1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2018 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <unistd.h>
16 #include <signal.h>
17 #include <math.h>
18
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_malloc.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_atomic.h>
28 #include <rte_cycles.h>
29 #include <rte_prefetch.h>
30 #include <rte_lcore.h>
31 #include <rte_per_lcore.h>
32 #include <rte_branch_prediction.h>
33 #include <rte_interrupts.h>
34 #include <rte_random.h>
35 #include <rte_debug.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_mempool.h>
39 #include <rte_mbuf.h>
40 #include <rte_ip.h>
41 #include <rte_tcp.h>
42 #include <rte_udp.h>
43 #include <rte_string_fns.h>
44 #include <rte_timer.h>
45 #include <rte_power.h>
46 #include <rte_spinlock.h>
47 #include <rte_power_empty_poll.h>
48 #include <rte_metrics.h>
49 #include <rte_telemetry.h>
50
51 #include "perf_core.h"
52 #include "main.h"
53
54 #define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
55
56 #define MAX_PKT_BURST 32
57
58 #define MIN_ZERO_POLL_COUNT 10
59
60 /* 100 ms interval */
61 #define TIMER_NUMBER_PER_SECOND 10
62 /* (10ms) */
63 #define INTERVALS_PER_SECOND 100
64 /* 100000 us */
65 #define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND)
66 #define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
67
68 #define APP_LOOKUP_EXACT_MATCH 0
69 #define APP_LOOKUP_LPM 1
70 #define DO_RFC_1812_CHECKS
71
72 #ifndef APP_LOOKUP_METHOD
73 #define APP_LOOKUP_METHOD APP_LOOKUP_LPM
74 #endif
75
76 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
77 #include <rte_hash.h>
78 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
79 #include <rte_lpm.h>
80 #else
81 #error "APP_LOOKUP_METHOD set to incorrect value"
82 #endif
83
84 #ifndef IPv6_BYTES
85 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
86 "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
87 #define IPv6_BYTES(addr) \
88 addr[0], addr[1], addr[2], addr[3], \
89 addr[4], addr[5], addr[6], addr[7], \
90 addr[8], addr[9], addr[10], addr[11],\
91 addr[12], addr[13],addr[14], addr[15]
92 #endif
93
94 #define MAX_JUMBO_PKT_LEN 9600
95
96 #define IPV6_ADDR_LEN 16
97
98 #define MEMPOOL_CACHE_SIZE 256
99
100 /*
101 * This expression is used to calculate the number of mbufs needed depending on
102 * user input, taking into account memory for rx and tx hardware rings, cache
103 * per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
104 * NB_MBUF never goes below a minimum value of 8192.
105 */
106
107 #define NB_MBUF RTE_MAX ( \
108 (nb_ports*nb_rx_queue*nb_rxd + \
109 nb_ports*nb_lcores*MAX_PKT_BURST + \
110 nb_ports*n_tx_queue*nb_txd + \
111 nb_lcores*MEMPOOL_CACHE_SIZE), \
112 (unsigned)8192)
113
114 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
115
116 #define NB_SOCKETS 8
117
118 /* Configure how many packets ahead to prefetch, when reading packets */
119 #define PREFETCH_OFFSET 3
120
121 /*
122 * Configurable number of RX/TX ring descriptors
123 */
124 #define RTE_TEST_RX_DESC_DEFAULT 1024
125 #define RTE_TEST_TX_DESC_DEFAULT 1024
126
127 /*
128 * These two thresholds were decided on by running the training algorithm on
129 * a 2.5GHz Xeon. These defaults can be overridden by supplying non-zero values
130 * for the med_threshold and high_threshold parameters on the command line.
131 */
132 #define EMPTY_POLL_MED_THRESHOLD 350000UL
133 #define EMPTY_POLL_HGH_THRESHOLD 580000UL
134
135 #define NUM_TELSTATS RTE_DIM(telstats_strings)
136
137 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
138 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
139
140 /* ethernet addresses of ports */
141 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
142
143 /* ethernet addresses of ports */
144 static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
145
146 /* mask of enabled ports */
147 static uint32_t enabled_port_mask = 0;
148 /* Ports set in promiscuous mode off by default. */
149 static int promiscuous_on = 0;
150 /* NUMA is enabled by default. */
151 static int numa_on = 1;
152 static bool empty_poll_stop;
153 static bool empty_poll_train;
154 volatile bool quit_signal;
155 static struct ep_params *ep_params;
156 static struct ep_policy policy;
157 static long ep_med_edpi, ep_hgh_edpi;
158 /* timer to update telemetry every 500ms */
159 static struct rte_timer telemetry_timer;
160
161 /* stats index returned by metrics lib */
162 int telstats_index;
163
164 struct telstats_name {
165 char name[RTE_ETH_XSTATS_NAME_SIZE];
166 };
167
168 /* telemetry stats to be reported */
169 const struct telstats_name telstats_strings[] = {
170 {"empty_poll"},
171 {"full_poll"},
172 {"busy_percent"}
173 };
174
175 /* core busyness in percentage */
176 enum busy_rate {
177 ZERO = 0,
178 PARTIAL = 50,
179 FULL = 100
180 };
181
182 /* reference poll count to measure core busyness */
183 #define DEFAULT_COUNT 10000
184 /*
185 * reference CYCLES to be used to
186 * measure core busyness based on poll count
187 */
188 #define MIN_CYCLES 1500000ULL
189 #define MAX_CYCLES 22000000ULL
190
191 /* (500ms) */
192 #define TELEMETRY_INTERVALS_PER_SEC 2
193
194 static int parse_ptype; /**< Parse packet type using rx callback, and */
195 /**< disabled by default */
196
197 enum appmode {
198 APP_MODE_DEFAULT = 0,
199 APP_MODE_LEGACY,
200 APP_MODE_EMPTY_POLL,
201 APP_MODE_TELEMETRY,
202 APP_MODE_INTERRUPT
203 };
204
205 enum appmode app_mode;
206
207 enum freq_scale_hint_t
208 {
209 FREQ_LOWER = -1,
210 FREQ_CURRENT = 0,
211 FREQ_HIGHER = 1,
212 FREQ_HIGHEST = 2
213 };
214
215 struct lcore_rx_queue {
216 uint16_t port_id;
217 uint8_t queue_id;
218 enum freq_scale_hint_t freq_up_hint;
219 uint32_t zero_rx_packet_count;
220 uint32_t idle_hint;
221 } __rte_cache_aligned;
222
223 #define MAX_RX_QUEUE_PER_LCORE 16
224 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
225 #define MAX_RX_QUEUE_PER_PORT 128
226
227 #define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
228
229
230 struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
231 static struct lcore_params lcore_params_array_default[] = {
232 {0, 0, 2},
233 {0, 1, 2},
234 {0, 2, 2},
235 {1, 0, 2},
236 {1, 1, 2},
237 {1, 2, 2},
238 {2, 0, 2},
239 {3, 0, 3},
240 {3, 1, 3},
241 };
242
243 struct lcore_params *lcore_params = lcore_params_array_default;
244 uint16_t nb_lcore_params = RTE_DIM(lcore_params_array_default);
245
246 static struct rte_eth_conf port_conf = {
247 .rxmode = {
248 .mq_mode = ETH_MQ_RX_RSS,
249 .max_rx_pkt_len = RTE_ETHER_MAX_LEN,
250 .split_hdr_size = 0,
251 .offloads = DEV_RX_OFFLOAD_CHECKSUM,
252 },
253 .rx_adv_conf = {
254 .rss_conf = {
255 .rss_key = NULL,
256 .rss_hf = ETH_RSS_UDP,
257 },
258 },
259 .txmode = {
260 .mq_mode = ETH_MQ_TX_NONE,
261 }
262 };
263
264 static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
265
266
267 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
268
269 #ifdef RTE_ARCH_X86
270 #include <rte_hash_crc.h>
271 #define DEFAULT_HASH_FUNC rte_hash_crc
272 #else
273 #include <rte_jhash.h>
274 #define DEFAULT_HASH_FUNC rte_jhash
275 #endif
276
277 struct ipv4_5tuple {
278 uint32_t ip_dst;
279 uint32_t ip_src;
280 uint16_t port_dst;
281 uint16_t port_src;
282 uint8_t proto;
283 } __rte_packed;
284
285 struct ipv6_5tuple {
286 uint8_t ip_dst[IPV6_ADDR_LEN];
287 uint8_t ip_src[IPV6_ADDR_LEN];
288 uint16_t port_dst;
289 uint16_t port_src;
290 uint8_t proto;
291 } __rte_packed;
292
293 struct ipv4_l3fwd_route {
294 struct ipv4_5tuple key;
295 uint8_t if_out;
296 };
297
298 struct ipv6_l3fwd_route {
299 struct ipv6_5tuple key;
300 uint8_t if_out;
301 };
302
303 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
304 {{RTE_IPV4(100,10,0,1), RTE_IPV4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
305 {{RTE_IPV4(100,20,0,2), RTE_IPV4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
306 {{RTE_IPV4(100,30,0,3), RTE_IPV4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
307 {{RTE_IPV4(100,40,0,4), RTE_IPV4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
308 };
309
310 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
311 {
312 {
313 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
314 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
315 {0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
316 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
317 1, 10, IPPROTO_UDP
318 }, 4
319 },
320 };
321
322 typedef struct rte_hash lookup_struct_t;
323 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
324 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
325
326 #define L3FWD_HASH_ENTRIES 1024
327
328 static uint16_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
329 static uint16_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
330 #endif
331
332 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
333 struct ipv4_l3fwd_route {
334 uint32_t ip;
335 uint8_t depth;
336 uint8_t if_out;
337 };
338
339 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
340 {RTE_IPV4(1,1,1,0), 24, 0},
341 {RTE_IPV4(2,1,1,0), 24, 1},
342 {RTE_IPV4(3,1,1,0), 24, 2},
343 {RTE_IPV4(4,1,1,0), 24, 3},
344 {RTE_IPV4(5,1,1,0), 24, 4},
345 {RTE_IPV4(6,1,1,0), 24, 5},
346 {RTE_IPV4(7,1,1,0), 24, 6},
347 {RTE_IPV4(8,1,1,0), 24, 7},
348 };
349
350 #define IPV4_L3FWD_LPM_MAX_RULES 1024
351
352 typedef struct rte_lpm lookup_struct_t;
353 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
354 #endif
355
356 struct lcore_conf {
357 uint16_t n_rx_queue;
358 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
359 uint16_t n_tx_port;
360 uint16_t tx_port_id[RTE_MAX_ETHPORTS];
361 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
362 struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
363 lookup_struct_t * ipv4_lookup_struct;
364 lookup_struct_t * ipv6_lookup_struct;
365 } __rte_cache_aligned;
366
367 struct lcore_stats {
368 /* total sleep time in ms since last frequency scaling down */
369 uint32_t sleep_time;
370 /* number of long sleep recently */
371 uint32_t nb_long_sleep;
372 /* freq. scaling up trend */
373 uint32_t trend;
374 /* total packet processed recently */
375 uint64_t nb_rx_processed;
376 /* total iterations looped recently */
377 uint64_t nb_iteration_looped;
378 /*
379 * Represents empty and non empty polls
380 * of rte_eth_rx_burst();
381 * ep_nep[0] holds non empty polls
382 * i.e. 0 < nb_rx <= MAX_BURST
383 * ep_nep[1] holds empty polls.
384 * i.e. nb_rx == 0
385 */
386 uint64_t ep_nep[2];
387 /*
388 * Represents full and empty+partial
389 * polls of rte_eth_rx_burst();
390 * ep_nep[0] holds empty+partial polls.
391 * i.e. 0 <= nb_rx < MAX_BURST
392 * ep_nep[1] holds full polls
393 * i.e. nb_rx == MAX_BURST
394 */
395 uint64_t fp_nfp[2];
396 enum busy_rate br;
397 rte_spinlock_t telemetry_lock;
398 } __rte_cache_aligned;
399
400 static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
401 static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
402 static struct rte_timer power_timers[RTE_MAX_LCORE];
403
404 static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
405 static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
406 unsigned int lcore_id, uint16_t port_id, uint16_t queue_id);
407
408
409 /*
410 * These defaults are using the max frequency index (1), a medium index (9)
411 * and a typical low frequency index (14). These can be adjusted to use
412 * different indexes using the relevant command line parameters.
