1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include <rte_acl.h>
6 #include "tb_mem.h"
7 #include "acl.h"
8
9 #define ACL_POOL_ALIGN 8
10 #define ACL_POOL_ALLOC_MIN 0x800000
11
12 /* number of pointers per alloc */
13 #define ACL_PTR_ALLOC 32
14
15 /* macros for dividing rule sets heuristics */
16 #define NODE_MAX 0x4000
17 #define NODE_MIN 0x800
18
19 /* TALLY are statistics per field */
20 enum {
21 TALLY_0 = 0, /* number of rules that are 0% or more wild. */
22 TALLY_25, /* number of rules that are 25% or more wild. */
23 TALLY_50,
24 TALLY_75,
25 TALLY_100,
26 TALLY_DEACTIVATED, /* deactivated fields (100% wild in all rules). */
27 TALLY_DEPTH,
28 /* number of rules that are 100% wild for this field and higher. */
29 TALLY_NUM
30 };
31
32 static const uint32_t wild_limits[TALLY_DEACTIVATED] = {0, 25, 50, 75, 100};
33
34 enum {
35 ACL_INTERSECT_NONE = 0,
36 ACL_INTERSECT_A = 1, /* set A is a superset of A and B intersect */
37 ACL_INTERSECT_B = 2, /* set B is a superset of A and B intersect */
38 ACL_INTERSECT = 4, /* sets A and B intersect */
39 };
40
41 enum {
42 ACL_PRIORITY_EQUAL = 0,
43 ACL_PRIORITY_NODE_A = 1,
44 ACL_PRIORITY_NODE_B = 2,
45 ACL_PRIORITY_MIXED = 3
46 };
47
48
49 struct acl_mem_block {
50 uint32_t block_size;
51 void *mem_ptr;
52 };
53
54 #define MEM_BLOCK_NUM 16
55
56 /* Single ACL rule, build representation.*/
57 struct rte_acl_build_rule {
58 struct rte_acl_build_rule *next;
59 struct rte_acl_config *config;
60 /**< configuration for each field in the rule. */
61 const struct rte_acl_rule *f;
62 uint32_t *wildness;
63 };
64
65 /* Context for build phase */
66 struct acl_build_context {
67 const struct rte_acl_ctx *acx;
68 struct rte_acl_build_rule *build_rules;
69 struct rte_acl_config cfg;
70 int32_t node_max;
71 int32_t cur_node_max;
72 uint32_t node;
73 uint32_t num_nodes;
74 uint32_t category_mask;
75 uint32_t num_rules;
76 uint32_t node_id;
77 uint32_t src_mask;
78 uint32_t num_build_rules;
79 uint32_t num_tries;
80 struct tb_mem_pool pool;
81 struct rte_acl_trie tries[RTE_ACL_MAX_TRIES];
82 struct rte_acl_bld_trie bld_tries[RTE_ACL_MAX_TRIES];
83 uint32_t data_indexes[RTE_ACL_MAX_TRIES][RTE_ACL_MAX_FIELDS];
84
85 /* memory free lists for nodes and blocks used for node ptrs */
86 struct acl_mem_block blocks[MEM_BLOCK_NUM];
87 struct rte_acl_node *node_free_list;
88 };
89
90 static int acl_merge_trie(struct acl_build_context *context,
91 struct rte_acl_node *node_a, struct rte_acl_node *node_b,
92 uint32_t level, struct rte_acl_node **node_c);
93
94 static void
95 acl_deref_ptr(struct acl_build_context *context,
96 struct rte_acl_node *node, int index);
97
98 static void *
acl_build_alloc(struct acl_build_context * context,size_t n,size_t s)99 acl_build_alloc(struct acl_build_context *context, size_t n, size_t s)
100 {
101 uint32_t m;
102 void *p;
103 size_t alloc_size = n * s;
104
105 /*
106 * look for memory in free lists
107 */
108 for (m = 0; m < RTE_DIM(context->blocks); m++) {
109 if (context->blocks[m].block_size ==
110 alloc_size && context->blocks[m].mem_ptr != NULL) {
111 p = context->blocks[m].mem_ptr;
112 context->blocks[m].mem_ptr = *((void **)p);
113 memset(p, 0, alloc_size);
114 return p;
115 }
116 }
117
118 /*
119 * return allocation from memory pool
120 */
121 p = tb_alloc(&context->pool, alloc_size);
122 return p;
123 }
124
125 /*
126 * Free memory blocks (kept in context for reuse).
127 */
128 static void
acl_build_free(struct acl_build_context * context,size_t s,void * p)129 acl_build_free(struct acl_build_context *context, size_t s, void *p)
130 {
131 uint32_t n;
132
133 for (n = 0; n < RTE_DIM(context->blocks); n++) {
134 if (context->blocks[n].block_size == s) {
135 *((void **)p) = context->blocks[n].mem_ptr;
136 context->blocks[n].mem_ptr = p;
137 return;
138 }
139 }
140 for (n = 0; n < RTE_DIM(context->blocks); n++) {
141 if (context->blocks[n].block_size == 0) {
142 context->blocks[n].block_size = s;
143 *((void **)p) = NULL;
144 context->blocks[n].mem_ptr = p;
145 return;
146 }
147 }
148 }
149
150 /*
151 * Allocate and initialize a new node.
152 */
153 static struct rte_acl_node *
acl_alloc_node(struct acl_build_context * context,int level)154 acl_alloc_node(struct acl_build_context *context, int level)
155 {
156 struct rte_acl_node *node;
157
158 if (context->node_free_list != NULL) {
159 node = context->node_free_list;
160 context->node_free_list = node->next;
161 memset(node, 0, sizeof(struct rte_acl_node));
162 } else {
163 node = acl_build_alloc(context, sizeof(struct rte_acl_node), 1);
164 }
165
166 if (node != NULL) {
167 node->num_ptrs = 0;
168 node->level = level;
169 node->node_type = RTE_ACL_NODE_UNDEFINED;
170 node->node_index = RTE_ACL_NODE_UNDEFINED;
171 context->num_nodes++;
172 node->id = context->node_id++;
173 }
174 return node;
175 }
176
177 /*
178 * Dereference all nodes to which this node points
179 */
180 static void
acl_free_node(struct acl_build_context * context,struct rte_acl_node * node)181 acl_free_node(struct acl_build_context *context,
182 struct rte_acl_node *node)
183 {
184 uint32_t n;
185
186 if (node->prev != NULL)
187 node->prev->next = NULL;
188 for (n = 0; n < node->num_ptrs; n++)
189 acl_deref_ptr(context, node, n);
190
191 /* free mrt if this is a match node */
192 if (node->mrt != NULL) {
193 acl_build_free(context, sizeof(struct rte_acl_match_results),
194 node->mrt);
195 node->mrt = NULL;
196 }
197
198 /* free transitions to other nodes */
199 if (node->ptrs != NULL) {
200 acl_build_free(context,
201 node->max_ptrs * sizeof(struct rte_acl_ptr_set),
202 node->ptrs);
203 node->ptrs = NULL;
204 }
205
206 /* put it on the free list */
207 context->num_nodes--;
208 node->next = context->node_free_list;
209 context->node_free_list = node;
210 }
211
212
213 /*
214 * Include src bitset in dst bitset
215 */
216 static void
acl_include(struct rte_acl_bitset * dst,struct rte_acl_bitset * src,bits_t mask)217 acl_include(struct rte_acl_bitset *dst, struct rte_acl_bitset *src, bits_t mask)
218 {
219 uint32_t n;
220
221 for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
222 dst->bits[n] = (dst->bits[n] & mask) | src->bits[n];
223 }
224
225 /*
226 * Set dst to bits of src1 that are not in src2
227 */
228 static int
acl_exclude(struct rte_acl_bitset * dst,struct rte_acl_bitset * src1,struct rte_acl_bitset * src2)229 acl_exclude(struct rte_acl_bitset *dst,
230 struct rte_acl_bitset *src1,
231 struct rte_acl_bitset *src2)
232 {
233 uint32_t n;
234 bits_t all_bits = 0;
235
236 for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
237 dst->bits[n] = src1->bits[n] & ~src2->bits[n];
238 all_bits |= dst->bits[n];
239 }
240 return all_bits != 0;
241 }
242
243 /*
244 * Add a pointer (ptr) to a node.
