1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2008-2019 Cisco Systems, Inc. All rights reserved.
3 */
4
5 #include <errno.h>
6 #include <stdint.h>
7 #include <rte_log.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_flow_driver.h>
10 #include <rte_ether.h>
11 #include <rte_hash.h>
12 #include <rte_jhash.h>
13 #include <rte_ip.h>
14 #include <rte_udp.h>
15 #include <rte_memzone.h>
16
17 #include "enic_compat.h"
18 #include "enic.h"
19 #include "vnic_dev.h"
20 #include "vnic_nic.h"
21
22 #define IP_DEFTTL 64 /* from RFC 1340. */
23 #define IP6_VTC_FLOW 0x60000000
24
25 /* Highest Item type supported by Flowman */
26 #define FM_MAX_ITEM_TYPE RTE_FLOW_ITEM_TYPE_VXLAN
27
28 /* Up to 1024 TCAM entries */
29 #define FM_MAX_TCAM_TABLE_SIZE 1024
30
31 /* Up to 4096 entries per exact match table */
32 #define FM_MAX_EXACT_TABLE_SIZE 4096
33
34 /* Number of counters to increase on for each increment */
35 #define FM_COUNTERS_EXPAND 100
36
37 #define FM_INVALID_HANDLE 0
38
39 /* Low priority used for implicit VF -> representor flow */
40 #define FM_LOWEST_PRIORITY 100000
41
42 /* High priority used for implicit representor -> VF flow */
43 #define FM_HIGHEST_PRIORITY 0
44
45 /* Tag used for implicit VF <-> representor flows */
46 #define FM_VF_REP_TAG 1
47
48 /* Max number of actions supported by VIC is 2K. Make hash table double that. */
49 #define FM_MAX_ACTION_TABLE_SIZE 4096
50
51 /*
52 * Flow exact match tables (FET) in the VIC and rte_flow groups.
53 * Use a simple scheme to map groups to tables.
54 * Group 0 uses the single TCAM tables, one for each direction.
55 * Group 1, 2, ... uses its own exact match table.
56 *
57 * The TCAM tables are allocated upfront during init.
58 *
59 * Exact match tables are allocated on demand. 3 paths that lead allocations.
60 *
61 * 1. Add a flow that jumps from group 0 to group N.
62 *
63 * If N does not exist, we allocate an exact match table for it, using
64 * a dummy key. A key is required for the table.
65 *
66 * 2. Add a flow that uses group N.
67 *
68 * If N does not exist, we allocate an exact match table for it, using
69 * the flow's key. Subsequent flows to the same group all should have
70 * the same key.
71 *
72 * Without a jump flow to N, N is not reachable in hardware. No packets
73 * reach N and match.
74 *
75 * 3. Add a flow to an empty group N.
76 *
77 * N has been created via (1) and the dummy key. We free that table, allocate
78 * a new table using the new flow's key. Also re-do the existing jump flow to
79 * point to the new table.
80 */
81 #define FM_TCAM_RTE_GROUP 0
82
83 struct enic_fm_fet {
84 TAILQ_ENTRY(enic_fm_fet) list;
85 uint32_t group; /* rte_flow group ID */
86 uint64_t handle; /* Exact match table handle from flowman */
87 uint8_t ingress;
88 uint8_t default_key;
89 int ref; /* Reference count via get/put */
90 struct fm_key_template key; /* Key associated with the table */
91 };
92
93 struct enic_fm_counter {
94 SLIST_ENTRY(enic_fm_counter) next;
95 uint32_t handle;
96 };
97
98 struct enic_fm_action {
99 int ref;
100 uint64_t handle;
101 struct fm_action key;
102 };
103
104 /* rte_flow.fm */
105 struct enic_fm_flow {
106 bool counter_valid;
107 uint64_t entry_handle;
108 struct enic_fm_action *action;
109 struct enic_fm_counter *counter;
110 struct enic_fm_fet *fet;
111 /* Auto-added steer action for hairpin flows (e.g. vnic->vnic) */
112 struct enic_fm_flow *hairpin_steer_flow;
113 };
114
115 struct enic_fm_jump_flow {
116 TAILQ_ENTRY(enic_fm_jump_flow) list;
117 struct rte_flow *flow;
118 uint32_t group;
119 struct fm_tcam_match_entry match;
120 struct fm_action action;
121 };
122
123 /*
124 * Flowman uses host memory for commands. This structure is allocated
125 * in DMA-able memory.
126 */
127 union enic_flowman_cmd_mem {
128 struct fm_tcam_match_table fm_tcam_match_table;
129 struct fm_exact_match_table fm_exact_match_table;
130 struct fm_tcam_match_entry fm_tcam_match_entry;
131 struct fm_exact_match_entry fm_exact_match_entry;
132 struct fm_action fm_action;
133 };
134
135 /*
136 * PF has a flowman instance, and VF representors share it with PF.
137 * PF allocates this structure and owns it. VF representors borrow
138 * the PF's structure during API calls (e.g. create, query).
139 */
140 struct enic_flowman {
141 struct enic *owner_enic; /* PF */
142 struct enic *user_enic; /* API caller (PF or representor) */
143 /*
144 * Representors and PF share the same underlying flowman.
145 * Lock API calls to serialize accesses from them. Only used
146 * when VF representors are present.
147 */
148 rte_spinlock_t lock;
149 /* Command buffer */
150 struct {
151 union enic_flowman_cmd_mem *va;
152 dma_addr_t pa;
153 } cmd;
154 /* TCAM tables allocated upfront, used for group 0 */
155 uint64_t ig_tcam_hndl;
156 uint64_t eg_tcam_hndl;
157 /* Counters */
158 SLIST_HEAD(enic_free_counters, enic_fm_counter) counters;
159 void *counter_stack;
160 uint32_t counters_alloced;
161 /* Exact match tables for groups != 0, dynamically allocated */
162 TAILQ_HEAD(fet_list, enic_fm_fet) fet_list;
163 /*
164 * Default exact match tables used for jump actions to
165 * non-existent groups.
166 */
167 struct enic_fm_fet *default_eg_fet;
168 struct enic_fm_fet *default_ig_fet;
169 /* hash table for Action reuse */
170 struct rte_hash *action_hash;
171 /* Flows that jump to the default table above */
172 TAILQ_HEAD(jump_flow_list, enic_fm_jump_flow) jump_list;
173 /*
174 * Scratch data used during each invocation of flow_create
175 * and flow_validate.
176 */
177 struct enic_fm_fet *fet;
178 struct fm_tcam_match_entry tcam_entry;
179 struct fm_action action;
180 struct fm_action action_tmp; /* enic_fm_reorder_action_op */
181 int action_op_count;
182 /* Tags used for representor flows */
183 uint8_t vf_rep_tag;
184 /* For auto-added steer action for hairpin */
185 int need_hairpin_steer;
186 uint64_t hairpin_steer_vnic_h;
187 };
188
189 static int enic_fm_tbl_free(struct enic_flowman *fm, uint64_t handle);
190 /*
191 * API functions (create, destroy, validate, flush) call begin_fm()
192 * upon entering to save the caller enic (PF or VF representor) and
193 * lock. Upon exit, they call end_fm() to unlock.
194 */
195 static struct enic_flowman *begin_fm(struct enic *enic);
196 static void end_fm(struct enic_flowman *fm);
197 /* Delete internal flows created for representor paths */
198 static void delete_rep_flows(struct enic *enic);
199
200 /*
201 * Common arguments passed to copy_item functions. Use this structure
202 * so we can easily add new arguments.
203 * item: Item specification.
204 * fm_tcam_entry: Flowman TCAM match entry.
205 * header_level: 0 for outer header, 1 for inner header.
206 */
207 struct copy_item_args {
208 const struct rte_flow_item *item;
209 struct fm_tcam_match_entry *fm_tcam_entry;
210 uint8_t header_level;
211 };
212
213 /* functions for copying items into flowman match */
214 typedef int (enic_copy_item_fn)(struct copy_item_args *arg);
215
216 /* Info about how to copy items into flowman match */
217 struct enic_fm_items {
218 /* Function for copying and validating an item. */
219 enic_copy_item_fn * const copy_item;
220 /* List of valid previous items. */
221 const enum rte_flow_item_type * const prev_items;
222 /*
223 * True if it's OK for this item to be the first item. For some NIC
224 * versions, it's invalid to start the stack above layer 3.
225 */
226 const uint8_t valid_start_item;
227 };
228
229 static enic_copy_item_fn enic_fm_copy_item_eth;
230 static enic_copy_item_fn enic_fm_copy_item_ipv4;
231 static enic_copy_item_fn enic_fm_copy_item_ipv6;
232 static enic_copy_item_fn enic_fm_copy_item_raw;
233 static enic_copy_item_fn enic_fm_copy_item_sctp;
234 static enic_copy_item_fn enic_fm_copy_item_tcp;
235 static enic_copy_item_fn enic_fm_copy_item_udp;
236 static enic_copy_item_fn enic_fm_copy_item_vlan;
237 static enic_copy_item_fn enic_fm_copy_item_vxlan;
238
239 /* Ingress actions */
240 static const enum rte_flow_action_type enic_fm_supported_ig_actions[] = {
241 RTE_FLOW_ACTION_TYPE_COUNT,
242 RTE_FLOW_ACTION_TYPE_DROP,
243 RTE_FLOW_ACTION_TYPE_FLAG,
244 RTE_FLOW_ACTION_TYPE_JUMP,
245 RTE_FLOW_ACTION_TYPE_MARK,
246 RTE_FLOW_ACTION_TYPE_OF_POP_VLAN,
247 RTE_FLOW_ACTION_TYPE_PORT_ID,
248 RTE_FLOW_ACTION_TYPE_PASSTHRU,
249 RTE_FLOW_ACTION_TYPE_QUEUE,
250 RTE_FLOW_ACTION_TYPE_RSS,
251 RTE_FLOW_ACTION_TYPE_VOID,
252 RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP,
253 RTE_FLOW_ACTION_TYPE_VXLAN_DECAP,
254 RTE_FLOW_ACTION_TYPE_END, /* END must be the last entry */
255 };
256
257 /* Egress actions */
258 static const enum rte_flow_action_type enic_fm_supported_eg_actions[] = {
259 RTE_FLOW_ACTION_TYPE_COUNT,
260 RTE_FLOW_ACTION_TYPE_DROP,
261 RTE_FLOW_ACTION_TYPE_JUMP,
262 RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN,
263 RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP,
264 RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID,
265 RTE_FLOW_ACTION_TYPE_PORT_ID,
266 RTE_FLOW_ACTION_TYPE_PASSTHRU,
267 RTE_FLOW_ACTION_TYPE_VOID,
268 RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP,
269 RTE_FLOW_ACTION_TYPE_END,
270 };
271
272 static const struct enic_fm_items enic_fm_items[] = {
273 [RTE_FLOW_ITEM_TYPE_RAW] = {
274 .copy_item = enic_fm_copy_item_raw,
275 .valid_start_item = 0,
276 .prev_items = (const enum rte_flow_item_type[]) {
277 RTE_FLOW_ITEM_TYPE_UDP,
278 RTE_FLOW_ITEM_TYPE_END,
279 },
280 },
281 [RTE_FLOW_ITEM_TYPE_ETH] = {
282 .copy_item = enic_fm_copy_item_eth,
283 .valid_start_item = 1,
284 .prev_items = (const enum rte_flow_item_type[]) {
285 RTE_FLOW_ITEM_TYPE_END,
286 },
287 },
288 [RTE_FLOW_ITEM_TYPE_VLAN] = {
289 .copy_item = enic_fm_copy_item_vlan,
290 .valid_start_item = 1,
291 .prev_items = (const enum rte_flow_item_type[]) {
292 RTE_FLOW_ITEM_TYPE_ETH,
293 RTE_FLOW_ITEM_TYPE_END,
294 },
295 },
296 [RTE_FLOW_ITEM_TYPE_IPV4] = {
297 .copy_item = enic_fm_copy_item_ipv4,
298 .valid_start_item = 1,
299 .prev_items = (const enum rte_flow_item_type[]) {
300 RTE_FLOW_ITEM_TYPE_ETH,
301 RTE_FLOW_ITEM_TYPE_VLAN,
302 RTE_FLOW_ITEM_TYPE_END,
303 },
304 },
305 [RTE_FLOW_ITEM_TYPE_IPV6] = {
306 .copy_item = enic_fm_copy_item_ipv6,
307 .valid_start_item = 1,
308 .prev_items = (const enum rte_flow_item_type[]) {
309 RTE_FLOW_ITEM_TYPE_ETH,
310 RTE_FLOW_ITEM_TYPE_VLAN,
311 RTE_FLOW_ITEM_TYPE_END,
312 },
313 },
314 [RTE_FLOW_ITEM_TYPE_UDP] = {
315 .copy_item = enic_fm_copy_item_udp,
316 .valid_start_item = 1,
317 .prev_items = (const enum rte_flow_item_type[]) {
318 RTE_FLOW_ITEM_TYPE_IPV4,
319 RTE_FLOW_ITEM_TYPE_IPV6,
320 RTE_FLOW_ITEM_TYPE_END,
321 },
322 },
323 [RTE_FLOW_ITEM_TYPE_TCP] = {
324 .copy_item = enic_fm_copy_item_tcp,
325 .valid_start_item = 1,
326 .prev_items = (const enum rte_flow_item_type[]) {
327 RTE_FLOW_ITEM_TYPE_IPV4,
328 RTE_FLOW_ITEM_TYPE_IPV6,
329 RTE_FLOW_ITEM_TYPE_END,
330 },
331 },
332 [RTE_FLOW_ITEM_TYPE_SCTP] = {
333 .copy_item = enic_fm_copy_item_sctp,
334 .valid_start_item = 0,
335 .prev_items = (const enum rte_flow_item_type[]) {
336 RTE_FLOW_ITEM_TYPE_IPV4,
337 RTE_FLOW_ITEM_TYPE_IPV6,
338 RTE_FLOW_ITEM_TYPE_END,
339 },
340 },
341 [RTE_FLOW_ITEM_TYPE_VXLAN] = {
342 .copy_item = enic_fm_copy_item_vxlan,
343 .valid_start_item = 1,
344 .prev_items = (const enum rte_flow_item_type[]) {
345 RTE_FLOW_ITEM_TYPE_UDP,
346 RTE_FLOW_ITEM_TYPE_END,
347 },
348 },
349 };
350
351 static int
enic_fm_copy_item_eth(struct copy_item_args * arg)352 enic_fm_copy_item_eth(struct copy_item_args *arg)
353 {
354 const struct rte_flow_item *item = arg->item;
355 const struct rte_flow_item_eth *spec = item->spec;
356 const struct rte_flow_item_eth *mask = item->mask;
357 const uint8_t lvl = arg->header_level;
358 struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
359 struct fm_header_set *fm_data, *fm_mask;
360
361 ENICPMD_FUNC_TRACE();
362 /* Match all if no spec */
363 if (!spec)
364 return 0;
365 if (!mask)
366 mask = &rte_flow_item_eth_mask;
367 fm_data = &entry->ftm_data.fk_hdrset[lvl];
368 fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
369 fm_data->fk_header_select |= FKH_ETHER;
370 fm_mask->fk_header_select |= FKH_ETHER;
371 memcpy(&fm_data->l2.eth, spec, sizeof(struct rte_ether_hdr));
372 memcpy(&fm_mask->l2.eth, mask, sizeof(struct rte_ether_hdr));
373 return 0;
374 }
375
376 static int
enic_fm_copy_item_vlan(struct copy_item_args * arg)377 enic_fm_copy_item_vlan(struct copy_item_args *arg)
378 {
379 const struct rte_flow_item *item = arg->item;
380 const struct rte_flow_item_vlan *spec = item->spec;
381 const struct rte_flow_item_vlan *mask = item->mask;
382 const uint8_t lvl = arg->header_level;
383 struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
384 struct fm_header_set *fm_data, *fm_mask;
385 struct rte_ether_hdr *eth_mask;
386 struct rte_ether_hdr *eth_val;
387 uint32_t meta;
388
389 ENICPMD_FUNC_TRACE();
390 fm_data = &entry->ftm_data.fk_hdrset[lvl];
391 fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
392 /* Outer and inner packet vlans need different flags */
393 meta = FKM_VLAN_PRES;
394 if (lvl > 0)
395 meta = FKM_QTAG;
396 fm_data->fk_metadata |= meta;
397 fm_mask->fk_metadata |= meta;
398
399 /* Match all if no spec */
400 if (!spec)
401 return 0;
402 if (!mask)
403 mask = &rte_flow_item_vlan_mask;
404
405 eth_mask = (void *)&fm_mask->l2.eth;
406 eth_val = (void *)&fm_data->l2.eth;
407
408 /*
409 * Outer TPID cannot be matched. If inner_type is 0, use what is
410 * in the eth header.
411 */
412 if (eth_mask->ether_type && mask->inner_type)
413 return -ENOTSUP;
414
415 /*
416 * When packet matching, the VIC always compares vlan-stripped
417 * L2, regardless of vlan stripping settings. So, the inner type
418 * from vlan becomes the ether type of the eth header.
