1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2020 Intel Corporation
3  */
4 
5 /* 82562G 10/100 Network Connection
6  * 82562G-2 10/100 Network Connection
7  * 82562GT 10/100 Network Connection
8  * 82562GT-2 10/100 Network Connection
9  * 82562V 10/100 Network Connection
10  * 82562V-2 10/100 Network Connection
11  * 82566DC-2 Gigabit Network Connection
12  * 82566DC Gigabit Network Connection
13  * 82566DM-2 Gigabit Network Connection
14  * 82566DM Gigabit Network Connection
15  * 82566MC Gigabit Network Connection
16  * 82566MM Gigabit Network Connection
17  * 82567LM Gigabit Network Connection
18  * 82567LF Gigabit Network Connection
19  * 82567V Gigabit Network Connection
20  * 82567LM-2 Gigabit Network Connection
21  * 82567LF-2 Gigabit Network Connection
22  * 82567V-2 Gigabit Network Connection
23  * 82567LF-3 Gigabit Network Connection
24  * 82567LM-3 Gigabit Network Connection
25  * 82567LM-4 Gigabit Network Connection
26  * 82577LM Gigabit Network Connection
27  * 82577LC Gigabit Network Connection
28  * 82578DM Gigabit Network Connection
29  * 82578DC Gigabit Network Connection
30  * 82579LM Gigabit Network Connection
31  * 82579V Gigabit Network Connection
32  * Ethernet Connection I217-LM
33  * Ethernet Connection I217-V
34  * Ethernet Connection I218-V
35  * Ethernet Connection I218-LM
36  * Ethernet Connection (2) I218-LM
37  * Ethernet Connection (2) I218-V
38  * Ethernet Connection (3) I218-LM
39  * Ethernet Connection (3) I218-V
40  */
41 
42 #include "e1000_api.h"
43 
44 STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
45 STATIC s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
46 STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
47 STATIC s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
48 STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
49 STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
50 STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
51 STATIC int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
52 STATIC int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
53 STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
54 STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
55 					      u8 *mc_addr_list,
56 					      u32 mc_addr_count);
57 STATIC s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
58 STATIC s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
59 STATIC s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
60 STATIC s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
61 					    bool active);
62 STATIC s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
63 					    bool active);
64 STATIC s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
65 				   u16 words, u16 *data);
66 STATIC s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
67 			       u16 *data);
68 STATIC s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
69 				    u16 words, u16 *data);
70 STATIC s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
71 STATIC s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
72 STATIC s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
73 STATIC s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
74 					    u16 *data);
75 STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
76 STATIC s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
77 STATIC s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
78 STATIC s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
79 STATIC s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
80 STATIC s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
81 STATIC s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
82 STATIC s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
83 					   u16 *speed, u16 *duplex);
84 STATIC s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
85 STATIC s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
86 STATIC s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
87 STATIC s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
88 STATIC s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
89 STATIC s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
90 STATIC s32  e1000_led_on_pchlan(struct e1000_hw *hw);
91 STATIC s32  e1000_led_off_pchlan(struct e1000_hw *hw);
92 STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
93 STATIC s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
94 STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
95 STATIC s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
96 STATIC s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
97 					  u32 offset, u8 *data);
98 STATIC s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
99 					  u8 size, u16 *data);
100 STATIC s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
101 					    u32 *data);
102 STATIC s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
103 					   u32 offset, u32 *data);
104 STATIC s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
105 					     u32 offset, u32 data);
106 STATIC s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
107 						  u32 offset, u32 dword);
108 STATIC s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
109 					  u32 offset, u16 *data);
110 STATIC s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
111 						 u32 offset, u8 byte);
112 STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
113 STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
114 STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
115 STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
116 STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
117 STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
118 
119 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
120 /* Offset 04h HSFSTS */
121 union ich8_hws_flash_status {
122 	struct ich8_hsfsts {
123 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
124 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
125 		u16 dael:1; /* bit 2 Direct Access error Log */
126 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
127 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
128 		u16 reserved1:2; /* bit 13:6 Reserved */
129 		u16 reserved2:6; /* bit 13:6 Reserved */
130 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
131 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
132 	} hsf_status;
133 	u16 regval;
134 };
135 
136 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
137 /* Offset 06h FLCTL */
138 union ich8_hws_flash_ctrl {
139 	struct ich8_hsflctl {
140 		u16 flcgo:1;   /* 0 Flash Cycle Go */
141 		u16 flcycle:2;   /* 2:1 Flash Cycle */
142 		u16 reserved:5;   /* 7:3 Reserved  */
143 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
144 		u16 flockdn:6;   /* 15:10 Reserved */
145 	} hsf_ctrl;
146 	u16 regval;
147 };
148 
149 /* ICH Flash Region Access Permissions */
150 union ich8_hws_flash_regacc {
151 	struct ich8_flracc {
152 		u32 grra:8; /* 0:7 GbE region Read Access */
153 		u32 grwa:8; /* 8:15 GbE region Write Access */
154 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
155 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
156 	} hsf_flregacc;
157 	u16 regval;
158 };
159 
160 /**
161  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
162  *  @hw: pointer to the HW structure
163  *
164  *  Test access to the PHY registers by reading the PHY ID registers.  If
165  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
166  *  otherwise assume the read PHY ID is correct if it is valid.
167  *
168  *  Assumes the sw/fw/hw semaphore is already acquired.
169  **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)170 STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
171 {
172 	u16 phy_reg = 0;
173 	u32 phy_id = 0;
174 	s32 ret_val = 0;
175 	u16 retry_count;
176 	u32 mac_reg = 0;
177 
178 	for (retry_count = 0; retry_count < 2; retry_count++) {
179 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
180 		if (ret_val || (phy_reg == 0xFFFF))
181 			continue;
182 		phy_id = (u32)(phy_reg << 16);
183 
184 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
185 		if (ret_val || (phy_reg == 0xFFFF)) {
186 			phy_id = 0;
187 			continue;
188 		}
189 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
190 		break;
191 	}
192 
193 	if (hw->phy.id) {
194 		if  (hw->phy.id == phy_id)
195 			goto out;
196 	} else if (phy_id) {
197 		hw->phy.id = phy_id;
198 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
199 		goto out;
200 	}
201 
202 	/* In case the PHY needs to be in mdio slow mode,
203 	 * set slow mode and try to get the PHY id again.
204 	 */
205 	if (hw->mac.type < e1000_pch_lpt) {
206 		hw->phy.ops.release(hw);
207 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
208 		if (!ret_val)
209 			ret_val = e1000_get_phy_id(hw);
210 		hw->phy.ops.acquire(hw);
211 	}
212 
213 	if (ret_val)
214 		return false;
215 out:
216 	if (hw->mac.type >= e1000_pch_lpt) {
217 		/* Only unforce SMBus if ME is not active */
218 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
219 		    E1000_ICH_FWSM_FW_VALID)) {
220 			/* Unforce SMBus mode in PHY */
221 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
222 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
223 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
224 
225 			/* Unforce SMBus mode in MAC */
226 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
227 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
228 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
229 		}
230 	}
231 
232 	return true;
233 }
234 
235 /**
236  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
237  *  @hw: pointer to the HW structure
238  *
239  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
240  *  used to reset the PHY to a quiescent state when necessary.
241  **/
e1000_toggle_lanphypc_pch_lpt(struct e1000_hw * hw)242 STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
243 {
244 	u32 mac_reg;
245 
246 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
247 
248 	/* Set Phy Config Counter to 50msec */
249 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
250 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
251 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
252 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
253 
254 	/* Toggle LANPHYPC Value bit */
255 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
256 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
257 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
258 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
259 	E1000_WRITE_FLUSH(hw);
260 	msec_delay(1);
261 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
262 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
263 	E1000_WRITE_FLUSH(hw);
264 
265 	if (hw->mac.type < e1000_pch_lpt) {
266 		msec_delay(50);
267 	} else {
268 		u16 count = 20;
269 
270 		do {
271 			msec_delay(5);
272 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
273 			   E1000_CTRL_EXT_LPCD) && count--);
274 
275 		msec_delay(30);
276 	}
277 }
278 
279 /**
280  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
281  *  @hw: pointer to the HW structure
282  *
283  *  Workarounds/flow necessary for PHY initialization during driver load
284  *  and resume paths.
285  **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)286 STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
287 {
288 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
289 	s32 ret_val;
290 
291 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
292 
293 	/* Gate automatic PHY configuration by hardware on managed and
294 	 * non-managed 82579 and newer adapters.
295 	 */
296 	e1000_gate_hw_phy_config_ich8lan(hw, true);
297 
298 	/* It is not possible to be certain of the current state of ULP
299 	 * so forcibly disable it.
300 	 */
301 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
302 
303 	ret_val = hw->phy.ops.acquire(hw);
304 	if (ret_val) {
305 		DEBUGOUT("Failed to initialize PHY flow\n");
306 		goto out;
307 	}
308 
309 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
310 	 * inaccessible and resetting the PHY is not blocked, toggle the
311 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
312 	 */
313 	switch (hw->mac.type) {
314 	case e1000_pch_lpt:
315 	case e1000_pch_spt:
316 	case e1000_pch_cnp:
317 	case e1000_pch_adp:
318 		if (e1000_phy_is_accessible_pchlan(hw))
319 			break;
320 
321 		/* Before toggling LANPHYPC, see if PHY is accessible by
322 		 * forcing MAC to SMBus mode first.
323 		 */
324 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
325 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
326 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
327 
328 		/* Wait 50 milliseconds for MAC to finish any retries
329 		 * that it might be trying to perform from previous
330 		 * attempts to acknowledge any phy read requests.
331 		 */
332 		 msec_delay(50);
333 
334 		/* fall-through */
335 	case e1000_pch2lan:
336 		if (e1000_phy_is_accessible_pchlan(hw))
337 			break;
338 
339 		/* fall-through */
340 	case e1000_pchlan:
341 		if ((hw->mac.type == e1000_pchlan) &&
342 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
343 			break;
344 
345 		if (hw->phy.ops.check_reset_block(hw)) {
346 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
347 			ret_val = -E1000_ERR_PHY;
348 			break;
349 		}
350 
351 		/* Toggle LANPHYPC Value bit */
352 		e1000_toggle_lanphypc_pch_lpt(hw);
353 		if (hw->mac.type >= e1000_pch_lpt) {
354 			if (e1000_phy_is_accessible_pchlan(hw))
355 				break;
356 
357 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
358 			 * so ensure that the MAC is also out of SMBus mode
359 			 */
360 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
361 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
362 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
363 
364 			if (e1000_phy_is_accessible_pchlan(hw))
365 				break;
366 
367 			ret_val = -E1000_ERR_PHY;
368 		}
369 		break;
370 	default:
371 		break;
372 	}
373 
374 	hw->phy.ops.release(hw);
375 	if (!ret_val) {
376 
377 		/* Check to see if able to reset PHY.  Print error if not */
378 		if (hw->phy.ops.check_reset_block(hw)) {
379 			ERROR_REPORT("Reset blocked by ME\n");
380 			goto out;
381 		}
382 
383 		/* Reset the PHY before any access to it.  Doing so, ensures
384 		 * that the PHY is in a known good state before we read/write
385 		 * PHY registers.  The generic reset is sufficient here,
386 		 * because we haven't determined the PHY type yet.
387 		 */
388 		ret_val = e1000_phy_hw_reset_generic(hw);
389 		if (ret_val)
390 			goto out;
391 
392 		/* On a successful reset, possibly need to wait for the PHY
393 		 * to quiesce to an accessible state before returning control
394 		 * to the calling function.  If the PHY does not quiesce, then
395 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
396 		 *  the PHY is in.
397 		 */
398 		ret_val = hw->phy.ops.check_reset_block(hw);
399 		if (ret_val)
400 			ERROR_REPORT("ME blocked access to PHY after reset\n");
401 	}
402 
403 out:
404 	/* Ungate automatic PHY configuration on non-managed 82579 */
405 	if ((hw->mac.type == e1000_pch2lan) &&
406 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
407 		msec_delay(10);
408 		e1000_gate_hw_phy_config_ich8lan(hw, false);
409 	}
410 
411 	return ret_val;
412 }
413 
414 /**
415  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
416  *  @hw: pointer to the HW structure
417  *
418  *  Initialize family-specific PHY parameters and function pointers.
419  **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)420 STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
421 {
422 	struct e1000_phy_info *phy = &hw->phy;
423 	s32 ret_val;
424 
425 	DEBUGFUNC("e1000_init_phy_params_pchlan");
426 
427 	phy->addr		= 1;
428 	phy->reset_delay_us	= 100;
429 
430 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
431 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
432 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
433 	phy->ops.set_page	= e1000_set_page_igp;
434 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
435 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
436 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
437 	phy->ops.release	= e1000_release_swflag_ich8lan;
438 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
439 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
440 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
441 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
442 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
443 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
444 	phy->ops.power_up	= e1000_power_up_phy_copper;
445 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
446 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
447 
448 	phy->id = e1000_phy_unknown;
449 
450 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
451 	if (ret_val)
452 		return ret_val;
453 
454 	if (phy->id == e1000_phy_unknown)
455 		switch (hw->mac.type) {
456 		default:
457 			ret_val = e1000_get_phy_id(hw);
458 			if (ret_val)
459 				return ret_val;
460 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
461 				break;
462 			/* fall-through */
463 		case e1000_pch2lan:
464 		case e1000_pch_lpt:
465 		case e1000_pch_spt:
466 		case e1000_pch_cnp:
467 		case e1000_pch_adp:
468 			/* In case the PHY needs to be in mdio slow mode,
469 			 * set slow mode and try to get the PHY id again.
470 			 */
471 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
472 			if (ret_val)
473 				return ret_val;
474 			ret_val = e1000_get_phy_id(hw);
475 			if (ret_val)
476 				return ret_val;
477 			break;
478 		}
479 	phy->type = e1000_get_phy_type_from_id(phy->id);
480 
481 	switch (phy->type) {
482 	case e1000_phy_82577:
483 	case e1000_phy_82579:
484 	case e1000_phy_i217:
485 		phy->ops.check_polarity = e1000_check_polarity_82577;
486 		phy->ops.force_speed_duplex =
487 			e1000_phy_force_speed_duplex_82577;
488 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
489 		phy->ops.get_info = e1000_get_phy_info_82577;
490 		phy->ops.commit = e1000_phy_sw_reset_generic;
491 		break;
492 	case e1000_phy_82578:
493 		phy->ops.check_polarity = e1000_check_polarity_m88;
494 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
495 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
496 		phy->ops.get_info = e1000_get_phy_info_m88;
497 		break;
498 	default:
499 		ret_val = -E1000_ERR_PHY;
500 		break;
501 	}
502 
503 	return ret_val;
504 }
505 
506 /**
507  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
508  *  @hw: pointer to the HW structure
509  *
510  *  Initialize family-specific PHY parameters and function pointers.
511  **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)512 STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
513 {
514 	struct e1000_phy_info *phy = &hw->phy;
515 	s32 ret_val;
516 	u16 i = 0;
517 
518 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
519 
520 	phy->addr		= 1;
521 	phy->reset_delay_us	= 100;
522 
523 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
524 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
525 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
526 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
527 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
528 	phy->ops.release	= e1000_release_swflag_ich8lan;
529 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
530 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
531 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
532 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
533 	phy->ops.power_up	= e1000_power_up_phy_copper;
534 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
535 
536 	/* We may need to do this twice - once for IGP and if that fails,
537 	 * we'll set BM func pointers and try again
538 	 */
539 	ret_val = e1000_determine_phy_address(hw);
540 	if (ret_val) {
541 		phy->ops.write_reg = e1000_write_phy_reg_bm;
542 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
543 		ret_val = e1000_determine_phy_address(hw);
544 		if (ret_val) {
545 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
546 			return ret_val;
547 		}
548 	}
549 
550 	phy->id = 0;
551 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
552 	       (i++ < 100)) {
553 		msec_delay(1);
554 		ret_val = e1000_get_phy_id(hw);
555 		if (ret_val)
556 			return ret_val;
557 	}
558 
559 	/* Verify phy id */
560 	switch (phy->id) {
561 	case IGP03E1000_E_PHY_ID:
562 		phy->type = e1000_phy_igp_3;
563 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
564 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
565 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
566 		phy->ops.get_info = e1000_get_phy_info_igp;
567 		phy->ops.check_polarity = e1000_check_polarity_igp;
568 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
569 		break;
570 	case IFE_E_PHY_ID:
571 	case IFE_PLUS_E_PHY_ID:
572 	case IFE_C_E_PHY_ID:
573 		phy->type = e1000_phy_ife;
574 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
575 		phy->ops.get_info = e1000_get_phy_info_ife;
576 		phy->ops.check_polarity = e1000_check_polarity_ife;
577 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
578 		break;
579 	case BME1000_E_PHY_ID:
580 		phy->type = e1000_phy_bm;
581 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
582 		phy->ops.read_reg = e1000_read_phy_reg_bm;
583 		phy->ops.write_reg = e1000_write_phy_reg_bm;
584 		phy->ops.commit = e1000_phy_sw_reset_generic;
585 		phy->ops.get_info = e1000_get_phy_info_m88;
586 		phy->ops.check_polarity = e1000_check_polarity_m88;
587 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
588 		break;
589 	default:
590 		return -E1000_ERR_PHY;
591 		break;
592 	}
593 
594 	return E1000_SUCCESS;
595 }
596 
597 /**
598  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
599  *  @hw: pointer to the HW structure
600  *
601  *  Initialize family-specific NVM parameters and function
602  *  pointers.
603  **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)604 STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
605 {
606 	struct e1000_nvm_info *nvm = &hw->nvm;
607 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
608 	u32 gfpreg, sector_base_addr, sector_end_addr;
609 	u16 i;
610 	u32 nvm_size;
611 
612 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
613 
614 	nvm->type = e1000_nvm_flash_sw;
615 
616 	if (hw->mac.type >= e1000_pch_spt) {
617 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
618 		 * STRAP register. This is because in SPT the GbE Flash region
619 		 * is no longer accessed through the flash registers. Instead,
620 		 * the mechanism has changed, and the Flash region access
621 		 * registers are now implemented in GbE memory space.
622 		 */
623 		nvm->flash_base_addr = 0;
624 		nvm_size =
625 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
626 		    * NVM_SIZE_MULTIPLIER;
627 		nvm->flash_bank_size = nvm_size / 2;
628 		/* Adjust to word count */
629 		nvm->flash_bank_size /= sizeof(u16);
630 		/* Set the base address for flash register access */
631 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
632 	} else {
633 		/* Can't read flash registers if register set isn't mapped. */
634 		if (!hw->flash_address) {
635 			DEBUGOUT("ERROR: Flash registers not mapped\n");
636 			return -E1000_ERR_CONFIG;
637 		}
638 
639 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
640 
641 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
642 		 * Add 1 to sector_end_addr since this sector is included in
643 		 * the overall size.
644 		 */
645 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
646 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
647 
648 		/* flash_base_addr is byte-aligned */
649 		nvm->flash_base_addr = sector_base_addr
650 				       << FLASH_SECTOR_ADDR_SHIFT;
651 
652 		/* find total size of the NVM, then cut in half since the total
653 		 * size represents two separate NVM banks.
654 		 */
655 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
656 					<< FLASH_SECTOR_ADDR_SHIFT);
657 		nvm->flash_bank_size /= 2;
658 		/* Adjust to word count */
659 		nvm->flash_bank_size /= sizeof(u16);
660 	}
661 
662 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
663 
664 	/* Clear shadow ram */
665 	for (i = 0; i < nvm->word_size; i++) {
666 		dev_spec->shadow_ram[i].modified = false;
667 		dev_spec->shadow_ram[i].value    = 0xFFFF;
668 	}
669 
670 	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
671 	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
672 
673 	/* Function Pointers */
674 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
675 	nvm->ops.release	= e1000_release_nvm_ich8lan;
676 	if (hw->mac.type >= e1000_pch_spt) {
677 		nvm->ops.read	= e1000_read_nvm_spt;
678 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
679 	} else {
680 		nvm->ops.read	= e1000_read_nvm_ich8lan;
681 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
682 	}
683 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
684 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
685 	nvm->ops.write		= e1000_write_nvm_ich8lan;
686 
687 	return E1000_SUCCESS;
688 }
689 
690 /**
691  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
692  *  @hw: pointer to the HW structure
693  *
694  *  Initialize family-specific MAC parameters and function
695  *  pointers.