245 */
246 static int
acl_add_ptr(struct acl_build_context * context,struct rte_acl_node * node,struct rte_acl_node * ptr,struct rte_acl_bitset * bits)247 acl_add_ptr(struct acl_build_context *context,
248 struct rte_acl_node *node,
249 struct rte_acl_node *ptr,
250 struct rte_acl_bitset *bits)
251 {
252 uint32_t n, num_ptrs;
253 struct rte_acl_ptr_set *ptrs = NULL;
254
255 /*
256 * If there's already a pointer to the same node, just add to the bitset
257 */
258 for (n = 0; n < node->num_ptrs; n++) {
259 if (node->ptrs[n].ptr != NULL) {
260 if (node->ptrs[n].ptr == ptr) {
261 acl_include(&node->ptrs[n].values, bits, -1);
262 acl_include(&node->values, bits, -1);
263 return 0;
264 }
265 }
266 }
267
268 /* if there's no room for another pointer, make room */
269 if (node->num_ptrs >= node->max_ptrs) {
270 /* add room for more pointers */
271 num_ptrs = node->max_ptrs + ACL_PTR_ALLOC;
272 ptrs = acl_build_alloc(context, num_ptrs, sizeof(*ptrs));
273
274 /* copy current points to new memory allocation */
275 if (node->ptrs != NULL) {
276 memcpy(ptrs, node->ptrs,
277 node->num_ptrs * sizeof(*ptrs));
278 acl_build_free(context, node->max_ptrs * sizeof(*ptrs),
279 node->ptrs);
280 }
281 node->ptrs = ptrs;
282 node->max_ptrs = num_ptrs;
283 }
284
285 /* Find available ptr and add a new pointer to this node */
286 for (n = node->min_add; n < node->max_ptrs; n++) {
287 if (node->ptrs[n].ptr == NULL) {
288 node->ptrs[n].ptr = ptr;
289 acl_include(&node->ptrs[n].values, bits, 0);
290 acl_include(&node->values, bits, -1);
291 if (ptr != NULL)
292 ptr->ref_count++;
293 if (node->num_ptrs <= n)
294 node->num_ptrs = n + 1;
295 return 0;
296 }
297 }
298
299 return 0;
300 }
301
302 /*
303 * Add a pointer for a range of values
304 */
305 static int
acl_add_ptr_range(struct acl_build_context * context,struct rte_acl_node * root,struct rte_acl_node * node,uint8_t low,uint8_t high)306 acl_add_ptr_range(struct acl_build_context *context,
307 struct rte_acl_node *root,
308 struct rte_acl_node *node,
309 uint8_t low,
310 uint8_t high)
311 {
312 uint32_t n;
313 struct rte_acl_bitset bitset;
314
315 /* clear the bitset values */
316 for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
317 bitset.bits[n] = 0;
318
319 /* for each bit in range, add bit to set */
320 for (n = 0; n < UINT8_MAX + 1; n++)
321 if (n >= low && n <= high)
322 bitset.bits[n / (sizeof(bits_t) * 8)] |=
323 1U << (n % (sizeof(bits_t) * CHAR_BIT));
324
325 return acl_add_ptr(context, root, node, &bitset);
326 }
327
328 /*
329 * Generate a bitset from a byte value and mask.
330 */
331 static int
acl_gen_mask(struct rte_acl_bitset * bitset,uint32_t value,uint32_t mask)332 acl_gen_mask(struct rte_acl_bitset *bitset, uint32_t value, uint32_t mask)
333 {
334 int range = 0;
335 uint32_t n;
336
337 /* clear the bitset values */
338 for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
339 bitset->bits[n] = 0;
340
341 /* for each bit in value/mask, add bit to set */
342 for (n = 0; n < UINT8_MAX + 1; n++) {
343 if ((n & mask) == value) {
344 range++;
345 bitset->bits[n / (sizeof(bits_t) * 8)] |=
346 1U << (n % (sizeof(bits_t) * CHAR_BIT));
347 }
348 }
349 return range;
350 }
351
352 /*
353 * Determine how A and B intersect.
354 * Determine if A and/or B are supersets of the intersection.
355 */
356 static int
acl_intersect_type(const struct rte_acl_bitset * a_bits,const struct rte_acl_bitset * b_bits,struct rte_acl_bitset * intersect)357 acl_intersect_type(const struct rte_acl_bitset *a_bits,
358 const struct rte_acl_bitset *b_bits,
359 struct rte_acl_bitset *intersect)
360 {
361 uint32_t n;
362 bits_t intersect_bits = 0;
363 bits_t a_superset = 0;
364 bits_t b_superset = 0;
365
366 /*
367 * calculate and store intersection and check if A and/or B have
368 * bits outside the intersection (superset)
369 */
370 for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
371 intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n];
372 a_superset |= a_bits->bits[n] ^ intersect->bits[n];
373 b_superset |= b_bits->bits[n] ^ intersect->bits[n];
374 intersect_bits |= intersect->bits[n];
375 }
376
377 n = (intersect_bits == 0 ? ACL_INTERSECT_NONE : ACL_INTERSECT) |
378 (b_superset == 0 ? 0 : ACL_INTERSECT_B) |
379 (a_superset == 0 ? 0 : ACL_INTERSECT_A);
380
381 return n;
382 }
383
384 /*
385 * Duplicate a node
386 */
387 static struct rte_acl_node *
acl_dup_node(struct acl_build_context * context,struct rte_acl_node * node)388 acl_dup_node(struct acl_build_context *context, struct rte_acl_node *node)
389 {
390 uint32_t n;
391 struct rte_acl_node *next;
392
393 next = acl_alloc_node(context, node->level);
394
395 /* allocate the pointers */
396 if (node->num_ptrs > 0) {
397 next->ptrs = acl_build_alloc(context,
398 node->max_ptrs,
399 sizeof(struct rte_acl_ptr_set));
400 next->max_ptrs = node->max_ptrs;
401 }
402
403 /* copy over the pointers */
404 for (n = 0; n < node->num_ptrs; n++) {
405 if (node->ptrs[n].ptr != NULL) {
406 next->ptrs[n].ptr = node->ptrs[n].ptr;
407 next->ptrs[n].ptr->ref_count++;
408 acl_include(&next->ptrs[n].values,
409 &node->ptrs[n].values, -1);
410 }
411 }
412
413 next->num_ptrs = node->num_ptrs;
414
415 /* copy over node's match results */
416 if (node->match_flag == 0)
417 next->match_flag = 0;
418 else {
419 next->match_flag = -1;
420 next->mrt = acl_build_alloc(context, 1, sizeof(*next->mrt));
421 memcpy(next->mrt, node->mrt, sizeof(*next->mrt));
422 }
423
424 /* copy over node's bitset */
425 acl_include(&next->values, &node->values, -1);
426
427 node->next = next;
428 next->prev = node;
429
430 return next;
431 }
432
433 /*
434 * Dereference a pointer from a node
435 */
436 static void
acl_deref_ptr(struct acl_build_context * context,struct rte_acl_node * node,int index)437 acl_deref_ptr(struct acl_build_context *context,