419 */
420 if (mask->inner_type) {
421 eth_mask->ether_type = mask->inner_type;
422 eth_val->ether_type = spec->inner_type;
423 }
424 fm_data->fk_header_select |= FKH_ETHER | FKH_QTAG;
425 fm_mask->fk_header_select |= FKH_ETHER | FKH_QTAG;
426 fm_data->fk_vlan = rte_be_to_cpu_16(spec->tci);
427 fm_mask->fk_vlan = rte_be_to_cpu_16(mask->tci);
428 return 0;
429 }
430
431 static int
enic_fm_copy_item_ipv4(struct copy_item_args * arg)432 enic_fm_copy_item_ipv4(struct copy_item_args *arg)
433 {
434 const struct rte_flow_item *item = arg->item;
435 const struct rte_flow_item_ipv4 *spec = item->spec;
436 const struct rte_flow_item_ipv4 *mask = item->mask;
437 const uint8_t lvl = arg->header_level;
438 struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
439 struct fm_header_set *fm_data, *fm_mask;
440
441 ENICPMD_FUNC_TRACE();
442 fm_data = &entry->ftm_data.fk_hdrset[lvl];
443 fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
444 fm_data->fk_metadata |= FKM_IPV4;
445 fm_mask->fk_metadata |= FKM_IPV4;
446
447 if (!spec)
448 return 0;
449 if (!mask)
450 mask = &rte_flow_item_ipv4_mask;
451
452 fm_data->fk_header_select |= FKH_IPV4;
453 fm_mask->fk_header_select |= FKH_IPV4;
454 memcpy(&fm_data->l3.ip4, spec, sizeof(*spec));
455 memcpy(&fm_mask->l3.ip4, mask, sizeof(*mask));
456 return 0;
457 }
458
459 static int
enic_fm_copy_item_ipv6(struct copy_item_args * arg)460 enic_fm_copy_item_ipv6(struct copy_item_args *arg)
461 {
462 const struct rte_flow_item *item = arg->item;
463 const struct rte_flow_item_ipv6 *spec = item->spec;
464 const struct rte_flow_item_ipv6 *mask = item->mask;
465 const uint8_t lvl = arg->header_level;
466 struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
467 struct fm_header_set *fm_data, *fm_mask;
468
469 ENICPMD_FUNC_TRACE();
470 fm_data = &entry->ftm_data.fk_hdrset[lvl];
471 fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
472 fm_data->fk_metadata |= FKM_IPV6;
473 fm_mask->fk_metadata |= FKM_IPV6;
474
475 if (!spec)
476 return 0;
477 if (!mask)
478 mask = &rte_flow_item_ipv6_mask;
479
480 fm_data->fk_header_select |= FKH_IPV6;
481 fm_mask->fk_header_select |= FKH_IPV6;
482 memcpy(&fm_data->l3.ip6, spec, sizeof(struct rte_ipv6_hdr));
483 memcpy(&fm_mask->l3.ip6, mask, sizeof(struct rte_ipv6_hdr));
484 return 0;
485 }
486
487 static int
enic_fm_copy_item_udp(struct copy_item_args * arg)488 enic_fm_copy_item_udp(struct copy_item_args *arg)
489 {
490 const struct rte_flow_item *item = arg->item;
491 const struct rte_flow_item_udp *spec = item->spec;
492 const struct rte_flow_item_udp *mask = item->mask;
493 const uint8_t lvl = arg->header_level;
494 struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
495 struct fm_header_set *fm_data, *fm_mask;
496
497 ENICPMD_FUNC_TRACE();
498 fm_data = &entry->ftm_data.fk_hdrset[lvl];
499 fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
500 fm_data->fk_metadata |= FKM_UDP;
501 fm_mask->fk_metadata |= FKM_UDP;
502
503 if (!spec)
504 return 0;
505 if (!mask)
506 mask = &rte_flow_item_udp_mask;
507
508 fm_data->fk_header_select |= FKH_UDP;
509 fm_mask->fk_header_select |= FKH_UDP;
510 memcpy(&fm_data->l4.udp, spec, sizeof(*spec));
511 memcpy(&fm_mask->l4.udp, mask, sizeof(*mask));
512 return 0;
513 }
514
515 static int
enic_fm_copy_item_tcp(struct copy_item_args * arg)516 enic_fm_copy_item_tcp(struct copy_item_args *arg)
517 {
518 const struct rte_flow_item *item = arg->item;
519 const struct rte_flow_item_tcp *spec = item->spec;
520 const struct rte_flow_item_tcp *mask = item->mask;
521 const uint8_t lvl = arg->header_level;
522 struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
523 struct fm_header_set *fm_data, *fm_mask;
524
525 ENICPMD_FUNC_TRACE();
526 fm_data = &entry->ftm_data.fk_hdrset[lvl];
527 fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
528 fm_data->fk_metadata |= FKM_TCP;
529 fm_mask->fk_metadata |= FKM_TCP;
530
531 if (!spec)
532 return 0;
533 if (!mask)
534 mask = &rte_flow_item_tcp_mask;
535
536 fm_data->fk_header_select |= FKH_TCP;
537 fm_mask->fk_header_select |= FKH_TCP;
538 memcpy(&fm_data->l4.tcp, spec, sizeof(*spec));
539 memcpy(&fm_mask->l4.tcp, mask, sizeof(*mask));
540 return 0;
541 }
542
543 static int
enic_fm_copy_item_sctp(struct copy_item_args * arg)544 enic_fm_copy_item_sctp(struct copy_item_args *arg)
545 {
546 const struct rte_flow_item *item = arg->item;
547 const struct rte_flow_item_sctp *spec = item->spec;
548 const struct rte_flow_item_sctp *mask = item->mask;
549 const uint8_t lvl = arg->header_level;
550 struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
551 struct fm_header_set *fm_data, *fm_mask;
552 uint8_t *ip_proto_mask = NULL;
553 uint8_t *ip_proto = NULL;
554 uint32_t l3_fkh;
555
556 ENICPMD_FUNC_TRACE();
557 fm_data = &entry->ftm_data.fk_hdrset[lvl];
558 fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
559 /*
560 * The NIC filter API has no flags for "match sctp", so explicitly
561 * set the protocol number in the IP pattern.
562 */
563 if (fm_data->fk_metadata & FKM_IPV4) {
564 struct rte_ipv4_hdr *ip;
565 ip = (struct rte_ipv4_hdr *)&fm_mask->l3.ip4;
566 ip_proto_mask = &ip->next_proto_id;
567 ip = (struct rte_ipv4_hdr *)&fm_data->l3.ip4;
568 ip_proto = &ip->next_proto_id;
569 l3_fkh = FKH_IPV4;
570 } else if (fm_data->fk_metadata & FKM_IPV6) {
571 struct rte_ipv6_hdr *ip;
572 ip = (struct rte_ipv6_hdr *)&fm_mask->l3.ip6;
573 ip_proto_mask = &ip->proto;
574 ip = (struct rte_ipv6_hdr *)&fm_data->l3.ip6;
575 ip_proto = &ip->proto;
576 l3_fkh = FKH_IPV6;
577 } else {
578 /* Need IPv4/IPv6 pattern first */
579 return -EINVAL;
580 }
581 *ip_proto = IPPROTO_SCTP;
582 *ip_proto_mask = 0xff;
583 fm_data->fk_header_select |= l3_fkh;
584 fm_mask->fk_header_select |= l3_fkh;
585
586 if (!spec)
587 return 0;
588 if (!mask)
589 mask = &rte_flow_item_sctp_mask;
590
591 fm_data->fk_header_select |= FKH_L4RAW;
592 fm_mask->fk_header_select |= FKH_L4RAW;
593 memcpy(fm_data->l4.rawdata, spec, sizeof(*spec));
594 memcpy(fm_mask->l4.rawdata, mask, sizeof(*mask));
595 return 0;
596 }
597
598 static int
enic_fm_copy_item_vxlan(struct copy_item_args * arg)599 enic_fm_copy_item_vxlan(struct copy_item_args *arg)
600 {
601 const struct rte_flow_item *item = arg->item;
602 const struct rte_flow_item_vxlan *spec = item->spec;
603 const struct rte_flow_item_vxlan *mask = item->mask;
604 struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
605 struct fm_header_set *fm_data, *fm_mask;
606
607 ENICPMD_FUNC_TRACE();
608 /* Only 2 header levels (outer and inner) allowed */
609 if (arg->header_level > 0)
610 return -EINVAL;
611
612 fm_data = &entry->ftm_data.fk_hdrset[0];
613 fm_mask = &entry->ftm_mask.fk_hdrset[0];
614 fm_data->fk_metadata |= FKM_VXLAN;
615 fm_mask->fk_metadata |= FKM_VXLAN;
616 /* items from here on out are inner header items */
617 arg->header_level = 1;
618
619 /* Match all if no spec */
620 if (!spec)
621 return 0;
622 if (!mask)
623 mask = &rte_flow_item_vxlan_mask;
624
625 fm_data->fk_header_select |= FKH_VXLAN;
626 fm_mask->fk_header_select |= FKH_VXLAN;
627 memcpy(&fm_data->vxlan, spec, sizeof(*spec));
628 memcpy(&fm_mask->vxlan, mask, sizeof(*mask));
629 return 0;
630 }
631
632 /*
633 * Currently, raw pattern match is very limited. It is intended for matching
634 * UDP tunnel header (e.g. vxlan or geneve).
635 */
636 static int
enic_fm_copy_item_raw(struct copy_item_args * arg)637 enic_fm_copy_item_raw(struct copy_item_args *arg)
638 {
639 const struct rte_flow_item *item = arg->item;
640 const struct rte_flow_item_raw *spec = item->spec;
641 const struct rte_flow_item_raw *mask = item->mask;
642 const uint8_t lvl = arg->header_level;
643 struct fm_tcam_match_entry *entry = arg->fm_tcam_entry;
644 struct fm_header_set *fm_data, *fm_mask;
645
646 ENICPMD_FUNC_TRACE();
647 /* Cannot be used for inner packet */
648 if (lvl > 0)
649 return -EINVAL;
650 /* Need both spec and mask */
651 if (!spec || !mask)
652 return -EINVAL;
653 /* Only supports relative with offset 0 */
654 if (!spec->relative || spec->offset != 0 || spec->search ||
655 spec->limit)
656 return -EINVAL;
657 /* Need non-null pattern that fits within the NIC's filter pattern */
658 if (spec->length == 0 ||
659 spec->length + sizeof(struct rte_udp_hdr) > FM_LAYER_SIZE ||
660 !spec->pattern || !mask->pattern)
661 return -EINVAL;
662 /*
663 * Mask fields, including length, are often set to zero. Assume that
664 * means "same as spec" to avoid breaking existing apps. If length
665 * is not zero, then it should be >= spec length.
666 *
667 * No more pattern follows this, so append to the L4 layer instead of
668 * L5 to work with both recent and older VICs.
669 */
670 if (mask->length != 0 && mask->length < spec->length)
671 return -EINVAL;
672
673 fm_data = &entry->ftm_data.fk_hdrset[lvl];
674 fm_mask = &entry->ftm_mask.fk_hdrset[lvl];
675 fm_data->fk_header_select |= FKH_L4RAW;
676 fm_mask->fk_header_select |= FKH_L4RAW;
677 fm_data->fk_header_select &= ~FKH_UDP;
678 fm_mask->fk_header_select &= ~FKH_UDP;
679 memcpy(fm_data->l4.rawdata + sizeof(struct rte_udp_hdr),
680 spec->pattern, spec->length);
681 memcpy(fm_mask->l4.rawdata + sizeof(struct rte_udp_hdr),
682 mask->pattern, spec->length);
683 return 0;
684 }
685
686 static int
flowman_cmd(struct enic_flowman * fm,uint64_t * args,int nargs)687 flowman_cmd(struct enic_flowman *fm, uint64_t *args, int nargs)
688 {
689 return vnic_dev_flowman_cmd(fm->owner_enic->vdev, args, nargs);
690 }
691
692 static int
enic_fet_alloc(struct enic_flowman * fm,uint8_t ingress,struct fm_key_template * key,int entries,struct enic_fm_fet ** fet_out)693 enic_fet_alloc(struct enic_flowman *fm, uint8_t ingress,
694 struct fm_key_template *key, int entries,
695 struct enic_fm_fet **fet_out)
696 {
697 struct fm_exact_match_table *cmd;
698 struct fm_header_set *hdr;
699 struct enic_fm_fet *fet;
700 uint64_t args[3];
701 int ret;
702
703 ENICPMD_FUNC_TRACE();
704 fet = calloc(1, sizeof(struct enic_fm_fet));
705 if (fet == NULL)
706 return -ENOMEM;
707 cmd = &fm->cmd.va->fm_exact_match_table;
708 memset(cmd, 0, sizeof(*cmd));
709 cmd->fet_direction = ingress ? FM_INGRESS : FM_EGRESS;
710 cmd->fet_stage = FM_STAGE_LAST;
711 cmd->fet_max_entries = entries ? entries : FM_MAX_EXACT_TABLE_SIZE;
712 if (key == NULL) {
713 hdr = &cmd->fet_key.fk_hdrset[0];
714 memset(hdr, 0, sizeof(*hdr));
715 hdr->fk_header_select = FKH_IPV4 | FKH_UDP;
716 hdr->l3.ip4.fk_saddr = 0xFFFFFFFF;
717 hdr->l3.ip4.fk_daddr = 0xFFFFFFFF;
718 hdr->l4.udp.fk_source = 0xFFFF;
719 hdr->l4.udp.fk_dest = 0xFFFF;
720 fet->default_key = 1;
721 } else {
722 memcpy(&cmd->fet_key, key, sizeof(*key));
723 memcpy(&fet->key, key, sizeof(*key));
724 fet->default_key = 0;
725 }
726 cmd->fet_key.fk_packet_tag = 1;
727
728 args[0] = FM_EXACT_TABLE_ALLOC;
729 args[1] = fm->cmd.pa;
730 ret = flowman_cmd(fm, args, 2);
731 if (ret) {
732 ENICPMD_LOG(ERR, "cannot alloc exact match table: rc=%d", ret);
733 free(fet);
734 return ret;
735 }
736 fet->handle = args[0];
737 fet->ingress = ingress;
738 ENICPMD_LOG(DEBUG, "allocated exact match table: handle=0x%" PRIx64,
739 fet->handle);
740 *fet_out = fet;
741 return 0;
742 }
743
744 static void
enic_fet_free(struct enic_flowman * fm,struct enic_fm_fet * fet)745 enic_fet_free(struct enic_flowman *fm, struct enic_fm_fet *fet)
746 {
747 ENICPMD_FUNC_TRACE();
748 enic_fm_tbl_free(fm, fet->handle);
749 if (!fet->default_key)
750 TAILQ_REMOVE(&fm->fet_list, fet, list);
751 free(fet);
752 }
753
754 /*
755 * Get the exact match table for the given combination of
756 * <group, ingress, key>. Allocate one on the fly as necessary.
757 */
758 static int
enic_fet_get(struct enic_flowman * fm,uint32_t group,uint8_t ingress,struct fm_key_template * key,struct enic_fm_fet ** fet_out,struct rte_flow_error * error)759 enic_fet_get(struct enic_flowman *fm,
760 uint32_t group,
761 uint8_t ingress,
762 struct fm_key_template *key,
763 struct enic_fm_fet **fet_out,
764 struct rte_flow_error *error)
765 {
766 struct enic_fm_fet *fet;
767
768 ENICPMD_FUNC_TRACE();
769 /* See if we already have this table open */
770 TAILQ_FOREACH(fet, &fm->fet_list, list) {
771 if (fet->group == group && fet->ingress == ingress)
772 break;
773 }
774 if (fet == NULL) {
775 /* Jumping to a non-existing group? Use the default table */
776 if (key == NULL) {
777 fet = ingress ? fm->default_ig_fet : fm->default_eg_fet;
778 } else if (enic_fet_alloc(fm, ingress, key, 0, &fet)) {
779 return rte_flow_error_set(error, EINVAL,
780 RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
781 NULL, "enic: cannot get exact match table");
782 }
783 fet->group = group;
784 /* Default table is never on the open table list */
785 if (!fet->default_key)
786 TAILQ_INSERT_HEAD(&fm->fet_list, fet, list);
787 }
788 fet->ref++;
789 *fet_out = fet;
790 ENICPMD_LOG(DEBUG, "fet_get: %s %s group=%u ref=%u",
791 fet->default_key ? "default" : "",
792 fet->ingress ? "ingress" : "egress",
793 fet->group, fet->ref);
794 return 0;
795 }
796
797 static void
enic_fet_put(struct enic_flowman * fm,struct enic_fm_fet * fet)798 enic_fet_put(struct enic_flowman *fm, struct enic_fm_fet *fet)
799 {
800 ENICPMD_FUNC_TRACE();
801 RTE_ASSERT(fet->ref > 0);
802 fet->ref--;
803 ENICPMD_LOG(DEBUG, "fet_put: %s %s group=%u ref=%u",
804 fet->default_key ? "default" : "",
805 fet->ingress ? "ingress" : "egress",
806 fet->group, fet->ref);
807 if (fet->ref == 0)
808 enic_fet_free(fm, fet);
809 }
810
811 /* Return 1 if current item is valid on top of the previous one. */
812 static int
fm_item_stacking_valid(enum rte_flow_item_type prev_item,const struct enic_fm_items * item_info,uint8_t is_first_item)813 fm_item_stacking_valid(enum rte_flow_item_type prev_item,
814 const struct enic_fm_items *item_info,
815 uint8_t is_first_item)
816 {
817 enum rte_flow_item_type const *allowed_items = item_info->prev_items;
818
819 ENICPMD_FUNC_TRACE();
820 for (; *allowed_items != RTE_FLOW_ITEM_TYPE_END; allowed_items++) {
821 if (prev_item == *allowed_items)
822 return 1;
823 }
824
825 /* This is the first item in the stack. Check if that's cool */
826 if (is_first_item && item_info->valid_start_item)
827 return 1;
828 return 0;
829 }
830
831 /*
832 * Build the flow manager match entry structure from the provided pattern.
