1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_memory.h>
20 #include <rte_memcpy.h>
21 #include <rte_eal.h>
22 #include <rte_launch.h>
23 #include <rte_atomic.h>
24 #include <rte_cycles.h>
25 #include <rte_prefetch.h>
26 #include <rte_lcore.h>
27 #include <rte_per_lcore.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_interrupts.h>
30 #include <rte_random.h>
31 #include <rte_debug.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_mempool.h>
35 #include <rte_mbuf.h>
36 #include <rte_ip.h>
37 #include <rte_tcp.h>
38 #include <rte_udp.h>
39 #include <rte_string_fns.h>
40 #include <rte_acl.h>
41
42 #include <cmdline_parse.h>
43 #include <cmdline_parse_etheraddr.h>
44
45 #if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
46 #define L3FWDACL_DEBUG
47 #endif
48 #define DO_RFC_1812_CHECKS
49
50 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
51
52 #define MAX_JUMBO_PKT_LEN 9600
53
54 #define MEMPOOL_CACHE_SIZE 256
55
56 /*
57 * This expression is used to calculate the number of mbufs needed
58 * depending on user input, taking into account memory for rx and tx hardware
59 * rings, cache per lcore and mtable per port per lcore.
60 * RTE_MAX is used to ensure that NB_MBUF never goes below a
61 * minimum value of 8192
62 */
63
64 #define NB_MBUF RTE_MAX(\
65 (nb_ports * nb_rx_queue * nb_rxd + \
66 nb_ports * nb_lcores * MAX_PKT_BURST + \
67 nb_ports * n_tx_queue * nb_txd + \
68 nb_lcores * MEMPOOL_CACHE_SIZE), \
69 (unsigned)8192)
70
71 #define MAX_PKT_BURST 32
72 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
73
74 #define NB_SOCKETS 8
75
76 /* Configure how many packets ahead to prefetch, when reading packets */
77 #define PREFETCH_OFFSET 3
78
79 /*
80 * Configurable number of RX/TX ring descriptors
81 */
82 #define RTE_TEST_RX_DESC_DEFAULT 1024
83 #define RTE_TEST_TX_DESC_DEFAULT 1024
84 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
85 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
86
87 /* mask of enabled ports */
88 static uint32_t enabled_port_mask;
89 static int promiscuous_on; /**< Ports set in promiscuous mode off by default. */
90 static int numa_on = 1; /**< NUMA is enabled by default. */
91
92 struct lcore_rx_queue {
93 uint16_t port_id;
94 uint8_t queue_id;
95 } __rte_cache_aligned;
96
97 #define MAX_RX_QUEUE_PER_LCORE 16
98 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
99 #define MAX_RX_QUEUE_PER_PORT 128
100
101 #define MAX_LCORE_PARAMS 1024
102 struct lcore_params {
103 uint16_t port_id;
104 uint8_t queue_id;
105 uint8_t lcore_id;
106 } __rte_cache_aligned;
107
108 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
109 static struct lcore_params lcore_params_array_default[] = {
110 {0, 0, 2},
111 {0, 1, 2},
112 {0, 2, 2},
113 {1, 0, 2},
114 {1, 1, 2},
115 {1, 2, 2},
116 {2, 0, 2},
117 {3, 0, 3},
118 {3, 1, 3},
119 };
120
121 static struct lcore_params *lcore_params = lcore_params_array_default;
122 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
123 sizeof(lcore_params_array_default[0]);
124
125 static struct rte_eth_conf port_conf = {
126 .rxmode = {
127 .mq_mode = ETH_MQ_RX_RSS,
128 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
129 .split_hdr_size = 0,
130 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
131 },
132 .rx_adv_conf = {
133 .rss_conf = {
134 .rss_key = NULL,
135 .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
136 ETH_RSS_TCP | ETH_RSS_SCTP,
137 },
138 },
139 .txmode = {
140 .mq_mode = ETH_MQ_TX_NONE,
141 },
142 };
143
144 static struct rte_mempool *pktmbuf_pool[NB_SOCKETS];
145
146 /* ethernet addresses of ports */
147 static struct rte_ether_hdr port_l2hdr[RTE_MAX_ETHPORTS];
148
149 static const struct {
150 const char *name;
151 enum rte_acl_classify_alg alg;
152 } acl_alg[] = {
153 {
154 .name = "scalar",
155 .alg = RTE_ACL_CLASSIFY_SCALAR,
156 },
157 {
158 .name = "sse",
159 .alg = RTE_ACL_CLASSIFY_SSE,
160 },
161 {
162 .name = "avx2",
163 .alg = RTE_ACL_CLASSIFY_AVX2,
164 },
165 {
166 .name = "neon",
167 .alg = RTE_ACL_CLASSIFY_NEON,
168 },
169 {
170 .name = "altivec",
171 .alg = RTE_ACL_CLASSIFY_ALTIVEC,
172 },
173 {
174 .name = "avx512x16",
175 .alg = RTE_ACL_CLASSIFY_AVX512X16,
176 },
177 {
178 .name = "avx512x32",
179 .alg = RTE_ACL_CLASSIFY_AVX512X32,
180 },
181 };
182
183 /***********************start of ACL part******************************/
184 #ifdef DO_RFC_1812_CHECKS
185 static inline int
186 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len);
187 #endif
188 static inline void
189 send_single_packet(struct rte_mbuf *m, uint16_t port);
190
191 #define MAX_ACL_RULE_NUM 100000
192 #define DEFAULT_MAX_CATEGORIES 1
193 #define L3FWD_ACL_IPV4_NAME "l3fwd-acl-ipv4"
194 #define L3FWD_ACL_IPV6_NAME "l3fwd-acl-ipv6"
195 #define ACL_LEAD_CHAR ('@')
196 #define ROUTE_LEAD_CHAR ('R')
197 #define COMMENT_LEAD_CHAR ('#')
198 #define OPTION_CONFIG "config"
199 #define OPTION_NONUMA "no-numa"
200 #define OPTION_ENBJMO "enable-jumbo"
201 #define OPTION_RULE_IPV4 "rule_ipv4"
202 #define OPTION_RULE_IPV6 "rule_ipv6"
203 #define OPTION_ALG "alg"
204 #define OPTION_ETH_DEST "eth-dest"
205 #define ACL_DENY_SIGNATURE 0xf0000000
206 #define RTE_LOGTYPE_L3FWDACL RTE_LOGTYPE_USER3
207 #define acl_log(format, ...) RTE_LOG(ERR, L3FWDACL, format, ##__VA_ARGS__)
208 #define uint32_t_to_char(ip, a, b, c, d) do {\
209 *a = (unsigned char)(ip >> 24 & 0xff);\
210 *b = (unsigned char)(ip >> 16 & 0xff);\
211 *c = (unsigned char)(ip >> 8 & 0xff);\
212 *d = (unsigned char)(ip & 0xff);\
213 } while (0)
214 #define OFF_ETHHEAD (sizeof(struct rte_ether_hdr))
215 #define OFF_IPV42PROTO (offsetof(struct rte_ipv4_hdr, next_proto_id))
216 #define OFF_IPV62PROTO (offsetof(struct rte_ipv6_hdr, proto))
217 #define MBUF_IPV4_2PROTO(m) \
218 rte_pktmbuf_mtod_offset((m), uint8_t *, OFF_ETHHEAD + OFF_IPV42PROTO)
219 #define MBUF_IPV6_2PROTO(m) \
220 rte_pktmbuf_mtod_offset((m), uint8_t *, OFF_ETHHEAD + OFF_IPV62PROTO)
221
222 #define GET_CB_FIELD(in, fd, base, lim, dlm) do { \
223 unsigned long val; \
224 char *end; \
225 errno = 0; \
226 val = strtoul((in), &end, (base)); \
227 if (errno != 0 || end[0] != (dlm) || val > (lim)) \
228 return -EINVAL; \
229 (fd) = (typeof(fd))val; \
230 (in) = end + 1; \
231 } while (0)
232
233 /*
234 * ACL rules should have higher priorities than route ones to ensure ACL rule
235 * always be found when input packets have multi-matches in the database.
236 * A exception case is performance measure, which can define route rules with
237 * higher priority and route rules will always be returned in each lookup.
238 * Reserve range from ACL_RULE_PRIORITY_MAX + 1 to
239 * RTE_ACL_MAX_PRIORITY for route entries in performance measure
240 */
241 #define ACL_RULE_PRIORITY_MAX 0x10000000
242
243 /*
244 * Forward port info save in ACL lib starts from 1
245 * since ACL assume 0 is invalid.
246 * So, need add 1 when saving and minus 1 when forwarding packets.
247 */
248 #define FWD_PORT_SHIFT 1
249
250 /*
251 * Rule and trace formats definitions.