438 struct rte_acl_node *node, int index)
439 {
440 struct rte_acl_node *ref_node;
441
442 /* De-reference the node at the specified pointer */
443 if (node != NULL && node->ptrs[index].ptr != NULL) {
444 ref_node = node->ptrs[index].ptr;
445 ref_node->ref_count--;
446 if (ref_node->ref_count == 0)
447 acl_free_node(context, ref_node);
448 }
449 }
450
451 /*
452 * acl_exclude rte_acl_bitset from src and copy remaining pointer to dst
453 */
454 static int
acl_copy_ptr(struct acl_build_context * context,struct rte_acl_node * dst,struct rte_acl_node * src,int index,struct rte_acl_bitset * b_bits)455 acl_copy_ptr(struct acl_build_context *context,
456 struct rte_acl_node *dst,
457 struct rte_acl_node *src,
458 int index,
459 struct rte_acl_bitset *b_bits)
460 {
461 int rc;
462 struct rte_acl_bitset bits;
463
464 if (b_bits != NULL)
465 if (!acl_exclude(&bits, &src->ptrs[index].values, b_bits))
466 return 0;
467
468 rc = acl_add_ptr(context, dst, src->ptrs[index].ptr, &bits);
469 if (rc < 0)
470 return rc;
471 return 1;
472 }
473
474 /*
475 * Fill in gaps in ptrs list with the ptr at the end of the list
476 */
477 static void
acl_compact_node_ptrs(struct rte_acl_node * node_a)478 acl_compact_node_ptrs(struct rte_acl_node *node_a)
479 {
480 uint32_t n;
481 int min_add = node_a->min_add;
482
483 while (node_a->num_ptrs > 0 &&
484 node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
485 node_a->num_ptrs--;
486
487 for (n = min_add; n + 1 < node_a->num_ptrs; n++) {
488
489 /* if this entry is empty */
490 if (node_a->ptrs[n].ptr == NULL) {
491
492 /* move the last pointer to this entry */
493 acl_include(&node_a->ptrs[n].values,
494 &node_a->ptrs[node_a->num_ptrs - 1].values,
495 0);
496 node_a->ptrs[n].ptr =
497 node_a->ptrs[node_a->num_ptrs - 1].ptr;
498
499 /*
500 * mark the end as empty and adjust the number
501 * of used pointer enum_tries
502 */
503 node_a->ptrs[node_a->num_ptrs - 1].ptr = NULL;
504 while (node_a->num_ptrs > 0 &&
505 node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
506 node_a->num_ptrs--;
507 }
508 }
509 }
510
511 static int
acl_resolve_leaf(struct acl_build_context * context,struct rte_acl_node * node_a,struct rte_acl_node * node_b,struct rte_acl_node ** node_c)512 acl_resolve_leaf(struct acl_build_context *context,
513 struct rte_acl_node *node_a,
514 struct rte_acl_node *node_b,
515 struct rte_acl_node **node_c)
516 {
517 uint32_t n;
518 int combined_priority = ACL_PRIORITY_EQUAL;
519
520 for (n = 0; n < context->cfg.num_categories; n++) {
521 if (node_a->mrt->priority[n] != node_b->mrt->priority[n]) {
522 combined_priority |= (node_a->mrt->priority[n] >
523 node_b->mrt->priority[n]) ?
524 ACL_PRIORITY_NODE_A : ACL_PRIORITY_NODE_B;
525 }
526 }
527
528 /*
529 * if node a is higher or equal priority for all categories,
530 * then return node_a.
531 */
532 if (combined_priority == ACL_PRIORITY_NODE_A ||
533 combined_priority == ACL_PRIORITY_EQUAL) {
534 *node_c = node_a;
535 return 0;
536 }
537
538 /*
539 * if node b is higher or equal priority for all categories,
540 * then return node_b.
541 */
542 if (combined_priority == ACL_PRIORITY_NODE_B) {
543 *node_c = node_b;
544 return 0;
545 }
546
547 /*
548 * mixed priorities - create a new node with the highest priority
549 * for each category.
550 */
551
552 /* force new duplication. */
553 node_a->next = NULL;
554
555 *node_c = acl_dup_node(context, node_a);
556 for (n = 0; n < context->cfg.num_categories; n++) {
557 if ((*node_c)->mrt->priority[n] < node_b->mrt->priority[n]) {
558 (*node_c)->mrt->priority[n] = node_b->mrt->priority[n];
559 (*node_c)->mrt->results[n] = node_b->mrt->results[n];
560 }
561 }
562 return 0;
563 }
564
565 /*
566 * Merge nodes A and B together,
567 * returns a node that is the path for the intersection
568 *
569 * If match node (leaf on trie)
570 * For each category
571 * return node = highest priority result
572 *
573 * Create C as a duplicate of A to point to child intersections
574 * If any pointers in C intersect with any in B
575 * For each intersection
576 * merge children
577 * remove intersection from C pointer
578 * add a pointer from C to child intersection node
579 * Compact the pointers in A and B
580 * Copy any B pointers that are outside of the intersection to C
581 * If C has no references to the B trie
582 * free C and return A
583 * Else If C has no references to the A trie
584 * free C and return B
585 * Else
586 * return C
587 */
588 static int
acl_merge_trie(struct acl_build_context * context,struct rte_acl_node * node_a,struct rte_acl_node * node_b,uint32_t level,struct rte_acl_node ** return_c)589 acl_merge_trie(struct acl_build_context *context,
590 struct rte_acl_node *node_a, struct rte_acl_node *node_b,
591 uint32_t level, struct rte_acl_node **return_c)
592 {
593 uint32_t n, m, ptrs_c, ptrs_b;
594 uint32_t min_add_c, min_add_b;
595 int node_intersect_type;
596 struct rte_acl_bitset node_intersect;
597 struct rte_acl_node *node_c;
598 struct rte_acl_node *node_a_next;
599 int node_b_refs;
600 int node_a_refs;
601
602 node_c = node_a;
603 node_a_next = node_a->next;
604 min_add_c = 0;
605 min_add_b = 0;
606 node_a_refs = node_a->num_ptrs;
607 node_b_refs = 0;
608 node_intersect_type = 0;
609
610 /* Resolve leaf nodes (matches) */
611 if (node_a->match_flag != 0) {
612 acl_resolve_leaf(context, node_a, node_b, return_c);
613 return 0;
614 }
615
616 /*
617 * Create node C as a copy of node A, and do: C = merge(A,B);
618 * If node A can be used instead (A==C), then later we'll
619 * destroy C and return A.
620 */
621 if (level > 0)
622 node_c = acl_dup_node(context, node_a);
623
624 /*
625 * If the two node transitions intersect then merge the transitions.
