1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28 * Copyright (c) 2018, loli10K <[email protected]>. All rights reserved.
29 */
30
31 #include <sys/dmu.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_prop.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_deleg.h>
39 #include <sys/dmu_impl.h>
40 #include <sys/spa.h>
41 #include <sys/spa_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/zap.h>
44 #include <sys/zio.h>
45 #include <sys/arc.h>
46 #include <sys/sunddi.h>
47 #include <sys/zfeature.h>
48 #include <sys/policy.h>
49 #include <sys/zfs_vfsops.h>
50 #include <sys/zfs_znode.h>
51 #include <sys/zvol.h>
52 #include <sys/zthr.h>
53 #include "zfs_namecheck.h"
54 #include "zfs_prop.h"
55
56 /*
57 * Filesystem and Snapshot Limits
58 * ------------------------------
59 *
60 * These limits are used to restrict the number of filesystems and/or snapshots
61 * that can be created at a given level in the tree or below. A typical
62 * use-case is with a delegated dataset where the administrator wants to ensure
63 * that a user within the zone is not creating too many additional filesystems
64 * or snapshots, even though they're not exceeding their space quota.
65 *
66 * The filesystem and snapshot counts are stored as extensible properties. This
67 * capability is controlled by a feature flag and must be enabled to be used.
68 * Once enabled, the feature is not active until the first limit is set. At
69 * that point, future operations to create/destroy filesystems or snapshots
70 * will validate and update the counts.
71 *
72 * Because the count properties will not exist before the feature is active,
73 * the counts are updated when a limit is first set on an uninitialized
74 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
75 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
76 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
77 * snapshot count properties on a node indicate uninitialized counts on that
78 * node.) When first setting a limit on an uninitialized node, the code starts
79 * at the filesystem with the new limit and descends into all sub-filesystems
80 * to add the count properties.
81 *
82 * In practice this is lightweight since a limit is typically set when the
83 * filesystem is created and thus has no children. Once valid, changing the
84 * limit value won't require a re-traversal since the counts are already valid.
85 * When recursively fixing the counts, if a node with a limit is encountered
86 * during the descent, the counts are known to be valid and there is no need to
87 * descend into that filesystem's children. The counts on filesystems above the
88 * one with the new limit will still be uninitialized, unless a limit is
89 * eventually set on one of those filesystems. The counts are always recursively
90 * updated when a limit is set on a dataset, unless there is already a limit.
91 * When a new limit value is set on a filesystem with an existing limit, it is
92 * possible for the new limit to be less than the current count at that level
93 * since a user who can change the limit is also allowed to exceed the limit.
94 *
95 * Once the feature is active, then whenever a filesystem or snapshot is
96 * created, the code recurses up the tree, validating the new count against the
97 * limit at each initialized level. In practice, most levels will not have a
98 * limit set. If there is a limit at any initialized level up the tree, the
99 * check must pass or the creation will fail. Likewise, when a filesystem or
100 * snapshot is destroyed, the counts are recursively adjusted all the way up
101 * the initialized nodes in the tree. Renaming a filesystem into different point
102 * in the tree will first validate, then update the counts on each branch up to
103 * the common ancestor. A receive will also validate the counts and then update
104 * them.
105 *
106 * An exception to the above behavior is that the limit is not enforced if the
107 * user has permission to modify the limit. This is primarily so that
108 * recursive snapshots in the global zone always work. We want to prevent a
109 * denial-of-service in which a lower level delegated dataset could max out its
110 * limit and thus block recursive snapshots from being taken in the global zone.
111 * Because of this, it is possible for the snapshot count to be over the limit
112 * and snapshots taken in the global zone could cause a lower level dataset to
113 * hit or exceed its limit. The administrator taking the global zone recursive
114 * snapshot should be aware of this side-effect and behave accordingly.
115 * For consistency, the filesystem limit is also not enforced if the user can
116 * modify the limit.
117 *
118 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
119 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
120 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
121 * dsl_dir_init_fs_ss_count().
122 */
123
124 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
125
126 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
127
128 typedef struct ddulrt_arg {
129 dsl_dir_t *ddulrta_dd;
130 uint64_t ddlrta_txg;
131 } ddulrt_arg_t;
132
133 static void
dsl_dir_evict_async(void * dbu)134 dsl_dir_evict_async(void *dbu)
135 {
136 dsl_dir_t *dd = dbu;
137 int t;
138 dsl_pool_t *dp __maybe_unused = dd->dd_pool;
139
140 dd->dd_dbuf = NULL;
141
142 for (t = 0; t < TXG_SIZE; t++) {
143 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
144 ASSERT(dd->dd_tempreserved[t] == 0);
145 ASSERT(dd->dd_space_towrite[t] == 0);
146 }
147
148 if (dd->dd_parent)
149 dsl_dir_async_rele(dd->dd_parent, dd);
150
151 spa_async_close(dd->dd_pool->dp_spa, dd);
152
153 if (dsl_deadlist_is_open(&dd->dd_livelist))
154 dsl_dir_livelist_close(dd);
155
156 dsl_prop_fini(dd);
157 cv_destroy(&dd->dd_activity_cv);
158 mutex_destroy(&dd->dd_activity_lock);
159 mutex_destroy(&dd->dd_lock);
160 kmem_free(dd, sizeof (dsl_dir_t));
161 }
162
163 int
dsl_dir_hold_obj(dsl_pool_t * dp,uint64_t ddobj,const char * tail,void * tag,dsl_dir_t ** ddp)164 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
165 const char *tail, void *tag, dsl_dir_t **ddp)
166 {
167 dmu_buf_t *dbuf;
168 dsl_dir_t *dd;
169 dmu_object_info_t doi;
170 int err;
171
172 ASSERT(dsl_pool_config_held(dp));
173
174 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
175 if (err != 0)
176 return (err);
177 dd = dmu_buf_get_user(dbuf);
178
179 dmu_object_info_from_db(dbuf, &doi);
180 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
181 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
182
183 if (dd == NULL) {
184 dsl_dir_t *winner;
185
186 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
187 dd->dd_object = ddobj;
188 dd->dd_dbuf = dbuf;
189 dd->dd_pool = dp;
190
191 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
192 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
193 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
194 dsl_prop_init(dd);
195
196 if (dsl_dir_is_zapified(dd)) {
197 err = zap_lookup(dp->dp_meta_objset,
198 ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
199 sizeof (uint64_t), 1, &dd->dd_crypto_obj);
200 if (err == 0) {
201 /* check for on-disk format errata */
202 if (dsl_dir_incompatible_encryption_version(
203 dd)) {
204 dp->dp_spa->spa_errata =
205 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
206 }
207 } else if (err != ENOENT) {
208 goto errout;
209 }
210 }
211
212 dsl_dir_snap_cmtime_update(dd);
213
214 if (dsl_dir_phys(dd)->dd_parent_obj) {
215 err = dsl_dir_hold_obj(dp,
216 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
217 &dd->dd_parent);
218 if (err != 0)
219 goto errout;
220 if (tail) {
221 #ifdef ZFS_DEBUG
222 uint64_t foundobj;
223
224 err = zap_lookup(dp->dp_meta_objset,
225 dsl_dir_phys(dd->dd_parent)->
226 dd_child_dir_zapobj, tail,
227 sizeof (foundobj), 1, &foundobj);
228 ASSERT(err || foundobj == ddobj);
229 #endif
230 (void) strlcpy(dd->dd_myname, tail,
231 sizeof (dd->dd_myname));
232 } else {
233 err = zap_value_search(dp->dp_meta_objset,
234 dsl_dir_phys(dd->dd_parent)->
235 dd_child_dir_zapobj,
236 ddobj, 0, dd->dd_myname);
237 }
238 if (err != 0)
239 goto errout;
240 } else {
241 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
242 sizeof (dd->dd_myname));
243 }
244
245 if (dsl_dir_is_clone(dd)) {
246 dmu_buf_t *origin_bonus;
247 dsl_dataset_phys_t *origin_phys;
248
249 /*
250 * We can't open the origin dataset, because
251 * that would require opening this dsl_dir.
252 * Just look at its phys directly instead.
253 */
254 err = dmu_bonus_hold(dp->dp_meta_objset,
255 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
256 &origin_bonus);
257 if (err != 0)
258 goto errout;
259 origin_phys = origin_bonus->db_data;
260 dd->dd_origin_txg =
261 origin_phys->ds_creation_txg;
262 dmu_buf_rele(origin_bonus, FTAG);
263 if (dsl_dir_is_zapified(dd)) {
264 uint64_t obj;
265 err = zap_lookup(dp->dp_meta_objset,
266 dd->dd_object, DD_FIELD_LIVELIST,
267 sizeof (uint64_t), 1, &obj);
268 if (err == 0)
269 dsl_dir_livelist_open(dd, obj);
270 else if (err != ENOENT)
271 goto errout;
272 }
273 }
274
275 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
276 &dd->dd_dbuf);
277 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
278 if (winner != NULL) {
279 if (dd->dd_parent)
280 dsl_dir_rele(dd->dd_parent, dd);
281 if (dsl_deadlist_is_open(&dd->dd_livelist))
282 dsl_dir_livelist_close(dd);
283 dsl_prop_fini(dd);
284 cv_destroy(&dd->dd_activity_cv);
285 mutex_destroy(&dd->dd_activity_lock);
286 mutex_destroy(&dd->dd_lock);
287 kmem_free(dd, sizeof (dsl_dir_t));
288 dd = winner;
289 } else {
290 spa_open_ref(dp->dp_spa, dd);
291 }
292 }
293
294 /*
295 * The dsl_dir_t has both open-to-close and instantiate-to-evict
296 * holds on the spa. We need the open-to-close holds because
297 * otherwise the spa_refcnt wouldn't change when we open a
298 * dir which the spa also has open, so we could incorrectly
299 * think it was OK to unload/export/destroy the pool. We need
300 * the instantiate-to-evict hold because the dsl_dir_t has a
301 * pointer to the dd_pool, which has a pointer to the spa_t.