696  **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)697 STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
698 {
699 	struct e1000_mac_info *mac = &hw->mac;
700 	u16 pci_cfg;
701 
702 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
703 
704 	/* Set media type function pointer */
705 	hw->phy.media_type = e1000_media_type_copper;
706 
707 	/* Set mta register count */
708 	mac->mta_reg_count = 32;
709 	/* Set rar entry count */
710 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
711 	if (mac->type == e1000_ich8lan)
712 		mac->rar_entry_count--;
713 	/* Set if part includes ASF firmware */
714 	mac->asf_firmware_present = true;
715 	/* FWSM register */
716 	mac->has_fwsm = true;
717 	/* ARC subsystem not supported */
718 	mac->arc_subsystem_valid = false;
719 	/* Adaptive IFS supported */
720 	mac->adaptive_ifs = true;
721 
722 	/* Function pointers */
723 
724 	/* bus type/speed/width */
725 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
726 	/* function id */
727 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
728 	/* reset */
729 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
730 	/* hw initialization */
731 	mac->ops.init_hw = e1000_init_hw_ich8lan;
732 	/* link setup */
733 	mac->ops.setup_link = e1000_setup_link_ich8lan;
734 	/* physical interface setup */
735 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
736 	/* check for link */
737 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
738 	/* link info */
739 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
740 	/* multicast address update */
741 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
742 	/* clear hardware counters */
743 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
744 
745 	/* LED and other operations */
746 	switch (mac->type) {
747 	case e1000_ich8lan:
748 	case e1000_ich9lan:
749 	case e1000_ich10lan:
750 		/* check management mode */
751 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
752 		/* ID LED init */
753 		mac->ops.id_led_init = e1000_id_led_init_generic;
754 		/* blink LED */
755 		mac->ops.blink_led = e1000_blink_led_generic;
756 		/* setup LED */
757 		mac->ops.setup_led = e1000_setup_led_generic;
758 		/* cleanup LED */
759 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
760 		/* turn on/off LED */
761 		mac->ops.led_on = e1000_led_on_ich8lan;
762 		mac->ops.led_off = e1000_led_off_ich8lan;
763 		break;
764 	case e1000_pch2lan:
765 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
766 		mac->ops.rar_set = e1000_rar_set_pch2lan;
767 		/* fall-through */
768 	case e1000_pch_lpt:
769 	case e1000_pch_spt:
770 	case e1000_pch_cnp:
771 	case e1000_pch_adp:
772 		/* multicast address update for pch2 */
773 		mac->ops.update_mc_addr_list =
774 			e1000_update_mc_addr_list_pch2lan;
775 		/* fall-through */
776 	case e1000_pchlan:
777 		/* save PCH revision_id */
778 		e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
779 		/* SPT uses full byte for revision ID,
780 		 * as opposed to previous generations
781 		 */
782 		if (hw->mac.type >= e1000_pch_spt)
783 			hw->revision_id = (u8)(pci_cfg &= 0x00FF);
784 		else
785 			hw->revision_id = (u8)(pci_cfg &= 0x000F);
786 		/* check management mode */
787 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
788 		/* ID LED init */
789 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
790 		/* setup LED */
791 		mac->ops.setup_led = e1000_setup_led_pchlan;
792 		/* cleanup LED */
793 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
794 		/* turn on/off LED */
795 		mac->ops.led_on = e1000_led_on_pchlan;
796 		mac->ops.led_off = e1000_led_off_pchlan;
797 		break;
798 	default:
799 		break;
800 	}
801 
802 	if (mac->type >= e1000_pch_lpt) {
803 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
804 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
805 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
806 	}
807 
808 	/* Enable PCS Lock-loss workaround for ICH8 */
809 	if (mac->type == e1000_ich8lan)
810 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
811 
812 	return E1000_SUCCESS;
813 }
814 
815 /**
816  *  __e1000_access_emi_reg_locked - Read/write EMI register
817  *  @hw: pointer to the HW structure
818  *  @address: EMI address to program
819  *  @data: pointer to value to read/write from/to the EMI address
820  *  @read: boolean flag to indicate read or write
821  *
822  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
823  **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)824 STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
825 					 u16 *data, bool read)
826 {
827 	s32 ret_val;
828 
829 	DEBUGFUNC("__e1000_access_emi_reg_locked");
830 
831 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
832 	if (ret_val)
833 		return ret_val;
834 
835 	if (read)
836 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
837 						      data);
838 	else
839 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
840 						       *data);
841 
842 	return ret_val;
843 }
844 
845 /**
846  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
847  *  @hw: pointer to the HW structure
848  *  @addr: EMI address to program
849  *  @data: value to be read from the EMI address
850  *
851  *  Assumes the SW/FW/HW Semaphore is already acquired.
852  **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)853 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
854 {
855 	DEBUGFUNC("e1000_read_emi_reg_locked");
856 
857 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
858 }
859 
860 /**
861  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
862  *  @hw: pointer to the HW structure
863  *  @addr: EMI address to program
864  *  @data: value to be written to the EMI address
865  *
866  *  Assumes the SW/FW/HW Semaphore is already acquired.
867  **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)868 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
869 {
870 	DEBUGFUNC("e1000_read_emi_reg_locked");
871 
872 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
873 }
874 
875 /**
876  *  e1000_set_eee_pchlan - Enable/disable EEE support
877  *  @hw: pointer to the HW structure
878  *
879  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
880  *  the link and the EEE capabilities of the link partner.  The LPI Control
881  *  register bits will remain set only if/when link is up.
882  *
883  *  EEE LPI must not be asserted earlier than one second after link is up.
884  *  On 82579, EEE LPI should not be enabled until such time otherwise there
885  *  can be link issues with some switches.  Other devices can have EEE LPI
886  *  enabled immediately upon link up since they have a timer in hardware which
887  *  prevents LPI from being asserted too early.
888  **/
e1000_set_eee_pchlan(struct e1000_hw * hw)889 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
890 {
891 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
892 	s32 ret_val;
893 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
894 
895 	DEBUGFUNC("e1000_set_eee_pchlan");
896 
897 	switch (hw->phy.type) {
898 	case e1000_phy_82579:
899 		lpa = I82579_EEE_LP_ABILITY;
900 		pcs_status = I82579_EEE_PCS_STATUS;
901 		adv_addr = I82579_EEE_ADVERTISEMENT;
902 		break;
903 	case e1000_phy_i217:
904 		lpa = I217_EEE_LP_ABILITY;
905 		pcs_status = I217_EEE_PCS_STATUS;
906 		adv_addr = I217_EEE_ADVERTISEMENT;
907 		break;
908 	default:
909 		return E1000_SUCCESS;
910 	}
911 
912 	ret_val = hw->phy.ops.acquire(hw);
913 	if (ret_val)
914 		return ret_val;
915 
916 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
917 	if (ret_val)
918 		goto release;
919 
920 	/* Clear bits that enable EEE in various speeds */
921 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
922 
923 	/* Enable EEE if not disabled by user */
924 	if (!dev_spec->eee_disable) {
925 		/* Save off link partner's EEE ability */
926 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
927 						    &dev_spec->eee_lp_ability);
928 		if (ret_val)
929 			goto release;
930 
931 		/* Read EEE advertisement */
932 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
933 		if (ret_val)
934 			goto release;
935 
936 		/* Enable EEE only for speeds in which the link partner is
937 		 * EEE capable and for which we advertise EEE.
938 		 */
939 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
940 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
941 
942 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
943 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
944 			if (data & NWAY_LPAR_100TX_FD_CAPS)
945 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
946 			else
947 				/* EEE is not supported in 100Half, so ignore
948 				 * partner's EEE in 100 ability if full-duplex
949 				 * is not advertised.
950 				 */
951 				dev_spec->eee_lp_ability &=
952 				    ~I82579_EEE_100_SUPPORTED;
953 		}
954 	}
955 
956 	if (hw->phy.type == e1000_phy_82579) {
957 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
958 						    &data);
959 		if (ret_val)
960 			goto release;
961 
962 		data &= ~I82579_LPI_100_PLL_SHUT;
963 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
964 						     data);
965 	}
966 
967 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
968 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
969 	if (ret_val)
970 		goto release;
971 
972 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
973 release:
974 	hw->phy.ops.release(hw);
975 
976 	return ret_val;
977 }
978 
979 /**
980  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
981  *  @hw:   pointer to the HW structure
982  *  @link: link up bool flag
983  *
984  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
985  *  preventing further DMA write requests.  Workaround the issue by disabling
986  *  the de-assertion of the clock request when in 1Gpbs mode.
987  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
988  *  speeds in order to avoid Tx hangs.
989  **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)990 STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
991 {
992 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
993 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
994 	s32 ret_val = E1000_SUCCESS;
995 	u16 reg;
996 
997 	if (link && (status & E1000_STATUS_SPEED_1000)) {
998 		ret_val = hw->phy.ops.acquire(hw);
999 		if (ret_val)
1000 			return ret_val;
1001 
1002 		ret_val =
1003 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1004 					       &reg);
1005 		if (ret_val)
1006 			goto release;
1007 
1008 		ret_val =
1009 		    e1000_write_kmrn_reg_locked(hw,
1010 						E1000_KMRNCTRLSTA_K1_CONFIG,
1011 						reg &
1012 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1013 		if (ret_val)
1014 			goto release;
1015 
1016 		usec_delay(10);
1017 
1018 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1019 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1020 
1021 		ret_val =
1022 		    e1000_write_kmrn_reg_locked(hw,
1023 						E1000_KMRNCTRLSTA_K1_CONFIG,
1024 						reg);
1025 release:
1026 		hw->phy.ops.release(hw);
1027 	} else {
1028 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1029 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1030 
1031 		if ((hw->phy.revision > 5) || !link ||
1032 		    ((status & E1000_STATUS_SPEED_100) &&
1033 		     (status & E1000_STATUS_FD)))
1034 			goto update_fextnvm6;
1035 
1036 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1037 		if (ret_val)
1038 			return ret_val;
1039 
1040 		/* Clear link status transmit timeout */
1041 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1042 
1043 		if (status & E1000_STATUS_SPEED_100) {
1044 			/* Set inband Tx timeout to 5x10us for 100Half */
1045 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1046 
1047 			/* Do not extend the K1 entry latency for 100Half */
1048 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1049 		} else {
1050 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1051 			reg |= 50 <<
1052 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1053 
1054 			/* Extend the K1 entry latency for 10 Mbps */
1055 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1056 		}
1057 
1058 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1059 		if (ret_val)
1060 			return ret_val;
1061 
1062 update_fextnvm6:
1063 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1064 	}
1065 
1066 	return ret_val;
1067 }
1068 
1069 /**
1070  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1071  *  @hw: pointer to the HW structure
1072  *  @to_sx: boolean indicating a system power state transition to Sx
1073  *
1074  *  When link is down, configure ULP mode to significantly reduce the power
1075  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1076  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1077  *  system, configure the ULP mode by software.
1078  */
e1000_enable_ulp_lpt_lp(struct e1000_hw * hw,bool to_sx)1079 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1080 {
1081 	u32 mac_reg;
1082 	s32 ret_val = E1000_SUCCESS;
1083 	u16 phy_reg;
1084 	u16 oem_reg = 0;
1085 
1086 	if ((hw->mac.type < e1000_pch_lpt) ||
1087 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1088 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1089 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1090 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1091 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1092 		return 0;
1093 
1094 	if (!to_sx) {
1095 		int i = 0;
1096 		/* Poll up to 5 seconds for Cable Disconnected indication */
1097 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1098 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1099 			/* Bail if link is re-acquired */
1100 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1101 				return -E1000_ERR_PHY;
1102 			if (i++ == 100)
1103 				break;
1104 
1105 			msec_delay(50);
1106 		}
1107 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1108 			  (E1000_READ_REG(hw, E1000_FEXT) &
1109 			   E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1110 			  i * 50);
1111 		if (!(E1000_READ_REG(hw, E1000_FEXT) &
1112 		    E1000_FEXT_PHY_CABLE_DISCONNECTED))
1113 			return 0;
1114 	}
1115 
1116 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1117 		/* Request ME configure ULP mode in the PHY */
1118 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1119 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1120 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1121 
1122 		goto out;
1123 	}
1124 
1125 	ret_val = hw->phy.ops.acquire(hw);
1126 	if (ret_val)
1127 		goto out;
1128 
1129 	/* During S0 Idle keep the phy in PCI-E mode */
1130 	if (hw->dev_spec.ich8lan.smbus_disable)
1131 		goto skip_smbus;
1132 
1133 	/* Force SMBus mode in PHY */
1134 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1135 	if (ret_val)
1136 		goto release;
1137 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1138 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1139 
1140 	/* Force SMBus mode in MAC */
1141 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1142 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1143 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1144 
1145 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1146 	 * LPLU and disable Gig speed when entering ULP
1147 	 */
1148 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1149 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1150 						       &oem_reg);
1151 		if (ret_val)
1152 			goto release;
1153 
1154 		phy_reg = oem_reg;
1155 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1156 
1157 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1158 							phy_reg);
1159 
1160 		if (ret_val)
1161 			goto release;
1162 	}
1163 
1164 skip_smbus:
1165 	if (!to_sx) {
1166 		/* Change the 'Link Status Change' interrupt to trigger
1167 		 * on 'Cable Status Change'
1168 		 */
1169 		ret_val = e1000_read_kmrn_reg_locked(hw,
1170 						     E1000_KMRNCTRLSTA_OP_MODES,
1171 						     &phy_reg);
1172 		if (ret_val)
1173 			goto release;
1174 		phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
1175 		e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
1176 					    phy_reg);
1177 	}
1178 
1179 	/* Set Inband ULP Exit, Reset to SMBus mode and
1180 	 * Disable SMBus Release on PERST# in PHY
1181 	 */
1182 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1183 	if (ret_val)
1184 		goto release;
1185 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1186 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1187 	if (to_sx) {
1188 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1189 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1190 		else
1191 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1192 
1193 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1194 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1195 	} else {
1196 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1197 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1198 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1199 	}
1200 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1201 
1202 	/* Set Disable SMBus Release on PERST# in MAC */
1203 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1204 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1205 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1206 
1207 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1208 	phy_reg |= I218_ULP_CONFIG1_START;
1209 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1210 
1211 	if (!to_sx) {
1212 		/* Disable Tx so that the MAC doesn't send any (buffered)
1213 		 * packets to the PHY.
1214 		 */
1215 		mac_reg = E1000_READ_REG(hw, E1000_TCTL);
1216 		mac_reg &= ~E1000_TCTL_EN;
1217 		E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
1218 	}
1219 
1220 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1221 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1222 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1223 							oem_reg);
1224 		if (ret_val)
1225 			goto release;
1226 	}
1227 
1228 release:
1229 	hw->phy.ops.release(hw);
1230 out:
1231 	if (ret_val)
1232 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1233 	else
1234 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1235 
1236 	return ret_val;
1237 }
1238 
1239 /**
1240  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1241  *  @hw: pointer to the HW structure
1242  *  @force: boolean indicating whether or not to force disabling ULP
1243  *
1244  *  Un-configure ULP mode when link is up, the system is transitioned from
1245  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1246  *  system, poll for an indication from ME that ULP has been un-configured.
1247  *  If not on an ME enabled system, un-configure the ULP mode by software.
1248  *
1249  *  During nominal operation, this function is called when link is acquired
1250  *  to disable ULP mode (force=false); otherwise, for example when unloading
1251  *  the driver or during Sx->S0 transitions, this is called with force=true
1252  *  to forcibly disable ULP.
1253 
1254  *  When the cable is plugged in while the device is in D0, a Cable Status
1255  *  Change interrupt is generated which causes this function to be called
1256  *  to partially disable ULP mode and restart autonegotiation.  This function
1257  *  is then called again due to the resulting Link Status Change interrupt
1258  *  to finish cleaning up after the ULP flow.
1259  */
e1000_disable_ulp_lpt_lp(struct e1000_hw * hw,bool force)1260 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1261 {
1262 	s32 ret_val = E1000_SUCCESS;
1263 	u8 ulp_exit_timeout = 30;
1264 	u32 mac_reg;
1265 	u16 phy_reg;
1266 	int i = 0;
1267 
1268 	if ((hw->mac.type < e1000_pch_lpt) ||
1269 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1270 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1271 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1272 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1273 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1274 		return 0;
1275 
1276 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1277 		if (force) {
1278 			/* Request ME un-configure ULP mode in the PHY */
1279 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1280 			mac_reg &= ~E1000_H2ME_ULP;
1281 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1282 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1283 		}
1284 
1285 		if (hw->mac.type == e1000_pch_cnp)
1286 			ulp_exit_timeout = 100;
1287 
1288 		while (E1000_READ_REG(hw, E1000_FWSM) &
1289 		       E1000_FWSM_ULP_CFG_DONE) {
1290 			if (i++ == ulp_exit_timeout) {
1291 				ret_val = -E1000_ERR_PHY;
1292 				goto out;
1293 			}
1294 
1295 			msec_delay(10);
1296 		}
1297 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1298 
1299 		if (force) {
1300 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1301 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1302 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1303 		} else {
1304 			/* Clear H2ME.ULP after ME ULP configuration */
1305 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1306 			mac_reg &= ~E1000_H2ME_ULP;
1307 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1308 
1309 			/* Restore link speed advertisements and restart
1310 			 * Auto-negotiation
1311 			 */
1312 			if (hw->mac.autoneg) {
1313 				ret_val = e1000_phy_setup_autoneg(hw);
1314 				if (ret_val)
1315 					goto out;
1316 			} else {
1317 				ret_val = e1000_setup_copper_link_generic(hw);
1318 				if (ret_val)
1319 					goto out;
1320 			}
1321 			ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1322 		}
1323 
1324 		goto out;
1325 	}
1326 
1327 	ret_val = hw->phy.ops.acquire(hw);
1328 	if (ret_val)
1329 		goto out;
1330 
1331 	/* Revert the change to the 'Link Status Change'
1332 	 * interrupt to trigger on 'Cable Status Change'
1333 	 */
1334 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
1335 					     &phy_reg);
1336 	if (ret_val)
1337 		goto release;
1338 	phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
1339 	e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg);
1340 
1341 	if (force)
1342 		/* Toggle LANPHYPC Value bit */
1343 		e1000_toggle_lanphypc_pch_lpt(hw);
1344 
1345 	/* Unforce SMBus mode in PHY */
1346 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1347 	if (ret_val) {
1348 		/* The MAC might be in PCIe mode, so temporarily force to
1349 		 * SMBus mode in order to access the PHY.
1350 		 */
1351 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1352 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1353 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1354 
1355 		msec_delay(50);
1356 
1357 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1358 						       &phy_reg);
1359 		if (ret_val)
1360 			goto release;
1361 	}
1362 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1363 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1364 
1365 	/* Unforce SMBus mode in MAC */
1366 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1367 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1368 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1369 
1370 	/* When ULP mode was previously entered, K1 was disabled by the
1371 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1372 	 */
1373 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1374 	if (ret_val)
1375 		goto release;
1376 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1377 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1378 
1379 	/* Clear ULP enabled configuration */
1380 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1381 	if (ret_val)
1382 		goto release;
1383 	/* CSC interrupt received due to ULP Indication */
1384 	if ((phy_reg & I218_ULP_CONFIG1_IND) || force) {
1385 		phy_reg &= ~(I218_ULP_CONFIG1_IND |
1386 			     I218_ULP_CONFIG1_STICKY_ULP |
1387 			     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1388 			     I218_ULP_CONFIG1_WOL_HOST |
1389 			     I218_ULP_CONFIG1_INBAND_EXIT |
1390 			     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1391 			     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1392 			     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1393 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1394 
1395 		/* Commit ULP changes by starting auto ULP configuration */
1396 		phy_reg |= I218_ULP_CONFIG1_START;
1397 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1398 
1399 		/* Clear Disable SMBus Release on PERST# in MAC */
1400 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1401 		mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1402 		E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1403 
1404 		if (!force) {
1405 			hw->phy.ops.release(hw);
1406 
1407 			if (hw->mac.autoneg)
1408 				e1000_phy_setup_autoneg(hw);
1409 			else
1410 				e1000_setup_copper_link_generic(hw);
1411 
1412 			e1000_sw_lcd_config_ich8lan(hw);
1413 
1414 			e1000_oem_bits_config_ich8lan(hw, true);
1415 
1416 			/* Set ULP state to unknown and return non-zero to
1417 			 * indicate no link (yet) and re-enter on the next LSC
1418 			 * to finish disabling ULP flow.
1419 			 */
1420 			hw->dev_spec.ich8lan.ulp_state =
1421 			    e1000_ulp_state_unknown;
1422 
1423 			return 1;
1424 		}
1425 	}
1426 
1427 	/* Re-enable Tx */
1428 	mac_reg = E1000_READ_REG(hw, E1000_TCTL);
1429 	mac_reg |= E1000_TCTL_EN;
1430 	E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
1431 
1432 release:
1433 	hw->phy.ops.release(hw);
1434 	if (force) {
1435 		hw->phy.ops.reset(hw);
1436 		msec_delay(50);
1437 	}
1438 out:
1439 	if (ret_val)
1440 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1441 	else
1442 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1443 
1444 	return ret_val;
1445 }
1446 
1447 
1448 
1449 /**
1450  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1451  *  @hw: pointer to the HW structure
1452  *
1453  *  Checks to see of the link status of the hardware has changed.  If a
1454  *  change in link status has been detected, then we read the PHY registers
1455  *  to get the current speed/duplex if link exists.
1456  **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)1457 STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1458 {
1459 	struct e1000_mac_info *mac = &hw->mac;
1460 	s32 ret_val, tipg_reg = 0;
1461 	u16 emi_addr, emi_val = 0;
1462 	bool link = false;
1463 	u16 phy_reg;
1464 
1465 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1466 
1467 	/* We only want to go out to the PHY registers to see if Auto-Neg
1468 	 * has completed and/or if our link status has changed.  The
1469 	 * get_link_status flag is set upon receiving a Link Status
1470 	 * Change or Rx Sequence Error interrupt.
1471 	 */
1472 	if (!mac->get_link_status)
1473 		return E1000_SUCCESS;
1474 
1475 	if ((hw->mac.type < e1000_pch_lpt) ||
1476 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1477 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) {
1478 		/* First we want to see if the MII Status Register reports
1479 		 * link.  If so, then we want to get the current speed/duplex
1480 		 * of the PHY.
1481 		 */
1482 		ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1483 		if (ret_val)
1484 			return ret_val;
1485 	} else {
1486 		/* Check the MAC's STATUS register to determine link state
1487 		 * since the PHY could be inaccessible while in ULP mode.
1488 		 */
1489 		link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
1490 		if (link)
1491 			ret_val = e1000_disable_ulp_lpt_lp(hw, false);
1492 		else
1493 			ret_val = e1000_enable_ulp_lpt_lp(hw, false);
1494 		if (ret_val)
1495 			return ret_val;
1496 	}
1497 
1498 	if (hw->mac.type == e1000_pchlan) {
1499 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1500 		if (ret_val)
1501 			return ret_val;
1502 	}
1503 
1504 	/* When connected at 10Mbps half-duplex, some parts are excessively
1505 	 * aggressive resulting in many collisions. To avoid this, increase
1506 	 * the IPG and reduce Rx latency in the PHY.
