xref: /dpdk/examples/l3fwd-acl/main.c (revision 7be78d02)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_memory.h>
20 #include <rte_memcpy.h>
21 #include <rte_eal.h>
22 #include <rte_launch.h>
23 #include <rte_cycles.h>
24 #include <rte_prefetch.h>
25 #include <rte_lcore.h>
26 #include <rte_per_lcore.h>
27 #include <rte_branch_prediction.h>
28 #include <rte_interrupts.h>
29 #include <rte_random.h>
30 #include <rte_debug.h>
31 #include <rte_ether.h>
32 #include <rte_ethdev.h>
33 #include <rte_mempool.h>
34 #include <rte_mbuf.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_string_fns.h>
39 #include <rte_acl.h>
40 
41 #include <cmdline_parse.h>
42 #include <cmdline_parse_etheraddr.h>
43 
44 #if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
45 #define L3FWDACL_DEBUG
46 #endif
47 #define DO_RFC_1812_CHECKS
48 
49 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
50 
51 #define MAX_JUMBO_PKT_LEN  9600
52 
53 #define MEMPOOL_CACHE_SIZE 256
54 
55 /*
56  * This expression is used to calculate the number of mbufs needed
57  * depending on user input, taking into account memory for rx and tx hardware
58  * rings, cache per lcore and mtable per port per lcore.
59  * RTE_MAX is used to ensure that NB_MBUF never goes below a
60  * minimum value of 8192
61  */
62 
63 #define NB_MBUF	RTE_MAX(\
64 	(nb_ports * nb_rx_queue * nb_rxd +	\
65 	nb_ports * nb_lcores * MAX_PKT_BURST +	\
66 	nb_ports * n_tx_queue * nb_txd +	\
67 	nb_lcores * MEMPOOL_CACHE_SIZE),	\
68 	(unsigned)8192)
69 
70 #define MAX_PKT_BURST 32
71 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
72 
73 #define NB_SOCKETS 8
74 
75 /* Configure how many packets ahead to prefetch, when reading packets */
76 #define PREFETCH_OFFSET	3
77 
78 /*
79  * Configurable number of RX/TX ring descriptors
80  */
81 #define RTE_TEST_RX_DESC_DEFAULT 1024
82 #define RTE_TEST_TX_DESC_DEFAULT 1024
83 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
84 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
85 
86 /* mask of enabled ports */
87 static uint32_t enabled_port_mask;
88 static int promiscuous_on; /**< Ports set in promiscuous mode off by default. */
89 static int numa_on = 1; /**< NUMA is enabled by default. */
90 
91 struct lcore_rx_queue {
92 	uint16_t port_id;
93 	uint8_t queue_id;
94 } __rte_cache_aligned;
95 
96 #define MAX_RX_QUEUE_PER_LCORE 16
97 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
98 #define MAX_RX_QUEUE_PER_PORT 128
99 
100 #define MAX_LCORE_PARAMS 1024
101 struct lcore_params {
102 	uint16_t port_id;
103 	uint8_t queue_id;
104 	uint8_t lcore_id;
105 } __rte_cache_aligned;
106 
107 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
108 static struct lcore_params lcore_params_array_default[] = {
109 	{0, 0, 2},
110 	{0, 1, 2},
111 	{0, 2, 2},
112 	{1, 0, 2},
113 	{1, 1, 2},
114 	{1, 2, 2},
115 	{2, 0, 2},
116 	{3, 0, 3},
117 	{3, 1, 3},
118 };
119 
120 static struct lcore_params *lcore_params = lcore_params_array_default;
121 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
122 				sizeof(lcore_params_array_default[0]);
123 
124 static struct rte_eth_conf port_conf = {
125 	.rxmode = {
126 		.mq_mode	= RTE_ETH_MQ_RX_RSS,
127 		.split_hdr_size = 0,
128 		.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
129 	},
130 	.rx_adv_conf = {
131 		.rss_conf = {
132 			.rss_key = NULL,
133 			.rss_hf = RTE_ETH_RSS_IP | RTE_ETH_RSS_UDP |
134 				RTE_ETH_RSS_TCP | RTE_ETH_RSS_SCTP,
135 		},
136 	},
137 	.txmode = {
138 		.mq_mode = RTE_ETH_MQ_TX_NONE,
139 	},
140 };
141 
142 static uint32_t max_pkt_len;
143 
144 static struct rte_mempool *pktmbuf_pool[NB_SOCKETS];
145 
146 /* ethernet addresses of ports */
147 static struct rte_ether_hdr port_l2hdr[RTE_MAX_ETHPORTS];
148 
149 static const struct {
150 	const char *name;
151 	enum rte_acl_classify_alg alg;