413 */
414 static uint8_t freq_tlb[] = {14, 9, 1};
415
is_done(void)416 static int is_done(void)
417 {
418 return quit_signal;
419 }
420
421 /* exit signal handler */
422 static void
signal_exit_now(int sigtype)423 signal_exit_now(int sigtype)
424 {
425
426 if (sigtype == SIGINT)
427 quit_signal = true;
428
429 }
430
431 /* Freqency scale down timer callback */
432 static void
power_timer_cb(__rte_unused struct rte_timer * tim,__rte_unused void * arg)433 power_timer_cb(__rte_unused struct rte_timer *tim,
434 __rte_unused void *arg)
435 {
436 uint64_t hz;
437 float sleep_time_ratio;
438 unsigned lcore_id = rte_lcore_id();
439
440 /* accumulate total execution time in us when callback is invoked */
441 sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
442 (float)SCALING_PERIOD;
443 /**
444 * check whether need to scale down frequency a step if it sleep a lot.
445 */
446 if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
447 if (rte_power_freq_down)
448 rte_power_freq_down(lcore_id);
449 }
450 else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
451 stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
452 /**
453 * scale down a step if average packet per iteration less
454 * than expectation.
455 */
456 if (rte_power_freq_down)
457 rte_power_freq_down(lcore_id);
458 }
459
460 /**
461 * initialize another timer according to current frequency to ensure
462 * timer interval is relatively fixed.
463 */
464 hz = rte_get_timer_hz();
465 rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
466 SINGLE, lcore_id, power_timer_cb, NULL);
467
468 stats[lcore_id].nb_rx_processed = 0;
469 stats[lcore_id].nb_iteration_looped = 0;
470
471 stats[lcore_id].sleep_time = 0;
472 }
473
474 /* Enqueue a single packet, and send burst if queue is filled */
475 static inline int
send_single_packet(struct rte_mbuf * m,uint16_t port)476 send_single_packet(struct rte_mbuf *m, uint16_t port)
477 {
478 uint32_t lcore_id;
479 struct lcore_conf *qconf;
480
481 lcore_id = rte_lcore_id();
482 qconf = &lcore_conf[lcore_id];
483
484 rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
485 qconf->tx_buffer[port], m);
486
487 return 0;
488 }
489
490 #ifdef DO_RFC_1812_CHECKS
491 static inline int
is_valid_ipv4_pkt(struct rte_ipv4_hdr * pkt,uint32_t link_len)492 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
493 {
494 /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
495 /*
496 * 1. The packet length reported by the Link Layer must be large
497 * enough to hold the minimum length legal IP datagram (20 bytes).
498 */
499 if (link_len < sizeof(struct rte_ipv4_hdr))
500 return -1;
501
502 /* 2. The IP checksum must be correct. */
503 /* this is checked in H/W */
504
505 /*
506 * 3. The IP version number must be 4. If the version number is not 4
507 * then the packet may be another version of IP, such as IPng or
508 * ST-II.
509 */
510 if (((pkt->version_ihl) >> 4) != 4)
511 return -3;
512 /*
513 * 4. The IP header length field must be large enough to hold the
514 * minimum length legal IP datagram (20 bytes = 5 words).
515 */
516 if ((pkt->version_ihl & 0xf) < 5)
517 return -4;
518
519 /*
520 * 5. The IP total length field must be large enough to hold the IP
521 * datagram header, whose length is specified in the IP header length
522 * field.
523 */
524 if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
525 return -5;
526
527 return 0;
528 }
529 #endif
530
531 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
532 static void
print_ipv4_key(struct ipv4_5tuple key)533 print_ipv4_key(struct ipv4_5tuple key)
534 {
535 printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
536 "proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
537 key.port_dst, key.port_src, key.proto);
538 }
539 static void
print_ipv6_key(struct ipv6_5tuple key)540 print_ipv6_key(struct ipv6_5tuple key)
541 {
542 printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
543 "port dst = %d, port src = %d, proto = %d\n",
544 IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
545 key.port_dst, key.port_src, key.proto);
546 }
547
548 static inline uint16_t
get_ipv4_dst_port(struct rte_ipv4_hdr * ipv4_hdr,uint16_t portid,lookup_struct_t * ipv4_l3fwd_lookup_struct)549 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
550 lookup_struct_t * ipv4_l3fwd_lookup_struct)
551 {
552 struct ipv4_5tuple key;
553 struct rte_tcp_hdr *tcp;
554 struct rte_udp_hdr *udp;
555 int ret = 0;
556
557 key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
558 key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
559 key.proto = ipv4_hdr->next_proto_id;
560
561 switch (ipv4_hdr->next_proto_id) {
562 case IPPROTO_TCP:
563 tcp = (struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr +
564 sizeof(struct rte_ipv4_hdr));
565 key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
566 key.port_src = rte_be_to_cpu_16(tcp->src_port);
567 break;
568
569 case IPPROTO_UDP:
570 udp = (struct rte_udp_hdr *)((unsigned char *)ipv4_hdr +
571 sizeof(struct rte_ipv4_hdr));
572 key.port_dst = rte_be_to_cpu_16(udp->dst_port);
573 key.port_src = rte_be_to_cpu_16(udp->src_port);
574 break;
575
576 default:
577 key.port_dst = 0;
578 key.port_src = 0;
579 break;
580 }
581
582 /* Find destination port */
583 ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
584 return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
585 }
586
587 static inline uint16_t
get_ipv6_dst_port(struct rte_ipv6_hdr * ipv6_hdr,uint16_t portid,lookup_struct_t * ipv6_l3fwd_lookup_struct)588 get_ipv6_dst_port(struct rte_ipv6_hdr *ipv6_hdr, uint16_t portid,
589 lookup_struct_t *ipv6_l3fwd_lookup_struct)
590 {
591 struct ipv6_5tuple key;
592 struct rte_tcp_hdr *tcp;
593 struct rte_udp_hdr *udp;
594 int ret = 0;
595
596 memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
597 memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
598
599 key.proto = ipv6_hdr->proto;
600
601 switch (ipv6_hdr->proto) {
602 case IPPROTO_TCP:
603 tcp = (struct rte_tcp_hdr *)((unsigned char *) ipv6_hdr +
604 sizeof(struct rte_ipv6_hdr));
605 key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
606 key.port_src = rte_be_to_cpu_16(tcp->src_port);
607 break;
608
609 case IPPROTO_UDP:
610 udp = (struct rte_udp_hdr *)((unsigned char *) ipv6_hdr +
611 sizeof(struct rte_ipv6_hdr));
612 key.port_dst = rte_be_to_cpu_16(udp->dst_port);
613 key.port_src = rte_be_to_cpu_16(udp->src_port);
614 break;
615
616 default:
617 key.port_dst = 0;
618 key.port_src = 0;
619 break;
620 }
621
622 /* Find destination port */
623 ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
624 return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
625 }
626 #endif
627
628 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
629 static inline uint16_t
get_ipv4_dst_port(struct rte_ipv4_hdr * ipv4_hdr,uint16_t portid,lookup_struct_t * ipv4_l3fwd_lookup_struct)630 get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
631 lookup_struct_t *ipv4_l3fwd_lookup_struct)
632 {
633 uint32_t next_hop;
634
635 return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
636 rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
637 next_hop : portid);
638 }
639 #endif
640
641 static inline void
parse_ptype_one(struct rte_mbuf * m)642 parse_ptype_one(struct rte_mbuf *m)
643 {
644 struct rte_ether_hdr *eth_hdr;
645 uint32_t packet_type = RTE_PTYPE_UNKNOWN;
646 uint16_t ether_type;
647
648 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
649 ether_type = eth_hdr->ether_type;
650 if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
651 packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
652 else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
653 packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
654
655 m->packet_type = packet_type;
656 }
657
658 static uint16_t
cb_parse_ptype(uint16_t port __rte_unused,uint16_t queue __rte_unused,struct rte_mbuf * pkts[],uint16_t nb_pkts,uint16_t max_pkts __rte_unused,void * user_param __rte_unused)659 cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
660 struct rte_mbuf *pkts[], uint16_t nb_pkts,
661 uint16_t max_pkts __rte_unused,
662 void *user_param __rte_unused)
663 {
664 unsigned int i;
665
666 for (i = 0; i < nb_pkts; ++i)
667 parse_ptype_one(pkts[i]);
668
669 return nb_pkts;
670 }
671
672 static int
add_cb_parse_ptype(uint16_t portid,uint16_t queueid)673 add_cb_parse_ptype(uint16_t portid, uint16_t queueid)
674 {
675 printf("Port %d: softly parse packet type info\n", portid);
676 if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
677 return 0;
678
679 printf("Failed to add rx callback: port=%d\n", portid);
680 return -1;
681 }
682
683 static inline void
l3fwd_simple_forward(struct rte_mbuf * m,uint16_t portid,struct lcore_conf * qconf)684 l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
685 struct lcore_conf *qconf)
686 {
687 struct rte_ether_hdr *eth_hdr;
688 struct rte_ipv4_hdr *ipv4_hdr;
689 void *d_addr_bytes;
690 uint16_t dst_port;
691
692 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
693
694 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
695 /* Handle IPv4 headers.*/
696 ipv4_hdr =
697 rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
698 sizeof(struct rte_ether_hdr));
699
700 #ifdef DO_RFC_1812_CHECKS
701 /* Check to make sure the packet is valid (RFC1812) */
702 if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
703 rte_pktmbuf_free(m);
704 return;
705 }
706 #endif
707
708 dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
709 qconf->ipv4_lookup_struct);
710 if (dst_port >= RTE_MAX_ETHPORTS ||
711 (enabled_port_mask & 1 << dst_port) == 0)
712 dst_port = portid;
713
714 /* 02:00:00:00:00:xx */
715 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
716 *((uint64_t *)d_addr_bytes) =
717 0x000000000002 + ((uint64_t)dst_port << 40);
718
719 #ifdef DO_RFC_1812_CHECKS
720 /* Update time to live and header checksum */
721 --(ipv4_hdr->time_to_live);
722 ++(ipv4_hdr->hdr_checksum);
723 #endif
724
725 /* src addr */
726 rte_ether_addr_copy(&ports_eth_addr[dst_port],
727 ð_hdr->s_addr);
728
729 send_single_packet(m, dst_port);
730 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
731 /* Handle IPv6 headers.*/
732 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
733 struct rte_ipv6_hdr *ipv6_hdr;
734
735 ipv6_hdr =
736 rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
737 sizeof(struct rte_ether_hdr));
738
739 dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
740 qconf->ipv6_lookup_struct);
741
742 if (dst_port >= RTE_MAX_ETHPORTS ||
743 (enabled_port_mask & 1 << dst_port) == 0)
744 dst_port = portid;
745
746 /* 02:00:00:00:00:xx */
747 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
748 *((uint64_t *)d_addr_bytes) =
749 0x000000000002 + ((uint64_t)dst_port << 40);
750
751 /* src addr */
752 rte_ether_addr_copy(&ports_eth_addr[dst_port],
753 ð_hdr->s_addr);
754
755 send_single_packet(m, dst_port);
756 #else
757 /* We don't currently handle IPv6 packets in LPM mode. */
758 rte_pktmbuf_free(m);
759 #endif
760 } else
761 rte_pktmbuf_free(m);
762
763 }
764
765 #define MINIMUM_SLEEP_TIME 1
766 #define SUSPEND_THRESHOLD 300
767
768 static inline uint32_t
power_idle_heuristic(uint32_t zero_rx_packet_count)769 power_idle_heuristic(uint32_t zero_rx_packet_count)
770 {
771 /* If zero count is less than 100, sleep 1us */
772 if (zero_rx_packet_count < SUSPEND_THRESHOLD)
773 return MINIMUM_SLEEP_TIME;
774 /* If zero count is less than 1000, sleep 100 us which is the
775 minimum latency switching from C3/C6 to C0
776 */
777 else
778 return SUSPEND_THRESHOLD;
779 }
780
781 static inline enum freq_scale_hint_t
power_freq_scaleup_heuristic(unsigned lcore_id,uint16_t port_id,uint16_t queue_id)782 power_freq_scaleup_heuristic(unsigned lcore_id,
783 uint16_t port_id,
784 uint16_t queue_id)
785 {
786 uint32_t rxq_count = rte_eth_rx_queue_count(port_id, queue_id);
787 /**
788 * HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
789 * per iteration
790 */
791 #define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST
792 #define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2)
793 #define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3)
794 #define FREQ_UP_TREND1_ACC 1
795 #define FREQ_UP_TREND2_ACC 100
796 #define FREQ_UP_THRESHOLD 10000
797
798 if (likely(rxq_count > FREQ_GEAR3_RX_PACKET_THRESHOLD)) {
799 stats[lcore_id].trend = 0;
800 return FREQ_HIGHEST;
801 } else if (likely(rxq_count > FREQ_GEAR2_RX_PACKET_THRESHOLD))
802 stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
803 else if (likely(rxq_count > FREQ_GEAR1_RX_PACKET_THRESHOLD))
804 stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
805
806 if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
807 stats[lcore_id].trend = 0;
808 return FREQ_HIGHER;
809 }
810
811 return FREQ_CURRENT;
812 }
813
814 /**
815 * force polling thread sleep until one-shot rx interrupt triggers
816 * @param port_id
817 * Port id.