252 */
253
254 enum {
255 PROTO_FIELD_IPV4,
256 SRC_FIELD_IPV4,
257 DST_FIELD_IPV4,
258 SRCP_FIELD_IPV4,
259 DSTP_FIELD_IPV4,
260 NUM_FIELDS_IPV4
261 };
262
263 /*
264 * That effectively defines order of IPV4VLAN classifications:
265 * - PROTO
266 * - VLAN (TAG and DOMAIN)
267 * - SRC IP ADDRESS
268 * - DST IP ADDRESS
269 * - PORTS (SRC and DST)
270 */
271 enum {
272 RTE_ACL_IPV4VLAN_PROTO,
273 RTE_ACL_IPV4VLAN_VLAN,
274 RTE_ACL_IPV4VLAN_SRC,
275 RTE_ACL_IPV4VLAN_DST,
276 RTE_ACL_IPV4VLAN_PORTS,
277 RTE_ACL_IPV4VLAN_NUM
278 };
279
280 struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
281 {
282 .type = RTE_ACL_FIELD_TYPE_BITMASK,
283 .size = sizeof(uint8_t),
284 .field_index = PROTO_FIELD_IPV4,
285 .input_index = RTE_ACL_IPV4VLAN_PROTO,
286 .offset = 0,
287 },
288 {
289 .type = RTE_ACL_FIELD_TYPE_MASK,
290 .size = sizeof(uint32_t),
291 .field_index = SRC_FIELD_IPV4,
292 .input_index = RTE_ACL_IPV4VLAN_SRC,
293 .offset = offsetof(struct rte_ipv4_hdr, src_addr) -
294 offsetof(struct rte_ipv4_hdr, next_proto_id),
295 },
296 {
297 .type = RTE_ACL_FIELD_TYPE_MASK,
298 .size = sizeof(uint32_t),
299 .field_index = DST_FIELD_IPV4,
300 .input_index = RTE_ACL_IPV4VLAN_DST,
301 .offset = offsetof(struct rte_ipv4_hdr, dst_addr) -
302 offsetof(struct rte_ipv4_hdr, next_proto_id),
303 },
304 {
305 .type = RTE_ACL_FIELD_TYPE_RANGE,
306 .size = sizeof(uint16_t),
307 .field_index = SRCP_FIELD_IPV4,
308 .input_index = RTE_ACL_IPV4VLAN_PORTS,
309 .offset = sizeof(struct rte_ipv4_hdr) -
310 offsetof(struct rte_ipv4_hdr, next_proto_id),
311 },
312 {
313 .type = RTE_ACL_FIELD_TYPE_RANGE,
314 .size = sizeof(uint16_t),
315 .field_index = DSTP_FIELD_IPV4,
316 .input_index = RTE_ACL_IPV4VLAN_PORTS,
317 .offset = sizeof(struct rte_ipv4_hdr) -
318 offsetof(struct rte_ipv4_hdr, next_proto_id) +
319 sizeof(uint16_t),
320 },
321 };
322
323 #define IPV6_ADDR_LEN 16
324 #define IPV6_ADDR_U16 (IPV6_ADDR_LEN / sizeof(uint16_t))
325 #define IPV6_ADDR_U32 (IPV6_ADDR_LEN / sizeof(uint32_t))
326
327 enum {
328 PROTO_FIELD_IPV6,
329 SRC1_FIELD_IPV6,
330 SRC2_FIELD_IPV6,
331 SRC3_FIELD_IPV6,
332 SRC4_FIELD_IPV6,
333 DST1_FIELD_IPV6,
334 DST2_FIELD_IPV6,
335 DST3_FIELD_IPV6,
336 DST4_FIELD_IPV6,
337 SRCP_FIELD_IPV6,
338 DSTP_FIELD_IPV6,
339 NUM_FIELDS_IPV6
340 };
341
342 struct rte_acl_field_def ipv6_defs[NUM_FIELDS_IPV6] = {
343 {
344 .type = RTE_ACL_FIELD_TYPE_BITMASK,
345 .size = sizeof(uint8_t),
346 .field_index = PROTO_FIELD_IPV6,
347 .input_index = PROTO_FIELD_IPV6,
348 .offset = 0,
349 },
350 {
351 .type = RTE_ACL_FIELD_TYPE_MASK,
352 .size = sizeof(uint32_t),
353 .field_index = SRC1_FIELD_IPV6,
354 .input_index = SRC1_FIELD_IPV6,
355 .offset = offsetof(struct rte_ipv6_hdr, src_addr) -
356 offsetof(struct rte_ipv6_hdr, proto),
357 },
358 {
359 .type = RTE_ACL_FIELD_TYPE_MASK,
360 .size = sizeof(uint32_t),
361 .field_index = SRC2_FIELD_IPV6,
362 .input_index = SRC2_FIELD_IPV6,
363 .offset = offsetof(struct rte_ipv6_hdr, src_addr) -
364 offsetof(struct rte_ipv6_hdr, proto) + sizeof(uint32_t),
365 },
366 {
367 .type = RTE_ACL_FIELD_TYPE_MASK,
368 .size = sizeof(uint32_t),
369 .field_index = SRC3_FIELD_IPV6,
370 .input_index = SRC3_FIELD_IPV6,
371 .offset = offsetof(struct rte_ipv6_hdr, src_addr) -
372 offsetof(struct rte_ipv6_hdr, proto) +
373 2 * sizeof(uint32_t),
374 },
375 {
376 .type = RTE_ACL_FIELD_TYPE_MASK,
377 .size = sizeof(uint32_t),
378 .field_index = SRC4_FIELD_IPV6,
379 .input_index = SRC4_FIELD_IPV6,
380 .offset = offsetof(struct rte_ipv6_hdr, src_addr) -
381 offsetof(struct rte_ipv6_hdr, proto) +
382 3 * sizeof(uint32_t),
383 },
384 {
385 .type = RTE_ACL_FIELD_TYPE_MASK,
386 .size = sizeof(uint32_t),
387 .field_index = DST1_FIELD_IPV6,
388 .input_index = DST1_FIELD_IPV6,
389 .offset = offsetof(struct rte_ipv6_hdr, dst_addr)
390 - offsetof(struct rte_ipv6_hdr, proto),
391 },
392 {
393 .type = RTE_ACL_FIELD_TYPE_MASK,
394 .size = sizeof(uint32_t),
395 .field_index = DST2_FIELD_IPV6,
396 .input_index = DST2_FIELD_IPV6,
397 .offset = offsetof(struct rte_ipv6_hdr, dst_addr) -
398 offsetof(struct rte_ipv6_hdr, proto) + sizeof(uint32_t),
399 },
400 {
401 .type = RTE_ACL_FIELD_TYPE_MASK,
402 .size = sizeof(uint32_t),
403 .field_index = DST3_FIELD_IPV6,
404 .input_index = DST3_FIELD_IPV6,
405 .offset = offsetof(struct rte_ipv6_hdr, dst_addr) -
406 offsetof(struct rte_ipv6_hdr, proto) +
407 2 * sizeof(uint32_t),
408 },
409 {
410 .type = RTE_ACL_FIELD_TYPE_MASK,
411 .size = sizeof(uint32_t),
412 .field_index = DST4_FIELD_IPV6,
413 .input_index = DST4_FIELD_IPV6,
414 .offset = offsetof(struct rte_ipv6_hdr, dst_addr) -
415 offsetof(struct rte_ipv6_hdr, proto) +
416 3 * sizeof(uint32_t),
417 },
418 {
419 .type = RTE_ACL_FIELD_TYPE_RANGE,
420 .size = sizeof(uint16_t),
421 .field_index = SRCP_FIELD_IPV6,
422 .input_index = SRCP_FIELD_IPV6,
423 .offset = sizeof(struct rte_ipv6_hdr) -
424 offsetof(struct rte_ipv6_hdr, proto),
425 },
426 {
427 .type = RTE_ACL_FIELD_TYPE_RANGE,
428 .size = sizeof(uint16_t),
429 .field_index = DSTP_FIELD_IPV6,
430 .input_index = SRCP_FIELD_IPV6,
431 .offset = sizeof(struct rte_ipv6_hdr) -
432 offsetof(struct rte_ipv6_hdr, proto) + sizeof(uint16_t),
433 },
434 };
435
436 enum {
437 CB_FLD_SRC_ADDR,
438 CB_FLD_DST_ADDR,
439 CB_FLD_SRC_PORT_LOW,
440 CB_FLD_SRC_PORT_DLM,
441 CB_FLD_SRC_PORT_HIGH,
442 CB_FLD_DST_PORT_LOW,
443 CB_FLD_DST_PORT_DLM,
444 CB_FLD_DST_PORT_HIGH,
445 CB_FLD_PROTO,
446 CB_FLD_USERDATA,
447 CB_FLD_NUM,
448 };
449
450 RTE_ACL_RULE_DEF(acl4_rule, RTE_DIM(ipv4_defs));
451 RTE_ACL_RULE_DEF(acl6_rule, RTE_DIM(ipv6_defs));
452
453 struct acl_search_t {
454 const uint8_t *data_ipv4[MAX_PKT_BURST];
455 struct rte_mbuf *m_ipv4[MAX_PKT_BURST];
456 uint32_t res_ipv4[MAX_PKT_BURST];
457 int num_ipv4;
458
459 const uint8_t *data_ipv6[MAX_PKT_BURST];
460 struct rte_mbuf *m_ipv6[MAX_PKT_BURST];
461 uint32_t res_ipv6[MAX_PKT_BURST];
462 int num_ipv6;
463 };
464
465 static struct {
466 char mapped[NB_SOCKETS];
467 struct rte_acl_ctx *acx_ipv4[NB_SOCKETS];
468 struct rte_acl_ctx *acx_ipv6[NB_SOCKETS];
469 #ifdef L3FWDACL_DEBUG
470 struct acl4_rule *rule_ipv4;
471 struct acl6_rule *rule_ipv6;
472 #endif
473 } acl_config;
474
475 static struct{
476 const char *rule_ipv4_name;
477 const char *rule_ipv6_name;
478 enum rte_acl_classify_alg alg;
479 } parm_config;
480
481 const char cb_port_delim[] = ":";
482
483 static inline void
print_one_ipv4_rule(struct acl4_rule * rule,int extra)484 print_one_ipv4_rule(struct acl4_rule *rule, int extra)
485 {
486 unsigned char a, b, c, d;
487
488 uint32_t_to_char(rule->field[SRC_FIELD_IPV4].value.u32,
489 &a, &b, &c, &d);
490 printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
491 rule->field[SRC_FIELD_IPV4].mask_range.u32);
492 uint32_t_to_char(rule->field[DST_FIELD_IPV4].value.u32,
493 &a, &b, &c, &d);
494 printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
495 rule->field[DST_FIELD_IPV4].mask_range.u32);
496 printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
497 rule->field[SRCP_FIELD_IPV4].value.u16,
498 rule->field[SRCP_FIELD_IPV4].mask_range.u16,
499 rule->field[DSTP_FIELD_IPV4].value.u16,
500 rule->field[DSTP_FIELD_IPV4].mask_range.u16,
501 rule->field[PROTO_FIELD_IPV4].value.u8,
502 rule->field[PROTO_FIELD_IPV4].mask_range.u8);
503 if (extra)
504 printf("0x%x-0x%x-0x%x ",
505 rule->data.category_mask,
506 rule->data.priority,
507 rule->data.userdata);
508 }
509
510 static inline void
print_one_ipv6_rule(struct acl6_rule * rule,int extra)511 print_one_ipv6_rule(struct acl6_rule *rule, int extra)
512 {
513 unsigned char a, b, c, d;
514
515 uint32_t_to_char(rule->field[SRC1_FIELD_IPV6].value.u32,
516 &a, &b, &c, &d);
517 printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
518 uint32_t_to_char(rule->field[SRC2_FIELD_IPV6].value.u32,
519 &a, &b, &c, &d);
520 printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
521 uint32_t_to_char(rule->field[SRC3_FIELD_IPV6].value.u32,
522 &a, &b, &c, &d);
523 printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
524 uint32_t_to_char(rule->field[SRC4_FIELD_IPV6].value.u32,
525 &a, &b, &c, &d);
526 printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
527 rule->field[SRC1_FIELD_IPV6].mask_range.u32
528 + rule->field[SRC2_FIELD_IPV6].mask_range.u32
529 + rule->field[SRC3_FIELD_IPV6].mask_range.u32
