xref: /f-stack/lib/ff_glue.c (revision 2317ada5)
1 /*
2  * Copyright (c) 2010 Kip Macy. All rights reserved.
3  * Copyright (C) 2017-2021 THL A29 Limited, a Tencent company.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  *   list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  *   this list of conditions and the following disclaimer in the documentation
13  *   and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Derived in part from libplebnet's pn_glue.c.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/kernel.h>
33 #include <sys/kthread.h>
34 #include <sys/event.h>
35 #include <sys/jail.h>
36 #include <sys/limits.h>
37 #include <sys/malloc.h>
38 #include <sys/refcount.h>
39 #include <sys/resourcevar.h>
40 #include <sys/sysctl.h>
41 #include <sys/sysent.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/time.h>
46 #include <sys/ucred.h>
47 #include <sys/uio.h>
48 #include <sys/param.h>
49 #include <sys/bus.h>
50 #include <sys/buf.h>
51 #include <sys/file.h>
52 #include <sys/vmem.h>
53 #include <sys/mbuf.h>
54 #include <sys/smp.h>
55 #include <sys/sched.h>
56 #include <sys/vmmeter.h>
57 #include <sys/unpcb.h>
58 #include <sys/eventfd.h>
59 #include <sys/linker.h>
60 #include <sys/sleepqueue.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_extern.h>
68 #include <vm/vm_domainset.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_pagequeue.h>
71 
72 #include <netinet/in_systm.h>
73 
74 #include <ck_epoch.h>
75 #include <ck_stack.h>
76 
77 #include "ff_host_interface.h"
78 
79 int kstack_pages = KSTACK_PAGES;
80 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
81     "Kernel stack size in pages");
82 
83 int __read_mostly vm_ndomains = 1;
84 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
85     &vm_ndomains, 0, "Number of physical memory domains available.");
86 
87 #ifndef MAXMEMDOM
88 #define MAXMEMDOM 1
89 #endif
90 
91 struct domainset __read_mostly domainset_fixed[MAXMEMDOM];
92 struct domainset __read_mostly domainset_prefer[MAXMEMDOM];
93 struct domainset __read_mostly domainset_roundrobin;
94 
95 struct vm_domain vm_dom[MAXMEMDOM];
96 
97 domainset_t __exclusive_cache_line vm_min_domains;
98 
99 int bootverbose;
100 
101 SYSCTL_ROOT_NODE(0, sysctl, CTLFLAG_RW, 0, "Sysctl internal magic");
102 
103 SYSCTL_ROOT_NODE(CTL_VFS, vfs, CTLFLAG_RW, 0, "File system");
104 
105 SYSCTL_ROOT_NODE(CTL_KERN, kern, CTLFLAG_RW, 0, "High kernel, proc, limits &c");
106 
107 SYSCTL_ROOT_NODE(CTL_NET, net, CTLFLAG_RW, 0, "Network, (see socket.h)");
108 
109 SYSCTL_ROOT_NODE(CTL_MACHDEP, machdep, CTLFLAG_RW, 0, "machine dependent");
110 
111 SYSCTL_ROOT_NODE(CTL_VM, vm, CTLFLAG_RW, 0, "Virtual memory");
112 
113 SYSCTL_ROOT_NODE(CTL_DEBUG, debug, CTLFLAG_RW, 0, "Debugging");
114 
115 SYSCTL_ROOT_NODE(OID_AUTO, security, CTLFLAG_RW, 0, "Security");
116 
117 SYSCTL_NODE(_kern, OID_AUTO, features, CTLFLAG_RD, 0, "Kernel Features");
118 
119 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
120 
121 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
122 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
123 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
124 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
125 
126 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
127 
128 static void configure_final(void *dummy);
129 
130 SYSINIT(configure3, SI_SUB_CONFIGURE, SI_ORDER_ANY, configure_final, NULL);
131 
132 volatile int ticks;
133 int cpu_disable_deep_sleep;
134 
135 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
136 
137 /* This is used in modules that need to work in both SMP and UP. */
138 cpuset_t all_cpus;
139 
140 int mp_ncpus = 1;
141 /* export this for libkvm consumers. */
142 int mp_maxcpus = MAXCPU;
143 
144 volatile int smp_started;
145 u_int mp_maxid;
146 
147 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,
148     "Kernel SMP");
149 
150 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
151     "Max CPU ID.");
152 
153 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
154     0, "Max number of CPUs that the system was compiled for.");
155 
156 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD | CTLTYPE_INT, NULL, 0,
157     sysctl_kern_smp_active, "I", "Indicates system is running in SMP mode");
158 
159 int smp_disabled = 0;    /* has smp been disabled? */
160 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
161     &smp_disabled, 0, "SMP has been disabled from the loader");
162 
163 int smp_cpus = 1;    /* how many cpu's running */
164 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
165     "Number of CPUs online");
166 
167 int smp_topology = 0;    /* Which topology we're using. */
168 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
169     "Topology override setting; 0 is default provided by hardware.");
170 
171 u_int vn_lock_pair_pause_max = 1; // ff_global_cfg.freebsd.hz / 100;
172 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
173     &vn_lock_pair_pause_max, 0,
174     "Max ticks for vn_lock_pair deadlock avoidance sleep");
175 
176 long first_page = 0;
177 
178 struct vmmeter vm_cnt;
179 vm_map_t kernel_map = 0;
180 vm_map_t kmem_map = 0;
181 
182 vmem_t *kernel_arena = NULL;
183 vmem_t *kmem_arena = NULL;
184 
185 struct vm_object kernel_object_store;
186 struct vm_object kmem_object_store;
187 
188 struct filterops fs_filtops;
189 struct filterops sig_filtops;
190 
191 int cold = 1;
192 
193 int unmapped_buf_allowed = 1;
194 
195 int cpu_deepest_sleep = 0;    /* Deepest Cx state available. */
196 int cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
197 int cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
198 
199 u_char __read_frequently kdb_active = 0;
200 
201 static void timevalfix(struct timeval *);
202 
203 /* Extra care is taken with this sysctl because the data type is volatile */
204 static int
sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)205 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
206 {
207     int error, active;
208 
209     active = smp_started;
210     error = SYSCTL_OUT(req, &active, sizeof(active));
211     return (error);
212 }
213 
214 void
procinit()215 procinit()
216 {
217     sx_init(&allproc_lock, "allproc");
218     LIST_INIT(&allproc);
219 }
220 
221 
222 /*
223  * Find a prison that is a descendant of mypr.  Returns a locked prison or NULL.