818 * @param queue_id
819 * Rx queue id.
820 * @return
821 * 0 on success
822 */
823 static int
sleep_until_rx_interrupt(int num,int lcore)824 sleep_until_rx_interrupt(int num, int lcore)
825 {
826 /*
827 * we want to track when we are woken up by traffic so that we can go
828 * back to sleep again without log spamming. Avoid cache line sharing
829 * to prevent threads stepping on each others' toes.
830 */
831 static struct {
832 bool wakeup;
833 } __rte_cache_aligned status[RTE_MAX_LCORE];
834 struct rte_epoll_event event[num];
835 int n, i;
836 uint16_t port_id;
837 uint8_t queue_id;
838 void *data;
839
840 if (status[lcore].wakeup) {
841 RTE_LOG(INFO, L3FWD_POWER,
842 "lcore %u sleeps until interrupt triggers\n",
843 rte_lcore_id());
844 }
845
846 n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, 10);
847 for (i = 0; i < n; i++) {
848 data = event[i].epdata.data;
849 port_id = ((uintptr_t)data) >> CHAR_BIT;
850 queue_id = ((uintptr_t)data) &
851 RTE_LEN2MASK(CHAR_BIT, uint8_t);
852 RTE_LOG(INFO, L3FWD_POWER,
853 "lcore %u is waked up from rx interrupt on"
854 " port %d queue %d\n",
855 rte_lcore_id(), port_id, queue_id);
856 }
857 status[lcore].wakeup = n != 0;
858
859 return 0;
860 }
861
turn_on_off_intr(struct lcore_conf * qconf,bool on)862 static void turn_on_off_intr(struct lcore_conf *qconf, bool on)
863 {
864 int i;
865 struct lcore_rx_queue *rx_queue;
866 uint8_t queue_id;
867 uint16_t port_id;
868
869 for (i = 0; i < qconf->n_rx_queue; ++i) {
870 rx_queue = &(qconf->rx_queue_list[i]);
871 port_id = rx_queue->port_id;
872 queue_id = rx_queue->queue_id;
873
874 rte_spinlock_lock(&(locks[port_id]));
875 if (on)
876 rte_eth_dev_rx_intr_enable(port_id, queue_id);
877 else
878 rte_eth_dev_rx_intr_disable(port_id, queue_id);
879 rte_spinlock_unlock(&(locks[port_id]));
880 }
881 }
882
event_register(struct lcore_conf * qconf)883 static int event_register(struct lcore_conf *qconf)
884 {
885 struct lcore_rx_queue *rx_queue;
886 uint8_t queueid;
887 uint16_t portid;
888 uint32_t data;
889 int ret;
890 int i;
891
892 for (i = 0; i < qconf->n_rx_queue; ++i) {
893 rx_queue = &(qconf->rx_queue_list[i]);
894 portid = rx_queue->port_id;
895 queueid = rx_queue->queue_id;
896 data = portid << CHAR_BIT | queueid;
897
898 ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
899 RTE_EPOLL_PER_THREAD,
900 RTE_INTR_EVENT_ADD,
901 (void *)((uintptr_t)data));
902 if (ret)
903 return ret;
904 }
905
906 return 0;
907 }
908
909 /* main processing loop */
main_intr_loop(__rte_unused void * dummy)910 static int main_intr_loop(__rte_unused void *dummy)
911 {
912 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
913 unsigned int lcore_id;
914 uint64_t prev_tsc, diff_tsc, cur_tsc;
915 int i, j, nb_rx;
916 uint8_t queueid;
917 uint16_t portid;
918 struct lcore_conf *qconf;
919 struct lcore_rx_queue *rx_queue;
920 uint32_t lcore_rx_idle_count = 0;
921 uint32_t lcore_idle_hint = 0;
922 int intr_en = 0;
923
924 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
925 US_PER_S * BURST_TX_DRAIN_US;
926
927 prev_tsc = 0;
928
929 lcore_id = rte_lcore_id();
930 qconf = &lcore_conf[lcore_id];
931
932 if (qconf->n_rx_queue == 0) {
933 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
934 lcore_id);
935 return 0;
936 }
937
938 RTE_LOG(INFO, L3FWD_POWER, "entering main interrupt loop on lcore %u\n",
939 lcore_id);
940
941 for (i = 0; i < qconf->n_rx_queue; i++) {
942 portid = qconf->rx_queue_list[i].port_id;
943 queueid = qconf->rx_queue_list[i].queue_id;
944 RTE_LOG(INFO, L3FWD_POWER,
945 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
946 lcore_id, portid, queueid);
947 }
948
949 /* add into event wait list */
950 if (event_register(qconf) == 0)
951 intr_en = 1;
952 else
953 RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
954
955 while (!is_done()) {
956 stats[lcore_id].nb_iteration_looped++;
957
958 cur_tsc = rte_rdtsc();
959
960 /*
961 * TX burst queue drain
962 */
963 diff_tsc = cur_tsc - prev_tsc;
964 if (unlikely(diff_tsc > drain_tsc)) {
965 for (i = 0; i < qconf->n_tx_port; ++i) {
966 portid = qconf->tx_port_id[i];
967 rte_eth_tx_buffer_flush(portid,
968 qconf->tx_queue_id[portid],
969 qconf->tx_buffer[portid]);
970 }
971 prev_tsc = cur_tsc;
972 }
973
974 start_rx:
975 /*
976 * Read packet from RX queues
977 */
978 lcore_rx_idle_count = 0;
979 for (i = 0; i < qconf->n_rx_queue; ++i) {
980 rx_queue = &(qconf->rx_queue_list[i]);
981 rx_queue->idle_hint = 0;
982 portid = rx_queue->port_id;
983 queueid = rx_queue->queue_id;
984
985 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
986 MAX_PKT_BURST);
987
988 stats[lcore_id].nb_rx_processed += nb_rx;
989 if (unlikely(nb_rx == 0)) {
990 /**
991 * no packet received from rx queue, try to
992 * sleep for a while forcing CPU enter deeper
993 * C states.
994 */
995 rx_queue->zero_rx_packet_count++;
996
997 if (rx_queue->zero_rx_packet_count <=
998 MIN_ZERO_POLL_COUNT)
999 continue;
1000
1001 rx_queue->idle_hint = power_idle_heuristic(
1002 rx_queue->zero_rx_packet_count);
1003 lcore_rx_idle_count++;
1004 } else {
1005 rx_queue->zero_rx_packet_count = 0;
1006 }
1007
1008 /* Prefetch first packets */
1009 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1010 rte_prefetch0(rte_pktmbuf_mtod(
1011 pkts_burst[j], void *));
1012 }
1013
1014 /* Prefetch and forward already prefetched packets */
1015 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1016 rte_prefetch0(rte_pktmbuf_mtod(
1017 pkts_burst[j + PREFETCH_OFFSET],
1018 void *));
1019 l3fwd_simple_forward(
1020 pkts_burst[j], portid, qconf);
1021 }
1022
1023 /* Forward remaining prefetched packets */
1024 for (; j < nb_rx; j++) {
1025 l3fwd_simple_forward(
1026 pkts_burst[j], portid, qconf);
1027 }
1028 }
1029
1030 if (unlikely(lcore_rx_idle_count == qconf->n_rx_queue)) {
1031 /**
1032 * All Rx queues empty in recent consecutive polls,
1033 * sleep in a conservative manner, meaning sleep as
1034 * less as possible.
1035 */
1036 for (i = 1,
1037 lcore_idle_hint = qconf->rx_queue_list[0].idle_hint;
1038 i < qconf->n_rx_queue; ++i) {
1039 rx_queue = &(qconf->rx_queue_list[i]);
1040 if (rx_queue->idle_hint < lcore_idle_hint)
1041 lcore_idle_hint = rx_queue->idle_hint;
1042 }
1043
1044 if (lcore_idle_hint < SUSPEND_THRESHOLD)
1045 /**
1046 * execute "pause" instruction to avoid context
1047 * switch which generally take hundred of
1048 * microseconds for short sleep.