152 } acl_alg[] = {
153 	{
154 		.name = "scalar",
155 		.alg = RTE_ACL_CLASSIFY_SCALAR,
156 	},
157 	{
158 		.name = "sse",
159 		.alg = RTE_ACL_CLASSIFY_SSE,
160 	},
161 	{
162 		.name = "avx2",
163 		.alg = RTE_ACL_CLASSIFY_AVX2,
164 	},
165 	{
166 		.name = "neon",
167 		.alg = RTE_ACL_CLASSIFY_NEON,
168 	},
169 	{
170 		.name = "altivec",
171 		.alg = RTE_ACL_CLASSIFY_ALTIVEC,
172 	},
173 	{
174 		.name = "avx512x16",
175 		.alg = RTE_ACL_CLASSIFY_AVX512X16,
176 	},
177 	{
178 		.name = "avx512x32",
179 		.alg = RTE_ACL_CLASSIFY_AVX512X32,
180 	},
181 };
182 
183 /***********************start of ACL part******************************/
184 #ifdef DO_RFC_1812_CHECKS
185 static inline int
186 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len);
187 #endif
188 static inline void
189 send_single_packet(struct rte_mbuf *m, uint16_t port);
190 
191 #define MAX_ACL_RULE_NUM	100000
192 #define DEFAULT_MAX_CATEGORIES	1
193 #define L3FWD_ACL_IPV4_NAME	"l3fwd-acl-ipv4"
194 #define L3FWD_ACL_IPV6_NAME	"l3fwd-acl-ipv6"
195 #define ACL_LEAD_CHAR		('@')
196 #define ROUTE_LEAD_CHAR		('R')
197 #define COMMENT_LEAD_CHAR	('#')
198 
199 enum {
200 #define OPT_CONFIG      "config"
201 	OPT_CONFIG_NUM = 256,
202 #define OPT_NONUMA      "no-numa"
203 	OPT_NONUMA_NUM,
204 #define OPT_MAX_PKT_LEN "max-pkt-len"
205 	OPT_MAX_PKT_LEN_NUM,
206 #define OPT_RULE_IPV4   "rule_ipv4"
207 	OPT_RULE_IPV4_NUM,
208 #define OPT_RULE_IPV6	"rule_ipv6"
209 	OPT_RULE_IPV6_NUM,
210 #define OPT_ALG         "alg"
211 	OPT_ALG_NUM,
212 #define OPT_ETH_DEST    "eth-dest"
213 	OPT_ETH_DEST_NUM,
214 };
215 
216 #define ACL_DENY_SIGNATURE	0xf0000000
217 #define RTE_LOGTYPE_L3FWDACL	RTE_LOGTYPE_USER3
218 #define acl_log(format, ...)	RTE_LOG(ERR, L3FWDACL, format, ##__VA_ARGS__)
219 #define uint32_t_to_char(ip, a, b, c, d) do {\
220 		*a = (unsigned char)(ip >> 24 & 0xff);\
221 		*b = (unsigned char)(ip >> 16 & 0xff);\
222 		*c = (unsigned char)(ip >> 8 & 0xff);\
223 		*d = (unsigned char)(ip & 0xff);\
224 	} while (0)
225 #define OFF_ETHHEAD	(sizeof(struct rte_ether_hdr))
226 #define OFF_IPV42PROTO (offsetof(struct rte_ipv4_hdr, next_proto_id))
227 #define OFF_IPV62PROTO (offsetof(struct rte_ipv6_hdr, proto))
228 #define MBUF_IPV4_2PROTO(m)	\
229 	rte_pktmbuf_mtod_offset((m), uint8_t *, OFF_ETHHEAD + OFF_IPV42PROTO)
230 #define MBUF_IPV6_2PROTO(m)	\
231 	rte_pktmbuf_mtod_offset((m), uint8_t *, OFF_ETHHEAD + OFF_IPV62PROTO)
232 
233 #define GET_CB_FIELD(in, fd, base, lim, dlm)	do {            \
234 	unsigned long val;                                      \
235 	char *end;                                              \
236 	errno = 0;                                              \
237 	val = strtoul((in), &end, (base));                      \
238 	if (errno != 0 || end[0] != (dlm) || val > (lim))       \
239 		return -EINVAL;                               \
240 	(fd) = (typeof(fd))val;                                 \
241 	(in) = end + 1;                                         \
242 } while (0)
243 
244 /*
245   * ACL rules should have higher priorities than route ones to ensure ACL rule
246   * always be found when input packets have multi-matches in the database.
247   * A exception case is performance measure, which can define route rules with
248   * higher priority and route rules will always be returned in each lookup.
249   * Reserve range from ACL_RULE_PRIORITY_MAX + 1 to
250   * RTE_ACL_MAX_PRIORITY for route entries in performance measure
251   */
252 #define ACL_RULE_PRIORITY_MAX 0x10000000
253 
254 /*
255   * Forward port info save in ACL lib starts from 1
256   * since ACL assume 0 is invalid.
257   * So, need add 1 when saving and minus 1 when forwarding packets.
258   */
259 #define FWD_PORT_SHIFT 1
260 
261 /*
262  * Rule and trace formats definitions.