530 + rule->field[SRC4_FIELD_IPV6].mask_range.u32);
531
532 uint32_t_to_char(rule->field[DST1_FIELD_IPV6].value.u32,
533 &a, &b, &c, &d);
534 printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
535 uint32_t_to_char(rule->field[DST2_FIELD_IPV6].value.u32,
536 &a, &b, &c, &d);
537 printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
538 uint32_t_to_char(rule->field[DST3_FIELD_IPV6].value.u32,
539 &a, &b, &c, &d);
540 printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
541 uint32_t_to_char(rule->field[DST4_FIELD_IPV6].value.u32,
542 &a, &b, &c, &d);
543 printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
544 rule->field[DST1_FIELD_IPV6].mask_range.u32
545 + rule->field[DST2_FIELD_IPV6].mask_range.u32
546 + rule->field[DST3_FIELD_IPV6].mask_range.u32
547 + rule->field[DST4_FIELD_IPV6].mask_range.u32);
548
549 printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
550 rule->field[SRCP_FIELD_IPV6].value.u16,
551 rule->field[SRCP_FIELD_IPV6].mask_range.u16,
552 rule->field[DSTP_FIELD_IPV6].value.u16,
553 rule->field[DSTP_FIELD_IPV6].mask_range.u16,
554 rule->field[PROTO_FIELD_IPV6].value.u8,
555 rule->field[PROTO_FIELD_IPV6].mask_range.u8);
556 if (extra)
557 printf("0x%x-0x%x-0x%x ",
558 rule->data.category_mask,
559 rule->data.priority,
560 rule->data.userdata);
561 }
562
563 /* Bypass comment and empty lines */
564 static inline int
is_bypass_line(char * buff)565 is_bypass_line(char *buff)
566 {
567 int i = 0;
568
569 /* comment line */
570 if (buff[0] == COMMENT_LEAD_CHAR)
571 return 1;
572 /* empty line */
573 while (buff[i] != '\0') {
574 if (!isspace(buff[i]))
575 return 0;
576 i++;
577 }
578 return 1;
579 }
580
581 #ifdef L3FWDACL_DEBUG
582 static inline void
dump_acl4_rule(struct rte_mbuf * m,uint32_t sig)583 dump_acl4_rule(struct rte_mbuf *m, uint32_t sig)
584 {
585 uint32_t offset = sig & ~ACL_DENY_SIGNATURE;
586 unsigned char a, b, c, d;
587 struct rte_ipv4_hdr *ipv4_hdr =
588 rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
589 sizeof(struct rte_ether_hdr));
590
591 uint32_t_to_char(rte_bswap32(ipv4_hdr->src_addr), &a, &b, &c, &d);
592 printf("Packet Src:%hhu.%hhu.%hhu.%hhu ", a, b, c, d);
593 uint32_t_to_char(rte_bswap32(ipv4_hdr->dst_addr), &a, &b, &c, &d);
594 printf("Dst:%hhu.%hhu.%hhu.%hhu ", a, b, c, d);
595
596 printf("Src port:%hu,Dst port:%hu ",
597 rte_bswap16(*(uint16_t *)(ipv4_hdr + 1)),
598 rte_bswap16(*((uint16_t *)(ipv4_hdr + 1) + 1)));
599 printf("hit ACL %d - ", offset);
600
601 print_one_ipv4_rule(acl_config.rule_ipv4 + offset, 1);
602
603 printf("\n\n");
604 }
605
606 static inline void
dump_acl6_rule(struct rte_mbuf * m,uint32_t sig)607 dump_acl6_rule(struct rte_mbuf *m, uint32_t sig)
608 {
609 unsigned i;
610 uint32_t offset = sig & ~ACL_DENY_SIGNATURE;
611 struct rte_ipv6_hdr *ipv6_hdr =
612 rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
613 sizeof(struct rte_ether_hdr));
614
615 printf("Packet Src");
616 for (i = 0; i < RTE_DIM(ipv6_hdr->src_addr); i += sizeof(uint16_t))
617 printf(":%.2x%.2x",
618 ipv6_hdr->src_addr[i], ipv6_hdr->src_addr[i + 1]);
619
620 printf("\nDst");
621 for (i = 0; i < RTE_DIM(ipv6_hdr->dst_addr); i += sizeof(uint16_t))
622 printf(":%.2x%.2x",
623 ipv6_hdr->dst_addr[i], ipv6_hdr->dst_addr[i + 1]);
624
625 printf("\nSrc port:%hu,Dst port:%hu ",
626 rte_bswap16(*(uint16_t *)(ipv6_hdr + 1)),
627 rte_bswap16(*((uint16_t *)(ipv6_hdr + 1) + 1)));
628 printf("hit ACL %d - ", offset);
629
630 print_one_ipv6_rule(acl_config.rule_ipv6 + offset, 1);
631
632 printf("\n\n");
633 }
634 #endif /* L3FWDACL_DEBUG */
635
636 static inline void
dump_ipv4_rules(struct acl4_rule * rule,int num,int extra)637 dump_ipv4_rules(struct acl4_rule *rule, int num, int extra)
638 {
639 int i;
640
641 for (i = 0; i < num; i++, rule++) {
642 printf("\t%d:", i + 1);
643 print_one_ipv4_rule(rule, extra);
644 printf("\n");
645 }
646 }
647
648 static inline void
dump_ipv6_rules(struct acl6_rule * rule,int num,int extra)649 dump_ipv6_rules(struct acl6_rule *rule, int num, int extra)
650 {
651 int i;
652
653 for (i = 0; i < num; i++, rule++) {
654 printf("\t%d:", i + 1);
655 print_one_ipv6_rule(rule, extra);
656 printf("\n");
657 }
658 }
659
660 #ifdef DO_RFC_1812_CHECKS
661 static inline void
prepare_one_packet(struct rte_mbuf ** pkts_in,struct acl_search_t * acl,int index)662 prepare_one_packet(struct rte_mbuf **pkts_in, struct acl_search_t *acl,
663 int index)
664 {
665 struct rte_ipv4_hdr *ipv4_hdr;
666 struct rte_mbuf *pkt = pkts_in[index];
667
668 if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
669 ipv4_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
670 sizeof(struct rte_ether_hdr));
671
672 /* Check to make sure the packet is valid (RFC1812) */
673 if (is_valid_ipv4_pkt(ipv4_hdr, pkt->pkt_len) >= 0) {
674
675 /* Update time to live and header checksum */
676 --(ipv4_hdr->time_to_live);
677 ++(ipv4_hdr->hdr_checksum);
678
679 /* Fill acl structure */
680 acl->data_ipv4[acl->num_ipv4] = MBUF_IPV4_2PROTO(pkt);
681 acl->m_ipv4[(acl->num_ipv4)++] = pkt;
682
683 } else {
684 /* Not a valid IPv4 packet */
685 rte_pktmbuf_free(pkt);
686 }
687 } else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
688 /* Fill acl structure */
689 acl->data_ipv6[acl->num_ipv6] = MBUF_IPV6_2PROTO(pkt);
690 acl->m_ipv6[(acl->num_ipv6)++] = pkt;
691
692 } else {
693 /* Unknown type, drop the packet */
694 rte_pktmbuf_free(pkt);
695 }
696 }
697
698 #else
699 static inline void
prepare_one_packet(struct rte_mbuf ** pkts_in,struct acl_search_t * acl,int index)700 prepare_one_packet(struct rte_mbuf **pkts_in, struct acl_search_t *acl,
701 int index)
702 {
703 struct rte_mbuf *pkt = pkts_in[index];
704
705 if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
706 /* Fill acl structure */
707 acl->data_ipv4[acl->num_ipv4] = MBUF_IPV4_2PROTO(pkt);
708 acl->m_ipv4[(acl->num_ipv4)++] = pkt;
709
710 } else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
711 /* Fill acl structure */
712 acl->data_ipv6[acl->num_ipv6] = MBUF_IPV6_2PROTO(pkt);
713 acl->m_ipv6[(acl->num_ipv6)++] = pkt;
714 } else {
715 /* Unknown type, drop the packet */
716 rte_pktmbuf_free(pkt);
717 }
718 }
719 #endif /* DO_RFC_1812_CHECKS */
720
721 static inline void
prepare_acl_parameter(struct rte_mbuf ** pkts_in,struct acl_search_t * acl,int nb_rx)722 prepare_acl_parameter(struct rte_mbuf **pkts_in, struct acl_search_t *acl,
723 int nb_rx)
724 {
725 int i;
726
727 acl->num_ipv4 = 0;
728 acl->num_ipv6 = 0;
729
730 /* Prefetch first packets */
731 for (i = 0; i < PREFETCH_OFFSET && i < nb_rx; i++) {
732 rte_prefetch0(rte_pktmbuf_mtod(
733 pkts_in[i], void *));
734 }
735
736 for (i = 0; i < (nb_rx - PREFETCH_OFFSET); i++) {
737 rte_prefetch0(rte_pktmbuf_mtod(pkts_in[
738 i + PREFETCH_OFFSET], void *));
739 prepare_one_packet(pkts_in, acl, i);
740 }
741
742 /* Process left packets */
743 for (; i < nb_rx; i++)
744 prepare_one_packet(pkts_in, acl, i);
745 }
746
747 static inline void
send_one_packet(struct rte_mbuf * m,uint32_t res)748 send_one_packet(struct rte_mbuf *m, uint32_t res)
749 {
750 if (likely((res & ACL_DENY_SIGNATURE) == 0 && res != 0)) {
751 /* forward packets */
752 send_single_packet(m,
753 (uint8_t)(res - FWD_PORT_SHIFT));
754 } else{
755 /* in the ACL list, drop it */
756 #ifdef L3FWDACL_DEBUG
757 if ((res & ACL_DENY_SIGNATURE) != 0) {
758 if (RTE_ETH_IS_IPV4_HDR(m->packet_type))
759 dump_acl4_rule(m, res);
760 else if (RTE_ETH_IS_IPV6_HDR(m->packet_type))
761 dump_acl6_rule(m, res);
762 }
763 #endif
764 rte_pktmbuf_free(m);
765 }
766 }
767
768
769
770 static inline void
send_packets(struct rte_mbuf ** m,uint32_t * res,int num)771 send_packets(struct rte_mbuf **m, uint32_t *res, int num)
772 {
773 int i;
774
775 /* Prefetch first packets */
776 for (i = 0; i < PREFETCH_OFFSET && i < num; i++) {
777 rte_prefetch0(rte_pktmbuf_mtod(
778 m[i], void *));
779 }
780
781 for (i = 0; i < (num - PREFETCH_OFFSET); i++) {
782 rte_prefetch0(rte_pktmbuf_mtod(m[
783 i + PREFETCH_OFFSET], void *));
784 send_one_packet(m[i], res[i]);
785 }
786
787 /* Process left packets */
788 for (; i < num; i++)
789 send_one_packet(m[i], res[i]);
790 }
791
792 /*
793 * Parses IPV6 address, exepcts the following format:
794 * XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX (where X - is a hexedecimal digit).