1049 */
1050 rte_delay_us(lcore_idle_hint);
1051 else {
1052 /* suspend until rx interrupt triggers */
1053 if (intr_en) {
1054 turn_on_off_intr(qconf, 1);
1055 sleep_until_rx_interrupt(
1056 qconf->n_rx_queue,
1057 lcore_id);
1058 turn_on_off_intr(qconf, 0);
1059 /**
1060 * start receiving packets immediately
1061 */
1062 if (likely(!is_done()))
1063 goto start_rx;
1064 }
1065 }
1066 stats[lcore_id].sleep_time += lcore_idle_hint;
1067 }
1068 }
1069
1070 return 0;
1071 }
1072
1073 /* main processing loop */
1074 static int
main_telemetry_loop(__rte_unused void * dummy)1075 main_telemetry_loop(__rte_unused void *dummy)
1076 {
1077 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1078 unsigned int lcore_id;
1079 uint64_t prev_tsc, diff_tsc, cur_tsc, prev_tel_tsc;
1080 int i, j, nb_rx;
1081 uint8_t queueid;
1082 uint16_t portid;
1083 struct lcore_conf *qconf;
1084 struct lcore_rx_queue *rx_queue;
1085 uint64_t ep_nep[2] = {0}, fp_nfp[2] = {0};
1086 uint64_t poll_count;
1087 enum busy_rate br;
1088
1089 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
1090 US_PER_S * BURST_TX_DRAIN_US;
1091
1092 poll_count = 0;
1093 prev_tsc = 0;
1094 prev_tel_tsc = 0;
1095
1096 lcore_id = rte_lcore_id();
1097 qconf = &lcore_conf[lcore_id];
1098
1099 if (qconf->n_rx_queue == 0) {
1100 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1101 lcore_id);
1102 return 0;
1103 }
1104
1105 RTE_LOG(INFO, L3FWD_POWER, "entering main telemetry loop on lcore %u\n",
1106 lcore_id);
1107
1108 for (i = 0; i < qconf->n_rx_queue; i++) {
1109 portid = qconf->rx_queue_list[i].port_id;
1110 queueid = qconf->rx_queue_list[i].queue_id;
1111 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1112 "rxqueueid=%hhu\n", lcore_id, portid, queueid);
1113 }
1114
1115 while (!is_done()) {
1116
1117 cur_tsc = rte_rdtsc();
1118 /*
1119 * TX burst queue drain
1120 */
1121 diff_tsc = cur_tsc - prev_tsc;
1122 if (unlikely(diff_tsc > drain_tsc)) {
1123 for (i = 0; i < qconf->n_tx_port; ++i) {
1124 portid = qconf->tx_port_id[i];
1125 rte_eth_tx_buffer_flush(portid,
1126 qconf->tx_queue_id[portid],
1127 qconf->tx_buffer[portid]);
1128 }
1129 prev_tsc = cur_tsc;
1130 }
1131
1132 /*
1133 * Read packet from RX queues
1134 */
1135 for (i = 0; i < qconf->n_rx_queue; ++i) {
1136 rx_queue = &(qconf->rx_queue_list[i]);
1137 portid = rx_queue->port_id;
1138 queueid = rx_queue->queue_id;
1139
1140 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1141 MAX_PKT_BURST);
1142 ep_nep[nb_rx == 0]++;
1143 fp_nfp[nb_rx == MAX_PKT_BURST]++;
1144 poll_count++;
1145 if (unlikely(nb_rx == 0))
1146 continue;
1147
1148 /* Prefetch first packets */
1149 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1150 rte_prefetch0(rte_pktmbuf_mtod(
1151 pkts_burst[j], void *));
1152 }
1153
1154 /* Prefetch and forward already prefetched packets */
1155 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1156 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1157 j + PREFETCH_OFFSET], void *));
1158 l3fwd_simple_forward(pkts_burst[j], portid,
1159 qconf);
1160 }
1161
1162 /* Forward remaining prefetched packets */
1163 for (; j < nb_rx; j++) {
1164 l3fwd_simple_forward(pkts_burst[j], portid,
1165 qconf);
1166 }
1167 }
1168 if (unlikely(poll_count >= DEFAULT_COUNT)) {
1169 diff_tsc = cur_tsc - prev_tel_tsc;
1170 if (diff_tsc >= MAX_CYCLES) {
1171 br = FULL;
1172 } else if (diff_tsc > MIN_CYCLES &&
1173 diff_tsc < MAX_CYCLES) {
1174 br = (diff_tsc * 100) / MAX_CYCLES;
1175 } else {
1176 br = ZERO;
1177 }
1178 poll_count = 0;
1179 prev_tel_tsc = cur_tsc;
1180 /* update stats for telemetry */
1181 rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
1182 stats[lcore_id].ep_nep[0] = ep_nep[0];
1183 stats[lcore_id].ep_nep[1] = ep_nep[1];
1184 stats[lcore_id].fp_nfp[0] = fp_nfp[0];
1185 stats[lcore_id].fp_nfp[1] = fp_nfp[1];
1186 stats[lcore_id].br = br;
1187 rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
1188 }
1189 }
1190
1191 return 0;
1192 }
1193 /* main processing loop */
1194 static int
main_empty_poll_loop(__rte_unused void * dummy)1195 main_empty_poll_loop(__rte_unused void *dummy)
1196 {
1197 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1198 unsigned int lcore_id;
1199 uint64_t prev_tsc, diff_tsc, cur_tsc;
1200 int i, j, nb_rx;
1201 uint8_t queueid;
1202 uint16_t portid;
1203 struct lcore_conf *qconf;
1204 struct lcore_rx_queue *rx_queue;
1205
1206 const uint64_t drain_tsc =
1207 (rte_get_tsc_hz() + US_PER_S - 1) /
1208 US_PER_S * BURST_TX_DRAIN_US;
1209
1210 prev_tsc = 0;
1211
1212 lcore_id = rte_lcore_id();
1213 qconf = &lcore_conf[lcore_id];
1214
1215 if (qconf->n_rx_queue == 0) {
1216 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
1217 lcore_id);
1218 return 0;
1219 }
1220
1221 for (i = 0; i < qconf->n_rx_queue; i++) {
1222 portid = qconf->rx_queue_list[i].port_id;
1223 queueid = qconf->rx_queue_list[i].queue_id;
1224 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1225 "rxqueueid=%hhu\n", lcore_id, portid, queueid);
1226 }
1227
1228 while (!is_done()) {
1229 stats[lcore_id].nb_iteration_looped++;
1230
1231 cur_tsc = rte_rdtsc();
1232 /*
1233 * TX burst queue drain
1234 */
1235 diff_tsc = cur_tsc - prev_tsc;
1236 if (unlikely(diff_tsc > drain_tsc)) {
1237 for (i = 0; i < qconf->n_tx_port; ++i) {
1238 portid = qconf->tx_port_id[i];
1239 rte_eth_tx_buffer_flush(portid,
1240 qconf->tx_queue_id[portid],
1241 qconf->tx_buffer[portid]);
1242 }
1243 prev_tsc = cur_tsc;
1244 }
1245
1246 /*
1247 * Read packet from RX queues
1248 */
1249 for (i = 0; i < qconf->n_rx_queue; ++i) {
1250 rx_queue = &(qconf->rx_queue_list[i]);
1251 rx_queue->idle_hint = 0;
1252 portid = rx_queue->port_id;
1253 queueid = rx_queue->queue_id;
1254
1255 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1256 MAX_PKT_BURST);
1257
1258 stats[lcore_id].nb_rx_processed += nb_rx;
1259
1260 if (nb_rx == 0) {
1261
1262 rte_power_empty_poll_stat_update(lcore_id);
1263
1264 continue;
1265 } else {
1266 rte_power_poll_stat_update(lcore_id, nb_rx);
1267 }
1268
1269
1270 /* Prefetch first packets */
1271 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1272 rte_prefetch0(rte_pktmbuf_mtod(
1273 pkts_burst[j], void *));
1274 }
1275
1276 /* Prefetch and forward already prefetched packets */
1277 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1278 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1279 j + PREFETCH_OFFSET],
1280 void *));
1281 l3fwd_simple_forward(pkts_burst[j], portid,
1282 qconf);
1283 }
1284
1285 /* Forward remaining prefetched packets */
1286 for (; j < nb_rx; j++) {
1287 l3fwd_simple_forward(pkts_burst[j], portid,
1288 qconf);
1289 }
1290
1291 }
1292
1293 }
1294
1295 return 0;
1296 }
1297 /* main processing loop */
1298 static int
main_legacy_loop(__rte_unused void * dummy)1299 main_legacy_loop(__rte_unused void *dummy)
1300 {
1301 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1302 unsigned lcore_id;
1303 uint64_t prev_tsc, diff_tsc, cur_tsc, tim_res_tsc, hz;
1304 uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
1305 int i, j, nb_rx;
1306 uint8_t queueid;
1307 uint16_t portid;
1308 struct lcore_conf *qconf;
1309 struct lcore_rx_queue *rx_queue;
1310 enum freq_scale_hint_t lcore_scaleup_hint;
1311 uint32_t lcore_rx_idle_count = 0;
1312 uint32_t lcore_idle_hint = 0;
1313 int intr_en = 0;
1314
1315 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
1316
1317 prev_tsc = 0;
1318 hz = rte_get_timer_hz();
1319 tim_res_tsc = hz/TIMER_NUMBER_PER_SECOND;
1320
1321 lcore_id = rte_lcore_id();
1322 qconf = &lcore_conf[lcore_id];
1323
1324 if (qconf->n_rx_queue == 0) {
1325 RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
1326 return 0;
1327 }
1328
1329 RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
1330
1331 for (i = 0; i < qconf->n_rx_queue; i++) {
1332 portid = qconf->rx_queue_list[i].port_id;
1333 queueid = qconf->rx_queue_list[i].queue_id;
1334 RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
1335 "rxqueueid=%hhu\n", lcore_id, portid, queueid);
1336 }
1337
1338 /* add into event wait list */
1339 if (event_register(qconf) == 0)
1340 intr_en = 1;
1341 else
1342 RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
1343
1344 while (!is_done()) {
1345 stats[lcore_id].nb_iteration_looped++;
1346
1347 cur_tsc = rte_rdtsc();
1348 cur_tsc_power = cur_tsc;
1349
1350 /*
1351 * TX burst queue drain
1352 */
1353 diff_tsc = cur_tsc - prev_tsc;
1354 if (unlikely(diff_tsc > drain_tsc)) {
1355 for (i = 0; i < qconf->n_tx_port; ++i) {
1356 portid = qconf->tx_port_id[i];
1357 rte_eth_tx_buffer_flush(portid,
1358 qconf->tx_queue_id[portid],
1359 qconf->tx_buffer[portid]);
1360 }
1361 prev_tsc = cur_tsc;
1362 }
1363
1364 diff_tsc_power = cur_tsc_power - prev_tsc_power;
1365 if (diff_tsc_power > tim_res_tsc) {
1366 rte_timer_manage();
1367 prev_tsc_power = cur_tsc_power;
1368 }
1369
1370 start_rx:
1371 /*
1372 * Read packet from RX queues
1373 */
1374 lcore_scaleup_hint = FREQ_CURRENT;
1375 lcore_rx_idle_count = 0;
1376 for (i = 0; i < qconf->n_rx_queue; ++i) {
1377 rx_queue = &(qconf->rx_queue_list[i]);
1378 rx_queue->idle_hint = 0;
1379 portid = rx_queue->port_id;
1380 queueid = rx_queue->queue_id;
1381
1382 nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
1383 MAX_PKT_BURST);
1384
1385 stats[lcore_id].nb_rx_processed += nb_rx;
1386 if (unlikely(nb_rx == 0)) {
1387 /**
1388 * no packet received from rx queue, try to
1389 * sleep for a while forcing CPU enter deeper
1390 * C states.
1391 */
1392 rx_queue->zero_rx_packet_count++;
1393
1394 if (rx_queue->zero_rx_packet_count <=
1395 MIN_ZERO_POLL_COUNT)
1396 continue;
1397
1398 rx_queue->idle_hint = power_idle_heuristic(\
1399 rx_queue->zero_rx_packet_count);
1400 lcore_rx_idle_count++;
1401 } else {
1402 rx_queue->zero_rx_packet_count = 0;
1403
1404 /**
1405 * do not scale up frequency immediately as
1406 * user to kernel space communication is costly
1407 * which might impact packet I/O for received
1408 * packets.
1409 */
1410 rx_queue->freq_up_hint =
1411 power_freq_scaleup_heuristic(lcore_id,
1412 portid, queueid);
1413 }
1414
1415 /* Prefetch first packets */
1416 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
1417 rte_prefetch0(rte_pktmbuf_mtod(
1418 pkts_burst[j], void *));
1419 }
1420
1421 /* Prefetch and forward already prefetched packets */
1422 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
1423 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
1424 j + PREFETCH_OFFSET], void *));
1425 l3fwd_simple_forward(pkts_burst[j], portid,
1426 qconf);
1427 }
1428
1429 /* Forward remaining prefetched packets */
1430 for (; j < nb_rx; j++) {
1431 l3fwd_simple_forward(pkts_burst[j], portid,
1432 qconf);
1433 }
1434 }
1435
1436 if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
1437 for (i = 1, lcore_scaleup_hint =
1438 qconf->rx_queue_list[0].freq_up_hint;
1439 i < qconf->n_rx_queue; ++i) {
1440 rx_queue = &(qconf->rx_queue_list[i]);
1441 if (rx_queue->freq_up_hint >
1442 lcore_scaleup_hint)
1443 lcore_scaleup_hint =
1444 rx_queue->freq_up_hint;
1445 }
1446
1447 if (lcore_scaleup_hint == FREQ_HIGHEST) {
1448 if (rte_power_freq_max)
1449 rte_power_freq_max(lcore_id);
1450 } else if (lcore_scaleup_hint == FREQ_HIGHER) {
1451 if (rte_power_freq_up)
1452 rte_power_freq_up(lcore_id);
1453 }
1454 } else {
1455 /**
1456 * All Rx queues empty in recent consecutive polls,
1457 * sleep in a conservative manner, meaning sleep as
1458 * less as possible.