1507 	 */
1508 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1509 		u16 speed, duplex;
1510 
1511 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1512 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1513 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1514 
1515 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1516 			tipg_reg |= 0xFF;
1517 			/* Reduce Rx latency in analog PHY */
1518 			emi_val = 0;
1519 		} else if (hw->mac.type >= e1000_pch_spt &&
1520 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1521 			tipg_reg |= 0xC;
1522 			emi_val = 1;
1523 		} else {
1524 			/* Roll back the default values */
1525 			tipg_reg |= 0x08;
1526 			emi_val = 1;
1527 		}
1528 
1529 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1530 
1531 		ret_val = hw->phy.ops.acquire(hw);
1532 		if (ret_val)
1533 			return ret_val;
1534 
1535 		if (hw->mac.type == e1000_pch2lan)
1536 			emi_addr = I82579_RX_CONFIG;
1537 		else
1538 			emi_addr = I217_RX_CONFIG;
1539 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1540 
1541 
1542 		if (hw->mac.type >= e1000_pch_lpt) {
1543 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1544 						    &phy_reg);
1545 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1546 			if (speed == SPEED_100 || speed == SPEED_10)
1547 				phy_reg |= 0x3E8;
1548 			else
1549 				phy_reg |= 0xFA;
1550 			hw->phy.ops.write_reg_locked(hw,
1551 						     I217_PLL_CLOCK_GATE_REG,
1552 						     phy_reg);
1553 
1554 			if (speed == SPEED_1000) {
1555 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1556 							    &phy_reg);
1557 
1558 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1559 
1560 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1561 							     phy_reg);
1562 				}
1563 		 }
1564 		hw->phy.ops.release(hw);
1565 
1566 		if (ret_val)
1567 			return ret_val;
1568 
1569 		if (hw->mac.type >= e1000_pch_spt) {
1570 			u16 data;
1571 			u16 ptr_gap;
1572 
1573 			if (speed == SPEED_1000) {
1574 				ret_val = hw->phy.ops.acquire(hw);
1575 				if (ret_val)
1576 					return ret_val;
1577 
1578 				ret_val = hw->phy.ops.read_reg_locked(hw,
1579 							      PHY_REG(776, 20),
1580 							      &data);
1581 				if (ret_val) {
1582 					hw->phy.ops.release(hw);
1583 					return ret_val;
1584 				}
1585 
1586 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1587 				if (ptr_gap < 0x18) {
1588 					data &= ~(0x3FF << 2);
1589 					data |= (0x18 << 2);
1590 					ret_val =
1591 						hw->phy.ops.write_reg_locked(hw,
1592 							PHY_REG(776, 20), data);
1593 				}
1594 				hw->phy.ops.release(hw);
1595 				if (ret_val)
1596 					return ret_val;
1597 			} else {
1598 				ret_val = hw->phy.ops.acquire(hw);
1599 				if (ret_val)
1600 					return ret_val;
1601 
1602 				ret_val = hw->phy.ops.write_reg_locked(hw,
1603 							     PHY_REG(776, 20),
1604 							     0xC023);
1605 				hw->phy.ops.release(hw);
1606 				if (ret_val)
1607 					return ret_val;
1608 
1609 			}
1610 		}
1611 	}
1612 
1613 	/* I217 Packet Loss issue:
1614 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1615 	 * on power up.
1616 	 * Set the Beacon Duration for I217 to 8 usec
1617 	 */
1618 	if (hw->mac.type >= e1000_pch_lpt) {
1619 		u32 mac_reg;
1620 
1621 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1622 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1623 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1624 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1625 	}
1626 
1627 	/* Work-around I218 hang issue */
1628 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1629 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1630 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1631 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1632 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1633 		if (ret_val)
1634 			return ret_val;
1635 	}
1636 	/* Clear link partner's EEE ability */
1637 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1638 
1639 	/* Configure K0s minimum time */
1640 	if (hw->mac.type >= e1000_pch_lpt) {
1641 		e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME);
1642 	}
1643 
1644 	if (hw->mac.type >= e1000_pch_lpt) {
1645 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1646 
1647 		if (hw->mac.type == e1000_pch_spt) {
1648 			/* FEXTNVM6 K1-off workaround - for SPT only */
1649 			u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1650 
1651 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1652 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1653 			else
1654 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1655 		}
1656 
1657 		if (hw->dev_spec.ich8lan.disable_k1_off == true)
1658 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1659 
1660 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1661 	}
1662 
1663 	if (!link)
1664 		return E1000_SUCCESS; /* No link detected */
1665 
1666 	mac->get_link_status = false;
1667 
1668 	switch (hw->mac.type) {
1669 	case e1000_pch2lan:
1670 		ret_val = e1000_k1_workaround_lv(hw);
1671 		if (ret_val)
1672 			return ret_val;
1673 		/* fall-thru */
1674 	case e1000_pchlan:
1675 		if (hw->phy.type == e1000_phy_82578) {
1676 			ret_val = e1000_link_stall_workaround_hv(hw);
1677 			if (ret_val)
1678 				return ret_val;
1679 		}
1680 
1681 		/* Workaround for PCHx parts in half-duplex:
1682 		 * Set the number of preambles removed from the packet
1683 		 * when it is passed from the PHY to the MAC to prevent
1684 		 * the MAC from misinterpreting the packet type.
1685 		 */
1686 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1687 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1688 
1689 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1690 		    E1000_STATUS_FD)
1691 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1692 
1693 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1694 		break;
1695 	default:
1696 		break;
1697 	}
1698 
1699 	/* Check if there was DownShift, must be checked
1700 	 * immediately after link-up
1701 	 */
1702 	e1000_check_downshift_generic(hw);
1703 
1704 	/* Enable/Disable EEE after link up */
1705 	if (hw->phy.type > e1000_phy_82579) {
1706 		ret_val = e1000_set_eee_pchlan(hw);
1707 		if (ret_val)
1708 			return ret_val;
1709 	}
1710 
1711 	/* If we are forcing speed/duplex, then we simply return since
1712 	 * we have already determined whether we have link or not.
1713 	 */
1714 	if (!mac->autoneg)
1715 		return -E1000_ERR_CONFIG;
1716 
1717 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1718 	 * of MAC speed/duplex configuration.  So we only need to
1719 	 * configure Collision Distance in the MAC.
1720 	 */
1721 	mac->ops.config_collision_dist(hw);
1722 
1723 	/* Configure Flow Control now that Auto-Neg has completed.
1724 	 * First, we need to restore the desired flow control
1725 	 * settings because we may have had to re-autoneg with a
1726 	 * different link partner.
1727 	 */
1728 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1729 	if (ret_val)
1730 		DEBUGOUT("Error configuring flow control\n");
1731 
1732 	return ret_val;
1733 }
1734 
1735 /**
1736  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1737  *  @hw: pointer to the HW structure
1738  *
1739  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1740  **/
e1000_init_function_pointers_ich8lan(struct e1000_hw * hw)1741 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1742 {
1743 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1744 
1745 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1746 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1747 	switch (hw->mac.type) {
1748 	case e1000_ich8lan:
1749 	case e1000_ich9lan:
1750 	case e1000_ich10lan:
1751 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1752 		break;
1753 	case e1000_pchlan:
1754 	case e1000_pch2lan:
1755 	case e1000_pch_lpt:
1756 	case e1000_pch_spt:
1757 	case e1000_pch_cnp:
1758 	case e1000_pch_adp:
1759 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1760 		break;
1761 	default:
1762 		break;
1763 	}
1764 }
1765 
1766 /**
1767  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1768  *  @hw: pointer to the HW structure
1769  *
1770  *  Acquires the mutex for performing NVM operations.
1771  **/
e1000_acquire_nvm_ich8lan(struct e1000_hw * hw)1772 STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1773 {
1774 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1775 
1776 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1777 
1778 	return E1000_SUCCESS;
1779 }
1780 
1781 /**
1782  *  e1000_release_nvm_ich8lan - Release NVM mutex
1783  *  @hw: pointer to the HW structure
1784  *
1785  *  Releases the mutex used while performing NVM operations.
1786  **/
e1000_release_nvm_ich8lan(struct e1000_hw * hw)1787 STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1788 {
1789 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1790 
1791 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1792 
1793 	return;
1794 }
1795 
1796 /**
1797  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1798  *  @hw: pointer to the HW structure
1799  *
1800  *  Acquires the software control flag for performing PHY and select
1801  *  MAC CSR accesses.
1802  **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1803 STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1804 {
1805 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1806 	s32 ret_val = E1000_SUCCESS;
1807 
1808 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1809 
1810 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1811 
1812 	while (timeout) {
1813 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1814 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1815 			break;
1816 
1817 		msec_delay_irq(1);
1818 		timeout--;
1819 	}
1820 
1821 	if (!timeout) {
1822 		DEBUGOUT("SW has already locked the resource.\n");
1823 		ret_val = -E1000_ERR_CONFIG;
1824 		goto out;
1825 	}
1826 
1827 	timeout = SW_FLAG_TIMEOUT;
1828 
1829 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1830 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1831 
1832 	while (timeout) {
1833 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1834 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1835 			break;
1836 
1837 		msec_delay_irq(1);
1838 		timeout--;
1839 	}
1840 
1841 	if (!timeout) {
1842 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1843 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1844 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1845 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1846 		ret_val = -E1000_ERR_CONFIG;
1847 		goto out;
1848 	}
1849 
1850 out:
1851 	if (ret_val)
1852 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1853 
1854 	return ret_val;
1855 }
1856 
1857 /**
1858  *  e1000_release_swflag_ich8lan - Release software control flag
1859  *  @hw: pointer to the HW structure
1860  *
1861  *  Releases the software control flag for performing PHY and select
1862  *  MAC CSR accesses.
1863  **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1864 STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1865 {
1866 	u32 extcnf_ctrl;
1867 
1868 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1869 
1870 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1871 
1872 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1873 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1874 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1875 	} else {
1876 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1877 	}
1878 
1879 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1880 
1881 	return;
1882 }
1883 
1884 /**
1885  *  e1000_check_mng_mode_ich8lan - Checks management mode
1886  *  @hw: pointer to the HW structure
1887  *
1888  *  This checks if the adapter has any manageability enabled.
1889  *  This is a function pointer entry point only called by read/write
1890  *  routines for the PHY and NVM parts.
1891  **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1892 STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1893 {
1894 	u32 fwsm;
1895 
1896 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1897 
1898 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1899 
1900 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1901 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1902 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1903 }
1904 
1905 /**
1906  *  e1000_check_mng_mode_pchlan - Checks management mode
1907  *  @hw: pointer to the HW structure
1908  *
1909  *  This checks if the adapter has iAMT enabled.
1910  *  This is a function pointer entry point only called by read/write
1911  *  routines for the PHY and NVM parts.
1912  **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1913 STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1914 {
1915 	u32 fwsm;
1916 
1917 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1918 
1919 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1920 
1921 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1922 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1923 }
1924 
1925 /**
1926  *  e1000_rar_set_pch2lan - Set receive address register
1927  *  @hw: pointer to the HW structure
1928  *  @addr: pointer to the receive address
1929  *  @index: receive address array register
1930  *
1931  *  Sets the receive address array register at index to the address passed
1932  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1933  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1934  *  Use SHRA[0-3] in place of those reserved for ME.
1935  **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1936 STATIC int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1937 {
1938 	u32 rar_low, rar_high;
1939 
1940 	DEBUGFUNC("e1000_rar_set_pch2lan");
1941 
1942 	/* HW expects these in little endian so we reverse the byte order
1943 	 * from network order (big endian) to little endian
1944 	 */
1945 	rar_low = ((u32) addr[0] |
1946 		   ((u32) addr[1] << 8) |
1947 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1948 
1949 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1950 
1951 	/* If MAC address zero, no need to set the AV bit */
1952 	if (rar_low || rar_high)
1953 		rar_high |= E1000_RAH_AV;
1954 
1955 	if (index == 0) {
1956 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1957 		E1000_WRITE_FLUSH(hw);
1958 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1959 		E1000_WRITE_FLUSH(hw);
1960 		return E1000_SUCCESS;
1961 	}
1962 
1963 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1964 	 * next address into the SHRA register array.
1965 	 */
1966 	if (index < (u32) (hw->mac.rar_entry_count)) {
1967 		s32 ret_val;
1968 
1969 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1970 		if (ret_val)
1971 			goto out;
1972 
1973 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1974 		E1000_WRITE_FLUSH(hw);
1975 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1976 		E1000_WRITE_FLUSH(hw);
1977 
1978 		e1000_release_swflag_ich8lan(hw);
1979 
1980 		/* verify the register updates */
1981 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1982 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1983 			return E1000_SUCCESS;
1984 
1985 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1986 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1987 	}
1988 
1989 out:
1990 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
1991 	return -E1000_ERR_CONFIG;
1992 }
1993 
1994 /**
1995  *  e1000_rar_set_pch_lpt - Set receive address registers
1996  *  @hw: pointer to the HW structure
1997  *  @addr: pointer to the receive address
1998  *  @index: receive address array register
1999  *
2000  *  Sets the receive address register array at index to the address passed
2001  *  in by addr. For LPT, RAR[0] is the base address register that is to
2002  *  contain the MAC address. SHRA[0-10] are the shared receive address
2003  *  registers that are shared between the Host and manageability engine (ME).
2004  **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)2005 STATIC int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2006 {
2007 	u32 rar_low, rar_high;
2008 	u32 wlock_mac;
2009 
2010 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2011 
2012 	/* HW expects these in little endian so we reverse the byte order
2013 	 * from network order (big endian) to little endian
2014 	 */
2015 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2016 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2017 
2018 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2019 
2020 	/* If MAC address zero, no need to set the AV bit */
2021 	if (rar_low || rar_high)
2022 		rar_high |= E1000_RAH_AV;
2023 
2024 	if (index == 0) {
2025 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2026 		E1000_WRITE_FLUSH(hw);
2027 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2028 		E1000_WRITE_FLUSH(hw);
2029 		return E1000_SUCCESS;
2030 	}
2031 
2032 	/* The manageability engine (ME) can lock certain SHRAR registers that
2033 	 * it is using - those registers are unavailable for use.
2034 	 */
2035 	if (index < hw->mac.rar_entry_count) {
2036 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2037 			    E1000_FWSM_WLOCK_MAC_MASK;
2038 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2039 
2040 		/* Check if all SHRAR registers are locked */
2041 		if (wlock_mac == 1)
2042 			goto out;
2043 
2044 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2045 			s32 ret_val;
2046 
2047 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2048 
2049 			if (ret_val)
2050 				goto out;
2051 
2052 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2053 					rar_low);
2054 			E1000_WRITE_FLUSH(hw);
2055 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2056 					rar_high);
2057 			E1000_WRITE_FLUSH(hw);
2058 
2059 			e1000_release_swflag_ich8lan(hw);
2060 
2061 			/* verify the register updates */
2062 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2063 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2064 				return E1000_SUCCESS;
2065 		}
2066 	}
2067 
2068 out:
2069 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2070 	return -E1000_ERR_CONFIG;
2071 }
2072 
2073 /**
2074  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2075  *  @hw: pointer to the HW structure
2076  *  @mc_addr_list: array of multicast addresses to program
2077  *  @mc_addr_count: number of multicast addresses to program
2078  *
2079  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2080  *  The caller must have a packed mc_addr_list of multicast addresses.
2081  **/
e1000_update_mc_addr_list_pch2lan(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)2082 STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2083 					      u8 *mc_addr_list,
2084 					      u32 mc_addr_count)
2085 {
2086 	u16 phy_reg = 0;
2087 	int i;
2088 	s32 ret_val;
2089 
2090 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2091 
2092 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2093 
2094 	ret_val = hw->phy.ops.acquire(hw);
2095 	if (ret_val)
2096 		return;
2097 
2098 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2099 	if (ret_val)
2100 		goto release;
2101 
2102 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2103 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2104 					   (u16)(hw->mac.mta_shadow[i] &
2105 						 0xFFFF));
2106 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2107 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2108 						 0xFFFF));
2109 	}
2110 
2111 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2112 
2113 release:
2114 	hw->phy.ops.release(hw);
2115 }
2116 
2117 /**
2118  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2119  *  @hw: pointer to the HW structure
2120  *
2121  *  Checks if firmware is blocking the reset of the PHY.
2122  *  This is a function pointer entry point only called by
2123  *  reset routines.
2124  **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)2125 STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2126 {
2127 	u32 fwsm;
2128 	bool blocked = false;
2129 	int i = 0;
2130 
2131 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2132 
2133 	do {
2134 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2135 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2136 			blocked = true;
2137 			msec_delay(10);
2138 			continue;
2139 		}
2140 		blocked = false;
2141 	} while (blocked && (i++ < 30));
2142 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2143 }
2144 
2145 /**
2146  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2147  *  @hw: pointer to the HW structure
2148  *
2149  *  Assumes semaphore already acquired.
2150  *
2151  **/
e1000_write_smbus_addr(struct e1000_hw * hw)2152 STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2153 {
2154 	u16 phy_data;
2155 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2156 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2157 		E1000_STRAP_SMT_FREQ_SHIFT;
2158 	s32 ret_val;
2159 
2160 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2161 
2162 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2163 	if (ret_val)
2164 		return ret_val;
2165 
2166 	phy_data &= ~HV_SMB_ADDR_MASK;
2167 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2168 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2169 
2170 	if (hw->phy.type == e1000_phy_i217) {
2171 		/* Restore SMBus frequency */
2172 		if (freq--) {
2173 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2174 			phy_data |= (freq & (1 << 0)) <<
2175 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2176 			phy_data |= (freq & (1 << 1)) <<
2177 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2178 		} else {
2179 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2180 		}
2181 	}
2182 
2183 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2184 }
2185 
2186 /**
2187  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2188  *  @hw:   pointer to the HW structure
2189  *
2190  *  SW should configure the LCD from the NVM extended configuration region
2191  *  as a workaround for certain parts.
2192  **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)2193 STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2194 {
2195 	struct e1000_phy_info *phy = &hw->phy;
2196 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2197 	s32 ret_val = E1000_SUCCESS;
2198 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2199 
2200 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2201 
2202 	/* Initialize the PHY from the NVM on ICH platforms.  This
2203 	 * is needed due to an issue where the NVM configuration is
2204 	 * not properly autoloaded after power transitions.
2205 	 * Therefore, after each PHY reset, we will load the
2206 	 * configuration data out of the NVM manually.
2207 	 */
2208 	switch (hw->mac.type) {
2209 	case e1000_ich8lan:
2210 		if (phy->type != e1000_phy_igp_3)
2211 			return ret_val;
2212 
2213 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2214 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2215 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2216 			break;
2217 		}
2218 		/* Fall-thru */
2219 	case e1000_pchlan:
2220 	case e1000_pch2lan:
2221 	case e1000_pch_lpt:
2222 	case e1000_pch_spt:
2223 	case e1000_pch_cnp:
2224 	case e1000_pch_adp:
2225 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2226 		break;
2227 	default:
2228 		return ret_val;
2229 	}
2230 
2231 	ret_val = hw->phy.ops.acquire(hw);
2232 	if (ret_val)
2233 		return ret_val;
2234 
2235 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2236 	if (!(data & sw_cfg_mask))
2237 		goto release;
2238 
2239 	/* Make sure HW does not configure LCD from PHY
2240 	 * extended configuration before SW configuration
2241 	 */
2242 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2243 	if ((hw->mac.type < e1000_pch2lan) &&
2244 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2245 			goto release;
2246 
2247 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2248 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2249 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2250 	if (!cnf_size)
2251 		goto release;
2252 
2253 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2254 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2255 
2256 	if (((hw->mac.type == e1000_pchlan) &&
2257 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2258 	    (hw->mac.type > e1000_pchlan)) {
2259 		/* HW configures the SMBus address and LEDs when the
2260 		 * OEM and LCD Write Enable bits are set in the NVM.
2261 		 * When both NVM bits are cleared, SW will configure
2262 		 * them instead.
2263 		 */
2264 		ret_val = e1000_write_smbus_addr(hw);
2265 		if (ret_val)
2266 			goto release;
2267 
2268 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2269 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2270 							(u16)data);
2271 		if (ret_val)
2272 			goto release;
2273 	}
2274 
2275 	/* Configure LCD from extended configuration region. */
2276 
2277 	/* cnf_base_addr is in DWORD */
2278 	word_addr = (u16)(cnf_base_addr << 1);
2279 
2280 	for (i = 0; i < cnf_size; i++) {
2281 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2282 					   &reg_data);
2283 		if (ret_val)
2284 			goto release;
2285 
2286 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2287 					   1, &reg_addr);
2288 		if (ret_val)
2289 			goto release;
2290 
2291 		/* Save off the PHY page for future writes. */
2292 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2293 			phy_page = reg_data;
2294 			continue;
2295 		}
2296 
2297 		reg_addr &= PHY_REG_MASK;
2298 		reg_addr |= phy_page;
2299 
2300 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2301 						    reg_data);
2302 		if (ret_val)
2303 			goto release;
2304 	}
2305 
2306 release:
2307 	hw->phy.ops.release(hw);
2308 	return ret_val;
2309 }
2310 
2311 /**
2312  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2313  *  @hw:   pointer to the HW structure
2314  *  @link: link up bool flag
2315  *
2316  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2317  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2318  *  If link is down, the function will restore the default K1 setting located
2319  *  in the NVM.
