(crp2 != crp,
1754 ("Freeing cryptop from the return queue (%p).",
1755 crp));
1756 }
1757 CRYPTO_RETW_UNLOCK(ret_worker);
1758 }
1759 }
1760 #endif
1761 }
1762
1763 void
crypto_freereq(struct cryptop * crp)1764 crypto_freereq(struct cryptop *crp)
1765 {
1766 if (crp == NULL)
1767 return;
1768
1769 crypto_destroyreq(crp);
1770 uma_zfree(cryptop_zone, crp);
1771 }
1772
1773 static void
_crypto_initreq(struct cryptop * crp,crypto_session_t cses)1774 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1775 {
1776 crp->crp_session = cses;
1777 }
1778
1779 void
crypto_initreq(struct cryptop * crp,crypto_session_t cses)1780 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1781 {
1782 memset(crp, 0, sizeof(*crp));
1783 _crypto_initreq(crp, cses);
1784 }
1785
1786 struct cryptop *
crypto_getreq(crypto_session_t cses,int how)1787 crypto_getreq(crypto_session_t cses, int how)
1788 {
1789 struct cryptop *crp;
1790
1791 MPASS(how == M_WAITOK || how == M_NOWAIT);
1792 crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1793 if (crp != NULL)
1794 _crypto_initreq(crp, cses);
1795 return (crp);
1796 }
1797
1798 /*
1799 * Invoke the callback on behalf of the driver.
1800 */
1801 void
crypto_done(struct cryptop * crp)1802 crypto_done(struct cryptop *crp)
1803 {
1804 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1805 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1806 crp->crp_flags |= CRYPTO_F_DONE;
1807 if (crp->crp_etype != 0)
1808 CRYPTOSTAT_INC(cs_errs);
1809
1810 /*
1811 * CBIMM means unconditionally do the callback immediately;
1812 * CBIFSYNC means do the callback immediately only if the
1813 * operation was done synchronously. Both are used to avoid
1814 * doing extraneous context switches; the latter is mostly
1815 * used with the software crypto driver.
1816 */
1817 if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1818 ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1819 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1820 (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1821 /*
1822 * Do the callback directly. This is ok when the
1823 * callback routine does very little (e.g. the
1824 * /dev/crypto callback method just does a wakeup).
1825 */
1826 crp->crp_callback(crp);
1827 } else {
1828 struct crypto_ret_worker *ret_worker;
1829 bool wake;
1830
1831 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1832 wake = false;
1833
1834 /*
1835 * Normal case; queue the callback for the thread.
1836 */
1837 CRYPTO_RETW_LOCK(ret_worker);
1838 if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1839 struct cryptop *tmp;
1840
1841 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1842 cryptop_q, crp_next) {
1843 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1844 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1845 tmp, crp, crp_next);
1846 break;
1847 }
1848 }
1849 if (tmp == NULL) {
1850 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1851 crp, crp_next);
1852 }
1853
1854 if (crp->crp_seq == ret_worker->reorder_cur_seq)
1855 wake = true;
1856 }
1857 else {
1858 if (CRYPTO_RETW_EMPTY(ret_worker))
1859 wake = true;
1860
1861 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1862 }
1863
1864 if (wake)
1865 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
1866 CRYPTO_RETW_UNLOCK(ret_worker);
1867 }
1868 }
1869
1870 /*
1871 * Invoke the callback on behalf of the driver.