224  */
225 struct prison *
prison_find_child(struct prison * mypr,int prid)226 prison_find_child(struct prison *mypr, int prid)
227 {
228     return (NULL);
229 }
230 
231 void
prison_free(struct prison * pr)232 prison_free(struct prison *pr)
233 {
234 
235 }
236 
237 void
prison_hold_locked(struct prison * pr)238 prison_hold_locked(struct prison *pr)
239 {
240 
241 }
242 
243 int
prison_if(struct ucred * cred,const struct sockaddr * sa)244 prison_if(struct ucred *cred, const struct sockaddr *sa)
245 {
246     return (0);
247 }
248 
249 int
prison_check_af(struct ucred * cred,int af)250 prison_check_af(struct ucred *cred, int af)
251 {
252     return (0);
253 }
254 
255 int
prison_check_ip4(const struct ucred * cred,const struct in_addr * ia)256 prison_check_ip4(const struct ucred *cred, const struct in_addr *ia)
257 {
258     return (0);
259 }
260 
261 int
prison_equal_ip4(struct prison * pr1,struct prison * pr2)262 prison_equal_ip4(struct prison *pr1, struct prison *pr2)
263 {
264     return (1);
265 }
266 
267 #ifdef INET6
268 int
prison_check_ip6(const struct ucred * cred,const struct in6_addr * ia)269 prison_check_ip6(const struct ucred *cred, const struct in6_addr *ia)
270 {
271     return (0);
272 }
273 
274 int
prison_equal_ip6(struct prison * pr1,struct prison * pr2)275 prison_equal_ip6(struct prison *pr1, struct prison *pr2)
276 {
277     return (1);
278 }
279 #endif
280 
281 /*
282  * See if a prison has the specific flag set.
283  */
284 int
prison_flag(struct ucred * cred,unsigned flag)285 prison_flag(struct ucred *cred, unsigned flag)
286 {
287     /* This is an atomic read, so no locking is necessary. */
288     return (flag & PR_HOST);
289 }
290 
291 int
prison_get_ip4(struct ucred * cred,struct in_addr * ia)292 prison_get_ip4(struct ucred *cred, struct in_addr *ia)
293 {
294     return (0);
295 }
296 
297 int
prison_local_ip4(struct ucred * cred,struct in_addr * ia)298 prison_local_ip4(struct ucred *cred, struct in_addr *ia)
299 {
300     return (0);
301 }
302 
303 int
prison_remote_ip4(struct ucred * cred,struct in_addr * ia)304 prison_remote_ip4(struct ucred *cred, struct in_addr *ia)
305 {
306     return (0);
307 }
308 
309 #ifdef INET6
310 int
prison_get_ip6(struct ucred * cred,struct in6_addr * ia)311 prison_get_ip6(struct ucred *cred, struct in6_addr *ia)
312 {
313     return (0);
314 }
315 
316 int
prison_local_ip6(struct ucred * cred,struct in6_addr * ia,int other)317 prison_local_ip6(struct ucred *cred, struct in6_addr *ia, int other)
318 {
319     return (0);
320 }
321 
322 int
prison_remote_ip6(struct ucred * cred,struct in6_addr * ia)323 prison_remote_ip6(struct ucred *cred, struct in6_addr *ia)
324 {
325     return (0);
326 }
327 #endif
328 
329 int
prison_saddrsel_ip4(struct ucred * cred,struct in_addr * ia)330 prison_saddrsel_ip4(struct ucred *cred, struct in_addr *ia)
331 {
332     /* not jailed */
333     return (1);
334 }
335 
336 #ifdef INET6
337 int
prison_saddrsel_ip6(struct ucred * cred,struct in6_addr * ia)338 prison_saddrsel_ip6(struct ucred *cred, struct in6_addr *ia)
339 {
340     /* not jailed */
341     return (1);
342 }
343 #endif
344 
345 #if 0
346 int
347 jailed(struct ucred *cred)
348 {
349     return (0);
350 }
351 #endif
352 
353 /*
354  * Return 1 if the passed credential is in a jail and that jail does not
355  * have its own virtual network stack, otherwise 0.
356  */
357 int
jailed_without_vnet(struct ucred * cred)358 jailed_without_vnet(struct ucred *cred)
359 {
360     return (0);
361 }
362 
363 int
priv_check(struct thread * td,int priv)364 priv_check(struct thread *td, int priv)
365 {
366     return (0);
367 }
368 
369 int
priv_check_cred(struct ucred * cred,int priv)370 priv_check_cred(struct ucred *cred, int priv)
371 {
372     return (0);
373 }
374 
375 
376 int
vslock(void * addr,size_t len)377 vslock(void *addr, size_t len)
378 {
379     return (0);
380 }
381 
382 void
vsunlock(void * addr,size_t len)383 vsunlock(void *addr, size_t len)
384 {
385 
386 }
387 
388 
389 /*
390  * Check that a proposed value to load into the .it_value or
391  * .it_interval part of an interval timer is acceptable, and
392  * fix it to have at least minimal value (i.e. if it is less
393  * than the resolution of the clock, round it up.)