626 * Check intersection for entire node (all pointers)
627 */
628 node_intersect_type = acl_intersect_type(&node_c->values,
629 &node_b->values,
630 &node_intersect);
631
632 if (node_intersect_type & ACL_INTERSECT) {
633
634 min_add_b = node_b->min_add;
635 node_b->min_add = node_b->num_ptrs;
636 ptrs_b = node_b->num_ptrs;
637
638 min_add_c = node_c->min_add;
639 node_c->min_add = node_c->num_ptrs;
640 ptrs_c = node_c->num_ptrs;
641
642 for (n = 0; n < ptrs_c; n++) {
643 if (node_c->ptrs[n].ptr == NULL) {
644 node_a_refs--;
645 continue;
646 }
647 node_c->ptrs[n].ptr->next = NULL;
648 for (m = 0; m < ptrs_b; m++) {
649
650 struct rte_acl_bitset child_intersect;
651 int child_intersect_type;
652 struct rte_acl_node *child_node_c = NULL;
653
654 if (node_b->ptrs[m].ptr == NULL ||
655 node_c->ptrs[n].ptr ==
656 node_b->ptrs[m].ptr)
657 continue;
658
659 child_intersect_type = acl_intersect_type(
660 &node_c->ptrs[n].values,
661 &node_b->ptrs[m].values,
662 &child_intersect);
663
664 if ((child_intersect_type & ACL_INTERSECT) !=
665 0) {
666 if (acl_merge_trie(context,
667 node_c->ptrs[n].ptr,
668 node_b->ptrs[m].ptr,
669 level + 1,
670 &child_node_c))
671 return 1;
672
673 if (child_node_c != NULL &&
674 child_node_c !=
675 node_c->ptrs[n].ptr) {
676
677 node_b_refs++;
678
679 /*
680 * Added link from C to
681 * child_C for all transitions
682 * in the intersection.
683 */
684 acl_add_ptr(context, node_c,
685 child_node_c,
686 &child_intersect);
687
688 /*
689 * inc refs if pointer is not
690 * to node b.
691 */
692 node_a_refs += (child_node_c !=
693 node_b->ptrs[m].ptr);
694
695 /*
696 * Remove intersection from C
697 * pointer.
698 */
699 if (!acl_exclude(
700 &node_c->ptrs[n].values,
701 &node_c->ptrs[n].values,
702 &child_intersect)) {
703 acl_deref_ptr(context,
704 node_c, n);
705 node_c->ptrs[n].ptr =
706 NULL;
707 node_a_refs--;
708 }
709 }
710 }
711 }
712 }
713
714 /* Compact pointers */
715 node_c->min_add = min_add_c;
716 acl_compact_node_ptrs(node_c);
717 node_b->min_add = min_add_b;
718 acl_compact_node_ptrs(node_b);
719 }
720
721 /*
722 * Copy pointers outside of the intersection from B to C
723 */
724 if ((node_intersect_type & ACL_INTERSECT_B) != 0) {
725 node_b_refs++;
726 for (m = 0; m < node_b->num_ptrs; m++)
727 if (node_b->ptrs[m].ptr != NULL)
728 acl_copy_ptr(context, node_c,
729 node_b, m, &node_intersect);
730 }
731
732 /*
733 * Free node C if top of trie is contained in A or B
734 * if node C is a duplicate of node A &&
735 * node C was not an existing duplicate
736 */
737 if (node_c != node_a && node_c != node_a_next) {
738
739 /*
740 * if the intersection has no references to the
741 * B side, then it is contained in A
742 */
743 if (node_b_refs == 0) {
744 acl_free_node(context, node_c);
745 node_c = node_a;
746 } else {
747 /*
748 * if the intersection has no references to the
749 * A side, then it is contained in B.
750 */
751 if (node_a_refs == 0) {
752 acl_free_node(context, node_c);
753 node_c = node_b;
754 }
755 }
756 }
757
758 if (return_c != NULL)
759 *return_c = node_c;
760
761 if (level == 0)
762 acl_free_node(context, node_b);
763
764 return 0;
765 }
766
767 /*
768 * Reset current runtime fields before next build:
769 * - free allocated RT memory.
770 * - reset all RT related fields to zero.
771 */
772 static void
acl_build_reset(struct rte_acl_ctx * ctx)773 acl_build_reset(struct rte_acl_ctx *ctx)
774 {
775 rte_free(ctx->mem);
776 memset(&ctx->num_categories, 0,
777 sizeof(*ctx) - offsetof(struct rte_acl_ctx, num_categories));
778 }
779
780 static void
acl_gen_full_range(struct acl_build_context * context,struct rte_acl_node * root,struct rte_acl_node * end,int size,int level)781 acl_gen_full_range(struct acl_build_context *context, struct rte_acl_node *root,
782 struct rte_acl_node *end, int size, int level)
783 {
784 struct rte_acl_node *node, *prev;
785 uint32_t n;
786
787 prev = root;
788 for (n = size - 1; n > 0; n--) {
789 node = acl_alloc_node(context, level++);
790 acl_add_ptr_range(context, prev, node, 0, UINT8_MAX);
791 prev = node;
792 }
793 acl_add_ptr_range(context, prev, end, 0, UINT8_MAX);
794 }
795
796 static void
acl_gen_range_mdl(struct acl_build_context * context,struct rte_acl_node * root,struct rte_acl_node * end,uint8_t lo,uint8_t hi,int size,int level)797 acl_gen_range_mdl(struct acl_build_context *context, struct rte_acl_node *root,
798 struct rte_acl_node *end, uint8_t lo, uint8_t hi, int size, int level)
799 {
800 struct rte_acl_node *node;
801
802 node = acl_alloc_node(context, level++);
803 acl_add_ptr_range(context, root, node, lo, hi);
804 acl_gen_full_range(context, node, end, size - 1, level);
805 }
806
807 static void
acl_gen_range_low(struct acl_build_context * context,struct rte_acl_node * root,struct rte_acl_node * end,const uint8_t * lo,int size,int level)808 acl_gen_range_low(struct acl_build_context *context, struct rte_acl_node *root,
809 struct rte_acl_node *end, const uint8_t *lo, int size, int level)
810 {
811 struct rte_acl_node *node;
812 uint32_t n;
813
814 n = size - 1;
815 if (n == 0) {
816 acl_add_ptr_range(context, root, end, lo[0], UINT8_MAX);
817 return;
818 }
819
820 node = acl_alloc_node(context, level++);
821 acl_add_ptr_range(context, root, node, lo[n], lo[n]);
822
823 /* generate lower-bound sub-trie */
824 acl_gen_range_low(context, node, end, lo, n, level);
825
826 /* generate middle sub-trie */
827 if (n > 1 && lo[n - 1] != UINT8_MAX)
828 acl_gen_range_mdl(context, node, end, lo[n - 1] + 1, UINT8_MAX,
829 n, level);
830 }
831
832 static void
acl_gen_range_high(struct acl_build_context * context,struct rte_acl_node * root,struct rte_acl_node * end,const uint8_t * hi,int size,int level)833 acl_gen_range_high(struct acl_build_context *context, struct rte_acl_node *root,