795 */
796 static int
parse_ipv6_addr(const char * in,const char ** end,uint32_t v[IPV6_ADDR_U32],char dlm)797 parse_ipv6_addr(const char *in, const char **end, uint32_t v[IPV6_ADDR_U32],
798 char dlm)
799 {
800 uint32_t addr[IPV6_ADDR_U16];
801
802 GET_CB_FIELD(in, addr[0], 16, UINT16_MAX, ':');
803 GET_CB_FIELD(in, addr[1], 16, UINT16_MAX, ':');
804 GET_CB_FIELD(in, addr[2], 16, UINT16_MAX, ':');
805 GET_CB_FIELD(in, addr[3], 16, UINT16_MAX, ':');
806 GET_CB_FIELD(in, addr[4], 16, UINT16_MAX, ':');
807 GET_CB_FIELD(in, addr[5], 16, UINT16_MAX, ':');
808 GET_CB_FIELD(in, addr[6], 16, UINT16_MAX, ':');
809 GET_CB_FIELD(in, addr[7], 16, UINT16_MAX, dlm);
810
811 *end = in;
812
813 v[0] = (addr[0] << 16) + addr[1];
814 v[1] = (addr[2] << 16) + addr[3];
815 v[2] = (addr[4] << 16) + addr[5];
816 v[3] = (addr[6] << 16) + addr[7];
817
818 return 0;
819 }
820
821 static int
parse_ipv6_net(const char * in,struct rte_acl_field field[4])822 parse_ipv6_net(const char *in, struct rte_acl_field field[4])
823 {
824 int32_t rc;
825 const char *mp;
826 uint32_t i, m, v[4];
827 const uint32_t nbu32 = sizeof(uint32_t) * CHAR_BIT;
828
829 /* get address. */
830 rc = parse_ipv6_addr(in, &mp, v, '/');
831 if (rc != 0)
832 return rc;
833
834 /* get mask. */
835 GET_CB_FIELD(mp, m, 0, CHAR_BIT * sizeof(v), 0);
836
837 /* put all together. */
838 for (i = 0; i != RTE_DIM(v); i++) {
839 if (m >= (i + 1) * nbu32)
840 field[i].mask_range.u32 = nbu32;
841 else
842 field[i].mask_range.u32 = m > (i * nbu32) ?
843 m - (i * 32) : 0;
844
845 field[i].value.u32 = v[i];
846 }
847
848 return 0;
849 }
850
851 static int
parse_cb_ipv6_rule(char * str,struct rte_acl_rule * v,int has_userdata)852 parse_cb_ipv6_rule(char *str, struct rte_acl_rule *v, int has_userdata)
853 {
854 int i, rc;
855 char *s, *sp, *in[CB_FLD_NUM];
856 static const char *dlm = " \t\n";
857 int dim = has_userdata ? CB_FLD_NUM : CB_FLD_USERDATA;
858 s = str;
859
860 for (i = 0; i != dim; i++, s = NULL) {
861 in[i] = strtok_r(s, dlm, &sp);
862 if (in[i] == NULL)
863 return -EINVAL;
864 }
865
866 rc = parse_ipv6_net(in[CB_FLD_SRC_ADDR], v->field + SRC1_FIELD_IPV6);
867 if (rc != 0) {
868 acl_log("failed to read source address/mask: %s\n",
869 in[CB_FLD_SRC_ADDR]);
870 return rc;
871 }
872
873 rc = parse_ipv6_net(in[CB_FLD_DST_ADDR], v->field + DST1_FIELD_IPV6);
874 if (rc != 0) {
875 acl_log("failed to read destination address/mask: %s\n",
876 in[CB_FLD_DST_ADDR]);
877 return rc;
878 }
879
880 /* source port. */
881 GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
882 v->field[SRCP_FIELD_IPV6].value.u16,
883 0, UINT16_MAX, 0);
884 GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
885 v->field[SRCP_FIELD_IPV6].mask_range.u16,
886 0, UINT16_MAX, 0);
887
888 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
889 sizeof(cb_port_delim)) != 0)
890 return -EINVAL;
891
892 /* destination port. */
893 GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
894 v->field[DSTP_FIELD_IPV6].value.u16,
895 0, UINT16_MAX, 0);
896 GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
897 v->field[DSTP_FIELD_IPV6].mask_range.u16,
898 0, UINT16_MAX, 0);
899
900 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
901 sizeof(cb_port_delim)) != 0)
902 return -EINVAL;
903
904 if (v->field[SRCP_FIELD_IPV6].mask_range.u16
905 < v->field[SRCP_FIELD_IPV6].value.u16
906 || v->field[DSTP_FIELD_IPV6].mask_range.u16
907 < v->field[DSTP_FIELD_IPV6].value.u16)
908 return -EINVAL;
909
910 GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].value.u8,
911 0, UINT8_MAX, '/');
912 GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].mask_range.u8,
913 0, UINT8_MAX, 0);
914
915 if (has_userdata)
916 GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata,
917 0, UINT32_MAX, 0);
918
919 return 0;
920 }
921
922 /*
923 * Parse ClassBench rules file.
924 * Expected format:
925 * '@'<src_ipv4_addr>'/'<masklen> <space> \
926 * <dst_ipv4_addr>'/'<masklen> <space> \
927 * <src_port_low> <space> ":" <src_port_high> <space> \
928 * <dst_port_low> <space> ":" <dst_port_high> <space> \
929 * <proto>'/'<mask>
930 */
931 static int
parse_ipv4_net(const char * in,uint32_t * addr,uint32_t * mask_len)932 parse_ipv4_net(const char *in, uint32_t *addr, uint32_t *mask_len)
933 {
934 uint8_t a, b, c, d, m;
935
936 GET_CB_FIELD(in, a, 0, UINT8_MAX, '.');
937 GET_CB_FIELD(in, b, 0, UINT8_MAX, '.');
938 GET_CB_FIELD(in, c, 0, UINT8_MAX, '.');
939 GET_CB_FIELD(in, d, 0, UINT8_MAX, '/');
940 GET_CB_FIELD(in, m, 0, sizeof(uint32_t) * CHAR_BIT, 0);
941
942 addr[0] = RTE_IPV4(a, b, c, d);
943 mask_len[0] = m;
944
945 return 0;
946 }
947
948 static int
parse_cb_ipv4vlan_rule(char * str,struct rte_acl_rule * v,int has_userdata)949 parse_cb_ipv4vlan_rule(char *str, struct rte_acl_rule *v, int has_userdata)
950 {
951 int i, rc;
952 char *s, *sp, *in[CB_FLD_NUM];
953 static const char *dlm = " \t\n";
954 int dim = has_userdata ? CB_FLD_NUM : CB_FLD_USERDATA;
955 s = str;
956
957 for (i = 0; i != dim; i++, s = NULL) {
958 in[i] = strtok_r(s, dlm, &sp);
959 if (in[i] == NULL)
960 return -EINVAL;
961 }
962
963 rc = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
964 &v->field[SRC_FIELD_IPV4].value.u32,
965 &v->field[SRC_FIELD_IPV4].mask_range.u32);
966 if (rc != 0) {
967 acl_log("failed to read source address/mask: %s\n",
968 in[CB_FLD_SRC_ADDR]);
969 return rc;
970 }
971
972 rc = parse_ipv4_net(in[CB_FLD_DST_ADDR],
973 &v->field[DST_FIELD_IPV4].value.u32,
974 &v->field[DST_FIELD_IPV4].mask_range.u32);
975 if (rc != 0) {
976 acl_log("failed to read destination address/mask: %s\n",
977 in[CB_FLD_DST_ADDR]);
978 return rc;
979 }
980
981 GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
982 v->field[SRCP_FIELD_IPV4].value.u16,
983 0, UINT16_MAX, 0);
984 GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
985 v->field[SRCP_FIELD_IPV4].mask_range.u16,
986 0, UINT16_MAX, 0);
987
988 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
989 sizeof(cb_port_delim)) != 0)
990 return -EINVAL;
991
992 GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
993 v->field[DSTP_FIELD_IPV4].value.u16,
994 0, UINT16_MAX, 0);
995 GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
996 v->field[DSTP_FIELD_IPV4].mask_range.u16,
997 0, UINT16_MAX, 0);
998
999 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
1000 sizeof(cb_port_delim)) != 0)
1001 return -EINVAL;
1002
1003 if (v->field[SRCP_FIELD_IPV4].mask_range.u16
1004 < v->field[SRCP_FIELD_IPV4].value.u16
1005 || v->field[DSTP_FIELD_IPV4].mask_range.u16
1006 < v->field[DSTP_FIELD_IPV4].value.u16)
1007 return -EINVAL;
1008
1009 GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].value.u8,
1010 0, UINT8_MAX, '/');
1011 GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].mask_range.u8,
1012 0, UINT8_MAX, 0);
1013
1014 if (has_userdata)
1015 GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata, 0,
1016 UINT32_MAX, 0);
1017
1018 return 0;
1019 }
1020
1021 static int
add_rules(const char * rule_path,struct rte_acl_rule ** proute_base,unsigned int * proute_num,struct rte_acl_rule ** pacl_base,unsigned int * pacl_num,uint32_t rule_size,int (* parser)(char *,struct rte_acl_rule *,int))1022 add_rules(const char *rule_path,
1023 struct rte_acl_rule **proute_base,
1024 unsigned int *proute_num,
1025 struct rte_acl_rule **pacl_base,
1026 unsigned int *pacl_num, uint32_t rule_size,
1027 int (*parser)(char *, struct rte_acl_rule*, int))
1028 {
1029 uint8_t *acl_rules, *route_rules;
1030 struct rte_acl_rule *next;
1031 unsigned int acl_num = 0, route_num = 0, total_num = 0;
1032 unsigned int acl_cnt = 0, route_cnt = 0;
1033 char buff[LINE_MAX];
1034 FILE *fh = fopen(rule_path, "rb");
1035 unsigned int i = 0;
1036 int val;
1037
1038 if (fh == NULL)
1039 rte_exit(EXIT_FAILURE, "%s: Open %s failed\n", __func__,
1040 rule_path);
1041
1042 while ((fgets(buff, LINE_MAX, fh) != NULL)) {
1043 if (buff[0] == ROUTE_LEAD_CHAR)
1044 route_num++;
1045 else if (buff[0] == ACL_LEAD_CHAR)
1046 acl_num++;
1047 }
1048
1049 if (0 == route_num)
1050 rte_exit(EXIT_FAILURE, "Not find any route entries in %s!\n",
1051 rule_path);
1052
1053 val = fseek(fh, 0, SEEK_SET);
1054 if (val < 0) {
1055 rte_exit(EXIT_FAILURE, "%s: File seek operation failed\n",
1056 __func__);
1057 }
1058
1059 acl_rules = calloc(acl_num, rule_size);
1060
1061 if (NULL == acl_rules)
1062 rte_exit(EXIT_FAILURE, "%s: failed to malloc memory\n",
1063 __func__);
1064
1065 route_rules = calloc(route_num, rule_size);
1066
1067 if (NULL == route_rules)
1068 rte_exit(EXIT_FAILURE, "%s: failed to malloc memory\n",
1069 __func__);
1070
1071 i = 0;
1072 while (fgets(buff, LINE_MAX, fh) != NULL) {
1073 i++;
1074
1075 if (is_bypass_line(buff))
1076 continue;
1077
1078 char s = buff[0];
1079
1080 /* Route entry */
1081 if (s == ROUTE_LEAD_CHAR)
1082 next = (struct rte_acl_rule *)(route_rules +
1083 route_cnt * rule_size);
1084
1085 /* ACL entry */
1086 else if (s == ACL_LEAD_CHAR)
1087 next = (struct rte_acl_rule *)(acl_rules +
1088 acl_cnt * rule_size);
1089
1090 /* Illegal line */
1091 else
1092 rte_exit(EXIT_FAILURE,