263  */
264 
265 enum {
266 	PROTO_FIELD_IPV4,
267 	SRC_FIELD_IPV4,
268 	DST_FIELD_IPV4,
269 	SRCP_FIELD_IPV4,
270 	DSTP_FIELD_IPV4,
271 	NUM_FIELDS_IPV4
272 };
273 
274 /*
275  * That effectively defines order of IPV4VLAN classifications:
276  *  - PROTO
277  *  - VLAN (TAG and DOMAIN)
278  *  - SRC IP ADDRESS
279  *  - DST IP ADDRESS
280  *  - PORTS (SRC and DST)
281  */
282 enum {
283 	RTE_ACL_IPV4VLAN_PROTO,
284 	RTE_ACL_IPV4VLAN_VLAN,
285 	RTE_ACL_IPV4VLAN_SRC,
286 	RTE_ACL_IPV4VLAN_DST,
287 	RTE_ACL_IPV4VLAN_PORTS,
288 	RTE_ACL_IPV4VLAN_NUM
289 };
290 
291 struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
292 	{
293 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
294 		.size = sizeof(uint8_t),
295 		.field_index = PROTO_FIELD_IPV4,
296 		.input_index = RTE_ACL_IPV4VLAN_PROTO,
297 		.offset = 0,
298 	},
299 	{
300 		.type = RTE_ACL_FIELD_TYPE_MASK,
301 		.size = sizeof(uint32_t),
302 		.field_index = SRC_FIELD_IPV4,
303 		.input_index = RTE_ACL_IPV4VLAN_SRC,
304 		.offset = offsetof(struct rte_ipv4_hdr, src_addr) -
305 			offsetof(struct rte_ipv4_hdr, next_proto_id),
306 	},
307 	{
308 		.type = RTE_ACL_FIELD_TYPE_MASK,
309 		.size = sizeof(uint32_t),
310 		.field_index = DST_FIELD_IPV4,
311 		.input_index = RTE_ACL_IPV4VLAN_DST,
312 		.offset = offsetof(struct rte_ipv4_hdr, dst_addr) -
313 			offsetof(struct rte_ipv4_hdr, next_proto_id),
314 	},
315 	{
316 		.type = RTE_ACL_FIELD_TYPE_RANGE,
317 		.size = sizeof(uint16_t),
318 		.field_index = SRCP_FIELD_IPV4,
319 		.input_index = RTE_ACL_IPV4VLAN_PORTS,
320 		.offset = sizeof(struct rte_ipv4_hdr) -
321 			offsetof(struct rte_ipv4_hdr, next_proto_id),
322 	},
323 	{
324 		.type = RTE_ACL_FIELD_TYPE_RANGE,
325 		.size = sizeof(uint16_t),
326 		.field_index = DSTP_FIELD_IPV4,
327 		.input_index = RTE_ACL_IPV4VLAN_PORTS,
328 		.offset = sizeof(struct rte_ipv4_hdr) -
329 			offsetof(struct rte_ipv4_hdr, next_proto_id) +
330 			sizeof(uint16_t),
331 	},
332 };
333 
334 #define	IPV6_ADDR_LEN	16
335 #define	IPV6_ADDR_U16	(IPV6_ADDR_LEN / sizeof(uint16_t))
336 #define	IPV6_ADDR_U32	(IPV6_ADDR_LEN / sizeof(uint32_t))
337 
338 enum {
339 	PROTO_FIELD_IPV6,
340 	SRC1_FIELD_IPV6,
341 	SRC2_FIELD_IPV6,
342 	SRC3_FIELD_IPV6,
343 	SRC4_FIELD_IPV6,
344 	DST1_FIELD_IPV6,
345 	DST2_FIELD_IPV6,
346 	DST3_FIELD_IPV6,
347 	DST4_FIELD_IPV6,
348 	SRCP_FIELD_IPV6,
349 	DSTP_FIELD_IPV6,
350 	NUM_FIELDS_IPV6
351 };
352 
353 struct rte_acl_field_def ipv6_defs[NUM_FIELDS_IPV6] = {
354 	{
355 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
356 		.size = sizeof(uint8_t),
357 		.field_index = PROTO_FIELD_IPV6,
358 		.input_index = PROTO_FIELD_IPV6,
359 		.offset = 0,
360 	},
361 	{
362 		.type = RTE_ACL_FIELD_TYPE_MASK,
363 		.size = sizeof(uint32_t),
364 		.field_index = SRC1_FIELD_IPV6,
365 		.input_index = SRC1_FIELD_IPV6,
366 		.offset = offsetof(struct rte_ipv6_hdr, src_addr) -
367 			offsetof(struct rte_ipv6_hdr, proto),
368 	},
369 	{
370 		.type = RTE_ACL_FIELD_TYPE_MASK,
371 		.size = sizeof(uint32_t),
372 		.field_index = SRC2_FIELD_IPV6,
373 		.input_index = SRC2_FIELD_IPV6,
374 		.offset = offsetof(struct rte_ipv6_hdr, src_addr) -
375 			offsetof(struct rte_ipv6_hdr, proto) + sizeof(uint32_t),
376 	},
377 	{
378 		.type = RTE_ACL_FIELD_TYPE_MASK,
379 		.size = sizeof(uint32_t),
380 		.field_index = SRC3_FIELD_IPV6,
381 		.input_index = SRC3_FIELD_IPV6,
382 		.offset = offsetof(struct rte_ipv6_hdr, src_addr) -
383 			offsetof(struct rte_ipv6_hdr, proto) +
384 			2 * sizeof(uint32_t),
385 	},
386 	{
387 		.type = RTE_ACL_FIELD_TYPE_MASK,
388 		.size = sizeof(uint32_t),
389 		.field_index = SRC4_FIELD_IPV6,
390 		.input_index = SRC4_FIELD_IPV6,
391 		.offset = offsetof(struct rte_ipv6_hdr, src_addr) -
392 			offsetof(struct rte_ipv6_hdr, proto) +