302 */
303 spa_open_ref(dp->dp_spa, tag);
304 ASSERT3P(dd->dd_pool, ==, dp);
305 ASSERT3U(dd->dd_object, ==, ddobj);
306 ASSERT3P(dd->dd_dbuf, ==, dbuf);
307 *ddp = dd;
308 return (0);
309
310 errout:
311 if (dd->dd_parent)
312 dsl_dir_rele(dd->dd_parent, dd);
313 if (dsl_deadlist_is_open(&dd->dd_livelist))
314 dsl_dir_livelist_close(dd);
315 dsl_prop_fini(dd);
316 cv_destroy(&dd->dd_activity_cv);
317 mutex_destroy(&dd->dd_activity_lock);
318 mutex_destroy(&dd->dd_lock);
319 kmem_free(dd, sizeof (dsl_dir_t));
320 dmu_buf_rele(dbuf, tag);
321 return (err);
322 }
323
324 void
dsl_dir_rele(dsl_dir_t * dd,void * tag)325 dsl_dir_rele(dsl_dir_t *dd, void *tag)
326 {
327 dprintf_dd(dd, "%s\n", "");
328 spa_close(dd->dd_pool->dp_spa, tag);
329 dmu_buf_rele(dd->dd_dbuf, tag);
330 }
331
332 /*
333 * Remove a reference to the given dsl dir that is being asynchronously
334 * released. Async releases occur from a taskq performing eviction of
335 * dsl datasets and dirs. This process is identical to a normal release
336 * with the exception of using the async API for releasing the reference on
337 * the spa.
338 */
339 void
dsl_dir_async_rele(dsl_dir_t * dd,void * tag)340 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
341 {
342 dprintf_dd(dd, "%s\n", "");
343 spa_async_close(dd->dd_pool->dp_spa, tag);
344 dmu_buf_rele(dd->dd_dbuf, tag);
345 }
346
347 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
348 void
dsl_dir_name(dsl_dir_t * dd,char * buf)349 dsl_dir_name(dsl_dir_t *dd, char *buf)
350 {
351 if (dd->dd_parent) {
352 dsl_dir_name(dd->dd_parent, buf);
353 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
354 ZFS_MAX_DATASET_NAME_LEN);
355 } else {
356 buf[0] = '\0';
357 }
358 if (!MUTEX_HELD(&dd->dd_lock)) {
359 /*
360 * recursive mutex so that we can use
361 * dprintf_dd() with dd_lock held
362 */
363 mutex_enter(&dd->dd_lock);
364 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
365 <, ZFS_MAX_DATASET_NAME_LEN);
366 mutex_exit(&dd->dd_lock);
367 } else {
368 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
369 <, ZFS_MAX_DATASET_NAME_LEN);
370 }
371 }
372
373 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
374 int
dsl_dir_namelen(dsl_dir_t * dd)375 dsl_dir_namelen(dsl_dir_t *dd)
376 {
377 int result = 0;
378
379 if (dd->dd_parent) {
380 /* parent's name + 1 for the "/" */
381 result = dsl_dir_namelen(dd->dd_parent) + 1;
382 }
383
384 if (!MUTEX_HELD(&dd->dd_lock)) {
385 /* see dsl_dir_name */
386 mutex_enter(&dd->dd_lock);
387 result += strlen(dd->dd_myname);
388 mutex_exit(&dd->dd_lock);
389 } else {
390 result += strlen(dd->dd_myname);
391 }
392
393 return (result);
394 }
395
396 static int
getcomponent(const char * path,char * component,const char ** nextp)397 getcomponent(const char *path, char *component, const char **nextp)
398 {
399 char *p;
400
401 if ((path == NULL) || (path[0] == '\0'))
402 return (SET_ERROR(ENOENT));
403 /* This would be a good place to reserve some namespace... */
404 p = strpbrk(path, "/@");
405 if (p && (p[1] == '/' || p[1] == '@')) {
406 /* two separators in a row */
407 return (SET_ERROR(EINVAL));
408 }
409 if (p == NULL || p == path) {
410 /*
411 * if the first thing is an @ or /, it had better be an
412 * @ and it had better not have any more ats or slashes,
413 * and it had better have something after the @.
414 */
415 if (p != NULL &&
416 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
417 return (SET_ERROR(EINVAL));
418 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
419 return (SET_ERROR(ENAMETOOLONG));
420 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
421 p = NULL;
422 } else if (p[0] == '/') {
423 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
424 return (SET_ERROR(ENAMETOOLONG));
425 (void) strncpy(component, path, p - path);
426 component[p - path] = '\0';
427 p++;
428 } else if (p[0] == '@') {
429 /*
430 * if the next separator is an @, there better not be
431 * any more slashes.
432 */
433 if (strchr(path, '/'))
434 return (SET_ERROR(EINVAL));
435 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
436 return (SET_ERROR(ENAMETOOLONG));
437 (void) strncpy(component, path, p - path);
438 component[p - path] = '\0';
439 } else {
440 panic("invalid p=%p", (void *)p);
441 }
442 *nextp = p;
443 return (0);
444 }
445
446 /*
447 * Return the dsl_dir_t, and possibly the last component which couldn't
448 * be found in *tail. The name must be in the specified dsl_pool_t. This
449 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
450 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
451 * (*tail)[0] == '@' means that the last component is a snapshot.
452 */
453 int
dsl_dir_hold(dsl_pool_t * dp,const char * name,void * tag,dsl_dir_t ** ddp,const char ** tailp)454 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
455 dsl_dir_t **ddp, const char **tailp)
456 {
457 char *buf;
458 const char *spaname, *next, *nextnext = NULL;
459 int err;
460 dsl_dir_t *dd;
461 uint64_t ddobj;
462
463 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
464 err = getcomponent(name, buf, &next);
465 if (err != 0)
466 goto error;
467
468 /* Make sure the name is in the specified pool. */
469 spaname = spa_name(dp->dp_spa);
470 if (strcmp(buf, spaname) != 0) {
471 err = SET_ERROR(EXDEV);
472 goto error;
473 }
474
475 ASSERT(dsl_pool_config_held(dp));
476
477 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
478 if (err != 0) {
479 goto error;
480 }
481
482 while (next != NULL) {
483 dsl_dir_t *child_dd;
484 err = getcomponent(next, buf, &nextnext);
485 if (err != 0)
486 break;
487 ASSERT(next[0] != '\0');
488 if (next[0] == '@')
489 break;
490 dprintf("looking up %s in obj%lld\n",
491 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
492
493 err = zap_lookup(dp->dp_meta_objset,
494 dsl_dir_phys(dd)->dd_child_dir_zapobj,
495 buf, sizeof (ddobj), 1, &ddobj);
496 if (err != 0) {
497 if (err == ENOENT)
498 err = 0;
499 break;
500 }
501
502 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
503 if (err != 0)
504 break;
505 dsl_dir_rele(dd, tag);
506 dd = child_dd;
507 next = nextnext;
508 }
509
510 if (err != 0) {
511 dsl_dir_rele(dd, tag);
512 goto error;
513 }
514
515 /*
516 * It's an error if there's more than one component left, or
517 * tailp==NULL and there's any component left.
518 */
519 if (next != NULL &&
520 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
521 /* bad path name */
522 dsl_dir_rele(dd, tag);
523 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
524 err = SET_ERROR(ENOENT);
525 }
526 if (tailp != NULL)
527 *tailp = next;
528 if (err == 0)
529 *ddp = dd;
530 error:
531 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
532 return (err);
533 }
534
535 /*
536 * If the counts are already initialized for this filesystem and its
537 * descendants then do nothing, otherwise initialize the counts.
538 *
539 * The counts on this filesystem, and those below, may be uninitialized due to
540 * either the use of a pre-existing pool which did not support the
541 * filesystem/snapshot limit feature, or one in which the feature had not yet
542 * been enabled.
543 *
544 * Recursively descend the filesystem tree and update the filesystem/snapshot
545 * counts on each filesystem below, then update the cumulative count on the
546 * current filesystem. If the filesystem already has a count set on it,
547 * then we know that its counts, and the counts on the filesystems below it,
548 * are already correct, so we don't have to update this filesystem.
549 */
550 static void
dsl_dir_init_fs_ss_count(dsl_dir_t * dd,dmu_tx_t * tx)551 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
552 {
553 uint64_t my_fs_cnt = 0;
554 uint64_t my_ss_cnt = 0;
555 dsl_pool_t *dp = dd->dd_pool;
556 objset_t *os = dp->dp_meta_objset;
557 zap_cursor_t *zc;
558 zap_attribute_t *za;
559 dsl_dataset_t *ds;
560
561 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
562 ASSERT(dsl_pool_config_held(dp));
563 ASSERT(dmu_tx_is_syncing(tx));
564
565 dsl_dir_zapify(dd, tx);
566
567 /*
568 * If the filesystem count has already been initialized then we
569 * don't need to recurse down any further.
