xref: /dpdk/drivers/common/iavf/virtchnl.h (revision 90160401)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2021 Intel Corporation
3  */
4 
5 #ifndef _VIRTCHNL_H_
6 #define _VIRTCHNL_H_
7 
8 /* Description:
9  * This header file describes the Virtual Function (VF) - Physical Function
10  * (PF) communication protocol used by the drivers for all devices starting
11  * from our 40G product line
12  *
13  * Admin queue buffer usage:
14  * desc->opcode is always aqc_opc_send_msg_to_pf
15  * flags, retval, datalen, and data addr are all used normally.
16  * The Firmware copies the cookie fields when sending messages between the
17  * PF and VF, but uses all other fields internally. Due to this limitation,
18  * we must send all messages as "indirect", i.e. using an external buffer.
19  *
20  * All the VSI indexes are relative to the VF. Each VF can have maximum of
21  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
22  * have a maximum of sixteen queues for all of its VSIs.
23  *
24  * The PF is required to return a status code in v_retval for all messages
25  * except RESET_VF, which does not require any response. The returned value
26  * is of virtchnl_status_code type, defined in the shared type.h.
27  *
28  * In general, VF driver initialization should roughly follow the order of
29  * these opcodes. The VF driver must first validate the API version of the
30  * PF driver, then request a reset, then get resources, then configure
31  * queues and interrupts. After these operations are complete, the VF
32  * driver may start its queues, optionally add MAC and VLAN filters, and
33  * process traffic.
34  */
35 
36 /* START GENERIC DEFINES
37  * Need to ensure the following enums and defines hold the same meaning and
38  * value in current and future projects
39  */
40 
41 #include "virtchnl_inline_ipsec.h"
42 
43 /* Error Codes */
44 enum virtchnl_status_code {
45 	VIRTCHNL_STATUS_SUCCESS				= 0,
46 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
47 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
48 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
49 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
50 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
51 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
52 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
53 };
54 
55 /* Backward compatibility */
56 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
57 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
58 
59 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
60 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
61 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
62 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
63 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
64 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
65 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
66 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
67 
68 enum virtchnl_link_speed {
69 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
70 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
71 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
72 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
75 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
78 };
79 
80 /* for hsplit_0 field of Rx HMC context */
81 /* deprecated with IAVF 1.0 */
82 enum virtchnl_rx_hsplit {
83 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
84 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
85 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
86 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
87 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
88 };
89 
90 enum virtchnl_bw_limit_type {
91 	VIRTCHNL_BW_SHAPER = 0,
92 };
93 
94 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS	6
95 /* END GENERIC DEFINES */
96 
97 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
98  * of the virtchnl_msg structure.
99  */
100 enum virtchnl_ops {
101 /* The PF sends status change events to VFs using
102  * the VIRTCHNL_OP_EVENT opcode.
103  * VFs send requests to the PF using the other ops.
104  * Use of "advanced opcode" features must be negotiated as part of capabilities
105  * exchange and are not considered part of base mode feature set.
106  */
107 	VIRTCHNL_OP_UNKNOWN = 0,
108 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
109 	VIRTCHNL_OP_RESET_VF = 2,
110 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
111 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
112 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
113 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
114 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
115 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
116 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
117 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
118 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
119 	VIRTCHNL_OP_ADD_VLAN = 12,
120 	VIRTCHNL_OP_DEL_VLAN = 13,
121 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
122 	VIRTCHNL_OP_GET_STATS = 15,
123 	VIRTCHNL_OP_RSVD = 16,
124 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
125 	/* opcode 19 is reserved */
126 	/* opcodes 20, 21, and 22 are reserved */
127 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
128 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
129 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
130 	VIRTCHNL_OP_SET_RSS_HENA = 26,
131 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
132 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
133 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
134 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
135 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
136 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
137 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
138 	VIRTCHNL_OP_INLINE_IPSEC_CRYPTO = 34,
139 	/* opcodes 35 and 36 are reserved */
140 	VIRTCHNL_OP_DCF_CONFIG_BW = 37,
141 	VIRTCHNL_OP_DCF_VLAN_OFFLOAD = 38,
142 	VIRTCHNL_OP_DCF_CMD_DESC = 39,
143 	VIRTCHNL_OP_DCF_CMD_BUFF = 40,
144 	VIRTCHNL_OP_DCF_DISABLE = 41,
145 	VIRTCHNL_OP_DCF_GET_VSI_MAP = 42,
146 	VIRTCHNL_OP_DCF_GET_PKG_INFO = 43,
147 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
148 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
149 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
150 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
151 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
152 	VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
153 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
154 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
155 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
156 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
157 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
158 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
159 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
160 	VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
161 	VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
162 	VIRTCHNL_OP_1588_PTP_GET_CAPS = 60,
163 	VIRTCHNL_OP_1588_PTP_GET_TIME = 61,
164 	VIRTCHNL_OP_GET_QOS_CAPS = 66,
165 	VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67,
166 	VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
167 	VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
168 	VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
169 	VIRTCHNL_OP_CONFIG_QUEUE_BW = 112,
170 	VIRTCHNL_OP_CONFIG_QUANTA = 113,
171 	VIRTCHNL_OP_MAX,
172 };
173 
virtchnl_op_str(enum virtchnl_ops v_opcode)174 static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
175 {
176 	switch (v_opcode) {
177 	case VIRTCHNL_OP_UNKNOWN:
178 		return "VIRTCHNL_OP_UNKNOWN";
179 	case VIRTCHNL_OP_VERSION:
180 		return "VIRTCHNL_OP_VERSION";
181 	case VIRTCHNL_OP_RESET_VF:
182 		return "VIRTCHNL_OP_RESET_VF";
183 	case VIRTCHNL_OP_GET_VF_RESOURCES:
184 		return "VIRTCHNL_OP_GET_VF_RESOURCES";
185 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
186 		return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
187 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
188 		return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
189 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
190 		return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
191 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
192 		return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
193 	case VIRTCHNL_OP_ENABLE_QUEUES:
194 		return "VIRTCHNL_OP_ENABLE_QUEUES";
195 	case VIRTCHNL_OP_DISABLE_QUEUES:
196 		return "VIRTCHNL_OP_DISABLE_QUEUES";
197 	case VIRTCHNL_OP_ADD_ETH_ADDR:
198 		return "VIRTCHNL_OP_ADD_ETH_ADDR";
199 	case VIRTCHNL_OP_DEL_ETH_ADDR:
200 		return "VIRTCHNL_OP_DEL_ETH_ADDR";
201 	case VIRTCHNL_OP_ADD_VLAN:
202 		return "VIRTCHNL_OP_ADD_VLAN";
203 	case VIRTCHNL_OP_DEL_VLAN:
204 		return "VIRTCHNL_OP_DEL_VLAN";
205 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
206 		return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
207 	case VIRTCHNL_OP_GET_STATS:
208 		return "VIRTCHNL_OP_GET_STATS";
209 	case VIRTCHNL_OP_RSVD:
210 		return "VIRTCHNL_OP_RSVD";
211 	case VIRTCHNL_OP_EVENT:
212 		return "VIRTCHNL_OP_EVENT";
213 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
214 		return "VIRTCHNL_OP_CONFIG_RSS_KEY";
215 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
216 		return "VIRTCHNL_OP_CONFIG_RSS_LUT";
217 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
218 		return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
219 	case VIRTCHNL_OP_SET_RSS_HENA:
220 		return "VIRTCHNL_OP_SET_RSS_HENA";
221 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
222 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
223 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
224 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
225 	case VIRTCHNL_OP_REQUEST_QUEUES:
226 		return "VIRTCHNL_OP_REQUEST_QUEUES";
227 	case VIRTCHNL_OP_ENABLE_CHANNELS:
228 		return "VIRTCHNL_OP_ENABLE_CHANNELS";
229 	case VIRTCHNL_OP_DISABLE_CHANNELS:
230 		return "VIRTCHNL_OP_DISABLE_CHANNELS";
231 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
232 		return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
233 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
234 		return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
235 	case VIRTCHNL_OP_INLINE_IPSEC_CRYPTO:
236 		return "VIRTCHNL_OP_INLINE_IPSEC_CRYPTO";
237 	case VIRTCHNL_OP_DCF_CMD_DESC:
238 		return "VIRTCHNL_OP_DCF_CMD_DESC";
239 	case VIRTCHNL_OP_DCF_CMD_BUFF:
240 		return "VIRTCHNL_OP_DCF_CMD_BUFF";
241 	case VIRTCHNL_OP_DCF_DISABLE:
242 		return "VIRTCHNL_OP_DCF_DISABLE";
243 	case VIRTCHNL_OP_DCF_GET_VSI_MAP:
244 		return "VIRTCHNL_OP_DCF_GET_VSI_MAP";
245 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
246 		return "VIRTCHNL_OP_GET_SUPPORTED_RXDIDS";
247 	case VIRTCHNL_OP_ADD_RSS_CFG:
248 		return "VIRTCHNL_OP_ADD_RSS_CFG";
249 	case VIRTCHNL_OP_DEL_RSS_CFG:
250 		return "VIRTCHNL_OP_DEL_RSS_CFG";
251 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
252 		return "VIRTCHNL_OP_ADD_FDIR_FILTER";
253 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
254 		return "VIRTCHNL_OP_DEL_FDIR_FILTER";
255 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
256 		return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
257 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
258 		return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
259 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
260 		return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
261 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
262 		return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
263 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
264 		return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
265 	case VIRTCHNL_OP_ADD_VLAN_V2:
266 		return "VIRTCHNL_OP_ADD_VLAN_V2";
267 	case VIRTCHNL_OP_DEL_VLAN_V2:
268 		return "VIRTCHNL_OP_DEL_VLAN_V2";
269 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
270 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
271 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
272 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
273 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
274 		return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
275 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
276 		return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
277 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
278 		return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
279 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
280 		return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
281 	case VIRTCHNL_OP_1588_PTP_GET_CAPS:
282 		return "VIRTCHNL_OP_1588_PTP_GET_CAPS";
283 	case VIRTCHNL_OP_1588_PTP_GET_TIME:
284 		return "VIRTCHNL_OP_1588_PTP_GET_TIME";
285 	case VIRTCHNL_OP_MAX:
286 		return "VIRTCHNL_OP_MAX";
287 	default:
288 		return "Unsupported (update virtchnl.h)";
289 	}
290 }
291 
292 /* These macros are used to generate compilation errors if a structure/union
293  * is not exactly the correct length. It gives a divide by zero error if the
294  * structure/union is not of the correct size, otherwise it creates an enum
295  * that is never used.