393 			3 * sizeof(uint32_t),
394 	},
395 	{
396 		.type = RTE_ACL_FIELD_TYPE_MASK,
397 		.size = sizeof(uint32_t),
398 		.field_index = DST1_FIELD_IPV6,
399 		.input_index = DST1_FIELD_IPV6,
400 		.offset = offsetof(struct rte_ipv6_hdr, dst_addr)
401 				- offsetof(struct rte_ipv6_hdr, proto),
402 	},
403 	{
404 		.type = RTE_ACL_FIELD_TYPE_MASK,
405 		.size = sizeof(uint32_t),
406 		.field_index = DST2_FIELD_IPV6,
407 		.input_index = DST2_FIELD_IPV6,
408 		.offset = offsetof(struct rte_ipv6_hdr, dst_addr) -
409 			offsetof(struct rte_ipv6_hdr, proto) + sizeof(uint32_t),
410 	},
411 	{
412 		.type = RTE_ACL_FIELD_TYPE_MASK,
413 		.size = sizeof(uint32_t),
414 		.field_index = DST3_FIELD_IPV6,
415 		.input_index = DST3_FIELD_IPV6,
416 		.offset = offsetof(struct rte_ipv6_hdr, dst_addr) -
417 			offsetof(struct rte_ipv6_hdr, proto) +
418 			2 * sizeof(uint32_t),
419 	},
420 	{
421 		.type = RTE_ACL_FIELD_TYPE_MASK,
422 		.size = sizeof(uint32_t),
423 		.field_index = DST4_FIELD_IPV6,
424 		.input_index = DST4_FIELD_IPV6,
425 		.offset = offsetof(struct rte_ipv6_hdr, dst_addr) -
426 			offsetof(struct rte_ipv6_hdr, proto) +
427 			3 * sizeof(uint32_t),
428 	},
429 	{
430 		.type = RTE_ACL_FIELD_TYPE_RANGE,
431 		.size = sizeof(uint16_t),
432 		.field_index = SRCP_FIELD_IPV6,
433 		.input_index = SRCP_FIELD_IPV6,
434 		.offset = sizeof(struct rte_ipv6_hdr) -
435 			offsetof(struct rte_ipv6_hdr, proto),
436 	},
437 	{
438 		.type = RTE_ACL_FIELD_TYPE_RANGE,
439 		.size = sizeof(uint16_t),
440 		.field_index = DSTP_FIELD_IPV6,
441 		.input_index = SRCP_FIELD_IPV6,
442 		.offset = sizeof(struct rte_ipv6_hdr) -
443 			offsetof(struct rte_ipv6_hdr, proto) + sizeof(uint16_t),
444 	},
445 };
446 
447 enum {
448 	CB_FLD_SRC_ADDR,
449 	CB_FLD_DST_ADDR,
450 	CB_FLD_SRC_PORT_LOW,
451 	CB_FLD_SRC_PORT_DLM,
452 	CB_FLD_SRC_PORT_HIGH,
453 	CB_FLD_DST_PORT_LOW,
454 	CB_FLD_DST_PORT_DLM,
455 	CB_FLD_DST_PORT_HIGH,
456 	CB_FLD_PROTO,
457 	CB_FLD_USERDATA,
458 	CB_FLD_NUM,
459 };
460 
461 RTE_ACL_RULE_DEF(acl4_rule, RTE_DIM(ipv4_defs));
462 RTE_ACL_RULE_DEF(acl6_rule, RTE_DIM(ipv6_defs));
463 
464 struct acl_search_t {
465 	const uint8_t *data_ipv4[MAX_PKT_BURST];
466 	struct rte_mbuf *m_ipv4[MAX_PKT_BURST];
467 	uint32_t res_ipv4[MAX_PKT_BURST];
468 	int num_ipv4;
469 
470 	const uint8_t *data_ipv6[MAX_PKT_BURST];
471 	struct rte_mbuf *m_ipv6[MAX_PKT_BURST];
472 	uint32_t res_ipv6[MAX_PKT_BURST];
473 	int num_ipv6;
474 };
475 
476 static struct {
477 	char mapped[NB_SOCKETS];
478 	struct rte_acl_ctx *acx_ipv4[NB_SOCKETS];
479 	struct rte_acl_ctx *acx_ipv6[NB_SOCKETS];
480 #ifdef L3FWDACL_DEBUG
481 	struct acl4_rule *rule_ipv4;
482 	struct acl6_rule *rule_ipv6;
483 #endif
484 } acl_config;
485 
486 static struct{
487 	const char *rule_ipv4_name;
488 	const char *rule_ipv6_name;
489 	enum rte_acl_classify_alg alg;
490 } parm_config;
491 
492 const char cb_port_delim[] = ":";
493 
494 static inline void
print_one_ipv4_rule(struct acl4_rule * rule,int extra)495 print_one_ipv4_rule(struct acl4_rule *rule, int extra)
496 {
497 	unsigned char a, b, c, d;
498 
499 	uint32_t_to_char(rule->field[SRC_FIELD_IPV4].value.u32,
500 			&a, &b, &c, &d);
501 	printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
502 			rule->field[SRC_FIELD_IPV4].mask_range.u32);
503 	uint32_t_to_char(rule->field[DST_FIELD_IPV4].value.u32,
504 			&a, &b, &c, &d);
505 	printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
506 			rule->field[DST_FIELD_IPV4].mask_range.u32);
507 	printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
508 		rule->field[SRCP_FIELD_IPV4].value.u16,
509 		rule->field[SRCP_FIELD_IPV4].mask_range.u16,
510 		rule->field[DSTP_FIELD_IPV4].value.u16,
511 		rule->field[DSTP_FIELD_IPV4].mask_range.u16,
512 		rule->field[PROTO_FIELD_IPV4].value.u8,