1093 "%s Line %u: should start with leading "
1094 "char %c or %c\n",
1095 rule_path, i, ROUTE_LEAD_CHAR, ACL_LEAD_CHAR);
1096
1097 if (parser(buff + 1, next, s == ROUTE_LEAD_CHAR) != 0)
1098 rte_exit(EXIT_FAILURE,
1099 "%s Line %u: parse rules error\n",
1100 rule_path, i);
1101
1102 if (s == ROUTE_LEAD_CHAR) {
1103 /* Check the forwarding port number */
1104 if ((enabled_port_mask & (1 << next->data.userdata)) ==
1105 0)
1106 rte_exit(EXIT_FAILURE,
1107 "%s Line %u: fwd number illegal:%u\n",
1108 rule_path, i, next->data.userdata);
1109 next->data.userdata += FWD_PORT_SHIFT;
1110 route_cnt++;
1111 } else {
1112 next->data.userdata = ACL_DENY_SIGNATURE + acl_cnt;
1113 acl_cnt++;
1114 }
1115
1116 next->data.priority = RTE_ACL_MAX_PRIORITY - total_num;
1117 next->data.category_mask = -1;
1118 total_num++;
1119 }
1120
1121 fclose(fh);
1122
1123 *pacl_base = (struct rte_acl_rule *)acl_rules;
1124 *pacl_num = acl_num;
1125 *proute_base = (struct rte_acl_rule *)route_rules;
1126 *proute_num = route_cnt;
1127
1128 return 0;
1129 }
1130
1131 static int
usage_acl_alg(char * buf,size_t sz)1132 usage_acl_alg(char *buf, size_t sz)
1133 {
1134 uint32_t i, n, rc, tn;
1135
1136 n = 0;
1137 tn = 0;
1138 for (i = 0; i < RTE_DIM(acl_alg); i++) {
1139 rc = snprintf(buf + n, sz - n,
1140 i == RTE_DIM(acl_alg) - 1 ? "%s" : "%s|",
1141 acl_alg[i].name);
1142 tn += rc;
1143 if (rc < sz - n)
1144 n += rc;
1145 }
1146
1147 return tn;
1148 }
1149
1150 static const char *
str_acl_alg(enum rte_acl_classify_alg alg)1151 str_acl_alg(enum rte_acl_classify_alg alg)
1152 {
1153 uint32_t i;
1154
1155 for (i = 0; i != RTE_DIM(acl_alg); i++) {
1156 if (alg == acl_alg[i].alg)
1157 return acl_alg[i].name;
1158 }
1159
1160 return "default";
1161 }
1162
1163 static enum rte_acl_classify_alg
parse_acl_alg(const char * alg)1164 parse_acl_alg(const char *alg)
1165 {
1166 uint32_t i;
1167
1168 for (i = 0; i != RTE_DIM(acl_alg); i++) {
1169 if (strcmp(alg, acl_alg[i].name) == 0)
1170 return acl_alg[i].alg;
1171 }
1172
1173 return RTE_ACL_CLASSIFY_DEFAULT;
1174 }
1175
1176 static void
dump_acl_config(void)1177 dump_acl_config(void)
1178 {
1179 printf("ACL option are:\n");
1180 printf(OPTION_RULE_IPV4": %s\n", parm_config.rule_ipv4_name);
1181 printf(OPTION_RULE_IPV6": %s\n", parm_config.rule_ipv6_name);
1182 printf(OPTION_ALG": %s\n", str_acl_alg(parm_config.alg));
1183 }
1184
1185 static int
check_acl_config(void)1186 check_acl_config(void)
1187 {
1188 if (parm_config.rule_ipv4_name == NULL) {
1189 acl_log("ACL IPv4 rule file not specified\n");
1190 return -1;
1191 } else if (parm_config.rule_ipv6_name == NULL) {
1192 acl_log("ACL IPv6 rule file not specified\n");
1193 return -1;
1194 }
1195
1196 return 0;
1197 }
1198
1199 static struct rte_acl_ctx*
setup_acl(struct rte_acl_rule * route_base,struct rte_acl_rule * acl_base,unsigned int route_num,unsigned int acl_num,int ipv6,int socketid)1200 setup_acl(struct rte_acl_rule *route_base,
1201 struct rte_acl_rule *acl_base, unsigned int route_num,
1202 unsigned int acl_num, int ipv6, int socketid)
1203 {
1204 char name[PATH_MAX];
1205 struct rte_acl_param acl_param;
1206 struct rte_acl_config acl_build_param;
1207 struct rte_acl_ctx *context;
1208 int dim = ipv6 ? RTE_DIM(ipv6_defs) : RTE_DIM(ipv4_defs);
1209
1210 /* Create ACL contexts */
1211 snprintf(name, sizeof(name), "%s%d",
1212 ipv6 ? L3FWD_ACL_IPV6_NAME : L3FWD_ACL_IPV4_NAME,
1213 socketid);
1214
1215 acl_param.name = name;
1216 acl_param.socket_id = socketid;
1217 acl_param.rule_size = RTE_ACL_RULE_SZ(dim);
1218 acl_param.max_rule_num = MAX_ACL_RULE_NUM;
1219
1220 if ((context = rte_acl_create(&acl_param)) == NULL)
1221 rte_exit(EXIT_FAILURE, "Failed to create ACL context\n");
1222
1223 if (parm_config.alg != RTE_ACL_CLASSIFY_DEFAULT &&
1224 rte_acl_set_ctx_classify(context, parm_config.alg) != 0)
1225 rte_exit(EXIT_FAILURE,
1226 "Failed to setup classify method for ACL context\n");
1227
1228 if (rte_acl_add_rules(context, route_base, route_num) < 0)
1229 rte_exit(EXIT_FAILURE, "add rules failed\n");
1230
1231 if (rte_acl_add_rules(context, acl_base, acl_num) < 0)
1232 rte_exit(EXIT_FAILURE, "add rules failed\n");
1233
1234 /* Perform builds */
1235 memset(&acl_build_param, 0, sizeof(acl_build_param));
1236
1237 acl_build_param.num_categories = DEFAULT_MAX_CATEGORIES;
1238 acl_build_param.num_fields = dim;
1239 memcpy(&acl_build_param.defs, ipv6 ? ipv6_defs : ipv4_defs,
1240 ipv6 ? sizeof(ipv6_defs) : sizeof(ipv4_defs));
1241
1242 if (rte_acl_build(context, &acl_build_param) != 0)
1243 rte_exit(EXIT_FAILURE, "Failed to build ACL trie\n");
1244
1245 rte_acl_dump(context);
1246
1247 return context;
1248 }
1249
1250 static int
app_acl_init(void)1251 app_acl_init(void)
1252 {
1253 unsigned lcore_id;
1254 unsigned int i;
1255 int socketid;
1256 struct rte_acl_rule *acl_base_ipv4, *route_base_ipv4,
1257 *acl_base_ipv6, *route_base_ipv6;
1258 unsigned int acl_num_ipv4 = 0, route_num_ipv4 = 0,
1259 acl_num_ipv6 = 0, route_num_ipv6 = 0;
1260
1261 if (check_acl_config() != 0)
1262 rte_exit(EXIT_FAILURE, "Failed to get valid ACL options\n");
1263
1264 dump_acl_config();
1265
1266 /* Load rules from the input file */
1267 if (add_rules(parm_config.rule_ipv4_name, &route_base_ipv4,
1268 &route_num_ipv4, &acl_base_ipv4, &acl_num_ipv4,
1269 sizeof(struct acl4_rule), &parse_cb_ipv4vlan_rule) < 0)
1270 rte_exit(EXIT_FAILURE, "Failed to add rules\n");
1271
1272 acl_log("IPv4 Route entries %u:\n", route_num_ipv4);
1273 dump_ipv4_rules((struct acl4_rule *)route_base_ipv4, route_num_ipv4, 1);
1274
1275 acl_log("IPv4 ACL entries %u:\n", acl_num_ipv4);
1276 dump_ipv4_rules((struct acl4_rule *)acl_base_ipv4, acl_num_ipv4, 1);
1277
1278 if (add_rules(parm_config.rule_ipv6_name, &route_base_ipv6,
1279 &route_num_ipv6,
1280 &acl_base_ipv6, &acl_num_ipv6,
1281 sizeof(struct acl6_rule), &parse_cb_ipv6_rule) < 0)
1282 rte_exit(EXIT_FAILURE, "Failed to add rules\n");
1283
1284 acl_log("IPv6 Route entries %u:\n", route_num_ipv6);
1285 dump_ipv6_rules((struct acl6_rule *)route_base_ipv6, route_num_ipv6, 1);
1286
1287 acl_log("IPv6 ACL entries %u:\n", acl_num_ipv6);
1288 dump_ipv6_rules((struct acl6_rule *)acl_base_ipv6, acl_num_ipv6, 1);
1289
1290 memset(&acl_config, 0, sizeof(acl_config));
1291
1292 /* Check sockets a context should be created on */
1293 if (!numa_on)
1294 acl_config.mapped[0] = 1;
1295 else {
1296 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1297 if (rte_lcore_is_enabled(lcore_id) == 0)
1298 continue;
1299
1300 socketid = rte_lcore_to_socket_id(lcore_id);
1301 if (socketid >= NB_SOCKETS) {
1302 acl_log("Socket %d of lcore %u is out "
1303 "of range %d\n",
1304 socketid, lcore_id, NB_SOCKETS);
1305 free(route_base_ipv4);
1306 free(route_base_ipv6);
1307 free(acl_base_ipv4);
1308 free(acl_base_ipv6);
1309 return -1;
1310 }
1311
1312 acl_config.mapped[socketid] = 1;
1313 }
1314 }
1315
1316 for (i = 0; i < NB_SOCKETS; i++) {
1317 if (acl_config.mapped[i]) {
1318 acl_config.acx_ipv4[i] = setup_acl(route_base_ipv4,
1319 acl_base_ipv4, route_num_ipv4, acl_num_ipv4,
1320 0, i);
1321
1322 acl_config.acx_ipv6[i] = setup_acl(route_base_ipv6,
1323 acl_base_ipv6, route_num_ipv6, acl_num_ipv6,
1324 1, i);
1325 }
1326 }
1327
1328 free(route_base_ipv4);
1329 free(route_base_ipv6);
1330
1331 #ifdef L3FWDACL_DEBUG
1332 acl_config.rule_ipv4 = (struct acl4_rule *)acl_base_ipv4;
1333 acl_config.rule_ipv6 = (struct acl6_rule *)acl_base_ipv6;
1334 #else
1335 free(acl_base_ipv4);
1336 free(acl_base_ipv6);
1337 #endif
1338
1339 return 0;
1340 }
1341
1342 /***********************end of ACL part******************************/
1343
1344 struct lcore_conf {
1345 uint16_t n_rx_queue;
1346 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
1347 uint16_t n_tx_port;
1348 uint16_t tx_port_id[RTE_MAX_ETHPORTS];
1349 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
1350 struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
1351 } __rte_cache_aligned;
1352
1353 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
1354
1355 /* Enqueue a single packet, and send burst if queue is filled */
1356 static inline void
send_single_packet(struct rte_mbuf * m,uint16_t port)1357 send_single_packet(struct rte_mbuf *m, uint16_t port)
1358 {
1359 uint32_t lcore_id;
1360 struct lcore_conf *qconf;
1361 struct rte_ether_hdr *eh;
1362
1363 lcore_id = rte_lcore_id();
1364
1365 /* update src and dst mac*/
1366 eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1367 memcpy(eh, &port_l2hdr[port], sizeof(eh->d_addr) + sizeof(eh->s_addr));
1368
1369 qconf = &lcore_conf[lcore_id];
1370 rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
1371 qconf->tx_buffer[port], m);
1372 }
1373
1374 #ifdef DO_RFC_1812_CHECKS
1375 static inline int
is_valid_ipv4_pkt(struct rte_ipv4_hdr * pkt,uint32_t link_len)1376 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
1377 {
1378 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
1379 /*
1380 * 1. The packet length reported by the Link Layer must be large
1381 * enough to hold the minimum length legal IP datagram (20 bytes).