834 struct rte_acl_node *end, const uint8_t *hi, int size, int level)
835 {
836 struct rte_acl_node *node;
837 uint32_t n;
838
839 n = size - 1;
840 if (n == 0) {
841 acl_add_ptr_range(context, root, end, 0, hi[0]);
842 return;
843 }
844
845 node = acl_alloc_node(context, level++);
846 acl_add_ptr_range(context, root, node, hi[n], hi[n]);
847
848 /* generate upper-bound sub-trie */
849 acl_gen_range_high(context, node, end, hi, n, level);
850
851 /* generate middle sub-trie */
852 if (n > 1 && hi[n - 1] != 0)
853 acl_gen_range_mdl(context, node, end, 0, hi[n - 1] - 1,
854 n, level);
855 }
856
857 static struct rte_acl_node *
acl_gen_range_trie(struct acl_build_context * context,const void * min,const void * max,int size,int level,struct rte_acl_node ** pend)858 acl_gen_range_trie(struct acl_build_context *context,
859 const void *min, const void *max,
860 int size, int level, struct rte_acl_node **pend)
861 {
862 int32_t k, n;
863 uint8_t hi_ff, lo_00;
864 struct rte_acl_node *node, *prev, *root;
865 const uint8_t *lo;
866 const uint8_t *hi;
867
868 lo = min;
869 hi = max;
870
871 *pend = acl_alloc_node(context, level + size);
872 root = acl_alloc_node(context, level++);
873 prev = root;
874
875 /* build common sub-trie till possible */
876 for (n = size - 1; n > 0 && lo[n] == hi[n]; n--) {
877 node = acl_alloc_node(context, level++);
878 acl_add_ptr_range(context, prev, node, lo[n], hi[n]);
879 prev = node;
880 }
881
882 /* no branch needed, just one sub-trie */
883 if (n == 0) {
884 acl_add_ptr_range(context, prev, *pend, lo[0], hi[0]);
885 return root;
886 }
887
888 /* gather information about divirgent paths */
889 lo_00 = 0;
890 hi_ff = UINT8_MAX;
891 for (k = n - 1; k >= 0; k--) {
892 hi_ff &= hi[k];
893 lo_00 |= lo[k];
894 }
895
896 /* generate left (lower-bound) sub-trie */
897 if (lo_00 != 0)
898 acl_gen_range_low(context, prev, *pend, lo, n + 1, level);
899
900 /* generate right (upper-bound) sub-trie */
901 if (hi_ff != UINT8_MAX)
902 acl_gen_range_high(context, prev, *pend, hi, n + 1, level);
903
904 /* generate sub-trie in the middle */
905 if (lo[n] + 1 != hi[n] || lo_00 == 0 || hi_ff == UINT8_MAX) {
906 lo_00 = lo[n] + (lo_00 != 0);
907 hi_ff = hi[n] - (hi_ff != UINT8_MAX);
908 acl_gen_range_mdl(context, prev, *pend, lo_00, hi_ff,
909 n + 1, level);
910 }
911
912 return root;
913 }
914
915 static struct rte_acl_node *
acl_gen_mask_trie(struct acl_build_context * context,const void * value,const void * mask,int size,int level,struct rte_acl_node ** pend)916 acl_gen_mask_trie(struct acl_build_context *context,
917 const void *value, const void *mask,
918 int size, int level, struct rte_acl_node **pend)
919 {
920 int32_t n;
921 struct rte_acl_node *root;
922 struct rte_acl_node *node, *prev;
923 struct rte_acl_bitset bits;
924 const uint8_t *val = value;
925 const uint8_t *msk = mask;
926
927 root = acl_alloc_node(context, level++);
928 prev = root;
929
930 for (n = size - 1; n >= 0; n--) {
931 node = acl_alloc_node(context, level++);
932 acl_gen_mask(&bits, val[n] & msk[n], msk[n]);
933 acl_add_ptr(context, prev, node, &bits);
934 prev = node;
935 }
936
937 *pend = prev;
938 return root;
939 }
940
941 static struct rte_acl_node *
build_trie(struct acl_build_context * context,struct rte_acl_build_rule * head,struct rte_acl_build_rule ** last,uint32_t * count)942 build_trie(struct acl_build_context *context, struct rte_acl_build_rule *head,
943 struct rte_acl_build_rule **last, uint32_t *count)
944 {
945 uint32_t n, m;
946 int field_index, node_count;
947 struct rte_acl_node *trie;
948 struct rte_acl_build_rule *prev, *rule;
949 struct rte_acl_node *end, *merge, *root, *end_prev;
950 const struct rte_acl_field *fld;
951
952 prev = head;
953 rule = head;
954 *last = prev;
955
956 trie = acl_alloc_node(context, 0);
957
958 while (rule != NULL) {
959
960 root = acl_alloc_node(context, 0);
961
962 root->ref_count = 1;
963 end = root;
964
965 for (n = 0; n < rule->config->num_fields; n++) {
966
967 field_index = rule->config->defs[n].field_index;
968 fld = rule->f->field + field_index;
969 end_prev = end;
970
971 /* build a mini-trie for this field */
972 switch (rule->config->defs[n].type) {
973
974 case RTE_ACL_FIELD_TYPE_BITMASK:
975 merge = acl_gen_mask_trie(context,
976 &fld->value,
977 &fld->mask_range,
978 rule->config->defs[n].size,
979 end->level + 1,
980 &end);
981 break;
982
983 case RTE_ACL_FIELD_TYPE_MASK:
984 {
985 /*
986 * set msb for the size of the field and
987 * all higher bits.
988 */
989 uint64_t mask;
990 mask = RTE_ACL_MASKLEN_TO_BITMASK(
991 fld->mask_range.u32,
992 rule->config->defs[n].size);
993
994 /* gen a mini-trie for this field */
995 merge = acl_gen_mask_trie(context,
996 &fld->value,
997 (char *)&mask,
998 rule->config->defs[n].size,
999 end->level + 1,
1000 &end);
1001 }
1002 break;
1003
1004 case RTE_ACL_FIELD_TYPE_RANGE:
1005 merge = acl_gen_range_trie(context,
1006 &rule->f->field[field_index].value,
1007 &rule->f->field[field_index].mask_range,
1008 rule->config->defs[n].size,
1009 end->level + 1,
1010 &end);
1011 break;
1012
1013 default:
1014 RTE_LOG(ERR, ACL,
1015 "Error in rule[%u] type - %hhu\n",
1016 rule->f->data.userdata,
1017 rule->config->defs[n].type);
1018 return NULL;
1019 }
1020
1021 /* merge this field on to the end of the rule */
1022 if (acl_merge_trie(context, end_prev, merge, 0,
1023 NULL) != 0) {
1024 return NULL;
1025 }
1026 }
1027
1028 end->match_flag = ++context->num_build_rules;
1029
1030 /*
1031 * Setup the results for this rule.
1032 * The result and priority of each category.
