1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 *
24 * Extended attributes (xattr) on Solaris are implemented as files
25 * which exist in a hidden xattr directory. These extended attributes
26 * can be accessed using the attropen() system call which opens
27 * the extended attribute. It can then be manipulated just like
28 * a standard file descriptor. This has a couple advantages such
29 * as practically no size limit on the file, and the extended
30 * attributes permissions may differ from those of the parent file.
31 * This interface is really quite clever, but it's also completely
32 * different than what is supported on Linux. It also comes with a
33 * steep performance penalty when accessing small xattrs because they
34 * are not stored with the parent file.
35 *
36 * Under Linux extended attributes are manipulated by the system
37 * calls getxattr(2), setxattr(2), and listxattr(2). They consider
38 * extended attributes to be name/value pairs where the name is a
39 * NULL terminated string. The name must also include one of the
40 * following namespace prefixes:
41 *
42 * user - No restrictions and is available to user applications.
43 * trusted - Restricted to kernel and root (CAP_SYS_ADMIN) use.
44 * system - Used for access control lists (system.nfs4_acl, etc).
45 * security - Used by SELinux to store a files security context.
46 *
47 * The value under Linux to limited to 65536 bytes of binary data.
48 * In practice, individual xattrs tend to be much smaller than this
49 * and are typically less than 100 bytes. A good example of this
50 * are the security.selinux xattrs which are less than 100 bytes and
51 * exist for every file when xattr labeling is enabled.
52 *
53 * The Linux xattr implementation has been written to take advantage of
54 * this typical usage. When the dataset property 'xattr=sa' is set,
55 * then xattrs will be preferentially stored as System Attributes (SA).
56 * This allows tiny xattrs (~100 bytes) to be stored with the dnode and
57 * up to 64k of xattrs to be stored in the spill block. If additional
58 * xattr space is required, which is unlikely under Linux, they will
59 * be stored using the traditional directory approach.
60 *
61 * This optimization results in roughly a 3x performance improvement
62 * when accessing xattrs because it avoids the need to perform a seek
63 * for every xattr value. When multiple xattrs are stored per-file
64 * the performance improvements are even greater because all of the
65 * xattrs stored in the spill block will be cached.
66 *
67 * However, by default SA based xattrs are disabled in the Linux port
68 * to maximize compatibility with other implementations. If you do
69 * enable SA based xattrs then they will not be visible on platforms
70 * which do not support this feature.
71 *
72 * NOTE: One additional consequence of the xattr directory implementation
73 * is that when an extended attribute is manipulated an inode is created.
74 * This inode will exist in the Linux inode cache but there will be no
75 * associated entry in the dentry cache which references it. This is
76 * safe but it may result in some confusion. Enabling SA based xattrs
77 * largely avoids the issue except in the overflow case.
78 */
79
80 #include <sys/zfs_znode.h>
81 #include <sys/zfs_vfsops.h>
82 #include <sys/zfs_vnops.h>
83 #include <sys/zap.h>
84 #include <sys/vfs.h>
85 #include <sys/zpl.h>
86
87 typedef struct xattr_filldir {
88 size_t size;
89 size_t offset;
90 char *buf;
91 struct dentry *dentry;
92 } xattr_filldir_t;
93
94 static const struct xattr_handler *zpl_xattr_handler(const char *);
95
96 static int
zpl_xattr_permission(xattr_filldir_t * xf,const char * name,int name_len)97 zpl_xattr_permission(xattr_filldir_t *xf, const char *name, int name_len)
98 {
99 static const struct xattr_handler *handler;
100 struct dentry *d = xf->dentry;
101
102 handler = zpl_xattr_handler(name);
103 if (!handler)
104 return (0);
105
106 if (handler->list) {
107 #if defined(HAVE_XATTR_LIST_SIMPLE)
108 if (!handler->list(d))
109 return (0);
110 #elif defined(HAVE_XATTR_LIST_DENTRY)
111 if (!handler->list(d, NULL, 0, name, name_len, 0))
112 return (0);
113 #elif defined(HAVE_XATTR_LIST_HANDLER)
114 if (!handler->list(handler, d, NULL, 0, name, name_len))
115 return (0);
116 #endif
117 }
118
119 return (1);
120 }
121
122 /*
123 * Determine is a given xattr name should be visible and if so copy it
124 * in to the provided buffer (xf->buf).
125 */
126 static int
zpl_xattr_filldir(xattr_filldir_t * xf,const char * name,int name_len)127 zpl_xattr_filldir(xattr_filldir_t *xf, const char *name, int name_len)
128 {
129 /* Check permissions using the per-namespace list xattr handler. */
130 if (!zpl_xattr_permission(xf, name, name_len))
131 return (0);
132
133 /* When xf->buf is NULL only calculate the required size. */
134 if (xf->buf) {
135 if (xf->offset + name_len + 1 > xf->size)
136 return (-ERANGE);
137
138 memcpy(xf->buf + xf->offset, name, name_len);
139 xf->buf[xf->offset + name_len] = '\0';
140 }
141
142 xf->offset += (name_len + 1);
143
144 return (0);
145 }
146
147 /*
148 * Read as many directory entry names as will fit in to the provided buffer,
149 * or when no buffer is provided calculate the required buffer size.