570 */
571 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
572 return;
573
574 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
575 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
576
577 /* Iterate my child dirs */
578 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
579 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
580 dsl_dir_t *chld_dd;
581 uint64_t count;
582
583 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
584 &chld_dd));
585
586 /*
587 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
588 */
589 if (chld_dd->dd_myname[0] == '$') {
590 dsl_dir_rele(chld_dd, FTAG);
591 continue;
592 }
593
594 my_fs_cnt++; /* count this child */
595
596 dsl_dir_init_fs_ss_count(chld_dd, tx);
597
598 VERIFY0(zap_lookup(os, chld_dd->dd_object,
599 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
600 my_fs_cnt += count;
601 VERIFY0(zap_lookup(os, chld_dd->dd_object,
602 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
603 my_ss_cnt += count;
604
605 dsl_dir_rele(chld_dd, FTAG);
606 }
607 zap_cursor_fini(zc);
608 /* Count my snapshots (we counted children's snapshots above) */
609 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
610 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
611
612 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
613 zap_cursor_retrieve(zc, za) == 0;
614 zap_cursor_advance(zc)) {
615 /* Don't count temporary snapshots */
616 if (za->za_name[0] != '%')
617 my_ss_cnt++;
618 }
619 zap_cursor_fini(zc);
620
621 dsl_dataset_rele(ds, FTAG);
622
623 kmem_free(zc, sizeof (zap_cursor_t));
624 kmem_free(za, sizeof (zap_attribute_t));
625
626 /* we're in a sync task, update counts */
627 dmu_buf_will_dirty(dd->dd_dbuf, tx);
628 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
629 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
630 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
631 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
632 }
633
634 static int
dsl_dir_actv_fs_ss_limit_check(void * arg,dmu_tx_t * tx)635 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
636 {
637 char *ddname = (char *)arg;
638 dsl_pool_t *dp = dmu_tx_pool(tx);
639 dsl_dataset_t *ds;
640 dsl_dir_t *dd;
641 int error;
642
643 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
644 if (error != 0)
645 return (error);
646
647 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
648 dsl_dataset_rele(ds, FTAG);
649 return (SET_ERROR(ENOTSUP));
650 }
651
652 dd = ds->ds_dir;
653 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
654 dsl_dir_is_zapified(dd) &&
655 zap_contains(dp->dp_meta_objset, dd->dd_object,
656 DD_FIELD_FILESYSTEM_COUNT) == 0) {
657 dsl_dataset_rele(ds, FTAG);
658 return (SET_ERROR(EALREADY));
659 }
660
661 dsl_dataset_rele(ds, FTAG);
662 return (0);
663 }
664
665 static void
dsl_dir_actv_fs_ss_limit_sync(void * arg,dmu_tx_t * tx)666 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
667 {
668 char *ddname = (char *)arg;
669 dsl_pool_t *dp = dmu_tx_pool(tx);
670 dsl_dataset_t *ds;
671 spa_t *spa;
672
673 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
674
675 spa = dsl_dataset_get_spa(ds);
676
677 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
678 /*
679 * Since the feature was not active and we're now setting a
680 * limit, increment the feature-active counter so that the
681 * feature becomes active for the first time.
682 *
683 * We are already in a sync task so we can update the MOS.
684 */
685 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
686 }
687
688 /*
689 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
690 * we need to ensure the counts are correct. Descend down the tree from
691 * this point and update all of the counts to be accurate.
692 */
693 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
694
695 dsl_dataset_rele(ds, FTAG);
696 }
697
698 /*
699 * Make sure the feature is enabled and activate it if necessary.
700 * Since we're setting a limit, ensure the on-disk counts are valid.
701 * This is only called by the ioctl path when setting a limit value.
702 *
703 * We do not need to validate the new limit, since users who can change the
704 * limit are also allowed to exceed the limit.
705 */
706 int
dsl_dir_activate_fs_ss_limit(const char * ddname)707 dsl_dir_activate_fs_ss_limit(const char *ddname)
708 {
709 int error;
710
711 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
712 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
713 ZFS_SPACE_CHECK_RESERVED);
714
715 if (error == EALREADY)
716 error = 0;
717
718 return (error);
719 }
720
721 /*
722 * Used to determine if the filesystem_limit or snapshot_limit should be
723 * enforced. We allow the limit to be exceeded if the user has permission to
724 * write the property value. We pass in the creds that we got in the open
725 * context since we will always be the GZ root in syncing context. We also have
726 * to handle the case where we are allowed to change the limit on the current
727 * dataset, but there may be another limit in the tree above.
728 *
729 * We can never modify these two properties within a non-global zone. In
730 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
731 * can't use that function since we are already holding the dp_config_rwlock.
732 * In addition, we already have the dd and dealing with snapshots is simplified
733 * in this code.
734 */
735
736 typedef enum {
737 ENFORCE_ALWAYS,
738 ENFORCE_NEVER,
739 ENFORCE_ABOVE
740 } enforce_res_t;
741
742 static enforce_res_t
dsl_enforce_ds_ss_limits(dsl_dir_t * dd,zfs_prop_t prop,cred_t * cr,proc_t * proc)743 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
744 cred_t *cr, proc_t *proc)
745 {
746 enforce_res_t enforce = ENFORCE_ALWAYS;
747 uint64_t obj;
748 dsl_dataset_t *ds;
749 uint64_t zoned;
750 const char *zonedstr;
751
752 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
753 prop == ZFS_PROP_SNAPSHOT_LIMIT);
754
755 #ifdef _KERNEL
756 if (crgetzoneid(cr) != GLOBAL_ZONEID)
757 return (ENFORCE_ALWAYS);
758
759 /*
760 * We are checking the saved credentials of the user process, which is
761 * not the current process. Note that we can't use secpolicy_zfs(),
762 * because it only works if the cred is that of the current process (on
763 * Linux).
764 */
765 if (secpolicy_zfs_proc(cr, proc) == 0)
766 return (ENFORCE_NEVER);
767 #endif
768
769 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
770 return (ENFORCE_ALWAYS);
771
772 ASSERT(dsl_pool_config_held(dd->dd_pool));
773
774 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
775 return (ENFORCE_ALWAYS);
776
777 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
778 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
779 /* Only root can access zoned fs's from the GZ */
780 enforce = ENFORCE_ALWAYS;
781 } else {
782 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
783 enforce = ENFORCE_ABOVE;
784 }
785
786 dsl_dataset_rele(ds, FTAG);
787 return (enforce);
788 }
789
790 /*
791 * Check if adding additional child filesystem(s) would exceed any filesystem
792 * limits or adding additional snapshot(s) would exceed any snapshot limits.
793 * The prop argument indicates which limit to check.
794 *
795 * Note that all filesystem limits up to the root (or the highest
796 * initialized) filesystem or the given ancestor must be satisfied.
797 */
798 int
dsl_fs_ss_limit_check(dsl_dir_t * dd,uint64_t delta,zfs_prop_t prop,dsl_dir_t * ancestor,cred_t * cr,proc_t * proc)799 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
800 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
801 {
802 objset_t *os = dd->dd_pool->dp_meta_objset;
803 uint64_t limit, count;
804 char *count_prop;
805 enforce_res_t enforce;
806 int err = 0;
807
808 ASSERT(dsl_pool_config_held(dd->dd_pool));
809 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
810 prop == ZFS_PROP_SNAPSHOT_LIMIT);
811
812 /*
813 * If we're allowed to change the limit, don't enforce the limit
814 * e.g. this can happen if a snapshot is taken by an administrative
815 * user in the global zone (i.e. a recursive snapshot by root).
816 * However, we must handle the case of delegated permissions where we
817 * are allowed to change the limit on the current dataset, but there
818 * is another limit in the tree above.
819 */
820 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
821 if (enforce == ENFORCE_NEVER)
822 return (0);
823
824 /*
825 * e.g. if renaming a dataset with no snapshots, count adjustment
826 * is 0.
827 */
828 if (delta == 0)
829 return (0);
830
831 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
832 /*
833 * We don't enforce the limit for temporary snapshots. This is
834 * indicated by a NULL cred_t argument.
835 */
836 if (cr == NULL)
837 return (0);
838
839 count_prop = DD_FIELD_SNAPSHOT_COUNT;
840 } else {
841 count_prop = DD_FIELD_FILESYSTEM_COUNT;
842 }
843
844 /*
845 * If an ancestor has been provided, stop checking the limit once we
846 * hit that dir. We need this during rename so that we don't overcount
847 * the check once we recurse up to the common ancestor.
848 */
849 if (ancestor == dd)
850 return (0);
851
852 /*
853 * If we hit an uninitialized node while recursing up the tree, we can
854 * stop since we know there is no limit here (or above). The counts are
855 * not valid on this node and we know we won't touch this node's counts.
856 */
857 if (!dsl_dir_is_zapified(dd))
858 return (0);
859 err = zap_lookup(os, dd->dd_object,
860 count_prop, sizeof (count), 1, &count);
861 if (err == ENOENT)
862 return (0);
863 if (err != 0)
864 return (err);
865
866 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
867 B_FALSE);
868 if (err != 0)
869 return (err);
870
871 /* Is there a limit which we've hit? */
872 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
873 return (SET_ERROR(EDQUOT));
874
875 if (dd->dd_parent != NULL)
876 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
877 ancestor, cr, proc);
878
879 return (err);
880 }
881
882 /*
883 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
884 * parents. When a new filesystem/snapshot is created, increment the count on
885 * all parents, and when a filesystem/snapshot is destroyed, decrement the
886 * count.
887 */
888 void
dsl_fs_ss_count_adjust(dsl_dir_t * dd,int64_t delta,const char * prop,dmu_tx_t * tx)889 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
890 dmu_tx_t *tx)
891 {
892 int err;
893 objset_t *os = dd->dd_pool->dp_meta_objset;
894 uint64_t count;
895
896 ASSERT(dsl_pool_config_held(dd->dd_pool));
897 ASSERT(dmu_tx_is_syncing(tx));
898 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
899 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
900
901 /*
902 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
903 */
904 if (dd->dd_myname[0] == '$' && strcmp(prop,
905 DD_FIELD_FILESYSTEM_COUNT) == 0) {
906 return;
907 }
908
909 /*
910 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
911 */
912 if (delta == 0)
913 return;
914
915 /*
916 * If we hit an uninitialized node while recursing up the tree, we can
917 * stop since we know the counts are not valid on this node and we
918 * know we shouldn't touch this node's counts. An uninitialized count
919 * on the node indicates that either the feature has not yet been
920 * activated or there are no limits on this part of the tree.