1033 */
1034 if (end->mrt == NULL)
1035 end->mrt = acl_build_alloc(context, 1,
1036 sizeof(*end->mrt));
1037
1038 for (m = context->cfg.num_categories; 0 != m--; ) {
1039 if (rule->f->data.category_mask & (1U << m)) {
1040 end->mrt->results[m] = rule->f->data.userdata;
1041 end->mrt->priority[m] = rule->f->data.priority;
1042 } else {
1043 end->mrt->results[m] = 0;
1044 end->mrt->priority[m] = 0;
1045 }
1046 }
1047
1048 node_count = context->num_nodes;
1049 (*count)++;
1050
1051 /* merge this rule into the trie */
1052 if (acl_merge_trie(context, trie, root, 0, NULL))
1053 return NULL;
1054
1055 node_count = context->num_nodes - node_count;
1056 if (node_count > context->cur_node_max) {
1057 *last = prev;
1058 return trie;
1059 }
1060
1061 prev = rule;
1062 rule = rule->next;
1063 }
1064
1065 *last = NULL;
1066 return trie;
1067 }
1068
1069 static void
acl_calc_wildness(struct rte_acl_build_rule * head,const struct rte_acl_config * config)1070 acl_calc_wildness(struct rte_acl_build_rule *head,
1071 const struct rte_acl_config *config)
1072 {
1073 uint32_t n;
1074 struct rte_acl_build_rule *rule;
1075
1076 for (rule = head; rule != NULL; rule = rule->next) {
1077
1078 for (n = 0; n < config->num_fields; n++) {
1079
1080 double wild = 0;
1081 uint32_t bit_len = CHAR_BIT * config->defs[n].size;
1082 uint64_t msk_val = RTE_LEN2MASK(bit_len,
1083 typeof(msk_val));
1084 double size = bit_len;
1085 int field_index = config->defs[n].field_index;
1086 const struct rte_acl_field *fld = rule->f->field +
1087 field_index;
1088
1089 switch (rule->config->defs[n].type) {
1090 case RTE_ACL_FIELD_TYPE_BITMASK:
1091 wild = (size - __builtin_popcountll(
1092 fld->mask_range.u64 & msk_val)) /
1093 size;
1094 break;
1095
1096 case RTE_ACL_FIELD_TYPE_MASK:
1097 wild = (size - fld->mask_range.u32) / size;
1098 break;
1099
1100 case RTE_ACL_FIELD_TYPE_RANGE:
1101 wild = (fld->mask_range.u64 & msk_val) -
1102 (fld->value.u64 & msk_val);
1103 wild = wild / msk_val;
1104 break;
1105 }
1106
1107 rule->wildness[field_index] = (uint32_t)(wild * 100);
1108 }
1109 }
1110 }
1111
1112 static void
acl_rule_stats(struct rte_acl_build_rule * head,struct rte_acl_config * config)1113 acl_rule_stats(struct rte_acl_build_rule *head, struct rte_acl_config *config)
1114 {
1115 struct rte_acl_build_rule *rule;
1116 uint32_t n, m, fields_deactivated = 0;
1117 uint32_t start = 0, deactivate = 0;
1118 int tally[RTE_ACL_MAX_LEVELS][TALLY_NUM];
1119
1120 memset(tally, 0, sizeof(tally));
1121
1122 for (rule = head; rule != NULL; rule = rule->next) {
1123
1124 for (n = 0; n < config->num_fields; n++) {
1125 uint32_t field_index = config->defs[n].field_index;
1126
1127 tally[n][TALLY_0]++;
1128 for (m = 1; m < RTE_DIM(wild_limits); m++) {
1129 if (rule->wildness[field_index] >=
1130 wild_limits[m])
1131 tally[n][m]++;
1132 }
1133 }
1134
1135 for (n = config->num_fields - 1; n > 0; n--) {
1136 uint32_t field_index = config->defs[n].field_index;
1137
1138 if (rule->wildness[field_index] == 100)
1139 tally[n][TALLY_DEPTH]++;
1140 else
1141 break;
1142 }
1143 }
1144
1145 /*
1146 * Look for any field that is always wild and drop it from the config
1147 * Only deactivate if all fields for a given input loop are deactivated.
1148 */
1149 for (n = 1; n < config->num_fields; n++) {
1150 if (config->defs[n].input_index !=
1151 config->defs[n - 1].input_index) {
1152 for (m = start; m < n; m++)
1153 tally[m][TALLY_DEACTIVATED] = deactivate;
1154 fields_deactivated += deactivate;
1155 start = n;
1156 deactivate = 1;
1157 }
1158
1159 /* if the field is not always completely wild */
1160 if (tally[n][TALLY_100] != tally[n][TALLY_0])
1161 deactivate = 0;
1162 }
1163
1164 for (m = start; m < n; m++)
1165 tally[m][TALLY_DEACTIVATED] = deactivate;
1166
1167 fields_deactivated += deactivate;
1168
1169 /* remove deactivated fields */
1170 if (fields_deactivated) {
1171 uint32_t k, l = 0;
1172
1173 for (k = 0; k < config->num_fields; k++) {
1174 if (tally[k][TALLY_DEACTIVATED] == 0) {
1175 memmove(&tally[l][0], &tally[k][0],
1176 TALLY_NUM * sizeof(tally[0][0]));
1177 memmove(&config->defs[l++],
1178 &config->defs[k],
1179 sizeof(struct rte_acl_field_def));
1180 }
1181 }
1182 config->num_fields = l;
1183 }
1184 }
1185
1186 static int
rule_cmp_wildness(struct rte_acl_build_rule * r1,struct rte_acl_build_rule * r2)1187 rule_cmp_wildness(struct rte_acl_build_rule *r1, struct rte_acl_build_rule *r2)
1188 {
1189 uint32_t n;
1190
1191 for (n = 1; n < r1->config->num_fields; n++) {
1192 int field_index = r1->config->defs[n].field_index;
1193
1194 if (r1->wildness[field_index] != r2->wildness[field_index])
1195 return r1->wildness[field_index] -
1196 r2->wildness[field_index];
1197 }
1198 return 0;
1199 }
1200
1201 /*
1202 * Split the rte_acl_build_rule list into two lists.
1203 */
1204 static void
rule_list_split(struct rte_acl_build_rule * source,struct rte_acl_build_rule ** list_a,struct rte_acl_build_rule ** list_b)1205 rule_list_split(struct rte_acl_build_rule *source,
1206 struct rte_acl_build_rule **list_a,
1207 struct rte_acl_build_rule **list_b)
1208 {
1209 struct rte_acl_build_rule *fast;
1210 struct rte_acl_build_rule *slow;
1211
1212 if (source == NULL || source->next == NULL) {
1213 /* length < 2 cases */
1214 *list_a = source;
1215 *list_b = NULL;
1216 } else {
1217 slow = source;
1218 fast = source->next;
1219 /* Advance 'fast' two nodes, and advance 'slow' one node */
1220 while (fast != NULL) {
1221 fast = fast->next;
1222 if (fast != NULL) {
1223 slow = slow->next;
1224 fast = fast->next;
1225 }
1226 }
1227 /* 'slow' is before the midpoint in the list, so split it in two
1228 at that point. */
1229 *list_a = source;
1230 *list_b = slow->next;
1231 slow->next = NULL;
1232 }
1233 }
1234
1235 /*
1236 * Merge two sorted lists.
1237 */
1238 static struct rte_acl_build_rule *
rule_list_sorted_merge(struct rte_acl_build_rule * a,struct rte_acl_build_rule * b)1239 rule_list_sorted_merge(struct rte_acl_build_rule *a,
1240 struct rte_acl_build_rule *b)
1241 {
1242 struct rte_acl_build_rule *result = NULL;
1243 struct rte_acl_build_rule **last_next = &result;
1244
1245 while (1) {
1246 if (a == NULL) {
1247 *last_next = b;
1248 break;
1249 } else if (b == NULL) {
1250 *last_next = a;
1251 break;
1252 }
1253 if (rule_cmp_wildness(a, b) >= 0) {
1254 *last_next = a;
1255 last_next = &a->next;
1256 a = a->next;
1257 } else {
1258 *last_next = b;
1259 last_next = &b->next;
1260 b = b->next;
1261 }
1262 }
1263 return result;
1264 }
1265
1266 /*
1267 * Sort list of rules based on the rules wildness.
1268 * Use recursive mergesort algorithm.