1382 */
1383 if (link_len < sizeof(struct rte_ipv4_hdr))
1384 return -1;
1385
1386 /* 2. The IP checksum must be correct. */
1387 /* this is checked in H/W */
1388
1389 /*
1390 * 3. The IP version number must be 4. If the version number is not 4
1391 * then the packet may be another version of IP, such as IPng or
1392 * ST-II.
1393 */
1394 if (((pkt->version_ihl) >> 4) != 4)
1395 return -3;
1396 /*
1397 * 4. The IP header length field must be large enough to hold the
1398 * minimum length legal IP datagram (20 bytes = 5 words).
1399 */
1400 if ((pkt->version_ihl & 0xf) < 5)
1401 return -4;
1402
1403 /*
1404 * 5. The IP total length field must be large enough to hold the IP
1405 * datagram header, whose length is specified in the IP header length
1406 * field.
1407 */
1408 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
1409 return -5;
1410
1411 return 0;
1412 }
1413 #endif
1414
1415 /* main processing loop */
1416 static int
main_loop(__rte_unused void * dummy)1417 main_loop(__rte_unused void *dummy)
1418 {
1419 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1420 unsigned lcore_id;
1421 uint64_t prev_tsc, diff_tsc, cur_tsc;
1422 int i, nb_rx;
1423 uint16_t portid;
1424 uint8_t queueid;
1425 struct lcore_conf *qconf;
1426 int socketid;
1427 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1428 / US_PER_S * BURST_TX_DRAIN_US;
1429
1430 prev_tsc = 0;
1431 lcore_id = rte_lcore_id();
1432 qconf = &lcore_conf[lcore_id];
1433 socketid = rte_lcore_to_socket_id(lcore_id);
1434
1435 if (qconf->n_rx_queue == 0) {
1436 RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
1437 return 0;
1438 }
1439
1440 RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
1441
1442 for (i = 0; i < qconf->n_rx_queue; i++) {
1443
1444 portid = qconf->rx_queue_list[i].port_id;
1445 queueid = qconf->rx_queue_list[i].queue_id;
1446 RTE_LOG(INFO, L3FWD,
1447 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1448 lcore_id, portid, queueid);
1449 }
1450
1451 while (1) {
1452
1453 cur_tsc = rte_rdtsc();
1454
1455 /*
1456 * TX burst queue drain
1457 */
1458 diff_tsc = cur_tsc - prev_tsc;
1459 if (unlikely(diff_tsc > drain_tsc)) {
1460 for (i = 0; i < qconf->n_tx_port; ++i) {
1461 portid = qconf->tx_port_id[i];
1462 rte_eth_tx_buffer_flush(portid,
1463 qconf->tx_queue_id[portid],
1464 qconf->tx_buffer[portid]);
1465 }
1466 prev_tsc = cur_tsc;
1467 }
1468
1469 /*
1470 * Read packet from RX queues
1471 */
1472 for (i = 0; i < qconf->n_rx_queue; ++i) {
1473
1474 portid = qconf->rx_queue_list[i].port_id;
1475 queueid = qconf->rx_queue_list[i].queue_id;
1476 nb_rx = rte_eth_rx_burst(portid, queueid,
1477 pkts_burst, MAX_PKT_BURST);
1478
1479 if (nb_rx > 0) {
1480 struct acl_search_t acl_search;
1481
1482 prepare_acl_parameter(pkts_burst, &acl_search,
1483 nb_rx);
1484
1485 if (acl_search.num_ipv4) {
1486 rte_acl_classify(
1487 acl_config.acx_ipv4[socketid],
1488 acl_search.data_ipv4,
1489 acl_search.res_ipv4,
1490 acl_search.num_ipv4,
1491 DEFAULT_MAX_CATEGORIES);
1492
1493 send_packets(acl_search.m_ipv4,
1494 acl_search.res_ipv4,
1495 acl_search.num_ipv4);
1496 }
1497
1498 if (acl_search.num_ipv6) {
1499 rte_acl_classify(
1500 acl_config.acx_ipv6[socketid],
1501 acl_search.data_ipv6,
1502 acl_search.res_ipv6,
1503 acl_search.num_ipv6,
1504 DEFAULT_MAX_CATEGORIES);
1505
1506 send_packets(acl_search.m_ipv6,
1507 acl_search.res_ipv6,
1508 acl_search.num_ipv6);
1509 }
1510 }
1511 }
1512 }
1513 }
1514
1515 static int
check_lcore_params(void)1516 check_lcore_params(void)
1517 {
1518 uint8_t queue, lcore;
1519 uint16_t i;
1520 int socketid;
1521
1522 for (i = 0; i < nb_lcore_params; ++i) {
1523 queue = lcore_params[i].queue_id;
1524 if (queue >= MAX_RX_QUEUE_PER_PORT) {
1525 printf("invalid queue number: %hhu\n", queue);
1526 return -1;
1527 }
1528 lcore = lcore_params[i].lcore_id;
1529 if (!rte_lcore_is_enabled(lcore)) {
1530 printf("error: lcore %hhu is not enabled in "
1531 "lcore mask\n", lcore);
1532 return -1;
1533 }
1534 socketid = rte_lcore_to_socket_id(lcore);
1535 if (socketid != 0 && numa_on == 0) {
1536 printf("warning: lcore %hhu is on socket %d "
1537 "with numa off\n",
1538 lcore, socketid);
1539 }
1540 }
1541 return 0;
1542 }
1543
1544 static int
check_port_config(void)1545 check_port_config(void)
1546 {
1547 unsigned portid;
1548 uint16_t i;
1549
1550 for (i = 0; i < nb_lcore_params; ++i) {
1551 portid = lcore_params[i].port_id;
1552
1553 if ((enabled_port_mask & (1 << portid)) == 0) {
1554 printf("port %u is not enabled in port mask\n", portid);
1555 return -1;
1556 }
1557 if (!rte_eth_dev_is_valid_port(portid)) {
1558 printf("port %u is not present on the board\n", portid);
1559 return -1;
1560 }
1561 }
1562 return 0;
1563 }
1564
1565 static uint8_t
get_port_n_rx_queues(const uint16_t port)1566 get_port_n_rx_queues(const uint16_t port)
1567 {
1568 int queue = -1;
1569 uint16_t i;
1570
1571 for (i = 0; i < nb_lcore_params; ++i) {
1572 if (lcore_params[i].port_id == port &&
1573 lcore_params[i].queue_id > queue)
1574 queue = lcore_params[i].queue_id;
1575 }
1576 return (uint8_t)(++queue);
1577 }
1578
1579 static int
init_lcore_rx_queues(void)1580 init_lcore_rx_queues(void)
1581 {
1582 uint16_t i, nb_rx_queue;
1583 uint8_t lcore;
1584
1585 for (i = 0; i < nb_lcore_params; ++i) {
1586 lcore = lcore_params[i].lcore_id;
1587 nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1588 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1589 printf("error: too many queues (%u) for lcore: %u\n",
1590 (unsigned)nb_rx_queue + 1, (unsigned)lcore);
1591 return -1;
1592 } else {
1593 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1594 lcore_params[i].port_id;
1595 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1596 lcore_params[i].queue_id;
1597 lcore_conf[lcore].n_rx_queue++;
1598 }
1599 }
1600 return 0;
1601 }
1602
1603 /* display usage */
1604 static void
print_usage(const char * prgname)1605 print_usage(const char *prgname)
1606 {
1607 char alg[PATH_MAX];
1608
1609 usage_acl_alg(alg, sizeof(alg));
1610 printf("%s [EAL options] -- -p PORTMASK -P"
1611 "--"OPTION_RULE_IPV4"=FILE"
1612 "--"OPTION_RULE_IPV6"=FILE"
1613 " [--"OPTION_CONFIG" (port,queue,lcore)[,(port,queue,lcore]]"
1614 " [--"OPTION_ENBJMO" [--max-pkt-len PKTLEN]]\n"
1615 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1616 " -P : enable promiscuous mode\n"
1617 " --"OPTION_CONFIG": (port,queue,lcore): "
1618 "rx queues configuration\n"
1619 " --"OPTION_NONUMA": optional, disable numa awareness\n"
1620 " --"OPTION_ENBJMO": enable jumbo frame"
1621 " which max packet len is PKTLEN in decimal (64-9600)\n"
1622 " --"OPTION_RULE_IPV4"=FILE: specify the ipv4 rules entries "
1623 "file. "
1624 "Each rule occupy one line. "
1625 "2 kinds of rules are supported. "
1626 "One is ACL entry at while line leads with character '%c', "
1627 "another is route entry at while line leads with "
1628 "character '%c'.\n"
1629 " --"OPTION_RULE_IPV6"=FILE: specify the ipv6 rules "
1630 "entries file.\n"
1631 " --"OPTION_ALG": ACL classify method to use, one of: %s\n",
1632 prgname, ACL_LEAD_CHAR, ROUTE_LEAD_CHAR, alg);
1633 }
1634
1635 static int
parse_max_pkt_len(const char * pktlen)1636 parse_max_pkt_len(const char *pktlen)
1637 {
1638 char *end = NULL;
1639 unsigned long len;
1640
1641 /* parse decimal string */
1642 len = strtoul(pktlen, &end, 10);
1643 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1644 return -1;
1645
1646 if (len == 0)
1647 return -1;
1648
1649 return len;
1650 }
1651
1652 static int
parse_portmask(const char * portmask)1653 parse_portmask(const char *portmask)
1654 {
1655 char *end = NULL;
1656 unsigned long pm;
1657
1658 /* parse hexadecimal string */
1659 pm = strtoul(portmask, &end, 16);
1660 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1661 return 0;
1662
1663 return pm;
1664 }
1665
1666 static int
parse_config(const char * q_arg)1667 parse_config(const char *q_arg)
1668 {
1669 char s[256];
1670 const char *p, *p0 = q_arg;
1671 char *end;
1672 enum fieldnames {
1673 FLD_PORT = 0,
1674 FLD_QUEUE,
1675 FLD_LCORE,
1676 _NUM_FLD
1677 };
1678 unsigned long int_fld[_NUM_FLD];
1679 char *str_fld[_NUM_FLD];
1680 int i;
1681 unsigned size;
1682
1683 nb_lcore_params = 0;
1684
1685 while ((p = strchr(p0, '(')) != NULL) {
1686 ++p;
1687 if ((p0 = strchr(p, ')')) == NULL)