296  */
297 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
298 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
299 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
300 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
301 
302 /* Virtual channel message descriptor. This overlays the admin queue
303  * descriptor. All other data is passed in external buffers.
304  */
305 
306 struct virtchnl_msg {
307 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
308 
309 	/* avoid confusion with desc->opcode */
310 	enum virtchnl_ops v_opcode;
311 
312 	/* ditto for desc->retval */
313 	enum virtchnl_status_code v_retval;
314 	u32 vfid;			 /* used by PF when sending to VF */
315 };
316 
317 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
318 
319 /* Message descriptions and data structures. */
320 
321 /* VIRTCHNL_OP_VERSION
322  * VF posts its version number to the PF. PF responds with its version number
323  * in the same format, along with a return code.
324  * Reply from PF has its major/minor versions also in param0 and param1.
325  * If there is a major version mismatch, then the VF cannot operate.
326  * If there is a minor version mismatch, then the VF can operate but should
327  * add a warning to the system log.
328  *
329  * This enum element MUST always be specified as == 1, regardless of other
330  * changes in the API. The PF must always respond to this message without
331  * error regardless of version mismatch.
332  */
333 #define VIRTCHNL_VERSION_MAJOR		1
334 #define VIRTCHNL_VERSION_MINOR		1
335 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
336 
337 struct virtchnl_version_info {
338 	u32 major;
339 	u32 minor;
340 };
341 
342 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
343 
344 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
345 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
346 
347 /* VIRTCHNL_OP_RESET_VF
348  * VF sends this request to PF with no parameters
349  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
350  * until reset completion is indicated. The admin queue must be reinitialized
351  * after this operation.
352  *
353  * When reset is complete, PF must ensure that all queues in all VSIs associated
354  * with the VF are stopped, all queue configurations in the HMC are set to 0,
355  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
356  * are cleared.
357  */
358 
359 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
360  * vsi_type should always be 6 for backward compatibility. Add other fields
361  * as needed.
362  */
363 enum virtchnl_vsi_type {
364 	VIRTCHNL_VSI_TYPE_INVALID = 0,
365 	VIRTCHNL_VSI_SRIOV = 6,
366 };
367 
368 /* VIRTCHNL_OP_GET_VF_RESOURCES
369  * Version 1.0 VF sends this request to PF with no parameters
370  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
371  * PF responds with an indirect message containing
372  * virtchnl_vf_resource and one or more
373  * virtchnl_vsi_resource structures.
374  */
375 
376 struct virtchnl_vsi_resource {
377 	u16 vsi_id;
378 	u16 num_queue_pairs;
379 
380 	/* see enum virtchnl_vsi_type */
381 	s32 vsi_type;
382 	u16 qset_handle;
383 	u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
384 };
385 
386 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
387 
388 /* VF capability flags
389  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
390  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
391  */
392 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
393 #define VIRTCHNL_VF_OFFLOAD_IWARP		BIT(1)
394 #define VIRTCHNL_VF_OFFLOAD_RSVD		BIT(2)
395 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
396 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
397 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
398 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
399 /* used to negotiate communicating link speeds in Mbps */
400 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
401 #define VIRTCHNL_VF_OFFLOAD_INLINE_IPSEC_CRYPTO	BIT(8)
402 #define VIRTCHNL_VF_LARGE_NUM_QPAIRS		BIT(9)
403 #define VIRTCHNL_VF_OFFLOAD_CRC			BIT(10)
404 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
405 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
406 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
407 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
408 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
409 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
410 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
411 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
412 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
413 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2		BIT(24)
414 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
415 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	BIT(26)
416 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
417 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
418 #define VIRTCHNL_VF_OFFLOAD_QOS		BIT(29)
419 #define VIRTCHNL_VF_CAP_DCF			BIT(30)
420 #define VIRTCHNL_VF_CAP_PTP			BIT(31)
421 
422 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
423 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
424 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
425 
426 struct virtchnl_vf_resource {
427 	u16 num_vsis;
428 	u16 num_queue_pairs;
429 	u16 max_vectors;
430 	u16 max_mtu;
431 
432 	u32 vf_cap_flags;
433 	u32 rss_key_size;
434 	u32 rss_lut_size;
435 
436 	struct virtchnl_vsi_resource vsi_res[1];
437 };
438 
439 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
440 
441 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
442  * VF sends this message to set up parameters for one TX queue.
443  * External data buffer contains one instance of virtchnl_txq_info.
444  * PF configures requested queue and returns a status code.
445  */
446 
447 /* Tx queue config info */
448 struct virtchnl_txq_info {
449 	u16 vsi_id;
450 	u16 queue_id;
451 	u16 ring_len;		/* number of descriptors, multiple of 8 */
452 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
453 	u64 dma_ring_addr;
454 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
455 };
456 
457 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
458 
459 /* RX descriptor IDs (range from 0 to 63) */
460 enum virtchnl_rx_desc_ids {
461 	VIRTCHNL_RXDID_0_16B_BASE		= 0,
462 	/* 32B_BASE and FLEX_SPLITQ share desc ids as default descriptors
463 	 * because they can be differentiated based on queue model; e.g. single
464 	 * queue model can only use 32B_BASE and split queue model can only use
465 	 * FLEX_SPLITQ.  Having these as 1 allows them to be used as default
466 	 * descriptors without negotiation.
467 	 */
468 	VIRTCHNL_RXDID_1_32B_BASE		= 1,
469 	VIRTCHNL_RXDID_1_FLEX_SPLITQ		= 1,
470 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC		= 2,
471 	VIRTCHNL_RXDID_3_FLEX_SQ_SW		= 3,
472 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB	= 4,
473 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL	= 5,
474 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2		= 6,
475 	VIRTCHNL_RXDID_7_HW_RSVD		= 7,
476 	/* 9 through 15 are reserved */
477 	VIRTCHNL_RXDID_16_COMMS_GENERIC		= 16,
478 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN	= 17,
479 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4	= 18,
480 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6	= 19,
481 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW	= 20,
482 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP		= 21,
483 	/* 22 through 63 are reserved */
484 };
485 
486 /* RX descriptor ID bitmasks */
487 enum virtchnl_rx_desc_id_bitmasks {
488 	VIRTCHNL_RXDID_0_16B_BASE_M		= BIT(VIRTCHNL_RXDID_0_16B_BASE),
489 	VIRTCHNL_RXDID_1_32B_BASE_M		= BIT(VIRTCHNL_RXDID_1_32B_BASE),
490 	VIRTCHNL_RXDID_1_FLEX_SPLITQ_M		= BIT(VIRTCHNL_RXDID_1_FLEX_SPLITQ),
491 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M		= BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC),
492 	VIRTCHNL_RXDID_3_FLEX_SQ_SW_M		= BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW),
493 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M	= BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB),
494 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M	= BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL),
495 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M	= BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2),
496 	VIRTCHNL_RXDID_7_HW_RSVD_M		= BIT(VIRTCHNL_RXDID_7_HW_RSVD),
497 	/* 9 through 15 are reserved */
498 	VIRTCHNL_RXDID_16_COMMS_GENERIC_M	= BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC),
499 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M	= BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN),
500 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M	= BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4),
501 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M	= BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6),
502 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M	= BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW),
503 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M	= BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP),
504 	/* 22 through 63 are reserved */
505 };
506 
507 /* virtchnl_rxq_info_flags
508  *
509  * Definition of bits in the flags field of the virtchnl_rxq_info structure.
510  */
511 enum virtchnl_rxq_info_flags {
512 	/* If the VIRTCHNL_PTP_RX_TSTAMP bit of the flag field is set, this is
513 	 * a request to enable Rx timestamp. Other flag bits are currently
514 	 * reserved and they may be extended in the future.
515 	 */
516 	VIRTCHNL_PTP_RX_TSTAMP = BIT(0),
517 };
518 
519 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
520  * VF sends this message to set up parameters for one RX queue.
521  * External data buffer contains one instance of virtchnl_rxq_info.
522  * PF configures requested queue and returns a status code. The
523  * crc_disable flag disables CRC stripping on the VF. Setting
524  * the crc_disable flag to 1 will disable CRC stripping for each
525  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
526  * offload must have been set prior to sending this info or the PF
527  * will ignore the request. This flag should be set the same for
528  * all of the queues for a VF.
529  */
530 
531 /* Rx queue config info */
532 struct virtchnl_rxq_info {
533 	u16 vsi_id;
534 	u16 queue_id;
535 	u32 ring_len;		/* number of descriptors, multiple of 32 */
536 	u16 hdr_size;
537 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
538 	u32 databuffer_size;
539 	u32 max_pkt_size;
540 	u8 crc_disable;
541 	/* see enum virtchnl_rx_desc_ids;
542 	 * only used when VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is supported. Note
543 	 * that when the offload is not supported, the descriptor format aligns
544 	 * with VIRTCHNL_RXDID_1_32B_BASE.
545 	 */
546 	u8 rxdid;
547 	u8 flags; /* see virtchnl_rxq_info_flags */
548 	u8 pad1;
549 	u64 dma_ring_addr;
550 
551 	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
552 	s32 rx_split_pos;
553 	u32 pad2;
554 };
555 
556 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
557 
558 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
559  * VF sends this message to set parameters for active TX and RX queues
560  * associated with the specified VSI.
561  * PF configures queues and returns status.
562  * If the number of queues specified is greater than the number of queues
563  * associated with the VSI, an error is returned and no queues are configured.
564  * NOTE: The VF is not required to configure all queues in a single request.
565  * It may send multiple messages. PF drivers must correctly handle all VF
566  * requests.
567  */
568 struct virtchnl_queue_pair_info {
569 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
570 	struct virtchnl_txq_info txq;
571 	struct virtchnl_rxq_info rxq;
572 };
573 
574 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
575 
576 struct virtchnl_vsi_queue_config_info {
577 	u16 vsi_id;
578 	u16 num_queue_pairs;
579 	u32 pad;
580 	struct virtchnl_queue_pair_info qpair[1];
581 };
582 
583 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
584 
585 /* VIRTCHNL_OP_REQUEST_QUEUES
586  * VF sends this message to request the PF to allocate additional queues to
587  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
588  * additional queues must be negotiated.  This is a best effort request as it
589  * is possible the PF does not have enough queues left to support the request.
590  * If the PF cannot support the number requested it will respond with the
591  * maximum number it is able to support.  If the request is successful, PF will
592  * then reset the VF to institute required changes.