513 		rule->field[PROTO_FIELD_IPV4].mask_range.u8);
514 	if (extra)
515 		printf("0x%x-0x%x-0x%x ",
516 			rule->data.category_mask,
517 			rule->data.priority,
518 			rule->data.userdata);
519 }
520 
521 static inline void
print_one_ipv6_rule(struct acl6_rule * rule,int extra)522 print_one_ipv6_rule(struct acl6_rule *rule, int extra)
523 {
524 	unsigned char a, b, c, d;
525 
526 	uint32_t_to_char(rule->field[SRC1_FIELD_IPV6].value.u32,
527 		&a, &b, &c, &d);
528 	printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
529 	uint32_t_to_char(rule->field[SRC2_FIELD_IPV6].value.u32,
530 		&a, &b, &c, &d);
531 	printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
532 	uint32_t_to_char(rule->field[SRC3_FIELD_IPV6].value.u32,
533 		&a, &b, &c, &d);
534 	printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
535 	uint32_t_to_char(rule->field[SRC4_FIELD_IPV6].value.u32,
536 		&a, &b, &c, &d);
537 	printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
538 			rule->field[SRC1_FIELD_IPV6].mask_range.u32
539 			+ rule->field[SRC2_FIELD_IPV6].mask_range.u32
540 			+ rule->field[SRC3_FIELD_IPV6].mask_range.u32
541 			+ rule->field[SRC4_FIELD_IPV6].mask_range.u32);
542 
543 	uint32_t_to_char(rule->field[DST1_FIELD_IPV6].value.u32,
544 		&a, &b, &c, &d);
545 	printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
546 	uint32_t_to_char(rule->field[DST2_FIELD_IPV6].value.u32,
547 		&a, &b, &c, &d);
548 	printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
549 	uint32_t_to_char(rule->field[DST3_FIELD_IPV6].value.u32,
550 		&a, &b, &c, &d);
551 	printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
552 	uint32_t_to_char(rule->field[DST4_FIELD_IPV6].value.u32,
553 		&a, &b, &c, &d);
554 	printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
555 			rule->field[DST1_FIELD_IPV6].mask_range.u32
556 			+ rule->field[DST2_FIELD_IPV6].mask_range.u32
557 			+ rule->field[DST3_FIELD_IPV6].mask_range.u32
558 			+ rule->field[DST4_FIELD_IPV6].mask_range.u32);
559 
560 	printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
561 		rule->field[SRCP_FIELD_IPV6].value.u16,
562 		rule->field[SRCP_FIELD_IPV6].mask_range.u16,
563 		rule->field[DSTP_FIELD_IPV6].value.u16,
564 		rule->field[DSTP_FIELD_IPV6].mask_range.u16,
565 		rule->field[PROTO_FIELD_IPV6].value.u8,
566 		rule->field[PROTO_FIELD_IPV6].mask_range.u8);
567 	if (extra)
568 		printf("0x%x-0x%x-0x%x ",
569 			rule->data.category_mask,
570 			rule->data.priority,
571 			rule->data.userdata);
572 }
573 
574 /* Bypass comment and empty lines */
575 static inline int
is_bypass_line(char * buff)576 is_bypass_line(char *buff)
577 {
578 	int i = 0;
579 
580 	/* comment line */
581 	if (buff[0] == COMMENT_LEAD_CHAR)
582 		return 1;
583 	/* empty line */
584 	while (buff[i] != '\0') {
585 		if (!isspace(buff[i]))
586 			return 0;
587 		i++;
588 	}
589 	return 1;
590 }
591 
592 #ifdef L3FWDACL_DEBUG
593 static inline void
dump_acl4_rule(struct rte_mbuf * m,uint32_t sig)594 dump_acl4_rule(struct rte_mbuf *m, uint32_t sig)
595 {
596 	uint32_t offset = sig & ~ACL_DENY_SIGNATURE;
597 	unsigned char a, b, c, d;
598 	struct rte_ipv4_hdr *ipv4_hdr =
599 		rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
600 					sizeof(struct rte_ether_hdr));
601 
602 	uint32_t_to_char(rte_bswap32(ipv4_hdr->src_addr), &a, &b, &c, &d);
603 	printf("Packet Src:%hhu.%hhu.%hhu.%hhu ", a, b, c, d);
604 	uint32_t_to_char(rte_bswap32(ipv4_hdr->dst_addr), &a, &b, &c, &d);
605 	printf("Dst:%hhu.%hhu.%hhu.%hhu ", a, b, c, d);
606 
607 	printf("Src port:%hu,Dst port:%hu ",
608 			rte_bswap16(*(uint16_t *)(ipv4_hdr + 1)),
609 			rte_bswap16(*((uint16_t *)(ipv4_hdr + 1) + 1)));
610 	printf("hit ACL %d - ", offset);
611 
612 	print_one_ipv4_rule(acl_config.rule_ipv4 + offset, 1);