394  */
395 int
itimerfix(struct timeval * tv)396 itimerfix(struct timeval *tv)
397 {
398 
399     if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
400         return (EINVAL);
401     if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
402         tv->tv_usec = tick;
403     return (0);
404 }
405 
406 /*
407  * Decrement an interval timer by a specified number
408  * of microseconds, which must be less than a second,
409  * i.e. < 1000000.  If the timer expires, then reload
410  * it.  In this case, carry over (usec - old value) to
411  * reduce the value reloaded into the timer so that
412  * the timer does not drift.  This routine assumes
413  * that it is called in a context where the timers
414  * on which it is operating cannot change in value.
415  */
416 int
itimerdecr(struct itimerval * itp,int usec)417 itimerdecr(struct itimerval *itp, int usec)
418 {
419     if (itp->it_value.tv_usec < usec) {
420         if (itp->it_value.tv_sec == 0) {
421             /* expired, and already in next interval */
422             usec -= itp->it_value.tv_usec;
423             goto expire;
424         }
425         itp->it_value.tv_usec += 1000000;
426         itp->it_value.tv_sec--;
427     }
428     itp->it_value.tv_usec -= usec;
429     usec = 0;
430     if (timevalisset(&itp->it_value))
431         return (1);
432     /* expired, exactly at end of interval */
433 expire:
434     if (timevalisset(&itp->it_interval)) {
435         itp->it_value = itp->it_interval;
436         itp->it_value.tv_usec -= usec;
437         if (itp->it_value.tv_usec < 0) {
438             itp->it_value.tv_usec += 1000000;
439             itp->it_value.tv_sec--;
440         }
441     } else
442         itp->it_value.tv_usec = 0;        /* sec is already 0 */
443     return (0);
444 }
445 
446 /*
447  * Add and subtract routines for timevals.
448  * N.B.: subtract routine doesn't deal with
449  * results which are before the beginning,
450  * it just gets very confused in this case.
451  * Caveat emptor.
452  */
453 void
timevaladd(struct timeval * t1,const struct timeval * t2)454 timevaladd(struct timeval *t1, const struct timeval *t2)
455 {
456     t1->tv_sec += t2->tv_sec;
457     t1->tv_usec += t2->tv_usec;
458     timevalfix(t1);
459 }
460 
461 void
timevalsub(struct timeval * t1,const struct timeval * t2)462 timevalsub(struct timeval *t1, const struct timeval *t2)
463 {
464     t1->tv_sec -= t2->tv_sec;
465     t1->tv_usec -= t2->tv_usec;
466     timevalfix(t1);
467 }
468 
469 static void
timevalfix(struct timeval * t1)470 timevalfix(struct timeval *t1)
471 {
472     if (t1->tv_usec < 0) {
473         t1->tv_sec--;
474         t1->tv_usec += 1000000;
475     }
476     if (t1->tv_usec >= 1000000) {
477         t1->tv_sec++;
478         t1->tv_usec -= 1000000;
479     }
480 }
481 
482 /*
483  * ratecheck(): simple time-based rate-limit checking.
484  */
485 int
ratecheck(struct timeval * lasttime,const struct timeval * mininterval)486 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
487 {
488     struct timeval tv, delta;
489     int rv = 0;
490 
491     getmicrouptime(&tv);        /* NB: 10ms precision */
492     delta = tv;
493     timevalsub(&delta, lasttime);
494 
495     /*
496      * check for 0,0 is so that the message will be seen at least once,
497      * even if interval is huge.
498      */
499     if (timevalcmp(&delta, mininterval, >=) ||
500         (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
501         *lasttime = tv;
502         rv = 1;
503     }
504 
505     return (rv);
506 }
507 
508 /*
509  * ppsratecheck(): packets (or events) per second limitation.
510  *
511  * Return 0 if the limit is to be enforced (e.g. the caller
512  * should drop a packet because of the rate limitation).
513  *
514  * maxpps of 0 always causes zero to be returned.  maxpps of -1
515  * always causes 1 to be returned; this effectively defeats rate
516  * limiting.
517  *
518  * Note that we maintain the struct timeval for compatibility
519  * with other bsd systems.  We reuse the storage and just monitor
520  * clock ticks for minimal overhead.
521  */
522 int
ppsratecheck(struct timeval * lasttime,int * curpps,int maxpps)523 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
524 {
525     int now;
526 
527     /*
528      * Reset the last time and counter if this is the first call
529      * or more than a second has passed since the last update of
530      * lasttime.
531      */
532     now = ticks;
533     if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
534         lasttime->tv_sec = now;
535         *curpps = 1;
536         return (maxpps != 0);
537     } else {
538         (*curpps)++;        /* NB: ignore potential overflow */
539         return (maxpps < 0 || *curpps < maxpps);
540     }
541 }
542 
543 /*
544  * Compute number of ticks in the specified amount of time.
545  */
546 int
tvtohz(tv)547 tvtohz(tv)
548     struct timeval *tv;
549 {
550     register unsigned long ticks;
551     register long sec, usec;
552 
553     /*
554      * If the number of usecs in the whole seconds part of the time
555      * difference fits in a long, then the total number of usecs will
556      * fit in an unsigned long.  Compute the total and convert it to
557      * ticks, rounding up and adding 1 to allow for the current tick
558      * to expire.  Rounding also depends on unsigned long arithmetic
559      * to avoid overflow.
