1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  *   Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved.
4  *   Copyright 2016-2020 NXP
5  *
6  */
7 
8 #ifndef _DPAA2_HW_PVT_H_
9 #define _DPAA2_HW_PVT_H_
10 
11 #include <rte_eventdev.h>
12 #include <dpaax_iova_table.h>
13 
14 #include <mc/fsl_mc_sys.h>
15 #include <fsl_qbman_portal.h>
16 
17 #ifndef false
18 #define false      0
19 #endif
20 #ifndef true
21 #define true       1
22 #endif
23 #define lower_32_bits(x) ((uint32_t)(x))
24 #define upper_32_bits(x) ((uint32_t)(((x) >> 16) >> 16))
25 
26 #ifndef VLAN_TAG_SIZE
27 #define VLAN_TAG_SIZE   4 /** < Vlan Header Length */
28 #endif
29 
30 /* Maximum number of slots available in TX ring */
31 #define MAX_TX_RING_SLOTS			32
32 #define MAX_EQ_RESP_ENTRIES			(MAX_TX_RING_SLOTS + 1)
33 
34 /* Maximum number of slots available in RX ring */
35 #define DPAA2_EQCR_RING_SIZE		8
36 /* Maximum number of slots available in RX ring on LX2 */
37 #define DPAA2_LX2_EQCR_RING_SIZE	32
38 
39 /* Maximum number of slots available in RX ring */
40 #define DPAA2_DQRR_RING_SIZE		16
41 /* Maximum number of slots available in RX ring on LX2 */
42 #define DPAA2_LX2_DQRR_RING_SIZE	32
43 
44 /* EQCR shift to get EQCR size (2 >> 3) = 8 for LS2/LS2 */
45 #define DPAA2_EQCR_SHIFT		3
46 /* EQCR shift to get EQCR size for LX2 (2 >> 5) = 32 for LX2 */
47 #define DPAA2_LX2_EQCR_SHIFT		5
48 
49 /* Flag to determine an ordered queue mbuf */
50 #define DPAA2_ENQUEUE_FLAG_ORP		(1ULL << 30)
51 /* ORP ID shift and mask */
52 #define DPAA2_EQCR_OPRID_SHIFT		16
53 #define DPAA2_EQCR_OPRID_MASK		0x3FFF0000
54 /* Sequence number shift and mask */
55 #define DPAA2_EQCR_SEQNUM_SHIFT		0
56 #define DPAA2_EQCR_SEQNUM_MASK		0x0000FFFF
57 
58 #define DPAA2_SWP_CENA_REGION		0
59 #define DPAA2_SWP_CINH_REGION		1
60 #define DPAA2_SWP_CENA_MEM_REGION	2
61 
62 #define DPAA2_MAX_TX_RETRY_COUNT	10000
63 
64 #define MC_PORTAL_INDEX		0
65 #define NUM_DPIO_REGIONS	2
66 #define NUM_DQS_PER_QUEUE       2
67 
68 /* Maximum release/acquire from QBMAN */
69 #define DPAA2_MBUF_MAX_ACQ_REL	7
70 
71 #define DPAA2_MEMPOOL_OPS_NAME		"dpaa2"
72 
73 #define MAX_BPID 256
74 #define DPAA2_MBUF_HW_ANNOTATION	64
75 #define DPAA2_FD_PTA_SIZE		0
76 
77 /* we will re-use the HEADROOM for annotation in RX */
78 #define DPAA2_HW_BUF_RESERVE	0
79 #define DPAA2_PACKET_LAYOUT_ALIGN	64 /*changing from 256 */
80 
81 #define DPAA2_DPCI_MAX_QUEUES 2
82 
83 struct dpaa2_queue;
84 
85 struct eqresp_metadata {
86 	struct dpaa2_queue *dpaa2_q;
87 	struct rte_mempool *mp;
88 };
89 
90 #define DPAA2_PORTAL_DEQUEUE_DEPTH	32
91 struct dpaa2_portal_dqrr {
92 	struct rte_mbuf *mbuf[DPAA2_PORTAL_DEQUEUE_DEPTH];
93 	uint64_t dqrr_held;
94 	uint8_t dqrr_size;
95 };
96 
97 struct dpaa2_dpio_dev {