833 * The pattern is validated as the items are copied.
834 */
835 static int
enic_fm_copy_entry(struct enic_flowman * fm,const struct rte_flow_item pattern[],struct rte_flow_error * error)836 enic_fm_copy_entry(struct enic_flowman *fm,
837 const struct rte_flow_item pattern[],
838 struct rte_flow_error *error)
839 {
840 const struct enic_fm_items *item_info;
841 enum rte_flow_item_type prev_item;
842 const struct rte_flow_item *item;
843 struct copy_item_args args;
844 uint8_t prev_header_level;
845 uint8_t is_first_item;
846 int ret;
847
848 ENICPMD_FUNC_TRACE();
849 item = pattern;
850 is_first_item = 1;
851 prev_item = RTE_FLOW_ITEM_TYPE_END;
852
853 args.fm_tcam_entry = &fm->tcam_entry;
854 args.header_level = 0;
855 prev_header_level = 0;
856 for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
857 /*
858 * Get info about how to validate and copy the item. If NULL
859 * is returned the nic does not support the item.
860 */
861 if (item->type == RTE_FLOW_ITEM_TYPE_VOID)
862 continue;
863
864 item_info = &enic_fm_items[item->type];
865
866 if (item->type > FM_MAX_ITEM_TYPE ||
867 item_info->copy_item == NULL) {
868 return rte_flow_error_set(error, ENOTSUP,
869 RTE_FLOW_ERROR_TYPE_ITEM,
870 NULL, "enic: unsupported item");
871 }
872
873 /* check to see if item stacking is valid */
874 if (!fm_item_stacking_valid(prev_item, item_info,
875 is_first_item))
876 goto stacking_error;
877
878 args.item = item;
879 ret = item_info->copy_item(&args);
880 if (ret)
881 goto item_not_supported;
882 /* Going from outer to inner? Treat it as a new packet start */
883 if (prev_header_level != args.header_level) {
884 prev_item = RTE_FLOW_ITEM_TYPE_END;
885 is_first_item = 1;
886 } else {
887 prev_item = item->type;
888 is_first_item = 0;
889 }
890 prev_header_level = args.header_level;
891 }
892 return 0;
893
894 item_not_supported:
895 return rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_ITEM,
896 NULL, "enic: unsupported item type");
897
898 stacking_error:
899 return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
900 item, "enic: unsupported item stack");
901 }
902
903 static void
flow_item_skip_void(const struct rte_flow_item ** item)904 flow_item_skip_void(const struct rte_flow_item **item)
905 {
906 for ( ; ; (*item)++)
907 if ((*item)->type != RTE_FLOW_ITEM_TYPE_VOID)
908 return;
909 }
910
911 static void
append_template(void ** template,uint8_t * off,const void * data,int len)912 append_template(void **template, uint8_t *off, const void *data, int len)
913 {
914 memcpy(*template, data, len);
915 *template = (char *)*template + len;
916 *off = *off + len;
917 }
918
919 static int
enic_fm_append_action_op(struct enic_flowman * fm,struct fm_action_op * fm_op,struct rte_flow_error * error)920 enic_fm_append_action_op(struct enic_flowman *fm,
921 struct fm_action_op *fm_op,
922 struct rte_flow_error *error)
923 {
924 int count;
925
926 count = fm->action_op_count;
927 ENICPMD_LOG(DEBUG, "append action op: idx=%d op=%u",
928 count, fm_op->fa_op);
929 if (count == FM_ACTION_OP_MAX) {
930 return rte_flow_error_set(error, EINVAL,
931 RTE_FLOW_ERROR_TYPE_ACTION, NULL,
932 "too many action operations");
933 }
934 fm->action.fma_action_ops[count] = *fm_op;
935 fm->action_op_count = count + 1;
936 return 0;
937 }
938
939 static struct fm_action_op *
find_prev_action_op(struct enic_flowman * fm,uint32_t opcode)940 find_prev_action_op(struct enic_flowman *fm, uint32_t opcode)
941 {
942 struct fm_action_op *op;
943 int i;
944
945 for (i = 0; i < fm->action_op_count; i++) {
946 op = &fm->action.fma_action_ops[i];
947 if (op->fa_op == opcode)
948 return op;
949 }
950 return NULL;
951 }
952
953 /* NIC requires that 1st steer appear before decap.
954 * Correct example: steer, decap, steer, steer, ...
955 */
956 static void
enic_fm_reorder_action_op(struct enic_flowman * fm)957 enic_fm_reorder_action_op(struct enic_flowman *fm)
958 {
959 struct fm_action_op *op, *steer, *decap;
960 struct fm_action_op tmp_op;
961
962 ENICPMD_FUNC_TRACE();
963 /* Find 1st steer and decap */
964 op = fm->action.fma_action_ops;
965 steer = NULL;
966 decap = NULL;
967 while (op->fa_op != FMOP_END) {
968 if (!decap && (op->fa_op == FMOP_DECAP_NOSTRIP ||
969 op->fa_op == FMOP_DECAP_STRIP))
970 decap = op;
971 else if (!steer && op->fa_op == FMOP_RQ_STEER)
972 steer = op;
973 op++;
974 }
975 /* If decap is before steer, swap */
976 if (steer && decap && decap < steer) {
977 op = fm->action.fma_action_ops;
978 ENICPMD_LOG(DEBUG, "swap decap %ld <-> steer %ld",
979 (long)(decap - op), (long)(steer - op));
980 tmp_op = *decap;
981 *decap = *steer;
982 *steer = tmp_op;
983 }
984 }
985
986 /* VXLAN decap is done via flowman compound action */
987 static int
enic_fm_copy_vxlan_decap(struct enic_flowman * fm,struct fm_tcam_match_entry * fmt,const struct rte_flow_action * action,struct rte_flow_error * error)988 enic_fm_copy_vxlan_decap(struct enic_flowman *fm,
989 struct fm_tcam_match_entry *fmt,
990 const struct rte_flow_action *action,
991 struct rte_flow_error *error)
992 {
993 struct fm_header_set *fm_data;
994 struct fm_action_op fm_op;
995
996 ENICPMD_FUNC_TRACE();
997 fm_data = &fmt->ftm_data.fk_hdrset[0];
998 if (!(fm_data->fk_metadata & FKM_VXLAN)) {
999 return rte_flow_error_set(error, EINVAL,
1000 RTE_FLOW_ERROR_TYPE_ACTION, action,
1001 "vxlan-decap: vxlan must be in pattern");
1002 }
1003
1004 memset(&fm_op, 0, sizeof(fm_op));
1005 fm_op.fa_op = FMOP_DECAP_NOSTRIP;
1006 return enic_fm_append_action_op(fm, &fm_op, error);
1007 }
1008
1009 /* Generate a reasonable source port number */
1010 static uint16_t
gen_src_port(void)1011 gen_src_port(void)
1012 {
1013 /* Min/max below are the default values in OVS-DPDK and Linux */
1014 uint16_t p = rte_rand();
1015 p = RTE_MAX(p, 32768);
1016 p = RTE_MIN(p, 61000);
1017 return rte_cpu_to_be_16(p);
1018 }
1019
1020 /* VXLAN encap is done via flowman compound action */
1021 static int
enic_fm_copy_vxlan_encap(struct enic_flowman * fm,const struct rte_flow_item * item,struct rte_flow_error * error)1022 enic_fm_copy_vxlan_encap(struct enic_flowman *fm,
1023 const struct rte_flow_item *item,
1024 struct rte_flow_error *error)
1025 {
1026 struct fm_action_op fm_op;
1027 struct rte_ether_hdr *eth;
1028 struct rte_udp_hdr *udp;
1029 uint16_t *ethertype;
1030 void *template;
1031 uint8_t off;
1032
1033 ENICPMD_FUNC_TRACE();
1034 memset(&fm_op, 0, sizeof(fm_op));
1035 fm_op.fa_op = FMOP_ENCAP;
1036 template = fm->action.fma_data;
1037 off = 0;
1038 /*
1039 * Copy flow items to the flowman template starting L2.
1040 * L2 must be ethernet.
1041 */
1042 flow_item_skip_void(&item);
1043 if (item->type != RTE_FLOW_ITEM_TYPE_ETH)
1044 return rte_flow_error_set(error, EINVAL,
1045 RTE_FLOW_ERROR_TYPE_ITEM, item,
1046 "vxlan-encap: first item should be ethernet");
1047 eth = (struct rte_ether_hdr *)template;
1048 ethertype = ð->ether_type;
1049 append_template(&template, &off, item->spec,
1050 sizeof(struct rte_ether_hdr));
1051 item++;
1052 flow_item_skip_void(&item);
1053 /* Optional VLAN */
1054 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
1055 const struct rte_flow_item_vlan *spec;
1056
1057 ENICPMD_LOG(DEBUG, "vxlan-encap: vlan");
1058 spec = item->spec;
1059 fm_op.encap.outer_vlan = rte_be_to_cpu_16(spec->tci);
1060 item++;
1061 flow_item_skip_void(&item);
1062 }
1063 /* L3 must be IPv4, IPv6 */
1064 switch (item->type) {
1065 case RTE_FLOW_ITEM_TYPE_IPV4:
1066 {
1067 struct rte_ipv4_hdr *ip4;
1068
1069 ENICPMD_LOG(DEBUG, "vxlan-encap: ipv4");
1070 *ethertype = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
1071 ip4 = (struct rte_ipv4_hdr *)template;
1072 /*
1073 * Offset of IPv4 length field and its initial value
1074 * (IP + UDP + VXLAN) are specified in the action. The NIC
1075 * will add inner packet length.
1076 */
1077 fm_op.encap.len1_offset = off +
1078 offsetof(struct rte_ipv4_hdr, total_length);
1079 fm_op.encap.len1_delta = sizeof(struct rte_ipv4_hdr) +
1080 sizeof(struct rte_udp_hdr) +
1081 sizeof(struct rte_vxlan_hdr);
1082 append_template(&template, &off, item->spec,
1083 sizeof(struct rte_ipv4_hdr));
1084 ip4->version_ihl = RTE_IPV4_VHL_DEF;
1085 if (ip4->time_to_live == 0)
1086 ip4->time_to_live = IP_DEFTTL;
1087 ip4->next_proto_id = IPPROTO_UDP;
1088 break;
1089 }
1090 case RTE_FLOW_ITEM_TYPE_IPV6:
1091 {
1092 struct rte_ipv6_hdr *ip6;
1093
1094 ENICPMD_LOG(DEBUG, "vxlan-encap: ipv6");
1095 *ethertype = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
1096 ip6 = (struct rte_ipv6_hdr *)template;
1097 fm_op.encap.len1_offset = off +
1098 offsetof(struct rte_ipv6_hdr, payload_len);
1099 fm_op.encap.len1_delta = sizeof(struct rte_udp_hdr) +
1100 sizeof(struct rte_vxlan_hdr);
1101 append_template(&template, &off, item->spec,
1102 sizeof(struct rte_ipv6_hdr));
1103 ip6->vtc_flow |= rte_cpu_to_be_32(IP6_VTC_FLOW);
1104 if (ip6->hop_limits == 0)
1105 ip6->hop_limits = IP_DEFTTL;
1106 ip6->proto = IPPROTO_UDP;
1107 break;
1108 }
1109 default:
1110 return rte_flow_error_set(error,
1111 EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item,
1112 "vxlan-encap: L3 must be IPv4/IPv6");
1113 }
1114 item++;
1115 flow_item_skip_void(&item);
1116
1117 /* L4 is UDP */
1118 if (item->type != RTE_FLOW_ITEM_TYPE_UDP)
1119 return rte_flow_error_set(error, EINVAL,
1120 RTE_FLOW_ERROR_TYPE_ITEM, item,
1121 "vxlan-encap: UDP must follow IPv4/IPv6");
1122 /* UDP length = UDP + VXLAN. NIC will add inner packet length. */
1123 fm_op.encap.len2_offset =
1124 off + offsetof(struct rte_udp_hdr, dgram_len);
1125 fm_op.encap.len2_delta =
1126 sizeof(struct rte_udp_hdr) + sizeof(struct rte_vxlan_hdr);
1127 udp = (struct rte_udp_hdr *)template;
1128 append_template(&template, &off, item->spec,
1129 sizeof(struct rte_udp_hdr));
1130 /*
1131 * Firmware does not hash/fill source port yet. Generate a
1132 * random port, as there is *usually* one rte_flow for the
1133 * given inner packet stream (i.e. a single stream has one
1134 * random port).
1135 */
1136 if (udp->src_port == 0)
1137 udp->src_port = gen_src_port();
1138 item++;
1139 flow_item_skip_void(&item);
1140
1141 /* Finally VXLAN */
1142 if (item->type != RTE_FLOW_ITEM_TYPE_VXLAN)
1143 return rte_flow_error_set(error,
1144 EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, item,
1145 "vxlan-encap: VXLAN must follow UDP");
1146 append_template(&template, &off, item->spec,
1147 sizeof(struct rte_flow_item_vxlan));
1148
1149 /*
1150 * Fill in the rest of the action structure.
1151 * Indicate that we want to encap with vxlan at packet start.
1152 */
1153 fm_op.encap.template_offset = 0;
1154 fm_op.encap.template_len = off;
1155 return enic_fm_append_action_op(fm, &fm_op, error);
1156 }
1157
1158 static int
enic_fm_find_vnic(struct enic * enic,const struct rte_pci_addr * addr,uint64_t * handle)1159 enic_fm_find_vnic(struct enic *enic, const struct rte_pci_addr *addr,
1160 uint64_t *handle)
1161 {
1162 uint32_t bdf;
1163 uint64_t args[2];
1164 int rc;
1165
1166 ENICPMD_FUNC_TRACE();
1167 ENICPMD_LOG(DEBUG, "bdf=%x:%x:%x", addr->bus, addr->devid,
1168 addr->function);
1169 bdf = addr->bus << 8 | addr->devid << 3 | addr->function;
1170 args[0] = FM_VNIC_FIND;
1171 args[1] = bdf;
1172 rc = vnic_dev_flowman_cmd(enic->vdev, args, 2);
1173 if (rc != 0) {
1174 /* Expected to fail if BDF is not on the adapter */
1175 ENICPMD_LOG(DEBUG, "cannot find vnic handle: rc=%d", rc);
1176 return rc;
1177 }
1178 *handle = args[0];
1179 ENICPMD_LOG(DEBUG, "found vnic: handle=0x%" PRIx64, *handle);
1180 return 0;
1181 }
1182
1183 /*
1184 * Egress: target port should be either PF uplink or VF.
1185 * Supported cases
1186 * 1. VF egress -> PF uplink
1187 * PF may be this VF's PF, or another PF, as long as they are on the same VIC.