613 
614 	printf("\n\n");
615 }
616 
617 static inline void
dump_acl6_rule(struct rte_mbuf * m,uint32_t sig)618 dump_acl6_rule(struct rte_mbuf *m, uint32_t sig)
619 {
620 	unsigned i;
621 	uint32_t offset = sig & ~ACL_DENY_SIGNATURE;
622 	struct rte_ipv6_hdr *ipv6_hdr =
623 		rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
624 					sizeof(struct rte_ether_hdr));
625 
626 	printf("Packet Src");
627 	for (i = 0; i < RTE_DIM(ipv6_hdr->src_addr); i += sizeof(uint16_t))
628 		printf(":%.2x%.2x",
629 			ipv6_hdr->src_addr[i], ipv6_hdr->src_addr[i + 1]);
630 
631 	printf("\nDst");
632 	for (i = 0; i < RTE_DIM(ipv6_hdr->dst_addr); i += sizeof(uint16_t))
633 		printf(":%.2x%.2x",
634 			ipv6_hdr->dst_addr[i], ipv6_hdr->dst_addr[i + 1]);
635 
636 	printf("\nSrc port:%hu,Dst port:%hu ",
637 			rte_bswap16(*(uint16_t *)(ipv6_hdr + 1)),
638 			rte_bswap16(*((uint16_t *)(ipv6_hdr + 1) + 1)));
639 	printf("hit ACL %d - ", offset);
640 
641 	print_one_ipv6_rule(acl_config.rule_ipv6 + offset, 1);
642 
643 	printf("\n\n");
644 }
645 #endif /* L3FWDACL_DEBUG */
646 
647 static inline void
dump_ipv4_rules(struct acl4_rule * rule,int num,int extra)648 dump_ipv4_rules(struct acl4_rule *rule, int num, int extra)
649 {
650 	int i;
651 
652 	for (i = 0; i < num; i++, rule++) {
653 		printf("\t%d:", i + 1);
654 		print_one_ipv4_rule(rule, extra);
655 		printf("\n");
656 	}
657 }
658 
659 static inline void
dump_ipv6_rules(struct acl6_rule * rule,int num,int extra)660 dump_ipv6_rules(struct acl6_rule *rule, int num, int extra)
661 {
662 	int i;
663 
664 	for (i = 0; i < num; i++, rule++) {
665 		printf("\t%d:", i + 1);
666 		print_one_ipv6_rule(rule, extra);
667 		printf("\n");
668 	}
669 }
670 
671 #ifdef DO_RFC_1812_CHECKS
672 static inline void
prepare_one_packet(struct rte_mbuf ** pkts_in,struct acl_search_t * acl,int index)673 prepare_one_packet(struct rte_mbuf **pkts_in, struct acl_search_t *acl,
674 	int index)
675 {
676 	struct rte_ipv4_hdr *ipv4_hdr;
677 	struct rte_mbuf *pkt = pkts_in[index];
678 
679 	if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
680 		ipv4_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
681 						sizeof(struct rte_ether_hdr));
682 
683 		/* Check to make sure the packet is valid (RFC1812) */
684 		if (is_valid_ipv4_pkt(ipv4_hdr, pkt->pkt_len) >= 0) {
685 
686 			/* Update time to live and header checksum */
687 			--(ipv4_hdr->time_to_live);
688 			++(ipv4_hdr->hdr_checksum);
689 
690 			/* Fill acl structure */
691 			acl->data_ipv4[acl->num_ipv4] = MBUF_IPV4_2PROTO(pkt);
692 			acl->m_ipv4[(acl->num_ipv4)++] = pkt;
693 
694 		} else {
695 			/* Not a valid IPv4 packet */
696 			rte_pktmbuf_free(pkt);
697 		}
698 	} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
699 		/* Fill acl structure */
700 		acl->data_ipv6[acl->num_ipv6] = MBUF_IPV6_2PROTO(pkt);
701 		acl->m_ipv6[(acl->num_ipv6)++] = pkt;
702 
703 	} else {
704 		/* Unknown type, drop the packet */
705 		rte_pktmbuf_free(pkt);
706 	}
707 }
708 
709 #else
710 static inline void
prepare_one_packet(struct rte_mbuf ** pkts_in,struct acl_search_t * acl,int index)711 prepare_one_packet(struct rte_mbuf **pkts_in, struct acl_search_t *acl,
712 	int index)
713 {
714 	struct rte_mbuf *pkt = pkts_in[index];
715 
716 	if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
717 		/* Fill acl structure */
718 		acl->data_ipv4[acl->num_ipv4] = MBUF_IPV4_2PROTO(pkt);
719 		acl->m_ipv4[(acl->num_ipv4)++] = pkt;
720 
721 	} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
722 		/* Fill acl structure */
723 		acl->data_ipv6[acl->num_ipv6] = MBUF_IPV6_2PROTO(pkt);
724 		acl->m_ipv6[(acl->num_ipv6)++] = pkt;
725 	} else {
726 		/* Unknown type, drop the packet */
727 		rte_pktmbuf_free(pkt);
728 	}
729 }