98 	TAILQ_ENTRY(dpaa2_dpio_dev) next;
99 		/**< Pointer to Next device instance */
100 	uint16_t index; /**< Index of a instance in the list */
101 	rte_atomic16_t ref_count;
102 		/**< How many thread contexts are sharing this.*/
103 	uint16_t eqresp_ci;
104 	uint16_t eqresp_pi;
105 	struct qbman_result *eqresp;
106 	struct eqresp_metadata *eqresp_meta;
107 	struct fsl_mc_io *dpio; /** handle to DPIO portal object */
108 	uint16_t token;
109 	struct qbman_swp *sw_portal; /** SW portal object */
110 	const struct qbman_result *dqrr[4];
111 		/**< DQRR Entry for this SW portal */
112 	void *mc_portal; /**< MC Portal for configuring this device */
113 	uintptr_t qbman_portal_ce_paddr;
114 		/**< Physical address of Cache Enabled Area */
115 	uintptr_t ce_size; /**< Size of the CE region */
116 	uintptr_t qbman_portal_ci_paddr;
117 		/**< Physical address of Cache Inhibit Area */
118 	uintptr_t ci_size; /**< Size of the CI region */
119 	struct rte_intr_handle intr_handle; /* Interrupt related info */
120 	int32_t	epoll_fd; /**< File descriptor created for interrupt polling */
121 	int32_t hw_id; /**< An unique ID of this DPIO device instance */
122 	struct dpaa2_portal_dqrr dpaa2_held_bufs;
123 };
124 
125 struct dpaa2_dpbp_dev {
126 	TAILQ_ENTRY(dpaa2_dpbp_dev) next;
127 		/**< Pointer to Next device instance */
128 	struct fsl_mc_io dpbp;  /** handle to DPBP portal object */
129 	uint16_t token;
130 	rte_atomic16_t in_use;
131 	uint32_t dpbp_id; /*HW ID for DPBP object */
132 };
133 
134 struct queue_storage_info_t {
135 	struct qbman_result *dq_storage[NUM_DQS_PER_QUEUE];
136 	struct qbman_result *active_dqs;
137 	uint8_t active_dpio_id;
138 	uint8_t toggle;
139 	uint8_t last_num_pkts;
140 };
141 
142 struct dpaa2_queue;
143 
144 typedef void (dpaa2_queue_cb_dqrr_t)(struct qbman_swp *swp,
145 		const struct qbman_fd *fd,
146 		const struct qbman_result *dq,
147 		struct dpaa2_queue *rxq,
148 		struct rte_event *ev);
149 
150 typedef void (dpaa2_queue_cb_eqresp_free_t)(uint16_t eqresp_ci);
151 
152 struct dpaa2_queue {
153 	struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
154 	union {
155 		struct rte_eth_dev_data *eth_data;
156 		struct rte_cryptodev_data *crypto_data;
157 	};
158 	uint32_t fqid;		/*!< Unique ID of this queue */
159 	uint16_t flow_id;	/*!< To be used by DPAA2 frmework */
160 	uint8_t tc_index;	/*!< traffic class identifier */
161 	uint8_t cgid;		/*! < Congestion Group id for this queue */
162 	uint64_t rx_pkts;
163 	uint64_t tx_pkts;
164 	uint64_t err_pkts;
165 	union {
166 		struct queue_storage_info_t *q_storage;
167 		struct qbman_result *cscn;
168 	};
169 	struct rte_event ev;
170 	dpaa2_queue_cb_dqrr_t *cb;
171 	dpaa2_queue_cb_eqresp_free_t *cb_eqresp_free;
172 	struct dpaa2_bp_info *bp_array;