560      *
561      * Otherwise, if the number of ticks in the whole seconds part of
562      * the time difference fits in a long, then convert the parts to
563      * ticks separately and add, using similar rounding methods and
564      * overflow avoidance.  This method would work in the previous
565      * case but it is slightly slower and assumes that hz is integral.
566      *
567      * Otherwise, round the time difference down to the maximum
568      * representable value.
569      *
570      * If ints have 32 bits, then the maximum value for any timeout in
571      * 10ms ticks is 248 days.
572      */
573     sec = tv->tv_sec;
574     usec = tv->tv_usec;
575     if (usec < 0) {
576         sec--;
577         usec += 1000000;
578     }
579     if (sec < 0) {
580 #ifdef DIAGNOSTIC
581         if (usec > 0) {
582             sec++;
583             usec -= 1000000;
584         }
585         printf("tvotohz: negative time difference %ld sec %ld usec\n",
586                sec, usec);
587 #endif
588         ticks = 1;
589     } else if (sec <= LONG_MAX / 1000000)
590         ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
591             / tick + 1;
592     else if (sec <= LONG_MAX / hz)
593         ticks = sec * hz
594             + ((unsigned long)usec + (tick - 1)) / tick + 1;
595     else
596         ticks = LONG_MAX;
597     if (ticks > INT_MAX)
598         ticks = INT_MAX;
599     return ((int)ticks);
600 }
601 
602 int
copyin(const void * uaddr,void * kaddr,size_t len)603 copyin(const void *uaddr, void *kaddr, size_t len)
604 {
605     memcpy(kaddr, uaddr, len);
606     return (0);
607 }
608 
609 int
copyout(const void * kaddr,void * uaddr,size_t len)610 copyout(const void *kaddr, void *uaddr, size_t len)
611 {
612     memcpy(uaddr, kaddr, len);
613     return (0);
614 }
615 
616 #if 0
617 int
618 copystr(const void *kfaddr, void *kdaddr, size_t len, size_t *done)
619 {
620     size_t bytes;
621 
622     bytes = strlcpy(kdaddr, kfaddr, len);
623     if (done != NULL)
624         *done = bytes;
625 
626     return (0);
627 }
628 #endif
629 
630 int
copyinstr(const void * uaddr,void * kaddr,size_t len,size_t * done)631 copyinstr(const void *uaddr, void *kaddr, size_t len, size_t *done)
632 {
633     size_t bytes;
634 
635     bytes = strlcpy(kaddr, uaddr, len);
636     if (done != NULL)
637         *done = bytes;
638 
639     return (0);
640 }
641 
642 int
copyiniov(const struct iovec * iovp,u_int iovcnt,struct iovec ** iov,int error)643 copyiniov(const struct iovec *iovp, u_int iovcnt, struct iovec **iov, int error)
644 {
645     u_int iovlen;
646 
647     *iov = NULL;
648     if (iovcnt > UIO_MAXIOV)
649         return (error);
650     iovlen = iovcnt * sizeof (struct iovec);
651     *iov = malloc(iovlen, M_IOV, M_WAITOK);
652     error = copyin(iovp, *iov, iovlen);
653     if (error) {
654         free(*iov, M_IOV);
655         *iov = NULL;
656     }
657     return (error);
658 }
659 
660 int
subyte(volatile void * base,int byte)661 subyte(volatile void *base, int byte)
662 {
663     *(volatile char *)base = (uint8_t)byte;
664     return (0);
665 }
666 
667 static inline int
chglimit(struct uidinfo * uip,long * limit,int diff,rlim_t max,const char * name)668 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
669 {
670     /* Don't allow them to exceed max, but allow subtraction. */
671     if (diff > 0 && max != 0) {
672         if (atomic_fetchadd_long(limit, (long)diff) + diff > max) {
673             atomic_subtract_long(limit, (long)diff);
674             return (0);
675         }
676     } else {
677         atomic_add_long(limit, (long)diff);
678         if (*limit < 0)
679             printf("negative %s for uid = %d\n", name, uip->ui_uid);
680     }
681     return (1);
682 }
683 
684 /*
685  * Change the count associated with number of processes
686  * a given user is using.  When 'max' is 0, don't enforce a limit
687  */
688 int
chgproccnt(struct uidinfo * uip,int diff,rlim_t max)689 chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
690 {
691     return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
692 }
693 
694 /*
695  * Change the total socket buffer size a user has used.
696  */
697 int
chgsbsize(struct uidinfo * uip,u_int * hiwat,u_int to,rlim_t max)698 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
699 {
700     int diff, rv;
701 
702     diff = to - *hiwat;
703     if (diff > 0 && max == 0) {
704         rv = 0;
705     } else {
706         rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
707         if (rv != 0)
708             *hiwat = to;
709     }
710     return (rv);
711 }
712 
713 /*
714  * Change the count associated with number of pseudo-terminals
715  * a given user is using.  When 'max' is 0, don't enforce a limit
716  */
717 int
chgptscnt(struct uidinfo * uip,int diff,rlim_t max)718 chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
719 {
720     return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
721 }
722 
723 int
chgkqcnt(struct uidinfo * uip,int diff,rlim_t max)724 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
725 {
726     return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
727 }
728 
729 int
chgumtxcnt(struct uidinfo * uip,int diff,rlim_t max)730 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max)
731 {
732     return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt"));
733 }
734 
735 /*
736  * Allocate a new resource limits structure and initialize its
737  * reference count and mutex pointer.