1269 */
1270 static struct rte_acl_build_rule *
sort_rules(struct rte_acl_build_rule * head)1271 sort_rules(struct rte_acl_build_rule *head)
1272 {
1273 struct rte_acl_build_rule *a;
1274 struct rte_acl_build_rule *b;
1275
1276 /* Base case -- length 0 or 1 */
1277 if (head == NULL || head->next == NULL)
1278 return head;
1279
1280 /* Split head into 'a' and 'b' sublists */
1281 rule_list_split(head, &a, &b);
1282
1283 /* Recursively sort the sublists */
1284 a = sort_rules(a);
1285 b = sort_rules(b);
1286
1287 /* answer = merge the two sorted lists together */
1288 return rule_list_sorted_merge(a, b);
1289 }
1290
1291 static uint32_t
acl_build_index(const struct rte_acl_config * config,uint32_t * data_index)1292 acl_build_index(const struct rte_acl_config *config, uint32_t *data_index)
1293 {
1294 uint32_t n, m;
1295 int32_t last_header;
1296
1297 m = 0;
1298 last_header = -1;
1299
1300 for (n = 0; n < config->num_fields; n++) {
1301 if (last_header != config->defs[n].input_index) {
1302 last_header = config->defs[n].input_index;
1303 data_index[m++] = config->defs[n].offset;
1304 }
1305 }
1306
1307 return m;
1308 }
1309
1310 static struct rte_acl_build_rule *
build_one_trie(struct acl_build_context * context,struct rte_acl_build_rule * rule_sets[RTE_ACL_MAX_TRIES],uint32_t n,int32_t node_max)1311 build_one_trie(struct acl_build_context *context,
1312 struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES],
1313 uint32_t n, int32_t node_max)
1314 {
1315 struct rte_acl_build_rule *last;
1316 struct rte_acl_config *config;
1317
1318 config = rule_sets[n]->config;
1319
1320 acl_rule_stats(rule_sets[n], config);
1321 rule_sets[n] = sort_rules(rule_sets[n]);
1322
1323 context->tries[n].type = RTE_ACL_FULL_TRIE;
1324 context->tries[n].count = 0;
1325
1326 context->tries[n].num_data_indexes = acl_build_index(config,
1327 context->data_indexes[n]);
1328 context->tries[n].data_index = context->data_indexes[n];
1329
1330 context->cur_node_max = node_max;
1331
1332 context->bld_tries[n].trie = build_trie(context, rule_sets[n],
1333 &last, &context->tries[n].count);
1334
1335 return last;
1336 }
1337
1338 static int
acl_build_tries(struct acl_build_context * context,struct rte_acl_build_rule * head)1339 acl_build_tries(struct acl_build_context *context,
1340 struct rte_acl_build_rule *head)
1341 {
1342 uint32_t n, num_tries;
1343 struct rte_acl_config *config;
1344 struct rte_acl_build_rule *last;
1345 struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES];
1346
1347 config = head->config;
1348 rule_sets[0] = head;
1349
1350 /* initialize tries */
1351 for (n = 0; n < RTE_DIM(context->tries); n++) {
1352 context->tries[n].type = RTE_ACL_UNUSED_TRIE;
1353 context->bld_tries[n].trie = NULL;
1354 context->tries[n].count = 0;
1355 }
1356
1357 context->tries[0].type = RTE_ACL_FULL_TRIE;
1358
1359 /* calc wildness of each field of each rule */
1360 acl_calc_wildness(head, config);
1361
1362 for (n = 0;; n = num_tries) {
1363
1364 num_tries = n + 1;
1365
1366 last = build_one_trie(context, rule_sets, n, context->node_max);
1367 if (context->bld_tries[n].trie == NULL) {
1368 RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n);
1369 return -ENOMEM;
1370 }
1371
1372 /* Build of the last trie completed. */
1373 if (last == NULL)
1374 break;
1375
1376 if (num_tries == RTE_DIM(context->tries)) {
1377 RTE_LOG(ERR, ACL,
1378 "Exceeded max number of tries: %u\n",
1379 num_tries);
1380 return -ENOMEM;
1381 }
1382
1383 /* Trie is getting too big, split remaining rule set. */
1384 rule_sets[num_tries] = last->next;
1385 last->next = NULL;
1386 acl_free_node(context, context->bld_tries[n].trie);
1387
1388 /* Create a new copy of config for remaining rules. */
1389 config = acl_build_alloc(context, 1, sizeof(*config));
1390 memcpy(config, rule_sets[n]->config, sizeof(*config));
1391
1392 /* Make remaining rules use new config. */
1393 for (head = rule_sets[num_tries]; head != NULL;
1394 head = head->next)
1395 head->config = config;
1396
1397 /*
1398 * Rebuild the trie for the reduced rule-set.
1399 * Don't try to split it any further.
1400 */
1401 last = build_one_trie(context, rule_sets, n, INT32_MAX);
1402 if (context->bld_tries[n].trie == NULL || last != NULL) {
1403 RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n);
1404 return -ENOMEM;
1405 }
1406
1407 }
1408
1409 context->num_tries = num_tries;
1410 return 0;
1411 }
1412
1413 static void
acl_build_log(const struct acl_build_context * ctx)1414 acl_build_log(const struct acl_build_context *ctx)
1415 {
1416 uint32_t n;
1417
1418 RTE_LOG(DEBUG, ACL, "Build phase for ACL \"%s\":\n"
1419 "node limit for tree split: %u\n"
1420 "nodes created: %u\n"
1421 "memory consumed: %zu\n",
1422 ctx->acx->name,
1423 ctx->node_max,
1424 ctx->num_nodes,
1425 ctx->pool.alloc);
1426
1427 for (n = 0; n < RTE_DIM(ctx->tries); n++) {
1428 if (ctx->tries[n].count != 0)
1429 RTE_LOG(DEBUG, ACL,
1430 "trie %u: number of rules: %u, indexes: %u\n",
1431 n, ctx->tries[n].count,
1432 ctx->tries[n].num_data_indexes);
1433 }
1434 }
1435
1436 static int
acl_build_rules(struct acl_build_context * bcx)1437 acl_build_rules(struct acl_build_context *bcx)
1438 {
1439 struct rte_acl_build_rule *br, *head;
1440 const struct rte_acl_rule *rule;
1441 uint32_t *wp;
1442 uint32_t fn, i, n, num;
1443 size_t ofs, sz;
1444
1445 fn = bcx->cfg.num_fields;
1446 n = bcx->acx->num_rules;
1447 ofs = n * sizeof(*br);
1448 sz = ofs + n * fn * sizeof(*wp);
1449
1450 br = tb_alloc(&bcx->pool, sz);
1451
1452 wp = (uint32_t *)((uintptr_t)br + ofs);
1453 num = 0;
1454 head = NULL;
1455
1456 for (i = 0; i != n; i++) {
1457 rule = (const struct rte_acl_rule *)
1458 ((uintptr_t)bcx->acx->rules + bcx->acx->rule_sz * i);
1459 if ((rule->data.category_mask & bcx->category_mask) != 0) {
1460 br[num].next = head;
1461 br[num].config = &bcx->cfg;
1462 br[num].f = rule;
1463 br[num].wildness = wp;
1464 wp += fn;
1465 head = br + num;
1466 num++;
1467 }
1468 }
1469
1470 bcx->num_rules = num;
1471 bcx->build_rules = head;
1472
1473 return 0;
1474 }
1475
1476 /*
1477 * Copy data_indexes for each trie into RT location.