921 */
922 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
923 prop, sizeof (count), 1, &count)) == ENOENT)
924 return;
925 VERIFY0(err);
926
927 count += delta;
928 /* Use a signed verify to make sure we're not neg. */
929 VERIFY3S(count, >=, 0);
930
931 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
932 tx));
933
934 /* Roll up this additional count into our ancestors */
935 if (dd->dd_parent != NULL)
936 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
937 }
938
939 uint64_t
dsl_dir_create_sync(dsl_pool_t * dp,dsl_dir_t * pds,const char * name,dmu_tx_t * tx)940 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
941 dmu_tx_t *tx)
942 {
943 objset_t *mos = dp->dp_meta_objset;
944 uint64_t ddobj;
945 dsl_dir_phys_t *ddphys;
946 dmu_buf_t *dbuf;
947
948 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
949 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
950 if (pds) {
951 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
952 name, sizeof (uint64_t), 1, &ddobj, tx));
953 } else {
954 /* it's the root dir */
955 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
956 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
957 }
958 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
959 dmu_buf_will_dirty(dbuf, tx);
960 ddphys = dbuf->db_data;
961
962 ddphys->dd_creation_time = gethrestime_sec();
963 if (pds) {
964 ddphys->dd_parent_obj = pds->dd_object;
965
966 /* update the filesystem counts */
967 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
968 }
969 ddphys->dd_props_zapobj = zap_create(mos,
970 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
971 ddphys->dd_child_dir_zapobj = zap_create(mos,
972 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
973 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
974 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
975
976 dmu_buf_rele(dbuf, FTAG);
977
978 return (ddobj);
979 }
980
981 boolean_t
dsl_dir_is_clone(dsl_dir_t * dd)982 dsl_dir_is_clone(dsl_dir_t *dd)
983 {
984 return (dsl_dir_phys(dd)->dd_origin_obj &&
985 (dd->dd_pool->dp_origin_snap == NULL ||
986 dsl_dir_phys(dd)->dd_origin_obj !=
987 dd->dd_pool->dp_origin_snap->ds_object));
988 }
989
990 uint64_t
dsl_dir_get_used(dsl_dir_t * dd)991 dsl_dir_get_used(dsl_dir_t *dd)
992 {
993 return (dsl_dir_phys(dd)->dd_used_bytes);
994 }
995
996 uint64_t
dsl_dir_get_compressed(dsl_dir_t * dd)997 dsl_dir_get_compressed(dsl_dir_t *dd)
998 {
999 return (dsl_dir_phys(dd)->dd_compressed_bytes);
1000 }
1001
1002 uint64_t
dsl_dir_get_quota(dsl_dir_t * dd)1003 dsl_dir_get_quota(dsl_dir_t *dd)
1004 {
1005 return (dsl_dir_phys(dd)->dd_quota);
1006 }
1007
1008 uint64_t
dsl_dir_get_reservation(dsl_dir_t * dd)1009 dsl_dir_get_reservation(dsl_dir_t *dd)
1010 {
1011 return (dsl_dir_phys(dd)->dd_reserved);
1012 }
1013
1014 uint64_t
dsl_dir_get_compressratio(dsl_dir_t * dd)1015 dsl_dir_get_compressratio(dsl_dir_t *dd)
1016 {
1017 /* a fixed point number, 100x the ratio */
1018 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1019 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1020 dsl_dir_phys(dd)->dd_compressed_bytes));
1021 }
1022
1023 uint64_t
dsl_dir_get_logicalused(dsl_dir_t * dd)1024 dsl_dir_get_logicalused(dsl_dir_t *dd)
1025 {
1026 return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1027 }
1028
1029 uint64_t
dsl_dir_get_usedsnap(dsl_dir_t * dd)1030 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1031 {
1032 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1033 }
1034
1035 uint64_t
dsl_dir_get_usedds(dsl_dir_t * dd)1036 dsl_dir_get_usedds(dsl_dir_t *dd)
1037 {
1038 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1039 }
1040
1041 uint64_t
dsl_dir_get_usedrefreserv(dsl_dir_t * dd)1042 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1043 {
1044 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1045 }
1046
1047 uint64_t
dsl_dir_get_usedchild(dsl_dir_t * dd)1048 dsl_dir_get_usedchild(dsl_dir_t *dd)
1049 {
1050 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1051 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1052 }
1053
1054 void
dsl_dir_get_origin(dsl_dir_t * dd,char * buf)1055 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1056 {
1057 dsl_dataset_t *ds;
1058 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1059 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1060
1061 dsl_dataset_name(ds, buf);
1062
1063 dsl_dataset_rele(ds, FTAG);
1064 }
1065
1066 int
dsl_dir_get_filesystem_count(dsl_dir_t * dd,uint64_t * count)1067 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1068 {
1069 if (dsl_dir_is_zapified(dd)) {
1070 objset_t *os = dd->dd_pool->dp_meta_objset;
1071 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1072 sizeof (*count), 1, count));
1073 } else {
1074 return (SET_ERROR(ENOENT));
1075 }
1076 }
1077
1078 int
dsl_dir_get_snapshot_count(dsl_dir_t * dd,uint64_t * count)1079 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1080 {
1081 if (dsl_dir_is_zapified(dd)) {
1082 objset_t *os = dd->dd_pool->dp_meta_objset;
1083 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1084 sizeof (*count), 1, count));
1085 } else {
1086 return (SET_ERROR(ENOENT));
1087 }
1088 }
1089
1090 void
dsl_dir_stats(dsl_dir_t * dd,nvlist_t * nv)1091 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1092 {
1093 mutex_enter(&dd->dd_lock);
1094 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1095 dsl_dir_get_quota(dd));
1096 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1097 dsl_dir_get_reservation(dd));
1098 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1099 dsl_dir_get_logicalused(dd));
1100 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1101 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1102 dsl_dir_get_usedsnap(dd));
1103 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1104 dsl_dir_get_usedds(dd));
1105 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1106 dsl_dir_get_usedrefreserv(dd));
1107 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1108 dsl_dir_get_usedchild(dd));
1109 }
1110 mutex_exit(&dd->dd_lock);
1111
1112 uint64_t count;
1113 if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1114 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1115 count);
1116 }
1117 if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1118 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1119 count);
1120 }
1121
1122 if (dsl_dir_is_clone(dd)) {
1123 char buf[ZFS_MAX_DATASET_NAME_LEN];
1124 dsl_dir_get_origin(dd, buf);
1125 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1126 }
1127
1128 }
1129
1130 void
dsl_dir_dirty(dsl_dir_t * dd,dmu_tx_t * tx)1131 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1132 {
1133 dsl_pool_t *dp = dd->dd_pool;
1134
1135 ASSERT(dsl_dir_phys(dd));
1136
1137 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1138 /* up the hold count until we can be written out */
1139 dmu_buf_add_ref(dd->dd_dbuf, dd);
1140 }
1141 }
1142
1143 static int64_t
parent_delta(dsl_dir_t * dd,uint64_t used,int64_t delta)1144 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1145 {
1146 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1147 uint64_t new_accounted =
1148 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1149 return (new_accounted - old_accounted);
1150 }
1151
1152 void
dsl_dir_sync(dsl_dir_t * dd,dmu_tx_t * tx)1153 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1154 {
1155 ASSERT(dmu_tx_is_syncing(tx));
1156
1157 mutex_enter(&dd->dd_lock);
1158 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1159 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1160 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1161 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1162 mutex_exit(&dd->dd_lock);
1163
1164 /* release the hold from dsl_dir_dirty */
1165 dmu_buf_rele(dd->dd_dbuf, dd);
1166 }
1167
1168 static uint64_t
dsl_dir_space_towrite(dsl_dir_t * dd)1169 dsl_dir_space_towrite(dsl_dir_t *dd)
1170 {
1171 uint64_t space = 0;
1172
1173 ASSERT(MUTEX_HELD(&dd->dd_lock));
1174
1175 for (int i = 0; i < TXG_SIZE; i++) {
1176 space += dd->dd_space_towrite[i & TXG_MASK];
1177 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1178 }
1179 return (space);
1180 }
1181
1182 /*
1183 * How much space would dd have available if ancestor had delta applied
1184 * to it? If ondiskonly is set, we're only interested in what's
1185 * on-disk, not estimated pending changes.
1186 */
1187 uint64_t
dsl_dir_space_available(dsl_dir_t * dd,dsl_dir_t * ancestor,int64_t delta,int ondiskonly)1188 dsl_dir_space_available(dsl_dir_t *dd,
1189 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1190 {
1191 uint64_t parentspace, myspace, quota, used;
1192
1193 /*
1194 * If there are no restrictions otherwise, assume we have
1195 * unlimited space available.
1196 */
1197 quota = UINT64_MAX;
1198 parentspace = UINT64_MAX;
1199
1200 if (dd->dd_parent != NULL) {
1201 parentspace = dsl_dir_space_available(dd->dd_parent,
1202 ancestor, delta, ondiskonly);
1203 }
1204
1205 mutex_enter(&dd->dd_lock);
1206 if (dsl_dir_phys(dd)->dd_quota != 0)
1207 quota = dsl_dir_phys(dd)->dd_quota;
1208 used = dsl_dir_phys(dd)->dd_used_bytes;
1209 if (!ondiskonly)
1210 used += dsl_dir_space_towrite(dd);
1211
1212 if (dd->dd_parent == NULL) {
1213 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1214 ZFS_SPACE_CHECK_NORMAL);
1215 quota = MIN(quota, poolsize);
1216 }
1217
1218 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1219 /*
1220 * We have some space reserved, in addition to what our
1221 * parent gave us.