593  */
594 
595 /* VF resource request */
596 struct virtchnl_vf_res_request {
597 	u16 num_queue_pairs;
598 };
599 
600 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
601  * VF uses this message to map vectors to queues.
602  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
603  * are to be associated with the specified vector.
604  * The "other" causes are always mapped to vector 0. The VF may not request
605  * that vector 0 be used for traffic.
606  * PF configures interrupt mapping and returns status.
607  * NOTE: due to hardware requirements, all active queues (both TX and RX)
608  * should be mapped to interrupts, even if the driver intends to operate
609  * only in polling mode. In this case the interrupt may be disabled, but
610  * the ITR timer will still run to trigger writebacks.
611  */
612 struct virtchnl_vector_map {
613 	u16 vsi_id;
614 	u16 vector_id;
615 	u16 rxq_map;
616 	u16 txq_map;
617 	u16 rxitr_idx;
618 	u16 txitr_idx;
619 };
620 
621 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
622 
623 struct virtchnl_irq_map_info {
624 	u16 num_vectors;
625 	struct virtchnl_vector_map vecmap[1];
626 };
627 
628 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
629 
630 /* VIRTCHNL_OP_ENABLE_QUEUES
631  * VIRTCHNL_OP_DISABLE_QUEUES
632  * VF sends these message to enable or disable TX/RX queue pairs.
633  * The queues fields are bitmaps indicating which queues to act upon.
634  * (Currently, we only support 16 queues per VF, but we make the field
635  * u32 to allow for expansion.)
636  * PF performs requested action and returns status.
637  * NOTE: The VF is not required to enable/disable all queues in a single
638  * request. It may send multiple messages.
639  * PF drivers must correctly handle all VF requests.
640  */
641 struct virtchnl_queue_select {
642 	u16 vsi_id;
643 	u16 pad;
644 	u32 rx_queues;
645 	u32 tx_queues;
646 };
647 
648 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
649 
650 /* VIRTCHNL_OP_GET_MAX_RSS_QREGION
651  *
652  * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
653  * then this op must be supported.
654  *
655  * VF sends this message in order to query the max RSS queue region
656  * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
657  * This information should be used when configuring the RSS LUT and/or
658  * configuring queue region based filters.
659  *
660  * The maximum RSS queue region is 2^qregion_width. So, a qregion_width
661  * of 6 would inform the VF that the PF supports a maximum RSS queue region
662  * of 64.
663  *
664  * A queue region represents a range of queues that can be used to configure
665  * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
666  * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
667  * to configure the RSS LUT with queue indices from 0 to 15. However, other
668  * filters can be used to direct packets to queues >15 via specifying a queue
669  * base/offset and queue region width.
670  */
671 struct virtchnl_max_rss_qregion {
672 	u16 vport_id;
673 	u16 qregion_width;
674 	u8 pad[4];
675 };
676 
677 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
678 
679 /* VIRTCHNL_OP_ADD_ETH_ADDR
680  * VF sends this message in order to add one or more unicast or multicast
681  * address filters for the specified VSI.
682  * PF adds the filters and returns status.
683  */
684 
685 /* VIRTCHNL_OP_DEL_ETH_ADDR
686  * VF sends this message in order to remove one or more unicast or multicast
687  * filters for the specified VSI.
688  * PF removes the filters and returns status.
689  */
690 
691 /* VIRTCHNL_ETHER_ADDR_LEGACY
692  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
693  * bytes. Moving forward all VF drivers should not set type to
694  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
695  * behavior. The control plane function (i.e. PF) can use a best effort method
696  * of tracking the primary/device unicast in this case, but there is no
697  * guarantee and functionality depends on the implementation of the PF.
698  */
699 
700 /* VIRTCHNL_ETHER_ADDR_PRIMARY
701  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
702  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
703  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
704  * function (i.e. PF) to accurately track and use this MAC address for
705  * displaying on the host and for VM/function reset.
706  */
707 
708 /* VIRTCHNL_ETHER_ADDR_EXTRA
709  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
710  * unicast and/or multicast filters that are being added/deleted via
711  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
712  */
713 struct virtchnl_ether_addr {
714 	u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
715 	u8 type;
716 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
717 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
718 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
719 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
720 	u8 pad;
721 };
722 
723 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
724 
725 struct virtchnl_ether_addr_list {
726 	u16 vsi_id;
727 	u16 num_elements;
728 	struct virtchnl_ether_addr list[1];
729 };
730 
731 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
732 
733 /* VIRTCHNL_OP_ADD_VLAN
734  * VF sends this message to add one or more VLAN tag filters for receives.
735  * PF adds the filters and returns status.
736  * If a port VLAN is configured by the PF, this operation will return an
737  * error to the VF.
738  */
739 
740 /* VIRTCHNL_OP_DEL_VLAN
741  * VF sends this message to remove one or more VLAN tag filters for receives.
742  * PF removes the filters and returns status.
743  * If a port VLAN is configured by the PF, this operation will return an
744  * error to the VF.
745  */
746 
747 struct virtchnl_vlan_filter_list {
748 	u16 vsi_id;
749 	u16 num_elements;
750 	u16 vlan_id[1];
751 };
752 
753 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
754 
755 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
756  * structures and opcodes.
757  *
758  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
759  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
760  *
761  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
762  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
763  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
764  *
765  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
766  * by the PF concurrently. For example, if the PF can support
767  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
768  * would OR the following bits:
769  *
770  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
771  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
772  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
773  *
774  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
775  * and 0x88A8 VLAN ethertypes.
776  *
777  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
778  * by the PF concurrently. For example if the PF can support
779  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
780  * offload it would OR the following bits:
781  *
782  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
783  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
784  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
785  *
786  * The VF would interpret this as VLAN stripping can be supported on either
787  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
788  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
789  * the previously set value.
790  *
791  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
792  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
793  *
794  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
795  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
796  *
797  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
798  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
799  *
800  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
801  * VLAN filtering if the underlying PF supports it.
802  *
803  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
804  * certain VLAN capability can be toggled. For example if the underlying PF/CP
805  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
806  * set this bit along with the supported ethertypes.
807  */
808 enum virtchnl_vlan_support {
809 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
810 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		0x00000001,
811 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		0x00000002,
812 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		0x00000004,
813 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	0x00000100,
814 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	0x00000200,
815 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	0x00000400,
816 	VIRTCHNL_VLAN_PRIO =			0x01000000,
817 	VIRTCHNL_VLAN_FILTER_MASK =		0x10000000,
818 	VIRTCHNL_VLAN_ETHERTYPE_AND =		0x20000000,
819 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		0x40000000,
820 	VIRTCHNL_VLAN_TOGGLE =			0x80000000
821 };
822 
823 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
824  * for filtering, insertion, and stripping capabilities.
825  *
826  * If only outer capabilities are supported (for filtering, insertion, and/or
827  * stripping) then this refers to the outer most or single VLAN from the VF's
828  * perspective.
829  *
830  * If only inner capabilities are supported (for filtering, insertion, and/or
831  * stripping) then this refers to the outer most or single VLAN from the VF's
832  * perspective. Functionally this is the same as if only outer capabilities are
833  * supported. The VF driver is just forced to use the inner fields when
834  * adding/deleting filters and enabling/disabling offloads (if supported).
835  *
836  * If both outer and inner capabilities are supported (for filtering, insertion,
837  * and/or stripping) then outer refers to the outer most or single VLAN and
838  * inner refers to the second VLAN, if it exists, in the packet.
839  *
840  * There is no support for tunneled VLAN offloads, so outer or inner are never
841  * referring to a tunneled packet from the VF's perspective.
842  */
843 struct virtchnl_vlan_supported_caps {
844 	u32 outer;
845 	u32 inner;
846 };
847 
848 /* The PF populates these fields based on the supported VLAN filtering. If a
849  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
850  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
851  * the unsupported fields.
852  *
853  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
854  * VIRTCHNL_VLAN_TOGGLE bit is set.
855  *
856  * The ethertype(s) specified in the ethertype_init field are the ethertypes
857  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
858  * most VLAN from the VF's perspective. If both inner and outer filtering are
859  * allowed then ethertype_init only refers to the outer most VLAN as only
860  * VLAN ethertype supported for inner VLAN filtering is
861  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
862  * when both inner and outer filtering are allowed.
863  *
864  * The max_filters field tells the VF how many VLAN filters it's allowed to have
865  * at any one time. If it exceeds this amount and tries to add another filter,
866  * then the request will be rejected by the PF. To prevent failures, the VF
867  * should keep track of how many VLAN filters it has added and not attempt to
868  * add more than max_filters.
869  */
870 struct virtchnl_vlan_filtering_caps {
871 	struct virtchnl_vlan_supported_caps filtering_support;
872 	u32 ethertype_init;
873 	u16 max_filters;
874 	u8 pad[2];
875 };
876 
877 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
878 
879 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
880  * if the PF supports a different ethertype for stripping and insertion.
881  *
882  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
883  * for stripping affect the ethertype(s) specified for insertion and visa versa
884  * as well. If the VF tries to configure VLAN stripping via
885  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
886  * that will be the ethertype for both stripping and insertion.
887  *
888  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
889  * stripping do not affect the ethertype(s) specified for insertion and visa
890  * versa.
891  */
892 enum virtchnl_vlan_ethertype_match {
893 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
894 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
895 };
896 
897 /* The PF populates these fields based on the supported VLAN offloads. If a
898  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
899  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
900  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
901  *
902  * Also, a VF is only allowed to toggle its VLAN offload setting if the
903  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
904  *
905  * The VF driver needs to be aware of how the tags are stripped by hardware and
906  * inserted by the VF driver based on the level of offload support. The PF will
907  * populate these fields based on where the VLAN tags are expected to be
908  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
909  * interpret these fields. See the definition of the
910  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
911  * enumeration.
912  */
913 struct virtchnl_vlan_offload_caps {
914 	struct virtchnl_vlan_supported_caps stripping_support;
915 	struct virtchnl_vlan_supported_caps insertion_support;
916 	u32 ethertype_init;
917 	u8 ethertype_match;
918 	u8 pad[3];
919 };
920 
921 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
922 
923 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
924  * VF sends this message to determine its VLAN capabilities.
925  *
926  * PF will mark which capabilities it supports based on hardware support and
927  * current configuration. For example, if a port VLAN is configured the PF will
928  * not allow outer VLAN filtering, stripping, or insertion to be configured so
929  * it will block these features from the VF.