738  */
739 struct plimit *
lim_alloc()740 lim_alloc()
741 {
742     struct plimit *limp;
743 
744     limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
745     refcount_init(&limp->pl_refcnt, 1);
746     return (limp);
747 }
748 
749 struct plimit *
lim_hold(struct plimit * limp)750 lim_hold(struct plimit *limp)
751 {
752     refcount_acquire(&limp->pl_refcnt);
753     return (limp);
754 }
755 
756 /*
757  * Return the current (soft) limit for a particular system resource.
758  * The which parameter which specifies the index into the rlimit array
759  */
760 rlim_t
lim_cur(struct thread * td,int which)761 lim_cur(struct thread *td, int which)
762 {
763     struct rlimit rl;
764 
765     lim_rlimit(td, which, &rl);
766     return (rl.rlim_cur);
767 }
768 
769 rlim_t
lim_cur_proc(struct proc * p,int which)770 lim_cur_proc(struct proc *p, int which)
771 {
772     struct rlimit rl;
773 
774     lim_rlimit_proc(p, which, &rl);
775     return (rl.rlim_cur);
776 }
777 
778 /*
779  * Return a copy of the entire rlimit structure for the system limit
780  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
781  */
782 void
lim_rlimit(struct thread * td,int which,struct rlimit * rlp)783 lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
784 {
785     struct proc *p = td->td_proc;
786 
787     MPASS(td == curthread);
788     KASSERT(which >= 0 && which < RLIM_NLIMITS,
789         ("request for invalid resource limit"));
790     *rlp = p->p_limit->pl_rlimit[which];
791     if (p->p_sysent->sv_fixlimit != NULL)
792         p->p_sysent->sv_fixlimit(rlp, which);
793 }
794 
795 void
lim_rlimit_proc(struct proc * p,int which,struct rlimit * rlp)796 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
797 {
798     PROC_LOCK_ASSERT(p, MA_OWNED);
799     KASSERT(which >= 0 && which < RLIM_NLIMITS,
800         ("request for invalid resource limit"));
801     *rlp = p->p_limit->pl_rlimit[which];
802     if (p->p_sysent->sv_fixlimit != NULL)
803         p->p_sysent->sv_fixlimit(rlp, which);
804 }
805 
806 int
useracc(void * addr,int len,int rw)807 useracc(void *addr, int len, int rw)
808 {
809     return (1);
810 }
811 
812 struct pgrp *
pgfind(pid_t pgid)813 pgfind(pid_t pgid)
814 {
815     return (NULL);
816 }
817 
818 #if 0
819 struct proc *
820 zpfind(pid_t pid)
821 {
822     return (NULL);
823 }
824 #endif
825 
826 int
p_cansee(struct thread * td,struct proc * p)827 p_cansee(struct thread *td, struct proc *p)
828 {
829     return (0);
830 }
831 
832 struct proc *
pfind(pid_t pid)833 pfind(pid_t pid)
834 {
835     return (NULL);
836 }
837 
838 int
pget(pid_t pid,int flags,struct proc ** pp)839 pget(pid_t pid, int flags, struct proc **pp)
840 {
841     return (ESRCH);
842 }
843 
844 struct uidinfo uid0;
845 
846 struct uidinfo *
uifind(uid_t uid)847 uifind(uid_t uid)
848 {
849     return (&uid0);
850 }
851 
852 /*
853  * Allocate a zeroed cred structure.
854  */
855 struct ucred *
crget(void)856 crget(void)
857 {
858     register struct ucred *cr;
859 
860     cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
861     refcount_init(&cr->cr_ref, 1);
862 
863     return (cr);
864 }
865 
866 /*
867  * Claim another reference to a ucred structure.
868  */
869 struct ucred *
crhold(struct ucred * cr)870 crhold(struct ucred *cr)
871 {
872     refcount_acquire(&cr->cr_ref);
873     return (cr);
874 }
875 
876 /*
877  * Free a cred structure.  Throws away space when ref count gets to 0.
878  */
879 void
crfree(struct ucred * cr)880 crfree(struct ucred *cr)
881 {
882     KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
883     KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred"));
884     if (refcount_release(&cr->cr_ref)) {
885 
886         free(cr, M_CRED);
887     }
888 }
889 
890 /*
891  * Fill in a struct xucred based on a struct ucred.
892  */
893 
894 void
cru2x(struct ucred * cr,struct xucred * xcr)895 cru2x(struct ucred *cr, struct xucred *xcr)
896 {
897 #if 0
898     int ngroups;
899 
900     bzero(xcr, sizeof(*xcr));
901     xcr->cr_version = XUCRED_VERSION;
902     xcr->cr_uid = cr->cr_uid;
903 
904     ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
905     xcr->cr_ngroups = ngroups;
906     bcopy(cr->cr_groups, xcr->cr_groups,
907         ngroups * sizeof(*cr->cr_groups));
908 #endif
909 }
910 
911 
912 int
cr_cansee(struct ucred * u1,struct ucred * u2)913 cr_cansee(struct ucred *u1, struct ucred *u2)
914 {
915     return (0);
916 }
917 
918 int
cr_canseesocket(struct ucred * cred,struct socket * so)919 cr_canseesocket(struct ucred *cred, struct socket *so)
920 {
921     return (0);
922 }
923 
924 int
cr_canseeinpcb(struct ucred * cred,struct inpcb * inp)925 cr_canseeinpcb(struct ucred *cred, struct inpcb *inp)
926 {
927     return (0);
928 }
929 
930 int
securelevel_gt(struct ucred * cr,int level)931 securelevel_gt(struct ucred *cr, int level)
932 {
933     return (0);
934 }
935 
936 int
securelevel_ge(struct ucred * cr,int level)937 securelevel_ge(struct ucred *cr, int level)
938 {
939         return (0);
940 }
941 
942 /**
943  * @brief Send a 'notification' to userland, using standard ways
944  */
945 void
devctl_notify(const char * system,const char * subsystem,const char * type,const char * data)946 devctl_notify(const char *system, const char *subsystem, const char *type,
947     const char *data)
948 {
949 
950 }
951 
952 void
cpu_pcpu_init(struct pcpu * pcpu,int cpuid,size_t size)953 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
954 {
955 
956 }
957 
958 static void
configure_final(void * dummy)959 configure_final(void *dummy)
960 {
961     cold = 0;
962 }
963 
964 /*
965  * Send a SIGIO or SIGURG signal to a process or process group using stored
966  * credentials rather than those of the current process.