173 	/*to store tx_conf_queue corresponding to tx_queue*/
174 	struct dpaa2_queue *tx_conf_queue;
175 	int32_t eventfd;	/*!< Event Fd of this queue */
176 	uint16_t nb_desc;
177 	uint16_t resv;
178 	uint64_t offloads;
179 } __rte_cache_aligned;
180 
181 struct swp_active_dqs {
182 	struct qbman_result *global_active_dqs;
183 	uint64_t reserved[7];
184 };
185 
186 #define NUM_MAX_SWP 64
187 
188 extern struct swp_active_dqs rte_global_active_dqs_list[NUM_MAX_SWP];
189 
190 struct dpaa2_dpci_dev {
191 	TAILQ_ENTRY(dpaa2_dpci_dev) next;
192 		/**< Pointer to Next device instance */
193 	struct fsl_mc_io dpci;  /** handle to DPCI portal object */
194 	uint16_t token;
195 	rte_atomic16_t in_use;
196 	uint32_t dpci_id; /*HW ID for DPCI object */
197 	struct dpaa2_queue rx_queue[DPAA2_DPCI_MAX_QUEUES];
198 	struct dpaa2_queue tx_queue[DPAA2_DPCI_MAX_QUEUES];
199 };
200 
201 struct dpaa2_dpcon_dev {
202 	TAILQ_ENTRY(dpaa2_dpcon_dev) next;
203 	struct fsl_mc_io dpcon;
204 	uint16_t token;
205 	rte_atomic16_t in_use;
206 	uint32_t dpcon_id;
207 	uint16_t qbman_ch_id;
208 	uint8_t num_priorities;
209 	uint8_t channel_index;
210 };
211 
212 /* Refer to Table 7-3 in SEC BG */
213 #define QBMAN_FLE_WORD4_FMT_SBF 0x0    /* Single buffer frame */
214 #define QBMAN_FLE_WORD4_FMT_SGE 0x2 /* Scatter gather frame */
215 
216 struct qbman_fle_word4 {
217 	uint32_t bpid:14; /* Frame buffer pool ID */
218 	uint32_t ivp:1; /* Invalid Pool ID. */
219 	uint32_t bmt:1; /* Bypass Memory Translation */
220 	uint32_t offset:12; /* Frame offset */
221 	uint32_t fmt:2; /* Frame Format */
222 	uint32_t sl:1; /* Short Length */
223 	uint32_t f:1; /* Final bit */
224 };
225 
226 struct qbman_fle {
227 	uint32_t addr_lo;
228 	uint32_t addr_hi;
229 	uint32_t length;
230 	/* FMT must be 00, MSB is final bit  */
231 	union {
232 		uint32_t fin_bpid_offset;
233 		struct qbman_fle_word4 word4;
234 	};
235 	uint32_t frc;
236 	uint32_t reserved[3]; /* Not used currently */
237 };
238 
239 struct qbman_sge {
240 	uint32_t addr_lo;
241 	uint32_t addr_hi;
242 	uint32_t length;
243 	uint32_t fin_bpid_offset;
244 };
245 
246 /* There are three types of frames: Single, Scatter Gather and Frame Lists */
247 enum qbman_fd_format {
248 	qbman_fd_single = 0,
249 	qbman_fd_list,
250 	qbman_fd_sg
251 };
252 /*Macros to define operations on FD*/
253 #define DPAA2_SET_FD_ADDR(fd, addr) do {			\
254 	(fd)->simple.addr_lo = lower_32_bits((size_t)(addr));	\
255 	(fd)->simple.addr_hi = upper_32_bits((uint64_t)(addr));	\
256 } while (0)
257 #define DPAA2_SET_FD_LEN(fd, length)	((fd)->simple.len = length)
258 #define DPAA2_SET_FD_BPID(fd, bpid)	((fd)->simple.bpid_offset |= bpid)
259 #define DPAA2_SET_ONLY_FD_BPID(fd, bpid) \
260 	((fd)->simple.bpid_offset = bpid)