1459 */
1460 for (i = 1, lcore_idle_hint =
1461 qconf->rx_queue_list[0].idle_hint;
1462 i < qconf->n_rx_queue; ++i) {
1463 rx_queue = &(qconf->rx_queue_list[i]);
1464 if (rx_queue->idle_hint < lcore_idle_hint)
1465 lcore_idle_hint = rx_queue->idle_hint;
1466 }
1467
1468 if (lcore_idle_hint < SUSPEND_THRESHOLD)
1469 /**
1470 * execute "pause" instruction to avoid context
1471 * switch which generally take hundred of
1472 * microseconds for short sleep.
1473 */
1474 rte_delay_us(lcore_idle_hint);
1475 else {
1476 /* suspend until rx interrupt triggers */
1477 if (intr_en) {
1478 turn_on_off_intr(qconf, 1);
1479 sleep_until_rx_interrupt(
1480 qconf->n_rx_queue,
1481 lcore_id);
1482 turn_on_off_intr(qconf, 0);
1483 /**
1484 * start receiving packets immediately
1485 */
1486 if (likely(!is_done()))
1487 goto start_rx;
1488 }
1489 }
1490 stats[lcore_id].sleep_time += lcore_idle_hint;
1491 }
1492 }
1493
1494 return 0;
1495 }
1496
1497 static int
check_lcore_params(void)1498 check_lcore_params(void)
1499 {
1500 uint8_t queue, lcore;
1501 uint16_t i;
1502 int socketid;
1503
1504 for (i = 0; i < nb_lcore_params; ++i) {
1505 queue = lcore_params[i].queue_id;
1506 if (queue >= MAX_RX_QUEUE_PER_PORT) {
1507 printf("invalid queue number: %hhu\n", queue);
1508 return -1;
1509 }
1510 lcore = lcore_params[i].lcore_id;
1511 if (!rte_lcore_is_enabled(lcore)) {
1512 printf("error: lcore %hhu is not enabled in lcore "
1513 "mask\n", lcore);
1514 return -1;
1515 }
1516 if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
1517 (numa_on == 0)) {
1518 printf("warning: lcore %hhu is on socket %d with numa "
1519 "off\n", lcore, socketid);
1520 }
1521 if (app_mode == APP_MODE_TELEMETRY && lcore == rte_lcore_id()) {
1522 printf("cannot enable main core %d in config for telemetry mode\n",
1523 rte_lcore_id());
1524 return -1;
1525 }
1526 }
1527 return 0;
1528 }
1529
1530 static int
check_port_config(void)1531 check_port_config(void)
1532 {
1533 unsigned portid;
1534 uint16_t i;
1535
1536 for (i = 0; i < nb_lcore_params; ++i) {
1537 portid = lcore_params[i].port_id;
1538 if ((enabled_port_mask & (1 << portid)) == 0) {
1539 printf("port %u is not enabled in port mask\n",
1540 portid);
1541 return -1;
1542 }
1543 if (!rte_eth_dev_is_valid_port(portid)) {
1544 printf("port %u is not present on the board\n",
1545 portid);
1546 return -1;
1547 }
1548 }
1549 return 0;
1550 }
1551
1552 static uint8_t
get_port_n_rx_queues(const uint16_t port)1553 get_port_n_rx_queues(const uint16_t port)
1554 {
1555 int queue = -1;
1556 uint16_t i;
1557
1558 for (i = 0; i < nb_lcore_params; ++i) {
1559 if (lcore_params[i].port_id == port &&
1560 lcore_params[i].queue_id > queue)
1561 queue = lcore_params[i].queue_id;
1562 }
1563 return (uint8_t)(++queue);
1564 }
1565
1566 static int
init_lcore_rx_queues(void)1567 init_lcore_rx_queues(void)
1568 {
1569 uint16_t i, nb_rx_queue;
1570 uint8_t lcore;
1571
1572 for (i = 0; i < nb_lcore_params; ++i) {
1573 lcore = lcore_params[i].lcore_id;
1574 nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1575 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1576 printf("error: too many queues (%u) for lcore: %u\n",
1577 (unsigned)nb_rx_queue + 1, (unsigned)lcore);
1578 return -1;
1579 } else {
1580 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1581 lcore_params[i].port_id;
1582 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1583 lcore_params[i].queue_id;
1584 lcore_conf[lcore].n_rx_queue++;
1585 }
1586 }
1587 return 0;
1588 }
1589
1590 /* display usage */
1591 static void
print_usage(const char * prgname)1592 print_usage(const char *prgname)
1593 {
1594 printf ("%s [EAL options] -- -p PORTMASK -P"
1595 " [--config (port,queue,lcore)[,(port,queue,lcore]]"
1596 " [--high-perf-cores CORELIST"
1597 " [--perf-config (port,queue,hi_perf,lcore_index)[,(port,queue,hi_perf,lcore_index]]"
1598 " [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
1599 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1600 " -P : enable promiscuous mode\n"
1601 " --config (port,queue,lcore): rx queues configuration\n"
1602 " --high-perf-cores CORELIST: list of high performance cores\n"
1603 " --perf-config: similar as config, cores specified as indices"
1604 " for bins containing high or regular performance cores\n"
1605 " --no-numa: optional, disable numa awareness\n"
1606 " --enable-jumbo: enable jumbo frame"
1607 " which max packet len is PKTLEN in decimal (64-9600)\n"
1608 " --parse-ptype: parse packet type by software\n"
1609 " --legacy: use legacy interrupt-based scaling\n"
1610 " --empty-poll: enable empty poll detection"
1611 " follow (training_flag, high_threshold, med_threshold)\n"
1612 " --telemetry: enable telemetry mode, to update"
1613 " empty polls, full polls, and core busyness to telemetry\n"
1614 " --interrupt-only: enable interrupt-only mode\n",
1615 prgname);
1616 }
1617
parse_max_pkt_len(const char * pktlen)1618 static int parse_max_pkt_len(const char *pktlen)
1619 {
1620 char *end = NULL;
1621 unsigned long len;
1622
1623 /* parse decimal string */
1624 len = strtoul(pktlen, &end, 10);
1625 if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1626 return -1;
1627
1628 if (len == 0)
1629 return -1;
1630
1631 return len;
1632 }
1633
1634 static int
parse_portmask(const char * portmask)1635 parse_portmask(const char *portmask)
1636 {
1637 char *end = NULL;
1638 unsigned long pm;
1639
1640 /* parse hexadecimal string */
1641 pm = strtoul(portmask, &end, 16);
1642 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1643 return 0;
1644
1645 return pm;
1646 }
1647
1648 static int
parse_config(const char * q_arg)1649 parse_config(const char *q_arg)
1650 {
1651 char s[256];
1652 const char *p, *p0 = q_arg;
1653 char *end;
1654 enum fieldnames {
1655 FLD_PORT = 0,
1656 FLD_QUEUE,
1657 FLD_LCORE,
1658 _NUM_FLD
1659 };
1660 unsigned long int_fld[_NUM_FLD];
1661 char *str_fld[_NUM_FLD];
1662 int i;
1663 unsigned size;
1664
1665 nb_lcore_params = 0;
1666
1667 while ((p = strchr(p0,'(')) != NULL) {
1668 ++p;
1669 if((p0 = strchr(p,')')) == NULL)
1670 return -1;
1671
1672 size = p0 - p;
1673 if(size >= sizeof(s))
1674 return -1;
1675
1676 snprintf(s, sizeof(s), "%.*s", size, p);
1677 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1678 _NUM_FLD)
1679 return -1;
1680 for (i = 0; i < _NUM_FLD; i++){
1681 errno = 0;
1682 int_fld[i] = strtoul(str_fld[i], &end, 0);
1683 if (errno != 0 || end == str_fld[i] || int_fld[i] >
1684 255)
1685 return -1;
1686 }
1687 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1688 printf("exceeded max number of lcore params: %hu\n",
1689 nb_lcore_params);
1690 return -1;
1691 }
1692 lcore_params_array[nb_lcore_params].port_id =
1693 (uint8_t)int_fld[FLD_PORT];
1694 lcore_params_array[nb_lcore_params].queue_id =
1695 (uint8_t)int_fld[FLD_QUEUE];
1696 lcore_params_array[nb_lcore_params].lcore_id =
1697 (uint8_t)int_fld[FLD_LCORE];
1698 ++nb_lcore_params;
1699 }
1700 lcore_params = lcore_params_array;
1701
1702 return 0;
1703 }
1704 static int
parse_ep_config(const char * q_arg)1705 parse_ep_config(const char *q_arg)
1706 {
1707 char s[256];
1708 const char *p = q_arg;
1709 char *end;
1710 int num_arg;
1711
1712 char *str_fld[3];
1713
1714 int training_flag;
1715 int med_edpi;
1716 int hgh_edpi;
1717
1718 ep_med_edpi = EMPTY_POLL_MED_THRESHOLD;
1719 ep_hgh_edpi = EMPTY_POLL_MED_THRESHOLD;
1720
1721 strlcpy(s, p, sizeof(s));
1722
1723 num_arg = rte_strsplit(s, sizeof(s), str_fld, 3, ',');
1724
1725 empty_poll_train = false;
1726
1727 if (num_arg == 0)
1728 return 0;
1729
1730 if (num_arg == 3) {
1731
1732 training_flag = strtoul(str_fld[0], &end, 0);
1733 med_edpi = strtoul(str_fld[1], &end, 0);
1734 hgh_edpi = strtoul(str_fld[2], &end, 0);
1735
1736 if (training_flag == 1)
1737 empty_poll_train = true;
1738
1739 if (med_edpi > 0)
1740 ep_med_edpi = med_edpi;
1741
1742 if (med_edpi > 0)
1743 ep_hgh_edpi = hgh_edpi;
1744
1745 } else {
1746
1747 return -1;
1748 }
1749
1750 return 0;
1751
1752 }
1753 #define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
1754 #define CMD_LINE_OPT_LEGACY "legacy"
1755 #define CMD_LINE_OPT_EMPTY_POLL "empty-poll"
1756 #define CMD_LINE_OPT_INTERRUPT_ONLY "interrupt-only"
1757 #define CMD_LINE_OPT_TELEMETRY "telemetry"
1758
1759 /* Parse the argument given in the command line of the application */
1760 static int
parse_args(int argc,char ** argv)1761 parse_args(int argc, char **argv)
1762 {
1763 int opt, ret;
1764 char **argvopt;
1765 int option_index;
1766 uint32_t limit;
1767 char *prgname = argv[0];
1768 static struct option lgopts[] = {
1769 {"config", 1, 0, 0},
1770 {"perf-config", 1, 0, 0},
1771 {"high-perf-cores", 1, 0, 0},
1772 {"no-numa", 0, 0, 0},
1773 {"enable-jumbo", 0, 0, 0},
1774 {CMD_LINE_OPT_EMPTY_POLL, 1, 0, 0},
1775 {CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
1776 {CMD_LINE_OPT_LEGACY, 0, 0, 0},
1777 {CMD_LINE_OPT_TELEMETRY, 0, 0, 0},
1778 {CMD_LINE_OPT_INTERRUPT_ONLY, 0, 0, 0},
1779 {NULL, 0, 0, 0}
1780 };
1781
1782 argvopt = argv;
1783
1784 while ((opt = getopt_long(argc, argvopt, "p:l:m:h:P",