2320  **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)2321 STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2322 {
2323 	s32 ret_val = E1000_SUCCESS;
2324 	u16 status_reg = 0;
2325 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2326 
2327 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2328 
2329 	if (hw->mac.type != e1000_pchlan)
2330 		return E1000_SUCCESS;
2331 
2332 	/* Wrap the whole flow with the sw flag */
2333 	ret_val = hw->phy.ops.acquire(hw);
2334 	if (ret_val)
2335 		return ret_val;
2336 
2337 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2338 	if (link) {
2339 		if (hw->phy.type == e1000_phy_82578) {
2340 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2341 							      &status_reg);
2342 			if (ret_val)
2343 				goto release;
2344 
2345 			status_reg &= (BM_CS_STATUS_LINK_UP |
2346 				       BM_CS_STATUS_RESOLVED |
2347 				       BM_CS_STATUS_SPEED_MASK);
2348 
2349 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2350 					   BM_CS_STATUS_RESOLVED |
2351 					   BM_CS_STATUS_SPEED_1000))
2352 				k1_enable = false;
2353 		}
2354 
2355 		if (hw->phy.type == e1000_phy_82577) {
2356 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2357 							      &status_reg);
2358 			if (ret_val)
2359 				goto release;
2360 
2361 			status_reg &= (HV_M_STATUS_LINK_UP |
2362 				       HV_M_STATUS_AUTONEG_COMPLETE |
2363 				       HV_M_STATUS_SPEED_MASK);
2364 
2365 			if (status_reg == (HV_M_STATUS_LINK_UP |
2366 					   HV_M_STATUS_AUTONEG_COMPLETE |
2367 					   HV_M_STATUS_SPEED_1000))
2368 				k1_enable = false;
2369 		}
2370 
2371 		/* Link stall fix for link up */
2372 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2373 						       0x0100);
2374 		if (ret_val)
2375 			goto release;
2376 
2377 	} else {
2378 		/* Link stall fix for link down */
2379 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2380 						       0x4100);
2381 		if (ret_val)
2382 			goto release;
2383 	}
2384 
2385 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2386 
2387 release:
2388 	hw->phy.ops.release(hw);
2389 
2390 	return ret_val;
2391 }
2392 
2393 /**
2394  *  e1000_configure_k1_ich8lan - Configure K1 power state
2395  *  @hw: pointer to the HW structure
2396  *  @k1_enable: K1 state to configure
2397  *
2398  *  Configure the K1 power state based on the provided parameter.
2399  *  Assumes semaphore already acquired.
2400  *
2401  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2402  **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)2403 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2404 {
2405 	s32 ret_val;
2406 	u32 ctrl_reg = 0;
2407 	u32 ctrl_ext = 0;
2408 	u32 reg = 0;
2409 	u16 kmrn_reg = 0;
2410 
2411 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2412 
2413 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2414 					     &kmrn_reg);
2415 	if (ret_val)
2416 		return ret_val;
2417 
2418 	if (k1_enable)
2419 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2420 	else
2421 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2422 
2423 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2424 					      kmrn_reg);
2425 	if (ret_val)
2426 		return ret_val;
2427 
2428 	usec_delay(20);
2429 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2430 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2431 
2432 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2433 	reg |= E1000_CTRL_FRCSPD;
2434 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2435 
2436 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2437 	E1000_WRITE_FLUSH(hw);
2438 	usec_delay(20);
2439 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2440 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2441 	E1000_WRITE_FLUSH(hw);
2442 	usec_delay(20);
2443 
2444 	return E1000_SUCCESS;
2445 }
2446 
2447 /**
2448  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2449  *  @hw:       pointer to the HW structure
2450  *  @d0_state: boolean if entering d0 or d3 device state
2451  *
2452  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2453  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2454  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2455  **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)2456 STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2457 {
2458 	s32 ret_val = 0;
2459 	u32 mac_reg;
2460 	u16 oem_reg;
2461 
2462 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2463 
2464 	if (hw->mac.type < e1000_pchlan)
2465 		return ret_val;
2466 
2467 	ret_val = hw->phy.ops.acquire(hw);
2468 	if (ret_val)
2469 		return ret_val;
2470 
2471 	if (hw->mac.type == e1000_pchlan) {
2472 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2473 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2474 			goto release;
2475 	}
2476 
2477 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2478 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2479 		goto release;
2480 
2481 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2482 
2483 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2484 	if (ret_val)
2485 		goto release;
2486 
2487 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2488 
2489 	if (d0_state) {
2490 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2491 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2492 
2493 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2494 			oem_reg |= HV_OEM_BITS_LPLU;
2495 	} else {
2496 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2497 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2498 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2499 
2500 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2501 		    E1000_PHY_CTRL_NOND0A_LPLU))
2502 			oem_reg |= HV_OEM_BITS_LPLU;
2503 	}
2504 
2505 	/* Set Restart auto-neg to activate the bits */
2506 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2507 	    !hw->phy.ops.check_reset_block(hw))
2508 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2509 
2510 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2511 
2512 release:
2513 	hw->phy.ops.release(hw);
2514 
2515 	return ret_val;
2516 }
2517 
2518 
2519 /**
2520  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2521  *  @hw:   pointer to the HW structure
2522  **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)2523 STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2524 {
2525 	s32 ret_val;
2526 	u16 data;
2527 
2528 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2529 
2530 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2531 	if (ret_val)
2532 		return ret_val;
2533 
2534 	data |= HV_KMRN_MDIO_SLOW;
2535 
2536 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2537 
2538 	return ret_val;
2539 }
2540 
2541 /**
2542  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2543  *  done after every PHY reset.
2544  *  @hw: pointer to the HW structure
2545  **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)2546 STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2547 {
2548 	s32 ret_val = E1000_SUCCESS;
2549 	u16 phy_data;
2550 
2551 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2552 
2553 	if (hw->mac.type != e1000_pchlan)
2554 		return E1000_SUCCESS;
2555 
2556 	/* Set MDIO slow mode before any other MDIO access */
2557 	if (hw->phy.type == e1000_phy_82577) {
2558 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2559 		if (ret_val)
2560 			return ret_val;
2561 	}
2562 
2563 	if (((hw->phy.type == e1000_phy_82577) &&
2564 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2565 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2566 		/* Disable generation of early preamble */
2567 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2568 		if (ret_val)
2569 			return ret_val;
2570 
2571 		/* Preamble tuning for SSC */
2572 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2573 						0xA204);
2574 		if (ret_val)
2575 			return ret_val;
2576 	}
2577 
2578 	if (hw->phy.type == e1000_phy_82578) {
2579 		/* Return registers to default by doing a soft reset then
2580 		 * writing 0x3140 to the control register.
2581 		 */
2582 		if (hw->phy.revision < 2) {
2583 			e1000_phy_sw_reset_generic(hw);
2584 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2585 							0x3140);
2586 		}
2587 	}
2588 
2589 	/* Select page 0 */
2590 	ret_val = hw->phy.ops.acquire(hw);
2591 	if (ret_val)
2592 		return ret_val;
2593 
2594 	hw->phy.addr = 1;
2595 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2596 	hw->phy.ops.release(hw);
2597 	if (ret_val)
2598 		return ret_val;
2599 
2600 	/* Configure the K1 Si workaround during phy reset assuming there is
2601 	 * link so that it disables K1 if link is in 1Gbps.
2602 	 */
2603 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2604 	if (ret_val)
2605 		return ret_val;
2606 
2607 	/* Workaround for link disconnects on a busy hub in half duplex */
2608 	ret_val = hw->phy.ops.acquire(hw);
2609 	if (ret_val)
2610 		return ret_val;
2611 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2612 	if (ret_val)
2613 		goto release;
2614 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2615 					       phy_data & 0x00FF);
2616 	if (ret_val)
2617 		goto release;
2618 
2619 	/* set MSE higher to enable link to stay up when noise is high */
2620 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2621 release:
2622 	hw->phy.ops.release(hw);
2623 
2624 	return ret_val;
2625 }
2626 
2627 /**
2628  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2629  *  @hw:   pointer to the HW structure
2630  **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)2631 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2632 {
2633 	u32 mac_reg;
2634 	u16 i, phy_reg = 0;
2635 	s32 ret_val;
2636 
2637 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2638 
2639 	ret_val = hw->phy.ops.acquire(hw);
2640 	if (ret_val)
2641 		return;
2642 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2643 	if (ret_val)
2644 		goto release;
2645 
2646 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2647 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2648 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2649 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2650 					   (u16)(mac_reg & 0xFFFF));
2651 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2652 					   (u16)((mac_reg >> 16) & 0xFFFF));
2653 
2654 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2655 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2656 					   (u16)(mac_reg & 0xFFFF));
2657 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2658 					   (u16)((mac_reg & E1000_RAH_AV)
2659 						 >> 16));
2660 	}
2661 
2662 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2663 
2664 release:
2665 	hw->phy.ops.release(hw);
2666 }
2667 
e1000_calc_rx_da_crc(u8 mac[])2668 STATIC u32 e1000_calc_rx_da_crc(u8 mac[])
2669 {
2670 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2671 	u32 i, j, mask, crc;
2672 
2673 	DEBUGFUNC("e1000_calc_rx_da_crc");
2674 
2675 	crc = 0xffffffff;
2676 	for (i = 0; i < 6; i++) {
2677 		crc = crc ^ mac[i];
2678 		for (j = 8; j > 0; j--) {
2679 			mask = (crc & 1) * (-1);
2680 			crc = (crc >> 1) ^ (poly & mask);
2681 		}
2682 	}
2683 	return ~crc;
2684 }
2685 
2686 /**
2687  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2688  *  with 82579 PHY
2689  *  @hw: pointer to the HW structure
2690  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2691  **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)2692 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2693 {
2694 	s32 ret_val = E1000_SUCCESS;
2695 	u16 phy_reg, data;
2696 	u32 mac_reg;
2697 	u16 i;
2698 
2699 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2700 
2701 	if (hw->mac.type < e1000_pch2lan)
2702 		return E1000_SUCCESS;
2703 
2704 	/* disable Rx path while enabling/disabling workaround */
2705 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2706 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2707 					phy_reg | (1 << 14));
2708 	if (ret_val)
2709 		return ret_val;
2710 
2711 	if (enable) {
2712 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2713 		 * SHRAL/H) and initial CRC values to the MAC
2714 		 */
2715 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2716 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2717 			u32 addr_high, addr_low;
2718 
2719 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2720 			if (!(addr_high & E1000_RAH_AV))
2721 				continue;
2722 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2723 			mac_addr[0] = (addr_low & 0xFF);
2724 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2725 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2726 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2727 			mac_addr[4] = (addr_high & 0xFF);
2728 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2729 
2730 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2731 					e1000_calc_rx_da_crc(mac_addr));
2732 		}
2733 
2734 		/* Write Rx addresses to the PHY */
2735 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2736 
2737 		/* Enable jumbo frame workaround in the MAC */
2738 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2739 		mac_reg &= ~(1 << 14);
2740 		mac_reg |= (7 << 15);
2741 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2742 
2743 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2744 		mac_reg |= E1000_RCTL_SECRC;
2745 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2746 
2747 		ret_val = e1000_read_kmrn_reg_generic(hw,
2748 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2749 						&data);
2750 		if (ret_val)
2751 			return ret_val;
2752 		ret_val = e1000_write_kmrn_reg_generic(hw,
2753 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2754 						data | (1 << 0));
2755 		if (ret_val)
2756 			return ret_val;
2757 		ret_val = e1000_read_kmrn_reg_generic(hw,
2758 						E1000_KMRNCTRLSTA_HD_CTRL,
2759 						&data);
2760 		if (ret_val)
2761 			return ret_val;
2762 		data &= ~(0xF << 8);
2763 		data |= (0xB << 8);
2764 		ret_val = e1000_write_kmrn_reg_generic(hw,
2765 						E1000_KMRNCTRLSTA_HD_CTRL,
2766 						data);
2767 		if (ret_val)
2768 			return ret_val;
2769 
2770 		/* Enable jumbo frame workaround in the PHY */
2771 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2772 		data &= ~(0x7F << 5);
2773 		data |= (0x37 << 5);
2774 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2775 		if (ret_val)
2776 			return ret_val;
2777 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2778 		data &= ~(1 << 13);
2779 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2780 		if (ret_val)
2781 			return ret_val;
2782 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2783 		data &= ~(0x3FF << 2);
2784 		data |= (E1000_TX_PTR_GAP << 2);
2785 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2786 		if (ret_val)
2787 			return ret_val;
2788 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2789 		if (ret_val)
2790 			return ret_val;
2791 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2792 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2793 						(1 << 10));
2794 		if (ret_val)
2795 			return ret_val;
2796 	} else {
2797 		/* Write MAC register values back to h/w defaults */
2798 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2799 		mac_reg &= ~(0xF << 14);
2800 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2801 
2802 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2803 		mac_reg &= ~E1000_RCTL_SECRC;
2804 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2805 
2806 		ret_val = e1000_read_kmrn_reg_generic(hw,
2807 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2808 						&data);
2809 		if (ret_val)
2810 			return ret_val;
2811 		ret_val = e1000_write_kmrn_reg_generic(hw,
2812 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2813 						data & ~(1 << 0));
2814 		if (ret_val)
2815 			return ret_val;
2816 		ret_val = e1000_read_kmrn_reg_generic(hw,
2817 						E1000_KMRNCTRLSTA_HD_CTRL,
2818 						&data);
2819 		if (ret_val)
2820 			return ret_val;
2821 		data &= ~(0xF << 8);
2822 		data |= (0xB << 8);
2823 		ret_val = e1000_write_kmrn_reg_generic(hw,
2824 						E1000_KMRNCTRLSTA_HD_CTRL,
2825 						data);
2826 		if (ret_val)
2827 			return ret_val;
2828 
2829 		/* Write PHY register values back to h/w defaults */
2830 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2831 		data &= ~(0x7F << 5);
2832 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2833 		if (ret_val)
2834 			return ret_val;
2835 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2836 		data |= (1 << 13);
2837 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2838 		if (ret_val)
2839 			return ret_val;
2840 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2841 		data &= ~(0x3FF << 2);
2842 		data |= (0x8 << 2);
2843 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2844 		if (ret_val)
2845 			return ret_val;
2846 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2847 		if (ret_val)
2848 			return ret_val;
2849 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2850 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2851 						~(1 << 10));
2852 		if (ret_val)
2853 			return ret_val;
2854 	}
2855 
2856 	/* re-enable Rx path after enabling/disabling workaround */
2857 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2858 				     ~(1 << 14));
2859 }
2860 
2861 /**
2862  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2863  *  done after every PHY reset.
2864  *  @hw: pointer to the HW structure
2865  **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2866 STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2867 {
2868 	s32 ret_val = E1000_SUCCESS;
2869 
2870 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2871 
2872 	if (hw->mac.type != e1000_pch2lan)
2873 		return E1000_SUCCESS;
2874 
2875 	/* Set MDIO slow mode before any other MDIO access */
2876 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2877 	if (ret_val)
2878 		return ret_val;
2879 
2880 	ret_val = hw->phy.ops.acquire(hw);
2881 	if (ret_val)
2882 		return ret_val;
2883 	/* set MSE higher to enable link to stay up when noise is high */
2884 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2885 	if (ret_val)
2886 		goto release;
2887 	/* drop link after 5 times MSE threshold was reached */
2888 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2889 release:
2890 	hw->phy.ops.release(hw);
2891 
2892 	return ret_val;
2893 }
2894 
2895 /**
2896  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2897  *  @hw:   pointer to the HW structure
2898  *
2899  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2900  *  Disable K1 for 1000 and 100 speeds
2901  **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2902 STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2903 {
2904 	s32 ret_val = E1000_SUCCESS;
2905 	u16 status_reg = 0;
2906 
2907 	DEBUGFUNC("e1000_k1_workaround_lv");
2908 
2909 	if (hw->mac.type != e1000_pch2lan)
2910 		return E1000_SUCCESS;
2911 
2912 	/* Set K1 beacon duration based on 10Mbs speed */
2913 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2914 	if (ret_val)
2915 		return ret_val;
2916 
2917 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2918 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2919 		if (status_reg &
2920 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2921 			u16 pm_phy_reg;
2922 
2923 			/* LV 1G/100 Packet drop issue wa  */
2924 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2925 						       &pm_phy_reg);
2926 			if (ret_val)
2927 				return ret_val;
2928 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2929 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2930 							pm_phy_reg);
2931 			if (ret_val)
2932 				return ret_val;
2933 		} else {
2934 			u32 mac_reg;
2935 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2936 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2937 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2938 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2939 		}
2940 	}
2941 
2942 	return ret_val;
2943 }
2944 
2945 /**
2946  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2947  *  @hw:   pointer to the HW structure
2948  *  @gate: boolean set to true to gate, false to ungate
2949  *
2950  *  Gate/ungate the automatic PHY configuration via hardware; perform
2951  *  the configuration via software instead.
2952  **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2953 STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2954 {
2955 	u32 extcnf_ctrl;
2956 
2957 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2958 
2959 	if (hw->mac.type < e1000_pch2lan)
2960 		return;
2961 
2962 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2963 
2964 	if (gate)
2965 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2966 	else
2967 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2968 
2969 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2970 }
2971 
2972 /**
2973  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2974  *  @hw: pointer to the HW structure
2975  *
2976  *  Check the appropriate indication the MAC has finished configuring the
2977  *  PHY after a software reset.
2978  **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2979 STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2980 {
2981 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2982 
2983 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
2984 
2985 	/* Wait for basic configuration completes before proceeding */
2986 	do {
2987 		data = E1000_READ_REG(hw, E1000_STATUS);
2988 		data &= E1000_STATUS_LAN_INIT_DONE;
2989 		usec_delay(100);
2990 	} while ((!data) && --loop);
2991 
2992 	/* If basic configuration is incomplete before the above loop
2993 	 * count reaches 0, loading the configuration from NVM will
2994 	 * leave the PHY in a bad state possibly resulting in no link.
2995 	 */
2996 	if (loop == 0)
2997 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2998 
2999 	/* Clear the Init Done bit for the next init event */
3000 	data = E1000_READ_REG(hw, E1000_STATUS);
3001 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3002 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3003 }
3004 
3005 /**
3006  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3007  *  @hw: pointer to the HW structure
3008  **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)3009 STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3010 {
3011 	s32 ret_val = E1000_SUCCESS;
3012 	u16 reg;
3013 
3014 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3015 
3016 	if (hw->phy.ops.check_reset_block(hw))
3017 		return E1000_SUCCESS;
3018 
3019 	/* Allow time for h/w to get to quiescent state after reset */
3020 	msec_delay(10);
3021 
3022 	/* Perform any necessary post-reset workarounds */
3023 	switch (hw->mac.type) {
3024 	case e1000_pchlan:
3025 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3026 		if (ret_val)
3027 			return ret_val;
3028 		break;
3029 	case e1000_pch2lan:
3030 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3031 		if (ret_val)
3032 			return ret_val;
3033 		break;
3034 	default:
3035 		break;
3036 	}
3037 
3038 	/* Clear the host wakeup bit after lcd reset */
3039 	if (hw->mac.type >= e1000_pchlan) {
3040 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3041 		reg &= ~BM_WUC_HOST_WU_BIT;
3042 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3043 	}
3044 
3045 	/* Configure the LCD with the extended configuration region in NVM */
3046 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3047 	if (ret_val)
3048 		return ret_val;
3049 
3050 	/* Configure the LCD with the OEM bits in NVM */
3051 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
3052 
3053 	if (hw->mac.type == e1000_pch2lan) {
3054 		/* Ungate automatic PHY configuration on non-managed 82579 */
3055 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3056 		    E1000_ICH_FWSM_FW_VALID)) {
3057 			msec_delay(10);
3058 			e1000_gate_hw_phy_config_ich8lan(hw, false);
3059 		}
3060 
3061 		/* Set EEE LPI Update Timer to 200usec */
3062 		ret_val = hw->phy.ops.acquire(hw);
3063 		if (ret_val)
3064 			return ret_val;
3065 		ret_val = e1000_write_emi_reg_locked(hw,
3066 						     I82579_LPI_UPDATE_TIMER,
3067 						     0x1387);
3068 		hw->phy.ops.release(hw);
3069 	}
3070 
3071 	return ret_val;
3072 }
3073 
3074 /**
3075  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3076  *  @hw: pointer to the HW structure
3077  *
3078  *  Resets the PHY
3079  *  This is a function pointer entry point called by drivers
3080  *  or other shared routines.
3081  **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)3082 STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3083 {
3084 	s32 ret_val = E1000_SUCCESS;
3085 
3086 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3087 
3088 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3089 	if ((hw->mac.type == e1000_pch2lan) &&
3090 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3091 		e1000_gate_hw_phy_config_ich8lan(hw, true);
3092 
3093 	ret_val = e1000_phy_hw_reset_generic(hw);
3094 	if (ret_val)
3095 		return ret_val;
3096 
3097 	return e1000_post_phy_reset_ich8lan(hw);
3098 }
3099 
3100 /**
3101  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3102  *  @hw: pointer to the HW structure
3103  *  @active: true to enable LPLU, false to disable
3104  *
3105  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3106  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3107  *  the phy speed. This function will manually set the LPLU bit and restart
3108  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3109  *  since it configures the same bit.
3110  **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)3111 STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3112 {
3113 	s32 ret_val;
3114 	u16 oem_reg;
3115 
3116 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3117 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3118 	if (ret_val)
3119 		return ret_val;
3120 
3121 	if (active)
3122 		oem_reg |= HV_OEM_BITS_LPLU;
3123 	else
3124 		oem_reg &= ~HV_OEM_BITS_LPLU;
3125 
3126 	if (!hw->phy.ops.check_reset_block(hw))
3127 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3128 
3129 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3130 }
3131 
3132 /**
3133  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3134  *  @hw: pointer to the HW structure
3135  *  @active: true to enable LPLU, false to disable
3136  *
3137  *  Sets the LPLU D0 state according to the active flag.  When
3138  *  activating LPLU this function also disables smart speed
3139  *  and vice versa.  LPLU will not be activated unless the
3140  *  device autonegotiation advertisement meets standards of
3141  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3142  *  This is a function pointer entry point only called by
3143  *  PHY setup routines.