261 #define DPAA2_SET_FD_IVP(fd)   (((fd)->simple.bpid_offset |= 0x00004000))
262 #define DPAA2_SET_FD_OFFSET(fd, offset)	\
263 	(((fd)->simple.bpid_offset |= (uint32_t)(offset) << 16))
264 #define DPAA2_SET_FD_INTERNAL_JD(fd, len) \
265 	((fd)->simple.frc = (0x80000000 | (len)))
266 #define DPAA2_GET_FD_FRC_PARSE_SUM(fd)	\
267 			((uint16_t)(((fd)->simple.frc & 0xffff0000) >> 16))
268 #define DPAA2_RESET_FD_FRC(fd)		((fd)->simple.frc = 0)
269 #define DPAA2_SET_FD_FRC(fd, _frc)	((fd)->simple.frc = _frc)
270 #define DPAA2_RESET_FD_CTRL(fd)	 ((fd)->simple.ctrl = 0)
271 
272 #define	DPAA2_SET_FD_ASAL(fd, asal)	((fd)->simple.ctrl |= (asal << 16))
273 
274 #define DPAA2_RESET_FD_FLC(fd)	do {	\
275 	(fd)->simple.flc_lo = 0;	\
276 	(fd)->simple.flc_hi = 0;	\
277 } while (0)
278 
279 #define DPAA2_SET_FD_FLC(fd, addr)	do { \
280 	(fd)->simple.flc_lo = lower_32_bits((size_t)(addr));	\
281 	(fd)->simple.flc_hi = upper_32_bits((uint64_t)(addr));	\
282 } while (0)
283 #define DPAA2_SET_FLE_INTERNAL_JD(fle, len) ((fle)->frc = (0x80000000 | (len)))
284 #define DPAA2_GET_FLE_ADDR(fle)					\
285 	(size_t)((((uint64_t)((fle)->addr_hi)) << 32) + (fle)->addr_lo)
286 #define DPAA2_SET_FLE_ADDR(fle, addr) do { \
287 	(fle)->addr_lo = lower_32_bits((size_t)addr);		\
288 	(fle)->addr_hi = upper_32_bits((uint64_t)addr);		\
289 } while (0)
290 #define DPAA2_GET_FLE_CTXT(fle)					\
291 	((((uint64_t)((fle)->reserved[1])) << 32) + (fle)->reserved[0])
292 #define DPAA2_FLE_SAVE_CTXT(fle, addr) do { \
293 	(fle)->reserved[0] = lower_32_bits((size_t)addr);	\
294 	(fle)->reserved[1] = upper_32_bits((uint64_t)addr);	\
295 } while (0)
296 #define DPAA2_SET_FLE_OFFSET(fle, offset) \
297 	((fle)->fin_bpid_offset |= (uint32_t)(offset) << 16)
298 #define DPAA2_SET_FLE_LEN(fle, len)    ((fle)->length = len)
299 #define DPAA2_SET_FLE_BPID(fle, bpid) ((fle)->fin_bpid_offset |= (size_t)bpid)
300 #define DPAA2_GET_FLE_BPID(fle) ((fle)->fin_bpid_offset & 0x000000ff)
301 #define DPAA2_SET_FLE_FIN(fle)	((fle)->fin_bpid_offset |= 1 << 31)
302 #define DPAA2_SET_FLE_IVP(fle)   (((fle)->fin_bpid_offset |= 0x00004000))
303 #define DPAA2_SET_FLE_BMT(fle)   (((fle)->fin_bpid_offset |= 0x00008000))
304 #define DPAA2_SET_FD_COMPOUND_FMT(fd)	\
305 	((fd)->simple.bpid_offset |= (uint32_t)1 << 28)
306 #define DPAA2_GET_FD_ADDR(fd)	\
307 (((((uint64_t)((fd)->simple.addr_hi)) << 32) + (fd)->simple.addr_lo))
308 
309 #define DPAA2_GET_FD_LEN(fd)	((fd)->simple.len)
310 #define DPAA2_GET_FD_BPID(fd)	(((fd)->simple.bpid_offset & 0x00003FFF))
311 #define DPAA2_GET_FD_IVP(fd)   (((fd)->simple.bpid_offset & 0x00004000) >> 14)
312 #define DPAA2_GET_FD_OFFSET(fd)	(((fd)->simple.bpid_offset & 0x0FFF0000) >> 16)
313 #define DPAA2_GET_FD_FRC(fd)   ((fd)->simple.frc)
314 #define DPAA2_GET_FD_FLC(fd) \