930  *
931  * The VF will need to cross reference its capabilities with the PFs
932  * capabilities in the response message from the PF to determine the VLAN
933  * support.
934  */
935 struct virtchnl_vlan_caps {
936 	struct virtchnl_vlan_filtering_caps filtering;
937 	struct virtchnl_vlan_offload_caps offloads;
938 };
939 
940 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
941 
942 struct virtchnl_vlan {
943 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
944 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
945 			 * filtering caps
946 			 */
947 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
948 			 * filtering caps. Note that tpid here does not refer to
949 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
950 			 * actual 2-byte VLAN TPID
951 			 */
952 	u8 pad[2];
953 };
954 
955 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
956 
957 struct virtchnl_vlan_filter {
958 	struct virtchnl_vlan inner;
959 	struct virtchnl_vlan outer;
960 	u8 pad[16];
961 };
962 
963 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
964 
965 /* VIRTCHNL_OP_ADD_VLAN_V2
966  * VIRTCHNL_OP_DEL_VLAN_V2
967  *
968  * VF sends these messages to add/del one or more VLAN tag filters for Rx
969  * traffic.
970  *
971  * The PF attempts to add the filters and returns status.
972  *
973  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
974  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
975  */
976 struct virtchnl_vlan_filter_list_v2 {
977 	u16 vport_id;
978 	u16 num_elements;
979 	u8 pad[4];
980 	struct virtchnl_vlan_filter filters[1];
981 };
982 
983 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
984 
985 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
986  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
987  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
988  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
989  *
990  * VF sends this message to enable or disable VLAN stripping or insertion. It
991  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
992  * allowed and whether or not it's allowed to enable/disable the specific
993  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
994  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
995  * messages are allowed.
996  *
997  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
998  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
999  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
1000  * case means the outer most or single VLAN from the VF's perspective. This is
1001  * because no outer offloads are supported. See the comments above the
1002  * virtchnl_vlan_supported_caps structure for more details.
1003  *
1004  * virtchnl_vlan_caps.offloads.stripping_support.inner =
1005  *			VIRTCHNL_VLAN_TOGGLE |
1006  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
1007  *
1008  * virtchnl_vlan_caps.offloads.insertion_support.inner =
1009  *			VIRTCHNL_VLAN_TOGGLE |
1010  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
1011  *
1012  * In order to enable inner (again note that in this case inner is the outer
1013  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
1014  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
1015  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
1016  *
1017  * virtchnl_vlan_setting.inner_ethertype_setting =
1018  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
1019  *
1020  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1021  * initialization.
1022  *
1023  * The reason that VLAN TPID(s) are not being used for the
1024  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
1025  * possible a device could support VLAN insertion and/or stripping offload on
1026  * multiple ethertypes concurrently, so this method allows a VF to request
1027  * multiple ethertypes in one message using the virtchnl_vlan_support
1028  * enumeration.
1029  *
1030  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
1031  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
1032  * VLAN insertion and stripping simultaneously. The
1033  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
1034  * populated based on what the PF can support.
1035  *
1036  * virtchnl_vlan_caps.offloads.stripping_support.outer =
1037  *			VIRTCHNL_VLAN_TOGGLE |
1038  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1039  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1040  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1041  *
1042  * virtchnl_vlan_caps.offloads.insertion_support.outer =
1043  *			VIRTCHNL_VLAN_TOGGLE |
1044  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1045  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1046  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1047  *
1048  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
1049  * would populate the virthcnl_vlan_offload_structure in the following manner
1050  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
1051  *
1052  * virtchnl_vlan_setting.outer_ethertype_setting =
1053  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
1054  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
1055  *
1056  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1057  * initialization.
1058  *
1059  * There is also the case where a PF and the underlying hardware can support
1060  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
1061  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
1062  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
1063  * offloads. The ethertypes must match for stripping and insertion.
1064  *
1065  * virtchnl_vlan_caps.offloads.stripping_support.outer =
1066  *			VIRTCHNL_VLAN_TOGGLE |
1067  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1068  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1069  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1070  *
1071  * virtchnl_vlan_caps.offloads.insertion_support.outer =
1072  *			VIRTCHNL_VLAN_TOGGLE |
1073  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1074  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1075  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1076  *
1077  * virtchnl_vlan_caps.offloads.ethertype_match =
1078  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
1079  *
1080  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
1081  * populate the virtchnl_vlan_setting structure in the following manner and send
1082  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
1083  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
1084  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
1085  *
1086  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
1087  *
1088  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1089  * initialization.
1090  *
1091  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
1092  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
1093  *
1094  * VF sends this message to enable or disable VLAN filtering. It also needs to
1095  * specify an ethertype. The VF knows which VLAN ethertypes are allowed and
1096  * whether or not it's allowed to enable/disable filtering via the
1097  * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
1098  * parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
1099  * filtering messages are allowed.
1100  *
1101  * For example, if the PF populates the virtchnl_vlan_caps.filtering in the
1102  * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
1103  * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
1104  * means that all filtering ethertypes will to be enabled and disabled together
1105  * regardless of the request from the VF. This means that the underlying
1106  * hardware only supports VLAN filtering for all VLAN the specified ethertypes
1107  * or none of them.
1108  *
1109  * virtchnl_vlan_caps.filtering.filtering_support.outer =
1110  *			VIRTCHNL_VLAN_TOGGLE |
1111  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1112  *			VIRTHCNL_VLAN_ETHERTYPE_88A8 |
1113  *			VIRTCHNL_VLAN_ETHERTYPE_9100 |
1114  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1115  *
1116  * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
1117  * VLANs aren't supported by the VF driver), the VF would populate the
1118  * virtchnl_vlan_setting structure in the following manner and send the
1119  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
1120  * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
1121  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
1122  *
1123  * virtchnl_vlan_setting.outer_ethertype_setting =
1124  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1125  *			VIRTCHNL_VLAN_ETHERTYPE_88A8;
1126  *
1127  */
1128 struct virtchnl_vlan_setting {
1129 	u32 outer_ethertype_setting;
1130 	u32 inner_ethertype_setting;
1131 	u16 vport_id;
1132 	u8 pad[6];
1133 };
1134 
1135 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
1136 
1137 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
1138  * VF sends VSI id and flags.
1139  * PF returns status code in retval.
1140  * Note: we assume that broadcast accept mode is always enabled.
1141  */
1142 struct virtchnl_promisc_info {
1143 	u16 vsi_id;
1144 	u16 flags;
1145 };
1146 
1147 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
1148 
1149 #define FLAG_VF_UNICAST_PROMISC	0x00000001
1150 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
1151 
1152 /* VIRTCHNL_OP_GET_STATS
1153  * VF sends this message to request stats for the selected VSI. VF uses
1154  * the virtchnl_queue_select struct to specify the VSI. The queue_id
1155  * field is ignored by the PF.
1156  *
1157  * PF replies with struct virtchnl_eth_stats in an external buffer.
1158  */
1159 
1160 struct virtchnl_eth_stats {
1161 	u64 rx_bytes;			/* received bytes */
1162 	u64 rx_unicast;			/* received unicast pkts */
1163 	u64 rx_multicast;		/* received multicast pkts */
1164 	u64 rx_broadcast;		/* received broadcast pkts */
1165 	u64 rx_discards;
1166 	u64 rx_unknown_protocol;
1167 	u64 tx_bytes;			/* transmitted bytes */
1168 	u64 tx_unicast;			/* transmitted unicast pkts */
1169 	u64 tx_multicast;		/* transmitted multicast pkts */
1170 	u64 tx_broadcast;		/* transmitted broadcast pkts */
1171 	u64 tx_discards;
1172 	u64 tx_errors;
1173 };
1174 
1175 /* VIRTCHNL_OP_CONFIG_RSS_KEY
1176  * VIRTCHNL_OP_CONFIG_RSS_LUT
1177  * VF sends these messages to configure RSS. Only supported if both PF
1178  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
1179  * configuration negotiation. If this is the case, then the RSS fields in
1180  * the VF resource struct are valid.
1181  * Both the key and LUT are initialized to 0 by the PF, meaning that
1182  * RSS is effectively disabled until set up by the VF.
1183  */
1184 struct virtchnl_rss_key {
1185 	u16 vsi_id;
1186 	u16 key_len;
1187 	u8 key[1];         /* RSS hash key, packed bytes */
1188 };
1189 
1190 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
1191 
1192 struct virtchnl_rss_lut {
1193 	u16 vsi_id;
1194 	u16 lut_entries;
1195 	u8 lut[1];        /* RSS lookup table */
1196 };
1197 
1198 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
1199 
1200 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
1201  * VIRTCHNL_OP_SET_RSS_HENA
1202  * VF sends these messages to get and set the hash filter enable bits for RSS.
1203  * By default, the PF sets these to all possible traffic types that the
1204  * hardware supports. The VF can query this value if it wants to change the
1205  * traffic types that are hashed by the hardware.
1206  */
1207 struct virtchnl_rss_hena {
1208 	u64 hena;
1209 };
1210 
1211 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
1212 
1213 /* Type of RSS algorithm */
1214 enum virtchnl_rss_algorithm {
1215 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1216 	VIRTCHNL_RSS_ALG_XOR_ASYMMETRIC		= 1,
1217 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1218 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1219 };
1220 
1221 /* This is used by PF driver to enforce how many channels can be supported.
1222  * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
1223  * PF driver will allow only max 4 channels
1224  */
1225 #define VIRTCHNL_MAX_ADQ_CHANNELS 4
1226 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
1227 
1228 /* VIRTCHNL_OP_ENABLE_CHANNELS
1229  * VIRTCHNL_OP_DISABLE_CHANNELS
1230  * VF sends these messages to enable or disable channels based on
1231  * the user specified queue count and queue offset for each traffic class.
1232  * This struct encompasses all the information that the PF needs from
1233  * VF to create a channel.
1234  */
1235 struct virtchnl_channel_info {
1236 	u16 count; /* number of queues in a channel */
1237 	u16 offset; /* queues in a channel start from 'offset' */
1238 	u32 pad;
1239 	u64 max_tx_rate;
1240 };
1241 
1242 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
1243 
1244 struct virtchnl_tc_info {
1245 	u32	num_tc;
1246 	u32	pad;
1247 	struct	virtchnl_channel_info list[1];
1248 };
1249 
1250 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
1251 
1252 /* VIRTCHNL_ADD_CLOUD_FILTER
1253  * VIRTCHNL_DEL_CLOUD_FILTER
1254  * VF sends these messages to add or delete a cloud filter based on the
1255  * user specified match and action filters. These structures encompass
1256  * all the information that the PF needs from the VF to add/delete a
1257  * cloud filter.