1785 lgopts, &option_index)) != EOF) {
1786
1787 switch (opt) {
1788 /* portmask */
1789 case 'p':
1790 enabled_port_mask = parse_portmask(optarg);
1791 if (enabled_port_mask == 0) {
1792 printf("invalid portmask\n");
1793 print_usage(prgname);
1794 return -1;
1795 }
1796 break;
1797 case 'P':
1798 printf("Promiscuous mode selected\n");
1799 promiscuous_on = 1;
1800 break;
1801 case 'l':
1802 limit = parse_max_pkt_len(optarg);
1803 freq_tlb[LOW] = limit;
1804 break;
1805 case 'm':
1806 limit = parse_max_pkt_len(optarg);
1807 freq_tlb[MED] = limit;
1808 break;
1809 case 'h':
1810 limit = parse_max_pkt_len(optarg);
1811 freq_tlb[HGH] = limit;
1812 break;
1813 /* long options */
1814 case 0:
1815 if (!strncmp(lgopts[option_index].name, "config", 6)) {
1816 ret = parse_config(optarg);
1817 if (ret) {
1818 printf("invalid config\n");
1819 print_usage(prgname);
1820 return -1;
1821 }
1822 }
1823
1824 if (!strncmp(lgopts[option_index].name,
1825 "perf-config", 11)) {
1826 ret = parse_perf_config(optarg);
1827 if (ret) {
1828 printf("invalid perf-config\n");
1829 print_usage(prgname);
1830 return -1;
1831 }
1832 }
1833
1834 if (!strncmp(lgopts[option_index].name,
1835 "high-perf-cores", 15)) {
1836 ret = parse_perf_core_list(optarg);
1837 if (ret) {
1838 printf("invalid high-perf-cores\n");
1839 print_usage(prgname);
1840 return -1;
1841 }
1842 }
1843
1844 if (!strncmp(lgopts[option_index].name,
1845 "no-numa", 7)) {
1846 printf("numa is disabled \n");
1847 numa_on = 0;
1848 }
1849
1850 if (!strncmp(lgopts[option_index].name,
1851 CMD_LINE_OPT_LEGACY,
1852 sizeof(CMD_LINE_OPT_LEGACY))) {
1853 if (app_mode != APP_MODE_DEFAULT) {
1854 printf(" legacy mode is mutually exclusive with other modes\n");
1855 return -1;
1856 }
1857 app_mode = APP_MODE_LEGACY;
1858 printf("legacy mode is enabled\n");
1859 }
1860
1861 if (!strncmp(lgopts[option_index].name,
1862 CMD_LINE_OPT_EMPTY_POLL, 10)) {
1863 if (app_mode != APP_MODE_DEFAULT) {
1864 printf(" empty-poll mode is mutually exclusive with other modes\n");
1865 return -1;
1866 }
1867 app_mode = APP_MODE_EMPTY_POLL;
1868 ret = parse_ep_config(optarg);
1869
1870 if (ret) {
1871 printf("invalid empty poll config\n");
1872 print_usage(prgname);
1873 return -1;
1874 }
1875 printf("empty-poll is enabled\n");
1876 }
1877
1878 if (!strncmp(lgopts[option_index].name,
1879 CMD_LINE_OPT_TELEMETRY,
1880 sizeof(CMD_LINE_OPT_TELEMETRY))) {
1881 if (app_mode != APP_MODE_DEFAULT) {
1882 printf(" telemetry mode is mutually exclusive with other modes\n");
1883 return -1;
1884 }
1885 app_mode = APP_MODE_TELEMETRY;
1886 printf("telemetry mode is enabled\n");
1887 }
1888
1889 if (!strncmp(lgopts[option_index].name,
1890 CMD_LINE_OPT_INTERRUPT_ONLY,
1891 sizeof(CMD_LINE_OPT_INTERRUPT_ONLY))) {
1892 if (app_mode != APP_MODE_DEFAULT) {
1893 printf(" interrupt-only mode is mutually exclusive with other modes\n");
1894 return -1;
1895 }
1896 app_mode = APP_MODE_INTERRUPT;
1897 printf("interrupt-only mode is enabled\n");
1898 }
1899
1900 if (!strncmp(lgopts[option_index].name,
1901 "enable-jumbo", 12)) {
1902 struct option lenopts =
1903 {"max-pkt-len", required_argument, \
1904 0, 0};
1905
1906 printf("jumbo frame is enabled \n");
1907 port_conf.rxmode.offloads |=
1908 DEV_RX_OFFLOAD_JUMBO_FRAME;
1909 port_conf.txmode.offloads |=
1910 DEV_TX_OFFLOAD_MULTI_SEGS;
1911
1912 /**
1913 * if no max-pkt-len set, use the default value
1914 * RTE_ETHER_MAX_LEN
1915 */
1916 if (0 == getopt_long(argc, argvopt, "",
1917 &lenopts, &option_index)) {
1918 ret = parse_max_pkt_len(optarg);
1919 if ((ret < 64) ||
1920 (ret > MAX_JUMBO_PKT_LEN)){
1921 printf("invalid packet "
1922 "length\n");
1923 print_usage(prgname);
1924 return -1;
1925 }
1926 port_conf.rxmode.max_rx_pkt_len = ret;
1927 }
1928 printf("set jumbo frame "
1929 "max packet length to %u\n",
1930 (unsigned int)port_conf.rxmode.max_rx_pkt_len);
1931 }
1932
1933 if (!strncmp(lgopts[option_index].name,
1934 CMD_LINE_OPT_PARSE_PTYPE,
1935 sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
1936 printf("soft parse-ptype is enabled\n");
1937 parse_ptype = 1;
1938 }
1939
1940 break;
1941
1942 default:
1943 print_usage(prgname);
1944 return -1;
1945 }
1946 }
1947
1948 if (optind >= 0)
1949 argv[optind-1] = prgname;
1950
1951 ret = optind-1;
1952 optind = 1; /* reset getopt lib */
1953 return ret;
1954 }
1955
1956 static void
print_ethaddr(const char * name,const struct rte_ether_addr * eth_addr)1957 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1958 {
1959 char buf[RTE_ETHER_ADDR_FMT_SIZE];
1960 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1961 printf("%s%s", name, buf);
1962 }
1963
1964 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1965 static void
setup_hash(int socketid)1966 setup_hash(int socketid)
1967 {
1968 struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1969 .name = NULL,
1970 .entries = L3FWD_HASH_ENTRIES,
1971 .key_len = sizeof(struct ipv4_5tuple),
1972 .hash_func = DEFAULT_HASH_FUNC,
1973 .hash_func_init_val = 0,
1974 };
1975
1976 struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1977 .name = NULL,
1978 .entries = L3FWD_HASH_ENTRIES,
1979 .key_len = sizeof(struct ipv6_5tuple),
1980 .hash_func = DEFAULT_HASH_FUNC,
1981 .hash_func_init_val = 0,
1982 };
1983
1984 unsigned i;
1985 int ret;
1986 char s[64];
1987
1988 /* create ipv4 hash */
1989 snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1990 ipv4_l3fwd_hash_params.name = s;
1991 ipv4_l3fwd_hash_params.socket_id = socketid;
1992 ipv4_l3fwd_lookup_struct[socketid] =
1993 rte_hash_create(&ipv4_l3fwd_hash_params);
1994 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1995 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1996 "socket %d\n", socketid);
1997
1998 /* create ipv6 hash */
1999 snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
2000 ipv6_l3fwd_hash_params.name = s;
2001 ipv6_l3fwd_hash_params.socket_id = socketid;
2002 ipv6_l3fwd_lookup_struct[socketid] =
2003 rte_hash_create(&ipv6_l3fwd_hash_params);
2004 if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
2005 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
2006 "socket %d\n", socketid);
2007
2008
2009 /* populate the ipv4 hash */
2010 for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2011 ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
2012 (void *) &ipv4_l3fwd_route_array[i].key);
2013 if (ret < 0) {
2014 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2015 "l3fwd hash on socket %d\n", i, socketid);
2016 }
2017 ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
2018 printf("Hash: Adding key\n");
2019 print_ipv4_key(ipv4_l3fwd_route_array[i].key);
2020 }
2021
2022 /* populate the ipv6 hash */
2023 for (i = 0; i < RTE_DIM(ipv6_l3fwd_route_array); i++) {
2024 ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
2025 (void *) &ipv6_l3fwd_route_array[i].key);
2026 if (ret < 0) {
2027 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
2028 "l3fwd hash on socket %d\n", i, socketid);
2029 }
2030 ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
2031 printf("Hash: Adding key\n");
2032 print_ipv6_key(ipv6_l3fwd_route_array[i].key);
2033 }
2034 }
2035 #endif
2036
2037 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2038 static void
setup_lpm(int socketid)2039 setup_lpm(int socketid)
2040 {
2041 unsigned i;
2042 int ret;
2043 char s[64];
2044
2045 /* create the LPM table */
2046 struct rte_lpm_config lpm_ipv4_config;
2047
2048 lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
2049 lpm_ipv4_config.number_tbl8s = 256;
2050 lpm_ipv4_config.flags = 0;
2051
2052 snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
2053 ipv4_l3fwd_lookup_struct[socketid] =
2054 rte_lpm_create(s, socketid, &lpm_ipv4_config);
2055 if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
2056 rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
2057 " on socket %d\n", socketid);
2058
2059 /* populate the LPM table */
2060 for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) {
2061 ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
2062 ipv4_l3fwd_route_array[i].ip,
2063 ipv4_l3fwd_route_array[i].depth,
2064 ipv4_l3fwd_route_array[i].if_out);
2065
2066 if (ret < 0) {
2067 rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
2068 "l3fwd LPM table on socket %d\n",
2069 i, socketid);
2070 }
2071
2072 printf("LPM: Adding route 0x%08x / %d (%d)\n",
2073 (unsigned)ipv4_l3fwd_route_array[i].ip,
2074 ipv4_l3fwd_route_array[i].depth,
2075 ipv4_l3fwd_route_array[i].if_out);
2076 }
2077 }
2078 #endif
2079
2080 static int
init_mem(unsigned nb_mbuf)2081 init_mem(unsigned nb_mbuf)
2082 {
2083 struct lcore_conf *qconf;
2084 int socketid;
2085 unsigned lcore_id;
2086 char s[64];
2087
2088 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2089 if (rte_lcore_is_enabled(lcore_id) == 0)
2090 continue;
2091
2092 if (numa_on)
2093 socketid = rte_lcore_to_socket_id(lcore_id);
2094 else
2095 socketid = 0;
2096
2097 if (socketid >= NB_SOCKETS) {
2098 rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