1688 return -1;
1689
1690 size = p0 - p;
1691 if (size >= sizeof(s))
1692 return -1;
1693
1694 snprintf(s, sizeof(s), "%.*s", size, p);
1695 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1696 _NUM_FLD)
1697 return -1;
1698 for (i = 0; i < _NUM_FLD; i++) {
1699 errno = 0;
1700 int_fld[i] = strtoul(str_fld[i], &end, 0);
1701 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1702 return -1;
1703 }
1704 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1705 printf("exceeded max number of lcore params: %hu\n",
1706 nb_lcore_params);
1707 return -1;
1708 }
1709 lcore_params_array[nb_lcore_params].port_id =
1710 (uint8_t)int_fld[FLD_PORT];
1711 lcore_params_array[nb_lcore_params].queue_id =
1712 (uint8_t)int_fld[FLD_QUEUE];
1713 lcore_params_array[nb_lcore_params].lcore_id =
1714 (uint8_t)int_fld[FLD_LCORE];
1715 ++nb_lcore_params;
1716 }
1717 lcore_params = lcore_params_array;
1718 return 0;
1719 }
1720
1721 static const char *
parse_eth_dest(const char * optarg)1722 parse_eth_dest(const char *optarg)
1723 {
1724 unsigned long portid;
1725 char *port_end;
1726
1727 errno = 0;
1728 portid = strtoul(optarg, &port_end, 0);
1729 if (errno != 0 || port_end == optarg || *port_end++ != ',')
1730 return "Invalid format";
1731 else if (portid >= RTE_MAX_ETHPORTS)
1732 return "port value exceeds RTE_MAX_ETHPORTS("
1733 RTE_STR(RTE_MAX_ETHPORTS) ")";
1734
1735 if (cmdline_parse_etheraddr(NULL, port_end, &port_l2hdr[portid].d_addr,
1736 sizeof(port_l2hdr[portid].d_addr)) < 0)
1737 return "Invalid ethernet address";
1738 return NULL;
1739 }
1740
1741 /* Parse the argument given in the command line of the application */
1742 static int
parse_args(int argc,char ** argv)1743 parse_args(int argc, char **argv)
1744 {
1745 int opt, ret;
1746 char **argvopt;
1747 int option_index;
1748 char *prgname = argv[0];
1749 static struct option lgopts[] = {
1750 {OPTION_CONFIG, 1, 0, 0},
1751 {OPTION_NONUMA, 0, 0, 0},
1752 {OPTION_ENBJMO, 0, 0, 0},
1753 {OPTION_RULE_IPV4, 1, 0, 0},
1754 {OPTION_RULE_IPV6, 1, 0, 0},
1755 {OPTION_ALG, 1, 0, 0},
1756 {OPTION_ETH_DEST, 1, 0, 0},
1757 {NULL, 0, 0, 0}
1758 };
1759
1760 argvopt = argv;
1761
1762 while ((opt = getopt_long(argc, argvopt, "p:P",
1763 lgopts, &option_index)) != EOF) {
1764
1765 switch (opt) {
1766 /* portmask */
1767 case 'p':
1768 enabled_port_mask = parse_portmask(optarg);
1769 if (enabled_port_mask == 0) {
1770 printf("invalid portmask\n");
1771 print_usage(prgname);
1772 return -1;
1773 }
1774 break;
1775 case 'P':
1776 printf("Promiscuous mode selected\n");
1777 promiscuous_on = 1;
1778 break;
1779
1780 /* long options */
1781 case 0:
1782 if (!strncmp(lgopts[option_index].name,
1783 OPTION_CONFIG,
1784 sizeof(OPTION_CONFIG))) {
1785 ret = parse_config(optarg);
1786 if (ret) {
1787 printf("invalid config\n");
1788 print_usage(prgname);
1789 return -1;
1790 }
1791 }
1792
1793 if (!strncmp(lgopts[option_index].name,
1794 OPTION_NONUMA,
1795 sizeof(OPTION_NONUMA))) {
1796 printf("numa is disabled\n");
1797 numa_on = 0;
1798 }
1799
1800 if (!strncmp(lgopts[option_index].name,
1801 OPTION_ENBJMO, sizeof(OPTION_ENBJMO))) {
1802 struct option lenopts = {
1803 "max-pkt-len",
1804 required_argument,
1805 0,
1806 0
1807 };
1808
1809 printf("jumbo frame is enabled\n");
1810 port_conf.rxmode.offloads |=
1811 DEV_RX_OFFLOAD_JUMBO_FRAME;
1812 port_conf.txmode.offloads |=
1813 DEV_TX_OFFLOAD_MULTI_SEGS;
1814
1815 /*
1816 * if no max-pkt-len set, then use the
1817 * default value RTE_ETHER_MAX_LEN
1818 */
1819 if (0 == getopt_long(argc, argvopt, "",
1820 &lenopts, &option_index)) {
1821 ret = parse_max_pkt_len(optarg);
1822 if ((ret < 64) ||
1823 (ret > MAX_JUMBO_PKT_LEN)) {
1824 printf("invalid packet "
1825 "length\n");
1826 print_usage(prgname);
1827 return -1;
1828 }
1829 port_conf.rxmode.max_rx_pkt_len = ret;
1830 }
1831 printf("set jumbo frame max packet length "
1832 "to %u\n",
1833 (unsigned int)
1834 port_conf.rxmode.max_rx_pkt_len);
1835 }
1836
1837 if (!strncmp(lgopts[option_index].name,
1838 OPTION_RULE_IPV4,
1839 sizeof(OPTION_RULE_IPV4)))
1840 parm_config.rule_ipv4_name = optarg;
1841
1842 if (!strncmp(lgopts[option_index].name,
1843 OPTION_RULE_IPV6,
1844 sizeof(OPTION_RULE_IPV6))) {
1845 parm_config.rule_ipv6_name = optarg;
1846 }
1847
1848 if (!strncmp(lgopts[option_index].name,
1849 OPTION_ALG, sizeof(OPTION_ALG))) {
1850 parm_config.alg = parse_acl_alg(optarg);
1851 if (parm_config.alg ==
1852 RTE_ACL_CLASSIFY_DEFAULT) {
1853 printf("unknown %s value:\"%s\"\n",
1854 OPTION_ALG, optarg);
1855 print_usage(prgname);
1856 return -1;
1857 }
1858 }
1859
1860 if (!strncmp(lgopts[option_index].name, OPTION_ETH_DEST,
1861 sizeof(OPTION_ETH_DEST))) {
1862 const char *serr = parse_eth_dest(optarg);
1863 if (serr != NULL) {
1864 printf("invalid %s value:\"%s\": %s\n",
1865 OPTION_ETH_DEST, optarg, serr);
1866 print_usage(prgname);
1867 return -1;
1868 }
1869 }
1870
1871 break;
1872
1873 default:
1874 print_usage(prgname);
1875 return -1;
1876 }
1877 }
1878
1879 if (optind >= 0)
1880 argv[optind-1] = prgname;
1881
1882 ret = optind-1;
1883 optind = 1; /* reset getopt lib */
1884 return ret;
1885 }
1886
1887 static void
print_ethaddr(const char * name,const struct rte_ether_addr * eth_addr)1888 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1889 {
1890 char buf[RTE_ETHER_ADDR_FMT_SIZE];
1891 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1892 printf("%s%s", name, buf);
1893 }
1894
1895 static int
init_mem(unsigned nb_mbuf)1896 init_mem(unsigned nb_mbuf)
1897 {
1898 int socketid;
1899 unsigned lcore_id;
1900 char s[64];
1901
1902 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1903 if (rte_lcore_is_enabled(lcore_id) == 0)
1904 continue;
1905
1906 if (numa_on)
1907 socketid = rte_lcore_to_socket_id(lcore_id);
1908 else
1909 socketid = 0;
1910
1911 if (socketid >= NB_SOCKETS) {
1912 rte_exit(EXIT_FAILURE,
1913 "Socket %d of lcore %u is out of range %d\n",
1914 socketid, lcore_id, NB_SOCKETS);
1915 }
1916 if (pktmbuf_pool[socketid] == NULL) {
1917 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1918 pktmbuf_pool[socketid] =
1919 rte_pktmbuf_pool_create(s, nb_mbuf,
1920 MEMPOOL_CACHE_SIZE, 0,
1921 RTE_MBUF_DEFAULT_BUF_SIZE,
1922 socketid);
1923 if (pktmbuf_pool[socketid] == NULL)
1924 rte_exit(EXIT_FAILURE,
1925 "Cannot init mbuf pool on socket %d\n",
1926 socketid);
1927 else
1928 printf("Allocated mbuf pool on socket %d\n",
1929 socketid);
1930 }
1931 }
1932 return 0;
1933 }
1934
1935 /* Check the link status of all ports in up to 9s, and print them finally */
1936 static void
check_all_ports_link_status(uint32_t port_mask)1937 check_all_ports_link_status(uint32_t port_mask)
1938 {
1939 #define CHECK_INTERVAL 100 /* 100ms */
1940 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1941 uint16_t portid;
1942 uint8_t count, all_ports_up, print_flag = 0;
1943 struct rte_eth_link link;
1944 int ret;
1945 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
1946
1947 printf("\nChecking link status");
1948 fflush(stdout);
1949 for (count = 0; count <= MAX_CHECK_TIME; count++) {
1950 all_ports_up = 1;
1951 RTE_ETH_FOREACH_DEV(portid) {
1952 if ((port_mask & (1 << portid)) == 0)
1953 continue;
1954 memset(&link, 0, sizeof(link));
1955 ret = rte_eth_link_get_nowait(portid, &link);
1956 if (ret < 0) {
1957 all_ports_up = 0;
1958 if (print_flag == 1)
1959 printf("Port %u link get failed: %s\n",
1960 portid, rte_strerror(-ret));
1961 continue;
1962 }
1963 /* print link status if flag set */
1964 if (print_flag == 1) {
1965 rte_eth_link_to_str(link_status_text,
1966 sizeof(link_status_text), &link);
1967 printf("Port %d %s\n", portid,
1968 link_status_text);
1969 continue;
1970 }
1971 /* clear all_ports_up flag if any link down */
1972 if (link.link_status == ETH_LINK_DOWN) {
1973 all_ports_up = 0;
1974 break;
1975 }
1976 }
1977 /* after finally printing all link status, get out */
1978 if (print_flag == 1)
1979 break;
1980
1981 if (all_ports_up == 0) {
1982 printf(".");
1983 fflush(stdout);
1984 rte_delay_ms(CHECK_INTERVAL);
1985 }
1986
1987 /* set the print_flag if all ports up or timeout */
1988 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1989 print_flag = 1;
1990 printf("done\n");
1991 }
1992 }
1993 }
1994
1995 /*
1996 * build-up default vaues for dest MACs.