1258  */
1259 
1260 struct virtchnl_l4_spec {
1261 	u8	src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1262 	u8	dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1263 	/* vlan_prio is part of this 16 bit field even from OS perspective
1264 	 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
1265 	 * in future, when decided to offload vlan_prio, pass that information
1266 	 * as part of the "vlan_id" field, Bit14..12
1267 	 */
1268 	__be16	vlan_id;
1269 	__be16	pad; /* reserved for future use */
1270 	__be32	src_ip[4];
1271 	__be32	dst_ip[4];
1272 	__be16	src_port;
1273 	__be16	dst_port;
1274 };
1275 
1276 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
1277 
1278 union virtchnl_flow_spec {
1279 	struct	virtchnl_l4_spec tcp_spec;
1280 	u8	buffer[128]; /* reserved for future use */
1281 };
1282 
1283 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
1284 
1285 enum virtchnl_action {
1286 	/* action types */
1287 	VIRTCHNL_ACTION_DROP = 0,
1288 	VIRTCHNL_ACTION_TC_REDIRECT,
1289 	VIRTCHNL_ACTION_PASSTHRU,
1290 	VIRTCHNL_ACTION_QUEUE,
1291 	VIRTCHNL_ACTION_Q_REGION,
1292 	VIRTCHNL_ACTION_MARK,
1293 	VIRTCHNL_ACTION_COUNT,
1294 };
1295 
1296 enum virtchnl_flow_type {
1297 	/* flow types */
1298 	VIRTCHNL_TCP_V4_FLOW = 0,
1299 	VIRTCHNL_TCP_V6_FLOW,
1300 	VIRTCHNL_UDP_V4_FLOW,
1301 	VIRTCHNL_UDP_V6_FLOW,
1302 };
1303 
1304 struct virtchnl_filter {
1305 	union	virtchnl_flow_spec data;
1306 	union	virtchnl_flow_spec mask;
1307 
1308 	/* see enum virtchnl_flow_type */
1309 	s32	flow_type;
1310 
1311 	/* see enum virtchnl_action */
1312 	s32	action;
1313 	u32	action_meta;
1314 	u8	field_flags;
1315 };
1316 
1317 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1318 
1319 struct virtchnl_shaper_bw {
1320 	/* Unit is Kbps */
1321 	u32 committed;
1322 	u32 peak;
1323 };
1324 
1325 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw);
1326 
1327 /* VIRTCHNL_OP_DCF_GET_VSI_MAP
1328  * VF sends this message to get VSI mapping table.
1329  * PF responds with an indirect message containing VF's
1330  * HW VSI IDs.
1331  * The index of vf_vsi array is the logical VF ID, the
1332  * value of vf_vsi array is the VF's HW VSI ID with its
1333  * valid configuration.
1334  */
1335 struct virtchnl_dcf_vsi_map {
1336 	u16 pf_vsi;	/* PF's HW VSI ID */
1337 	u16 num_vfs;	/* The actual number of VFs allocated */
1338 #define VIRTCHNL_DCF_VF_VSI_ID_S	0
1339 #define VIRTCHNL_DCF_VF_VSI_ID_M	(0xFFF << VIRTCHNL_DCF_VF_VSI_ID_S)
1340 #define VIRTCHNL_DCF_VF_VSI_VALID	BIT(15)
1341 	u16 vf_vsi[1];
1342 };
1343 
1344 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_dcf_vsi_map);
1345 
1346 #define PKG_NAME_SIZE	32
1347 #define DSN_SIZE	8
1348 
1349 struct pkg_version {
1350 	u8 major;
1351 	u8 minor;
1352 	u8 update;
1353 	u8 draft;
1354 };
1355 
1356 VIRTCHNL_CHECK_STRUCT_LEN(4, pkg_version);
1357 
1358 struct virtchnl_pkg_info {
1359 	struct pkg_version pkg_ver;
1360 	u32 track_id;
1361 	char pkg_name[PKG_NAME_SIZE];
1362 	u8 dsn[DSN_SIZE];
1363 };
1364 
1365 VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_pkg_info);
1366 
1367 /* VIRTCHNL_OP_DCF_VLAN_OFFLOAD
1368  * DCF negotiates the VIRTCHNL_VF_OFFLOAD_VLAN_V2 capability firstly to get
1369  * the double VLAN configuration, then DCF sends this message to configure the
1370  * outer or inner VLAN offloads (insertion and strip) for the target VF.
1371  */
1372 struct virtchnl_dcf_vlan_offload {
1373 	u16 vf_id;
1374 	u16 tpid;
1375 	u16 vlan_flags;
1376 #define VIRTCHNL_DCF_VLAN_TYPE_S		0
1377 #define VIRTCHNL_DCF_VLAN_TYPE_M		\
1378 			(0x1 << VIRTCHNL_DCF_VLAN_TYPE_S)
1379 #define VIRTCHNL_DCF_VLAN_TYPE_INNER		0x0
1380 #define VIRTCHNL_DCF_VLAN_TYPE_OUTER		0x1
1381 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_S		1
1382 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_M	\
1383 			(0x7 << VIRTCHNL_DCF_VLAN_INSERT_MODE_S)
1384 #define VIRTCHNL_DCF_VLAN_INSERT_DISABLE	0x1
1385 #define VIRTCHNL_DCF_VLAN_INSERT_PORT_BASED	0x2
1386 #define VIRTCHNL_DCF_VLAN_INSERT_VIA_TX_DESC	0x3
1387 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_S		4
1388 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_M		\
1389 			(0x7 << VIRTCHNL_DCF_VLAN_STRIP_MODE_S)
1390 #define VIRTCHNL_DCF_VLAN_STRIP_DISABLE		0x1
1391 #define VIRTCHNL_DCF_VLAN_STRIP_ONLY		0x2
1392 #define VIRTCHNL_DCF_VLAN_STRIP_INTO_RX_DESC	0x3
1393 	u16 vlan_id;
1394 	u16 pad[4];
1395 };
1396 
1397 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_dcf_vlan_offload);
1398 
1399 struct virtchnl_dcf_bw_cfg {
1400 	u8 tc_num;
1401 #define VIRTCHNL_DCF_BW_CIR		BIT(0)
1402 #define VIRTCHNL_DCF_BW_PIR		BIT(1)
1403 	u8 bw_type;
1404 	u8 pad[2];
1405 	enum virtchnl_bw_limit_type type;
1406 	union {
1407 		struct virtchnl_shaper_bw shaper;
1408 		u8 pad2[32];
1409 	};
1410 };
1411 
1412 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_dcf_bw_cfg);
1413 
1414 /* VIRTCHNL_OP_DCF_CONFIG_BW
1415  * VF send this message to set the bandwidth configuration of each
1416  * TC with a specific vf id. The flag node_type is to indicate that
1417  * this message is to configure VSI node or TC node bandwidth.
1418  */
1419 struct virtchnl_dcf_bw_cfg_list {
1420 	u16 vf_id;
1421 	u8 num_elem;
1422 #define VIRTCHNL_DCF_TARGET_TC_BW	0
1423 #define VIRTCHNL_DCF_TARGET_VF_BW	1
1424 	u8 node_type;
1425 	struct virtchnl_dcf_bw_cfg cfg[1];
1426 };
1427 
1428 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_dcf_bw_cfg_list);
1429 
1430 struct virtchnl_supported_rxdids {
1431 	/* see enum virtchnl_rx_desc_id_bitmasks */
1432 	u64 supported_rxdids;
1433 };
1434 
1435 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_supported_rxdids);
1436 
1437 /* VIRTCHNL_OP_EVENT
1438  * PF sends this message to inform the VF driver of events that may affect it.
1439  * No direct response is expected from the VF, though it may generate other
1440  * messages in response to this one.
1441  */
1442 enum virtchnl_event_codes {
1443 	VIRTCHNL_EVENT_UNKNOWN = 0,
1444 	VIRTCHNL_EVENT_LINK_CHANGE,
1445 	VIRTCHNL_EVENT_RESET_IMPENDING,
1446 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1447 	VIRTCHNL_EVENT_DCF_VSI_MAP_UPDATE,
1448 };
1449 
1450 #define PF_EVENT_SEVERITY_INFO		0
1451 #define PF_EVENT_SEVERITY_ATTENTION	1
1452 #define PF_EVENT_SEVERITY_ACTION_REQUIRED	2
1453 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1454 
1455 struct virtchnl_pf_event {
1456 	/* see enum virtchnl_event_codes */
1457 	s32 event;
1458 	union {
1459 		/* If the PF driver does not support the new speed reporting
1460 		 * capabilities then use link_event else use link_event_adv to
1461 		 * get the speed and link information. The ability to understand
1462 		 * new speeds is indicated by setting the capability flag
1463 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1464 		 * in virtchnl_vf_resource struct and can be used to determine
1465 		 * which link event struct to use below.
1466 		 */
1467 		struct {
1468 			enum virtchnl_link_speed link_speed;
1469 			u8 link_status;
1470 		} link_event;
1471 		struct {
1472 			/* link_speed provided in Mbps */
1473 			u32 link_speed;
1474 			u8 link_status;
1475 		} link_event_adv;
1476 		struct {
1477 			u16 vf_id;
1478 			u16 vsi_id;
1479 		} vf_vsi_map;
1480 	} event_data;
1481 
1482 	int severity;
1483 };
1484 
1485 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1486 
1487 
1488 /* VF reset states - these are written into the RSTAT register:
1489  * VFGEN_RSTAT on the VF
1490  * When the PF initiates a reset, it writes 0
1491  * When the reset is complete, it writes 1
1492  * When the PF detects that the VF has recovered, it writes 2
1493  * VF checks this register periodically to determine if a reset has occurred,
1494  * then polls it to know when the reset is complete.
1495  * If either the PF or VF reads the register while the hardware
1496  * is in a reset state, it will return DEADBEEF, which, when masked
1497  * will result in 3.
1498  */
1499 enum virtchnl_vfr_states {
1500 	VIRTCHNL_VFR_INPROGRESS = 0,
1501 	VIRTCHNL_VFR_COMPLETED,
1502 	VIRTCHNL_VFR_VFACTIVE,
1503 };
1504 
1505 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1506 #define PROTO_HDR_SHIFT			5
1507 #define PROTO_HDR_FIELD_START(proto_hdr_type) \
1508 					(proto_hdr_type << PROTO_HDR_SHIFT)
1509 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1510 
1511 /* VF use these macros to configure each protocol header.