1188 * 2. VF egress -> VF
1189 *
1190 * Unsupported cases
1191 * 1. PF egress -> VF
1192 * App should be using representor to pass packets to VF
1193 */
1194 static int
vf_egress_port_id_action(struct enic_flowman * fm,struct rte_eth_dev * dst_dev,uint64_t dst_vnic_h,struct fm_action_op * fm_op,struct rte_flow_error * error)1195 vf_egress_port_id_action(struct enic_flowman *fm,
1196 struct rte_eth_dev *dst_dev,
1197 uint64_t dst_vnic_h,
1198 struct fm_action_op *fm_op,
1199 struct rte_flow_error *error)
1200 {
1201 struct enic *src_enic, *dst_enic;
1202 struct enic_vf_representor *vf;
1203 uint8_t uif;
1204 int ret;
1205
1206 ENICPMD_FUNC_TRACE();
1207 src_enic = fm->user_enic;
1208 dst_enic = pmd_priv(dst_dev);
1209 if (!(src_enic->rte_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)) {
1210 return rte_flow_error_set(error, EINVAL,
1211 RTE_FLOW_ERROR_TYPE_ACTION,
1212 NULL, "source port is not VF representor");
1213 }
1214
1215 /* VF -> PF uplink. dst is not VF representor */
1216 if (!(dst_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)) {
1217 /* PF is the VF's PF? Then nothing to do */
1218 vf = VF_ENIC_TO_VF_REP(src_enic);
1219 if (vf->pf == dst_enic) {
1220 ENICPMD_LOG(DEBUG, "destination port is VF's PF");
1221 return 0;
1222 }
1223 /* If not, steer to the remote PF's uplink */
1224 uif = dst_enic->fm_vnic_uif;
1225 ENICPMD_LOG(DEBUG, "steer to uplink %u", uif);
1226 memset(fm_op, 0, sizeof(*fm_op));
1227 fm_op->fa_op = FMOP_SET_EGPORT;
1228 fm_op->set_egport.egport = uif;
1229 ret = enic_fm_append_action_op(fm, fm_op, error);
1230 return ret;
1231 }
1232
1233 /* VF -> VF loopback. Hairpin and steer to vnic */
1234 memset(fm_op, 0, sizeof(*fm_op));
1235 fm_op->fa_op = FMOP_EG_HAIRPIN;
1236 ret = enic_fm_append_action_op(fm, fm_op, error);
1237 if (ret)
1238 return ret;
1239 ENICPMD_LOG(DEBUG, "egress hairpin");
1240 fm->hairpin_steer_vnic_h = dst_vnic_h;
1241 fm->need_hairpin_steer = 1;
1242 return 0;
1243 }
1244
1245 /* Translate flow actions to flowman TCAM entry actions */
1246 static int
enic_fm_copy_action(struct enic_flowman * fm,const struct rte_flow_action actions[],uint8_t ingress,struct rte_flow_error * error)1247 enic_fm_copy_action(struct enic_flowman *fm,
1248 const struct rte_flow_action actions[],
1249 uint8_t ingress,
1250 struct rte_flow_error *error)
1251 {
1252 enum {
1253 FATE = 1 << 0,
1254 DECAP = 1 << 1,
1255 PASSTHRU = 1 << 2,
1256 COUNT = 1 << 3,
1257 ENCAP = 1 << 4,
1258 PUSH_VLAN = 1 << 5,
1259 PORT_ID = 1 << 6,
1260 };
1261 struct fm_tcam_match_entry *fmt;
1262 struct fm_action_op fm_op;
1263 bool need_ovlan_action;
1264 struct enic *enic;
1265 uint32_t overlap;
1266 uint64_t vnic_h;
1267 uint16_t ovlan;
1268 bool first_rq;
1269 bool steer;
1270 int ret;
1271
1272 ENICPMD_FUNC_TRACE();
1273 fmt = &fm->tcam_entry;
1274 need_ovlan_action = false;
1275 ovlan = 0;
1276 first_rq = true;
1277 steer = false;
1278 enic = fm->user_enic;
1279 overlap = 0;
1280 vnic_h = enic->fm_vnic_handle;
1281
1282 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1283 switch (actions->type) {
1284 case RTE_FLOW_ACTION_TYPE_VOID:
1285 continue;
1286 case RTE_FLOW_ACTION_TYPE_PASSTHRU: {
1287 if (overlap & PASSTHRU)
1288 goto unsupported;
1289 overlap |= PASSTHRU;
1290 break;
1291 }
1292 case RTE_FLOW_ACTION_TYPE_JUMP: {
1293 const struct rte_flow_action_jump *jump =
1294 actions->conf;
1295 struct enic_fm_fet *fet;
1296
1297 if (overlap & FATE)
1298 goto unsupported;
1299 ret = enic_fet_get(fm, jump->group, ingress, NULL,
1300 &fet, error);
1301 if (ret)
1302 return ret;
1303 overlap |= FATE;
1304 memset(&fm_op, 0, sizeof(fm_op));
1305 fm_op.fa_op = FMOP_EXACT_MATCH;
1306 fm_op.exact.handle = fet->handle;
1307 fm->fet = fet;
1308 ret = enic_fm_append_action_op(fm, &fm_op, error);
1309 if (ret)
1310 return ret;
1311 break;
1312 }
1313 case RTE_FLOW_ACTION_TYPE_MARK: {
1314 const struct rte_flow_action_mark *mark =
1315 actions->conf;
1316
1317 if (mark->id >= ENIC_MAGIC_FILTER_ID - 1)
1318 return rte_flow_error_set(error, EINVAL,
1319 RTE_FLOW_ERROR_TYPE_ACTION,
1320 NULL, "invalid mark id");
1321 memset(&fm_op, 0, sizeof(fm_op));
1322 fm_op.fa_op = FMOP_MARK;
1323 fm_op.mark.mark = mark->id + 1;
1324 ret = enic_fm_append_action_op(fm, &fm_op, error);
1325 if (ret)
1326 return ret;
1327 break;
1328 }
1329 case RTE_FLOW_ACTION_TYPE_FLAG: {
1330 /* ENIC_MAGIC_FILTER_ID is reserved for flagging */
1331 memset(&fm_op, 0, sizeof(fm_op));
1332 fm_op.fa_op = FMOP_MARK;
1333 fm_op.mark.mark = ENIC_MAGIC_FILTER_ID;
1334 ret = enic_fm_append_action_op(fm, &fm_op, error);
1335 if (ret)
1336 return ret;
1337 break;
1338 }
1339 case RTE_FLOW_ACTION_TYPE_QUEUE: {
1340 const struct rte_flow_action_queue *queue =
1341 actions->conf;
1342
1343 /*
1344 * If fate other than QUEUE or RSS, fail. Multiple
1345 * rss and queue actions are ok.
1346 */
1347 if ((overlap & FATE) && first_rq)
1348 goto unsupported;
1349 first_rq = false;
1350 overlap |= FATE;
1351 memset(&fm_op, 0, sizeof(fm_op));
1352 fm_op.fa_op = FMOP_RQ_STEER;
1353 fm_op.rq_steer.rq_index =
1354 enic_rte_rq_idx_to_sop_idx(queue->index);
1355 fm_op.rq_steer.rq_count = 1;
1356 fm_op.rq_steer.vnic_handle = vnic_h;
1357 ret = enic_fm_append_action_op(fm, &fm_op, error);
1358 if (ret)
1359 return ret;
1360 ENICPMD_LOG(DEBUG, "create QUEUE action rq: %u",
1361 fm_op.rq_steer.rq_index);
1362 steer = true;
1363 break;
1364 }
1365 case RTE_FLOW_ACTION_TYPE_DROP: {
1366 if (overlap & FATE)
1367 goto unsupported;
1368 overlap |= FATE;
1369 memset(&fm_op, 0, sizeof(fm_op));
1370 fm_op.fa_op = FMOP_DROP;
1371 ret = enic_fm_append_action_op(fm, &fm_op, error);
1372 if (ret)
1373 return ret;
1374 ENICPMD_LOG(DEBUG, "create DROP action");
1375 break;
1376 }
1377 case RTE_FLOW_ACTION_TYPE_COUNT: {
1378 if (overlap & COUNT)
1379 goto unsupported;
1380 overlap |= COUNT;
1381 /* Count is associated with entry not action on VIC. */
1382 fmt->ftm_flags |= FMEF_COUNTER;
1383 break;
1384 }
1385 case RTE_FLOW_ACTION_TYPE_RSS: {
1386 const struct rte_flow_action_rss *rss = actions->conf;
1387 bool allow;
1388 uint16_t i;
1389
1390 /*
1391 * If fate other than QUEUE or RSS, fail. Multiple
1392 * rss and queue actions are ok.
1393 */
1394 if ((overlap & FATE) && first_rq)
1395 goto unsupported;
1396 first_rq = false;
1397 overlap |= FATE;
1398
1399 /*
1400 * Hardware only supports RSS actions on outer level
1401 * with default type and function. Queues must be
1402 * sequential.
1403 */
1404 allow = rss->func == RTE_ETH_HASH_FUNCTION_DEFAULT &&
1405 rss->level == 0 && (rss->types == 0 ||
1406 rss->types == enic->rss_hf) &&
1407 rss->queue_num <= enic->rq_count &&
1408 rss->queue[rss->queue_num - 1] < enic->rq_count;
1409
1410
1411 /* Identity queue map needs to be sequential */
1412 for (i = 1; i < rss->queue_num; i++)
1413 allow = allow && (rss->queue[i] ==
1414 rss->queue[i - 1] + 1);
1415 if (!allow)
1416 goto unsupported;
1417
1418 memset(&fm_op, 0, sizeof(fm_op));
1419 fm_op.fa_op = FMOP_RQ_STEER;
1420 fm_op.rq_steer.rq_index =
1421 enic_rte_rq_idx_to_sop_idx(rss->queue[0]);
1422 fm_op.rq_steer.rq_count = rss->queue_num;
1423 fm_op.rq_steer.vnic_handle = vnic_h;
1424 ret = enic_fm_append_action_op(fm, &fm_op, error);
1425 if (ret)
1426 return ret;
1427 ENICPMD_LOG(DEBUG, "create QUEUE action rq: %u",
1428 fm_op.rq_steer.rq_index);
1429 steer = true;
1430 break;
1431 }
1432 case RTE_FLOW_ACTION_TYPE_PORT_ID: {
1433 const struct rte_flow_action_port_id *port;
1434 struct rte_eth_dev *dev;
1435
1436 if (!ingress && (overlap & PORT_ID)) {
1437 ENICPMD_LOG(DEBUG, "cannot have multiple egress PORT_ID actions");
1438 goto unsupported;
1439 }
1440 port = actions->conf;
1441 if (port->original) {
1442 vnic_h = enic->fm_vnic_handle; /* This port */
1443 break;
1444 }
1445 ENICPMD_LOG(DEBUG, "port id %u", port->id);
1446 if (!rte_eth_dev_is_valid_port(port->id)) {
1447 return rte_flow_error_set(error, EINVAL,
1448 RTE_FLOW_ERROR_TYPE_ACTION,
1449 NULL, "invalid port_id");
1450 }
1451 dev = &rte_eth_devices[port->id];
1452 if (!dev_is_enic(dev)) {
1453 return rte_flow_error_set(error, EINVAL,
1454 RTE_FLOW_ERROR_TYPE_ACTION,
1455 NULL, "port_id is not enic");
1456 }
1457 if (enic->switch_domain_id !=
1458 pmd_priv(dev)->switch_domain_id) {
1459 return rte_flow_error_set(error, EINVAL,
1460 RTE_FLOW_ERROR_TYPE_ACTION,
1461 NULL, "destination and source ports are not in the same switch domain");
1462 }
1463 vnic_h = pmd_priv(dev)->fm_vnic_handle;
1464 overlap |= PORT_ID;
1465 /*
1466 * Ingress. Nothing more to do. We add an implicit
1467 * steer at the end if needed.
1468 */
1469 if (ingress)
1470 break;
1471 /* Egress */
1472 ret = vf_egress_port_id_action(fm, dev, vnic_h, &fm_op,
1473 error);
1474 if (ret)
1475 return ret;
1476 break;
1477 }
1478 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP: {
1479 if (overlap & DECAP)
1480 goto unsupported;
1481 overlap |= DECAP;
1482
1483 ret = enic_fm_copy_vxlan_decap(fm, fmt, actions,
1484 error);
1485 if (ret != 0)
1486 return ret;
1487 break;
1488 }
1489 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: {
1490 const struct rte_flow_action_vxlan_encap *encap;
1491
1492 encap = actions->conf;
1493 if (overlap & ENCAP)
1494 goto unsupported;
1495 overlap |= ENCAP;
1496 ret = enic_fm_copy_vxlan_encap(fm, encap->definition,
1497 error);
1498 if (ret != 0)
1499 return ret;
1500 break;
1501 }
1502 case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN: {
1503 struct fm_action_op *decap;
1504
1505 /*
1506 * If decap-nostrip appears before pop vlan, this pop
1507 * applies to the inner packet vlan. Turn it into
1508 * decap-strip.
1509 */
1510 decap = find_prev_action_op(fm, FMOP_DECAP_NOSTRIP);
1511 if (decap) {
1512 ENICPMD_LOG(DEBUG, "pop-vlan inner: decap-nostrip => decap-strip");
1513 decap->fa_op = FMOP_DECAP_STRIP;
1514 break;
1515 }
1516 memset(&fm_op, 0, sizeof(fm_op));
1517 fm_op.fa_op = FMOP_POP_VLAN;
1518 ret = enic_fm_append_action_op(fm, &fm_op, error);
1519 if (ret)
1520 return ret;
1521 break;
1522 }
1523 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: {
1524 const struct rte_flow_action_of_push_vlan *vlan;
1525
1526 if (overlap & PASSTHRU)
1527 goto unsupported;
1528 vlan = actions->conf;
1529 if (vlan->ethertype != RTE_BE16(RTE_ETHER_TYPE_VLAN)) {
1530 return rte_flow_error_set(error, EINVAL,
1531 RTE_FLOW_ERROR_TYPE_ACTION,
1532 NULL, "unexpected push_vlan ethertype");
1533 }
1534 overlap |= PUSH_VLAN;
1535 need_ovlan_action = true;
1536 break;
1537 }
1538 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: {
1539 const struct rte_flow_action_of_set_vlan_pcp *pcp;
1540
1541 pcp = actions->conf;
1542 if (pcp->vlan_pcp > 7) {
1543 return rte_flow_error_set(error, EINVAL,
1544 RTE_FLOW_ERROR_TYPE_ACTION,
1545 NULL, "invalid vlan_pcp");
1546 }
1547 need_ovlan_action = true;
1548 ovlan |= ((uint16_t)pcp->vlan_pcp) << 13;
1549 break;
1550 }
1551 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: {
1552 const struct rte_flow_action_of_set_vlan_vid *vid;
1553
1554 vid = actions->conf;
1555 need_ovlan_action = true;
1556 ovlan |= rte_be_to_cpu_16(vid->vlan_vid);
1557 break;
1558 }
1559 default:
1560 goto unsupported;
1561 }
1562 }
1563
1564 if (!(overlap & (FATE | PASSTHRU | COUNT | PORT_ID)))
1565 goto unsupported;
1566 /* Egress from VF: need implicit WQ match */
1567 if (enic_is_vf_rep(enic) && !ingress) {
1568 fmt->ftm_data.fk_wq_id = 0;
1569 fmt->ftm_mask.fk_wq_id = 0xffff;
1570 fmt->ftm_data.fk_wq_vnic = enic->fm_vnic_handle;
1571 ENICPMD_LOG(DEBUG, "add implicit wq id match for vf %d",
1572 VF_ENIC_TO_VF_REP(enic)->vf_id);
1573 }
1574 if (need_ovlan_action) {
1575 memset(&fm_op, 0, sizeof(fm_op));
1576 fm_op.fa_op = FMOP_SET_OVLAN;
1577 fm_op.ovlan.vlan = ovlan;
1578 ret = enic_fm_append_action_op(fm, &fm_op, error);
1579 if (ret)
1580 return ret;
1581 }
1582 /* Add steer op for PORT_ID without QUEUE */
1583 if ((overlap & PORT_ID) && !steer && ingress) {
1584 memset(&fm_op, 0, sizeof(fm_op));
1585 /* Always to queue 0 for now as generic RSS is not available */
1586 fm_op.fa_op = FMOP_RQ_STEER;
1587 fm_op.rq_steer.rq_index = 0;
1588 fm_op.rq_steer.vnic_handle = vnic_h;
1589 ret = enic_fm_append_action_op(fm, &fm_op, error);
1590 if (ret)
1591 return ret;
1592 ENICPMD_LOG(DEBUG, "add implicit steer op");
1593 }
1594 /* Add required END */
1595 memset(&fm_op, 0, sizeof(fm_op));
1596 fm_op.fa_op = FMOP_END;
1597 ret = enic_fm_append_action_op(fm, &fm_op, error);
1598 if (ret)
1599 return ret;
1600 enic_fm_reorder_action_op(fm);
1601 return 0;
1602
1603 unsupported:
1604 return rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
1605 NULL, "enic: unsupported action");
1606 }
1607
1608 /** Check if the action is supported */
1609 static int
enic_fm_match_action(const struct rte_flow_action * action,const enum rte_flow_action_type * supported_actions)1610 enic_fm_match_action(const struct rte_flow_action *action,
1611 const enum rte_flow_action_type *supported_actions)
1612 {
1613 for (; *supported_actions != RTE_FLOW_ACTION_TYPE_END;
1614 supported_actions++) {
1615 if (action->type == *supported_actions)
1616 return 1;
1617 }
1618 return 0;
1619 }
1620
1621 /* Debug function to dump internal NIC action structure. */
1622 static void
enic_fm_dump_tcam_actions(const struct fm_action * fm_action)1623 enic_fm_dump_tcam_actions(const struct fm_action *fm_action)
1624 {
1625 /* Manually keep in sync with FMOP commands */
1626 const char *fmop_str[FMOP_OP_MAX] = {
1627 [FMOP_END] = "end",
1628 [FMOP_DROP] = "drop",
1629 [FMOP_RQ_STEER] = "steer",
1630 [FMOP_EXACT_MATCH] = "exmatch",
1631 [FMOP_MARK] = "mark",
1632 [FMOP_EXT_MARK] = "ext_mark",
1633 [FMOP_TAG] = "tag",
1634 [FMOP_EG_HAIRPIN] = "eg_hairpin",
1635 [FMOP_IG_HAIRPIN] = "ig_hairpin",
1636 [FMOP_ENCAP_IVLAN] = "encap_ivlan",
1637 [FMOP_ENCAP_NOIVLAN] = "encap_noivlan",
1638 [FMOP_ENCAP] = "encap",
1639 [FMOP_SET_OVLAN] = "set_ovlan",
1640 [FMOP_DECAP_NOSTRIP] = "decap_nostrip",
1641 [FMOP_DECAP_STRIP] = "decap_strip",
1642 [FMOP_POP_VLAN] = "pop_vlan",
1643 [FMOP_SET_EGPORT] = "set_egport",
1644 [FMOP_RQ_STEER_ONLY] = "rq_steer_only",
1645 [FMOP_SET_ENCAP_VLAN] = "set_encap_vlan",
1646 [FMOP_EMIT] = "emit",
1647 [FMOP_MODIFY] = "modify",
1648 };
1649 const struct fm_action_op *op = &fm_action->fma_action_ops[0];
1650 char buf[128], *bp = buf;
1651 const char *op_str;
1652 int i, n, buf_len;
1653
1654 buf[0] = '\0';
1655 buf_len = sizeof(buf);
1656 for (i = 0; i < FM_ACTION_OP_MAX; i++) {
1657 if (op->fa_op == FMOP_END)
1658 break;
1659 if (op->fa_op >= FMOP_OP_MAX)
1660 op_str = "unknown";
1661 else
1662 op_str = fmop_str[op->fa_op];
1663 n = snprintf(bp, buf_len, "%s,", op_str);
1664 if (n > 0 && n < buf_len) {
1665 bp += n;
1666 buf_len -= n;
1667 }
1668 op++;
1669 }
1670 /* Remove trailing comma */
1671 if (buf[0])
1672 *(bp - 1) = '\0';
1673 ENICPMD_LOG(DEBUG, " Acions: %s", buf);
1674 }
1675
1676 static int
bits_to_str(uint32_t bits,const char * strings[],int max,char * buf,int buf_len)1677 bits_to_str(uint32_t bits, const char *strings[], int max,
1678 char *buf, int buf_len)
1679 {
1680 int i, n = 0, len = 0;
1681
1682 for (i = 0; i < max; i++) {