1478 */
1479 static void
acl_set_data_indexes(struct rte_acl_ctx * ctx)1480 acl_set_data_indexes(struct rte_acl_ctx *ctx)
1481 {
1482 uint32_t i, n, ofs;
1483
1484 ofs = 0;
1485 for (i = 0; i != ctx->num_tries; i++) {
1486 n = ctx->trie[i].num_data_indexes;
1487 memcpy(ctx->data_indexes + ofs, ctx->trie[i].data_index,
1488 n * sizeof(ctx->data_indexes[0]));
1489 ctx->trie[i].data_index = ctx->data_indexes + ofs;
1490 ofs += RTE_ACL_MAX_FIELDS;
1491 }
1492 }
1493
1494 /*
1495 * Internal routine, performs 'build' phase of trie generation:
1496 * - setups build context.
1497 * - analizes given set of rules.
1498 * - builds internal tree(s).
1499 */
1500 static int
acl_bld(struct acl_build_context * bcx,struct rte_acl_ctx * ctx,const struct rte_acl_config * cfg,uint32_t node_max)1501 acl_bld(struct acl_build_context *bcx, struct rte_acl_ctx *ctx,
1502 const struct rte_acl_config *cfg, uint32_t node_max)
1503 {
1504 int32_t rc;
1505
1506 /* setup build context. */
1507 memset(bcx, 0, sizeof(*bcx));
1508 bcx->acx = ctx;
1509 bcx->pool.alignment = ACL_POOL_ALIGN;
1510 bcx->pool.min_alloc = ACL_POOL_ALLOC_MIN;
1511 bcx->cfg = *cfg;
1512 bcx->category_mask = RTE_LEN2MASK(bcx->cfg.num_categories,
1513 typeof(bcx->category_mask));
1514 bcx->node_max = node_max;
1515
1516 rc = sigsetjmp(bcx->pool.fail, 0);
1517
1518 /* build phase runs out of memory. */
1519 if (rc != 0) {
1520 RTE_LOG(ERR, ACL,
1521 "ACL context: %s, %s() failed with error code: %d\n",
1522 bcx->acx->name, __func__, rc);
1523 return rc;
1524 }
1525
1526 /* Create a build rules copy. */
1527 rc = acl_build_rules(bcx);
1528 if (rc != 0)
1529 return rc;
1530
1531 /* No rules to build for that context+config */
1532 if (bcx->build_rules == NULL) {
1533 rc = -EINVAL;
1534 } else {
1535 /* build internal trie representation. */
1536 rc = acl_build_tries(bcx, bcx->build_rules);
1537 }
1538 return rc;
1539 }
1540
1541 /*
1542 * Check that parameters for acl_build() are valid.
1543 */
1544 static int
acl_check_bld_param(struct rte_acl_ctx * ctx,const struct rte_acl_config * cfg)1545 acl_check_bld_param(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg)
1546 {
1547 static const size_t field_sizes[] = {
1548 sizeof(uint8_t), sizeof(uint16_t),
1549 sizeof(uint32_t), sizeof(uint64_t),
1550 };
1551
1552 uint32_t i, j;
1553
1554 if (ctx == NULL || cfg == NULL || cfg->num_categories == 0 ||
1555 cfg->num_categories > RTE_ACL_MAX_CATEGORIES ||
1556 cfg->num_fields == 0 ||
1557 cfg->num_fields > RTE_ACL_MAX_FIELDS)
1558 return -EINVAL;
1559
1560 for (i = 0; i != cfg->num_fields; i++) {
1561 if (cfg->defs[i].type > RTE_ACL_FIELD_TYPE_BITMASK) {
1562 RTE_LOG(ERR, ACL,
1563 "ACL context: %s, invalid type: %hhu for %u-th field\n",
1564 ctx->name, cfg->defs[i].type, i);
1565 return -EINVAL;
1566 }
1567 for (j = 0;
1568 j != RTE_DIM(field_sizes) &&
1569 cfg->defs[i].size != field_sizes[j];
1570 j++)
1571 ;
1572
1573 if (j == RTE_DIM(field_sizes)) {
1574 RTE_LOG(ERR, ACL,
1575 "ACL context: %s, invalid size: %hhu for %u-th field\n",
1576 ctx->name, cfg->defs[i].size, i);
1577 return -EINVAL;
1578 }
1579 }
1580
1581 return 0;
1582 }
1583
1584 /*
1585 * With current ACL implementation first field in the rule definition
1586 * has always to be one byte long. Though for optimising *classify*
1587 * implementation it might be useful to be able to use 4B reads
1588 * (as we do for rest of the fields).
1589 * This function checks input config to determine is it safe to do 4B
1590 * loads for first ACL field. For that we need to make sure that
1591 * first field in our rule definition doesn't have the biggest offset,
1592 * i.e. we still do have other fields located after the first one.
1593 * Contrary if first field has the largest offset, then it means
1594 * first field can occupy the very last byte in the input data buffer,
1595 * and we have to do single byte load for it.
1596 */
1597 static uint32_t
get_first_load_size(const struct rte_acl_config * cfg)1598 get_first_load_size(const struct rte_acl_config *cfg)
1599 {
1600 uint32_t i, max_ofs, ofs;
1601
1602 ofs = 0;
1603 max_ofs = 0;
1604
1605 for (i = 0; i != cfg->num_fields; i++) {
1606 if (cfg->defs[i].field_index == 0)
1607 ofs = cfg->defs[i].offset;
1608 else if (max_ofs < cfg->defs[i].offset)
1609 max_ofs = cfg->defs[i].offset;
1610 }
1611
1612 return (ofs < max_ofs) ? sizeof(uint32_t) : sizeof(uint8_t);
1613 }
1614
1615 int
rte_acl_build(struct rte_acl_ctx * ctx,const struct rte_acl_config * cfg)1616 rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg)
1617 {
1618 int32_t rc;
1619 uint32_t n;
1620 size_t max_size;
1621 struct acl_build_context bcx;
1622
1623 rc = acl_check_bld_param(ctx, cfg);
1624 if (rc != 0)
1625 return rc;
1626
1627 acl_build_reset(ctx);
1628
1629 if (cfg->max_size == 0) {
1630 n = NODE_MIN;
1631 max_size = SIZE_MAX;
1632 } else {
1633 n = NODE_MAX;
1634 max_size = cfg->max_size;
1635 }
1636
1637 for (rc = -ERANGE; n >= NODE_MIN && rc == -ERANGE; n /= 2) {
1638
1639 /* perform build phase. */
1640 rc = acl_bld(&bcx, ctx, cfg, n);
1641
1642 if (rc == 0) {
1643 /* allocate and fill run-time structures. */
1644 rc = rte_acl_gen(ctx, bcx.tries, bcx.bld_tries,
1645 bcx.num_tries, bcx.cfg.num_categories,
1646 RTE_ACL_MAX_FIELDS * RTE_DIM(bcx.tries) *
1647 sizeof(ctx->data_indexes[0]), max_size);
1648 if (rc == 0) {
1649 /* set data indexes. */
1650 acl_set_data_indexes(ctx);
1651
1652 /* determine can we always do 4B load */
1653 ctx->first_load_sz = get_first_load_size(cfg);
1654
1655 /* copy in build config. */
1656 ctx->config = *cfg;
1657 }
1658 }
1659
1660 acl_build_log(&bcx);
1661
1662 /* cleanup after build. */
1663 tb_free_pool(&bcx.pool);
1664 }
1665
1666 return rc;
1667 }
1668