150 */
151 static int
zpl_xattr_readdir(struct inode * dxip,xattr_filldir_t * xf)152 zpl_xattr_readdir(struct inode *dxip, xattr_filldir_t *xf)
153 {
154 zap_cursor_t zc;
155 zap_attribute_t zap;
156 int error;
157
158 zap_cursor_init(&zc, ITOZSB(dxip)->z_os, ITOZ(dxip)->z_id);
159
160 while ((error = -zap_cursor_retrieve(&zc, &zap)) == 0) {
161
162 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
163 error = -ENXIO;
164 break;
165 }
166
167 error = zpl_xattr_filldir(xf, zap.za_name, strlen(zap.za_name));
168 if (error)
169 break;
170
171 zap_cursor_advance(&zc);
172 }
173
174 zap_cursor_fini(&zc);
175
176 if (error == -ENOENT)
177 error = 0;
178
179 return (error);
180 }
181
182 static ssize_t
zpl_xattr_list_dir(xattr_filldir_t * xf,cred_t * cr)183 zpl_xattr_list_dir(xattr_filldir_t *xf, cred_t *cr)
184 {
185 struct inode *ip = xf->dentry->d_inode;
186 struct inode *dxip = NULL;
187 znode_t *dxzp;
188 int error;
189
190 /* Lookup the xattr directory */
191 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR,
192 cr, NULL, NULL);
193 if (error) {
194 if (error == -ENOENT)
195 error = 0;
196
197 return (error);
198 }
199
200 dxip = ZTOI(dxzp);
201 error = zpl_xattr_readdir(dxip, xf);
202 iput(dxip);
203
204 return (error);
205 }
206
207 static ssize_t
zpl_xattr_list_sa(xattr_filldir_t * xf)208 zpl_xattr_list_sa(xattr_filldir_t *xf)
209 {
210 znode_t *zp = ITOZ(xf->dentry->d_inode);
211 nvpair_t *nvp = NULL;
212 int error = 0;
213
214 mutex_enter(&zp->z_lock);
215 if (zp->z_xattr_cached == NULL)
216 error = -zfs_sa_get_xattr(zp);
217 mutex_exit(&zp->z_lock);
218
219 if (error)
220 return (error);
221
222 ASSERT(zp->z_xattr_cached);
223
224 while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) {
225 ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY);
226
227 error = zpl_xattr_filldir(xf, nvpair_name(nvp),
228 strlen(nvpair_name(nvp)));
229 if (error)
230 return (error);
231 }
232
233 return (0);
234 }
235
236 ssize_t
zpl_xattr_list(struct dentry * dentry,char * buffer,size_t buffer_size)237 zpl_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size)
238 {
239 znode_t *zp = ITOZ(dentry->d_inode);
240 zfsvfs_t *zfsvfs = ZTOZSB(zp);
241 xattr_filldir_t xf = { buffer_size, 0, buffer, dentry };
242 cred_t *cr = CRED();
243 fstrans_cookie_t cookie;
244 int error = 0;
245
246 crhold(cr);
247 cookie = spl_fstrans_mark();
248 ZPL_ENTER(zfsvfs);
249 ZPL_VERIFY_ZP(zp);
250 rw_enter(&zp->z_xattr_lock, RW_READER);
251
252 if (zfsvfs->z_use_sa && zp->z_is_sa) {
253 error = zpl_xattr_list_sa(&xf);
254 if (error)
255 goto out;
256 }
257
258 error = zpl_xattr_list_dir(&xf, cr);
259 if (error)
260 goto out;
261
262 error = xf.offset;
263 out:
264
265 rw_exit(&zp->z_xattr_lock);
266 ZPL_EXIT(zfsvfs);
267 spl_fstrans_unmark(cookie);
268 crfree(cr);
269
270 return (error);
271 }
272
273 static int
zpl_xattr_get_dir(struct inode * ip,const char * name,void * value,size_t size,cred_t * cr)274 zpl_xattr_get_dir(struct inode *ip, const char *name, void *value,
275 size_t size, cred_t *cr)
276 {
277 fstrans_cookie_t cookie;
278 struct inode *xip = NULL;
279 znode_t *dxzp = NULL;
280 znode_t *xzp = NULL;
281 int error;
282
283 /* Lookup the xattr directory */
284 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, LOOKUP_XATTR,
285 cr, NULL, NULL);
286 if (error)
287 goto out;
288
289 /* Lookup a specific xattr name in the directory */
290 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL);
291 if (error)
292 goto out;
293
294 xip = ZTOI(xzp);
295 if (!size) {
296 error = i_size_read(xip);
297 goto out;
298 }
299
300 if (size < i_size_read(xip)) {
301 error = -ERANGE;
302 goto out;
303 }
304
305 struct iovec iov;
306 iov.iov_base = (void *)value;
307 iov.iov_len = size;
308
309 uio_t uio;
310 uio_iovec_init(&uio, &iov, 1, 0, UIO_SYSSPACE, size, 0);
311
312 cookie = spl_fstrans_mark();
313 error = -zfs_read(ITOZ(xip), &uio, 0, cr);
314 spl_fstrans_unmark(cookie);
315
316 if (error == 0)
317 error = size - uio_resid(&uio);
318 out:
319 if (xzp)
320 zrele(xzp);
321
322 if (dxzp)
323 zrele(dxzp);
324
325 return (error);
326 }
327
328 static int
zpl_xattr_get_sa(struct inode * ip,const char * name,void * value,size_t size)329 zpl_xattr_get_sa(struct inode *ip, const char *name, void *value, size_t size)
330 {
331 znode_t *zp = ITOZ(ip);
332 uchar_t *nv_value;
333 uint_t nv_size;
334 int error = 0;
335
336 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
337
338 mutex_enter(&zp->z_lock);
339 if (zp->z_xattr_cached == NULL)
340 error = -zfs_sa_get_xattr(zp);
341 mutex_exit(&zp->z_lock);
342
343 if (error)
344 return (error);
345
346 ASSERT(zp->z_xattr_cached);
347 error = -nvlist_lookup_byte_array(zp->z_xattr_cached, name,
348 &nv_value, &nv_size);
349 if (error)
350 return (error);
351
352 if (size == 0 || value == NULL)
353 return (nv_size);
354
355 if (size < nv_size)
356 return (-ERANGE);
357
358 memcpy(value, nv_value, nv_size);
359
360 return (nv_size);
361 }
362
363 static int
__zpl_xattr_get(struct inode * ip,const char * name,void * value,size_t size,cred_t * cr)364 __zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size,
365 cred_t *cr)
366 {
367 znode_t *zp = ITOZ(ip);
368 zfsvfs_t *zfsvfs = ZTOZSB(zp);
369 int error;
370
371 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
372
373 if (zfsvfs->z_use_sa && zp->z_is_sa) {
374 error = zpl_xattr_get_sa(ip, name, value, size);
375 if (error != -ENOENT)
376 goto out;
377 }
378
379 error = zpl_xattr_get_dir(ip, name, value, size, cr);
380 out:
381 if (error == -ENOENT)
382 error = -ENODATA;
383
384 return (error);
385 }
386
387 #define XATTR_NOENT 0x0
388 #define XATTR_IN_SA 0x1
389 #define XATTR_IN_DIR 0x2
390 /* check where the xattr resides */
391 static int
__zpl_xattr_where(struct inode * ip,const char * name,int * where,cred_t * cr)392 __zpl_xattr_where(struct inode *ip, const char *name, int *where, cred_t *cr)
393 {
394 znode_t *zp = ITOZ(ip);
395 zfsvfs_t *zfsvfs = ZTOZSB(zp);
396 int error;
397
398 ASSERT(where);
399 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
400
401 *where = XATTR_NOENT;
402 if (zfsvfs->z_use_sa && zp->z_is_sa) {
403 error = zpl_xattr_get_sa(ip, name, NULL, 0);
404 if (error >= 0)
405 *where |= XATTR_IN_SA;
406 else if (error != -ENOENT)
407 return (error);
408 }
409
410 error = zpl_xattr_get_dir(ip, name, NULL, 0, cr);
411 if (error >= 0)
412 *where |= XATTR_IN_DIR;
413 else if (error != -ENOENT)
414 return (error);
415
416 if (*where == (XATTR_IN_SA|XATTR_IN_DIR))
417 cmn_err(CE_WARN, "ZFS: inode %p has xattr \"%s\""
418 " in both SA and dir", ip, name);
419 if (*where == XATTR_NOENT)
420 error = -ENODATA;
421 else
422 error = 0;
423 return (error);
424 }
425
426 static int
zpl_xattr_get(struct inode * ip,const char * name,void * value,size_t size)427 zpl_xattr_get(struct inode *ip, const char *name, void *value, size_t size)
428 {
429 znode_t *zp = ITOZ(ip);
430 zfsvfs_t *zfsvfs = ZTOZSB(zp);
431 cred_t *cr = CRED();
432 fstrans_cookie_t cookie;
433 int error;
434
435 crhold(cr);
436 cookie = spl_fstrans_mark();
437 ZPL_ENTER(zfsvfs);
438 ZPL_VERIFY_ZP(zp);
439 rw_enter(&zp->z_xattr_lock, RW_READER);
440 error = __zpl_xattr_get(ip, name, value, size, cr);
441 rw_exit(&zp->z_xattr_lock);
442 ZPL_EXIT(zfsvfs);
443 spl_fstrans_unmark(cookie);
444 crfree(cr);
445
446 return (error);
447 }
448
449 static int
zpl_xattr_set_dir(struct inode * ip,const char * name,const void * value,size_t size,int flags,cred_t * cr)450 zpl_xattr_set_dir(struct inode *ip, const char *name, const void *value,
451 size_t size, int flags, cred_t *cr)
452 {
453 znode_t *dxzp = NULL;
454 znode_t *xzp = NULL;
455 vattr_t *vap = NULL;
456 int lookup_flags, error;
457 const int xattr_mode = S_IFREG | 0644;
458 loff_t pos = 0;
459
460 /*
461 * Lookup the xattr directory. When we're adding an entry pass
462 * CREATE_XATTR_DIR to ensure the xattr directory is created.