1683 if (bits & (1 << i)) {
1684 n = snprintf(buf, buf_len, "%s,", strings[i]);
1685 if (n > 0 && n < buf_len) {
1686 buf += n;
1687 buf_len -= n;
1688 len += n;
1689 }
1690 }
1691 }
1692 /* Remove trailing comma */
1693 if (len) {
1694 *(buf - 1) = '\0';
1695 len--;
1696 }
1697 return len;
1698 }
1699
1700 /* Debug function to dump internal NIC filter structure. */
1701 static void
__enic_fm_dump_tcam_match(const struct fm_header_set * fk_hdrset,char * buf,int buf_len)1702 __enic_fm_dump_tcam_match(const struct fm_header_set *fk_hdrset, char *buf,
1703 int buf_len)
1704 {
1705 /* Manually keep in sync with FKM_BITS */
1706 const char *fm_fkm_str[FKM_BIT_COUNT] = {
1707 [FKM_QTAG_BIT] = "qtag",
1708 [FKM_CMD_BIT] = "cmd",
1709 [FKM_IPV4_BIT] = "ip4",
1710 [FKM_IPV6_BIT] = "ip6",
1711 [FKM_ROCE_BIT] = "roce",
1712 [FKM_UDP_BIT] = "udp",
1713 [FKM_TCP_BIT] = "tcp",
1714 [FKM_TCPORUDP_BIT] = "tcpportudp",
1715 [FKM_IPFRAG_BIT] = "ipfrag",
1716 [FKM_NVGRE_BIT] = "nvgre",
1717 [FKM_VXLAN_BIT] = "vxlan",
1718 [FKM_GENEVE_BIT] = "geneve",
1719 [FKM_NSH_BIT] = "nsh",
1720 [FKM_ROCEV2_BIT] = "rocev2",
1721 [FKM_VLAN_PRES_BIT] = "vlan_pres",
1722 [FKM_IPOK_BIT] = "ipok",
1723 [FKM_L4OK_BIT] = "l4ok",
1724 [FKM_ROCEOK_BIT] = "roceok",
1725 [FKM_FCSOK_BIT] = "fcsok",
1726 [FKM_EG_SPAN_BIT] = "eg_span",
1727 [FKM_IG_SPAN_BIT] = "ig_span",
1728 [FKM_EG_HAIRPINNED_BIT] = "eg_hairpinned",
1729 };
1730 /* Manually keep in sync with FKH_BITS */
1731 const char *fm_fkh_str[FKH_BIT_COUNT] = {
1732 [FKH_ETHER_BIT] = "eth",
1733 [FKH_QTAG_BIT] = "qtag",
1734 [FKH_L2RAW_BIT] = "l2raw",
1735 [FKH_IPV4_BIT] = "ip4",
1736 [FKH_IPV6_BIT] = "ip6",
1737 [FKH_L3RAW_BIT] = "l3raw",
1738 [FKH_UDP_BIT] = "udp",
1739 [FKH_TCP_BIT] = "tcp",
1740 [FKH_ICMP_BIT] = "icmp",
1741 [FKH_VXLAN_BIT] = "vxlan",
1742 [FKH_L4RAW_BIT] = "l4raw",
1743 };
1744 uint32_t fkh_bits = fk_hdrset->fk_header_select;
1745 uint32_t fkm_bits = fk_hdrset->fk_metadata;
1746 int n;
1747
1748 if (!fkm_bits && !fkh_bits)
1749 return;
1750 n = snprintf(buf, buf_len, "metadata(");
1751 if (n > 0 && n < buf_len) {
1752 buf += n;
1753 buf_len -= n;
1754 }
1755 n = bits_to_str(fkm_bits, fm_fkm_str, FKM_BIT_COUNT, buf, buf_len);
1756 if (n > 0 && n < buf_len) {
1757 buf += n;
1758 buf_len -= n;
1759 }
1760 n = snprintf(buf, buf_len, ") valid hdr fields(");
1761 if (n > 0 && n < buf_len) {
1762 buf += n;
1763 buf_len -= n;
1764 }
1765 n = bits_to_str(fkh_bits, fm_fkh_str, FKH_BIT_COUNT, buf, buf_len);
1766 if (n > 0 && n < buf_len) {
1767 buf += n;
1768 buf_len -= n;
1769 }
1770 snprintf(buf, buf_len, ")");
1771 }
1772
1773 static void
enic_fm_dump_tcam_match(const struct fm_tcam_match_entry * match,uint8_t ingress)1774 enic_fm_dump_tcam_match(const struct fm_tcam_match_entry *match,
1775 uint8_t ingress)
1776 {
1777 char buf[256];
1778
1779 memset(buf, 0, sizeof(buf));
1780 __enic_fm_dump_tcam_match(&match->ftm_mask.fk_hdrset[0],
1781 buf, sizeof(buf));
1782 ENICPMD_LOG(DEBUG, " TCAM %s Outer: %s %scounter position %u",
1783 (ingress) ? "IG" : "EG", buf,
1784 (match->ftm_flags & FMEF_COUNTER) ? "" : "no ",
1785 match->ftm_position);
1786 memset(buf, 0, sizeof(buf));
1787 __enic_fm_dump_tcam_match(&match->ftm_mask.fk_hdrset[1],
1788 buf, sizeof(buf));
1789 if (buf[0])
1790 ENICPMD_LOG(DEBUG, " Inner: %s", buf);
1791 }
1792
1793 /* Debug function to dump internal NIC flow structures. */
1794 static void
enic_fm_dump_tcam_entry(const struct fm_tcam_match_entry * fm_match,const struct fm_action * fm_action,uint8_t ingress)1795 enic_fm_dump_tcam_entry(const struct fm_tcam_match_entry *fm_match,
1796 const struct fm_action *fm_action,
1797 uint8_t ingress)
1798 {
1799 if (!rte_log_can_log(enic_pmd_logtype, RTE_LOG_DEBUG))
1800 return;
1801 enic_fm_dump_tcam_match(fm_match, ingress);
1802 enic_fm_dump_tcam_actions(fm_action);
1803 }
1804
1805 static int
enic_fm_flow_parse(struct enic_flowman * fm,const struct rte_flow_attr * attrs,const struct rte_flow_item pattern[],const struct rte_flow_action actions[],struct rte_flow_error * error)1806 enic_fm_flow_parse(struct enic_flowman *fm,
1807 const struct rte_flow_attr *attrs,
1808 const struct rte_flow_item pattern[],
1809 const struct rte_flow_action actions[],
1810 struct rte_flow_error *error)
1811 {
1812 const struct rte_flow_action *action;
1813 unsigned int ret;
1814 static const enum rte_flow_action_type *sa;
1815
1816 ENICPMD_FUNC_TRACE();
1817 ret = 0;
1818 if (!pattern) {
1819 rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
1820 NULL, "no pattern specified");
1821 return -rte_errno;
1822 }
1823
1824 if (!actions) {
1825 rte_flow_error_set(error, EINVAL,
1826 RTE_FLOW_ERROR_TYPE_ACTION_NUM,
1827 NULL, "no action specified");
1828 return -rte_errno;
1829 }
1830
1831 if (attrs) {
1832 if (attrs->group != FM_TCAM_RTE_GROUP && attrs->priority) {
1833 rte_flow_error_set(error, ENOTSUP,
1834 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1835 NULL,
1836 "priorities are not supported for non-default (0) groups");
1837 return -rte_errno;
1838 } else if (!fm->owner_enic->switchdev_mode && attrs->transfer) {
1839 rte_flow_error_set(error, ENOTSUP,
1840 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1841 NULL,
1842 "transfer is not supported");
1843 return -rte_errno;
1844 } else if (attrs->ingress && attrs->egress) {
1845 rte_flow_error_set(error, ENOTSUP,
1846 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1847 NULL,
1848 "bidirectional rules not supported");
1849 return -rte_errno;
1850 }
1851
1852 } else {
1853 rte_flow_error_set(error, EINVAL,
1854 RTE_FLOW_ERROR_TYPE_ATTR,
1855 NULL, "no attribute specified");
1856 return -rte_errno;
1857 }
1858
1859 /* Verify Actions. */
1860 sa = (attrs->ingress) ? enic_fm_supported_ig_actions :
1861 enic_fm_supported_eg_actions;
1862 for (action = &actions[0]; action->type != RTE_FLOW_ACTION_TYPE_END;
1863 action++) {
1864 if (action->type == RTE_FLOW_ACTION_TYPE_VOID)
1865 continue;
1866 else if (!enic_fm_match_action(action, sa))
1867 break;
1868 }
1869 if (action->type != RTE_FLOW_ACTION_TYPE_END) {
1870 rte_flow_error_set(error, EPERM, RTE_FLOW_ERROR_TYPE_ACTION,
1871 action, "invalid action");
1872 return -rte_errno;
1873 }
1874 ret = enic_fm_copy_entry(fm, pattern, error);
1875 if (ret)
1876 return ret;
1877 ret = enic_fm_copy_action(fm, actions, attrs->ingress, error);
1878 return ret;
1879 }
1880
1881 static void
enic_fm_counter_free(struct enic_flowman * fm,struct enic_fm_flow * fm_flow)1882 enic_fm_counter_free(struct enic_flowman *fm, struct enic_fm_flow *fm_flow)
1883 {
1884 if (!fm_flow->counter_valid)
1885 return;
1886 SLIST_INSERT_HEAD(&fm->counters, fm_flow->counter, next);
1887 fm_flow->counter_valid = false;
1888 }
1889
1890 static int
enic_fm_more_counters(struct enic_flowman * fm)1891 enic_fm_more_counters(struct enic_flowman *fm)
1892 {
1893 struct enic_fm_counter *new_stack;
1894 struct enic_fm_counter *ctrs;
1895 int i, rc;
1896 uint64_t args[2];
1897
1898 ENICPMD_FUNC_TRACE();
1899 new_stack = rte_realloc(fm->counter_stack, (fm->counters_alloced +
1900 FM_COUNTERS_EXPAND) *
1901 sizeof(struct enic_fm_counter), 0);
1902 if (new_stack == NULL) {
1903 ENICPMD_LOG(ERR, "cannot alloc counter memory");
1904 return -ENOMEM;
1905 }
1906 fm->counter_stack = new_stack;
1907
1908 args[0] = FM_COUNTER_BRK;
1909 args[1] = fm->counters_alloced + FM_COUNTERS_EXPAND;
1910 rc = flowman_cmd(fm, args, 2);
1911 if (rc != 0) {
1912 ENICPMD_LOG(ERR, "cannot alloc counters rc=%d", rc);
1913 return rc;
1914 }
1915 ctrs = (struct enic_fm_counter *)fm->counter_stack +
1916 fm->counters_alloced;
1917 for (i = 0; i < FM_COUNTERS_EXPAND; i++, ctrs++) {
1918 ctrs->handle = fm->counters_alloced + i;
1919 SLIST_INSERT_HEAD(&fm->counters, ctrs, next);
1920 }
1921 fm->counters_alloced += FM_COUNTERS_EXPAND;
1922 ENICPMD_LOG(DEBUG, "%u counters allocated, total: %u",
1923 FM_COUNTERS_EXPAND, fm->counters_alloced);
1924 return 0;
1925 }
1926
1927 static int
enic_fm_counter_zero(struct enic_flowman * fm,struct enic_fm_counter * c)1928 enic_fm_counter_zero(struct enic_flowman *fm, struct enic_fm_counter *c)
1929 {
1930 uint64_t args[3];
1931 int ret;
1932
1933 ENICPMD_FUNC_TRACE();
1934 args[0] = FM_COUNTER_QUERY;
1935 args[1] = c->handle;
1936 args[2] = 1; /* clear */
1937 ret = flowman_cmd(fm, args, 3);
1938 if (ret) {
1939 ENICPMD_LOG(ERR, "counter init: rc=%d handle=0x%x",
1940 ret, c->handle);
1941 return ret;
1942 }
1943 return 0;
1944 }
1945
1946 static int
enic_fm_counter_alloc(struct enic_flowman * fm,struct rte_flow_error * error,struct enic_fm_counter ** ctr)1947 enic_fm_counter_alloc(struct enic_flowman *fm, struct rte_flow_error *error,
1948 struct enic_fm_counter **ctr)
1949 {
1950 struct enic_fm_counter *c;
1951 int ret;
1952
1953 ENICPMD_FUNC_TRACE();
1954 *ctr = NULL;
1955 if (SLIST_EMPTY(&fm->counters)) {
1956 ret = enic_fm_more_counters(fm);
1957 if (ret)
1958 return rte_flow_error_set(error, -ret,
1959 RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
1960 NULL, "enic: out of counters");
1961 }
1962 c = SLIST_FIRST(&fm->counters);
1963 SLIST_REMOVE_HEAD(&fm->counters, next);
1964 *ctr = c;
1965 return 0;
1966 }
1967
1968 static int
enic_fm_action_free(struct enic_flowman * fm,struct enic_fm_action * ah)1969 enic_fm_action_free(struct enic_flowman *fm, struct enic_fm_action *ah)
1970 {
1971 uint64_t args[2];
1972 int ret = 0;
1973
1974 ENICPMD_FUNC_TRACE();
1975 RTE_ASSERT(ah->ref > 0);
1976 ah->ref--;
1977 if (ah->ref == 0) {
1978 args[0] = FM_ACTION_FREE;
1979 args[1] = ah->handle;
1980 ret = flowman_cmd(fm, args, 2);
1981 if (ret)
1982 /* This is a "should never happen" error. */
1983 ENICPMD_LOG(ERR, "freeing action rc=%d handle=0x%"
1984 PRIx64, ret, ah->handle);
1985 rte_hash_del_key(fm->action_hash, (const void *)&ah->key);
1986 free(ah);
1987 }
1988 return ret;
1989 }
1990
1991 static int
enic_fm_entry_free(struct enic_flowman * fm,uint64_t handle)1992 enic_fm_entry_free(struct enic_flowman *fm, uint64_t handle)
1993 {
1994 uint64_t args[2];
1995 int rc;
1996
1997 ENICPMD_FUNC_TRACE();
1998 args[0] = FM_MATCH_ENTRY_REMOVE;
1999 args[1] = handle;
2000 rc = flowman_cmd(fm, args, 2);
2001 if (rc)
2002 ENICPMD_LOG(ERR, "cannot free match entry: rc=%d"
2003 " handle=0x%" PRIx64, rc, handle);
2004 return rc;
2005 }
2006
2007 static struct enic_fm_jump_flow *
find_jump_flow(struct enic_flowman * fm,uint32_t group)2008 find_jump_flow(struct enic_flowman *fm, uint32_t group)
2009 {
2010 struct enic_fm_jump_flow *j;
2011
2012 ENICPMD_FUNC_TRACE();
2013 TAILQ_FOREACH(j, &fm->jump_list, list) {
2014 if (j->group == group)
2015 return j;
2016 }
2017 return NULL;
2018 }
2019
2020 static void
remove_jump_flow(struct enic_flowman * fm,struct rte_flow * flow)2021 remove_jump_flow(struct enic_flowman *fm, struct rte_flow *flow)
2022 {
2023 struct enic_fm_jump_flow *j;
2024
2025 ENICPMD_FUNC_TRACE();
2026 TAILQ_FOREACH(j, &fm->jump_list, list) {
2027 if (j->flow == flow) {
2028 TAILQ_REMOVE(&fm->jump_list, j, list);
2029 free(j);
2030 return;
2031 }
2032 }
2033 }
2034
2035 static int
save_jump_flow(struct enic_flowman * fm,struct rte_flow * flow,uint32_t group,struct fm_tcam_match_entry * match,struct fm_action * action)2036 save_jump_flow(struct enic_flowman *fm,
2037 struct rte_flow *flow,
2038 uint32_t group,
2039 struct fm_tcam_match_entry *match,
2040 struct fm_action *action)
2041 {
2042 struct enic_fm_jump_flow *j;
2043
2044 ENICPMD_FUNC_TRACE();
2045 j = calloc(1, sizeof(struct enic_fm_jump_flow));
2046 if (j == NULL)
2047 return -ENOMEM;
2048 j->flow = flow;
2049 j->group = group;
2050 j->match = *match;
2051 j->action = *action;
2052 TAILQ_INSERT_HEAD(&fm->jump_list, j, list);
2053 ENICPMD_LOG(DEBUG, "saved jump flow: flow=%p group=%u", flow, group);
2054 return 0;
2055 }
2056
2057 static void
__enic_fm_flow_free(struct enic_flowman * fm,struct enic_fm_flow * fm_flow)2058 __enic_fm_flow_free(struct enic_flowman *fm, struct enic_fm_flow *fm_flow)
2059 {
2060 if (fm_flow->entry_handle != FM_INVALID_HANDLE) {
2061 enic_fm_entry_free(fm, fm_flow->entry_handle);
2062 fm_flow->entry_handle = FM_INVALID_HANDLE;
2063 }
2064 if (fm_flow->action != NULL) {
2065 enic_fm_action_free(fm, fm_flow->action);
2066 fm_flow->action = NULL;
2067 }
2068 enic_fm_counter_free(fm, fm_flow);
2069 if (fm_flow->fet) {
2070 enic_fet_put(fm, fm_flow->fet);
2071 fm_flow->fet = NULL;
2072 }
2073 }
2074
2075 static void
enic_fm_flow_free(struct enic_flowman * fm,struct rte_flow * flow)2076 enic_fm_flow_free(struct enic_flowman *fm, struct rte_flow *flow)
2077 {
2078 struct enic_fm_flow *steer = flow->fm->hairpin_steer_flow;
2079
2080 if (flow->fm->fet && flow->fm->fet->default_key)
2081 remove_jump_flow(fm, flow);
2082 __enic_fm_flow_free(fm, flow->fm);
2083 if (steer) {
2084 __enic_fm_flow_free(fm, steer);
2085 free(steer);
2086 }
2087 free(flow->fm);
2088 free(flow);
2089 }
2090
2091 static int
enic_fm_add_tcam_entry(struct enic_flowman * fm,struct fm_tcam_match_entry * match_in,uint64_t * entry_handle,uint8_t ingress,struct rte_flow_error * error)2092 enic_fm_add_tcam_entry(struct enic_flowman *fm,
2093 struct fm_tcam_match_entry *match_in,
2094 uint64_t *entry_handle,
2095 uint8_t ingress,
2096 struct rte_flow_error *error)
2097 {
2098 struct fm_tcam_match_entry *ftm;
2099 uint64_t args[3];
2100 int ret;
2101
2102 ENICPMD_FUNC_TRACE();
2103 /* Copy entry to the command buffer */
2104 ftm = &fm->cmd.va->fm_tcam_match_entry;
2105 memcpy(ftm, match_in, sizeof(*ftm));
2106 /* Add TCAM entry */
2107 args[0] = FM_TCAM_ENTRY_INSTALL;
2108 args[1] = ingress ? fm->ig_tcam_hndl : fm->eg_tcam_hndl;
2109 args[2] = fm->cmd.pa;
2110 ret = flowman_cmd(fm, args, 3);
2111 if (ret != 0) {
2112 ENICPMD_LOG(ERR, "cannot add %s TCAM entry: rc=%d",
2113 ingress ? "ingress" : "egress", ret);
2114 rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2115 NULL, "enic: devcmd(tcam-entry-install)");
2116 return ret;
2117 }
2118 ENICPMD_LOG(DEBUG, "installed %s TCAM entry: handle=0x%" PRIx64,
2119 ingress ? "ingress" : "egress", (uint64_t)args[0]);
2120 *entry_handle = args[0];
2121 return 0;
2122 }
2123
2124 static int
enic_fm_add_exact_entry(struct enic_flowman * fm,struct fm_tcam_match_entry * match_in,uint64_t * entry_handle,struct enic_fm_fet * fet,struct rte_flow_error * error)2125 enic_fm_add_exact_entry(struct enic_flowman *fm,
2126 struct fm_tcam_match_entry *match_in,
2127 uint64_t *entry_handle,
2128 struct enic_fm_fet *fet,
2129 struct rte_flow_error *error)
2130 {
2131 struct fm_exact_match_entry *fem;
2132 uint64_t args[3];
2133 int ret;
2134
2135 ENICPMD_FUNC_TRACE();
2136 /* The new entry must have the table's key */
2137 if (memcmp(fet->key.fk_hdrset, match_in->ftm_mask.fk_hdrset,
2138 sizeof(struct fm_header_set) * FM_HDRSET_MAX)) {
2139 return rte_flow_error_set(error, EINVAL,
2140 RTE_FLOW_ERROR_TYPE_ITEM, NULL,
2141 "enic: key does not match group's key");
2142 }
2143
2144 /* Copy entry to the command buffer */
2145 fem = &fm->cmd.va->fm_exact_match_entry;
2146 /*
2147 * Translate TCAM entry to exact entry. As is only need to drop
2148 * position and mask. The mask is part of the exact match table.