1512  * Specify which protocol headers and protocol header fields base on
1513  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1514  * @param hdr: a struct of virtchnl_proto_hdr
1515  * @param hdr_type: ETH/IPV4/TCP, etc
1516  * @param field: SRC/DST/TEID/SPI, etc
1517  */
1518 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1519 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1520 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1521 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1522 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1523 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1524 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1525 
1526 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1527 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1528 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1529 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1530 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1531 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1532 
1533 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1534 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1535 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1536 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1537 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1538 	((hdr)->type == ((val) >> PROTO_HDR_SHIFT))
1539 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1540 	(VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
1541 	 VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
1542 
1543 /* Protocol header type within a packet segment. A segment consists of one or
1544  * more protocol headers that make up a logical group of protocol headers. Each
1545  * logical group of protocol headers encapsulates or is encapsulated using/by
1546  * tunneling or encapsulation protocols for network virtualization.
1547  */
1548 enum virtchnl_proto_hdr_type {
1549 	VIRTCHNL_PROTO_HDR_NONE,
1550 	VIRTCHNL_PROTO_HDR_ETH,
1551 	VIRTCHNL_PROTO_HDR_S_VLAN,
1552 	VIRTCHNL_PROTO_HDR_C_VLAN,
1553 	VIRTCHNL_PROTO_HDR_IPV4,
1554 	VIRTCHNL_PROTO_HDR_IPV6,
1555 	VIRTCHNL_PROTO_HDR_TCP,
1556 	VIRTCHNL_PROTO_HDR_UDP,
1557 	VIRTCHNL_PROTO_HDR_SCTP,
1558 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1559 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1560 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1561 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1562 	VIRTCHNL_PROTO_HDR_PPPOE,
1563 	VIRTCHNL_PROTO_HDR_L2TPV3,
1564 	VIRTCHNL_PROTO_HDR_ESP,
1565 	VIRTCHNL_PROTO_HDR_AH,
1566 	VIRTCHNL_PROTO_HDR_PFCP,
1567 	VIRTCHNL_PROTO_HDR_GTPC,
1568 	VIRTCHNL_PROTO_HDR_ECPRI,
1569 	VIRTCHNL_PROTO_HDR_L2TPV2,
1570 	VIRTCHNL_PROTO_HDR_PPP,
1571 	/* IPv4 and IPv6 Fragment header types are only associated to
1572 	 * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively,
1573 	 * cannot be used independently.
1574 	 */
1575 	VIRTCHNL_PROTO_HDR_IPV4_FRAG,
1576 	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG,
1577 	VIRTCHNL_PROTO_HDR_GRE,
1578 };
1579 
1580 /* Protocol header field within a protocol header. */
1581 enum virtchnl_proto_hdr_field {
1582 	/* ETHER */
1583 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1584 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1585 	VIRTCHNL_PROTO_HDR_ETH_DST,
1586 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1587 	/* S-VLAN */
1588 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1589 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1590 	/* C-VLAN */
1591 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1592 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1593 	/* IPV4 */
1594 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1595 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1596 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1597 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1598 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1599 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1600 	VIRTCHNL_PROTO_HDR_IPV4_CHKSUM,
1601 	/* IPV6 */
1602 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1603 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1604 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1605 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1606 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1607 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1608 	/* IPV6 Prefix */
1609 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
1610 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
1611 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
1612 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
1613 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
1614 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
1615 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
1616 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
1617 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
1618 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
1619 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
1620 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
1621 	/* TCP */
1622 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1623 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1624 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1625 	VIRTCHNL_PROTO_HDR_TCP_CHKSUM,
1626 	/* UDP */
1627 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1628 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1629 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1630 	VIRTCHNL_PROTO_HDR_UDP_CHKSUM,
1631 	/* SCTP */
1632 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1633 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1634 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1635 	VIRTCHNL_PROTO_HDR_SCTP_CHKSUM,
1636 	/* GTPU_IP */
1637 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1638 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1639 	/* GTPU_EH */
1640 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1641 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1642 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1643 	/* PPPOE */
1644 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1645 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1646 	/* L2TPV3 */
1647 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1648 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1649 	/* ESP */
1650 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1651 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1652 	/* AH */
1653 	VIRTCHNL_PROTO_HDR_AH_SPI =
1654 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1655 	/* PFCP */
1656 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1657 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1658 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1659 	/* GTPC */
1660 	VIRTCHNL_PROTO_HDR_GTPC_TEID =
1661 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
1662 	/* ECPRI */
1663 	VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
1664 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
1665 	VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
1666 	/* IPv4 Dummy Fragment */
1667 	VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID =
1668 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG),
1669 	/* IPv6 Extension Fragment */
1670 	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID =
1671 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG),
1672 	/* GTPU_DWN/UP */
1673 	VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI =
1674 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN),
1675 	VIRTCHNL_PROTO_HDR_GTPU_UP_QFI =
1676 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP),
1677 	/* L2TPv2 */
1678 	VIRTCHNL_PROTO_HDR_L2TPV2_SESS_ID =
1679 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV2),
1680 	VIRTCHNL_PROTO_HDR_L2TPV2_LEN_SESS_ID,
1681 };
1682 
1683 struct virtchnl_proto_hdr {
1684 	/* see enum virtchnl_proto_hdr_type */
1685 	s32 type;
1686 	u32 field_selector; /* a bit mask to select field for header type */
1687 	u8 buffer[64];
1688 	/**
1689 	 * binary buffer in network order for specific header type.
1690 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1691 	 * header is expected to be copied into the buffer.
1692 	 */
1693 };
1694 
1695 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1696 
1697 struct virtchnl_proto_hdrs {
1698 	u8 tunnel_level;
1699 	/**
1700 	 * specify where protocol header start from.
1701 	 * 0 - from the outer layer
1702 	 * 1 - from the first inner layer
1703 	 * 2 - from the second inner layer
1704 	 * ....
1705 	 **/
1706 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1707 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1708 };
1709 
1710 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1711 
1712 struct virtchnl_rss_cfg {
1713 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1714 
1715 	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1716 	s32 rss_algorithm;
1717 	u8 reserved[128];                          /* reserve for future */
1718 };
1719 
1720 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1721 
1722 /* action configuration for FDIR */
1723 struct virtchnl_filter_action {
1724 	/* see enum virtchnl_action type */
1725 	s32 type;
1726 	union {
1727 		/* used for queue and qgroup action */
1728 		struct {
1729 			u16 index;
1730 			u8 region;
1731 		} queue;
1732 		/* used for count action */
1733 		struct {
1734 			/* share counter ID with other flow rules */
1735 			u8 shared;
1736 			u32 id; /* counter ID */
1737 		} count;
1738 		/* used for mark action */
1739 		u32 mark_id;
1740 		u8 reserve[32];
1741 	} act_conf;
1742 };
1743 
1744 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1745 
1746 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1747 
1748 struct virtchnl_filter_action_set {
1749 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1750 	int count;
1751 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1752 };
1753 
1754 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1755 
1756 /* pattern and action for FDIR rule */
1757 struct virtchnl_fdir_rule {
1758 	struct virtchnl_proto_hdrs proto_hdrs;
1759 	struct virtchnl_filter_action_set action_set;
1760 };
1761 
1762 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1763 
1764 /* Status returned to VF after VF requests FDIR commands
1765  * VIRTCHNL_FDIR_SUCCESS
1766  * VF FDIR related request is successfully done by PF
1767  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1768  *
1769  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1770  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1771  *
1772  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1773  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1774  *
1775  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1776  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1777  *
1778  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1779  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1780  *
1781  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1782  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1783  * or HW doesn't support.
1784  *
1785  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1786  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1787  * for programming.
1788  *
1789  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1790  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1791  * for example, VF query counter of a rule who has no counter action.
1792  */
1793 enum virtchnl_fdir_prgm_status {
1794 	VIRTCHNL_FDIR_SUCCESS = 0,
1795 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1796 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1797 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1798 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1799 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1800 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1801 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1802 };
1803 
1804 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1805  * VF sends this request to PF by filling out vsi_id,
1806  * validate_only and rule_cfg. PF will return flow_id
1807  * if the request is successfully done and return add_status to VF.
1808  */
1809 struct virtchnl_fdir_add {
1810 	u16 vsi_id;  /* INPUT */
1811 	/*
1812 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1813 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1814 	 */
1815 	u16 validate_only; /* INPUT */
1816 	u32 flow_id;       /* OUTPUT */
1817 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1818 
1819 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1820 	s32 status;
1821 };
1822 
1823 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1824 
1825 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1826  * VF sends this request to PF by filling out vsi_id
1827  * and flow_id. PF will return del_status to VF.
1828  */
1829 struct virtchnl_fdir_del {
1830 	u16 vsi_id;  /* INPUT */
1831 	u16 pad;
1832 	u32 flow_id; /* INPUT */
1833 
1834 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1835 	s32 status;
1836 };
1837 
1838 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1839 
1840 /* VIRTCHNL_OP_GET_QOS_CAPS
1841  * VF sends this message to get its QoS Caps, such as
1842  * TC number, Arbiter and Bandwidth.
1843  */
1844 struct virtchnl_qos_cap_elem {
1845 	u8 tc_num;
1846 	u8 tc_prio;
1847 #define VIRTCHNL_ABITER_STRICT      0
1848 #define VIRTCHNL_ABITER_ETS         2
1849 	u8 arbiter;
1850 #define VIRTCHNL_STRICT_WEIGHT      1
1851 	u8 weight;
1852 	enum virtchnl_bw_limit_type type;
1853 	union {
1854 		struct virtchnl_shaper_bw shaper;
1855 		u8 pad2[32];
1856 	};
1857 };
1858 
1859 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem);
1860 
1861 struct virtchnl_qos_cap_list {
1862 	u16 vsi_id;
1863 	u16 num_elem;
1864 	struct virtchnl_qos_cap_elem cap[1];
1865 };
1866 
1867 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list);
1868 
1869 /* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP
1870  * VF sends message virtchnl_queue_tc_mapping to set queue to tc
1871  * mapping for all the Tx and Rx queues with a specified VSI, and
1872  * would get response about bitmap of valid user priorities
1873  * associated with queues.