463 * When removing an entry this flag is not passed to avoid
464 * unnecessarily creating a new xattr directory.
465 */
466 lookup_flags = LOOKUP_XATTR;
467 if (value != NULL)
468 lookup_flags |= CREATE_XATTR_DIR;
469
470 error = -zfs_lookup(ITOZ(ip), NULL, &dxzp, lookup_flags,
471 cr, NULL, NULL);
472 if (error)
473 goto out;
474
475 /* Lookup a specific xattr name in the directory */
476 error = -zfs_lookup(dxzp, (char *)name, &xzp, 0, cr, NULL, NULL);
477 if (error && (error != -ENOENT))
478 goto out;
479
480 error = 0;
481
482 /* Remove a specific name xattr when value is set to NULL. */
483 if (value == NULL) {
484 if (xzp)
485 error = -zfs_remove(dxzp, (char *)name, cr, 0);
486
487 goto out;
488 }
489
490 /* Lookup failed create a new xattr. */
491 if (xzp == NULL) {
492 vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP);
493 vap->va_mode = xattr_mode;
494 vap->va_mask = ATTR_MODE;
495 vap->va_uid = crgetfsuid(cr);
496 vap->va_gid = crgetfsgid(cr);
497
498 error = -zfs_create(dxzp, (char *)name, vap, 0, 0644, &xzp,
499 cr, 0, NULL);
500 if (error)
501 goto out;
502 }
503
504 ASSERT(xzp != NULL);
505
506 error = -zfs_freesp(xzp, 0, 0, xattr_mode, TRUE);
507 if (error)
508 goto out;
509
510 error = -zfs_write_simple(xzp, value, size, pos, NULL);
511 out:
512 if (error == 0) {
513 ip->i_ctime = current_time(ip);
514 zfs_mark_inode_dirty(ip);
515 }
516
517 if (vap)
518 kmem_free(vap, sizeof (vattr_t));
519
520 if (xzp)
521 zrele(xzp);
522
523 if (dxzp)
524 zrele(dxzp);
525
526 if (error == -ENOENT)
527 error = -ENODATA;
528
529 ASSERT3S(error, <=, 0);
530
531 return (error);
532 }
533
534 static int
zpl_xattr_set_sa(struct inode * ip,const char * name,const void * value,size_t size,int flags,cred_t * cr)535 zpl_xattr_set_sa(struct inode *ip, const char *name, const void *value,
536 size_t size, int flags, cred_t *cr)
537 {
538 znode_t *zp = ITOZ(ip);
539 nvlist_t *nvl;
540 size_t sa_size;
541 int error = 0;
542
543 mutex_enter(&zp->z_lock);
544 if (zp->z_xattr_cached == NULL)
545 error = -zfs_sa_get_xattr(zp);
546 mutex_exit(&zp->z_lock);
547
548 if (error)
549 return (error);
550
551 ASSERT(zp->z_xattr_cached);
552 nvl = zp->z_xattr_cached;
553
554 if (value == NULL) {
555 error = -nvlist_remove(nvl, name, DATA_TYPE_BYTE_ARRAY);
556 if (error == -ENOENT)
557 error = zpl_xattr_set_dir(ip, name, NULL, 0, flags, cr);
558 } else {
559 /* Limited to 32k to keep nvpair memory allocations small */
560 if (size > DXATTR_MAX_ENTRY_SIZE)
561 return (-EFBIG);
562
563 /* Prevent the DXATTR SA from consuming the entire SA region */
564 error = -nvlist_size(nvl, &sa_size, NV_ENCODE_XDR);
565 if (error)
566 return (error);
567
568 if (sa_size > DXATTR_MAX_SA_SIZE)
569 return (-EFBIG);
570
571 error = -nvlist_add_byte_array(nvl, name,
572 (uchar_t *)value, size);
573 }
574
575 /*
576 * Update the SA for additions, modifications, and removals. On
577 * error drop the inconsistent cached version of the nvlist, it
578 * will be reconstructed from the ARC when next accessed.
579 */
580 if (error == 0)
581 error = -zfs_sa_set_xattr(zp);
582
583 if (error) {
584 nvlist_free(nvl);
585 zp->z_xattr_cached = NULL;
586 }
587
588 ASSERT3S(error, <=, 0);
589
590 return (error);
591 }
592
593 static int
zpl_xattr_set(struct inode * ip,const char * name,const void * value,size_t size,int flags)594 zpl_xattr_set(struct inode *ip, const char *name, const void *value,
595 size_t size, int flags)
596 {
597 znode_t *zp = ITOZ(ip);
598 zfsvfs_t *zfsvfs = ZTOZSB(zp);
599 cred_t *cr = CRED();
600 fstrans_cookie_t cookie;
601 int where;
602 int error;
603
604 crhold(cr);
605 cookie = spl_fstrans_mark();
606 ZPL_ENTER(zfsvfs);
607 ZPL_VERIFY_ZP(zp);
608 rw_enter(&ITOZ(ip)->z_xattr_lock, RW_WRITER);
609
610 /*
611 * Before setting the xattr check to see if it already exists.