1872 */
1873 void
crypto_kdone(struct cryptkop * krp)1874 crypto_kdone(struct cryptkop *krp)
1875 {
1876 struct crypto_ret_worker *ret_worker;
1877 struct cryptocap *cap;
1878
1879 if (krp->krp_status != 0)
1880 CRYPTOSTAT_INC(cs_kerrs);
1881 cap = krp->krp_cap;
1882 if (cap != NULL) {
1883 CRYPTO_DRIVER_LOCK();
1884 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1885 cap->cc_koperations--;
1886 if (cap->cc_koperations == 0 &&
1887 cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1888 wakeup(cap);
1889 CRYPTO_DRIVER_UNLOCK();
1890 krp->krp_cap = NULL;
1891 cap_rele(cap);
1892 }
1893
1894 ret_worker = CRYPTO_RETW(0);
1895
1896 CRYPTO_RETW_LOCK(ret_worker);
1897 if (CRYPTO_RETW_EMPTY(ret_worker))
1898 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */
1899 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1900 CRYPTO_RETW_UNLOCK(ret_worker);
1901 }
1902
1903 int
crypto_getfeat(int * featp)1904 crypto_getfeat(int *featp)
1905 {
1906 int hid, kalg, feat = 0;
1907
1908 CRYPTO_DRIVER_LOCK();
1909 for (hid = 0; hid < crypto_drivers_size; hid++) {
1910 const struct cryptocap *cap = crypto_drivers[hid];
1911
1912 if (cap == NULL ||
1913 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1914 !crypto_devallowsoft)) {
1915 continue;
1916 }
1917 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1918 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1919 feat |= 1 << kalg;
1920 }
1921 CRYPTO_DRIVER_UNLOCK();
1922 *featp = feat;
1923 return (0);
1924 }
1925
1926 /*
1927 * Terminate a thread at module unload. The process that
1928 * initiated this is waiting for us to signal that we're gone;
1929 * wake it up and exit. We use the driver table lock to insure
1930 * we don't do the wakeup before they're waiting. There is no
1931 * race here because the waiter sleeps on the proc lock for the
1932 * thread so it gets notified at the right time because of an
1933 * extra wakeup that's done in exit1().
1934 */
1935 static void
crypto_finis(void * chan)1936 crypto_finis(void *chan)
1937 {
1938 CRYPTO_DRIVER_LOCK();
1939 wakeup_one(chan);
1940 CRYPTO_DRIVER_UNLOCK();
1941 kproc_exit(0);
1942 }
1943
1944 /*
1945 * Crypto thread, dispatches crypto requests.
1946 */
1947 static void
crypto_proc(void)1948 crypto_proc(void)
1949 {
1950 struct cryptop *crp, *submit;
1951 struct cryptkop *krp;
1952 struct cryptocap *cap;
1953 int result, hint;
1954
1955 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1956 fpu_kern_thread(FPU_KERN_NORMAL);
1957 #endif
1958
1959 CRYPTO_Q_LOCK();
1960 for (;;) {
1961 /*
1962 * Find the first element in the queue that can be
1963 * processed and look-ahead to see if multiple ops
1964 * are ready for the same driver.
1965 */
1966 submit = NULL;
1967 hint = 0;
1968 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1969 cap = crp->crp_session->cap;
1970 /*
1971 * Driver cannot disappeared when there is an active
1972 * session.
1973 */
1974 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1975 __func__, __LINE__));
1976 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1977 /* Op needs to be migrated, process it. */
1978 if (submit == NULL)
1979 submit = crp;
1980 break;
1981 }
1982 if (!cap->cc_qblocked) {
1983 if (submit != NULL) {
1984 /*
1985 * We stop on finding another op,
1986 * regardless whether its for the same
1987 * driver or not. We could keep
1988 * searching the queue but it might be
1989 * better to just use a per-driver
1990 * queue instead.
1991 */
1992 if (submit->crp_session->cap == cap)
1993 hint = CRYPTO_HINT_MORE;
1994 break;
1995 } else {
1996 submit = crp;
1997 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1998 break;
1999 /* keep scanning for more are q'd */
2000 }
2001 }
2002 }
2003 if (submit != NULL) {
2004 TAILQ_REMOVE(&crp_q, submit, crp_next);
2005 cap = submit->crp_session->cap;
2006 KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2007 __func__, __LINE__));
2008 CRYPTO_Q_UNLOCK();
2009 result = crypto_invoke(cap, submit, hint);
2010 CRYPTO_Q_LOCK();
2011 if (result == ERESTART) {
2012 /*
2013 * The driver ran out of resources, mark the
2014 * driver ``blocked'' for cryptop's and put
2015 * the request back in the queue. It would
2016 * best to put the request back where we got
2017 * it but that's hard so for now we put it
2018 * at the front. This should be ok; putting
2019 * it at the end does not work.