3144  **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3145 STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3146 {
3147 	struct e1000_phy_info *phy = &hw->phy;
3148 	u32 phy_ctrl;
3149 	s32 ret_val = E1000_SUCCESS;
3150 	u16 data;
3151 
3152 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3153 
3154 	if (phy->type == e1000_phy_ife)
3155 		return E1000_SUCCESS;
3156 
3157 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3158 
3159 	if (active) {
3160 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3161 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3162 
3163 		if (phy->type != e1000_phy_igp_3)
3164 			return E1000_SUCCESS;
3165 
3166 		/* Call gig speed drop workaround on LPLU before accessing
3167 		 * any PHY registers
3168 		 */
3169 		if (hw->mac.type == e1000_ich8lan)
3170 			e1000_gig_downshift_workaround_ich8lan(hw);
3171 
3172 		/* When LPLU is enabled, we should disable SmartSpeed */
3173 		ret_val = phy->ops.read_reg(hw,
3174 					    IGP01E1000_PHY_PORT_CONFIG,
3175 					    &data);
3176 		if (ret_val)
3177 			return ret_val;
3178 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3179 		ret_val = phy->ops.write_reg(hw,
3180 					     IGP01E1000_PHY_PORT_CONFIG,
3181 					     data);
3182 		if (ret_val)
3183 			return ret_val;
3184 	} else {
3185 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3186 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3187 
3188 		if (phy->type != e1000_phy_igp_3)
3189 			return E1000_SUCCESS;
3190 
3191 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3192 		 * during Dx states where the power conservation is most
3193 		 * important.  During driver activity we should enable
3194 		 * SmartSpeed, so performance is maintained.
3195 		 */
3196 		if (phy->smart_speed == e1000_smart_speed_on) {
3197 			ret_val = phy->ops.read_reg(hw,
3198 						    IGP01E1000_PHY_PORT_CONFIG,
3199 						    &data);
3200 			if (ret_val)
3201 				return ret_val;
3202 
3203 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3204 			ret_val = phy->ops.write_reg(hw,
3205 						     IGP01E1000_PHY_PORT_CONFIG,
3206 						     data);
3207 			if (ret_val)
3208 				return ret_val;
3209 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3210 			ret_val = phy->ops.read_reg(hw,
3211 						    IGP01E1000_PHY_PORT_CONFIG,
3212 						    &data);
3213 			if (ret_val)
3214 				return ret_val;
3215 
3216 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3217 			ret_val = phy->ops.write_reg(hw,
3218 						     IGP01E1000_PHY_PORT_CONFIG,
3219 						     data);
3220 			if (ret_val)
3221 				return ret_val;
3222 		}
3223 	}
3224 
3225 	return E1000_SUCCESS;
3226 }
3227 
3228 /**
3229  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3230  *  @hw: pointer to the HW structure
3231  *  @active: true to enable LPLU, false to disable
3232  *
3233  *  Sets the LPLU D3 state according to the active flag.  When
3234  *  activating LPLU this function also disables smart speed
3235  *  and vice versa.  LPLU will not be activated unless the
3236  *  device autonegotiation advertisement meets standards of
3237  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3238  *  This is a function pointer entry point only called by
3239  *  PHY setup routines.
3240  **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3241 STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3242 {
3243 	struct e1000_phy_info *phy = &hw->phy;
3244 	u32 phy_ctrl;
3245 	s32 ret_val = E1000_SUCCESS;
3246 	u16 data;
3247 
3248 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3249 
3250 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3251 
3252 	if (!active) {
3253 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3254 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3255 
3256 		if (phy->type != e1000_phy_igp_3)
3257 			return E1000_SUCCESS;
3258 
3259 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3260 		 * during Dx states where the power conservation is most
3261 		 * important.  During driver activity we should enable
3262 		 * SmartSpeed, so performance is maintained.
3263 		 */
3264 		if (phy->smart_speed == e1000_smart_speed_on) {
3265 			ret_val = phy->ops.read_reg(hw,
3266 						    IGP01E1000_PHY_PORT_CONFIG,
3267 						    &data);
3268 			if (ret_val)
3269 				return ret_val;
3270 
3271 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3272 			ret_val = phy->ops.write_reg(hw,
3273 						     IGP01E1000_PHY_PORT_CONFIG,
3274 						     data);
3275 			if (ret_val)
3276 				return ret_val;
3277 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3278 			ret_val = phy->ops.read_reg(hw,
3279 						    IGP01E1000_PHY_PORT_CONFIG,
3280 						    &data);
3281 			if (ret_val)
3282 				return ret_val;
3283 
3284 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3285 			ret_val = phy->ops.write_reg(hw,
3286 						     IGP01E1000_PHY_PORT_CONFIG,
3287 						     data);
3288 			if (ret_val)
3289 				return ret_val;
3290 		}
3291 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3292 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3293 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3294 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3295 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3296 
3297 		if (phy->type != e1000_phy_igp_3)
3298 			return E1000_SUCCESS;
3299 
3300 		/* Call gig speed drop workaround on LPLU before accessing
3301 		 * any PHY registers
3302 		 */
3303 		if (hw->mac.type == e1000_ich8lan)
3304 			e1000_gig_downshift_workaround_ich8lan(hw);
3305 
3306 		/* When LPLU is enabled, we should disable SmartSpeed */
3307 		ret_val = phy->ops.read_reg(hw,
3308 					    IGP01E1000_PHY_PORT_CONFIG,
3309 					    &data);
3310 		if (ret_val)
3311 			return ret_val;
3312 
3313 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3314 		ret_val = phy->ops.write_reg(hw,
3315 					     IGP01E1000_PHY_PORT_CONFIG,
3316 					     data);
3317 	}
3318 
3319 	return ret_val;
3320 }
3321 
3322 /**
3323  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3324  *  @hw: pointer to the HW structure
3325  *  @bank:  pointer to the variable that returns the active bank
3326  *
3327  *  Reads signature byte from the NVM using the flash access registers.
3328  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3329  **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)3330 STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3331 {
3332 	u32 eecd;
3333 	struct e1000_nvm_info *nvm = &hw->nvm;
3334 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3335 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3336 	u32 nvm_dword = 0;
3337 	u8 sig_byte = 0;
3338 	s32 ret_val;
3339 
3340 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3341 
3342 	switch (hw->mac.type) {
3343 	case e1000_pch_spt:
3344 	case e1000_pch_cnp:
3345 	case e1000_pch_adp:
3346 		bank1_offset = nvm->flash_bank_size;
3347 		act_offset = E1000_ICH_NVM_SIG_WORD;
3348 
3349 		/* set bank to 0 in case flash read fails */
3350 		*bank = 0;
3351 
3352 		/* Check bank 0 */
3353 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3354 							 &nvm_dword);
3355 		if (ret_val)
3356 			return ret_val;
3357 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3358 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3359 		    E1000_ICH_NVM_SIG_VALUE) {
3360 			*bank = 0;
3361 			return E1000_SUCCESS;
3362 		}
3363 
3364 		/* Check bank 1 */
3365 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3366 							 bank1_offset,
3367 							 &nvm_dword);
3368 		if (ret_val)
3369 			return ret_val;
3370 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3371 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3372 		    E1000_ICH_NVM_SIG_VALUE) {
3373 			*bank = 1;
3374 			return E1000_SUCCESS;
3375 		}
3376 
3377 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3378 		return -E1000_ERR_NVM;
3379 	case e1000_ich8lan:
3380 	case e1000_ich9lan:
3381 		eecd = E1000_READ_REG(hw, E1000_EECD);
3382 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3383 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3384 			if (eecd & E1000_EECD_SEC1VAL)
3385 				*bank = 1;
3386 			else
3387 				*bank = 0;
3388 
3389 			return E1000_SUCCESS;
3390 		}
3391 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3392 		/* fall-thru */
3393 	default:
3394 		/* set bank to 0 in case flash read fails */
3395 		*bank = 0;
3396 
3397 		/* Check bank 0 */
3398 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3399 							&sig_byte);
3400 		if (ret_val)
3401 			return ret_val;
3402 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3403 		    E1000_ICH_NVM_SIG_VALUE) {
3404 			*bank = 0;
3405 			return E1000_SUCCESS;
3406 		}
3407 
3408 		/* Check bank 1 */
3409 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3410 							bank1_offset,
3411 							&sig_byte);
3412 		if (ret_val)
3413 			return ret_val;
3414 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3415 		    E1000_ICH_NVM_SIG_VALUE) {
3416 			*bank = 1;
3417 			return E1000_SUCCESS;
3418 		}
3419 
3420 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3421 		return -E1000_ERR_NVM;
3422 	}
3423 }
3424 
3425 /**
3426  *  e1000_read_nvm_spt - NVM access for SPT
3427  *  @hw: pointer to the HW structure
3428  *  @offset: The offset (in bytes) of the word(s) to read.
3429  *  @words: Size of data to read in words.
3430  *  @data: pointer to the word(s) to read at offset.
3431  *
3432  *  Reads a word(s) from the NVM
3433  **/
e1000_read_nvm_spt(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3434 STATIC s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3435 			      u16 *data)
3436 {
3437 	struct e1000_nvm_info *nvm = &hw->nvm;
3438 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3439 	u32 act_offset;
3440 	s32 ret_val = E1000_SUCCESS;
3441 	u32 bank = 0;
3442 	u32 dword = 0;
3443 	u16 offset_to_read;
3444 	u16 i;
3445 
3446 	DEBUGFUNC("e1000_read_nvm_spt");
3447 
3448 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3449 	    (words == 0)) {
3450 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3451 		ret_val = -E1000_ERR_NVM;
3452 		goto out;
3453 	}
3454 
3455 	nvm->ops.acquire(hw);
3456 
3457 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3458 	if (ret_val != E1000_SUCCESS) {
3459 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3460 		bank = 0;
3461 	}
3462 
3463 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3464 	act_offset += offset;
3465 
3466 	ret_val = E1000_SUCCESS;
3467 
3468 	for (i = 0; i < words; i += 2) {
3469 		if (words - i == 1) {
3470 			if (dev_spec->shadow_ram[offset + i].modified) {
3471 				data[i] =
3472 				    dev_spec->shadow_ram[offset + i].value;
3473 			} else {
3474 				offset_to_read = act_offset + i -
3475 						 ((act_offset + i) % 2);
3476 				ret_val =
3477 				   e1000_read_flash_dword_ich8lan(hw,
3478 								 offset_to_read,
3479 								 &dword);
3480 				if (ret_val)
3481 					break;
3482 				if ((act_offset + i) % 2 == 0)
3483 					data[i] = (u16)(dword & 0xFFFF);
3484 				else
3485 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3486 			}
3487 		} else {
3488 			offset_to_read = act_offset + i;
3489 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3490 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3491 				ret_val =
3492 				   e1000_read_flash_dword_ich8lan(hw,
3493 								 offset_to_read,
3494 								 &dword);
3495 				if (ret_val)
3496 					break;
3497 			}
3498 			if (dev_spec->shadow_ram[offset + i].modified)
3499 				data[i] =
3500 				    dev_spec->shadow_ram[offset + i].value;
3501 			else
3502 				data[i] = (u16)(dword & 0xFFFF);
3503 			if (dev_spec->shadow_ram[offset + i + 1].modified)
3504 				data[i + 1] =
3505 				   dev_spec->shadow_ram[offset + i + 1].value;
3506 			else
3507 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3508 		}
3509 	}
3510 
3511 	nvm->ops.release(hw);
3512 
3513 out:
3514 	if (ret_val)
3515 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3516 
3517 	return ret_val;
3518 }
3519 
3520 /**
3521  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3522  *  @hw: pointer to the HW structure
3523  *  @offset: The offset (in bytes) of the word(s) to read.
3524  *  @words: Size of data to read in words
3525  *  @data: Pointer to the word(s) to read at offset.
3526  *
3527  *  Reads a word(s) from the NVM using the flash access registers.
3528  **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3529 STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3530 				  u16 *data)
3531 {
3532 	struct e1000_nvm_info *nvm = &hw->nvm;
3533 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3534 	u32 act_offset;
3535 	s32 ret_val = E1000_SUCCESS;
3536 	u32 bank = 0;
3537 	u16 i, word;
3538 
3539 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3540 
3541 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3542 	    (words == 0)) {
3543 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3544 		ret_val = -E1000_ERR_NVM;
3545 		goto out;
3546 	}
3547 
3548 	nvm->ops.acquire(hw);
3549 
3550 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3551 	if (ret_val != E1000_SUCCESS) {
3552 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3553 		bank = 0;
3554 	}
3555 
3556 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3557 	act_offset += offset;
3558 
3559 	ret_val = E1000_SUCCESS;
3560 	for (i = 0; i < words; i++) {
3561 		if (dev_spec->shadow_ram[offset + i].modified) {
3562 			data[i] = dev_spec->shadow_ram[offset + i].value;
3563 		} else {
3564 			ret_val = e1000_read_flash_word_ich8lan(hw,
3565 								act_offset + i,
3566 								&word);
3567 			if (ret_val)
3568 				break;
3569 			data[i] = word;
3570 		}
3571 	}
3572 
3573 	nvm->ops.release(hw);
3574 
3575 out:
3576 	if (ret_val)
3577 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3578 
3579 	return ret_val;
3580 }
3581 
3582 /**
3583  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3584  *  @hw: pointer to the HW structure
3585  *
3586  *  This function does initial flash setup so that a new read/write/erase cycle
3587  *  can be started.
3588  **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)3589 STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3590 {
3591 	union ich8_hws_flash_status hsfsts;
3592 	s32 ret_val = -E1000_ERR_NVM;
3593 
3594 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3595 
3596 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3597 
3598 	/* Check if the flash descriptor is valid */
3599 	if (!hsfsts.hsf_status.fldesvalid) {
3600 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3601 		return -E1000_ERR_NVM;
3602 	}
3603 
3604 	/* Clear FCERR and DAEL in hw status by writing 1 */
3605 	hsfsts.hsf_status.flcerr = 1;
3606 	hsfsts.hsf_status.dael = 1;
3607 	if (hw->mac.type >= e1000_pch_spt)
3608 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3609 				      hsfsts.regval & 0xFFFF);
3610 	else
3611 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3612 
3613 	/* Either we should have a hardware SPI cycle in progress
3614 	 * bit to check against, in order to start a new cycle or
3615 	 * FDONE bit should be changed in the hardware so that it
3616 	 * is 1 after hardware reset, which can then be used as an
3617 	 * indication whether a cycle is in progress or has been
3618 	 * completed.
3619 	 */
3620 
3621 	if (!hsfsts.hsf_status.flcinprog) {
3622 		/* There is no cycle running at present,
3623 		 * so we can start a cycle.
3624 		 * Begin by setting Flash Cycle Done.
3625 		 */
3626 		hsfsts.hsf_status.flcdone = 1;
3627 		if (hw->mac.type >= e1000_pch_spt)
3628 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3629 					      hsfsts.regval & 0xFFFF);
3630 		else
3631 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3632 						hsfsts.regval);
3633 		ret_val = E1000_SUCCESS;
3634 	} else {
3635 		s32 i;
3636 
3637 		/* Otherwise poll for sometime so the current
3638 		 * cycle has a chance to end before giving up.
3639 		 */
3640 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3641 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3642 							      ICH_FLASH_HSFSTS);
3643 			if (!hsfsts.hsf_status.flcinprog) {
3644 				ret_val = E1000_SUCCESS;
3645 				break;
3646 			}
3647 			usec_delay(1);
3648 		}
3649 		if (ret_val == E1000_SUCCESS) {
3650 			/* Successful in waiting for previous cycle to timeout,
3651 			 * now set the Flash Cycle Done.
3652 			 */
3653 			hsfsts.hsf_status.flcdone = 1;
3654 			if (hw->mac.type >= e1000_pch_spt)
3655 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3656 						      hsfsts.regval & 0xFFFF);
3657 			else
3658 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3659 							hsfsts.regval);
3660 		} else {
3661 			DEBUGOUT("Flash controller busy, cannot get access\n");
3662 		}
3663 	}
3664 
3665 	return ret_val;
3666 }
3667 
3668 /**
3669  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3670  *  @hw: pointer to the HW structure
3671  *  @timeout: maximum time to wait for completion
3672  *
3673  *  This function starts a flash cycle and waits for its completion.
3674  **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)3675 STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3676 {
3677 	union ich8_hws_flash_ctrl hsflctl;
3678 	union ich8_hws_flash_status hsfsts;
3679 	u32 i = 0;
3680 
3681 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3682 
3683 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3684 	if (hw->mac.type >= e1000_pch_spt)
3685 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3686 	else
3687 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3688 	hsflctl.hsf_ctrl.flcgo = 1;
3689 
3690 	if (hw->mac.type >= e1000_pch_spt)
3691 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3692 				      hsflctl.regval << 16);
3693 	else
3694 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3695 
3696 	/* wait till FDONE bit is set to 1 */
3697 	do {
3698 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3699 		if (hsfsts.hsf_status.flcdone)
3700 			break;
3701 		usec_delay(1);
3702 	} while (i++ < timeout);
3703 
3704 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3705 		return E1000_SUCCESS;
3706 
3707 	return -E1000_ERR_NVM;
3708 }
3709 
3710 /**
3711  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3712  *  @hw: pointer to the HW structure
3713  *  @offset: offset to data location
3714  *  @data: pointer to the location for storing the data
3715  *
3716  *  Reads the flash dword at offset into data.  Offset is converted
3717  *  to bytes before read.
3718  **/
e1000_read_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3719 STATIC s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3720 					  u32 *data)
3721 {
3722 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3723 
3724 	if (!data)
3725 		return -E1000_ERR_NVM;
3726 
3727 	/* Must convert word offset into bytes. */
3728 	offset <<= 1;
3729 
3730 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3731 }
3732 
3733 /**
3734  *  e1000_read_flash_word_ich8lan - Read word from flash
3735  *  @hw: pointer to the HW structure
3736  *  @offset: offset to data location
3737  *  @data: pointer to the location for storing the data
3738  *
3739  *  Reads the flash word at offset into data.  Offset is converted
3740  *  to bytes before read.
3741  **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)3742 STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3743 					 u16 *data)
3744 {
3745 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3746 
3747 	if (!data)
3748 		return -E1000_ERR_NVM;
3749 
3750 	/* Must convert offset into bytes. */
3751 	offset <<= 1;
3752 
3753 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3754 }
3755 
3756 /**
3757  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3758  *  @hw: pointer to the HW structure
3759  *  @offset: The offset of the byte to read.
3760  *  @data: Pointer to a byte to store the value read.
3761  *
3762  *  Reads a single byte from the NVM using the flash access registers.
3763  **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)3764 STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3765 					 u8 *data)
3766 {
3767 	s32 ret_val;
3768 	u16 word = 0;
3769 
3770 	/* In SPT, only 32 bits access is supported,
3771 	 * so this function should not be called.
3772 	 */
3773 	if (hw->mac.type >= e1000_pch_spt)
3774 		return -E1000_ERR_NVM;
3775 	else
3776 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3777 
3778 	if (ret_val)
3779 		return ret_val;
3780 
3781 	*data = (u8)word;
3782 
3783 	return E1000_SUCCESS;
3784 }
3785 
3786 /**
3787  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3788  *  @hw: pointer to the HW structure
3789  *  @offset: The offset (in bytes) of the byte or word to read.
3790  *  @size: Size of data to read, 1=byte 2=word
3791  *  @data: Pointer to the word to store the value read.
3792  *
3793  *  Reads a byte or word from the NVM using the flash access registers.
3794  **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)3795 STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3796 					 u8 size, u16 *data)
3797 {
3798 	union ich8_hws_flash_status hsfsts;
3799 	union ich8_hws_flash_ctrl hsflctl;
3800 	u32 flash_linear_addr;
3801 	u32 flash_data = 0;
3802 	s32 ret_val = -E1000_ERR_NVM;
3803 	u8 count = 0;
3804 
3805 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3806 
3807 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3808 		return -E1000_ERR_NVM;
3809 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3810 			     hw->nvm.flash_base_addr);
3811 
3812 	do {
3813 		usec_delay(1);
3814 		/* Steps */
3815 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3816 		if (ret_val != E1000_SUCCESS)
3817 			break;
3818 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3819 
3820 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3821 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3822 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3823 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3824 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3825 
3826 		ret_val = e1000_flash_cycle_ich8lan(hw,
3827 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3828 
3829 		/* Check if FCERR is set to 1, if set to 1, clear it
3830 		 * and try the whole sequence a few more times, else
3831 		 * read in (shift in) the Flash Data0, the order is
3832 		 * least significant byte first msb to lsb
3833 		 */
3834 		if (ret_val == E1000_SUCCESS) {
3835 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3836 			if (size == 1)
3837 				*data = (u8)(flash_data & 0x000000FF);
3838 			else if (size == 2)
3839 				*data = (u16)(flash_data & 0x0000FFFF);
3840 			break;
3841 		} else {
3842 			/* If we've gotten here, then things are probably
3843 			 * completely hosed, but if the error condition is
3844 			 * detected, it won't hurt to give it another try...
3845 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3846 			 */
3847 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3848 							      ICH_FLASH_HSFSTS);
3849 			if (hsfsts.hsf_status.flcerr) {
3850 				/* Repeat for some time before giving up. */
3851 				continue;
3852 			} else if (!hsfsts.hsf_status.flcdone) {
3853 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3854 				break;
3855 			}
3856 		}
3857 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3858 
3859 	return ret_val;
3860 }
3861 
3862 /**
3863  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3864  *  @hw: pointer to the HW structure
3865  *  @offset: The offset (in bytes) of the dword to read.