612 * This is done to ensure the following optional flags are honored.
613 *
614 * XATTR_CREATE: fail if xattr already exists
615 * XATTR_REPLACE: fail if xattr does not exist
616 *
617 * We also want to know if it resides in sa or dir, so we can make
618 * sure we don't end up with duplicate in both places.
619 */
620 error = __zpl_xattr_where(ip, name, &where, cr);
621 if (error < 0) {
622 if (error != -ENODATA)
623 goto out;
624 if (flags & XATTR_REPLACE)
625 goto out;
626
627 /* The xattr to be removed already doesn't exist */
628 error = 0;
629 if (value == NULL)
630 goto out;
631 } else {
632 error = -EEXIST;
633 if (flags & XATTR_CREATE)
634 goto out;
635 }
636
637 /* Preferentially store the xattr as a SA for better performance */
638 if (zfsvfs->z_use_sa && zp->z_is_sa &&
639 (zfsvfs->z_xattr_sa || (value == NULL && where & XATTR_IN_SA))) {
640 error = zpl_xattr_set_sa(ip, name, value, size, flags, cr);
641 if (error == 0) {
642 /*
643 * Successfully put into SA, we need to clear the one
644 * in dir.
645 */
646 if (where & XATTR_IN_DIR)
647 zpl_xattr_set_dir(ip, name, NULL, 0, 0, cr);
648 goto out;
649 }
650 }
651
652 error = zpl_xattr_set_dir(ip, name, value, size, flags, cr);
653 /*
654 * Successfully put into dir, we need to clear the one in SA.
655 */
656 if (error == 0 && (where & XATTR_IN_SA))
657 zpl_xattr_set_sa(ip, name, NULL, 0, 0, cr);
658 out:
659 rw_exit(&ITOZ(ip)->z_xattr_lock);
660 ZPL_EXIT(zfsvfs);
661 spl_fstrans_unmark(cookie);
662 crfree(cr);
663 ASSERT3S(error, <=, 0);
664
665 return (error);
666 }
667
668 /*
669 * Extended user attributes
670 *
671 * "Extended user attributes may be assigned to files and directories for
672 * storing arbitrary additional information such as the mime type,
673 * character set or encoding of a file. The access permissions for user
674 * attributes are defined by the file permission bits: read permission
675 * is required to retrieve the attribute value, and writer permission is
676 * required to change it.
677 *
678 * The file permission bits of regular files and directories are
679 * interpreted differently from the file permission bits of special
680 * files and symbolic links. For regular files and directories the file
681 * permission bits define access to the file's contents, while for
682 * device special files they define access to the device described by
683 * the special file. The file permissions of symbolic links are not
684 * used in access checks. These differences would allow users to
685 * consume filesystem resources in a way not controllable by disk quotas
686 * for group or world writable special files and directories.
687 *
688 * For this reason, extended user attributes are allowed only for
689 * regular files and directories, and access to extended user attributes
690 * is restricted to the owner and to users with appropriate capabilities
691 * for directories with the sticky bit set (see the chmod(1) manual page
692 * for an explanation of the sticky bit)." - xattr(7)
693 *
694 * ZFS allows extended user attributes to be disabled administratively
695 * by setting the 'xattr=off' property on the dataset.
696 */
697 static int
__zpl_xattr_user_list(struct inode * ip,char * list,size_t list_size,const char * name,size_t name_len)698 __zpl_xattr_user_list(struct inode *ip, char *list, size_t list_size,
699 const char *name, size_t name_len)
700 {
701 return (ITOZSB(ip)->z_flags & ZSB_XATTR);
702 }
703 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_user_list);
704
705 static int
__zpl_xattr_user_get(struct inode * ip,const char * name,void * value,size_t size)706 __zpl_xattr_user_get(struct inode *ip, const char *name,
707 void *value, size_t size)
708 {
709 char *xattr_name;
710 int error;
711 /* xattr_resolve_name will do this for us if this is defined */
712 #ifndef HAVE_XATTR_HANDLER_NAME
713 if (strcmp(name, "") == 0)
714 return (-EINVAL);
715 #endif
716 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
717 return (-EOPNOTSUPP);
718
719 xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
720 error = zpl_xattr_get(ip, xattr_name, value, size);
721 kmem_strfree(xattr_name);
722
723 return (error);
724 }
725 ZPL_XATTR_GET_WRAPPER(zpl_xattr_user_get);
726
727 static int
__zpl_xattr_user_set(struct inode * ip,const char * name,const void * value,size_t size,int flags)728 __zpl_xattr_user_set(struct inode *ip, const char *name,
729 const void *value, size_t size, int flags)
730 {
731 char *xattr_name;
732 int error;
733 /* xattr_resolve_name will do this for us if this is defined */
734 #ifndef HAVE_XATTR_HANDLER_NAME
735 if (strcmp(name, "") == 0)
736 return (-EINVAL);
737 #endif
738 if (!(ITOZSB(ip)->z_flags & ZSB_XATTR))
739 return (-EOPNOTSUPP);
740
741 xattr_name = kmem_asprintf("%s%s", XATTR_USER_PREFIX, name);
742 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
743 kmem_strfree(xattr_name);
744
745 return (error);
746 }
747 ZPL_XATTR_SET_WRAPPER(zpl_xattr_user_set);
748
749 xattr_handler_t zpl_xattr_user_handler =
750 {
751 .prefix = XATTR_USER_PREFIX,
752 .list = zpl_xattr_user_list,
753 .get = zpl_xattr_user_get,
754 .set = zpl_xattr_user_set,
755 };
756
757 /*
758 * Trusted extended attributes
759 *
760 * "Trusted extended attributes are visible and accessible only to
761 * processes that have the CAP_SYS_ADMIN capability. Attributes in this
762 * class are used to implement mechanisms in user space (i.e., outside
763 * the kernel) which keep information in extended attributes to which
764 * ordinary processes should not have access." - xattr(7)
765 */
766 static int
__zpl_xattr_trusted_list(struct inode * ip,char * list,size_t list_size,const char * name,size_t name_len)767 __zpl_xattr_trusted_list(struct inode *ip, char *list, size_t list_size,
768 const char *name, size_t name_len)
769 {
770 return (capable(CAP_SYS_ADMIN));
771 }
772 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_trusted_list);
773
774 static int