1997 */
1998 static void
set_default_dest_mac(void)1999 set_default_dest_mac(void)
2000 {
2001 uint32_t i;
2002
2003 for (i = 0; i != RTE_DIM(port_l2hdr); i++) {
2004 port_l2hdr[i].d_addr.addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR;
2005 port_l2hdr[i].d_addr.addr_bytes[5] = i;
2006 }
2007 }
2008
2009 int
main(int argc,char ** argv)2010 main(int argc, char **argv)
2011 {
2012 struct lcore_conf *qconf;
2013 struct rte_eth_dev_info dev_info;
2014 struct rte_eth_txconf *txconf;
2015 int ret;
2016 unsigned nb_ports;
2017 uint16_t queueid;
2018 unsigned lcore_id;
2019 uint32_t n_tx_queue, nb_lcores;
2020 uint16_t portid;
2021 uint8_t nb_rx_queue, queue, socketid;
2022
2023 /* init EAL */
2024 ret = rte_eal_init(argc, argv);
2025 if (ret < 0)
2026 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2027 argc -= ret;
2028 argv += ret;
2029
2030 set_default_dest_mac();
2031
2032 /* parse application arguments (after the EAL ones) */
2033 ret = parse_args(argc, argv);
2034 if (ret < 0)
2035 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2036
2037 if (check_lcore_params() < 0)
2038 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2039
2040 ret = init_lcore_rx_queues();
2041 if (ret < 0)
2042 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2043
2044 nb_ports = rte_eth_dev_count_avail();
2045
2046 if (check_port_config() < 0)
2047 rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2048
2049 /* Add ACL rules and route entries, build trie */
2050 if (app_acl_init() < 0)
2051 rte_exit(EXIT_FAILURE, "app_acl_init failed\n");
2052
2053 nb_lcores = rte_lcore_count();
2054
2055 /* initialize all ports */
2056 RTE_ETH_FOREACH_DEV(portid) {
2057 struct rte_eth_conf local_port_conf = port_conf;
2058
2059 /* skip ports that are not enabled */
2060 if ((enabled_port_mask & (1 << portid)) == 0) {
2061 printf("\nSkipping disabled port %d\n", portid);
2062 continue;
2063 }
2064
2065 /* init port */
2066 printf("Initializing port %d ... ", portid);
2067 fflush(stdout);
2068
2069 nb_rx_queue = get_port_n_rx_queues(portid);
2070 n_tx_queue = nb_lcores;
2071 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
2072 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
2073 printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2074 nb_rx_queue, (unsigned)n_tx_queue);
2075
2076 ret = rte_eth_dev_info_get(portid, &dev_info);
2077 if (ret != 0)
2078 rte_exit(EXIT_FAILURE,
2079 "Error during getting device (port %u) info: %s\n",
2080 portid, strerror(-ret));
2081
2082 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2083 local_port_conf.txmode.offloads |=
2084 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2085
2086 local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2087 dev_info.flow_type_rss_offloads;
2088 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2089 port_conf.rx_adv_conf.rss_conf.rss_hf) {
2090 printf("Port %u modified RSS hash function based on hardware support,"
2091 "requested:%#"PRIx64" configured:%#"PRIx64"\n",
2092 portid,
2093 port_conf.rx_adv_conf.rss_conf.rss_hf,
2094 local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2095 }
2096
2097 ret = rte_eth_dev_configure(portid, nb_rx_queue,
2098 (uint16_t)n_tx_queue, &local_port_conf);
2099 if (ret < 0)
2100 rte_exit(EXIT_FAILURE,
2101 "Cannot configure device: err=%d, port=%d\n",
2102 ret, portid);
2103
2104 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2105 &nb_txd);
2106 if (ret < 0)
2107 rte_exit(EXIT_FAILURE,
2108 "rte_eth_dev_adjust_nb_rx_tx_desc: err=%d, port=%d\n",
2109 ret, portid);
2110
2111 ret = rte_eth_macaddr_get(portid, &port_l2hdr[portid].s_addr);
2112 if (ret < 0)
2113 rte_exit(EXIT_FAILURE,
2114 "rte_eth_macaddr_get: err=%d, port=%d\n",
2115 ret, portid);
2116
2117 print_ethaddr("Dst MAC:", &port_l2hdr[portid].d_addr);
2118 print_ethaddr(", Src MAC:", &port_l2hdr[portid].s_addr);
2119 printf(", ");
2120
2121 /* init memory */
2122 ret = init_mem(NB_MBUF);
2123 if (ret < 0)
2124 rte_exit(EXIT_FAILURE, "init_mem failed\n");
2125
2126 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2127 if (rte_lcore_is_enabled(lcore_id) == 0)
2128 continue;
2129
2130 /* Initialize TX buffers */
2131 qconf = &lcore_conf[lcore_id];
2132 qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
2133 RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
2134 rte_eth_dev_socket_id(portid));
2135 if (qconf->tx_buffer[portid] == NULL)
2136 rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
2137 (unsigned) portid);
2138
2139 rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
2140 }
2141
2142 /* init one TX queue per couple (lcore,port) */
2143 queueid = 0;
2144 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2145 if (rte_lcore_is_enabled(lcore_id) == 0)
2146 continue;
2147
2148 if (numa_on)
2149 socketid = (uint8_t)
2150 rte_lcore_to_socket_id(lcore_id);
2151 else
2152 socketid = 0;
2153
2154 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2155 fflush(stdout);
2156
2157 ret = rte_eth_dev_info_get(portid, &dev_info);
2158 if (ret != 0)
2159 rte_exit(EXIT_FAILURE,
2160 "Error during getting device (port %u) info: %s\n",
2161 portid, strerror(-ret));
2162
2163 txconf = &dev_info.default_txconf;
2164 txconf->offloads = local_port_conf.txmode.offloads;
2165 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2166 socketid, txconf);
2167 if (ret < 0)
2168 rte_exit(EXIT_FAILURE,
2169 "rte_eth_tx_queue_setup: err=%d, "
2170 "port=%d\n", ret, portid);
2171
2172 qconf = &lcore_conf[lcore_id];
2173 qconf->tx_queue_id[portid] = queueid;
2174 queueid++;
2175
2176 qconf->tx_port_id[qconf->n_tx_port] = portid;
2177 qconf->n_tx_port++;
2178 }
2179 printf("\n");
2180 }
2181
2182 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2183 if (rte_lcore_is_enabled(lcore_id) == 0)
2184 continue;
2185 qconf = &lcore_conf[lcore_id];
2186 printf("\nInitializing rx queues on lcore %u ... ", lcore_id);
2187 fflush(stdout);
2188 /* init RX queues */
2189 for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
2190 struct rte_eth_rxconf rxq_conf;
2191
2192 portid = qconf->rx_queue_list[queue].port_id;
2193 queueid = qconf->rx_queue_list[queue].queue_id;
2194
2195 if (numa_on)
2196 socketid = (uint8_t)
2197 rte_lcore_to_socket_id(lcore_id);
2198 else
2199 socketid = 0;
2200
2201 printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2202 fflush(stdout);
2203
2204 ret = rte_eth_dev_info_get(portid, &dev_info);
2205 if (ret != 0)
2206 rte_exit(EXIT_FAILURE,
2207 "Error during getting device (port %u) info: %s\n",
2208 portid, strerror(-ret));
2209
2210 rxq_conf = dev_info.default_rxconf;
2211 rxq_conf.offloads = port_conf.rxmode.offloads;
2212 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2213 socketid, &rxq_conf,
2214 pktmbuf_pool[socketid]);
2215 if (ret < 0)
2216 rte_exit(EXIT_FAILURE,
2217 "rte_eth_rx_queue_setup: err=%d,"
2218 "port=%d\n", ret, portid);
2219 }
2220 }
2221
2222 printf("\n");
2223
2224 /* start ports */
2225 RTE_ETH_FOREACH_DEV(portid) {
2226 if ((enabled_port_mask & (1 << portid)) == 0)
2227 continue;
2228
2229 /* Start device */
2230 ret = rte_eth_dev_start(portid);
2231 if (ret < 0)
2232 rte_exit(EXIT_FAILURE,
2233 "rte_eth_dev_start: err=%d, port=%d\n",
2234 ret, portid);
2235
2236 /*
2237 * If enabled, put device in promiscuous mode.
2238 * This allows IO forwarding mode to forward packets
2239 * to itself through 2 cross-connected ports of the
2240 * target machine.
2241 */
2242 if (promiscuous_on) {
2243 ret = rte_eth_promiscuous_enable(portid);
2244 if (ret != 0)
2245 rte_exit(EXIT_FAILURE,
2246 "rte_eth_promiscuous_enable: err=%s, port=%u\n",
2247 rte_strerror(-ret), portid);
2248 }
2249 }
2250
2251 check_all_ports_link_status(enabled_port_mask);
2252
2253 /* launch per-lcore init on every lcore */
2254 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
2255 RTE_LCORE_FOREACH_WORKER(lcore_id) {
2256 if (rte_eal_wait_lcore(lcore_id) < 0)
2257 return -1;
2258 }
2259
2260 return 0;
2261 }
2262