2099 "out of range %d\n", socketid,
2100 lcore_id, NB_SOCKETS);
2101 }
2102 if (pktmbuf_pool[socketid] == NULL) {
2103 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
2104 pktmbuf_pool[socketid] =
2105 rte_pktmbuf_pool_create(s, nb_mbuf,
2106 MEMPOOL_CACHE_SIZE, 0,
2107 RTE_MBUF_DEFAULT_BUF_SIZE,
2108 socketid);
2109 if (pktmbuf_pool[socketid] == NULL)
2110 rte_exit(EXIT_FAILURE,
2111 "Cannot init mbuf pool on socket %d\n",
2112 socketid);
2113 else
2114 printf("Allocated mbuf pool on socket %d\n",
2115 socketid);
2116
2117 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2118 setup_lpm(socketid);
2119 #else
2120 setup_hash(socketid);
2121 #endif
2122 }
2123 qconf = &lcore_conf[lcore_id];
2124 qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
2125 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2126 qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
2127 #endif
2128 }
2129 return 0;
2130 }
2131
2132 /* Check the link status of all ports in up to 9s, and print them finally */
2133 static void
check_all_ports_link_status(uint32_t port_mask)2134 check_all_ports_link_status(uint32_t port_mask)
2135 {
2136 #define CHECK_INTERVAL 100 /* 100ms */
2137 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
2138 uint8_t count, all_ports_up, print_flag = 0;
2139 uint16_t portid;
2140 struct rte_eth_link link;
2141 int ret;
2142 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
2143
2144 printf("\nChecking link status");
2145 fflush(stdout);
2146 for (count = 0; count <= MAX_CHECK_TIME; count++) {
2147 all_ports_up = 1;
2148 RTE_ETH_FOREACH_DEV(portid) {
2149 if ((port_mask & (1 << portid)) == 0)
2150 continue;
2151 memset(&link, 0, sizeof(link));
2152 ret = rte_eth_link_get_nowait(portid, &link);
2153 if (ret < 0) {
2154 all_ports_up = 0;
2155 if (print_flag == 1)
2156 printf("Port %u link get failed: %s\n",
2157 portid, rte_strerror(-ret));
2158 continue;
2159 }
2160 /* print link status if flag set */
2161 if (print_flag == 1) {
2162 rte_eth_link_to_str(link_status_text,
2163 sizeof(link_status_text), &link);
2164 printf("Port %d %s\n", portid,
2165 link_status_text);
2166 continue;
2167 }
2168 /* clear all_ports_up flag if any link down */
2169 if (link.link_status == ETH_LINK_DOWN) {
2170 all_ports_up = 0;
2171 break;
2172 }
2173 }
2174 /* after finally printing all link status, get out */
2175 if (print_flag == 1)
2176 break;
2177
2178 if (all_ports_up == 0) {
2179 printf(".");
2180 fflush(stdout);
2181 rte_delay_ms(CHECK_INTERVAL);
2182 }
2183
2184 /* set the print_flag if all ports up or timeout */
2185 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
2186 print_flag = 1;
2187 printf("done\n");
2188 }
2189 }
2190 }
2191
check_ptype(uint16_t portid)2192 static int check_ptype(uint16_t portid)
2193 {
2194 int i, ret;
2195 int ptype_l3_ipv4 = 0;
2196 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2197 int ptype_l3_ipv6 = 0;
2198 #endif
2199 uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
2200
2201 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
2202 if (ret <= 0)
2203 return 0;
2204
2205 uint32_t ptypes[ret];
2206
2207 ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
2208 for (i = 0; i < ret; ++i) {
2209 if (ptypes[i] & RTE_PTYPE_L3_IPV4)
2210 ptype_l3_ipv4 = 1;
2211 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2212 if (ptypes[i] & RTE_PTYPE_L3_IPV6)
2213 ptype_l3_ipv6 = 1;
2214 #endif
2215 }
2216
2217 if (ptype_l3_ipv4 == 0)
2218 printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
2219
2220 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
2221 if (ptype_l3_ipv6 == 0)
2222 printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
2223 #endif
2224
2225 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
2226 if (ptype_l3_ipv4)
2227 #else /* APP_LOOKUP_EXACT_MATCH */
2228 if (ptype_l3_ipv4 && ptype_l3_ipv6)
2229 #endif
2230 return 1;
2231
2232 return 0;
2233
2234 }
2235
2236 static int
init_power_library(void)2237 init_power_library(void)
2238 {
2239 enum power_management_env env;
2240 unsigned int lcore_id;
2241 int ret = 0;
2242
2243 RTE_LCORE_FOREACH(lcore_id) {
2244 /* init power management library */
2245 ret = rte_power_init(lcore_id);
2246 if (ret) {
2247 RTE_LOG(ERR, POWER,
2248 "Library initialization failed on core %u\n",
2249 lcore_id);
2250 return ret;
2251 }
2252 /* we're not supporting the VM channel mode */
2253 env = rte_power_get_env();
2254 if (env != PM_ENV_ACPI_CPUFREQ &&
2255 env != PM_ENV_PSTATE_CPUFREQ) {
2256 RTE_LOG(ERR, POWER,
2257 "Only ACPI and PSTATE mode are supported\n");
2258 return -1;
2259 }
2260 }
2261 return ret;
2262 }
2263
2264 static int
deinit_power_library(void)2265 deinit_power_library(void)
2266 {
2267 unsigned int lcore_id;
2268 int ret = 0;
2269
2270 RTE_LCORE_FOREACH(lcore_id) {
2271 /* deinit power management library */
2272 ret = rte_power_exit(lcore_id);
2273 if (ret) {
2274 RTE_LOG(ERR, POWER,
2275 "Library deinitialization failed on core %u\n",
2276 lcore_id);
2277 return ret;
2278 }
2279 }
2280 return ret;
2281 }
2282
2283 static void
get_current_stat_values(uint64_t * values)2284 get_current_stat_values(uint64_t *values)
2285 {
2286 unsigned int lcore_id = rte_lcore_id();
2287 struct lcore_conf *qconf;
2288 uint64_t app_eps = 0, app_fps = 0, app_br = 0;
2289 uint64_t count = 0;
2290
2291 RTE_LCORE_FOREACH_WORKER(lcore_id) {
2292 qconf = &lcore_conf[lcore_id];
2293 if (qconf->n_rx_queue == 0)
2294 continue;
2295 count++;
2296 rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
2297 app_eps += stats[lcore_id].ep_nep[1];
2298 app_fps += stats[lcore_id].fp_nfp[1];
2299 app_br += stats[lcore_id].br;
2300 rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
2301 }
2302
2303 if (count > 0) {
2304 values[0] = app_eps/count;
2305 values[1] = app_fps/count;
2306 values[2] = app_br/count;
2307 } else
2308 memset(values, 0, sizeof(uint64_t) * NUM_TELSTATS);
2309
2310 }
2311
2312 static void
update_telemetry(__rte_unused struct rte_timer * tim,__rte_unused void * arg)2313 update_telemetry(__rte_unused struct rte_timer *tim,
2314 __rte_unused void *arg)
2315 {
2316 int ret;
2317 uint64_t values[NUM_TELSTATS] = {0};
2318
2319 get_current_stat_values(values);
2320 ret = rte_metrics_update_values(RTE_METRICS_GLOBAL, telstats_index,
2321 values, RTE_DIM(values));
2322 if (ret < 0)
2323 RTE_LOG(WARNING, POWER, "failed to update metrcis\n");
2324 }
2325
2326 static int
handle_app_stats(const char * cmd __rte_unused,const char * params __rte_unused,struct rte_tel_data * d)2327 handle_app_stats(const char *cmd __rte_unused,
2328 const char *params __rte_unused,
2329 struct rte_tel_data *d)
2330 {
2331 uint64_t values[NUM_TELSTATS] = {0};
2332 uint32_t i;
2333
2334 rte_tel_data_start_dict(d);
2335 get_current_stat_values(values);
2336 for (i = 0; i < NUM_TELSTATS; i++)
2337 rte_tel_data_add_dict_u64(d, telstats_strings[i].name,
2338 values[i]);
2339 return 0;
2340 }
2341
2342 static void
telemetry_setup_timer(void)2343 telemetry_setup_timer(void)
2344 {
2345 int lcore_id = rte_lcore_id();
2346 uint64_t hz = rte_get_timer_hz();
2347 uint64_t ticks;
2348
2349 ticks = hz / TELEMETRY_INTERVALS_PER_SEC;
2350 rte_timer_reset_sync(&telemetry_timer,
2351 ticks,
2352 PERIODICAL,
2353 lcore_id,
2354 update_telemetry,
2355 NULL);
2356 }
2357 static void
empty_poll_setup_timer(void)2358 empty_poll_setup_timer(void)
2359 {
2360 int lcore_id = rte_lcore_id();
2361 uint64_t hz = rte_get_timer_hz();
2362
2363 struct ep_params *ep_ptr = ep_params;
2364
2365 ep_ptr->interval_ticks = hz / INTERVALS_PER_SECOND;
2366
2367 rte_timer_reset_sync(&ep_ptr->timer0,
2368 ep_ptr->interval_ticks,
2369 PERIODICAL,
2370 lcore_id,
2371 rte_empty_poll_detection,
2372 (void *)ep_ptr);
2373
2374 }
2375 static int
launch_timer(unsigned int lcore_id)2376 launch_timer(unsigned int lcore_id)
2377 {
2378 int64_t prev_tsc = 0, cur_tsc, diff_tsc, cycles_10ms;
2379
2380 RTE_SET_USED(lcore_id);
2381
2382
2383 if (rte_get_main_lcore() != lcore_id) {
2384 rte_panic("timer on lcore:%d which is not main core:%d\n",
2385 lcore_id,
2386 rte_get_main_lcore());
2387 }
2388
2389 RTE_LOG(INFO, POWER, "Bring up the Timer\n");
2390
2391 if (app_mode == APP_MODE_EMPTY_POLL)
2392 empty_poll_setup_timer();
2393 else
2394 telemetry_setup_timer();
2395
2396 cycles_10ms = rte_get_timer_hz() / 100;
2397
2398 while (!is_done()) {
2399 cur_tsc = rte_rdtsc();
2400 diff_tsc = cur_tsc - prev_tsc;
2401 if (diff_tsc > cycles_10ms) {
2402 rte_timer_manage();
2403 prev_tsc = cur_tsc;
2404 cycles_10ms = rte_get_timer_hz() / 100;
2405 }
2406 }
2407
2408 RTE_LOG(INFO, POWER, "Timer_subsystem is done\n");
2409
2410 return 0;
2411 }
2412
2413 static int
autodetect_mode(void)2414 autodetect_mode(void)
2415 {
2416 RTE_LOG(NOTICE, L3FWD_POWER, "Operating mode not specified, probing frequency scaling support...\n");
2417
2418 /*
2419 * Empty poll and telemetry modes have to be specifically requested to
2420 * be enabled, but we can auto-detect between interrupt mode with or
2421 * without frequency scaling. Both ACPI and pstate can be used.