3866  *  @data: Pointer to the dword to store the value read.
3867  *
3868  *  Reads a byte or word from the NVM using the flash access registers.
3869  **/
e1000_read_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3870 STATIC s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3871 					   u32 *data)
3872 {
3873 	union ich8_hws_flash_status hsfsts;
3874 	union ich8_hws_flash_ctrl hsflctl;
3875 	u32 flash_linear_addr;
3876 	s32 ret_val = -E1000_ERR_NVM;
3877 	u8 count = 0;
3878 
3879 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3880 
3881 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3882 		    hw->mac.type < e1000_pch_spt)
3883 			return -E1000_ERR_NVM;
3884 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3885 			     hw->nvm.flash_base_addr);
3886 
3887 	do {
3888 		usec_delay(1);
3889 		/* Steps */
3890 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3891 		if (ret_val != E1000_SUCCESS)
3892 			break;
3893 		/* In SPT, This register is in Lan memory space, not flash.
3894 		 * Therefore, only 32 bit access is supported
3895 		 */
3896 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3897 
3898 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3899 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3900 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3901 		/* In SPT, This register is in Lan memory space, not flash.
3902 		 * Therefore, only 32 bit access is supported
3903 		 */
3904 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3905 				      (u32)hsflctl.regval << 16);
3906 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3907 
3908 		ret_val = e1000_flash_cycle_ich8lan(hw,
3909 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3910 
3911 		/* Check if FCERR is set to 1, if set to 1, clear it
3912 		 * and try the whole sequence a few more times, else
3913 		 * read in (shift in) the Flash Data0, the order is
3914 		 * least significant byte first msb to lsb
3915 		 */
3916 		if (ret_val == E1000_SUCCESS) {
3917 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3918 			break;
3919 		} else {
3920 			/* If we've gotten here, then things are probably
3921 			 * completely hosed, but if the error condition is
3922 			 * detected, it won't hurt to give it another try...
3923 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3924 			 */
3925 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3926 							      ICH_FLASH_HSFSTS);
3927 			if (hsfsts.hsf_status.flcerr) {
3928 				/* Repeat for some time before giving up. */
3929 				continue;
3930 			} else if (!hsfsts.hsf_status.flcdone) {
3931 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3932 				break;
3933 			}
3934 		}
3935 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3936 
3937 	return ret_val;
3938 }
3939 
3940 /**
3941  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3942  *  @hw: pointer to the HW structure
3943  *  @offset: The offset (in bytes) of the word(s) to write.
3944  *  @words: Size of data to write in words
3945  *  @data: Pointer to the word(s) to write at offset.
3946  *
3947  *  Writes a byte or word to the NVM using the flash access registers.
3948  **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3949 STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3950 				   u16 *data)
3951 {
3952 	struct e1000_nvm_info *nvm = &hw->nvm;
3953 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3954 	u16 i;
3955 
3956 	DEBUGFUNC("e1000_write_nvm_ich8lan");
3957 
3958 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3959 	    (words == 0)) {
3960 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3961 		return -E1000_ERR_NVM;
3962 	}
3963 
3964 	nvm->ops.acquire(hw);
3965 
3966 	for (i = 0; i < words; i++) {
3967 		dev_spec->shadow_ram[offset + i].modified = true;
3968 		dev_spec->shadow_ram[offset + i].value = data[i];
3969 	}
3970 
3971 	nvm->ops.release(hw);
3972 
3973 	return E1000_SUCCESS;
3974 }
3975 
3976 /**
3977  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3978  *  @hw: pointer to the HW structure
3979  *
3980  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3981  *  which writes the checksum to the shadow ram.  The changes in the shadow
3982  *  ram are then committed to the EEPROM by processing each bank at a time
3983  *  checking for the modified bit and writing only the pending changes.
3984  *  After a successful commit, the shadow ram is cleared and is ready for
3985  *  future writes.
3986  **/
e1000_update_nvm_checksum_spt(struct e1000_hw * hw)3987 STATIC s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3988 {
3989 	struct e1000_nvm_info *nvm = &hw->nvm;
3990 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3991 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3992 	s32 ret_val;
3993 	u32 dword = 0;
3994 
3995 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
3996 
3997 	ret_val = e1000_update_nvm_checksum_generic(hw);
3998 	if (ret_val)
3999 		goto out;
4000 
4001 	if (nvm->type != e1000_nvm_flash_sw)
4002 		goto out;
4003 
4004 	nvm->ops.acquire(hw);
4005 
4006 	/* We're writing to the opposite bank so if we're on bank 1,
4007 	 * write to bank 0 etc.  We also need to erase the segment that
4008 	 * is going to be written
4009 	 */
4010 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4011 	if (ret_val != E1000_SUCCESS) {
4012 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4013 		bank = 0;
4014 	}
4015 
4016 	if (bank == 0) {
4017 		new_bank_offset = nvm->flash_bank_size;
4018 		old_bank_offset = 0;
4019 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4020 		if (ret_val)
4021 			goto release;
4022 	} else {
4023 		old_bank_offset = nvm->flash_bank_size;
4024 		new_bank_offset = 0;
4025 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4026 		if (ret_val)
4027 			goto release;
4028 	}
4029 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4030 		/* Determine whether to write the value stored
4031 		 * in the other NVM bank or a modified value stored
4032 		 * in the shadow RAM
4033 		 */
4034 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4035 							 i + old_bank_offset,
4036 							 &dword);
4037 
4038 		if (dev_spec->shadow_ram[i].modified) {
4039 			dword &= 0xffff0000;
4040 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4041 		}
4042 		if (dev_spec->shadow_ram[i + 1].modified) {
4043 			dword &= 0x0000ffff;
4044 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4045 				  << 16);
4046 		}
4047 		if (ret_val)
4048 			break;
4049 
4050 		/* If the word is 0x13, then make sure the signature bits
4051 		 * (15:14) are 11b until the commit has completed.
4052 		 * This will allow us to write 10b which indicates the
4053 		 * signature is valid.  We want to do this after the write
4054 		 * has completed so that we don't mark the segment valid
4055 		 * while the write is still in progress
4056 		 */
4057 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4058 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4059 
4060 		/* Convert offset to bytes. */
4061 		act_offset = (i + new_bank_offset) << 1;
4062 
4063 		usec_delay(100);
4064 
4065 		/* Write the data to the new bank. Offset in words*/
4066 		act_offset = i + new_bank_offset;
4067 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4068 								dword);
4069 		if (ret_val)
4070 			break;
4071 	 }
4072 
4073 	/* Don't bother writing the segment valid bits if sector
4074 	 * programming failed.
4075 	 */
4076 	if (ret_val) {
4077 		DEBUGOUT("Flash commit failed.\n");
4078 		goto release;
4079 	}
4080 
4081 	/* Finally validate the new segment by setting bit 15:14
4082 	 * to 10b in word 0x13 , this can be done without an
4083 	 * erase as well since these bits are 11 to start with
4084 	 * and we need to change bit 14 to 0b
4085 	 */
4086 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4087 
4088 	/*offset in words but we read dword*/
4089 	--act_offset;
4090 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4091 
4092 	if (ret_val)
4093 		goto release;
4094 
4095 	dword &= 0xBFFFFFFF;
4096 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4097 
4098 	if (ret_val)
4099 		goto release;
4100 
4101 	/* offset in words but we read dword*/
4102 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4103 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4104 
4105 	if (ret_val)
4106 		goto release;
4107 
4108 	dword &= 0x00FFFFFF;
4109 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4110 
4111 	if (ret_val)
4112 		goto release;
4113 
4114 	/* Great!  Everything worked, we can now clear the cached entries. */
4115 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4116 		dev_spec->shadow_ram[i].modified = false;
4117 		dev_spec->shadow_ram[i].value = 0xFFFF;
4118 	}
4119 
4120 release:
4121 	nvm->ops.release(hw);
4122 
4123 	/* Reload the EEPROM, or else modifications will not appear
4124 	 * until after the next adapter reset.
4125 	 */
4126 	if (!ret_val) {
4127 		nvm->ops.reload(hw);
4128 		msec_delay(10);
4129 	}
4130 
4131 out:
4132 	if (ret_val)
4133 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4134 
4135 	return ret_val;
4136 }
4137 
4138 /**
4139  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4140  *  @hw: pointer to the HW structure
4141  *
4142  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4143  *  which writes the checksum to the shadow ram.  The changes in the shadow
4144  *  ram are then committed to the EEPROM by processing each bank at a time
4145  *  checking for the modified bit and writing only the pending changes.
4146  *  After a successful commit, the shadow ram is cleared and is ready for
4147  *  future writes.
4148  **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)4149 STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4150 {
4151 	struct e1000_nvm_info *nvm = &hw->nvm;
4152 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4153 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4154 	s32 ret_val;
4155 	u16 data = 0;
4156 
4157 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4158 
4159 	ret_val = e1000_update_nvm_checksum_generic(hw);
4160 	if (ret_val)
4161 		goto out;
4162 
4163 	if (nvm->type != e1000_nvm_flash_sw)
4164 		goto out;
4165 
4166 	nvm->ops.acquire(hw);
4167 
4168 	/* We're writing to the opposite bank so if we're on bank 1,
4169 	 * write to bank 0 etc.  We also need to erase the segment that
4170 	 * is going to be written
4171 	 */
4172 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4173 	if (ret_val != E1000_SUCCESS) {
4174 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4175 		bank = 0;
4176 	}
4177 
4178 	if (bank == 0) {
4179 		new_bank_offset = nvm->flash_bank_size;
4180 		old_bank_offset = 0;
4181 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4182 		if (ret_val)
4183 			goto release;
4184 	} else {
4185 		old_bank_offset = nvm->flash_bank_size;
4186 		new_bank_offset = 0;
4187 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4188 		if (ret_val)
4189 			goto release;
4190 	}
4191 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4192 		if (dev_spec->shadow_ram[i].modified) {
4193 			data = dev_spec->shadow_ram[i].value;
4194 		} else {
4195 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4196 								old_bank_offset,
4197 								&data);
4198 			if (ret_val)
4199 				break;
4200 		}
4201 		/* If the word is 0x13, then make sure the signature bits
4202 		 * (15:14) are 11b until the commit has completed.
4203 		 * This will allow us to write 10b which indicates the
4204 		 * signature is valid.  We want to do this after the write
4205 		 * has completed so that we don't mark the segment valid
4206 		 * while the write is still in progress
4207 		 */
4208 		if (i == E1000_ICH_NVM_SIG_WORD)
4209 			data |= E1000_ICH_NVM_SIG_MASK;
4210 
4211 		/* Convert offset to bytes. */
4212 		act_offset = (i + new_bank_offset) << 1;
4213 
4214 		usec_delay(100);
4215 
4216 		/* Write the bytes to the new bank. */
4217 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4218 							       act_offset,
4219 							       (u8)data);
4220 		if (ret_val)
4221 			break;
4222 
4223 		usec_delay(100);
4224 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4225 							  act_offset + 1,
4226 							  (u8)(data >> 8));
4227 		if (ret_val)
4228 			break;
4229 	}
4230 
4231 	/* Don't bother writing the segment valid bits if sector
4232 	 * programming failed.
4233 	 */
4234 	if (ret_val) {
4235 		DEBUGOUT("Flash commit failed.\n");
4236 		goto release;
4237 	}
4238 
4239 	/* Finally validate the new segment by setting bit 15:14
4240 	 * to 10b in word 0x13 , this can be done without an
4241 	 * erase as well since these bits are 11 to start with
4242 	 * and we need to change bit 14 to 0b
4243 	 */
4244 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4245 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4246 	if (ret_val)
4247 		goto release;
4248 
4249 	data &= 0xBFFF;
4250 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4251 						       (u8)(data >> 8));
4252 	if (ret_val)
4253 		goto release;
4254 
4255 	/* And invalidate the previously valid segment by setting
4256 	 * its signature word (0x13) high_byte to 0b. This can be
4257 	 * done without an erase because flash erase sets all bits
4258 	 * to 1's. We can write 1's to 0's without an erase
4259 	 */
4260 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4261 
4262 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4263 
4264 	if (ret_val)
4265 		goto release;
4266 
4267 	/* Great!  Everything worked, we can now clear the cached entries. */
4268 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4269 		dev_spec->shadow_ram[i].modified = false;
4270 		dev_spec->shadow_ram[i].value = 0xFFFF;
4271 	}
4272 
4273 release:
4274 	nvm->ops.release(hw);
4275 
4276 	/* Reload the EEPROM, or else modifications will not appear
4277 	 * until after the next adapter reset.
4278 	 */
4279 	if (!ret_val) {
4280 		nvm->ops.reload(hw);
4281 		msec_delay(10);
4282 	}
4283 
4284 out:
4285 	if (ret_val)
4286 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4287 
4288 	return ret_val;
4289 }
4290 
4291 /**
4292  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4293  *  @hw: pointer to the HW structure
4294  *
4295  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4296  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4297  *  calculated, in which case we need to calculate the checksum and set bit 6.
4298  **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)4299 STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4300 {
4301 	s32 ret_val;
4302 	u16 data;
4303 	u16 word;
4304 	u16 valid_csum_mask;
4305 
4306 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4307 
4308 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4309 	 * the checksum needs to be fixed.  This bit is an indication that
4310 	 * the NVM was prepared by OEM software and did not calculate
4311 	 * the checksum...a likely scenario.
4312 	 */
4313 	switch (hw->mac.type) {
4314 	case e1000_pch_lpt:
4315 	case e1000_pch_spt:
4316 	case e1000_pch_cnp:
4317 	case e1000_pch_adp:
4318 		word = NVM_COMPAT;
4319 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4320 		break;
4321 	default:
4322 		word = NVM_FUTURE_INIT_WORD1;
4323 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4324 		break;
4325 	}
4326 
4327 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4328 	if (ret_val)
4329 		return ret_val;
4330 
4331 	if (!(data & valid_csum_mask)) {
4332 		data |= valid_csum_mask;
4333 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4334 		if (ret_val)
4335 			return ret_val;
4336 		ret_val = hw->nvm.ops.update(hw);
4337 		if (ret_val)
4338 			return ret_val;
4339 	}
4340 
4341 	return e1000_validate_nvm_checksum_generic(hw);
4342 }
4343 
4344 /**
4345  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4346  *  @hw: pointer to the HW structure
4347  *  @offset: The offset (in bytes) of the byte/word to read.
4348  *  @size: Size of data to read, 1=byte 2=word
4349  *  @data: The byte(s) to write to the NVM.
4350  *
4351  *  Writes one/two bytes to the NVM using the flash access registers.
4352  **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)4353 STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4354 					  u8 size, u16 data)
4355 {
4356 	union ich8_hws_flash_status hsfsts;
4357 	union ich8_hws_flash_ctrl hsflctl;
4358 	u32 flash_linear_addr;
4359 	u32 flash_data = 0;
4360 	s32 ret_val;
4361 	u8 count = 0;
4362 
4363 	DEBUGFUNC("e1000_write_ich8_data");
4364 
4365 	if (hw->mac.type >= e1000_pch_spt) {
4366 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4367 			return -E1000_ERR_NVM;
4368 	} else {
4369 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4370 			return -E1000_ERR_NVM;
4371 	}
4372 
4373 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4374 			     hw->nvm.flash_base_addr);
4375 
4376 	do {
4377 		usec_delay(1);
4378 		/* Steps */
4379 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4380 		if (ret_val != E1000_SUCCESS)
4381 			break;
4382 		/* In SPT, This register is in Lan memory space, not
4383 		 * flash.  Therefore, only 32 bit access is supported
4384 		 */
4385 		if (hw->mac.type >= e1000_pch_spt)
4386 			hsflctl.regval =
4387 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4388 		else
4389 			hsflctl.regval =
4390 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4391 
4392 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4393 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4394 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4395 		/* In SPT, This register is in Lan memory space,
4396 		 * not flash.  Therefore, only 32 bit access is
4397 		 * supported
4398 		 */
4399 		if (hw->mac.type >= e1000_pch_spt)
4400 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4401 					      hsflctl.regval << 16);
4402 		else
4403 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4404 						hsflctl.regval);
4405 
4406 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4407 
4408 		if (size == 1)
4409 			flash_data = (u32)data & 0x00FF;
4410 		else
4411 			flash_data = (u32)data;
4412 
4413 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4414 
4415 		/* check if FCERR is set to 1 , if set to 1, clear it
4416 		 * and try the whole sequence a few more times else done
4417 		 */
4418 		ret_val =
4419 		    e1000_flash_cycle_ich8lan(hw,
4420 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4421 		if (ret_val == E1000_SUCCESS)
4422 			break;
4423 
4424 		/* If we're here, then things are most likely
4425 		 * completely hosed, but if the error condition
4426 		 * is detected, it won't hurt to give it another
4427 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4428 		 */
4429 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4430 		if (hsfsts.hsf_status.flcerr)
4431 			/* Repeat for some time before giving up. */
4432 			continue;
4433 		if (!hsfsts.hsf_status.flcdone) {
4434 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4435 			break;
4436 		}
4437 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4438 
4439 	return ret_val;
4440 }
4441 
4442 /**
4443 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4444 *  @hw: pointer to the HW structure
4445 *  @offset: The offset (in bytes) of the dwords to read.
4446 *  @data: The 4 bytes to write to the NVM.
4447 *
4448 *  Writes one/two/four bytes to the NVM using the flash access registers.
4449 **/
e1000_write_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 data)4450 STATIC s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4451 					    u32 data)
4452 {
4453 	union ich8_hws_flash_status hsfsts;
4454 	union ich8_hws_flash_ctrl hsflctl;
4455 	u32 flash_linear_addr;
4456 	s32 ret_val;
4457 	u8 count = 0;
4458 
4459 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4460 
4461 	if (hw->mac.type >= e1000_pch_spt) {
4462 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4463 			return -E1000_ERR_NVM;
4464 	}
4465 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4466 			     hw->nvm.flash_base_addr);
4467 	do {
4468 		usec_delay(1);
4469 		/* Steps */
4470 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4471 		if (ret_val != E1000_SUCCESS)
4472 			break;
4473 
4474 		/* In SPT, This register is in Lan memory space, not
4475 		 * flash.  Therefore, only 32 bit access is supported
4476 		 */
4477 		if (hw->mac.type >= e1000_pch_spt)
4478 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4479 							      ICH_FLASH_HSFSTS)
4480 					 >> 16;
4481 		else
4482 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4483 							      ICH_FLASH_HSFCTL);
4484 
4485 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4486 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4487 
4488 		/* In SPT, This register is in Lan memory space,
4489 		 * not flash.  Therefore, only 32 bit access is
4490 		 * supported
4491 		 */
4492 		if (hw->mac.type >= e1000_pch_spt)
4493 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4494 					      hsflctl.regval << 16);
4495 		else
4496 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4497 						hsflctl.regval);
4498 
4499 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4500 
4501 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4502 
4503 		/* check if FCERR is set to 1 , if set to 1, clear it
4504 		 * and try the whole sequence a few more times else done
4505 		 */
4506 		ret_val = e1000_flash_cycle_ich8lan(hw,
4507 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4508 
4509 		if (ret_val == E1000_SUCCESS)
4510 			break;
4511 
4512 		/* If we're here, then things are most likely
4513 		 * completely hosed, but if the error condition
4514 		 * is detected, it won't hurt to give it another
4515 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4516 		 */
4517 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4518 
4519 		if (hsfsts.hsf_status.flcerr)
4520 			/* Repeat for some time before giving up. */
4521 			continue;
4522 		if (!hsfsts.hsf_status.flcdone) {
4523 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4524 			break;
4525 		}
4526 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4527 
4528 	return ret_val;
4529 }
4530 
4531 /**
4532  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4533  *  @hw: pointer to the HW structure
4534  *  @offset: The index of the byte to read.
4535  *  @data: The byte to write to the NVM.
4536  *
4537  *  Writes a single byte to the NVM using the flash access registers.
4538  **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)4539 STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4540 					  u8 data)
4541 {
4542 	u16 word = (u16)data;
4543 
4544 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4545 
4546 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4547 }
4548 
4549 /**
4550 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4551 *  @hw: pointer to the HW structure
4552 *  @offset: The offset of the word to write.
4553 *  @dword: The dword to write to the NVM.
4554 *
4555 *  Writes a single dword to the NVM using the flash access registers.
4556 *  Goes through a retry algorithm before giving up.
4557 **/
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 dword)4558 STATIC s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4559 						 u32 offset, u32 dword)
4560 {
4561 	s32 ret_val;
4562 	u16 program_retries;
4563 
4564 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4565 
4566 	/* Must convert word offset into bytes. */
4567 	offset <<= 1;
4568 
4569 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4570 
4571 	if (!ret_val)
4572 		return ret_val;
4573 	for (program_retries = 0; program_retries < 100; program_retries++) {
4574 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4575 		usec_delay(100);
4576 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4577 		if (ret_val == E1000_SUCCESS)
4578 			break;
4579 	}
4580 	if (program_retries == 100)
4581 		return -E1000_ERR_NVM;
4582 
4583 	return E1000_SUCCESS;
4584 }
4585 
4586 /**
4587  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4588  *  @hw: pointer to the HW structure
4589  *  @offset: The offset of the byte to write.
4590  *  @byte: The byte to write to the NVM.
4591  *
4592  *  Writes a single byte to the NVM using the flash access registers.
4593  *  Goes through a retry algorithm before giving up.