__zpl_xattr_trusted_get(struct inode * ip,const char * name,void * value,size_t size)775 __zpl_xattr_trusted_get(struct inode *ip, const char *name,
776 void *value, size_t size)
777 {
778 char *xattr_name;
779 int error;
780
781 if (!capable(CAP_SYS_ADMIN))
782 return (-EACCES);
783 /* xattr_resolve_name will do this for us if this is defined */
784 #ifndef HAVE_XATTR_HANDLER_NAME
785 if (strcmp(name, "") == 0)
786 return (-EINVAL);
787 #endif
788 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
789 error = zpl_xattr_get(ip, xattr_name, value, size);
790 kmem_strfree(xattr_name);
791
792 return (error);
793 }
794 ZPL_XATTR_GET_WRAPPER(zpl_xattr_trusted_get);
795
796 static int
__zpl_xattr_trusted_set(struct inode * ip,const char * name,const void * value,size_t size,int flags)797 __zpl_xattr_trusted_set(struct inode *ip, const char *name,
798 const void *value, size_t size, int flags)
799 {
800 char *xattr_name;
801 int error;
802
803 if (!capable(CAP_SYS_ADMIN))
804 return (-EACCES);
805 /* xattr_resolve_name will do this for us if this is defined */
806 #ifndef HAVE_XATTR_HANDLER_NAME
807 if (strcmp(name, "") == 0)
808 return (-EINVAL);
809 #endif
810 xattr_name = kmem_asprintf("%s%s", XATTR_TRUSTED_PREFIX, name);
811 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
812 kmem_strfree(xattr_name);
813
814 return (error);
815 }
816 ZPL_XATTR_SET_WRAPPER(zpl_xattr_trusted_set);
817
818 xattr_handler_t zpl_xattr_trusted_handler =
819 {
820 .prefix = XATTR_TRUSTED_PREFIX,
821 .list = zpl_xattr_trusted_list,
822 .get = zpl_xattr_trusted_get,
823 .set = zpl_xattr_trusted_set,
824 };
825
826 /*
827 * Extended security attributes
828 *
829 * "The security attribute namespace is used by kernel security modules,
830 * such as Security Enhanced Linux, and also to implement file
831 * capabilities (see capabilities(7)). Read and write access
832 * permissions to security attributes depend on the policy implemented
833 * for each security attribute by the security module. When no security
834 * module is loaded, all processes have read access to extended security
835 * attributes, and write access is limited to processes that have the
836 * CAP_SYS_ADMIN capability." - xattr(7)
837 */
838 static int
__zpl_xattr_security_list(struct inode * ip,char * list,size_t list_size,const char * name,size_t name_len)839 __zpl_xattr_security_list(struct inode *ip, char *list, size_t list_size,
840 const char *name, size_t name_len)
841 {
842 return (1);
843 }
844 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_security_list);
845
846 static int
__zpl_xattr_security_get(struct inode * ip,const char * name,void * value,size_t size)847 __zpl_xattr_security_get(struct inode *ip, const char *name,
848 void *value, size_t size)
849 {
850 char *xattr_name;
851 int error;
852 /* xattr_resolve_name will do this for us if this is defined */
853 #ifndef HAVE_XATTR_HANDLER_NAME
854 if (strcmp(name, "") == 0)
855 return (-EINVAL);
856 #endif
857 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
858 error = zpl_xattr_get(ip, xattr_name, value, size);
859 kmem_strfree(xattr_name);
860
861 return (error);
862 }
863 ZPL_XATTR_GET_WRAPPER(zpl_xattr_security_get);
864
865 static int
__zpl_xattr_security_set(struct inode * ip,const char * name,const void * value,size_t size,int flags)866 __zpl_xattr_security_set(struct inode *ip, const char *name,
867 const void *value, size_t size, int flags)
868 {
869 char *xattr_name;
870 int error;
871 /* xattr_resolve_name will do this for us if this is defined */
872 #ifndef HAVE_XATTR_HANDLER_NAME
873 if (strcmp(name, "") == 0)
874 return (-EINVAL);
875 #endif
876 xattr_name = kmem_asprintf("%s%s", XATTR_SECURITY_PREFIX, name);
877 error = zpl_xattr_set(ip, xattr_name, value, size, flags);
878 kmem_strfree(xattr_name);
879
880 return (error);
881 }
882 ZPL_XATTR_SET_WRAPPER(zpl_xattr_security_set);
883
884 static int
zpl_xattr_security_init_impl(struct inode * ip,const struct xattr * xattrs,void * fs_info)885 zpl_xattr_security_init_impl(struct inode *ip, const struct xattr *xattrs,
886 void *fs_info)
887 {
888 const struct xattr *xattr;
889 int error = 0;
890
891 for (xattr = xattrs; xattr->name != NULL; xattr++) {
892 error = __zpl_xattr_security_set(ip,
893 xattr->name, xattr->value, xattr->value_len, 0);
894
895 if (error < 0)
896 break;
897 }
898
899 return (error);
900 }
901
902 int
zpl_xattr_security_init(struct inode * ip,struct inode * dip,const struct qstr * qstr)903 zpl_xattr_security_init(struct inode *ip, struct inode *dip,
904 const struct qstr *qstr)
905 {
906 return security_inode_init_security(ip, dip, qstr,
907 &zpl_xattr_security_init_impl, NULL);
908 }
909
910 /*
911 * Security xattr namespace handlers.
912 */
913 xattr_handler_t zpl_xattr_security_handler = {
914 .prefix = XATTR_SECURITY_PREFIX,
915 .list = zpl_xattr_security_list,
916 .get = zpl_xattr_security_get,
917 .set = zpl_xattr_security_set,
918 };
919
920 /*
921 * Extended system attributes
922 *
923 * "Extended system attributes are used by the kernel to store system
924 * objects such as Access Control Lists. Read and write access permissions
925 * to system attributes depend on the policy implemented for each system
926 * attribute implemented by filesystems in the kernel." - xattr(7)
927 */
928 #ifdef CONFIG_FS_POSIX_ACL
929 #ifndef HAVE_SET_ACL
930 static
931 #endif
932 int
zpl_set_acl(struct inode * ip,struct posix_acl * acl,int type)933 zpl_set_acl(struct inode *ip, struct posix_acl *acl, int type)
934 {
935 char *name, *value = NULL;
936 int error = 0;
937 size_t size = 0;
938
939 if (S_ISLNK(ip->i_mode))
940 return (-EOPNOTSUPP);
941
942 switch (type) {
943 case ACL_TYPE_ACCESS:
944 name = XATTR_NAME_POSIX_ACL_ACCESS;
945 if (acl) {
946 umode_t mode = ip->i_mode;
947 error = posix_acl_equiv_mode(acl, &mode);
948 if (error < 0) {
949 return (error);
950 } else {
951 /*
952 * The mode bits will have been set by
953 * ->zfs_setattr()->zfs_acl_chmod_setattr()
954 * using the ZFS ACL conversion. If they
955 * differ from the Posix ACL conversion dirty
956 * the inode to write the Posix mode bits.