1222 */
1223 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1224 }
1225
1226 if (dd == ancestor) {
1227 ASSERT(delta <= 0);
1228 ASSERT(used >= -delta);
1229 used += delta;
1230 if (parentspace != UINT64_MAX)
1231 parentspace -= delta;
1232 }
1233
1234 if (used > quota) {
1235 /* over quota */
1236 myspace = 0;
1237 } else {
1238 /*
1239 * the lesser of the space provided by our parent and
1240 * the space left in our quota
1241 */
1242 myspace = MIN(parentspace, quota - used);
1243 }
1244
1245 mutex_exit(&dd->dd_lock);
1246
1247 return (myspace);
1248 }
1249
1250 struct tempreserve {
1251 list_node_t tr_node;
1252 dsl_dir_t *tr_ds;
1253 uint64_t tr_size;
1254 };
1255
1256 static int
dsl_dir_tempreserve_impl(dsl_dir_t * dd,uint64_t asize,boolean_t netfree,boolean_t ignorequota,list_t * tr_list,dmu_tx_t * tx,boolean_t first)1257 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1258 boolean_t ignorequota, list_t *tr_list,
1259 dmu_tx_t *tx, boolean_t first)
1260 {
1261 uint64_t txg;
1262 uint64_t quota;
1263 struct tempreserve *tr;
1264 int retval;
1265 uint64_t ref_rsrv;
1266
1267 top_of_function:
1268 txg = tx->tx_txg;
1269 retval = EDQUOT;
1270 ref_rsrv = 0;
1271
1272 ASSERT3U(txg, !=, 0);
1273 ASSERT3S(asize, >, 0);
1274
1275 mutex_enter(&dd->dd_lock);
1276
1277 /*
1278 * Check against the dsl_dir's quota. We don't add in the delta
1279 * when checking for over-quota because they get one free hit.
1280 */
1281 uint64_t est_inflight = dsl_dir_space_towrite(dd);
1282 for (int i = 0; i < TXG_SIZE; i++)
1283 est_inflight += dd->dd_tempreserved[i];
1284 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1285
1286 /*
1287 * On the first iteration, fetch the dataset's used-on-disk and
1288 * refreservation values. Also, if checkrefquota is set, test if
1289 * allocating this space would exceed the dataset's refquota.
1290 */
1291 if (first && tx->tx_objset) {
1292 int error;
1293 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1294
1295 error = dsl_dataset_check_quota(ds, !netfree,
1296 asize, est_inflight, &used_on_disk, &ref_rsrv);
1297 if (error != 0) {
1298 mutex_exit(&dd->dd_lock);
1299 DMU_TX_STAT_BUMP(dmu_tx_quota);
1300 return (error);
1301 }
1302 }
1303
1304 /*
1305 * If this transaction will result in a net free of space,
1306 * we want to let it through.
1307 */
1308 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1309 quota = UINT64_MAX;
1310 else
1311 quota = dsl_dir_phys(dd)->dd_quota;
1312
1313 /*
1314 * Adjust the quota against the actual pool size at the root
1315 * minus any outstanding deferred frees.
1316 * To ensure that it's possible to remove files from a full
1317 * pool without inducing transient overcommits, we throttle
1318 * netfree transactions against a quota that is slightly larger,
1319 * but still within the pool's allocation slop. In cases where
1320 * we're very close to full, this will allow a steady trickle of
1321 * removes to get through.
1322 */
1323 uint64_t deferred = 0;
1324 if (dd->dd_parent == NULL) {
1325 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1326 (netfree) ?
1327 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1328
1329 if (avail < quota) {
1330 quota = avail;
1331 retval = SET_ERROR(ENOSPC);
1332 }
1333 }
1334
1335 /*
1336 * If they are requesting more space, and our current estimate
1337 * is over quota, they get to try again unless the actual
1338 * on-disk is over quota and there are no pending changes (which
1339 * may free up space for us).
1340 */
1341 if (used_on_disk + est_inflight >= quota) {
1342 if (est_inflight > 0 || used_on_disk < quota ||
1343 (retval == ENOSPC && used_on_disk < quota + deferred))
1344 retval = ERESTART;
1345 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1346 "quota=%lluK tr=%lluK err=%d\n",
1347 used_on_disk>>10, est_inflight>>10,
1348 quota>>10, asize>>10, retval);
1349 mutex_exit(&dd->dd_lock);
1350 DMU_TX_STAT_BUMP(dmu_tx_quota);
1351 return (SET_ERROR(retval));
1352 }
1353
1354 /* We need to up our estimated delta before dropping dd_lock */
1355 dd->dd_tempreserved[txg & TXG_MASK] += asize;
1356
1357 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1358 asize - ref_rsrv);
1359 mutex_exit(&dd->dd_lock);
1360
1361 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1362 tr->tr_ds = dd;
1363 tr->tr_size = asize;
1364 list_insert_tail(tr_list, tr);
1365
1366 /* see if it's OK with our parent */
1367 if (dd->dd_parent != NULL && parent_rsrv != 0) {
1368 /*
1369 * Recurse on our parent without recursion. This has been
1370 * observed to be potentially large stack usage even within
1371 * the test suite. Largest seen stack was 7632 bytes on linux.
1372 */
1373
1374 dd = dd->dd_parent;
1375 asize = parent_rsrv;
1376 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1377 first = B_FALSE;
1378 goto top_of_function;
1379
1380 } else {
1381 return (0);
1382 }
1383 }
1384
1385 /*
1386 * Reserve space in this dsl_dir, to be used in this tx's txg.
1387 * After the space has been dirtied (and dsl_dir_willuse_space()
1388 * has been called), the reservation should be canceled, using
1389 * dsl_dir_tempreserve_clear().
1390 */
1391 int
dsl_dir_tempreserve_space(dsl_dir_t * dd,uint64_t lsize,uint64_t asize,boolean_t netfree,void ** tr_cookiep,dmu_tx_t * tx)1392 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1393 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1394 {
1395 int err;
1396 list_t *tr_list;
1397
1398 if (asize == 0) {
1399 *tr_cookiep = NULL;
1400 return (0);
1401 }
1402
1403 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1404 list_create(tr_list, sizeof (struct tempreserve),
1405 offsetof(struct tempreserve, tr_node));
1406 ASSERT3S(asize, >, 0);
1407
1408 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1409 if (err == 0) {
1410 struct tempreserve *tr;
1411
1412 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1413 tr->tr_size = lsize;
1414 list_insert_tail(tr_list, tr);
1415 } else {
1416 if (err == EAGAIN) {
1417 /*
1418 * If arc_memory_throttle() detected that pageout
1419 * is running and we are low on memory, we delay new
1420 * non-pageout transactions to give pageout an
1421 * advantage.
1422 *
1423 * It is unfortunate to be delaying while the caller's
1424 * locks are held.
1425 */
1426 txg_delay(dd->dd_pool, tx->tx_txg,
1427 MSEC2NSEC(10), MSEC2NSEC(10));
1428 err = SET_ERROR(ERESTART);
1429 }
1430 }
1431
1432 if (err == 0) {
1433 err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1434 B_FALSE, tr_list, tx, B_TRUE);
1435 }
1436
1437 if (err != 0)
1438 dsl_dir_tempreserve_clear(tr_list, tx);
1439 else
1440 *tr_cookiep = tr_list;
1441
1442 return (err);
1443 }
1444
1445 /*
1446 * Clear a temporary reservation that we previously made with
1447 * dsl_dir_tempreserve_space().
1448 */
1449 void
dsl_dir_tempreserve_clear(void * tr_cookie,dmu_tx_t * tx)1450 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1451 {
1452 int txgidx = tx->tx_txg & TXG_MASK;
1453 list_t *tr_list = tr_cookie;
1454 struct tempreserve *tr;
1455
1456 ASSERT3U(tx->tx_txg, !=, 0);
1457
1458 if (tr_cookie == NULL)
1459 return;
1460
1461 while ((tr = list_head(tr_list)) != NULL) {
1462 if (tr->tr_ds) {
1463 mutex_enter(&tr->tr_ds->dd_lock);
1464 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1465 tr->tr_size);
1466 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1467 mutex_exit(&tr->tr_ds->dd_lock);
1468 } else {
1469 arc_tempreserve_clear(tr->tr_size);
1470 }
1471 list_remove(tr_list, tr);
1472 kmem_free(tr, sizeof (struct tempreserve));
1473 }
1474
1475 kmem_free(tr_list, sizeof (list_t));
1476 }
1477
1478 /*
1479 * This should be called from open context when we think we're going to write
1480 * or free space, for example when dirtying data. Be conservative; it's okay
1481 * to write less space or free more, but we don't want to write more or free
1482 * less than the amount specified.
1483 *
1484 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1485 * version however it has been adjusted to use an iterative rather than
1486 * recursive algorithm to minimize stack usage.
1487 */
1488 void
dsl_dir_willuse_space(dsl_dir_t * dd,int64_t space,dmu_tx_t * tx)1489 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1490 {
1491 int64_t parent_space;
1492 uint64_t est_used;
1493
1494 do {
1495 mutex_enter(&dd->dd_lock);
1496 if (space > 0)
1497 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1498
1499 est_used = dsl_dir_space_towrite(dd) +
1500 dsl_dir_phys(dd)->dd_used_bytes;
1501 parent_space = parent_delta(dd, est_used, space);
1502 mutex_exit(&dd->dd_lock);
1503
1504 /* Make sure that we clean up dd_space_to* */
1505 dsl_dir_dirty(dd, tx);
1506
1507 dd = dd->dd_parent;
1508 space = parent_space;
1509 } while (space && dd);
1510 }
1511
1512 /* call from syncing context when we actually write/free space for this dd */
1513 void
dsl_dir_diduse_space(dsl_dir_t * dd,dd_used_t type,int64_t used,int64_t compressed,int64_t uncompressed,dmu_tx_t * tx)1514 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1515 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1516 {
1517 int64_t accounted_delta;
1518
1519 /*
1520 * dsl_dataset_set_refreservation_sync_impl() calls this with
1521 * dd_lock held, so that it can atomically update
1522 * ds->ds_reserved and the dsl_dir accounting, so that
1523 * dsl_dataset_check_quota() can see dataset and dir accounting
1524 * consistently.