4594  **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)4595 STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4596 						u32 offset, u8 byte)
4597 {
4598 	s32 ret_val;
4599 	u16 program_retries;
4600 
4601 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4602 
4603 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4604 	if (!ret_val)
4605 		return ret_val;
4606 
4607 	for (program_retries = 0; program_retries < 100; program_retries++) {
4608 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4609 		usec_delay(100);
4610 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4611 		if (ret_val == E1000_SUCCESS)
4612 			break;
4613 	}
4614 	if (program_retries == 100)
4615 		return -E1000_ERR_NVM;
4616 
4617 	return E1000_SUCCESS;
4618 }
4619 
4620 /**
4621  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4622  *  @hw: pointer to the HW structure
4623  *  @bank: 0 for first bank, 1 for second bank, etc.
4624  *
4625  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4626  *  bank N is 4096 * N + flash_reg_addr.
4627  **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)4628 STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4629 {
4630 	struct e1000_nvm_info *nvm = &hw->nvm;
4631 	union ich8_hws_flash_status hsfsts;
4632 	union ich8_hws_flash_ctrl hsflctl;
4633 	u32 flash_linear_addr;
4634 	/* bank size is in 16bit words - adjust to bytes */
4635 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4636 	s32 ret_val;
4637 	s32 count = 0;
4638 	s32 j, iteration, sector_size;
4639 
4640 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4641 
4642 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4643 
4644 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4645 	 * register
4646 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4647 	 *     consecutive sectors.  The start index for the nth Hw sector
4648 	 *     can be calculated as = bank * 4096 + n * 256
4649 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4650 	 *     The start index for the nth Hw sector can be calculated
4651 	 *     as = bank * 4096
4652 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4653 	 *     (ich9 only, otherwise error condition)
4654 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4655 	 */
4656 	switch (hsfsts.hsf_status.berasesz) {
4657 	case 0:
4658 		/* Hw sector size 256 */
4659 		sector_size = ICH_FLASH_SEG_SIZE_256;
4660 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4661 		break;
4662 	case 1:
4663 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4664 		iteration = 1;
4665 		break;
4666 	case 2:
4667 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4668 		iteration = 1;
4669 		break;
4670 	case 3:
4671 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4672 		iteration = 1;
4673 		break;
4674 	default:
4675 		return -E1000_ERR_NVM;
4676 	}
4677 
4678 	/* Start with the base address, then add the sector offset. */
4679 	flash_linear_addr = hw->nvm.flash_base_addr;
4680 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4681 
4682 	for (j = 0; j < iteration; j++) {
4683 		do {
4684 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4685 
4686 			/* Steps */
4687 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4688 			if (ret_val)
4689 				return ret_val;
4690 
4691 			/* Write a value 11 (block Erase) in Flash
4692 			 * Cycle field in hw flash control
4693 			 */
4694 			if (hw->mac.type >= e1000_pch_spt)
4695 				hsflctl.regval =
4696 				    E1000_READ_FLASH_REG(hw,
4697 							 ICH_FLASH_HSFSTS)>>16;
4698 			else
4699 				hsflctl.regval =
4700 				    E1000_READ_FLASH_REG16(hw,
4701 							   ICH_FLASH_HSFCTL);
4702 
4703 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4704 			if (hw->mac.type >= e1000_pch_spt)
4705 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4706 						      hsflctl.regval << 16);
4707 			else
4708 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4709 							hsflctl.regval);
4710 
4711 			/* Write the last 24 bits of an index within the
4712 			 * block into Flash Linear address field in Flash
4713 			 * Address.
4714 			 */
4715 			flash_linear_addr += (j * sector_size);
4716 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4717 					      flash_linear_addr);
4718 
4719 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4720 			if (ret_val == E1000_SUCCESS)
4721 				break;
4722 
4723 			/* Check if FCERR is set to 1.  If 1,
4724 			 * clear it and try the whole sequence
4725 			 * a few more times else Done
4726 			 */
4727 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4728 						      ICH_FLASH_HSFSTS);
4729 			if (hsfsts.hsf_status.flcerr)
4730 				/* repeat for some time before giving up */
4731 				continue;
4732 			else if (!hsfsts.hsf_status.flcdone)
4733 				return ret_val;
4734 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4735 	}
4736 
4737 	return E1000_SUCCESS;
4738 }
4739 
4740 /**
4741  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4742  *  @hw: pointer to the HW structure
4743  *  @data: Pointer to the LED settings
4744  *
4745  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4746  *  settings is all 0's or F's, set the LED default to a valid LED default
4747  *  setting.
4748  **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)4749 STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4750 {
4751 	s32 ret_val;
4752 
4753 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4754 
4755 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4756 	if (ret_val) {
4757 		DEBUGOUT("NVM Read Error\n");
4758 		return ret_val;
4759 	}
4760 
4761 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4762 		*data = ID_LED_DEFAULT_ICH8LAN;
4763 
4764 	return E1000_SUCCESS;
4765 }
4766 
4767 /**
4768  *  e1000_id_led_init_pchlan - store LED configurations
4769  *  @hw: pointer to the HW structure
4770  *
4771  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4772  *  the PHY LED configuration register.
4773  *
4774  *  PCH also does not have an "always on" or "always off" mode which
4775  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4776  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4777  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4778  *  link based on logic in e1000_led_[on|off]_pchlan().
4779  **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)4780 STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4781 {
4782 	struct e1000_mac_info *mac = &hw->mac;
4783 	s32 ret_val;
4784 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4785 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4786 	u16 data, i, temp, shift;
4787 
4788 	DEBUGFUNC("e1000_id_led_init_pchlan");
4789 
4790 	/* Get default ID LED modes */
4791 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4792 	if (ret_val)
4793 		return ret_val;
4794 
4795 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4796 	mac->ledctl_mode1 = mac->ledctl_default;
4797 	mac->ledctl_mode2 = mac->ledctl_default;
4798 
4799 	for (i = 0; i < 4; i++) {
4800 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4801 		shift = (i * 5);
4802 		switch (temp) {
4803 		case ID_LED_ON1_DEF2:
4804 		case ID_LED_ON1_ON2:
4805 		case ID_LED_ON1_OFF2:
4806 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4807 			mac->ledctl_mode1 |= (ledctl_on << shift);
4808 			break;
4809 		case ID_LED_OFF1_DEF2:
4810 		case ID_LED_OFF1_ON2:
4811 		case ID_LED_OFF1_OFF2:
4812 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4813 			mac->ledctl_mode1 |= (ledctl_off << shift);
4814 			break;
4815 		default:
4816 			/* Do nothing */
4817 			break;
4818 		}
4819 		switch (temp) {
4820 		case ID_LED_DEF1_ON2:
4821 		case ID_LED_ON1_ON2:
4822 		case ID_LED_OFF1_ON2:
4823 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4824 			mac->ledctl_mode2 |= (ledctl_on << shift);
4825 			break;
4826 		case ID_LED_DEF1_OFF2:
4827 		case ID_LED_ON1_OFF2:
4828 		case ID_LED_OFF1_OFF2:
4829 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4830 			mac->ledctl_mode2 |= (ledctl_off << shift);
4831 			break;
4832 		default:
4833 			/* Do nothing */
4834 			break;
4835 		}
4836 	}
4837 
4838 	return E1000_SUCCESS;
4839 }
4840 
4841 /**
4842  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4843  *  @hw: pointer to the HW structure
4844  *
4845  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4846  *  register, so the bus width is hard coded.
4847  **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)4848 STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4849 {
4850 	struct e1000_bus_info *bus = &hw->bus;
4851 	s32 ret_val;
4852 
4853 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4854 
4855 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4856 
4857 	/* ICH devices are "PCI Express"-ish.  They have
4858 	 * a configuration space, but do not contain
4859 	 * PCI Express Capability registers, so bus width
4860 	 * must be hardcoded.
4861 	 */
4862 	if (bus->width == e1000_bus_width_unknown)
4863 		bus->width = e1000_bus_width_pcie_x1;
4864 
4865 	return ret_val;
4866 }
4867 
4868 /**
4869  *  e1000_reset_hw_ich8lan - Reset the hardware
4870  *  @hw: pointer to the HW structure
4871  *
4872  *  Does a full reset of the hardware which includes a reset of the PHY and
4873  *  MAC.
4874  **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)4875 STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4876 {
4877 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4878 	u16 kum_cfg;
4879 	u32 ctrl, reg;
4880 	s32 ret_val;
4881 	u16 pci_cfg;
4882 
4883 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4884 
4885 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4886 	 * on the last TLP read/write transaction when MAC is reset.
4887 	 */
4888 	ret_val = e1000_disable_pcie_master_generic(hw);
4889 	if (ret_val)
4890 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4891 
4892 	DEBUGOUT("Masking off all interrupts\n");
4893 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4894 
4895 	/* Disable the Transmit and Receive units.  Then delay to allow
4896 	 * any pending transactions to complete before we hit the MAC
4897 	 * with the global reset.
4898 	 */
4899 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4900 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4901 	E1000_WRITE_FLUSH(hw);
4902 
4903 	msec_delay(10);
4904 
4905 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4906 	if (hw->mac.type == e1000_ich8lan) {
4907 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4908 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4909 		/* Set Packet Buffer Size to 16k. */
4910 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4911 	}
4912 
4913 	if (hw->mac.type == e1000_pchlan) {
4914 		/* Save the NVM K1 bit setting*/
4915 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4916 		if (ret_val)
4917 			return ret_val;
4918 
4919 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4920 			dev_spec->nvm_k1_enabled = true;
4921 		else
4922 			dev_spec->nvm_k1_enabled = false;
4923 	}
4924 
4925 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4926 
4927 	if (!hw->phy.ops.check_reset_block(hw)) {
4928 		/* Full-chip reset requires MAC and PHY reset at the same
4929 		 * time to make sure the interface between MAC and the
4930 		 * external PHY is reset.
4931 		 */
4932 		ctrl |= E1000_CTRL_PHY_RST;
4933 
4934 		/* Gate automatic PHY configuration by hardware on
4935 		 * non-managed 82579
4936 		 */
4937 		if ((hw->mac.type == e1000_pch2lan) &&
4938 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4939 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4940 	}
4941 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4942 
4943 	/* Read from EXTCNF_CTRL in e1000_acquire_swflag_ich8lan function
4944 	 * may occur during global reset and cause system hang.
4945 	 * Configuration space access creates the needed delay.
4946 	 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER value
4947 	 * insures configuration space read is done before global reset.
4948 	 */
4949 	e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
4950 	E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
4951 	DEBUGOUT("Issuing a global reset to ich8lan\n");
4952 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4953 	/* cannot issue a flush here because it hangs the hardware */
4954 	msec_delay(20);
4955 
4956 	/* Configuration space access improve HW level time sync mechanism.
4957 	 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER
4958 	 * value to insure configuration space read is done
4959 	 * before any access to mac register.
4960 	 */
4961 	e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
4962 	E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
4963 
4964 	/* Set Phy Config Counter to 50msec */
4965 	if (hw->mac.type == e1000_pch2lan) {
4966 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4967 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4968 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4969 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4970 	}
4971 
4972 	if (!ret_val)
4973 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4974 
4975 	if (ctrl & E1000_CTRL_PHY_RST) {
4976 		ret_val = hw->phy.ops.get_cfg_done(hw);
4977 		if (ret_val)
4978 			return ret_val;
4979 
4980 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4981 		if (ret_val)
4982 			return ret_val;
4983 	}
4984 
4985 	/* For PCH, this write will make sure that any noise
4986 	 * will be detected as a CRC error and be dropped rather than show up
4987 	 * as a bad packet to the DMA engine.
4988 	 */
4989 	if (hw->mac.type == e1000_pchlan)
4990 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4991 
4992 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4993 	E1000_READ_REG(hw, E1000_ICR);
4994 
4995 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
4996 	reg |= E1000_KABGTXD_BGSQLBIAS;
4997 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4998 
4999 	return E1000_SUCCESS;
5000 }
5001 
5002 /**
5003  *  e1000_init_hw_ich8lan - Initialize the hardware
5004  *  @hw: pointer to the HW structure
5005  *
5006  *  Prepares the hardware for transmit and receive by doing the following:
5007  *   - initialize hardware bits
5008  *   - initialize LED identification
5009  *   - setup receive address registers
5010  *   - setup flow control
5011  *   - setup transmit descriptors
5012  *   - clear statistics
5013  **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)5014 STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5015 {
5016 	struct e1000_mac_info *mac = &hw->mac;
5017 	u32 ctrl_ext, txdctl, snoop;
5018 	s32 ret_val;
5019 	u16 i;
5020 
5021 	DEBUGFUNC("e1000_init_hw_ich8lan");
5022 
5023 	e1000_initialize_hw_bits_ich8lan(hw);
5024 
5025 	/* Initialize identification LED */
5026 	ret_val = mac->ops.id_led_init(hw);
5027 	/* An error is not fatal and we should not stop init due to this */
5028 	if (ret_val)
5029 		DEBUGOUT("Error initializing identification LED\n");
5030 
5031 	/* Setup the receive address. */
5032 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5033 
5034 	/* Zero out the Multicast HASH table */
5035 	DEBUGOUT("Zeroing the MTA\n");
5036 	for (i = 0; i < mac->mta_reg_count; i++)
5037 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5038 
5039 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5040 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5041 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5042 	 */
5043 	if (hw->phy.type == e1000_phy_82578) {
5044 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5045 		i &= ~BM_WUC_HOST_WU_BIT;
5046 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5047 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5048 		if (ret_val)
5049 			return ret_val;
5050 	}
5051 
5052 	/* Setup link and flow control */
5053 	ret_val = mac->ops.setup_link(hw);
5054 
5055 	/* Set the transmit descriptor write-back policy for both queues */
5056 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5057 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5058 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5059 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5060 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5061 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5062 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5063 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5064 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5065 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5066 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5067 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5068 
5069 	/* ICH8 has opposite polarity of no_snoop bits.
5070 	 * By default, we should use snoop behavior.
5071 	 */
5072 	if (mac->type == e1000_ich8lan)
5073 		snoop = PCIE_ICH8_SNOOP_ALL;
5074 	else
5075 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5076 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5077 
5078 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5079 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5080 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5081 
5082 	/* Clear all of the statistics registers (clear on read).  It is
5083 	 * important that we do this after we have tried to establish link
5084 	 * because the symbol error count will increment wildly if there
5085 	 * is no link.
5086 	 */
5087 	e1000_clear_hw_cntrs_ich8lan(hw);
5088 
5089 	return ret_val;
5090 }
5091 
5092 /**
5093  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5094  *  @hw: pointer to the HW structure
5095  *
5096  *  Sets/Clears required hardware bits necessary for correctly setting up the
5097  *  hardware for transmit and receive.
5098  **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)5099 STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5100 {
5101 	u32 reg;
5102 
5103 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5104 
5105 	/* Extended Device Control */
5106 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5107 	reg |= (1 << 22);
5108 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5109 	if (hw->mac.type >= e1000_pchlan)
5110 		reg |= E1000_CTRL_EXT_PHYPDEN;
5111 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5112 
5113 	/* Transmit Descriptor Control 0 */
5114 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5115 	reg |= (1 << 22);
5116 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5117 
5118 	/* Transmit Descriptor Control 1 */
5119 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5120 	reg |= (1 << 22);
5121 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5122 
5123 	/* Transmit Arbitration Control 0 */
5124 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5125 	if (hw->mac.type == e1000_ich8lan)
5126 		reg |= (1 << 28) | (1 << 29);
5127 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5128 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5129 
5130 	/* Transmit Arbitration Control 1 */
5131 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5132 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5133 		reg &= ~(1 << 28);
5134 	else
5135 		reg |= (1 << 28);
5136 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5137 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5138 
5139 	/* Device Status */
5140 	if (hw->mac.type == e1000_ich8lan) {
5141 		reg = E1000_READ_REG(hw, E1000_STATUS);
5142 		reg &= ~(1U << 31);
5143 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5144 	}
5145 
5146 	/* work-around descriptor data corruption issue during nfs v2 udp
5147 	 * traffic, just disable the nfs filtering capability
5148 	 */
5149 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5150 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5151 
5152 	/* Disable IPv6 extension header parsing because some malformed
5153 	 * IPv6 headers can hang the Rx.
5154 	 */
5155 	if (hw->mac.type == e1000_ich8lan)
5156 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5157 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5158 
5159 	/* Enable ECC on Lynxpoint */
5160 	if (hw->mac.type >= e1000_pch_lpt) {
5161 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5162 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5163 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5164 
5165 		reg = E1000_READ_REG(hw, E1000_CTRL);
5166 		reg |= E1000_CTRL_MEHE;
5167 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5168 	}
5169 
5170 	return;
5171 }
5172 
5173 /**
5174  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5175  *  @hw: pointer to the HW structure
5176  *
5177  *  Determines which flow control settings to use, then configures flow
5178  *  control.  Calls the appropriate media-specific link configuration
5179  *  function.  Assuming the adapter has a valid link partner, a valid link
5180  *  should be established.  Assumes the hardware has previously been reset
5181  *  and the transmitter and receiver are not enabled.
5182  **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)5183 STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5184 {
5185 	s32 ret_val;
5186 
5187 	DEBUGFUNC("e1000_setup_link_ich8lan");
5188 
5189 	/* ICH parts do not have a word in the NVM to determine
5190 	 * the default flow control setting, so we explicitly
5191 	 * set it to full.
5192 	 */
5193 	if (hw->fc.requested_mode == e1000_fc_default)
5194 		hw->fc.requested_mode = e1000_fc_full;
5195 
5196 	/* Save off the requested flow control mode for use later.  Depending
5197 	 * on the link partner's capabilities, we may or may not use this mode.
5198 	 */
5199 	hw->fc.current_mode = hw->fc.requested_mode;
5200 
5201 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5202 		hw->fc.current_mode);
5203 
5204 	if (!hw->phy.ops.check_reset_block(hw)) {
5205 		/* Continue to configure the copper link. */
5206 		ret_val = hw->mac.ops.setup_physical_interface(hw);
5207 		if (ret_val)
5208 			return ret_val;
5209 	}
5210 
5211 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5212 	if ((hw->phy.type == e1000_phy_82578) ||
5213 	    (hw->phy.type == e1000_phy_82579) ||
5214 	    (hw->phy.type == e1000_phy_i217) ||
5215 	    (hw->phy.type == e1000_phy_82577)) {
5216 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5217 
5218 		ret_val = hw->phy.ops.write_reg(hw,
5219 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5220 					     hw->fc.pause_time);
5221 		if (ret_val)
5222 			return ret_val;
5223 	}
5224 
5225 	return e1000_set_fc_watermarks_generic(hw);
5226 }
5227 
5228 /**
5229  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5230  *  @hw: pointer to the HW structure
5231  *
5232  *  Configures the kumeran interface to the PHY to wait the appropriate time
5233  *  when polling the PHY, then call the generic setup_copper_link to finish
5234  *  configuring the copper link.
5235  **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)5236 STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5237 {
5238 	u32 ctrl;
5239 	s32 ret_val;
5240 	u16 reg_data;
5241 
5242 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5243 
5244 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5245 	ctrl |= E1000_CTRL_SLU;
5246 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5247 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5248 
5249 	/* Set the mac to wait the maximum time between each iteration
5250 	 * and increase the max iterations when polling the phy;
5251 	 * this fixes erroneous timeouts at 10Mbps.
5252 	 */
5253 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5254 					       0xFFFF);
5255 	if (ret_val)
5256 		return ret_val;
5257 	ret_val = e1000_read_kmrn_reg_generic(hw,
5258 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5259 					      &reg_data);
5260 	if (ret_val)
5261 		return ret_val;
5262 	reg_data |= 0x3F;
5263 	ret_val = e1000_write_kmrn_reg_generic(hw,
5264 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5265 					       reg_data);
5266 	if (ret_val)
5267 		return ret_val;
5268 
5269 	switch (hw->phy.type) {
5270 	case e1000_phy_igp_3:
5271 		ret_val = e1000_copper_link_setup_igp(hw);
5272 		if (ret_val)
5273 			return ret_val;
5274 		break;
5275 	case e1000_phy_bm:
5276 	case e1000_phy_82578:
5277 		ret_val = e1000_copper_link_setup_m88(hw);
5278 		if (ret_val)
5279 			return ret_val;
5280 		break;
5281 	case e1000_phy_82577:
5282 	case e1000_phy_82579:
5283 		ret_val = e1000_copper_link_setup_82577(hw);
5284 		if (ret_val)
5285 			return ret_val;
5286 		break;
5287 	case e1000_phy_ife:
5288 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5289 					       &reg_data);
5290 		if (ret_val)
5291 			return ret_val;
5292 
5293 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5294 
5295 		switch (hw->phy.mdix) {
5296 		case 1:
5297 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5298 			break;
5299 		case 2:
5300 			reg_data |= IFE_PMC_FORCE_MDIX;
5301 			break;
5302 		case 0:
5303 		default:
5304 			reg_data |= IFE_PMC_AUTO_MDIX;
5305 			break;
5306 		}
5307 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5308 						reg_data);
5309 		if (ret_val)
5310 			return ret_val;
5311 		break;
5312 	default:
5313 		break;
5314 	}
5315 
5316 	return e1000_setup_copper_link_generic(hw);
5317 }
5318 
5319 /**
5320  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5321  *  @hw: pointer to the HW structure
5322  *
5323  *  Calls the PHY specific link setup function and then calls the
5324  *  generic setup_copper_link to finish configuring the link for
5325  *  Lynxpoint PCH devices
5326  **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)5327 STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5328 {
5329 	u32 ctrl;
5330 	s32 ret_val;
5331 
5332 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5333 
5334 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5335 	ctrl |= E1000_CTRL_SLU;
5336 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5337 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5338 
5339 	ret_val = e1000_copper_link_setup_82577(hw);
5340 	if (ret_val)
5341 		return ret_val;
5342 
5343 	return e1000_setup_copper_link_generic(hw);
5344 }
5345 
5346 /**
5347  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5348  *  @hw: pointer to the HW structure
5349  *  @speed: pointer to store current link speed
5350  *  @duplex: pointer to store the current link duplex
5351  *
5352  *  Calls the generic get_speed_and_duplex to retrieve the current link
5353  *  information and then calls the Kumeran lock loss workaround for links at
5354  *  gigabit speeds.