957 */
958 if (ip->i_mode != mode) {
959 ip->i_mode = mode;
960 ip->i_ctime = current_time(ip);
961 zfs_mark_inode_dirty(ip);
962 }
963
964 if (error == 0)
965 acl = NULL;
966 }
967 }
968 break;
969
970 case ACL_TYPE_DEFAULT:
971 name = XATTR_NAME_POSIX_ACL_DEFAULT;
972 if (!S_ISDIR(ip->i_mode))
973 return (acl ? -EACCES : 0);
974 break;
975
976 default:
977 return (-EINVAL);
978 }
979
980 if (acl) {
981 size = posix_acl_xattr_size(acl->a_count);
982 value = kmem_alloc(size, KM_SLEEP);
983
984 error = zpl_acl_to_xattr(acl, value, size);
985 if (error < 0) {
986 kmem_free(value, size);
987 return (error);
988 }
989 }
990
991 error = zpl_xattr_set(ip, name, value, size, 0);
992 if (value)
993 kmem_free(value, size);
994
995 if (!error) {
996 if (acl)
997 zpl_set_cached_acl(ip, type, acl);
998 else
999 zpl_forget_cached_acl(ip, type);
1000 }
1001
1002 return (error);
1003 }
1004
1005 struct posix_acl *
zpl_get_acl(struct inode * ip,int type)1006 zpl_get_acl(struct inode *ip, int type)
1007 {
1008 struct posix_acl *acl;
1009 void *value = NULL;
1010 char *name;
1011 int size;
1012
1013 /*
1014 * As of Linux 3.14, the kernel get_acl will check this for us.
1015 * Also as of Linux 4.7, comparing against ACL_NOT_CACHED is wrong
1016 * as the kernel get_acl will set it to temporary sentinel value.
1017 */
1018 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
1019 acl = get_cached_acl(ip, type);
1020 if (acl != ACL_NOT_CACHED)
1021 return (acl);
1022 #endif
1023
1024 switch (type) {
1025 case ACL_TYPE_ACCESS:
1026 name = XATTR_NAME_POSIX_ACL_ACCESS;
1027 break;
1028 case ACL_TYPE_DEFAULT:
1029 name = XATTR_NAME_POSIX_ACL_DEFAULT;
1030 break;
1031 default:
1032 return (ERR_PTR(-EINVAL));
1033 }
1034
1035 size = zpl_xattr_get(ip, name, NULL, 0);
1036 if (size > 0) {
1037 value = kmem_alloc(size, KM_SLEEP);
1038 size = zpl_xattr_get(ip, name, value, size);
1039 }
1040
1041 if (size > 0) {
1042 acl = zpl_acl_from_xattr(value, size);
1043 } else if (size == -ENODATA || size == -ENOSYS) {
1044 acl = NULL;
1045 } else {
1046 acl = ERR_PTR(-EIO);
1047 }
1048
1049 if (size > 0)
1050 kmem_free(value, size);
1051
1052 /* As of Linux 4.7, the kernel get_acl will set this for us */
1053 #ifndef HAVE_KERNEL_GET_ACL_HANDLE_CACHE
1054 if (!IS_ERR(acl))
1055 zpl_set_cached_acl(ip, type, acl);
1056 #endif
1057
1058 return (acl);
1059 }
1060
1061 int
zpl_init_acl(struct inode * ip,struct inode * dir)1062 zpl_init_acl(struct inode *ip, struct inode *dir)
1063 {
1064 struct posix_acl *acl = NULL;
1065 int error = 0;
1066
1067 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1068 return (0);
1069
1070 if (!S_ISLNK(ip->i_mode)) {
1071 acl = zpl_get_acl(dir, ACL_TYPE_DEFAULT);
1072 if (IS_ERR(acl))
1073 return (PTR_ERR(acl));
1074 if (!acl) {
1075 ip->i_mode &= ~current_umask();
1076 ip->i_ctime = current_time(ip);
1077 zfs_mark_inode_dirty(ip);
1078 return (0);
1079 }
1080 }
1081
1082 if (acl) {
1083 umode_t mode;
1084
1085 if (S_ISDIR(ip->i_mode)) {
1086 error = zpl_set_acl(ip, acl, ACL_TYPE_DEFAULT);
1087 if (error)
1088 goto out;
1089 }
1090
1091 mode = ip->i_mode;
1092 error = __posix_acl_create(&acl, GFP_KERNEL, &mode);
1093 if (error >= 0) {
1094 ip->i_mode = mode;
1095 zfs_mark_inode_dirty(ip);
1096 if (error > 0)
1097 error = zpl_set_acl(ip, acl, ACL_TYPE_ACCESS);
1098 }
1099 }
1100 out:
1101 zpl_posix_acl_release(acl);
1102
1103 return (error);
1104 }
1105
1106 int
zpl_chmod_acl(struct inode * ip)1107 zpl_chmod_acl(struct inode *ip)
1108 {
1109 struct posix_acl *acl;
1110 int error;
1111
1112 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1113 return (0);
1114
1115 if (S_ISLNK(ip->i_mode))
1116 return (-EOPNOTSUPP);
1117
1118 acl = zpl_get_acl(ip, ACL_TYPE_ACCESS);
1119 if (IS_ERR(acl) || !acl)
1120 return (PTR_ERR(acl));
1121
1122 error = __posix_acl_chmod(&acl, GFP_KERNEL, ip->i_mode);
1123 if (!error)
1124 error = zpl_set_acl(ip, acl, ACL_TYPE_ACCESS);
1125
1126 zpl_posix_acl_release(acl);
1127
1128 return (error);
1129 }
1130
1131 static int
__zpl_xattr_acl_list_access(struct inode * ip,char * list,size_t list_size,const char * name,size_t name_len)1132 __zpl_xattr_acl_list_access(struct inode *ip, char *list, size_t list_size,
1133 const char *name, size_t name_len)
1134 {
1135 char *xattr_name = XATTR_NAME_POSIX_ACL_ACCESS;
1136 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_ACCESS);
1137
1138 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1139 return (0);
1140
1141 if (list && xattr_size <= list_size)
1142 memcpy(list, xattr_name, xattr_size);
1143
1144 return (xattr_size);
1145 }
1146 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_access);
1147
1148 static int
__zpl_xattr_acl_list_default(struct inode * ip,char * list,size_t list_size,const char * name,size_t name_len)1149 __zpl_xattr_acl_list_default(struct inode *ip, char *list, size_t list_size,
1150 const char *name, size_t name_len)
1151 {
1152 char *xattr_name = XATTR_NAME_POSIX_ACL_DEFAULT;
1153 size_t xattr_size = sizeof (XATTR_NAME_POSIX_ACL_DEFAULT);
1154