315 	(((uint64_t)((fd)->simple.flc_hi) << 32) + (fd)->simple.flc_lo)
316 #define DPAA2_GET_FD_ERR(fd)   ((fd)->simple.ctrl & 0x000000FF)
317 #define DPAA2_GET_FLE_OFFSET(fle) (((fle)->fin_bpid_offset & 0x0FFF0000) >> 16)
318 #define DPAA2_SET_FLE_SG_EXT(fle) ((fle)->fin_bpid_offset |= (uint64_t)1 << 29)
319 #define DPAA2_IS_SET_FLE_SG_EXT(fle)	\
320 	(((fle)->fin_bpid_offset & ((uint64_t)1 << 29)) ? 1 : 0)
321 
322 #define DPAA2_INLINE_MBUF_FROM_BUF(buf, meta_data_size) \
323 	((struct rte_mbuf *)((size_t)(buf) - (meta_data_size)))
324 
325 #define DPAA2_ASAL_VAL (DPAA2_MBUF_HW_ANNOTATION / 64)
326 
327 #define DPAA2_FD_SET_FORMAT(fd, format)	do {				\
328 		(fd)->simple.bpid_offset &= 0xCFFFFFFF;			\
329 		(fd)->simple.bpid_offset |= (uint32_t)format << 28;	\
330 } while (0)
331 #define DPAA2_FD_GET_FORMAT(fd)	(((fd)->simple.bpid_offset >> 28) & 0x3)
332 
333 #define DPAA2_SG_SET_FINAL(sg, fin)	do {				\
334 		(sg)->fin_bpid_offset &= 0x7FFFFFFF;			\
335 		(sg)->fin_bpid_offset |= (uint32_t)fin << 31;		\
336 } while (0)
337 #define DPAA2_SG_IS_FINAL(sg) (!!((sg)->fin_bpid_offset >> 31))
338 /* Only Enqueue Error responses will be
339  * pushed on FQID_ERR of Enqueue FQ
340  */
341 #define DPAA2_EQ_RESP_ERR_FQ		0
342 /* All Enqueue responses will be pushed on address
343  * set with qbman_eq_desc_set_response
344  */
345 #define DPAA2_EQ_RESP_ALWAYS		1
346 
347 /* Various structures representing contiguous memory maps */
348 struct dpaa2_memseg {
349 	TAILQ_ENTRY(dpaa2_memseg) next;
350 	char *vaddr;
351 	rte_iova_t iova;
352 	size_t len;
353 };
354 
355 #ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
356 extern uint8_t dpaa2_virt_mode;
357 static void *dpaa2_mem_ptov(phys_addr_t paddr) __rte_unused;
358 
dpaa2_mem_ptov(phys_addr_t paddr)359 static void *dpaa2_mem_ptov(phys_addr_t paddr)
360 {
361 	void *va;
362 
363 	if (dpaa2_virt_mode)
364 		return (void *)(size_t)paddr;
365 
366 	va = (void *)dpaax_iova_table_get_va(paddr);
367 	if (likely(va != NULL))
368 		return va;
369 
370 	/* If not, Fallback to full memseg list searching */
371 	va = rte_mem_iova2virt(paddr);
372 
373 	return va;
374 }
375 
376 static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr) __rte_unused;
377 
dpaa2_mem_vtop(uint64_t vaddr)378 static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr)
379 {
380 	const struct rte_memseg *memseg;
381 
382 	if (dpaa2_virt_mode)
383 		return vaddr;
384 
385 	memseg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
386 	if (memseg)
387 		return memseg->iova + RTE_PTR_DIFF(vaddr, memseg->addr);
388 	return (size_t)NULL;
389 }
390 
391 /**
392  * When we are using Physical addresses as IO Virtual Addresses,
393  * Need to call conversion routines dpaa2_mem_vtop & dpaa2_mem_ptov
394  * wherever required.