967  */
968 void
pgsigio(sigiop,sig,checkctty)969 pgsigio(sigiop, sig, checkctty)
970     struct sigio **sigiop;
971     int sig, checkctty;
972 {
973     panic("SIGIO not supported yet\n");
974 #ifdef notyet
975     ksiginfo_t ksi;
976     struct sigio *sigio;
977 
978     ksiginfo_init(&ksi);
979     ksi.ksi_signo = sig;
980     ksi.ksi_code = SI_KERNEL;
981 
982     SIGIO_LOCK();
983     sigio = *sigiop;
984     if (sigio == NULL) {
985         SIGIO_UNLOCK();
986         return;
987     }
988     if (sigio->sio_pgid > 0) {
989         PROC_LOCK(sigio->sio_proc);
990         if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
991             psignal(sigio->sio_proc, sig);
992         PROC_UNLOCK(sigio->sio_proc);
993     } else if (sigio->sio_pgid < 0) {
994         struct proc *p;
995 
996         PGRP_LOCK(sigio->sio_pgrp);
997         LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
998             PROC_LOCK(p);
999             if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
1000                 (checkctty == 0 || (p->p_flag & P_CONTROLT)))
1001                 psignal(p, sig);
1002             PROC_UNLOCK(p);
1003         }
1004         PGRP_UNLOCK(sigio->sio_pgrp);
1005     }
1006     SIGIO_UNLOCK();
1007 #endif
1008 }
1009 
1010 void
kproc_exit(int ecode)1011 kproc_exit(int ecode)
1012 {
1013     panic("kproc_exit unsupported");
1014 }
1015 
1016 vm_offset_t
kmem_malloc(vm_size_t bytes,int flags)1017 kmem_malloc(vm_size_t bytes, int flags)
1018 {
1019     void *alloc = ff_mmap(NULL, bytes, ff_PROT_READ|ff_PROT_WRITE, ff_MAP_ANON|ff_MAP_PRIVATE, -1, 0);
1020     if ((flags & M_ZERO) && alloc != NULL)
1021         bzero(alloc, bytes);
1022     return ((vm_offset_t)alloc);
1023 }
1024 
1025 void
kmem_free(vm_offset_t addr,vm_size_t size)1026 kmem_free(vm_offset_t addr, vm_size_t size)
1027 {
1028     ff_munmap((void *)addr, size);
1029 }
1030 
1031 vm_offset_t
kmem_alloc_contig(vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)1032 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low,
1033     vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
1034 {
1035     return (kmem_malloc(size, flags));
1036 }
1037 
1038 void
malloc_init(void * data)1039 malloc_init(void *data)
1040 {
1041     /* Nothing to do here */
1042 }
1043 
1044 
1045 void
malloc_uninit(void * data)1046 malloc_uninit(void *data)
1047 {
1048     /* Nothing to do here */
1049 }
1050 
1051 void *
malloc(unsigned long size,struct malloc_type * type,int flags)1052 malloc(unsigned long size, struct malloc_type *type, int flags)
1053 {
1054     void *alloc;
1055 
1056     do {
1057         alloc = ff_malloc(size);
1058         if (alloc || !(flags & M_WAITOK))
1059             break;
1060 
1061         pause("malloc", hz/100);
1062     } while (alloc == NULL);
1063 
1064     if ((flags & M_ZERO) && alloc != NULL)
1065         bzero(alloc, size);
1066     return (alloc);
1067 }
1068 
1069 void
free(void * addr,struct malloc_type * type)1070 free(void *addr, struct malloc_type *type)
1071 {
1072     ff_free(addr);
1073 }
1074 
1075 void *
realloc(void * addr,unsigned long size,struct malloc_type * type,int flags)1076 realloc(void *addr, unsigned long size, struct malloc_type *type,
1077     int flags)
1078 {
1079     return (ff_realloc(addr, size));
1080 }
1081 
1082 void *
reallocf(void * addr,unsigned long size,struct malloc_type * type,int flags)1083 reallocf(void *addr, unsigned long size, struct malloc_type *type,
1084      int flags)
1085 {
1086     void *mem;
1087 
1088     if ((mem = ff_realloc(addr, size)) == NULL)
1089         ff_free(addr);
1090 
1091     return (mem);
1092 }
1093 
1094 void
DELAY(int delay)1095 DELAY(int delay)
1096 {
1097     struct timespec rqt;
1098 
1099     if (delay < 1000)
1100         return;
1101 
1102     rqt.tv_nsec = 1000*((unsigned long)delay);
1103     rqt.tv_sec = 0;
1104     /*
1105      * FIXME: We shouldn't sleep in dpdk apps.
1106      */
1107     //nanosleep(&rqt, NULL);
1108 }
1109 
1110 void
bwillwrite(void)1111 bwillwrite(void)
1112 {
1113 
1114 }
1115 
1116 off_t
foffset_lock(struct file * fp,int flags)1117 foffset_lock(struct file *fp, int flags)
1118 {
1119     struct mtx *mtxp;
1120     off_t res;
1121 
1122     KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
1123 
1124 #if OFF_MAX <= LONG_MAX
1125     /*
1126      * Caller only wants the current f_offset value.  Assume that
1127      * the long and shorter integer types reads are atomic.