1874  */
1875 struct virtchnl_queue_tc_mapping {
1876 	u16 vsi_id;
1877 	u16 num_tc;
1878 	u16 num_queue_pairs;
1879 	u8 pad[2];
1880 	union {
1881 		struct {
1882 			u16 start_queue_id;
1883 			u16 queue_count;
1884 		} req;
1885 		struct {
1886 #define VIRTCHNL_USER_PRIO_TYPE_UP	0
1887 #define VIRTCHNL_USER_PRIO_TYPE_DSCP	1
1888 			u16 prio_type;
1889 			u16 valid_prio_bitmap;
1890 		} resp;
1891 	} tc[1];
1892 };
1893 
1894 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping);
1895 
1896 /* VIRTCHNL_OP_CONFIG_QUEUE_BW */
1897 struct virtchnl_queue_bw {
1898 	u16 queue_id;
1899 	u8 tc;
1900 	u8 pad;
1901 	struct virtchnl_shaper_bw shaper;
1902 };
1903 
1904 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_bw);
1905 
1906 struct virtchnl_queues_bw_cfg {
1907 	u16 vsi_id;
1908 	u16 num_queues;
1909 	struct virtchnl_queue_bw cfg[1];
1910 };
1911 
1912 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queues_bw_cfg);
1913 
1914 /* TX and RX queue types are valid in legacy as well as split queue models.
1915  * With Split Queue model, 2 additional types are introduced - TX_COMPLETION
1916  * and RX_BUFFER. In split queue model, RX corresponds to the queue where HW
1917  * posts completions.
1918  */
1919 enum virtchnl_queue_type {
1920 	VIRTCHNL_QUEUE_TYPE_TX			= 0,
1921 	VIRTCHNL_QUEUE_TYPE_RX			= 1,
1922 	VIRTCHNL_QUEUE_TYPE_TX_COMPLETION	= 2,
1923 	VIRTCHNL_QUEUE_TYPE_RX_BUFFER		= 3,
1924 	VIRTCHNL_QUEUE_TYPE_CONFIG_TX		= 4,
1925 	VIRTCHNL_QUEUE_TYPE_CONFIG_RX		= 5
1926 };
1927 
1928 
1929 /* structure to specify a chunk of contiguous queues */
1930 struct virtchnl_queue_chunk {
1931 	/* see enum virtchnl_queue_type */
1932 	s32 type;
1933 	u16 start_queue_id;
1934 	u16 num_queues;
1935 };
1936 
1937 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
1938 
1939 /* structure to specify several chunks of contiguous queues */
1940 struct virtchnl_queue_chunks {
1941 	u16 num_chunks;
1942 	u16 rsvd;
1943 	struct virtchnl_queue_chunk chunks[1];
1944 };
1945 
1946 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
1947 
1948 
1949 /* VIRTCHNL_OP_ENABLE_QUEUES_V2
1950  * VIRTCHNL_OP_DISABLE_QUEUES_V2
1951  * VIRTCHNL_OP_DEL_QUEUES
1952  *
1953  * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1954  * then all of these ops are available.
1955  *
1956  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1957  * then VIRTCHNL_OP_ENABLE_QUEUES_V2 and VIRTCHNL_OP_DISABLE_QUEUES_V2 are
1958  * available.
1959  *
1960  * PF sends these messages to enable, disable or delete queues specified in
1961  * chunks. PF sends virtchnl_del_ena_dis_queues struct to specify the queues
1962  * to be enabled/disabled/deleted. Also applicable to single queue RX or
1963  * TX. CP performs requested action and returns status.
1964  */
1965 struct virtchnl_del_ena_dis_queues {
1966 	u16 vport_id;
1967 	u16 pad;
1968 	struct virtchnl_queue_chunks chunks;
1969 };
1970 
1971 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
1972 
1973 /* Virtchannel interrupt throttling rate index */
1974 enum virtchnl_itr_idx {
1975 	VIRTCHNL_ITR_IDX_0	= 0,
1976 	VIRTCHNL_ITR_IDX_1	= 1,
1977 	VIRTCHNL_ITR_IDX_NO_ITR	= 3,
1978 };
1979 
1980 /* Queue to vector mapping */
1981 struct virtchnl_queue_vector {
1982 	u16 queue_id;
1983 	u16 vector_id;
1984 	u8 pad[4];
1985 
1986 	/* see enum virtchnl_itr_idx */
1987 	s32 itr_idx;
1988 
1989 	/* see enum virtchnl_queue_type */
1990 	s32 queue_type;
1991 };
1992 
1993 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
1994 
1995 /* VIRTCHNL_OP_MAP_QUEUE_VECTOR
1996  * VIRTCHNL_OP_UNMAP_QUEUE_VECTOR
1997  *
1998  * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1999  * then all of these ops are available.
2000  *
2001  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
2002  * then only VIRTCHNL_OP_MAP_QUEUE_VECTOR is available.
2003  *
2004  * PF sends this message to map or unmap queues to vectors and ITR index
2005  * registers. External data buffer contains virtchnl_queue_vector_maps structure
2006  * that contains num_qv_maps of virtchnl_queue_vector structures.
2007  * CP maps the requested queue vector maps after validating the queue and vector
2008  * ids and returns a status code.
2009  */
2010 struct virtchnl_queue_vector_maps {
2011 	u16 vport_id;
2012 	u16 num_qv_maps;
2013 	u8 pad[4];
2014 	struct virtchnl_queue_vector qv_maps[1];
2015 };
2016 
2017 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
2018 
2019 struct virtchnl_quanta_cfg {
2020 	u16 quanta_size;
2021 	struct virtchnl_queue_chunk queue_select;
2022 };
2023 
2024 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_quanta_cfg);
2025 
2026 #define VIRTCHNL_1588_PTP_CAP_RX_TSTAMP		BIT(1)
2027 #define VIRTCHNL_1588_PTP_CAP_READ_PHC		BIT(2)
2028 
2029 struct virtchnl_phc_regs {
2030 	u32 clock_hi;
2031 	u32 clock_lo;
2032 	u8 pcie_region;
2033 	u8 rsvd[15];
2034 };
2035 
2036 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_phc_regs);
2037 
2038 struct virtchnl_ptp_caps {
2039 	struct virtchnl_phc_regs phc_regs;
2040 	u32 caps;
2041 	s32 max_adj;
2042 	u8 tx_tstamp_idx;
2043 	u8 n_ext_ts;
2044 	u8 n_per_out;
2045 	u8 n_pins;
2046 	u8 tx_tstamp_format;
2047 	u8 rsvd[11];
2048 };
2049 
2050 VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_ptp_caps);
2051 
2052 struct virtchnl_phc_time {
2053 	u64 time;
2054 	u8 rsvd[8];
2055 };
2056 
2057 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_phc_time);
2058 
2059 /* Since VF messages are limited by u16 size, precalculate the maximum possible
2060  * values of nested elements in virtchnl structures that virtual channel can
2061  * possibly handle in a single message.
2062  */
2063 enum virtchnl_vector_limits {
2064 	VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX	=
2065 		((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
2066 		sizeof(struct virtchnl_queue_pair_info),
2067 
2068 	VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX		=
2069 		((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
2070 		sizeof(struct virtchnl_vector_map),
2071 
2072 	VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX	=
2073 		((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
2074 		sizeof(struct virtchnl_ether_addr),
2075 
2076 	VIRTCHNL_OP_ADD_DEL_VLAN_MAX		=
2077 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
2078 		sizeof(u16),
2079 
2080 
2081 	VIRTCHNL_OP_ENABLE_CHANNELS_MAX		=
2082 		((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
2083 		sizeof(struct virtchnl_channel_info),
2084 
2085 	VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX	=
2086 		((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
2087 		sizeof(struct virtchnl_queue_chunk),
2088 
2089 	VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX	=
2090 		((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
2091 		sizeof(struct virtchnl_queue_vector),
2092 
2093 	VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX		=
2094 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
2095 		sizeof(struct virtchnl_vlan_filter),
2096 };
2097 
2098 /**
2099  * virtchnl_vc_validate_vf_msg
2100  * @ver: Virtchnl version info
2101  * @v_opcode: Opcode for the message
2102  * @msg: pointer to the msg buffer
2103  * @msglen: msg length
2104  *
2105  * validate msg format against struct for each opcode
2106  */
2107 static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info * ver,u32 v_opcode,u8 * msg,u16 msglen)2108 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
2109 			    u8 *msg, u16 msglen)
2110 {
2111 	bool err_msg_format = false;
2112 	u32 valid_len = 0;
2113 
2114 	/* Validate message length. */
2115 	switch (v_opcode) {
2116 	case VIRTCHNL_OP_VERSION:
2117 		valid_len = sizeof(struct virtchnl_version_info);
2118 		break;
2119 	case VIRTCHNL_OP_RESET_VF:
2120 		break;
2121 	case VIRTCHNL_OP_GET_VF_RESOURCES:
2122 		if (VF_IS_V11(ver))
2123 			valid_len = sizeof(u32);
2124 		break;
2125 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
2126 		valid_len = sizeof(struct virtchnl_txq_info);
2127 		break;
2128 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
2129 		valid_len = sizeof(struct virtchnl_rxq_info);
2130 		break;
2131 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
2132 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
2133 		if (msglen >= valid_len) {
2134 			struct virtchnl_vsi_queue_config_info *vqc =
2135 			    (struct virtchnl_vsi_queue_config_info *)msg;
2136 
2137 			if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
2138 			    VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
2139 				err_msg_format = true;
2140 				break;
2141 			}
2142 
2143 			valid_len += (vqc->num_queue_pairs *
2144 				      sizeof(struct
2145 					     virtchnl_queue_pair_info));
2146 		}
2147 		break;
2148 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
2149 		valid_len = sizeof(struct virtchnl_irq_map_info);
2150 		if (msglen >= valid_len) {
2151 			struct virtchnl_irq_map_info *vimi =
2152 			    (struct virtchnl_irq_map_info *)msg;
2153 
2154 			if (vimi->num_vectors == 0 || vimi->num_vectors >
2155 			    VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
2156 				err_msg_format = true;
2157 				break;
2158 			}
2159 
2160 			valid_len += (vimi->num_vectors *
2161 				      sizeof(struct virtchnl_vector_map));
2162 		}
2163 		break;