1525 */
1526 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1527
1528 ASSERT(dmu_tx_is_syncing(tx));
1529 ASSERT(type < DD_USED_NUM);
1530
1531 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1532
1533 if (needlock)
1534 mutex_enter(&dd->dd_lock);
1535 accounted_delta =
1536 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1537 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1538 ASSERT(compressed >= 0 ||
1539 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1540 ASSERT(uncompressed >= 0 ||
1541 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1542 dsl_dir_phys(dd)->dd_used_bytes += used;
1543 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1544 dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1545
1546 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1547 ASSERT(used > 0 ||
1548 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1549 dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1550 #ifdef ZFS_DEBUG
1551 {
1552 dd_used_t t;
1553 uint64_t u = 0;
1554 for (t = 0; t < DD_USED_NUM; t++)
1555 u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1556 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1557 }
1558 #endif
1559 }
1560 if (needlock)
1561 mutex_exit(&dd->dd_lock);
1562
1563 if (dd->dd_parent != NULL) {
1564 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1565 accounted_delta, compressed, uncompressed, tx);
1566 dsl_dir_transfer_space(dd->dd_parent,
1567 used - accounted_delta,
1568 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1569 }
1570 }
1571
1572 void
dsl_dir_transfer_space(dsl_dir_t * dd,int64_t delta,dd_used_t oldtype,dd_used_t newtype,dmu_tx_t * tx)1573 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1574 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1575 {
1576 ASSERT(dmu_tx_is_syncing(tx));
1577 ASSERT(oldtype < DD_USED_NUM);
1578 ASSERT(newtype < DD_USED_NUM);
1579
1580 if (delta == 0 ||
1581 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1582 return;
1583
1584 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1585 mutex_enter(&dd->dd_lock);
1586 ASSERT(delta > 0 ?
1587 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1588 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1589 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1590 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1591 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1592 mutex_exit(&dd->dd_lock);
1593 }
1594
1595 typedef struct dsl_dir_set_qr_arg {
1596 const char *ddsqra_name;
1597 zprop_source_t ddsqra_source;
1598 uint64_t ddsqra_value;
1599 } dsl_dir_set_qr_arg_t;
1600
1601 static int
dsl_dir_set_quota_check(void * arg,dmu_tx_t * tx)1602 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1603 {
1604 dsl_dir_set_qr_arg_t *ddsqra = arg;
1605 dsl_pool_t *dp = dmu_tx_pool(tx);
1606 dsl_dataset_t *ds;
1607 int error;
1608 uint64_t towrite, newval;
1609
1610 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1611 if (error != 0)
1612 return (error);
1613
1614 error = dsl_prop_predict(ds->ds_dir, "quota",
1615 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1616 if (error != 0) {
1617 dsl_dataset_rele(ds, FTAG);
1618 return (error);
1619 }
1620
1621 if (newval == 0) {
1622 dsl_dataset_rele(ds, FTAG);
1623 return (0);
1624 }
1625
1626 mutex_enter(&ds->ds_dir->dd_lock);
1627 /*
1628 * If we are doing the preliminary check in open context, and
1629 * there are pending changes, then don't fail it, since the
1630 * pending changes could under-estimate the amount of space to be
1631 * freed up.
1632 */
1633 towrite = dsl_dir_space_towrite(ds->ds_dir);
1634 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1635 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1636 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1637 error = SET_ERROR(ENOSPC);
1638 }
1639 mutex_exit(&ds->ds_dir->dd_lock);
1640 dsl_dataset_rele(ds, FTAG);
1641 return (error);
1642 }
1643
1644 static void
dsl_dir_set_quota_sync(void * arg,dmu_tx_t * tx)1645 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1646 {
1647 dsl_dir_set_qr_arg_t *ddsqra = arg;
1648 dsl_pool_t *dp = dmu_tx_pool(tx);
1649 dsl_dataset_t *ds;
1650 uint64_t newval;
1651
1652 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1653
1654 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1655 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1656 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1657 &ddsqra->ddsqra_value, tx);
1658
1659 VERIFY0(dsl_prop_get_int_ds(ds,
1660 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1661 } else {
1662 newval = ddsqra->ddsqra_value;
1663 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1664 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1665 }
1666
1667 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1668 mutex_enter(&ds->ds_dir->dd_lock);
1669 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1670 mutex_exit(&ds->ds_dir->dd_lock);
1671 dsl_dataset_rele(ds, FTAG);
1672 }
1673
1674 int
dsl_dir_set_quota(const char * ddname,zprop_source_t source,uint64_t quota)1675 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1676 {
1677 dsl_dir_set_qr_arg_t ddsqra;
1678
1679 ddsqra.ddsqra_name = ddname;
1680 ddsqra.ddsqra_source = source;
1681 ddsqra.ddsqra_value = quota;
1682
1683 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1684 dsl_dir_set_quota_sync, &ddsqra, 0,
1685 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1686 }
1687
1688 static int
dsl_dir_set_reservation_check(void * arg,dmu_tx_t * tx)1689 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1690 {
1691 dsl_dir_set_qr_arg_t *ddsqra = arg;
1692 dsl_pool_t *dp = dmu_tx_pool(tx);
1693 dsl_dataset_t *ds;
1694 dsl_dir_t *dd;
1695 uint64_t newval, used, avail;
1696 int error;
1697
1698 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1699 if (error != 0)
1700 return (error);
1701 dd = ds->ds_dir;
1702
1703 /*
1704 * If we are doing the preliminary check in open context, the
1705 * space estimates may be inaccurate.
1706 */
1707 if (!dmu_tx_is_syncing(tx)) {
1708 dsl_dataset_rele(ds, FTAG);
1709 return (0);
1710 }
1711
1712 error = dsl_prop_predict(ds->ds_dir,
1713 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1714 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1715 if (error != 0) {
1716 dsl_dataset_rele(ds, FTAG);
1717 return (error);
1718 }
1719
1720 mutex_enter(&dd->dd_lock);
1721 used = dsl_dir_phys(dd)->dd_used_bytes;
1722 mutex_exit(&dd->dd_lock);
1723
1724 if (dd->dd_parent) {
1725 avail = dsl_dir_space_available(dd->dd_parent,
1726 NULL, 0, FALSE);
1727 } else {
1728 avail = dsl_pool_adjustedsize(dd->dd_pool,
1729 ZFS_SPACE_CHECK_NORMAL) - used;
1730 }
1731
1732 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1733 uint64_t delta = MAX(used, newval) -
1734 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1735
1736 if (delta > avail ||
1737 (dsl_dir_phys(dd)->dd_quota > 0 &&
1738 newval > dsl_dir_phys(dd)->dd_quota))
1739 error = SET_ERROR(ENOSPC);
1740 }
1741
1742 dsl_dataset_rele(ds, FTAG);
1743 return (error);
1744 }
1745
1746 void
dsl_dir_set_reservation_sync_impl(dsl_dir_t * dd,uint64_t value,dmu_tx_t * tx)1747 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1748 {
1749 uint64_t used;
1750 int64_t delta;
1751
1752 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1753
1754 mutex_enter(&dd->dd_lock);
1755 used = dsl_dir_phys(dd)->dd_used_bytes;
1756 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1757 dsl_dir_phys(dd)->dd_reserved = value;
1758
1759 if (dd->dd_parent != NULL) {
1760 /* Roll up this additional usage into our ancestors */
1761 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1762 delta, 0, 0, tx);
1763 }
1764 mutex_exit(&dd->dd_lock);
1765 }
1766
1767 static void
dsl_dir_set_reservation_sync(void * arg,dmu_tx_t * tx)1768 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1769 {
1770 dsl_dir_set_qr_arg_t *ddsqra = arg;
1771 dsl_pool_t *dp = dmu_tx_pool(tx);
1772 dsl_dataset_t *ds;
1773 uint64_t newval;
1774
1775 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1776
1777 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1778 dsl_prop_set_sync_impl(ds,
1779 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1780 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1781 &ddsqra->ddsqra_value, tx);
1782
1783 VERIFY0(dsl_prop_get_int_ds(ds,
1784 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1785 } else {
1786 newval = ddsqra->ddsqra_value;
1787 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1788 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1789 (longlong_t)newval);
1790 }
1791
1792 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1793 dsl_dataset_rele(ds, FTAG);
1794 }
1795
1796 int
dsl_dir_set_reservation(const char * ddname,zprop_source_t source,uint64_t reservation)1797 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1798 uint64_t reservation)
1799 {
1800 dsl_dir_set_qr_arg_t ddsqra;
1801
1802 ddsqra.ddsqra_name = ddname;
1803 ddsqra.ddsqra_source = source;
1804 ddsqra.ddsqra_value = reservation;
1805
1806 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1807 dsl_dir_set_reservation_sync, &ddsqra, 0,
1808 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1809 }
1810
1811 static dsl_dir_t *
closest_common_ancestor(dsl_dir_t * ds1,dsl_dir_t * ds2)1812 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1813 {
1814 for (; ds1; ds1 = ds1->dd_parent) {
1815 dsl_dir_t *dd;
1816 for (dd = ds2; dd; dd = dd->dd_parent) {
1817 if (ds1 == dd)
1818 return (dd);
1819 }
1820 }
1821 return (NULL);
1822 }
1823
1824 /*
1825 * If delta is applied to dd, how much of that delta would be applied to
1826 * ancestor? Syncing context only.