2149 * Position (aka priority) is not supported in the exact match table.
2150 */
2151 fem->fem_data = match_in->ftm_data;
2152 fem->fem_flags = match_in->ftm_flags;
2153 fem->fem_action = match_in->ftm_action;
2154 fem->fem_counter = match_in->ftm_counter;
2155
2156 /* Add exact entry */
2157 args[0] = FM_EXACT_ENTRY_INSTALL;
2158 args[1] = fet->handle;
2159 args[2] = fm->cmd.pa;
2160 ret = flowman_cmd(fm, args, 3);
2161 if (ret != 0) {
2162 ENICPMD_LOG(ERR, "cannot add %s exact entry: group=%u",
2163 fet->ingress ? "ingress" : "egress", fet->group);
2164 rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2165 NULL, "enic: devcmd(exact-entry-install)");
2166 return ret;
2167 }
2168 ENICPMD_LOG(DEBUG, "installed %s exact entry: group=%u"
2169 " handle=0x%" PRIx64,
2170 fet->ingress ? "ingress" : "egress", fet->group,
2171 (uint64_t)args[0]);
2172 *entry_handle = args[0];
2173 return 0;
2174 }
2175
2176 static int
enic_action_handle_get(struct enic_flowman * fm,struct fm_action * action_in,struct rte_flow_error * error,struct enic_fm_action ** ah_o)2177 enic_action_handle_get(struct enic_flowman *fm, struct fm_action *action_in,
2178 struct rte_flow_error *error,
2179 struct enic_fm_action **ah_o)
2180 {
2181 struct enic_fm_action *ah;
2182 struct fm_action *fma;
2183 uint64_t args[2];
2184 int ret = 0;
2185
2186 ret = rte_hash_lookup_data(fm->action_hash, action_in,
2187 (void **)&ah);
2188 if (ret < 0 && ret != -ENOENT)
2189 return rte_flow_error_set(error, -ret,
2190 RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2191 NULL, "enic: rte_hash_lookup(aciton)");
2192
2193 if (ret == -ENOENT) {
2194 /* Allocate a new action on the NIC. */
2195 fma = &fm->cmd.va->fm_action;
2196 memcpy(fma, action_in, sizeof(*fma));
2197
2198 ah = calloc(1, sizeof(*ah));
2199 memcpy(&ah->key, action_in, sizeof(struct fm_action));
2200 if (ah == NULL)
2201 return rte_flow_error_set(error, ENOMEM,
2202 RTE_FLOW_ERROR_TYPE_HANDLE,
2203 NULL, "enic: calloc(fm-action)");
2204 args[0] = FM_ACTION_ALLOC;
2205 args[1] = fm->cmd.pa;
2206 ret = flowman_cmd(fm, args, 2);
2207 if (ret != 0) {
2208 rte_flow_error_set(error, -ret,
2209 RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2210 NULL, "enic: devcmd(action-alloc)");
2211 goto error_with_ah;
2212 }
2213 ah->handle = args[0];
2214 ret = rte_hash_add_key_data(fm->action_hash,
2215 (const void *)action_in,
2216 (void *)ah);
2217 if (ret != 0) {
2218 rte_flow_error_set(error, -ret,
2219 RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2220 NULL,
2221 "enic: rte_hash_add_key_data(actn)");
2222 goto error_with_action_handle;
2223 }
2224 ENICPMD_LOG(DEBUG, "action allocated: handle=0x%" PRIx64,
2225 ah->handle);
2226 }
2227
2228 /* Action handle struct is valid, increment reference count. */
2229 ah->ref++;
2230 *ah_o = ah;
2231 return 0;
2232 error_with_action_handle:
2233 args[0] = FM_ACTION_FREE;
2234 args[1] = ah->handle;
2235 ret = flowman_cmd(fm, args, 2);
2236 if (ret != 0)
2237 rte_flow_error_set(error, -ret,
2238 RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2239 NULL, "enic: devcmd(action-free)");
2240 error_with_ah:
2241 free(ah);
2242 return ret;
2243 }
2244
2245 /* Push match-action to the NIC. */
2246 static int
__enic_fm_flow_add_entry(struct enic_flowman * fm,struct enic_fm_flow * fm_flow,struct fm_tcam_match_entry * match_in,struct fm_action * action_in,uint32_t group,uint8_t ingress,struct rte_flow_error * error)2247 __enic_fm_flow_add_entry(struct enic_flowman *fm,
2248 struct enic_fm_flow *fm_flow,
2249 struct fm_tcam_match_entry *match_in,
2250 struct fm_action *action_in,
2251 uint32_t group,
2252 uint8_t ingress,
2253 struct rte_flow_error *error)
2254 {
2255 struct enic_fm_counter *ctr;
2256 struct enic_fm_action *ah = NULL;
2257 uint64_t entry_h;
2258 int ret;
2259
2260 ENICPMD_FUNC_TRACE();
2261
2262 /* Get or create an aciton handle. */
2263 ret = enic_action_handle_get(fm, action_in, error, &ah);
2264 if (ret)
2265 return ret;
2266 match_in->ftm_action = ah->handle;
2267 fm_flow->action = ah;
2268
2269 /* Allocate counter if requested. */
2270 if (match_in->ftm_flags & FMEF_COUNTER) {
2271 ret = enic_fm_counter_alloc(fm, error, &ctr);
2272 if (ret) /* error has been filled in */
2273 return ret;
2274 fm_flow->counter_valid = true;
2275 fm_flow->counter = ctr;
2276 match_in->ftm_counter = ctr->handle;
2277 }
2278
2279 /*
2280 * Get the group's table (either TCAM or exact match table) and
2281 * add entry to it. If we use the exact match table, the handler
2282 * will translate the TCAM entry (match_in) to the appropriate
2283 * exact match entry and use that instead.
2284 */
2285 entry_h = FM_INVALID_HANDLE;
2286 if (group == FM_TCAM_RTE_GROUP) {
2287 ret = enic_fm_add_tcam_entry(fm, match_in, &entry_h, ingress,
2288 error);
2289 if (ret)
2290 return ret;
2291 /* Jump action might have a ref to fet */
2292 fm_flow->fet = fm->fet;
2293 fm->fet = NULL;
2294 } else {
2295 struct enic_fm_fet *fet = NULL;
2296
2297 ret = enic_fet_get(fm, group, ingress,
2298 &match_in->ftm_mask, &fet, error);
2299 if (ret)
2300 return ret;
2301 fm_flow->fet = fet;
2302 ret = enic_fm_add_exact_entry(fm, match_in, &entry_h, fet,
2303 error);
2304 if (ret)
2305 return ret;
2306 }
2307 /* Clear counter after adding entry, as it requires in-use counter */
2308 if (fm_flow->counter_valid) {
2309 ret = enic_fm_counter_zero(fm, fm_flow->counter);
2310 if (ret)
2311 return ret;
2312 }
2313 fm_flow->entry_handle = entry_h;
2314 return 0;
2315 }
2316
2317 /* Push match-action to the NIC. */
2318 static struct rte_flow *
enic_fm_flow_add_entry(struct enic_flowman * fm,struct fm_tcam_match_entry * match_in,struct fm_action * action_in,const struct rte_flow_attr * attrs,struct rte_flow_error * error)2319 enic_fm_flow_add_entry(struct enic_flowman *fm,
2320 struct fm_tcam_match_entry *match_in,
2321 struct fm_action *action_in,
2322 const struct rte_flow_attr *attrs,
2323 struct rte_flow_error *error)
2324 {
2325 struct enic_fm_flow *fm_flow;
2326 struct rte_flow *flow;
2327
2328 ENICPMD_FUNC_TRACE();
2329 match_in->ftm_position = attrs->priority;
2330 enic_fm_dump_tcam_entry(match_in, action_in, attrs->ingress);
2331 flow = calloc(1, sizeof(*flow));
2332 fm_flow = calloc(1, sizeof(*fm_flow));
2333 if (flow == NULL || fm_flow == NULL) {
2334 rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
2335 NULL, "enic: cannot allocate rte_flow");
2336 free(flow);
2337 free(fm_flow);
2338 return NULL;
2339 }
2340 flow->fm = fm_flow;
2341 fm_flow->action = NULL;
2342 fm_flow->entry_handle = FM_INVALID_HANDLE;
2343 if (__enic_fm_flow_add_entry(fm, fm_flow, match_in, action_in,
2344 attrs->group, attrs->ingress, error)) {
2345 enic_fm_flow_free(fm, flow);
2346 return NULL;
2347 }
2348 return flow;
2349 }
2350
2351 static void
convert_jump_flows(struct enic_flowman * fm,struct enic_fm_fet * fet,struct rte_flow_error * error)2352 convert_jump_flows(struct enic_flowman *fm, struct enic_fm_fet *fet,
2353 struct rte_flow_error *error)
2354 {
2355 struct enic_fm_flow *fm_flow;
2356 struct enic_fm_jump_flow *j;
2357 struct fm_action *fma;
2358 uint32_t group;
2359
2360 ENICPMD_FUNC_TRACE();
2361 /*
2362 * Find the saved flows that should jump to the new table (fet).
2363 * Then delete the old TCAM entry that jumps to the default table,
2364 * and add a new one that jumps to the new table.