2164 	case VIRTCHNL_OP_ENABLE_QUEUES:
2165 	case VIRTCHNL_OP_DISABLE_QUEUES:
2166 		valid_len = sizeof(struct virtchnl_queue_select);
2167 		break;
2168 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
2169 		break;
2170 	case VIRTCHNL_OP_ADD_ETH_ADDR:
2171 	case VIRTCHNL_OP_DEL_ETH_ADDR:
2172 		valid_len = sizeof(struct virtchnl_ether_addr_list);
2173 		if (msglen >= valid_len) {
2174 			struct virtchnl_ether_addr_list *veal =
2175 			    (struct virtchnl_ether_addr_list *)msg;
2176 
2177 			if (veal->num_elements == 0 || veal->num_elements >
2178 			    VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
2179 				err_msg_format = true;
2180 				break;
2181 			}
2182 
2183 			valid_len += veal->num_elements *
2184 			    sizeof(struct virtchnl_ether_addr);
2185 		}
2186 		break;
2187 	case VIRTCHNL_OP_ADD_VLAN:
2188 	case VIRTCHNL_OP_DEL_VLAN:
2189 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
2190 		if (msglen >= valid_len) {
2191 			struct virtchnl_vlan_filter_list *vfl =
2192 			    (struct virtchnl_vlan_filter_list *)msg;
2193 
2194 			if (vfl->num_elements == 0 || vfl->num_elements >
2195 			    VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
2196 				err_msg_format = true;
2197 				break;
2198 			}
2199 
2200 			valid_len += vfl->num_elements * sizeof(u16);
2201 		}
2202 		break;
2203 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
2204 		valid_len = sizeof(struct virtchnl_promisc_info);
2205 		break;
2206 	case VIRTCHNL_OP_GET_STATS:
2207 		valid_len = sizeof(struct virtchnl_queue_select);
2208 		break;
2209 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
2210 		valid_len = sizeof(struct virtchnl_rss_key);
2211 		if (msglen >= valid_len) {
2212 			struct virtchnl_rss_key *vrk =
2213 				(struct virtchnl_rss_key *)msg;
2214 
2215 			if (vrk->key_len == 0) {
2216 				/* zero length is allowed as input */
2217 				break;
2218 			}
2219 
2220 			valid_len += vrk->key_len - 1;
2221 		}
2222 		break;
2223 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
2224 		valid_len = sizeof(struct virtchnl_rss_lut);
2225 		if (msglen >= valid_len) {
2226 			struct virtchnl_rss_lut *vrl =
2227 				(struct virtchnl_rss_lut *)msg;
2228 
2229 			if (vrl->lut_entries == 0) {
2230 				/* zero entries is allowed as input */
2231 				break;
2232 			}
2233 
2234 			valid_len += vrl->lut_entries - 1;
2235 		}
2236 		break;
2237 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
2238 		break;
2239 	case VIRTCHNL_OP_SET_RSS_HENA:
2240 		valid_len = sizeof(struct virtchnl_rss_hena);
2241 		break;
2242 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
2243 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
2244 		break;
2245 	case VIRTCHNL_OP_REQUEST_QUEUES:
2246 		valid_len = sizeof(struct virtchnl_vf_res_request);
2247 		break;
2248 	case VIRTCHNL_OP_ENABLE_CHANNELS:
2249 		valid_len = sizeof(struct virtchnl_tc_info);
2250 		if (msglen >= valid_len) {
2251 			struct virtchnl_tc_info *vti =
2252 				(struct virtchnl_tc_info *)msg;
2253 
2254 			if (vti->num_tc == 0 || vti->num_tc >
2255 			    VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
2256 				err_msg_format = true;
2257 				break;
2258 			}
2259 
2260 			valid_len += (vti->num_tc - 1) *
2261 				     sizeof(struct virtchnl_channel_info);
2262 		}
2263 		break;
2264 	case VIRTCHNL_OP_DISABLE_CHANNELS:
2265 		break;
2266 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
2267 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
2268 		valid_len = sizeof(struct virtchnl_filter);
2269 		break;
2270 	case VIRTCHNL_OP_DCF_VLAN_OFFLOAD:
2271 		valid_len = sizeof(struct virtchnl_dcf_vlan_offload);
2272 		break;
2273 	case VIRTCHNL_OP_DCF_CMD_DESC:
2274 	case VIRTCHNL_OP_DCF_CMD_BUFF:
2275 		/* These two opcodes are specific to handle the AdminQ command,
2276 		 * so the validation needs to be done in PF's context.
2277 		 */
2278 		valid_len = msglen;
2279 		break;
2280 	case VIRTCHNL_OP_DCF_DISABLE:
2281 	case VIRTCHNL_OP_DCF_GET_VSI_MAP:
2282 	case VIRTCHNL_OP_DCF_GET_PKG_INFO:
2283 		break;
2284 	case VIRTCHNL_OP_DCF_CONFIG_BW:
2285 		valid_len = sizeof(struct virtchnl_dcf_bw_cfg_list);
2286 		if (msglen >= valid_len) {
2287 			struct virtchnl_dcf_bw_cfg_list *cfg_list =
2288 				(struct virtchnl_dcf_bw_cfg_list *)msg;
2289 			if (cfg_list->num_elem == 0) {
2290 				err_msg_format = true;
2291 				break;
2292 			}
2293 			valid_len += (cfg_list->num_elem - 1) *
2294 					 sizeof(struct virtchnl_dcf_bw_cfg);
2295 		}
2296 		break;
2297 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
2298 		break;
2299 	case VIRTCHNL_OP_ADD_RSS_CFG:
2300 	case VIRTCHNL_OP_DEL_RSS_CFG:
2301 		valid_len = sizeof(struct virtchnl_rss_cfg);
2302 		break;
2303 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
2304 		valid_len = sizeof(struct virtchnl_fdir_add);
2305 		break;
2306 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
2307 		valid_len = sizeof(struct virtchnl_fdir_del);
2308 		break;
2309 	case VIRTCHNL_OP_GET_QOS_CAPS:
2310 		break;
2311 	case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP:
2312 		valid_len = sizeof(struct virtchnl_queue_tc_mapping);
2313 		if (msglen >= valid_len) {
2314 			struct virtchnl_queue_tc_mapping *q_tc =
2315 				(struct virtchnl_queue_tc_mapping *)msg;
2316 			if (q_tc->num_tc == 0) {
2317 				err_msg_format = true;
2318 				break;
2319 			}
2320 			valid_len += (q_tc->num_tc - 1) *
2321 					 sizeof(q_tc->tc[0]);
2322 		}
2323 		break;
2324 	case VIRTCHNL_OP_CONFIG_QUEUE_BW:
2325 		valid_len = sizeof(struct virtchnl_queues_bw_cfg);
2326 		if (msglen >= valid_len) {
2327 			struct virtchnl_queues_bw_cfg *q_bw =
2328 				(struct virtchnl_queues_bw_cfg *)msg;
2329 			if (q_bw->num_queues == 0) {
2330 				err_msg_format = true;
2331 				break;
2332 			}
2333 			valid_len += (q_bw->num_queues - 1) *
2334 					 sizeof(q_bw->cfg[0]);
2335 		}
2336 		break;
2337 	case VIRTCHNL_OP_CONFIG_QUANTA:
2338 		valid_len = sizeof(struct virtchnl_quanta_cfg);
2339 		if (msglen >= valid_len) {
2340 			struct virtchnl_quanta_cfg *q_quanta =
2341 				(struct virtchnl_quanta_cfg *)msg;
2342 			if (q_quanta->quanta_size == 0 ||
2343 			    q_quanta->queue_select.num_queues == 0) {
2344 				err_msg_format = true;
2345 				break;
2346 			}
2347 		}
2348 		break;
2349 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
2350 		break;
2351 	case VIRTCHNL_OP_ADD_VLAN_V2:
2352 	case VIRTCHNL_OP_DEL_VLAN_V2:
2353 		valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
2354 		if (msglen >= valid_len) {
2355 			struct virtchnl_vlan_filter_list_v2 *vfl =
2356 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
2357 
2358 			if (vfl->num_elements == 0 || vfl->num_elements >
2359 			    VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
2360 				err_msg_format = true;
2361 				break;
2362 			}
2363 
2364 			valid_len += (vfl->num_elements - 1) *
2365 				sizeof(struct virtchnl_vlan_filter);
2366 		}
2367 		break;
2368 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
2369 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
2370 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
2371 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
2372 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
2373 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
2374 		valid_len = sizeof(struct virtchnl_vlan_setting);
2375 		break;
2376 	case VIRTCHNL_OP_1588_PTP_GET_CAPS:
2377 		valid_len = sizeof(struct virtchnl_ptp_caps);
2378 		break;
2379 	case VIRTCHNL_OP_1588_PTP_GET_TIME:
2380 		valid_len = sizeof(struct virtchnl_phc_time);
2381 		break;
2382 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
2383 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
2384 		valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
2385 		if (msglen >= valid_len) {
2386 			struct virtchnl_del_ena_dis_queues *qs =
2387 				(struct virtchnl_del_ena_dis_queues *)msg;
2388 			if (qs->chunks.num_chunks == 0 ||
2389 			    qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
2390 				err_msg_format = true;
2391 				break;
2392 			}
2393 			valid_len += (qs->chunks.num_chunks - 1) *
2394 				      sizeof(struct virtchnl_queue_chunk);
2395 		}
2396 		break;
2397 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
2398 		valid_len = sizeof(struct virtchnl_queue_vector_maps);
2399 		if (msglen >= valid_len) {
2400 			struct virtchnl_queue_vector_maps *v_qp =
2401 				(struct virtchnl_queue_vector_maps *)msg;
2402 			if (v_qp->num_qv_maps == 0 ||
2403 			    v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
2404 				err_msg_format = true;
2405 				break;
2406 			}
2407 			valid_len += (v_qp->num_qv_maps - 1) *
2408 				      sizeof(struct virtchnl_queue_vector);
2409 		}
2410 		break;
2411 
2412 	case VIRTCHNL_OP_INLINE_IPSEC_CRYPTO:
2413 	{
2414 		struct inline_ipsec_msg *iim = (struct inline_ipsec_msg *)msg;
2415 		valid_len =
2416 			virtchnl_inline_ipsec_val_msg_len(iim->ipsec_opcode);
2417 		break;
2418 	}
2419 	/* These are always errors coming from the VF. */
2420 	case VIRTCHNL_OP_EVENT:
2421 	case VIRTCHNL_OP_UNKNOWN:
2422 	default:
2423 		return VIRTCHNL_STATUS_ERR_PARAM;
2424 	}
2425 	/* few more checks */
2426 	if (err_msg_format || valid_len != msglen)
2427 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
2428 
2429 	return 0;
2430 }
2431 #endif /* _VIRTCHNL_H_ */
2432