1128      */
1129     if ((flags & FOF_NOLOCK) != 0)
1130         return (fp->f_offset);
1131 #endif
1132 
1133     /*
1134      * According to McKusick the vn lock was protecting f_offset here.
1135      * It is now protected by the FOFFSET_LOCKED flag.
1136      */
1137     mtxp = mtx_pool_find(mtxpool_sleep, fp);
1138     mtx_lock(mtxp);
1139     /*
1140     if ((flags & FOF_NOLOCK) == 0) {
1141         while (fp->f_vnread_flags & FOFFSET_LOCKED) {
1142             fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
1143             msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
1144                 "vofflock", 0);
1145         }
1146         fp->f_vnread_flags |= FOFFSET_LOCKED;
1147     }
1148     */
1149     res = fp->f_offset;
1150     mtx_unlock(mtxp);
1151     return (res);
1152 }
1153 
1154 #if 0
1155 void
1156 sf_ext_free(void *arg1, void *arg2)
1157 {
1158     panic("sf_ext_free not implemented.\n");
1159 }
1160 
1161 void
1162 sf_ext_free_nocache(void *arg1, void *arg2)
1163 {
1164     panic("sf_ext_free_nocache not implemented.\n");
1165 }
1166 #endif
1167 
1168 void
sched_bind(struct thread * td,int cpu)1169 sched_bind(struct thread *td, int cpu)
1170 {
1171 
1172 }
1173 
1174 void
sched_unbind(struct thread * td)1175 sched_unbind(struct thread* td)
1176 {
1177 
1178 }
1179 
1180 void
getcredhostid(struct ucred * cred,unsigned long * hostid)1181 getcredhostid(struct ucred *cred, unsigned long *hostid)
1182 {
1183     *hostid = 0;
1184 }
1185 
1186 /*
1187  * Check if gid is a member of the group set.
1188  */
1189 int
groupmember(gid_t gid,struct ucred * cred)1190 groupmember(gid_t gid, struct ucred *cred)
1191 {
1192     int l;
1193     int h;
1194     int m;
1195 
1196     if (cred->cr_groups[0] == gid)
1197         return(1);
1198 
1199     /*
1200      * If gid was not our primary group, perform a binary search
1201      * of the supplemental groups.  This is possible because we
1202      * sort the groups in crsetgroups().
1203      */
1204     l = 1;
1205     h = cred->cr_ngroups;
1206     while (l < h) {
1207         m = l + ((h - l) / 2);
1208         if (cred->cr_groups[m] < gid)
1209             l = m + 1;
1210         else
1211             h = m;
1212     }
1213     if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
1214         return (1);
1215 
1216     return (0);
1217 }
1218 
1219 int
vm_wait_doms(const domainset_t * wdoms,int mflags)1220 vm_wait_doms(const domainset_t *wdoms, int mflags)
1221 {
1222     return 0;
1223 }
1224 
1225 void
vm_domainset_iter_policy_ref_init(struct vm_domainset_iter * di,struct domainset_ref * dr,int * domain,int * flags)1226 vm_domainset_iter_policy_ref_init(struct vm_domainset_iter *di,
1227     struct domainset_ref *dr, int *domain, int *flags)
1228 {
1229     *domain = 0;
1230 }
1231 
1232 int
vm_domainset_iter_policy(struct vm_domainset_iter * di,int * domain)1233 vm_domainset_iter_policy(struct vm_domainset_iter *di, int *domain)
1234 {
1235     //return (EJUSTRETURN);
1236     return 0;
1237 }
1238 
1239 vm_offset_t
kmem_malloc_domainset(struct domainset * ds,vm_size_t size,int flags)1240 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
1241 {
1242     return (kmem_malloc(size, flags));
1243 }
1244 
1245 void *
mallocarray(size_t nmemb,size_t size,struct malloc_type * type,int flags)1246 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
1247 {
1248     return (malloc(size * nmemb, type, flags));
1249 }
1250 
1251 void
getcredhostuuid(struct ucred * cred,char * buf,size_t size)1252 getcredhostuuid(struct ucred *cred, char *buf, size_t size)
1253 {
1254     mtx_lock(&cred->cr_prison->pr_mtx);
1255     strlcpy(buf, cred->cr_prison->pr_hostuuid, size);
1256     mtx_unlock(&cred->cr_prison->pr_mtx);
1257 }
1258 
1259 void
getjailname(struct ucred * cred,char * name,size_t len)1260 getjailname(struct ucred *cred, char *name, size_t len)
1261 {
1262     mtx_lock(&cred->cr_prison->pr_mtx);
1263     strlcpy(name, cred->cr_prison->pr_name, len);
1264     mtx_unlock(&cred->cr_prison->pr_mtx);
1265 }
1266 
1267 void *
malloc_domainset(size_t size,struct malloc_type * mtp,struct domainset * ds,int flags)1268 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds,
1269     int flags)
1270 {
1271     return (malloc(size, mtp, flags));
1272 }
1273 
1274 void *
malloc_exec(size_t size,struct malloc_type * mtp,int flags)1275 malloc_exec(size_t size, struct malloc_type *mtp, int flags)
1276 {
1277 
1278     return (malloc(size, mtp, flags));
1279 }
1280 
1281 int
bus_get_domain(device_t dev,int * domain)1282 bus_get_domain(device_t dev, int *domain)
1283 {
1284     return (-1);
1285 }
1286 
1287 void
cru2xt(struct thread * td,struct xucred * xcr)1288 cru2xt(struct thread *td, struct xucred *xcr)
1289 {
1290     cru2x(td->td_ucred, xcr);
1291     xcr->cr_pid = td->td_proc->p_pid;
1292 }
1293 
1294 /*
1295  * Set socket peer credentials at connection time.