2365 */
2366 group = fet->group;
2367 j = find_jump_flow(fm, group);
2368 while (j) {
2369 ENICPMD_LOG(DEBUG, "convert jump flow: flow=%p group=%u",
2370 j->flow, group);
2371 /* Delete old entry */
2372 fm_flow = j->flow->fm;
2373 __enic_fm_flow_free(fm, fm_flow);
2374
2375 /* Add new entry */
2376 fma = &j->action;
2377 fma->fma_action_ops[0].exact.handle = fet->handle;
2378 if (__enic_fm_flow_add_entry(fm, fm_flow, &j->match, fma,
2379 FM_TCAM_RTE_GROUP, fet->ingress, error)) {
2380 /* Cannot roll back changes at the moment */
2381 ENICPMD_LOG(ERR, "cannot convert jump flow: flow=%p",
2382 j->flow);
2383 } else {
2384 fm_flow->fet = fet;
2385 fet->ref++;
2386 ENICPMD_LOG(DEBUG, "convert ok: group=%u ref=%u",
2387 fet->group, fet->ref);
2388 }
2389
2390 TAILQ_REMOVE(&fm->jump_list, j, list);
2391 free(j);
2392 j = find_jump_flow(fm, group);
2393 }
2394 }
2395
2396 static int
add_hairpin_steer(struct enic_flowman * fm,struct rte_flow * flow,struct rte_flow_error * error)2397 add_hairpin_steer(struct enic_flowman *fm, struct rte_flow *flow,
2398 struct rte_flow_error *error)
2399 {
2400 struct fm_tcam_match_entry *fm_tcam_entry;
2401 struct enic_fm_flow *fm_flow;
2402 struct fm_action *fm_action;
2403 struct fm_action_op fm_op;
2404 int ret;
2405
2406 ENICPMD_FUNC_TRACE();
2407 fm_flow = calloc(1, sizeof(*fm_flow));
2408 if (fm_flow == NULL) {
2409 rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
2410 NULL, "enic: cannot allocate rte_flow");
2411 return -ENOMEM;
2412 }
2413 /* Original egress hairpin flow */
2414 fm_tcam_entry = &fm->tcam_entry;
2415 fm_action = &fm->action;
2416 /* Use the match pattern of the egress flow as is, without counters */
2417 fm_tcam_entry->ftm_flags &= ~FMEF_COUNTER;
2418 /* The only action is steer to vnic */
2419 fm->action_op_count = 0;
2420 memset(fm_action, 0, sizeof(*fm_action));
2421 memset(&fm_op, 0, sizeof(fm_op));
2422 /* Always to queue 0 for now */
2423 fm_op.fa_op = FMOP_RQ_STEER;
2424 fm_op.rq_steer.rq_index = 0;
2425 fm_op.rq_steer.vnic_handle = fm->hairpin_steer_vnic_h;
2426 ret = enic_fm_append_action_op(fm, &fm_op, error);
2427 if (ret)
2428 goto error_with_flow;
2429 ENICPMD_LOG(DEBUG, "add steer op");
2430 /* Add required END */
2431 memset(&fm_op, 0, sizeof(fm_op));
2432 fm_op.fa_op = FMOP_END;
2433 ret = enic_fm_append_action_op(fm, &fm_op, error);
2434 if (ret)
2435 goto error_with_flow;
2436 /* Add the ingress flow */
2437 fm_flow->action = NULL;
2438 fm_flow->entry_handle = FM_INVALID_HANDLE;
2439 ret = __enic_fm_flow_add_entry(fm, fm_flow, fm_tcam_entry, fm_action,
2440 FM_TCAM_RTE_GROUP, 1 /* ingress */, error);
2441 if (ret) {
2442 ENICPMD_LOG(ERR, "cannot add hairpin-steer flow");
2443 goto error_with_flow;
2444 }
2445 /* The new flow is now the egress flow's paired flow */
2446 flow->fm->hairpin_steer_flow = fm_flow;
2447 return 0;
2448
2449 error_with_flow:
2450 free(fm_flow);
2451 return ret;
2452 }
2453
2454 static void
enic_fm_open_scratch(struct enic_flowman * fm)2455 enic_fm_open_scratch(struct enic_flowman *fm)
2456 {
2457 fm->action_op_count = 0;
2458 fm->fet = NULL;
2459 fm->need_hairpin_steer = 0;
2460 fm->hairpin_steer_vnic_h = 0;
2461 memset(&fm->tcam_entry, 0, sizeof(fm->tcam_entry));
2462 memset(&fm->action, 0, sizeof(fm->action));
2463 }
2464
2465 static void
enic_fm_close_scratch(struct enic_flowman * fm)2466 enic_fm_close_scratch(struct enic_flowman *fm)
2467 {
2468 if (fm->fet) {
2469 enic_fet_put(fm, fm->fet);
2470 fm->fet = NULL;
2471 }
2472 fm->action_op_count = 0;
2473 }
2474
2475 static int
enic_fm_flow_validate(struct rte_eth_dev * dev,const struct rte_flow_attr * attrs,const struct rte_flow_item pattern[],const struct rte_flow_action actions[],struct rte_flow_error * error)2476 enic_fm_flow_validate(struct rte_eth_dev *dev,
2477 const struct rte_flow_attr *attrs,
2478 const struct rte_flow_item pattern[],
2479 const struct rte_flow_action actions[],
2480 struct rte_flow_error *error)
2481 {
2482 struct fm_tcam_match_entry *fm_tcam_entry;
2483 struct fm_action *fm_action;
2484 struct enic_flowman *fm;
2485 int ret;
2486
2487 ENICPMD_FUNC_TRACE();
2488 fm = begin_fm(pmd_priv(dev));
2489 if (fm == NULL)
2490 return -ENOTSUP;
2491 enic_fm_open_scratch(fm);
2492 ret = enic_fm_flow_parse(fm, attrs, pattern, actions, error);
2493 if (!ret) {
2494 fm_tcam_entry = &fm->tcam_entry;
2495 fm_action = &fm->action;
2496 enic_fm_dump_tcam_entry(fm_tcam_entry, fm_action,
2497 attrs->ingress);
2498 }
2499 enic_fm_close_scratch(fm);
2500 end_fm(fm);
2501 return ret;
2502 }
2503
2504 static int
enic_fm_flow_query_count(struct rte_eth_dev * dev,struct rte_flow * flow,void * data,struct rte_flow_error * error)2505 enic_fm_flow_query_count(struct rte_eth_dev *dev,
2506 struct rte_flow *flow, void *data,
2507 struct rte_flow_error *error)
2508 {
2509 struct rte_flow_query_count *query;
2510 struct enic_fm_flow *fm_flow;
2511 struct enic_flowman *fm;
2512 uint64_t args[3];
2513 int rc;
2514
2515 ENICPMD_FUNC_TRACE();
2516 fm = begin_fm(pmd_priv(dev));
2517 query = data;
2518 fm_flow = flow->fm;
2519 if (!fm_flow->counter_valid) {
2520 rc = rte_flow_error_set(error, ENOTSUP,
2521 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2522 "enic: flow does not have counter");
2523 goto exit;
2524 }
2525
2526 args[0] = FM_COUNTER_QUERY;
2527 args[1] = fm_flow->counter->handle;
2528 args[2] = query->reset;
2529 rc = flowman_cmd(fm, args, 3);
2530 if (rc) {
2531 ENICPMD_LOG(ERR, "cannot query counter: rc=%d handle=0x%x",
2532 rc, fm_flow->counter->handle);
2533 goto exit;
2534 }
2535 query->hits_set = 1;
2536 query->hits = args[0];
2537 query->bytes_set = 1;
2538 query->bytes = args[1];
2539 rc = 0;
2540 exit:
2541 end_fm(fm);
2542 return rc;
2543 }
2544
2545 static int
enic_fm_flow_query(struct rte_eth_dev * dev,struct rte_flow * flow,const struct rte_flow_action * actions,void * data,struct rte_flow_error * error)2546 enic_fm_flow_query(struct rte_eth_dev *dev,
2547 struct rte_flow *flow,
2548 const struct rte_flow_action *actions,
2549 void *data,
2550 struct rte_flow_error *error)
2551 {
2552 int ret = 0;
2553
2554 ENICPMD_FUNC_TRACE();
2555 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2556 switch (actions->type) {
2557 case RTE_FLOW_ACTION_TYPE_VOID:
2558 break;
2559 case RTE_FLOW_ACTION_TYPE_COUNT:
2560 ret = enic_fm_flow_query_count(dev, flow, data, error);
2561 break;
2562 default:
2563 return rte_flow_error_set(error, ENOTSUP,
2564 RTE_FLOW_ERROR_TYPE_ACTION,
2565 actions,
2566 "action not supported");
2567 }
2568 if (ret < 0)
2569 return ret;
2570 }
2571 return 0;
2572 }
2573
2574 static struct rte_flow *
enic_fm_flow_create(struct rte_eth_dev * dev,const struct rte_flow_attr * attrs,const struct rte_flow_item pattern[],const struct rte_flow_action actions[],struct rte_flow_error * error)2575 enic_fm_flow_create(struct rte_eth_dev *dev,
2576 const struct rte_flow_attr *attrs,
2577 const struct rte_flow_item pattern[],
2578 const struct rte_flow_action actions[],
2579 struct rte_flow_error *error)
2580 {
2581 struct fm_tcam_match_entry *fm_tcam_entry;
2582 struct fm_action *fm_action;
2583 struct enic_flowman *fm;
2584 struct enic_fm_fet *fet;
2585 struct rte_flow *flow;
2586 struct enic *enic;
2587 int ret;
2588
2589 ENICPMD_FUNC_TRACE();
2590 enic = pmd_priv(dev);
2591 fm = begin_fm(enic);
2592 if (fm == NULL) {
2593 rte_flow_error_set(error, ENOTSUP,
2594 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2595 "flowman is not initialized");
2596 return NULL;
2597 }
2598 enic_fm_open_scratch(fm);
2599 flow = NULL;
2600 ret = enic_fm_flow_parse(fm, attrs, pattern, actions, error);
2601 if (ret < 0)
2602 goto error_with_scratch;
2603 fm_tcam_entry = &fm->tcam_entry;
2604 fm_action = &fm->action;
2605 flow = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
2606 attrs, error);
2607 if (flow) {
2608 /* Add ingress rule that pairs with hairpin rule */
2609 if (fm->need_hairpin_steer) {
2610 ret = add_hairpin_steer(fm, flow, error);
2611 if (ret) {
2612 enic_fm_flow_free(fm, flow);
2613 flow = NULL;
2614 goto error_with_scratch;
2615 }
2616 }
2617 LIST_INSERT_HEAD(&enic->flows, flow, next);
2618 fet = flow->fm->fet;
2619 if (fet && fet->default_key) {
2620 /*
2621 * Jump to non-existent group? Save the relevant info
2622 * so we can convert this flow when that group
2623 * materializes.
2624 */
2625 save_jump_flow(fm, flow, fet->group,
2626 fm_tcam_entry, fm_action);
2627 } else if (fet && fet->ref == 1) {
2628 /*
2629 * A new table is created. Convert the saved flows
2630 * that should jump to this group.
2631 */
2632 convert_jump_flows(fm, fet, error);
2633 }
2634 }
2635
2636 error_with_scratch:
2637 enic_fm_close_scratch(fm);
2638 end_fm(fm);
2639 return flow;
2640 }
2641
2642 static int
enic_fm_flow_destroy(struct rte_eth_dev * dev,struct rte_flow * flow,__rte_unused struct rte_flow_error * error)2643 enic_fm_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow,
2644 __rte_unused struct rte_flow_error *error)
2645 {
2646 struct enic *enic = pmd_priv(dev);
2647 struct enic_flowman *fm;
2648
2649 ENICPMD_FUNC_TRACE();
2650 fm = begin_fm(enic);
2651 if (fm == NULL)
2652 return 0;
2653 LIST_REMOVE(flow, next);
2654 enic_fm_flow_free(fm, flow);
2655 end_fm(fm);
2656 return 0;
2657 }
2658
2659 static int
enic_fm_flow_flush(struct rte_eth_dev * dev,__rte_unused struct rte_flow_error * error)2660 enic_fm_flow_flush(struct rte_eth_dev *dev,
2661 __rte_unused struct rte_flow_error *error)
2662 {
2663 LIST_HEAD(enic_flows, rte_flow) internal;
2664 struct enic_fm_flow *fm_flow;
2665 struct enic_flowman *fm;
2666 struct rte_flow *flow;
2667 struct enic *enic = pmd_priv(dev);
2668
2669 ENICPMD_FUNC_TRACE();
2670
2671 fm = begin_fm(enic);
2672 if (fm == NULL)
2673 return 0;
2674 /* Destroy all non-internal flows */
2675 LIST_INIT(&internal);
2676 while (!LIST_EMPTY(&enic->flows)) {
2677 flow = LIST_FIRST(&enic->flows);
2678 fm_flow = flow->fm;
2679 LIST_REMOVE(flow, next);
2680 if (flow->internal) {
2681 LIST_INSERT_HEAD(&internal, flow, next);
2682 continue;
2683 }
2684 /*
2685 * If tables are null, then vNIC is closing, and the firmware
2686 * has already cleaned up flowman state. So do not try to free
2687 * resources, as it only causes errors.
2688 */
2689 if (fm->ig_tcam_hndl == FM_INVALID_HANDLE) {
2690 fm_flow->entry_handle = FM_INVALID_HANDLE;
2691 fm_flow->action = NULL;
2692 fm_flow->fet = NULL;
2693 }
2694 enic_fm_flow_free(fm, flow);
2695 }
2696 while (!LIST_EMPTY(&internal)) {
2697 flow = LIST_FIRST(&internal);
2698 LIST_REMOVE(flow, next);
2699 LIST_INSERT_HEAD(&enic->flows, flow, next);
2700 }
2701 end_fm(fm);
2702 return 0;
2703 }
2704
2705 static int
enic_fm_tbl_free(struct enic_flowman * fm,uint64_t handle)2706 enic_fm_tbl_free(struct enic_flowman *fm, uint64_t handle)
2707 {
2708 uint64_t args[2];
2709 int rc;
2710
2711 args[0] = FM_MATCH_TABLE_FREE;
2712 args[1] = handle;
2713 rc = flowman_cmd(fm, args, 2);
2714 if (rc)
2715 ENICPMD_LOG(ERR, "cannot free table: rc=%d handle=0x%" PRIx64,
2716 rc, handle);
2717 return rc;
2718 }
2719
2720 static int
enic_fm_tcam_tbl_alloc(struct enic_flowman * fm,uint32_t direction,uint32_t max_entries,uint64_t * handle)2721 enic_fm_tcam_tbl_alloc(struct enic_flowman *fm, uint32_t direction,
2722 uint32_t max_entries, uint64_t *handle)
2723 {
2724 struct fm_tcam_match_table *tcam_tbl;
2725 uint64_t args[2];
2726 int rc;
2727
2728 ENICPMD_FUNC_TRACE();
2729 tcam_tbl = &fm->cmd.va->fm_tcam_match_table;
2730 tcam_tbl->ftt_direction = direction;
2731 tcam_tbl->ftt_stage = FM_STAGE_LAST;
2732 tcam_tbl->ftt_max_entries = max_entries;
2733 args[0] = FM_TCAM_TABLE_ALLOC;
2734 args[1] = fm->cmd.pa;
2735 rc = flowman_cmd(fm, args, 2);
2736 if (rc) {
2737 ENICPMD_LOG(ERR, "cannot alloc %s TCAM table: rc=%d",
2738 (direction == FM_INGRESS) ? "IG" : "EG", rc);
2739 return rc;
2740 }
2741 *handle = args[0];
2742 ENICPMD_LOG(DEBUG, "%s TCAM table allocated, handle=0x%" PRIx64,
2743 (direction == FM_INGRESS) ? "IG" : "EG", *handle);
2744 return 0;
2745 }
2746
2747 static int
enic_fm_init_actions(struct enic_flowman * fm)2748 enic_fm_init_actions(struct enic_flowman *fm)
2749 {
2750 struct rte_hash *a_hash;
2751 char name[RTE_HASH_NAMESIZE];
2752 struct rte_hash_parameters params = {
2753 .entries = FM_MAX_ACTION_TABLE_SIZE,
2754 .key_len = sizeof(struct fm_action),
2755 .hash_func = rte_jhash,
2756 .hash_func_init_val = 0,
2757 .socket_id = rte_socket_id(),
2758 };
2759
2760 ENICPMD_FUNC_TRACE();
2761 snprintf((char *)name, sizeof(name), "fm-ah-%s",
2762 fm->owner_enic->bdf_name);
2763 params.name = name;
2764
2765 a_hash = rte_hash_create(¶ms);
2766 if (a_hash == NULL)
2767 return -rte_errno;
2768 fm->action_hash = a_hash;
2769 return 0;
2770 }
2771
2772 static int
enic_fm_init_counters(struct enic_flowman * fm)2773 enic_fm_init_counters(struct enic_flowman *fm)
2774 {
2775 ENICPMD_FUNC_TRACE();
2776 SLIST_INIT(&fm->counters);
2777 return enic_fm_more_counters(fm);
2778 }
2779
2780 static void
enic_fm_free_all_counters(struct enic_flowman * fm)2781 enic_fm_free_all_counters(struct enic_flowman *fm)
2782 {
2783 uint64_t args[2];
2784 int rc;
2785
2786 args[0] = FM_COUNTER_BRK;
2787 args[1] = 0;
2788 rc = flowman_cmd(fm, args, 2);
2789 if (rc != 0)
2790 ENICPMD_LOG(ERR, "cannot free counters: rc=%d", rc);
2791 rte_free(fm->counter_stack);
2792 }
2793
2794 static int
enic_fm_alloc_tcam_tables(struct enic_flowman * fm)2795 enic_fm_alloc_tcam_tables(struct enic_flowman *fm)
2796 {
2797 int rc;
2798
2799 ENICPMD_FUNC_TRACE();
2800 rc = enic_fm_tcam_tbl_alloc(fm, FM_INGRESS, FM_MAX_TCAM_TABLE_SIZE,
2801 &fm->ig_tcam_hndl);
2802 if (rc)
2803 return rc;
2804 rc = enic_fm_tcam_tbl_alloc(fm, FM_EGRESS, FM_MAX_TCAM_TABLE_SIZE,
2805 &fm->eg_tcam_hndl);
2806 return rc;
2807 }
2808
2809 static void
enic_fm_free_tcam_tables(struct enic_flowman * fm)2810 enic_fm_free_tcam_tables(struct enic_flowman *fm)
2811 {
2812 ENICPMD_FUNC_TRACE();
2813 if (fm->ig_tcam_hndl) {
2814 ENICPMD_LOG(DEBUG, "free IG TCAM table handle=0x%" PRIx64,
2815 fm->ig_tcam_hndl);
2816 enic_fm_tbl_free(fm, fm->ig_tcam_hndl);
2817 fm->ig_tcam_hndl = FM_INVALID_HANDLE;
2818 }
2819 if (fm->eg_tcam_hndl) {
2820 ENICPMD_LOG(DEBUG, "free EG TCAM table handle=0x%" PRIx64,
2821 fm->eg_tcam_hndl);
2822 enic_fm_tbl_free(fm, fm->eg_tcam_hndl);
2823 fm->eg_tcam_hndl = FM_INVALID_HANDLE;
2824 }
2825 }
2826
2827 int
enic_fm_init(struct enic * enic)2828 enic_fm_init(struct enic *enic)
2829 {
2830 const struct rte_pci_addr *addr;
2831 struct enic_flowman *fm;
2832 uint8_t name[RTE_MEMZONE_NAMESIZE];
2833 int rc;
2834
2835 if (enic->flow_filter_mode != FILTER_FLOWMAN)
2836 return 0;
2837 ENICPMD_FUNC_TRACE();
2838 /* Get vnic handle and save for port-id action */
2839 if (enic_is_vf_rep(enic))
2840 addr = &VF_ENIC_TO_VF_REP(enic)->bdf;
2841 else
2842 addr = &RTE_ETH_DEV_TO_PCI(enic->rte_dev)->addr;
2843 rc = enic_fm_find_vnic(enic, addr, &enic->fm_vnic_handle);
2844 if (rc) {
2845 ENICPMD_LOG(ERR, "cannot find vnic handle for %x:%x:%x",
2846 addr->bus, addr->devid, addr->function);
2847 return rc;
2848 }
2849 /* Save UIF for egport action */
2850 enic->fm_vnic_uif = vnic_dev_uif(enic->vdev);
2851 ENICPMD_LOG(DEBUG, "uif %u", enic->fm_vnic_uif);
2852 /* Nothing else to do for representor. It will share the PF flowman */
2853 if (enic_is_vf_rep(enic))
2854 return 0;
2855 fm = calloc(1, sizeof(*fm));
2856 if (fm == NULL) {
2857 ENICPMD_LOG(ERR, "cannot alloc flowman struct");
2858 return -ENOMEM;
2859 }
2860 fm->owner_enic = enic;
2861 rte_spinlock_init(&fm->lock);
2862 TAILQ_INIT(&fm->fet_list);
2863 TAILQ_INIT(&fm->jump_list);
2864 /* Allocate host memory for flowman commands */
2865 snprintf((char *)name, sizeof(name), "fm-cmd-%s", enic->bdf_name);
2866 fm->cmd.va = enic_alloc_consistent(enic,
2867 sizeof(union enic_flowman_cmd_mem), &fm->cmd.pa, name);
2868 if (!fm->cmd.va) {
2869 ENICPMD_LOG(ERR, "cannot allocate flowman command memory");
2870 rc = -ENOMEM;
2871 goto error_fm;
2872 }
2873 /* Allocate TCAM tables upfront as they are the main tables */
2874 rc = enic_fm_alloc_tcam_tables(fm);
2875 if (rc) {
2876 ENICPMD_LOG(ERR, "cannot alloc TCAM tables");
2877 goto error_cmd;
2878 }
2879 /* Then a number of counters */
2880 rc = enic_fm_init_counters(fm);
2881 if (rc) {
2882 ENICPMD_LOG(ERR, "cannot alloc counters");
2883 goto error_tables;
2884 }
2885 /* set up action handle hash */
2886 rc = enic_fm_init_actions(fm);
2887 if (rc) {
2888 ENICPMD_LOG(ERR, "cannot create action hash, error:%d", rc);
2889 goto error_tables;
2890 }
2891 /*
2892 * One default exact match table for each direction. We hold onto
2893 * it until close.