730 #endif /* DO_RFC_1812_CHECKS */
731 
732 static inline void
prepare_acl_parameter(struct rte_mbuf ** pkts_in,struct acl_search_t * acl,int nb_rx)733 prepare_acl_parameter(struct rte_mbuf **pkts_in, struct acl_search_t *acl,
734 	int nb_rx)
735 {
736 	int i;
737 
738 	acl->num_ipv4 = 0;
739 	acl->num_ipv6 = 0;
740 
741 	/* Prefetch first packets */
742 	for (i = 0; i < PREFETCH_OFFSET && i < nb_rx; i++) {
743 		rte_prefetch0(rte_pktmbuf_mtod(
744 				pkts_in[i], void *));
745 	}
746 
747 	for (i = 0; i < (nb_rx - PREFETCH_OFFSET); i++) {
748 		rte_prefetch0(rte_pktmbuf_mtod(pkts_in[
749 				i + PREFETCH_OFFSET], void *));
750 		prepare_one_packet(pkts_in, acl, i);
751 	}
752 
753 	/* Process left packets */
754 	for (; i < nb_rx; i++)
755 		prepare_one_packet(pkts_in, acl, i);
756 }
757 
758 static inline void
send_one_packet(struct rte_mbuf * m,uint32_t res)759 send_one_packet(struct rte_mbuf *m, uint32_t res)
760 {
761 	if (likely((res & ACL_DENY_SIGNATURE) == 0 && res != 0)) {
762 		/* forward packets */
763 		send_single_packet(m,
764 			(uint8_t)(res - FWD_PORT_SHIFT));
765 	} else{
766 		/* in the ACL list, drop it */
767 #ifdef L3FWDACL_DEBUG
768 		if ((res & ACL_DENY_SIGNATURE) != 0) {
769 			if (RTE_ETH_IS_IPV4_HDR(m->packet_type))
770 				dump_acl4_rule(m, res);
771 			else if (RTE_ETH_IS_IPV6_HDR(m->packet_type))
772 				dump_acl6_rule(m, res);
773 		}
774 #endif
775 		rte_pktmbuf_free(m);
776 	}
777 }
778 
779 
780 
781 static inline void
send_packets(struct rte_mbuf ** m,uint32_t * res,int num)782 send_packets(struct rte_mbuf **m, uint32_t *res, int num)
783 {
784 	int i;
785 
786 	/* Prefetch first packets */
787 	for (i = 0; i < PREFETCH_OFFSET && i < num; i++) {
788 		rte_prefetch0(rte_pktmbuf_mtod(
789 				m[i], void *));
790 	}
791 
792 	for (i = 0; i < (num - PREFETCH_OFFSET); i++) {
793 		rte_prefetch0(rte_pktmbuf_mtod(m[
794 				i + PREFETCH_OFFSET], void *));
795 		send_one_packet(m[i], res[i]);
796 	}
797 
798 	/* Process left packets */
799 	for (; i < num; i++)
800 		send_one_packet(m[i], res[i]);
801 }
802 
803 /*
804  * Parse IPv6 address, expects the following format:
805  * XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX (where X is a hexadecimal digit).
806  */
807 static int
parse_ipv6_addr(const char * in,const char ** end,uint32_t v[IPV6_ADDR_U32],char dlm)808 parse_ipv6_addr(const char *in, const char **end, uint32_t v[IPV6_ADDR_U32],
809 	char dlm)
810 {
811 	uint32_t addr[IPV6_ADDR_U16];
812 
813 	GET_CB_FIELD(in, addr[0], 16, UINT16_MAX, ':');
814 	GET_CB_FIELD(in, addr[1], 16, UINT16_MAX, ':');
815 	GET_CB_FIELD(in, addr[2], 16, UINT16_MAX, ':');
816 	GET_CB_FIELD(in, addr[3], 16, UINT16_MAX, ':');
817 	GET_CB_FIELD(in, addr[4], 16, UINT16_MAX, ':');
818 	GET_CB_FIELD(in, addr[5], 16, UINT16_MAX, ':');
819 	GET_CB_FIELD(in, addr[6], 16, UINT16_MAX, ':');
820 	GET_CB_FIELD(in, addr[7], 16, UINT16_MAX, dlm);
821 
822 	*end = in;
823 
824 	v[0] = (addr[0] << 16) + addr[1];
825 	v[1] = (addr[2] << 16) + addr[3];
826 	v[2] = (addr[4] << 16) + addr[5];
827 	v[3] = (addr[6] << 16) + addr[7];
828 
829 	return 0;
830 }
831 
832 static int
parse_ipv6_net(const char * in,struct rte_acl_field field[4])833 parse_ipv6_net(const char *in, struct rte_acl_field field[4])
834 {
835 	int32_t rc;
836 	const char *mp;
837 	uint32_t i, m, v[4];
838 	const uint32_t nbu32 = sizeof(uint32_t) * CHAR_BIT;
839 
840 	/* get address. */
841 	rc = parse_ipv6_addr(in, &mp, v, '/');
842 	if (rc != 0)
843 		return rc;
844 
845 	/* get mask. */
846 	GET_CB_FIELD(mp, m, 0, CHAR_BIT * sizeof(v), 0);
847 
848 	/* put all together. */
849 	for (i = 0; i != RTE_DIM(v); i++) {
850 		if (m >= (i + 1) * nbu32)
851 			field[i].mask_range.u32 = nbu32;
852 		else
853 			field[i].mask_range.u32 = m > (i * nbu32) ?