1296  *
1297  * The client's PCB credentials are copied from its process structure.  The
1298  * server's PCB credentials are copied from the socket on which it called
1299  * listen(2).  uipc_listen cached that process's credentials at the time.
1300  */
1301 void
unp_copy_peercred(struct thread * td,struct unpcb * client_unp,struct unpcb * server_unp,struct unpcb * listen_unp)1302 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1303     struct unpcb *server_unp, struct unpcb *listen_unp)
1304 {
1305     cru2xt(td, &client_unp->unp_peercred);
1306     client_unp->unp_flags |= UNP_HAVEPC;
1307 
1308     memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1309         sizeof(server_unp->unp_peercred));
1310     server_unp->unp_flags |= UNP_HAVEPC;
1311     client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
1312 }
1313 
1314 int
eventfd_create_file(struct thread * td,struct file * fp,uint32_t initval,int flags)1315 eventfd_create_file(struct thread *td, struct file *fp, uint32_t initval,
1316     int flags)
1317 {
1318     return (0);
1319 }
1320 
1321 void
sched_prio(struct thread * td,u_char prio)1322 sched_prio(struct thread *td, u_char prio)
1323 {
1324 
1325 }
1326 
1327 /*
1328  * The machine independent parts of context switching.
1329  *
1330  * The thread lock is required on entry and is no longer held on return.
1331  */
1332 void
mi_switch(int flags)1333 mi_switch(int flags)
1334 {
1335 
1336 }
1337 
1338 int
sched_is_bound(struct thread * td)1339 sched_is_bound(struct thread *td)
1340 {
1341     return (1);
1342 }
1343 
1344 /*
1345  * This function must not be called with-in read section.
1346  */
1347 void
ck_epoch_synchronize_wait(struct ck_epoch * global,ck_epoch_wait_cb_t * cb,void * ct)1348 ck_epoch_synchronize_wait(struct ck_epoch *global,
1349     ck_epoch_wait_cb_t *cb, void *ct)
1350 {
1351 
1352 }
1353 
1354 bool
ck_epoch_poll_deferred(struct ck_epoch_record * record,ck_stack_t * deferred)1355 ck_epoch_poll_deferred(struct ck_epoch_record *record, ck_stack_t *deferred)
1356 {
1357     return (true);
1358 }
1359 
1360 void
_ck_epoch_addref(struct ck_epoch_record * record,struct ck_epoch_section * section)1361 _ck_epoch_addref(struct ck_epoch_record *record,
1362     struct ck_epoch_section *section)
1363 {
1364 
1365 }
1366 
1367 bool
_ck_epoch_delref(struct ck_epoch_record * record,struct ck_epoch_section * section)1368 _ck_epoch_delref(struct ck_epoch_record *record,
1369     struct ck_epoch_section *section)
1370 {
1371     return true;
1372 }
1373 
1374 void
ck_epoch_register(struct ck_epoch * global,struct ck_epoch_record * record,void * ct)1375 ck_epoch_register(struct ck_epoch *global, struct ck_epoch_record *record,
1376     void *ct)
1377 {
1378 
1379 }
1380 
1381 void
ck_epoch_init(struct ck_epoch * global)1382 ck_epoch_init(struct ck_epoch *global)
1383 {
1384 
1385 }
1386 
1387 #if 0
1388 void
1389 wakeup_any(const void *ident)
1390 {
1391 
1392 }
1393 #endif
1394 
1395 /*
1396  * kmem_bootstrap_free:
1397  *
1398  * Free pages backing preloaded data (e.g., kernel modules) to the
1399  * system.  Currently only supported on platforms that create a
1400  * vm_phys segment for preloaded data.
1401  */
1402 void
kmem_bootstrap_free(vm_offset_t start,vm_size_t size)1403 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
1404 {
1405 
1406 }
1407 
1408 #if 0
1409 int
1410 elf_cpu_parse_dynamic(caddr_t loadbase __unused, Elf_Dyn *dynamic __unused)
1411 {
1412     return (0);
1413 }
1414 #endif
1415 
1416 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)1417 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
1418 {
1419     return 0;
1420 }
1421 
1422 void *
memset_early(void * buf,int c,size_t len)1423 memset_early(void *buf, int c, size_t len)
1424 {
1425     return (memset(buf, c, len));
1426 }
1427 
1428 int
elf_reloc_late(linker_file_t lf,Elf_Addr relocbase,const void * data,int type,elf_lookup_fn lookup)1429 elf_reloc_late(linker_file_t lf, Elf_Addr relocbase, const void *data,
1430     int type, elf_lookup_fn lookup)
1431 {
1432     return (0);
1433 }
1434 
1435 bool
elf_is_ifunc_reloc(Elf_Size r_info)1436 elf_is_ifunc_reloc(Elf_Size r_info)
1437 {
1438     return (true);
1439 }
1440 
1441 void
sleepq_chains_remove_matching(bool (* matches)(struct thread *))1442 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1443 {
1444 
1445 }
1446 
1447 u_int
vm_free_count(void)1448 vm_free_count(void)
1449 {
1450     return vm_dom[0].vmd_free_count;
1451 }
1452 
1453 struct proc *
pfind_any(pid_t pid)1454 pfind_any(pid_t pid)
1455 {
1456     return (curproc);
1457 }
1458 
1459