395  * These routines are called with help of below MACRO's
396  */
397 
398 #define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_iova)
399 
400 /**
401  * macro to convert Virtual address to IOVA
402  */
403 #define DPAA2_VADDR_TO_IOVA(_vaddr) dpaa2_mem_vtop((size_t)(_vaddr))
404 
405 /**
406  * macro to convert IOVA to Virtual address
407  */
408 #define DPAA2_IOVA_TO_VADDR(_iova) dpaa2_mem_ptov((size_t)(_iova))
409 
410 /**
411  * macro to convert modify the memory containing IOVA to Virtual address
412  */
413 #define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type) \
414 	{_mem = (_type)(dpaa2_mem_ptov((size_t)(_mem))); }
415 
416 #else	/* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */
417 
418 #define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_addr)
419 #define DPAA2_VADDR_TO_IOVA(_vaddr) (phys_addr_t)(_vaddr)
420 #define DPAA2_IOVA_TO_VADDR(_iova) (void *)(_iova)
421 #define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type)
422 
423 #endif /* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */
424 
425 static inline
check_swp_active_dqs(uint16_t dpio_index)426 int check_swp_active_dqs(uint16_t dpio_index)
427 {
428 	if (rte_global_active_dqs_list[dpio_index].global_active_dqs != NULL)
429 		return 1;
430 	return 0;
431 }
432 
433 static inline
clear_swp_active_dqs(uint16_t dpio_index)434 void clear_swp_active_dqs(uint16_t dpio_index)
435 {
436 	rte_global_active_dqs_list[dpio_index].global_active_dqs = NULL;
437 }
438 
439 static inline
get_swp_active_dqs(uint16_t dpio_index)440 struct qbman_result *get_swp_active_dqs(uint16_t dpio_index)
441 {
442 	return rte_global_active_dqs_list[dpio_index].global_active_dqs;
443 }
444 
445 static inline
set_swp_active_dqs(uint16_t dpio_index,struct qbman_result * dqs)446 void set_swp_active_dqs(uint16_t dpio_index, struct qbman_result *dqs)
447 {
448 	rte_global_active_dqs_list[dpio_index].global_active_dqs = dqs;
449 }
450 
451 __rte_internal
452 struct dpaa2_dpbp_dev *dpaa2_alloc_dpbp_dev(void);
453 
454 __rte_internal
455 void dpaa2_free_dpbp_dev(struct dpaa2_dpbp_dev *dpbp);
456 
457 __rte_internal
458 int dpaa2_dpbp_supported(void);
459 
460 __rte_internal
461 struct dpaa2_dpci_dev *rte_dpaa2_alloc_dpci_dev(void);
462 
463 __rte_internal
464 void rte_dpaa2_free_dpci_dev(struct dpaa2_dpci_dev *dpci);
465 
466 /* Global MCP pointer */
467 __rte_internal
468 void *dpaa2_get_mcp_ptr(int portal_idx);
469 
470 #endif
471