2020 */
2021 cap->cc_qblocked = 1;
2022 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
2023 CRYPTOSTAT_INC(cs_blocks);
2024 }
2025 }
2026
2027 /* As above, but for key ops */
2028 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2029 cap = krp->krp_cap;
2030 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2031 /*
2032 * Operation needs to be migrated,
2033 * clear krp_cap so a new driver is
2034 * selected.
2035 */
2036 krp->krp_cap = NULL;
2037 cap_rele(cap);
2038 break;
2039 }
2040 if (!cap->cc_kqblocked)
2041 break;
2042 }
2043 if (krp != NULL) {
2044 TAILQ_REMOVE(&crp_kq, krp, krp_next);
2045 CRYPTO_Q_UNLOCK();
2046 result = crypto_kinvoke(krp);
2047 CRYPTO_Q_LOCK();
2048 if (result == ERESTART) {
2049 /*
2050 * The driver ran out of resources, mark the
2051 * driver ``blocked'' for cryptkop's and put
2052 * the request back in the queue. It would
2053 * best to put the request back where we got
2054 * it but that's hard so for now we put it
2055 * at the front. This should be ok; putting
2056 * it at the end does not work.
2057 */
2058 krp->krp_cap->cc_kqblocked = 1;
2059 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2060 CRYPTOSTAT_INC(cs_kblocks);
2061 }
2062 }
2063
2064 if (submit == NULL && krp == NULL) {
2065 /*
2066 * Nothing more to be processed. Sleep until we're
2067 * woken because there are more ops to process.
2068 * This happens either by submission or by a driver
2069 * becoming unblocked and notifying us through
2070 * crypto_unblock. Note that when we wakeup we
2071 * start processing each queue again from the
2072 * front. It's not clear that it's important to
2073 * preserve this ordering since ops may finish
2074 * out of order if dispatched to different devices
2075 * and some become blocked while others do not.
2076 */
2077 crp_sleep = 1;
2078 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2079 crp_sleep = 0;
2080 if (cryptoproc == NULL)
2081 break;
2082 CRYPTOSTAT_INC(cs_intrs);
2083 }
2084 }
2085 CRYPTO_Q_UNLOCK();
2086
2087 crypto_finis(&crp_q);
2088 }
2089
2090 /*
2091 * Crypto returns thread, does callbacks for processed crypto requests.
2092 * Callbacks are done here, rather than in the crypto drivers, because
2093 * callbacks typically are expensive and would slow interrupt handling.
2094 */
2095 static void
crypto_ret_proc(struct crypto_ret_worker * ret_worker)2096 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2097 {
2098 struct cryptop *crpt;
2099 struct cryptkop *krpt;
2100
2101 CRYPTO_RETW_LOCK(ret_worker);
2102 for (;;) {
2103 /* Harvest return q's for completed ops */
2104 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2105 if (crpt != NULL) {
2106 if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2107 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2108 ret_worker->reorder_cur_seq++;
2109 } else {
2110 crpt = NULL;
2111 }
2112 }
2113
2114 if (crpt == NULL) {
2115 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2116 if (crpt != NULL)
2117 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2118 }
2119
2120 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2121 if (krpt != NULL)
2122 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2123
2124 if (crpt != NULL || krpt != NULL) {
2125 CRYPTO_RETW_UNLOCK(ret_worker);
2126 /*
2127 * Run callbacks unlocked.
2128 */
2129 if (crpt != NULL)
2130 crpt->crp_callback(crpt);
2131 if (krpt != NULL)
2132 krpt->krp_callback(krpt);
2133 CRYPTO_RETW_LOCK(ret_worker);
2134 } else {
2135 /*
2136 * Nothing more to be processed. Sleep until we're
2137 * woken because there are more returns to process.