2894 */
2895 rc = enic_fet_alloc(fm, 1, NULL, 128, &fm->default_ig_fet);
2896 if (rc) {
2897 ENICPMD_LOG(ERR, "cannot alloc default IG exact match table");
2898 goto error_counters;
2899 }
2900 fm->default_ig_fet->ref = 1;
2901 rc = enic_fet_alloc(fm, 0, NULL, 128, &fm->default_eg_fet);
2902 if (rc) {
2903 ENICPMD_LOG(ERR, "cannot alloc default EG exact match table");
2904 goto error_ig_fet;
2905 }
2906 fm->default_eg_fet->ref = 1;
2907 fm->vf_rep_tag = FM_VF_REP_TAG;
2908 enic->fm = fm;
2909 return 0;
2910
2911 error_ig_fet:
2912 enic_fet_free(fm, fm->default_ig_fet);
2913 error_counters:
2914 enic_fm_free_all_counters(fm);
2915 error_tables:
2916 enic_fm_free_tcam_tables(fm);
2917 error_cmd:
2918 enic_free_consistent(enic, sizeof(union enic_flowman_cmd_mem),
2919 fm->cmd.va, fm->cmd.pa);
2920 error_fm:
2921 free(fm);
2922 return rc;
2923 }
2924
2925 void
enic_fm_destroy(struct enic * enic)2926 enic_fm_destroy(struct enic *enic)
2927 {
2928 struct enic_flowman *fm;
2929 struct enic_fm_fet *fet;
2930
2931 ENICPMD_FUNC_TRACE();
2932 if (enic_is_vf_rep(enic)) {
2933 delete_rep_flows(enic);
2934 return;
2935 }
2936 if (enic->fm == NULL)
2937 return;
2938 fm = enic->fm;
2939 enic_fm_flow_flush(enic->rte_dev, NULL);
2940 enic_fet_free(fm, fm->default_eg_fet);
2941 enic_fet_free(fm, fm->default_ig_fet);
2942 /* Free all exact match tables still open */
2943 while (!TAILQ_EMPTY(&fm->fet_list)) {
2944 fet = TAILQ_FIRST(&fm->fet_list);
2945 enic_fet_free(fm, fet);
2946 }
2947 enic_fm_free_tcam_tables(fm);
2948 enic_fm_free_all_counters(fm);
2949 rte_hash_free(fm->action_hash);
2950 enic_free_consistent(enic, sizeof(union enic_flowman_cmd_mem),
2951 fm->cmd.va, fm->cmd.pa);
2952 fm->cmd.va = NULL;
2953 free(fm);
2954 enic->fm = NULL;
2955 }
2956
2957 int
enic_fm_allocate_switch_domain(struct enic * pf)2958 enic_fm_allocate_switch_domain(struct enic *pf)
2959 {
2960 const struct rte_pci_addr *cur_a, *prev_a;
2961 struct rte_eth_dev *dev;
2962 struct enic *cur, *prev;
2963 uint16_t domain_id;
2964 uint64_t vnic_h;
2965 uint16_t pid;
2966 int ret;
2967
2968 ENICPMD_FUNC_TRACE();
2969 if (enic_is_vf_rep(pf))
2970 return -EINVAL;
2971 cur = pf;
2972 cur_a = &RTE_ETH_DEV_TO_PCI(cur->rte_dev)->addr;
2973 /* Go through ports and find another PF that is on the same adapter */
2974 RTE_ETH_FOREACH_DEV(pid) {
2975 dev = &rte_eth_devices[pid];
2976 if (!dev_is_enic(dev))
2977 continue;
2978 if (dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
2979 continue;
2980 if (dev == cur->rte_dev)
2981 continue;
2982 /* dev is another PF. Is it on the same adapter? */
2983 prev = pmd_priv(dev);
2984 prev_a = &RTE_ETH_DEV_TO_PCI(dev)->addr;
2985 if (!enic_fm_find_vnic(cur, prev_a, &vnic_h)) {
2986 ENICPMD_LOG(DEBUG, "Port %u (PF BDF %x:%x:%x) and port %u (PF BDF %x:%x:%x domain %u) are on the same VIC",
2987 cur->rte_dev->data->port_id,
2988 cur_a->bus, cur_a->devid, cur_a->function,
2989 dev->data->port_id,
2990 prev_a->bus, prev_a->devid, prev_a->function,
2991 prev->switch_domain_id);
2992 cur->switch_domain_id = prev->switch_domain_id;
2993 return 0;
2994 }
2995 }
2996 ret = rte_eth_switch_domain_alloc(&domain_id);
2997 if (ret) {
2998 ENICPMD_LOG(WARNING, "failed to allocate switch domain for device %d",
2999 ret);
3000 }
3001 cur->switch_domain_id = domain_id;
3002 ENICPMD_LOG(DEBUG, "Port %u (PF BDF %x:%x:%x) is the 1st PF on the VIC. Allocated switch domain id %u",
3003 cur->rte_dev->data->port_id,
3004 cur_a->bus, cur_a->devid, cur_a->function,
3005 domain_id);
3006 return ret;
3007 }
3008
3009 const struct rte_flow_ops enic_fm_flow_ops = {
3010 .validate = enic_fm_flow_validate,
3011 .create = enic_fm_flow_create,
3012 .destroy = enic_fm_flow_destroy,
3013 .flush = enic_fm_flow_flush,
3014 .query = enic_fm_flow_query,
3015 };
3016
3017 /* Add a high priority flow that loops representor packets to VF */
3018 int
enic_fm_add_rep2vf_flow(struct enic_vf_representor * vf)3019 enic_fm_add_rep2vf_flow(struct enic_vf_representor *vf)
3020 {
3021 struct fm_tcam_match_entry *fm_tcam_entry;
3022 struct rte_flow *flow0, *flow1;
3023 struct fm_action *fm_action;
3024 struct rte_flow_error error;
3025 struct rte_flow_attr attrs;
3026 struct fm_action_op fm_op;
3027 struct enic_flowman *fm;
3028 struct enic *pf;
3029 uint8_t tag;
3030
3031 pf = vf->pf;
3032 fm = pf->fm;
3033 tag = fm->vf_rep_tag;
3034 enic_fm_open_scratch(fm);
3035 fm_tcam_entry = &fm->tcam_entry;
3036 fm_action = &fm->action;
3037 /* Egress rule: match WQ ID and tag+hairpin */
3038 fm_tcam_entry->ftm_data.fk_wq_id = vf->pf_wq_idx;
3039 fm_tcam_entry->ftm_mask.fk_wq_id = 0xffff;
3040 fm_tcam_entry->ftm_flags |= FMEF_COUNTER;
3041 memset(&fm_op, 0, sizeof(fm_op));
3042 fm_op.fa_op = FMOP_TAG;
3043 fm_op.tag.tag = tag;
3044 enic_fm_append_action_op(fm, &fm_op, &error);
3045 memset(&fm_op, 0, sizeof(fm_op));
3046 fm_op.fa_op = FMOP_EG_HAIRPIN;
3047 enic_fm_append_action_op(fm, &fm_op, &error);
3048 memset(&fm_op, 0, sizeof(fm_op));
3049 fm_op.fa_op = FMOP_END;
3050 enic_fm_append_action_op(fm, &fm_op, &error);
3051 attrs.group = 0;
3052 attrs.ingress = 0;
3053 attrs.egress = 1;
3054 attrs.priority = FM_HIGHEST_PRIORITY;
3055 flow0 = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
3056 &attrs, &error);
3057 enic_fm_close_scratch(fm);
3058 if (flow0 == NULL) {
3059 ENICPMD_LOG(ERR, "Cannot create flow 0 for representor->VF");
3060 return -EINVAL;
3061 }
3062 LIST_INSERT_HEAD(&pf->flows, flow0, next);
3063 /* Make this flow internal, so the user app cannot delete it */
3064 flow0->internal = 1;
3065 ENICPMD_LOG(DEBUG, "representor->VF %d flow created: wq %d -> tag %d hairpin",
3066 vf->vf_id, vf->pf_wq_idx, tag);
3067
3068 /* Ingress: steer hairpinned to VF RQ 0 */
3069 enic_fm_open_scratch(fm);
3070 fm_tcam_entry->ftm_flags |= FMEF_COUNTER;
3071 fm_tcam_entry->ftm_data.fk_hdrset[0].fk_metadata |= FKM_EG_HAIRPINNED;
3072 fm_tcam_entry->ftm_mask.fk_hdrset[0].fk_metadata |= FKM_EG_HAIRPINNED;
3073 fm_tcam_entry->ftm_data.fk_packet_tag = tag;
3074 fm_tcam_entry->ftm_mask.fk_packet_tag = 0xff;
3075 memset(&fm_op, 0, sizeof(fm_op));
3076 fm_op.fa_op = FMOP_RQ_STEER;
3077 fm_op.rq_steer.rq_index = 0;
3078 fm_op.rq_steer.vnic_handle = vf->enic.fm_vnic_handle;
3079 enic_fm_append_action_op(fm, &fm_op, &error);
3080 memset(&fm_op, 0, sizeof(fm_op));
3081 fm_op.fa_op = FMOP_END;
3082 enic_fm_append_action_op(fm, &fm_op, &error);
3083 attrs.group = 0;
3084 attrs.ingress = 1;
3085 attrs.egress = 0;
3086 attrs.priority = FM_HIGHEST_PRIORITY;
3087 flow1 = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
3088 &attrs, &error);
3089 enic_fm_close_scratch(fm);
3090 if (flow1 == NULL) {
3091 ENICPMD_LOG(ERR, "Cannot create flow 1 for representor->VF");
3092 enic_fm_flow_destroy(pf->rte_dev, flow0, &error);
3093 return -EINVAL;
3094 }
3095 LIST_INSERT_HEAD(&pf->flows, flow1, next);
3096 flow1->internal = 1;
3097 ENICPMD_LOG(DEBUG, "representor->VF %d flow created: tag %d hairpinned -> VF RQ %d",
3098 vf->vf_id, tag, fm_op.rq_steer.rq_index);
3099 vf->rep2vf_flow[0] = flow0;
3100 vf->rep2vf_flow[1] = flow1;
3101 /* Done with this tag, use a different one next time */
3102 fm->vf_rep_tag++;
3103 return 0;
3104 }
3105
3106 /*
3107 * Add a low priority flow that matches all packets from VF and loops them
3108 * back to the representor.
3109 */
3110 int
enic_fm_add_vf2rep_flow(struct enic_vf_representor * vf)3111 enic_fm_add_vf2rep_flow(struct enic_vf_representor *vf)
3112 {
3113 struct fm_tcam_match_entry *fm_tcam_entry;
3114 struct rte_flow *flow0, *flow1;
3115 struct fm_action *fm_action;
3116 struct rte_flow_error error;
3117 struct rte_flow_attr attrs;
3118 struct fm_action_op fm_op;
3119 struct enic_flowman *fm;
3120 struct enic *pf;
3121 uint8_t tag;
3122
3123 pf = vf->pf;
3124 fm = pf->fm;
3125 tag = fm->vf_rep_tag;
3126 enic_fm_open_scratch(fm);
3127 fm_tcam_entry = &fm->tcam_entry;
3128 fm_action = &fm->action;
3129 /* Egress rule: match-any and tag+hairpin */
3130 fm_tcam_entry->ftm_data.fk_wq_id = 0;
3131 fm_tcam_entry->ftm_mask.fk_wq_id = 0xffff;
3132 fm_tcam_entry->ftm_data.fk_wq_vnic = vf->enic.fm_vnic_handle;
3133 fm_tcam_entry->ftm_flags |= FMEF_COUNTER;
3134 memset(&fm_op, 0, sizeof(fm_op));
3135 fm_op.fa_op = FMOP_TAG;
3136 fm_op.tag.tag = tag;
3137 enic_fm_append_action_op(fm, &fm_op, &error);
3138 memset(&fm_op, 0, sizeof(fm_op));
3139 fm_op.fa_op = FMOP_EG_HAIRPIN;
3140 enic_fm_append_action_op(fm, &fm_op, &error);
3141 memset(&fm_op, 0, sizeof(fm_op));
3142 fm_op.fa_op = FMOP_END;
3143 enic_fm_append_action_op(fm, &fm_op, &error);
3144 attrs.group = 0;
3145 attrs.ingress = 0;
3146 attrs.egress = 1;
3147 attrs.priority = FM_LOWEST_PRIORITY;
3148 flow0 = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
3149 &attrs, &error);
3150 enic_fm_close_scratch(fm);
3151 if (flow0 == NULL) {
3152 ENICPMD_LOG(ERR, "Cannot create flow 0 for VF->representor");
3153 return -EINVAL;
3154 }
3155 LIST_INSERT_HEAD(&pf->flows, flow0, next);
3156 /* Make this flow internal, so the user app cannot delete it */
3157 flow0->internal = 1;
3158 ENICPMD_LOG(DEBUG, "VF %d->representor flow created: wq %d (low prio) -> tag %d hairpin",
3159 vf->vf_id, fm_tcam_entry->ftm_data.fk_wq_id, tag);
3160
3161 /* Ingress: steer hairpinned to VF rep RQ */
3162 enic_fm_open_scratch(fm);
3163 fm_tcam_entry->ftm_flags |= FMEF_COUNTER;
3164 fm_tcam_entry->ftm_data.fk_hdrset[0].fk_metadata |= FKM_EG_HAIRPINNED;
3165 fm_tcam_entry->ftm_mask.fk_hdrset[0].fk_metadata |= FKM_EG_HAIRPINNED;
3166 fm_tcam_entry->ftm_data.fk_packet_tag = tag;
3167 fm_tcam_entry->ftm_mask.fk_packet_tag = 0xff;
3168 memset(&fm_op, 0, sizeof(fm_op));
3169 fm_op.fa_op = FMOP_RQ_STEER;
3170 fm_op.rq_steer.rq_index = vf->pf_rq_sop_idx;
3171 fm_op.rq_steer.vnic_handle = pf->fm_vnic_handle;
3172 enic_fm_append_action_op(fm, &fm_op, &error);
3173 memset(&fm_op, 0, sizeof(fm_op));
3174 fm_op.fa_op = FMOP_END;
3175 enic_fm_append_action_op(fm, &fm_op, &error);
3176 attrs.group = 0;
3177 attrs.ingress = 1;
3178 attrs.egress = 0;
3179 attrs.priority = FM_HIGHEST_PRIORITY;
3180 flow1 = enic_fm_flow_add_entry(fm, fm_tcam_entry, fm_action,
3181 &attrs, &error);
3182 enic_fm_close_scratch(fm);
3183 if (flow1 == NULL) {
3184 ENICPMD_LOG(ERR, "Cannot create flow 1 for VF->representor");
3185 enic_fm_flow_destroy(pf->rte_dev, flow0, &error);
3186 return -EINVAL;
3187 }
3188 LIST_INSERT_HEAD(&pf->flows, flow1, next);
3189 flow1->internal = 1;
3190 ENICPMD_LOG(DEBUG, "VF %d->representor flow created: tag %d hairpinned -> PF RQ %d",
3191 vf->vf_id, tag, vf->pf_rq_sop_idx);
3192 vf->vf2rep_flow[0] = flow0;
3193 vf->vf2rep_flow[1] = flow1;
3194 /* Done with this tag, use a different one next time */
3195 fm->vf_rep_tag++;
3196 return 0;
3197 }
3198
3199 /* Destroy representor flows created by enic_fm_add_{rep2vf,vf2rep}_flow */
3200 static void
delete_rep_flows(struct enic * enic)3201 delete_rep_flows(struct enic *enic)
3202 {
3203 struct enic_vf_representor *vf;
3204 struct rte_flow_error error;
3205 struct rte_eth_dev *dev;
3206 uint32_t i;
3207
3208 RTE_ASSERT(enic_is_vf_rep(enic));
3209 vf = VF_ENIC_TO_VF_REP(enic);
3210 dev = vf->pf->rte_dev;
3211 for (i = 0; i < ARRAY_SIZE(vf->vf2rep_flow); i++) {
3212 if (vf->vf2rep_flow[i])
3213 enic_fm_flow_destroy(dev, vf->vf2rep_flow[i], &error);
3214 }
3215 for (i = 0; i < ARRAY_SIZE(vf->rep2vf_flow); i++) {
3216 if (vf->rep2vf_flow[i])
3217 enic_fm_flow_destroy(dev, vf->rep2vf_flow[i], &error);
3218 }
3219 }
3220
3221 static struct enic_flowman *
begin_fm(struct enic * enic)3222 begin_fm(struct enic *enic)
3223 {
3224 struct enic_vf_representor *vf;
3225 struct enic_flowman *fm;
3226
3227 /* Representor uses PF flowman */
3228 if (enic_is_vf_rep(enic)) {
3229 vf = VF_ENIC_TO_VF_REP(enic);
3230 fm = vf->pf->fm;
3231 } else {
3232 fm = enic->fm;
3233 }
3234 /* Save the API caller and lock if representors exist */
3235 if (fm) {
3236 if (fm->owner_enic->switchdev_mode)
3237 rte_spinlock_lock(&fm->lock);
3238 fm->user_enic = enic;
3239 }
3240 return fm;
3241 }
3242
3243 static void
end_fm(struct enic_flowman * fm)3244 end_fm(struct enic_flowman *fm)
3245 {
3246 fm->user_enic = NULL;
3247 if (fm->owner_enic->switchdev_mode)
3248 rte_spinlock_unlock(&fm->lock);
3249 }
3250