1827 */
1828 static int64_t
would_change(dsl_dir_t * dd,int64_t delta,dsl_dir_t * ancestor)1829 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1830 {
1831 if (dd == ancestor)
1832 return (delta);
1833
1834 mutex_enter(&dd->dd_lock);
1835 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1836 mutex_exit(&dd->dd_lock);
1837 return (would_change(dd->dd_parent, delta, ancestor));
1838 }
1839
1840 typedef struct dsl_dir_rename_arg {
1841 const char *ddra_oldname;
1842 const char *ddra_newname;
1843 cred_t *ddra_cred;
1844 proc_t *ddra_proc;
1845 } dsl_dir_rename_arg_t;
1846
1847 typedef struct dsl_valid_rename_arg {
1848 int char_delta;
1849 int nest_delta;
1850 } dsl_valid_rename_arg_t;
1851
1852 /* ARGSUSED */
1853 static int
dsl_valid_rename(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1854 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1855 {
1856 dsl_valid_rename_arg_t *dvra = arg;
1857 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1858
1859 dsl_dataset_name(ds, namebuf);
1860
1861 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1862 <, ZFS_MAX_DATASET_NAME_LEN);
1863 int namelen = strlen(namebuf) + dvra->char_delta;
1864 int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1865
1866 if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1867 return (SET_ERROR(ENAMETOOLONG));
1868 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1869 return (SET_ERROR(ENAMETOOLONG));
1870 return (0);
1871 }
1872
1873 static int
dsl_dir_rename_check(void * arg,dmu_tx_t * tx)1874 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1875 {
1876 dsl_dir_rename_arg_t *ddra = arg;
1877 dsl_pool_t *dp = dmu_tx_pool(tx);
1878 dsl_dir_t *dd, *newparent;
1879 dsl_valid_rename_arg_t dvra;
1880 dsl_dataset_t *parentds;
1881 objset_t *parentos;
1882 const char *mynewname;
1883 int error;
1884
1885 /* target dir should exist */
1886 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1887 if (error != 0)
1888 return (error);
1889
1890 /* new parent should exist */
1891 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1892 &newparent, &mynewname);
1893 if (error != 0) {
1894 dsl_dir_rele(dd, FTAG);
1895 return (error);
1896 }
1897
1898 /* can't rename to different pool */
1899 if (dd->dd_pool != newparent->dd_pool) {
1900 dsl_dir_rele(newparent, FTAG);
1901 dsl_dir_rele(dd, FTAG);
1902 return (SET_ERROR(EXDEV));
1903 }
1904
1905 /* new name should not already exist */
1906 if (mynewname == NULL) {
1907 dsl_dir_rele(newparent, FTAG);
1908 dsl_dir_rele(dd, FTAG);
1909 return (SET_ERROR(EEXIST));
1910 }
1911
1912 /* can't rename below anything but filesystems (eg. no ZVOLs) */
1913 error = dsl_dataset_hold_obj(newparent->dd_pool,
1914 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1915 if (error != 0) {
1916 dsl_dir_rele(newparent, FTAG);
1917 dsl_dir_rele(dd, FTAG);
1918 return (error);
1919 }
1920 error = dmu_objset_from_ds(parentds, &parentos);
1921 if (error != 0) {
1922 dsl_dataset_rele(parentds, FTAG);
1923 dsl_dir_rele(newparent, FTAG);
1924 dsl_dir_rele(dd, FTAG);
1925 return (error);
1926 }
1927 if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
1928 dsl_dataset_rele(parentds, FTAG);
1929 dsl_dir_rele(newparent, FTAG);
1930 dsl_dir_rele(dd, FTAG);
1931 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
1932 }
1933 dsl_dataset_rele(parentds, FTAG);
1934
1935 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
1936 <, ZFS_MAX_DATASET_NAME_LEN);
1937 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
1938 <, ZFS_MAX_DATASET_NAME_LEN);
1939 dvra.char_delta = strlen(ddra->ddra_newname)
1940 - strlen(ddra->ddra_oldname);
1941 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
1942 - get_dataset_depth(ddra->ddra_oldname);
1943
1944 /* if the name length is growing, validate child name lengths */
1945 if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
1946 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1947 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1948 if (error != 0) {
1949 dsl_dir_rele(newparent, FTAG);
1950 dsl_dir_rele(dd, FTAG);
1951 return (error);
1952 }
1953 }
1954
1955 if (dmu_tx_is_syncing(tx)) {
1956 if (spa_feature_is_active(dp->dp_spa,
1957 SPA_FEATURE_FS_SS_LIMIT)) {
1958 /*
1959 * Although this is the check function and we don't
1960 * normally make on-disk changes in check functions,
1961 * we need to do that here.
1962 *
1963 * Ensure this portion of the tree's counts have been
1964 * initialized in case the new parent has limits set.
1965 */
1966 dsl_dir_init_fs_ss_count(dd, tx);
1967 }
1968 }
1969
1970 if (newparent != dd->dd_parent) {
1971 /* is there enough space? */
1972 uint64_t myspace =
1973 MAX(dsl_dir_phys(dd)->dd_used_bytes,
1974 dsl_dir_phys(dd)->dd_reserved);
1975 objset_t *os = dd->dd_pool->dp_meta_objset;
1976 uint64_t fs_cnt = 0;
1977 uint64_t ss_cnt = 0;
1978
1979 if (dsl_dir_is_zapified(dd)) {
1980 int err;
1981
1982 err = zap_lookup(os, dd->dd_object,
1983 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1984 &fs_cnt);
1985 if (err != ENOENT && err != 0) {
1986 dsl_dir_rele(newparent, FTAG);
1987 dsl_dir_rele(dd, FTAG);
1988 return (err);
1989 }
1990
1991 /*
1992 * have to add 1 for the filesystem itself that we're
1993 * moving
1994 */
1995 fs_cnt++;
1996
1997 err = zap_lookup(os, dd->dd_object,
1998 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1999 &ss_cnt);
2000 if (err != ENOENT && err != 0) {
2001 dsl_dir_rele(newparent, FTAG);
2002 dsl_dir_rele(dd, FTAG);
2003 return (err);
2004 }
2005 }
2006
2007 /* check for encryption errors */
2008 error = dsl_dir_rename_crypt_check(dd, newparent);
2009 if (error != 0) {
2010 dsl_dir_rele(newparent, FTAG);
2011 dsl_dir_rele(dd, FTAG);
2012 return (SET_ERROR(EACCES));
2013 }
2014
2015 /* no rename into our descendant */
2016 if (closest_common_ancestor(dd, newparent) == dd) {
2017 dsl_dir_rele(newparent, FTAG);
2018 dsl_dir_rele(dd, FTAG);
2019 return (SET_ERROR(EINVAL));
2020 }
2021
2022 error = dsl_dir_transfer_possible(dd->dd_parent,
2023 newparent, fs_cnt, ss_cnt, myspace,
2024 ddra->ddra_cred, ddra->ddra_proc);
2025 if (error != 0) {
2026 dsl_dir_rele(newparent, FTAG);
2027 dsl_dir_rele(dd, FTAG);
2028 return (error);
2029 }
2030 }
2031
2032 dsl_dir_rele(newparent, FTAG);
2033 dsl_dir_rele(dd, FTAG);
2034 return (0);
2035 }
2036
2037 static void
dsl_dir_rename_sync(void * arg,dmu_tx_t * tx)2038 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2039 {
2040 dsl_dir_rename_arg_t *ddra = arg;
2041 dsl_pool_t *dp = dmu_tx_pool(tx);
2042 dsl_dir_t *dd, *newparent;
2043 const char *mynewname;
2044 objset_t *mos = dp->dp_meta_objset;
2045
2046 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2047 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2048 &mynewname));
2049
2050 /* Log this before we change the name. */
2051 spa_history_log_internal_dd(dd, "rename", tx,
2052 "-> %s", ddra->ddra_newname);
2053
2054 if (newparent != dd->dd_parent) {
2055 objset_t *os = dd->dd_pool->dp_meta_objset;
2056 uint64_t fs_cnt = 0;
2057 uint64_t ss_cnt = 0;
2058
2059 /*
2060 * We already made sure the dd counts were initialized in the
2061 * check function.