2138 */
2139 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2140 "crypto_ret_wait", 0);
2141 if (ret_worker->cryptoretproc == NULL)
2142 break;
2143 CRYPTOSTAT_INC(cs_rets);
2144 }
2145 }
2146 CRYPTO_RETW_UNLOCK(ret_worker);
2147
2148 crypto_finis(&ret_worker->crp_ret_q);
2149 }
2150
2151 #ifdef DDB
2152 static void
db_show_drivers(void)2153 db_show_drivers(void)
2154 {
2155 int hid;
2156
2157 db_printf("%12s %4s %4s %8s %2s %2s\n"
2158 , "Device"
2159 , "Ses"
2160 , "Kops"
2161 , "Flags"
2162 , "QB"
2163 , "KB"
2164 );
2165 for (hid = 0; hid < crypto_drivers_size; hid++) {
2166 const struct cryptocap *cap = crypto_drivers[hid];
2167 if (cap == NULL)
2168 continue;
2169 db_printf("%-12s %4u %4u %08x %2u %2u\n"
2170 , device_get_nameunit(cap->cc_dev)
2171 , cap->cc_sessions
2172 , cap->cc_koperations
2173 , cap->cc_flags
2174 , cap->cc_qblocked
2175 , cap->cc_kqblocked
2176 );
2177 }
2178 }
2179
DB_SHOW_COMMAND(crypto,db_show_crypto)2180 DB_SHOW_COMMAND(crypto, db_show_crypto)
2181 {
2182 struct cryptop *crp;
2183 struct crypto_ret_worker *ret_worker;
2184
2185 db_show_drivers();
2186 db_printf("\n");
2187
2188 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2189 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2190 "Device", "Callback");
2191 TAILQ_FOREACH(crp, &crp_q, crp_next) {
2192 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
2193 , crp->crp_session->cap->cc_hid
2194 , (int) crypto_ses2caps(crp->crp_session)
2195 , crp->crp_olen
2196 , crp->crp_etype
2197 , crp->crp_flags
2198 , device_get_nameunit(crp->crp_session->cap->cc_dev)
2199 , crp->crp_callback
2200 );
2201 }
2202 FOREACH_CRYPTO_RETW(ret_worker) {
2203 db_printf("\n%8s %4s %4s %4s %8s\n",
2204 "ret_worker", "HID", "Etype", "Flags", "Callback");
2205 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2206 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2207 db_printf("%8td %4u %4u %04x %8p\n"
2208 , CRYPTO_RETW_ID(ret_worker)
2209 , crp->crp_session->cap->cc_hid
2210 , crp->crp_etype
2211 , crp->crp_flags
2212 , crp->crp_callback
2213 );
2214 }
2215 }
2216 }
2217 }
2218
DB_SHOW_COMMAND(kcrypto,db_show_kcrypto)2219 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2220 {
2221 struct cryptkop *krp;
2222 struct crypto_ret_worker *ret_worker;
2223
2224 db_show_drivers();
2225 db_printf("\n");
2226
2227 db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2228 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2229 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2230 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2231 , krp->krp_op
2232 , krp->krp_status
2233 , krp->krp_iparams, krp->krp_oparams
2234 , krp->krp_crid, krp->krp_hid
2235 , krp->krp_callback
2236 );
2237 }
2238
2239 ret_worker = CRYPTO_RETW(0);
2240 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2241 db_printf("%4s %5s %8s %4s %8s\n",
2242 "Op", "Status", "CRID", "HID", "Callback");
2243 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2244 db_printf("%4u %5u %08x %4u %8p\n"
2245 , krp->krp_op
2246 , krp->krp_status
2247 , krp->krp_crid, krp->krp_hid
2248 , krp->krp_callback
2249 );
2250 }
2251 }
2252 }
2253 #endif
2254
2255 int crypto_modevent(module_t mod, int type, void *unused);
2256
2257 /*
2258 * Initialization code, both for static and dynamic loading.
2259 * Note this is not invoked with the usual MODULE_DECLARE
2260 * mechanism but instead is listed as a dependency by the
2261 * cryptosoft driver. This guarantees proper ordering of
2262 * calls on module load/unload.
2263 */
2264 int
crypto_modevent(module_t mod,int type,void * unused)2265 crypto_modevent(module_t mod, int type, void *unused)
2266 {
2267 int error = EINVAL;
2268
2269 switch (type) {
2270 case MOD_LOAD:
2271 error = crypto_init();
2272 if (error == 0 && bootverbose)
2273 printf("crypto: <crypto core>\n");
2274 break;
2275 case MOD_UNLOAD:
2276 /*XXX disallow if active sessions */
2277 error = 0;
2278 crypto_destroy();
2279 return 0;
2280 }
2281 return error;
2282 }
2283 MODULE_VERSION(crypto, 1);
2284 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2285