5355  **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)5356 STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5357 					  u16 *duplex)
5358 {
5359 	s32 ret_val;
5360 
5361 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5362 
5363 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5364 	if (ret_val)
5365 		return ret_val;
5366 
5367 	if ((hw->mac.type == e1000_ich8lan) &&
5368 	    (hw->phy.type == e1000_phy_igp_3) &&
5369 	    (*speed == SPEED_1000)) {
5370 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5371 	}
5372 
5373 	return ret_val;
5374 }
5375 
5376 /**
5377  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5378  *  @hw: pointer to the HW structure
5379  *
5380  *  Work-around for 82566 Kumeran PCS lock loss:
5381  *  On link status change (i.e. PCI reset, speed change) and link is up and
5382  *  speed is gigabit-
5383  *    0) if workaround is optionally disabled do nothing
5384  *    1) wait 1ms for Kumeran link to come up
5385  *    2) check Kumeran Diagnostic register PCS lock loss bit
5386  *    3) if not set the link is locked (all is good), otherwise...
5387  *    4) reset the PHY
5388  *    5) repeat up to 10 times
5389  *  Note: this is only called for IGP3 copper when speed is 1gb.
5390  **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)5391 STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5392 {
5393 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5394 	u32 phy_ctrl;
5395 	s32 ret_val;
5396 	u16 i, data;
5397 	bool link;
5398 
5399 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5400 
5401 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5402 		return E1000_SUCCESS;
5403 
5404 	/* Make sure link is up before proceeding.  If not just return.
5405 	 * Attempting this while link is negotiating fouled up link
5406 	 * stability
5407 	 */
5408 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5409 	if (!link)
5410 		return E1000_SUCCESS;
5411 
5412 	for (i = 0; i < 10; i++) {
5413 		/* read once to clear */
5414 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5415 		if (ret_val)
5416 			return ret_val;
5417 		/* and again to get new status */
5418 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5419 		if (ret_val)
5420 			return ret_val;
5421 
5422 		/* check for PCS lock */
5423 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5424 			return E1000_SUCCESS;
5425 
5426 		/* Issue PHY reset */
5427 		hw->phy.ops.reset(hw);
5428 		msec_delay_irq(5);
5429 	}
5430 	/* Disable GigE link negotiation */
5431 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5432 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5433 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5434 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5435 
5436 	/* Call gig speed drop workaround on Gig disable before accessing
5437 	 * any PHY registers
5438 	 */
5439 	e1000_gig_downshift_workaround_ich8lan(hw);
5440 
5441 	/* unable to acquire PCS lock */
5442 	return -E1000_ERR_PHY;
5443 }
5444 
5445 /**
5446  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5447  *  @hw: pointer to the HW structure
5448  *  @state: boolean value used to set the current Kumeran workaround state
5449  *
5450  *  If ICH8, set the current Kumeran workaround state (enabled - true
5451  *  /disabled - false).
5452  **/
e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)5453 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5454 						 bool state)
5455 {
5456 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5457 
5458 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5459 
5460 	if (hw->mac.type != e1000_ich8lan) {
5461 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5462 		return;
5463 	}
5464 
5465 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5466 
5467 	return;
5468 }
5469 
5470 /**
5471  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5472  *  @hw: pointer to the HW structure
5473  *
5474  *  Workaround for 82566 power-down on D3 entry:
5475  *    1) disable gigabit link
5476  *    2) write VR power-down enable
5477  *    3) read it back
5478  *  Continue if successful, else issue LCD reset and repeat
5479  **/
e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)5480 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5481 {
5482 	u32 reg;
5483 	u16 data;
5484 	u8  retry = 0;
5485 
5486 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5487 
5488 	if (hw->phy.type != e1000_phy_igp_3)
5489 		return;
5490 
5491 	/* Try the workaround twice (if needed) */
5492 	do {
5493 		/* Disable link */
5494 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5495 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5496 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5497 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5498 
5499 		/* Call gig speed drop workaround on Gig disable before
5500 		 * accessing any PHY registers
5501 		 */
5502 		if (hw->mac.type == e1000_ich8lan)
5503 			e1000_gig_downshift_workaround_ich8lan(hw);
5504 
5505 		/* Write VR power-down enable */
5506 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5507 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5508 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5509 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5510 
5511 		/* Read it back and test */
5512 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5513 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5514 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5515 			break;
5516 
5517 		/* Issue PHY reset and repeat at most one more time */
5518 		reg = E1000_READ_REG(hw, E1000_CTRL);
5519 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5520 		retry++;
5521 	} while (retry);
5522 }
5523 
5524 /**
5525  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5526  *  @hw: pointer to the HW structure
5527  *
5528  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5529  *  LPLU, Gig disable, MDIC PHY reset):
5530  *    1) Set Kumeran Near-end loopback
5531  *    2) Clear Kumeran Near-end loopback
5532  *  Should only be called for ICH8[m] devices with any 1G Phy.
5533  **/
e1000_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)5534 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5535 {
5536 	s32 ret_val;
5537 	u16 reg_data = 0;
5538 
5539 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5540 
5541 	if ((hw->mac.type != e1000_ich8lan) ||
5542 	    (hw->phy.type == e1000_phy_ife))
5543 		return;
5544 
5545 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5546 					      &reg_data);
5547 	if (ret_val)
5548 		return;
5549 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5550 	ret_val = e1000_write_kmrn_reg_generic(hw,
5551 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5552 					       reg_data);
5553 	if (ret_val)
5554 		return;
5555 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5556 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5557 				     reg_data);
5558 }
5559 
5560 /**
5561  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5562  *  @hw: pointer to the HW structure
5563  *
5564  *  During S0 to Sx transition, it is possible the link remains at gig
5565  *  instead of negotiating to a lower speed.  Before going to Sx, set
5566  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5567  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5568  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5569  *  needs to be written.
5570  *  Parts that support (and are linked to a partner which support) EEE in
5571  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5572  *  than 10Mbps w/o EEE.
5573  **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)5574 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5575 {
5576 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5577 	u32 phy_ctrl;
5578 	s32 ret_val;
5579 
5580 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5581 
5582 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5583 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5584 
5585 	if (hw->phy.type == e1000_phy_i217) {
5586 		u16 phy_reg, device_id = hw->device_id;
5587 
5588 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5589 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5590 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5591 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5592 		    (hw->mac.type >= e1000_pch_spt)) {
5593 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5594 
5595 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5596 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5597 		}
5598 
5599 		ret_val = hw->phy.ops.acquire(hw);
5600 		if (ret_val)
5601 			goto out;
5602 
5603 		if (!dev_spec->eee_disable) {
5604 			u16 eee_advert;
5605 
5606 			ret_val =
5607 			    e1000_read_emi_reg_locked(hw,
5608 						      I217_EEE_ADVERTISEMENT,
5609 						      &eee_advert);
5610 			if (ret_val)
5611 				goto release;
5612 
5613 			/* Disable LPLU if both link partners support 100BaseT
5614 			 * EEE and 100Full is advertised on both ends of the
5615 			 * link, and enable Auto Enable LPI since there will
5616 			 * be no driver to enable LPI while in Sx.
5617 			 */
5618 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5619 			    (dev_spec->eee_lp_ability &
5620 			     I82579_EEE_100_SUPPORTED) &&
5621 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5622 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5623 					      E1000_PHY_CTRL_NOND0A_LPLU);
5624 
5625 				/* Set Auto Enable LPI after link up */
5626 				hw->phy.ops.read_reg_locked(hw,
5627 							    I217_LPI_GPIO_CTRL,
5628 							    &phy_reg);
5629 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5630 				hw->phy.ops.write_reg_locked(hw,
5631 							     I217_LPI_GPIO_CTRL,
5632 							     phy_reg);
5633 			}
5634 		}
5635 
5636 		/* For i217 Intel Rapid Start Technology support,
5637 		 * when the system is going into Sx and no manageability engine
5638 		 * is present, the driver must configure proxy to reset only on
5639 		 * power good.  LPI (Low Power Idle) state must also reset only
5640 		 * on power good, as well as the MTA (Multicast table array).
5641 		 * The SMBus release must also be disabled on LCD reset.
5642 		 */
5643 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5644 		      E1000_ICH_FWSM_FW_VALID)) {
5645 			/* Enable proxy to reset only on power good. */
5646 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5647 						    &phy_reg);
5648 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5649 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5650 						     phy_reg);
5651 
5652 			/* Set bit enable LPI (EEE) to reset only on
5653 			 * power good.
5654 			*/
5655 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5656 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5657 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5658 
5659 			/* Disable the SMB release on LCD reset. */
5660 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5661 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5662 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5663 		}
5664 
5665 		/* Enable MTA to reset for Intel Rapid Start Technology
5666 		 * Support
5667 		 */
5668 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5669 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5670 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5671 
5672 release:
5673 		hw->phy.ops.release(hw);
5674 	}
5675 out:
5676 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5677 
5678 	if (hw->mac.type == e1000_ich8lan)
5679 		e1000_gig_downshift_workaround_ich8lan(hw);
5680 
5681 	if (hw->mac.type >= e1000_pchlan) {
5682 		e1000_oem_bits_config_ich8lan(hw, false);
5683 
5684 		/* Reset PHY to activate OEM bits on 82577/8 */
5685 		if (hw->mac.type == e1000_pchlan)
5686 			e1000_phy_hw_reset_generic(hw);
5687 
5688 		ret_val = hw->phy.ops.acquire(hw);
5689 		if (ret_val)
5690 			return;
5691 		e1000_write_smbus_addr(hw);
5692 		hw->phy.ops.release(hw);
5693 	}
5694 
5695 	return;
5696 }
5697 
5698 /**
5699  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5700  *  @hw: pointer to the HW structure
5701  *
5702  *  During Sx to S0 transitions on non-managed devices or managed devices
5703  *  on which PHY resets are not blocked, if the PHY registers cannot be
5704  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5705  *  the PHY.
5706  *  On i217, setup Intel Rapid Start Technology.
5707  **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)5708 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5709 {
5710 	s32 ret_val;
5711 
5712 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5713 	if (hw->mac.type < e1000_pch2lan)
5714 		return E1000_SUCCESS;
5715 
5716 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5717 	if (ret_val) {
5718 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5719 		return ret_val;
5720 	}
5721 
5722 	/* For i217 Intel Rapid Start Technology support when the system
5723 	 * is transitioning from Sx and no manageability engine is present
5724 	 * configure SMBus to restore on reset, disable proxy, and enable
5725 	 * the reset on MTA (Multicast table array).
5726 	 */
5727 	if (hw->phy.type == e1000_phy_i217) {
5728 		u16 phy_reg;
5729 
5730 		ret_val = hw->phy.ops.acquire(hw);
5731 		if (ret_val) {
5732 			DEBUGOUT("Failed to setup iRST\n");
5733 			return ret_val;
5734 		}
5735 
5736 		/* Clear Auto Enable LPI after link up */
5737 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5738 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5739 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5740 
5741 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5742 		    E1000_ICH_FWSM_FW_VALID)) {
5743 			/* Restore clear on SMB if no manageability engine
5744 			 * is present
5745 			 */
5746 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5747 							      &phy_reg);
5748 			if (ret_val)
5749 				goto release;
5750 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5751 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5752 
5753 			/* Disable Proxy */
5754 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5755 		}
5756 		/* Enable reset on MTA */
5757 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5758 						      &phy_reg);
5759 		if (ret_val)
5760 			goto release;
5761 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5762 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5763 release:
5764 		if (ret_val)
5765 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5766 		hw->phy.ops.release(hw);
5767 		return ret_val;
5768 	}
5769 	return E1000_SUCCESS;
5770 }
5771 
5772 /**
5773  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5774  *  @hw: pointer to the HW structure
5775  *
5776  *  Return the LED back to the default configuration.
5777  **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)5778 STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5779 {
5780 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5781 
5782 	if (hw->phy.type == e1000_phy_ife)
5783 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5784 					     0);
5785 
5786 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5787 	return E1000_SUCCESS;
5788 }
5789 
5790 /**
5791  *  e1000_led_on_ich8lan - Turn LEDs on
5792  *  @hw: pointer to the HW structure
5793  *
5794  *  Turn on the LEDs.
5795  **/
e1000_led_on_ich8lan(struct e1000_hw * hw)5796 STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5797 {
5798 	DEBUGFUNC("e1000_led_on_ich8lan");
5799 
5800 	if (hw->phy.type == e1000_phy_ife)
5801 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5802 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5803 
5804 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5805 	return E1000_SUCCESS;
5806 }
5807 
5808 /**
5809  *  e1000_led_off_ich8lan - Turn LEDs off
5810  *  @hw: pointer to the HW structure
5811  *
5812  *  Turn off the LEDs.
5813  **/
e1000_led_off_ich8lan(struct e1000_hw * hw)5814 STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5815 {
5816 	DEBUGFUNC("e1000_led_off_ich8lan");
5817 
5818 	if (hw->phy.type == e1000_phy_ife)
5819 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5820 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5821 
5822 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5823 	return E1000_SUCCESS;
5824 }
5825 
5826 /**
5827  *  e1000_setup_led_pchlan - Configures SW controllable LED
5828  *  @hw: pointer to the HW structure
5829  *
5830  *  This prepares the SW controllable LED for use.
5831  **/
e1000_setup_led_pchlan(struct e1000_hw * hw)5832 STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5833 {
5834 	DEBUGFUNC("e1000_setup_led_pchlan");
5835 
5836 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5837 				     (u16)hw->mac.ledctl_mode1);
5838 }
5839 
5840 /**
5841  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5842  *  @hw: pointer to the HW structure
5843  *
5844  *  Return the LED back to the default configuration.
5845  **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)5846 STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5847 {
5848 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5849 
5850 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5851 				     (u16)hw->mac.ledctl_default);
5852 }
5853 
5854 /**
5855  *  e1000_led_on_pchlan - Turn LEDs on
5856  *  @hw: pointer to the HW structure
5857  *
5858  *  Turn on the LEDs.
5859  **/
e1000_led_on_pchlan(struct e1000_hw * hw)5860 STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5861 {
5862 	u16 data = (u16)hw->mac.ledctl_mode2;
5863 	u32 i, led;
5864 
5865 	DEBUGFUNC("e1000_led_on_pchlan");
5866 
5867 	/* If no link, then turn LED on by setting the invert bit
5868 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5869 	 */
5870 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5871 		for (i = 0; i < 3; i++) {
5872 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5873 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5874 			    E1000_LEDCTL_MODE_LINK_UP)
5875 				continue;
5876 			if (led & E1000_PHY_LED0_IVRT)
5877 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5878 			else
5879 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5880 		}
5881 	}
5882 
5883 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5884 }
5885 
5886 /**
5887  *  e1000_led_off_pchlan - Turn LEDs off
5888  *  @hw: pointer to the HW structure
5889  *
5890  *  Turn off the LEDs.
5891  **/
e1000_led_off_pchlan(struct e1000_hw * hw)5892 STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5893 {
5894 	u16 data = (u16)hw->mac.ledctl_mode1;
5895 	u32 i, led;
5896 
5897 	DEBUGFUNC("e1000_led_off_pchlan");
5898 
5899 	/* If no link, then turn LED off by clearing the invert bit
5900 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5901 	 */
5902 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5903 		for (i = 0; i < 3; i++) {
5904 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5905 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5906 			    E1000_LEDCTL_MODE_LINK_UP)
5907 				continue;
5908 			if (led & E1000_PHY_LED0_IVRT)
5909 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5910 			else
5911 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5912 		}
5913 	}
5914 
5915 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5916 }
5917 
5918 /**
5919  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5920  *  @hw: pointer to the HW structure
5921  *
5922  *  Read appropriate register for the config done bit for completion status
5923  *  and configure the PHY through s/w for EEPROM-less parts.
5924  *
5925  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5926  *  config done bit, so only an error is logged and continues.  If we were
5927  *  to return with error, EEPROM-less silicon would not be able to be reset
5928  *  or change link.
5929  **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)5930 STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5931 {
5932 	s32 ret_val = E1000_SUCCESS;
5933 	u32 bank = 0;
5934 	u32 status;
5935 
5936 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5937 
5938 	e1000_get_cfg_done_generic(hw);
5939 
5940 	/* Wait for indication from h/w that it has completed basic config */
5941 	if (hw->mac.type >= e1000_ich10lan) {
5942 		e1000_lan_init_done_ich8lan(hw);
5943 	} else {
5944 		ret_val = e1000_get_auto_rd_done_generic(hw);
5945 		if (ret_val) {
5946 			/* When auto config read does not complete, do not
5947 			 * return with an error. This can happen in situations
5948 			 * where there is no eeprom and prevents getting link.
5949 			 */
5950 			DEBUGOUT("Auto Read Done did not complete\n");
5951 			ret_val = E1000_SUCCESS;
5952 		}
5953 	}
5954 
5955 	/* Clear PHY Reset Asserted bit */
5956 	status = E1000_READ_REG(hw, E1000_STATUS);
5957 	if (status & E1000_STATUS_PHYRA)
5958 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5959 	else
5960 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5961 
5962 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5963 	if (hw->mac.type <= e1000_ich9lan) {
5964 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5965 		    (hw->phy.type == e1000_phy_igp_3)) {
5966 			e1000_phy_init_script_igp3(hw);
5967 		}
5968 	} else {
5969 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5970 			/* Maybe we should do a basic PHY config */
5971 			DEBUGOUT("EEPROM not present\n");
5972 			ret_val = -E1000_ERR_CONFIG;
5973 		}
5974 	}
5975 
5976 	return ret_val;
5977 }
5978 
5979 /**
5980  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5981  * @hw: pointer to the HW structure
5982  *
5983  * In the case of a PHY power down to save power, or to turn off link during a
5984  * driver unload, or wake on lan is not enabled, remove the link.
5985  **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)5986 STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5987 {
5988 	/* If the management interface is not enabled, then power down */
5989 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5990 	      hw->phy.ops.check_reset_block(hw)))
5991 		e1000_power_down_phy_copper(hw);
5992 
5993 	return;
5994 }
5995 
5996 /**
5997  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5998  *  @hw: pointer to the HW structure
5999  *
6000  *  Clears hardware counters specific to the silicon family and calls
6001  *  clear_hw_cntrs_generic to clear all general purpose counters.
6002  **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)6003 STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6004 {
6005 	u16 phy_data;
6006 	s32 ret_val;
6007 
6008 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6009 
6010 	e1000_clear_hw_cntrs_base_generic(hw);
6011 
6012 	E1000_READ_REG(hw, E1000_ALGNERRC);
6013 	E1000_READ_REG(hw, E1000_RXERRC);
6014 	E1000_READ_REG(hw, E1000_TNCRS);
6015 	E1000_READ_REG(hw, E1000_CEXTERR);
6016 	E1000_READ_REG(hw, E1000_TSCTC);
6017 	E1000_READ_REG(hw, E1000_TSCTFC);
6018 
6019 	E1000_READ_REG(hw, E1000_MGTPRC);
6020 	E1000_READ_REG(hw, E1000_MGTPDC);
6021 	E1000_READ_REG(hw, E1000_MGTPTC);
6022 
6023 	E1000_READ_REG(hw, E1000_IAC);
6024 	E1000_READ_REG(hw, E1000_ICRXOC);
6025 
6026 	/* Clear PHY statistics registers */
6027 	if ((hw->phy.type == e1000_phy_82578) ||
6028 	    (hw->phy.type == e1000_phy_82579) ||
6029 	    (hw->phy.type == e1000_phy_i217) ||
6030 	    (hw->phy.type == e1000_phy_82577)) {
6031 		ret_val = hw->phy.ops.acquire(hw);
6032 		if (ret_val)
6033 			return;
6034 		ret_val = hw->phy.ops.set_page(hw,
6035 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6036 		if (ret_val)
6037 			goto release;
6038 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6039 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6040 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6041 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6042 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6043 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6044 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6045 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6046 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6047 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6048 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6049 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6050 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6051 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6052 release:
6053 		hw->phy.ops.release(hw);
6054 	}
6055 }
6056 
6057 /**
6058  *  e1000_configure_k0s_lpt - Configure K0s power state
6059  *  @hw: pointer to the HW structure
6060  *  @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3.
6061  *	0 corresponds to 128ns, each value over 0 doubles the duration.
6062  *  @min_time: Minimum Tx idle period allowed  - valid values are 0 to 4.
6063  *	0 corresponds to 128ns, each value over 0 doubles the duration.
6064  *
6065  *  Configure the K1 power state based on the provided parameter.
6066  *  Assumes semaphore already acquired.
6067  *
6068  *  Success returns 0, Failure returns:
6069  *	-E1000_ERR_PHY (-2) in case of access error
6070  *	-E1000_ERR_PARAM (-4) in case of parameters error
6071  **/
e1000_configure_k0s_lpt(struct e1000_hw * hw,u8 entry_latency,u8 min_time)6072 s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time)
6073 {
6074 	s32 ret_val;
6075 	u16 kmrn_reg = 0;
6076 
6077 	DEBUGFUNC("e1000_configure_k0s_lpt");
6078 
6079 	if (entry_latency > 3 || min_time > 4)
6080 		return -E1000_ERR_PARAM;
6081 
6082 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6083 					     &kmrn_reg);
6084 	if (ret_val)
6085 		return ret_val;
6086 
6087 	/* for now don't touch the latency */
6088 	kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK);
6089 	kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT));
6090 
6091 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6092 					      kmrn_reg);
6093 	if (ret_val)
6094 		return ret_val;
6095 
6096 	return E1000_SUCCESS;
6097 }
6098