1155 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1156 return (0);
1157
1158 if (list && xattr_size <= list_size)
1159 memcpy(list, xattr_name, xattr_size);
1160
1161 return (xattr_size);
1162 }
1163 ZPL_XATTR_LIST_WRAPPER(zpl_xattr_acl_list_default);
1164
1165 static int
__zpl_xattr_acl_get_access(struct inode * ip,const char * name,void * buffer,size_t size)1166 __zpl_xattr_acl_get_access(struct inode *ip, const char *name,
1167 void *buffer, size_t size)
1168 {
1169 struct posix_acl *acl;
1170 int type = ACL_TYPE_ACCESS;
1171 int error;
1172 /* xattr_resolve_name will do this for us if this is defined */
1173 #ifndef HAVE_XATTR_HANDLER_NAME
1174 if (strcmp(name, "") != 0)
1175 return (-EINVAL);
1176 #endif
1177 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1178 return (-EOPNOTSUPP);
1179
1180 acl = zpl_get_acl(ip, type);
1181 if (IS_ERR(acl))
1182 return (PTR_ERR(acl));
1183 if (acl == NULL)
1184 return (-ENODATA);
1185
1186 error = zpl_acl_to_xattr(acl, buffer, size);
1187 zpl_posix_acl_release(acl);
1188
1189 return (error);
1190 }
1191 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_access);
1192
1193 static int
__zpl_xattr_acl_get_default(struct inode * ip,const char * name,void * buffer,size_t size)1194 __zpl_xattr_acl_get_default(struct inode *ip, const char *name,
1195 void *buffer, size_t size)
1196 {
1197 struct posix_acl *acl;
1198 int type = ACL_TYPE_DEFAULT;
1199 int error;
1200 /* xattr_resolve_name will do this for us if this is defined */
1201 #ifndef HAVE_XATTR_HANDLER_NAME
1202 if (strcmp(name, "") != 0)
1203 return (-EINVAL);
1204 #endif
1205 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1206 return (-EOPNOTSUPP);
1207
1208 acl = zpl_get_acl(ip, type);
1209 if (IS_ERR(acl))
1210 return (PTR_ERR(acl));
1211 if (acl == NULL)
1212 return (-ENODATA);
1213
1214 error = zpl_acl_to_xattr(acl, buffer, size);
1215 zpl_posix_acl_release(acl);
1216
1217 return (error);
1218 }
1219 ZPL_XATTR_GET_WRAPPER(zpl_xattr_acl_get_default);
1220
1221 static int
__zpl_xattr_acl_set_access(struct inode * ip,const char * name,const void * value,size_t size,int flags)1222 __zpl_xattr_acl_set_access(struct inode *ip, const char *name,
1223 const void *value, size_t size, int flags)
1224 {
1225 struct posix_acl *acl;
1226 int type = ACL_TYPE_ACCESS;
1227 int error = 0;
1228 /* xattr_resolve_name will do this for us if this is defined */
1229 #ifndef HAVE_XATTR_HANDLER_NAME
1230 if (strcmp(name, "") != 0)
1231 return (-EINVAL);
1232 #endif
1233 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1234 return (-EOPNOTSUPP);
1235
1236 if (!inode_owner_or_capable(ip))
1237 return (-EPERM);
1238
1239 if (value) {
1240 acl = zpl_acl_from_xattr(value, size);
1241 if (IS_ERR(acl))
1242 return (PTR_ERR(acl));
1243 else if (acl) {
1244 error = zpl_posix_acl_valid(ip, acl);
1245 if (error) {
1246 zpl_posix_acl_release(acl);
1247 return (error);
1248 }
1249 }
1250 } else {
1251 acl = NULL;
1252 }
1253
1254 error = zpl_set_acl(ip, acl, type);
1255 zpl_posix_acl_release(acl);
1256
1257 return (error);
1258 }
1259 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_access);
1260
1261 static int
__zpl_xattr_acl_set_default(struct inode * ip,const char * name,const void * value,size_t size,int flags)1262 __zpl_xattr_acl_set_default(struct inode *ip, const char *name,
1263 const void *value, size_t size, int flags)
1264 {
1265 struct posix_acl *acl;
1266 int type = ACL_TYPE_DEFAULT;
1267 int error = 0;
1268 /* xattr_resolve_name will do this for us if this is defined */
1269 #ifndef HAVE_XATTR_HANDLER_NAME
1270 if (strcmp(name, "") != 0)
1271 return (-EINVAL);
1272 #endif
1273 if (ITOZSB(ip)->z_acl_type != ZFS_ACLTYPE_POSIX)
1274 return (-EOPNOTSUPP);
1275
1276 if (!inode_owner_or_capable(ip))
1277 return (-EPERM);
1278
1279 if (value) {
1280 acl = zpl_acl_from_xattr(value, size);
1281 if (IS_ERR(acl))
1282 return (PTR_ERR(acl));
1283 else if (acl) {
1284 error = zpl_posix_acl_valid(ip, acl);
1285 if (error) {
1286 zpl_posix_acl_release(acl);
1287 return (error);
1288 }
1289 }
1290 } else {
1291 acl = NULL;
1292 }
1293
1294 error = zpl_set_acl(ip, acl, type);
1295 zpl_posix_acl_release(acl);
1296
1297 return (error);
1298 }
1299 ZPL_XATTR_SET_WRAPPER(zpl_xattr_acl_set_default);
1300
1301 /*
1302 * ACL access xattr namespace handlers.
1303 *
1304 * Use .name instead of .prefix when available. xattr_resolve_name will match
1305 * whole name and reject anything that has .name only as prefix.
1306 */
1307 xattr_handler_t zpl_xattr_acl_access_handler =
1308 {
1309 #ifdef HAVE_XATTR_HANDLER_NAME
1310 .name = XATTR_NAME_POSIX_ACL_ACCESS,
1311 #else
1312 .prefix = XATTR_NAME_POSIX_ACL_ACCESS,
1313 #endif
1314 .list = zpl_xattr_acl_list_access,
1315 .get = zpl_xattr_acl_get_access,
1316 .set = zpl_xattr_acl_set_access,
1317 #if defined(HAVE_XATTR_LIST_SIMPLE) || \
1318 defined(HAVE_XATTR_LIST_DENTRY) || \
1319 defined(HAVE_XATTR_LIST_HANDLER)
1320 .flags = ACL_TYPE_ACCESS,
1321 #endif
1322 };
1323
1324 /*
1325 * ACL default xattr namespace handlers.