2062 */
2063 if (spa_feature_is_active(dp->dp_spa,
2064 SPA_FEATURE_FS_SS_LIMIT)) {
2065 VERIFY0(zap_lookup(os, dd->dd_object,
2066 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2067 &fs_cnt));
2068 /* add 1 for the filesystem itself that we're moving */
2069 fs_cnt++;
2070
2071 VERIFY0(zap_lookup(os, dd->dd_object,
2072 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2073 &ss_cnt));
2074 }
2075
2076 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2077 DD_FIELD_FILESYSTEM_COUNT, tx);
2078 dsl_fs_ss_count_adjust(newparent, fs_cnt,
2079 DD_FIELD_FILESYSTEM_COUNT, tx);
2080
2081 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2082 DD_FIELD_SNAPSHOT_COUNT, tx);
2083 dsl_fs_ss_count_adjust(newparent, ss_cnt,
2084 DD_FIELD_SNAPSHOT_COUNT, tx);
2085
2086 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2087 -dsl_dir_phys(dd)->dd_used_bytes,
2088 -dsl_dir_phys(dd)->dd_compressed_bytes,
2089 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2090 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2091 dsl_dir_phys(dd)->dd_used_bytes,
2092 dsl_dir_phys(dd)->dd_compressed_bytes,
2093 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2094
2095 if (dsl_dir_phys(dd)->dd_reserved >
2096 dsl_dir_phys(dd)->dd_used_bytes) {
2097 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2098 dsl_dir_phys(dd)->dd_used_bytes;
2099
2100 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2101 -unused_rsrv, 0, 0, tx);
2102 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2103 unused_rsrv, 0, 0, tx);
2104 }
2105 }
2106
2107 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2108
2109 /* remove from old parent zapobj */
2110 VERIFY0(zap_remove(mos,
2111 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2112 dd->dd_myname, tx));
2113
2114 (void) strlcpy(dd->dd_myname, mynewname,
2115 sizeof (dd->dd_myname));
2116 dsl_dir_rele(dd->dd_parent, dd);
2117 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2118 VERIFY0(dsl_dir_hold_obj(dp,
2119 newparent->dd_object, NULL, dd, &dd->dd_parent));
2120
2121 /* add to new parent zapobj */
2122 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2123 dd->dd_myname, 8, 1, &dd->dd_object, tx));
2124
2125 /* TODO: A rename callback to avoid these layering violations. */
2126 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2127 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2128 ddra->ddra_newname, B_TRUE);
2129
2130 dsl_prop_notify_all(dd);
2131
2132 dsl_dir_rele(newparent, FTAG);
2133 dsl_dir_rele(dd, FTAG);
2134 }
2135
2136 int
dsl_dir_rename(const char * oldname,const char * newname)2137 dsl_dir_rename(const char *oldname, const char *newname)
2138 {
2139 dsl_dir_rename_arg_t ddra;
2140
2141 ddra.ddra_oldname = oldname;
2142 ddra.ddra_newname = newname;
2143 ddra.ddra_cred = CRED();
2144 ddra.ddra_proc = curproc;
2145
2146 return (dsl_sync_task(oldname,
2147 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2148 3, ZFS_SPACE_CHECK_RESERVED));
2149 }
2150
2151 int
dsl_dir_transfer_possible(dsl_dir_t * sdd,dsl_dir_t * tdd,uint64_t fs_cnt,uint64_t ss_cnt,uint64_t space,cred_t * cr,proc_t * proc)2152 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2153 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2154 cred_t *cr, proc_t *proc)
2155 {
2156 dsl_dir_t *ancestor;
2157 int64_t adelta;
2158 uint64_t avail;
2159 int err;
2160
2161 ancestor = closest_common_ancestor(sdd, tdd);
2162 adelta = would_change(sdd, -space, ancestor);
2163 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2164 if (avail < space)
2165 return (SET_ERROR(ENOSPC));
2166
2167 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2168 ancestor, cr, proc);
2169 if (err != 0)
2170 return (err);
2171 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2172 ancestor, cr, proc);
2173 if (err != 0)
2174 return (err);
2175
2176 return (0);
2177 }
2178
2179 inode_timespec_t
dsl_dir_snap_cmtime(dsl_dir_t * dd)2180 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2181 {
2182 inode_timespec_t t;
2183
2184 mutex_enter(&dd->dd_lock);
2185 t = dd->dd_snap_cmtime;
2186 mutex_exit(&dd->dd_lock);
2187
2188 return (t);
2189 }
2190
2191 void
dsl_dir_snap_cmtime_update(dsl_dir_t * dd)2192 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
2193 {
2194 inode_timespec_t t;
2195
2196 gethrestime(&t);
2197 mutex_enter(&dd->dd_lock);
2198 dd->dd_snap_cmtime = t;
2199 mutex_exit(&dd->dd_lock);
2200 }
2201
2202 void
dsl_dir_zapify(dsl_dir_t * dd,dmu_tx_t * tx)2203 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2204 {
2205 objset_t *mos = dd->dd_pool->dp_meta_objset;
2206 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2207 }
2208
2209 boolean_t
dsl_dir_is_zapified(dsl_dir_t * dd)2210 dsl_dir_is_zapified(dsl_dir_t *dd)
2211 {
2212 dmu_object_info_t doi;
2213
2214 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2215 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2216 }
2217
2218 void
dsl_dir_livelist_open(dsl_dir_t * dd,uint64_t obj)2219 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2220 {
2221 objset_t *mos = dd->dd_pool->dp_meta_objset;
2222 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2223 SPA_FEATURE_LIVELIST));
2224 dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2225 bplist_create(&dd->dd_pending_allocs);
2226 bplist_create(&dd->dd_pending_frees);
2227 }
2228
2229 void
dsl_dir_livelist_close(dsl_dir_t * dd)2230 dsl_dir_livelist_close(dsl_dir_t *dd)
2231 {
2232 dsl_deadlist_close(&dd->dd_livelist);
2233 bplist_destroy(&dd->dd_pending_allocs);
2234 bplist_destroy(&dd->dd_pending_frees);
2235 }
2236
2237 void
dsl_dir_remove_livelist(dsl_dir_t * dd,dmu_tx_t * tx,boolean_t total)2238 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2239 {
2240 uint64_t obj;
2241 dsl_pool_t *dp = dmu_tx_pool(tx);
2242 spa_t *spa = dp->dp_spa;
2243 livelist_condense_entry_t to_condense = spa->spa_to_condense;
2244
2245 if (!dsl_deadlist_is_open(&dd->dd_livelist))
2246 return;
2247
2248 /*
2249 * If the livelist being removed is set to be condensed, stop the
2250 * condense zthr and indicate the cancellation in the spa_to_condense
2251 * struct in case the condense no-wait synctask has already started
2252 */
2253 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2254 if (ll_condense_thread != NULL &&
2255 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2256 /*
2257 * We use zthr_wait_cycle_done instead of zthr_cancel
2258 * because we don't want to destroy the zthr, just have
2259 * it skip its current task.
2260 */
2261 spa->spa_to_condense.cancelled = B_TRUE;
2262 zthr_wait_cycle_done(ll_condense_thread);
2263 /*
2264 * If we've returned from zthr_wait_cycle_done without
2265 * clearing the to_condense data structure it's either
2266 * because the no-wait synctask has started (which is
2267 * indicated by 'syncing' field of to_condense) and we
2268 * can expect it to clear to_condense on its own.
2269 * Otherwise, we returned before the zthr ran. The
2270 * checkfunc will now fail as cancelled == B_TRUE so we
2271 * can safely NULL out ds, allowing a different dir's
2272 * livelist to be condensed.
2273 *
2274 * We can be sure that the to_condense struct will not
2275 * be repopulated at this stage because both this
2276 * function and dsl_livelist_try_condense execute in
2277 * syncing context.
2278 */
2279 if ((spa->spa_to_condense.ds != NULL) &&
2280 !spa->spa_to_condense.syncing) {
2281 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2282 spa);
2283 spa->spa_to_condense.ds = NULL;
2284 }
2285 }
2286
2287 dsl_dir_livelist_close(dd);
2288 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2289 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2290 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2291 DD_FIELD_LIVELIST, tx));
2292 if (total) {
2293 dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2294 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2295 }
2296 }
2297
2298 static int
dsl_dir_activity_in_progress(dsl_dir_t * dd,dsl_dataset_t * ds,zfs_wait_activity_t activity,boolean_t * in_progress)2299 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2300 zfs_wait_activity_t activity, boolean_t *in_progress)
2301 {
2302 int error = 0;
2303
2304 ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2305
2306 switch (activity) {
2307 case ZFS_WAIT_DELETEQ: {
2308 #ifdef _KERNEL
2309 objset_t *os;
2310 error = dmu_objset_from_ds(ds, &os);
2311 if (error != 0)
2312 break;
2313
2314 mutex_enter(&os->os_user_ptr_lock);
2315 void *user = dmu_objset_get_user(os);
2316 mutex_exit(&os->os_user_ptr_lock);
2317 if (dmu_objset_type(os) != DMU_OST_ZFS ||
2318 user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2319 *in_progress = B_FALSE;
2320 return (0);
2321 }
2322
2323 uint64_t readonly = B_FALSE;
2324 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2325 NULL);
2326
2327 if (error != 0)
2328 break;
2329
2330 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2331 *in_progress = B_FALSE;
2332 return (0);
2333 }
2334
2335 uint64_t count, unlinked_obj;
2336 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2337 &unlinked_obj);
2338 if (error != 0) {
2339 dsl_dataset_rele(ds, FTAG);
2340 break;
2341 }
2342 error = zap_count(os, unlinked_obj, &count);
2343
2344 if (error == 0)
2345 *in_progress = (count != 0);
2346 break;
2347 #else
2348 /*
2349 * The delete queue is ZPL specific, and libzpool doesn't have
2350 * it. It doesn't make sense to wait for it.
2351 */
2352 *in_progress = B_FALSE;
2353 break;
2354 #endif
2355 }
2356 default:
2357 panic("unrecognized value for activity %d", activity);
2358 }
2359
2360 return (error);
2361 }
2362
2363 int
dsl_dir_wait(dsl_dir_t * dd,dsl_dataset_t * ds,zfs_wait_activity_t activity,boolean_t * waited)2364 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2365 boolean_t *waited)
2366 {
2367 int error = 0;
2368 boolean_t in_progress;
2369 dsl_pool_t *dp = dd->dd_pool;
2370 for (;;) {
2371 dsl_pool_config_enter(dp, FTAG);
2372 error = dsl_dir_activity_in_progress(dd, ds, activity,
2373 &in_progress);
2374 dsl_pool_config_exit(dp, FTAG);
2375 if (error != 0 || !in_progress)
2376 break;
2377
2378 *waited = B_TRUE;
2379
2380 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2381 0 || dd->dd_activity_cancelled) {
2382 error = SET_ERROR(EINTR);
2383 break;
2384 }
2385 }
2386 return (error);
2387 }
2388
2389 void
dsl_dir_cancel_waiters(dsl_dir_t * dd)2390 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2391 {
2392 mutex_enter(&dd->dd_activity_lock);
2393 dd->dd_activity_cancelled = B_TRUE;
2394 cv_broadcast(&dd->dd_activity_cv);
2395 while (dd->dd_activity_waiters > 0)
2396 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2397 mutex_exit(&dd->dd_activity_lock);
2398 }
2399
2400 #if defined(_KERNEL)
2401 EXPORT_SYMBOL(dsl_dir_set_quota);
2402 EXPORT_SYMBOL(dsl_dir_set_reservation);
2403 #endif
2404