2422 */
2423 if (rte_power_check_env_supported(PM_ENV_ACPI_CPUFREQ))
2424 return APP_MODE_LEGACY;
2425 if (rte_power_check_env_supported(PM_ENV_PSTATE_CPUFREQ))
2426 return APP_MODE_LEGACY;
2427
2428 RTE_LOG(NOTICE, L3FWD_POWER, "Frequency scaling not supported, selecting interrupt-only mode\n");
2429
2430 return APP_MODE_INTERRUPT;
2431 }
2432
2433 static const char *
mode_to_str(enum appmode mode)2434 mode_to_str(enum appmode mode)
2435 {
2436 switch (mode) {
2437 case APP_MODE_LEGACY:
2438 return "legacy";
2439 case APP_MODE_EMPTY_POLL:
2440 return "empty poll";
2441 case APP_MODE_TELEMETRY:
2442 return "telemetry";
2443 case APP_MODE_INTERRUPT:
2444 return "interrupt-only";
2445 default:
2446 return "invalid";
2447 }
2448 }
2449
2450 int
main(int argc,char ** argv)2451 main(int argc, char **argv)
2452 {
2453 struct lcore_conf *qconf;
2454 struct rte_eth_dev_info dev_info;
2455 struct rte_eth_txconf *txconf;
2456 int ret;
2457 uint16_t nb_ports;
2458 uint16_t queueid;
2459 unsigned lcore_id;
2460 uint64_t hz;
2461 uint32_t n_tx_queue, nb_lcores;
2462 uint32_t dev_rxq_num, dev_txq_num;
2463 uint8_t nb_rx_queue, queue, socketid;
2464 uint16_t portid;
2465 const char *ptr_strings[NUM_TELSTATS];
2466
2467 /* catch SIGINT and restore cpufreq governor to ondemand */
2468 signal(SIGINT, signal_exit_now);
2469
2470 /* init EAL */
2471 ret = rte_eal_init(argc, argv);
2472 if (ret < 0)
2473 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2474 argc -= ret;
2475 argv += ret;
2476
2477 /* init RTE timer library to be used late */
2478 rte_timer_subsystem_init();
2479
2480 /* parse application arguments (after the EAL ones) */
2481 ret = parse_args(argc, argv);
2482 if (ret < 0)
2483 rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2484
2485 if (app_mode == APP_MODE_DEFAULT)
2486 app_mode = autodetect_mode();
2487
2488 RTE_LOG(INFO, L3FWD_POWER, "Selected operation mode: %s\n",
2489 mode_to_str(app_mode));
2490
2491 /* only legacy and empty poll mode rely on power library */
2492 if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2493 init_power_library())
2494 rte_exit(EXIT_FAILURE, "init_power_library failed\n");
2495
2496 if (update_lcore_params() < 0)
2497 rte_exit(EXIT_FAILURE, "update_lcore_params failed\n");
2498
2499 if (check_lcore_params() < 0)
2500 rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2501
2502 ret = init_lcore_rx_queues();
2503 if (ret < 0)
2504 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2505
2506 nb_ports = rte_eth_dev_count_avail();
2507
2508 if (check_port_config() < 0)
2509 rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2510
2511 nb_lcores = rte_lcore_count();
2512
2513 /* initialize all ports */
2514 RTE_ETH_FOREACH_DEV(portid) {
2515 struct rte_eth_conf local_port_conf = port_conf;
2516 /* not all app modes need interrupts */
2517 bool need_intr = app_mode == APP_MODE_LEGACY ||
2518 app_mode == APP_MODE_INTERRUPT;
2519
2520 /* skip ports that are not enabled */
2521 if ((enabled_port_mask & (1 << portid)) == 0) {
2522 printf("\nSkipping disabled port %d\n", portid);
2523 continue;
2524 }
2525
2526 /* init port */
2527 printf("Initializing port %d ... ", portid );
2528 fflush(stdout);
2529
2530 ret = rte_eth_dev_info_get(portid, &dev_info);
2531 if (ret != 0)
2532 rte_exit(EXIT_FAILURE,
2533 "Error during getting device (port %u) info: %s\n",
2534 portid, strerror(-ret));
2535
2536 dev_rxq_num = dev_info.max_rx_queues;
2537 dev_txq_num = dev_info.max_tx_queues;
2538
2539 nb_rx_queue = get_port_n_rx_queues(portid);
2540 if (nb_rx_queue > dev_rxq_num)
2541 rte_exit(EXIT_FAILURE,
2542 "Cannot configure not existed rxq: "
2543 "port=%d\n", portid);
2544
2545 n_tx_queue = nb_lcores;
2546 if (n_tx_queue > dev_txq_num)
2547 n_tx_queue = dev_txq_num;
2548 printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2549 nb_rx_queue, (unsigned)n_tx_queue );
2550 /* If number of Rx queue is 0, no need to enable Rx interrupt */
2551 if (nb_rx_queue == 0)
2552 need_intr = false;
2553
2554 if (need_intr)
2555 local_port_conf.intr_conf.rxq = 1;
2556
2557 ret = rte_eth_dev_info_get(portid, &dev_info);
2558 if (ret != 0)
2559 rte_exit(EXIT_FAILURE,
2560 "Error during getting device (port %u) info: %s\n",
2561 portid, strerror(-ret));
2562
2563 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2564 local_port_conf.txmode.offloads |=
2565 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2566
2567 local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2568 dev_info.flow_type_rss_offloads;
2569 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2570 port_conf.rx_adv_conf.rss_conf.rss_hf) {
2571 printf("Port %u modified RSS hash function based on hardware support,"
2572 "requested:%#"PRIx64" configured:%#"PRIx64"\n",
2573 portid,
2574 port_conf.rx_adv_conf.rss_conf.rss_hf,
2575 local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2576 }
2577
2578 ret = rte_eth_dev_configure(portid, nb_rx_queue,
2579 (uint16_t)n_tx_queue, &local_port_conf);
2580 if (ret < 0)
2581 rte_exit(EXIT_FAILURE, "Cannot configure device: "
2582 "err=%d, port=%d\n", ret, portid);
2583
2584 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2585 &nb_txd);
2586 if (ret < 0)
2587 rte_exit(EXIT_FAILURE,
2588 "Cannot adjust number of descriptors: err=%d, port=%d\n",
2589 ret, portid);
2590
2591 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
2592 if (ret < 0)
2593 rte_exit(EXIT_FAILURE,
2594 "Cannot get MAC address: err=%d, port=%d\n",
2595 ret, portid);
2596
2597 print_ethaddr(" Address:", &ports_eth_addr[portid]);
2598 printf(", ");
2599
2600 /* init memory */
2601 ret = init_mem(NB_MBUF);
2602 if (ret < 0)
2603 rte_exit(EXIT_FAILURE, "init_mem failed\n");
2604
2605 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2606 if (rte_lcore_is_enabled(lcore_id) == 0)
2607 continue;
2608
2609 /* Initialize TX buffers */
2610 qconf = &lcore_conf[lcore_id];
2611 qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
2612 RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
2613 rte_eth_dev_socket_id(portid));
2614 if (qconf->tx_buffer[portid] == NULL)
2615 rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
2616 portid);
2617
2618 rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
2619 }
2620
2621 /* init one TX queue per couple (lcore,port) */
2622 queueid = 0;
2623 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2624 if (rte_lcore_is_enabled(lcore_id) == 0)
2625 continue;
2626
2627 if (queueid >= dev_txq_num)
2628 continue;
2629
2630 if (numa_on)
2631 socketid = \
2632 (uint8_t)rte_lcore_to_socket_id(lcore_id);
2633 else
2634 socketid = 0;
2635
2636 printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2637 fflush(stdout);
2638
2639 txconf = &dev_info.default_txconf;
2640 txconf->offloads = local_port_conf.txmode.offloads;
2641 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2642 socketid, txconf);
2643 if (ret < 0)
2644 rte_exit(EXIT_FAILURE,
2645 "rte_eth_tx_queue_setup: err=%d, "
2646 "port=%d\n", ret, portid);
2647
2648 qconf = &lcore_conf[lcore_id];
2649 qconf->tx_queue_id[portid] = queueid;
2650 queueid++;
2651
2652 qconf->tx_port_id[qconf->n_tx_port] = portid;
2653 qconf->n_tx_port++;
2654 }
2655 printf("\n");
2656 }
2657
2658 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2659 if (rte_lcore_is_enabled(lcore_id) == 0)
2660 continue;
2661
2662 if (app_mode == APP_MODE_LEGACY) {
2663 /* init timer structures for each enabled lcore */
2664 rte_timer_init(&power_timers[lcore_id]);
2665 hz = rte_get_timer_hz();
2666 rte_timer_reset(&power_timers[lcore_id],
2667 hz/TIMER_NUMBER_PER_SECOND,
2668 SINGLE, lcore_id,
2669 power_timer_cb, NULL);
2670 }
2671 qconf = &lcore_conf[lcore_id];
2672 printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
2673 fflush(stdout);
2674 /* init RX queues */
2675 for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
2676 struct rte_eth_rxconf rxq_conf;
2677
2678 portid = qconf->rx_queue_list[queue].port_id;
2679 queueid = qconf->rx_queue_list[queue].queue_id;
2680
2681 if (numa_on)
2682 socketid = \
2683 (uint8_t)rte_lcore_to_socket_id(lcore_id);
2684 else
2685 socketid = 0;
2686
2687 printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2688 fflush(stdout);
2689
2690 ret = rte_eth_dev_info_get(portid, &dev_info);
2691 if (ret != 0)
2692 rte_exit(EXIT_FAILURE,
2693 "Error during getting device (port %u) info: %s\n",
2694 portid, strerror(-ret));
2695
2696 rxq_conf = dev_info.default_rxconf;
2697 rxq_conf.offloads = port_conf.rxmode.offloads;
2698 ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2699 socketid, &rxq_conf,
2700 pktmbuf_pool[socketid]);
2701 if (ret < 0)
2702 rte_exit(EXIT_FAILURE,
2703 "rte_eth_rx_queue_setup: err=%d, "
2704 "port=%d\n", ret, portid);
2705
2706 if (parse_ptype) {
2707 if (add_cb_parse_ptype(portid, queueid) < 0)
2708 rte_exit(EXIT_FAILURE,
2709 "Fail to add ptype cb\n");
2710 }
2711 }
2712 }
2713
2714 printf("\n");
2715
2716 /* start ports */
2717 RTE_ETH_FOREACH_DEV(portid) {
2718 if ((enabled_port_mask & (1 << portid)) == 0) {
2719 continue;
2720 }
2721 /* Start device */
2722 ret = rte_eth_dev_start(portid);
2723 if (ret < 0)
2724 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
2725 "port=%d\n", ret, portid);
2726 /*
2727 * If enabled, put device in promiscuous mode.
2728 * This allows IO forwarding mode to forward packets
2729 * to itself through 2 cross-connected ports of the
2730 * target machine.
2731 */
2732 if (promiscuous_on) {
2733 ret = rte_eth_promiscuous_enable(portid);
2734 if (ret != 0)
2735 rte_exit(EXIT_FAILURE,
2736 "rte_eth_promiscuous_enable: err=%s, port=%u\n",
2737 rte_strerror(-ret), portid);
2738 }
2739 /* initialize spinlock for each port */
2740 rte_spinlock_init(&(locks[portid]));
2741
2742 if (!parse_ptype)
2743 if (!check_ptype(portid))
2744 rte_exit(EXIT_FAILURE,
2745 "PMD can not provide needed ptypes\n");
2746 }
2747
2748 check_all_ports_link_status(enabled_port_mask);
2749
2750 if (app_mode == APP_MODE_EMPTY_POLL) {
2751
2752 if (empty_poll_train) {
2753 policy.state = TRAINING;
2754 } else {
2755 policy.state = MED_NORMAL;
2756 policy.med_base_edpi = ep_med_edpi;
2757 policy.hgh_base_edpi = ep_hgh_edpi;
2758 }
2759
2760 ret = rte_power_empty_poll_stat_init(&ep_params,
2761 freq_tlb,
2762 &policy);
2763 if (ret < 0)
2764 rte_exit(EXIT_FAILURE, "empty poll init failed");
2765 }
2766
2767
2768 /* launch per-lcore init on every lcore */
2769 if (app_mode == APP_MODE_LEGACY) {
2770 rte_eal_mp_remote_launch(main_legacy_loop, NULL, CALL_MAIN);
2771 } else if (app_mode == APP_MODE_EMPTY_POLL) {
2772 empty_poll_stop = false;
2773 rte_eal_mp_remote_launch(main_empty_poll_loop, NULL,
2774 SKIP_MAIN);
2775 } else if (app_mode == APP_MODE_TELEMETRY) {
2776 unsigned int i;
2777
2778 /* Init metrics library */
2779 rte_metrics_init(rte_socket_id());
2780 /** Register stats with metrics library */
2781 for (i = 0; i < NUM_TELSTATS; i++)
2782 ptr_strings[i] = telstats_strings[i].name;
2783
2784 ret = rte_metrics_reg_names(ptr_strings, NUM_TELSTATS);
2785 if (ret >= 0)
2786 telstats_index = ret;
2787 else
2788 rte_exit(EXIT_FAILURE, "failed to register metrics names");
2789
2790 RTE_LCORE_FOREACH_WORKER(lcore_id) {
2791 rte_spinlock_init(&stats[lcore_id].telemetry_lock);
2792 }
2793 rte_timer_init(&telemetry_timer);
2794 rte_telemetry_register_cmd("/l3fwd-power/stats",
2795 handle_app_stats,
2796 "Returns global power stats. Parameters: None");
2797 rte_eal_mp_remote_launch(main_telemetry_loop, NULL,
2798 SKIP_MAIN);
2799 } else if (app_mode == APP_MODE_INTERRUPT) {
2800 rte_eal_mp_remote_launch(main_intr_loop, NULL, CALL_MAIN);
2801 }
2802
2803 if (app_mode == APP_MODE_EMPTY_POLL || app_mode == APP_MODE_TELEMETRY)
2804 launch_timer(rte_lcore_id());
2805
2806 RTE_LCORE_FOREACH_WORKER(lcore_id) {
2807 if (rte_eal_wait_lcore(lcore_id) < 0)
2808 return -1;
2809 }
2810
2811 RTE_ETH_FOREACH_DEV(portid)
2812 {
2813 if ((enabled_port_mask & (1 << portid)) == 0)
2814 continue;
2815
2816 ret = rte_eth_dev_stop(portid);
2817 if (ret != 0)
2818 RTE_LOG(ERR, L3FWD_POWER, "rte_eth_dev_stop: err=%d, port=%u\n",
2819 ret, portid);
2820
2821 rte_eth_dev_close(portid);
2822 }
2823
2824 if (app_mode == APP_MODE_EMPTY_POLL)
2825 rte_power_empty_poll_stat_free();
2826
2827 if ((app_mode == APP_MODE_LEGACY || app_mode == APP_MODE_EMPTY_POLL) &&
2828 deinit_power_library())
2829 rte_exit(EXIT_FAILURE, "deinit_power_library failed\n");
2830
2831 if (rte_eal_cleanup() < 0)
2832 RTE_LOG(ERR, L3FWD_POWER, "EAL cleanup failed\n");
2833
2834 return 0;
2835 }
2836