1326 *
1327 * Use .name instead of .prefix when available. xattr_resolve_name will match
1328 * whole name and reject anything that has .name only as prefix.
1329 */
1330 xattr_handler_t zpl_xattr_acl_default_handler =
1331 {
1332 #ifdef HAVE_XATTR_HANDLER_NAME
1333 .name = XATTR_NAME_POSIX_ACL_DEFAULT,
1334 #else
1335 .prefix = XATTR_NAME_POSIX_ACL_DEFAULT,
1336 #endif
1337 .list = zpl_xattr_acl_list_default,
1338 .get = zpl_xattr_acl_get_default,
1339 .set = zpl_xattr_acl_set_default,
1340 #if defined(HAVE_XATTR_LIST_SIMPLE) || \
1341 defined(HAVE_XATTR_LIST_DENTRY) || \
1342 defined(HAVE_XATTR_LIST_HANDLER)
1343 .flags = ACL_TYPE_DEFAULT,
1344 #endif
1345 };
1346
1347 #endif /* CONFIG_FS_POSIX_ACL */
1348
1349 xattr_handler_t *zpl_xattr_handlers[] = {
1350 &zpl_xattr_security_handler,
1351 &zpl_xattr_trusted_handler,
1352 &zpl_xattr_user_handler,
1353 #ifdef CONFIG_FS_POSIX_ACL
1354 &zpl_xattr_acl_access_handler,
1355 &zpl_xattr_acl_default_handler,
1356 #endif /* CONFIG_FS_POSIX_ACL */
1357 NULL
1358 };
1359
1360 static const struct xattr_handler *
zpl_xattr_handler(const char * name)1361 zpl_xattr_handler(const char *name)
1362 {
1363 if (strncmp(name, XATTR_USER_PREFIX,
1364 XATTR_USER_PREFIX_LEN) == 0)
1365 return (&zpl_xattr_user_handler);
1366
1367 if (strncmp(name, XATTR_TRUSTED_PREFIX,
1368 XATTR_TRUSTED_PREFIX_LEN) == 0)
1369 return (&zpl_xattr_trusted_handler);
1370
1371 if (strncmp(name, XATTR_SECURITY_PREFIX,
1372 XATTR_SECURITY_PREFIX_LEN) == 0)
1373 return (&zpl_xattr_security_handler);
1374
1375 #ifdef CONFIG_FS_POSIX_ACL
1376 if (strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS,
1377 sizeof (XATTR_NAME_POSIX_ACL_ACCESS)) == 0)
1378 return (&zpl_xattr_acl_access_handler);
1379
1380 if (strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT,
1381 sizeof (XATTR_NAME_POSIX_ACL_DEFAULT)) == 0)
1382 return (&zpl_xattr_acl_default_handler);
1383 #endif /* CONFIG_FS_POSIX_ACL */
1384
1385 return (NULL);
1386 }
1387
1388 #if !defined(HAVE_POSIX_ACL_RELEASE) || defined(HAVE_POSIX_ACL_RELEASE_GPL_ONLY)
1389 struct acl_rel_struct {
1390 struct acl_rel_struct *next;
1391 struct posix_acl *acl;
1392 clock_t time;
1393 };
1394
1395 #define ACL_REL_GRACE (60*HZ)
1396 #define ACL_REL_WINDOW (1*HZ)
1397 #define ACL_REL_SCHED (ACL_REL_GRACE+ACL_REL_WINDOW)
1398
1399 /*
1400 * Lockless multi-producer single-consumer fifo list.
1401 * Nodes are added to tail and removed from head. Tail pointer is our
1402 * synchronization point. It always points to the next pointer of the last
1403 * node, or head if list is empty.
1404 */
1405 static struct acl_rel_struct *acl_rel_head = NULL;
1406 static struct acl_rel_struct **acl_rel_tail = &acl_rel_head;
1407
1408 static void
zpl_posix_acl_free(void * arg)1409 zpl_posix_acl_free(void *arg)
1410 {
1411 struct acl_rel_struct *freelist = NULL;
1412 struct acl_rel_struct *a;
1413 clock_t new_time;
1414 boolean_t refire = B_FALSE;
1415
1416 ASSERT3P(acl_rel_head, !=, NULL);
1417 while (acl_rel_head) {
1418 a = acl_rel_head;
1419 if (ddi_get_lbolt() - a->time >= ACL_REL_GRACE) {
1420 /*
1421 * If a is the last node we need to reset tail, but we
1422 * need to use cmpxchg to make sure it is still the
1423 * last node.
1424 */
1425 if (acl_rel_tail == &a->next) {
1426 acl_rel_head = NULL;
1427 if (cmpxchg(&acl_rel_tail, &a->next,
1428 &acl_rel_head) == &a->next) {
1429 ASSERT3P(a->next, ==, NULL);
1430 a->next = freelist;
1431 freelist = a;
1432 break;
1433 }
1434 }
1435 /*
1436 * a is not last node, make sure next pointer is set
1437 * by the adder and advance the head.
1438 */
1439 while (READ_ONCE(a->next) == NULL)
1440 cpu_relax();
1441 acl_rel_head = a->next;
1442 a->next = freelist;
1443 freelist = a;
1444 } else {
1445 /*
1446 * a is still in grace period. We are responsible to
1447 * reschedule the free task, since adder will only do
1448 * so if list is empty.
1449 */
1450 new_time = a->time + ACL_REL_SCHED;
1451 refire = B_TRUE;
1452 break;
1453 }
1454 }
1455
1456 if (refire)
1457 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
1458 NULL, TQ_SLEEP, new_time);
1459
1460 while (freelist) {
1461 a = freelist;
1462 freelist = a->next;
1463 kfree(a->acl);
1464 kmem_free(a, sizeof (struct acl_rel_struct));
1465 }
1466 }
1467
1468 void
zpl_posix_acl_release_impl(struct posix_acl * acl)1469 zpl_posix_acl_release_impl(struct posix_acl *acl)
1470 {
1471 struct acl_rel_struct *a, **prev;
1472
1473 a = kmem_alloc(sizeof (struct acl_rel_struct), KM_SLEEP);
1474 a->next = NULL;
1475 a->acl = acl;
1476 a->time = ddi_get_lbolt();
1477 /* atomically points tail to us and get the previous tail */
1478 prev = xchg(&acl_rel_tail, &a->next);
1479 ASSERT3P(*prev, ==, NULL);
1480 *prev = a;
1481 /* if it was empty before, schedule the free task */
1482 if (prev == &acl_rel_head)
1483 taskq_dispatch_delay(system_delay_taskq, zpl_posix_acl_free,
1484 NULL, TQ_SLEEP, ddi_get_lbolt() + ACL_REL_SCHED);
1485 }
1486 #endif
1487