854 				m - (i * 32) : 0;
855 
856 		field[i].value.u32 = v[i];
857 	}
858 
859 	return 0;
860 }
861 
862 static int
parse_cb_ipv6_rule(char * str,struct rte_acl_rule * v,int has_userdata)863 parse_cb_ipv6_rule(char *str, struct rte_acl_rule *v, int has_userdata)
864 {
865 	int i, rc;
866 	char *s, *sp, *in[CB_FLD_NUM];
867 	static const char *dlm = " \t\n";
868 	int dim = has_userdata ? CB_FLD_NUM : CB_FLD_USERDATA;
869 	s = str;
870 
871 	for (i = 0; i != dim; i++, s = NULL) {
872 		in[i] = strtok_r(s, dlm, &sp);
873 		if (in[i] == NULL)
874 			return -EINVAL;
875 	}
876 
877 	rc = parse_ipv6_net(in[CB_FLD_SRC_ADDR], v->field + SRC1_FIELD_IPV6);
878 	if (rc != 0) {
879 		acl_log("failed to read source address/mask: %s\n",
880 			in[CB_FLD_SRC_ADDR]);
881 		return rc;
882 	}
883 
884 	rc = parse_ipv6_net(in[CB_FLD_DST_ADDR], v->field + DST1_FIELD_IPV6);
885 	if (rc != 0) {
886 		acl_log("failed to read destination address/mask: %s\n",
887 			in[CB_FLD_DST_ADDR]);
888 		return rc;
889 	}
890 
891 	/* source port. */
892 	GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
893 		v->field[SRCP_FIELD_IPV6].value.u16,
894 		0, UINT16_MAX, 0);
895 	GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
896 		v->field[SRCP_FIELD_IPV6].mask_range.u16,
897 		0, UINT16_MAX, 0);
898 
899 	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
900 			sizeof(cb_port_delim)) != 0)
901 		return -EINVAL;
902 
903 	/* destination port. */
904 	GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
905 		v->field[DSTP_FIELD_IPV6].value.u16,
906 		0, UINT16_MAX, 0);
907 	GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
908 		v->field[DSTP_FIELD_IPV6].mask_range.u16,
909 		0, UINT16_MAX, 0);
910 
911 	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
912 			sizeof(cb_port_delim)) != 0)
913 		return -EINVAL;
914 
915 	if (v->field[SRCP_FIELD_IPV6].mask_range.u16
916 			< v->field[SRCP_FIELD_IPV6].value.u16
917 			|| v->field[DSTP_FIELD_IPV6].mask_range.u16
918 			< v->field[DSTP_FIELD_IPV6].value.u16)
919 		return -EINVAL;
920 
921 	GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].value.u8,
922 		0, UINT8_MAX, '/');
923 	GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].mask_range.u8,
924 		0, UINT8_MAX, 0);
925 
926 	if (has_userdata)
927 		GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata,
928 			0, UINT32_MAX, 0);
929 
930 	return 0;
931 }
932 
933 /*
934  * Parse ClassBench rules file.
935  * Expected format:
936  * '@'<src_ipv4_addr>'/'<masklen> <space> \
937  * <dst_ipv4_addr>'/'<masklen> <space> \
938  * <src_port_low> <space> ":" <src_port_high> <space> \
939  * <dst_port_low> <space> ":" <dst_port_high> <space> \
940  * <proto>'/'<mask>
941  */
942 static int
parse_ipv4_net(const char * in,uint32_t * addr,uint32_t * mask_len)943 parse_ipv4_net(const char *in, uint32_t *addr, uint32_t *mask_len)
944 {
945 	uint8_t a, b, c, d, m;
946 
947 	GET_CB_FIELD(in, a, 0, UINT8_MAX, '.');
948 	GET_CB_FIELD(in, b, 0, UINT8_MAX, '.');
949 	GET_CB_FIELD(in, c, 0, UINT8_MAX, '.');
950 	GET_CB_FIELD(in, d, 0, UINT8_MAX, '/');
951 	GET_CB_FIELD(in, m, 0, sizeof(uint32_t) * CHAR_BIT, 0);
952 
953 	addr[0] = RTE_IPV4(a, b, c, d);
954 	mask_len[0] = m;
955 
956 	return 0;
957 }
958 
959 static int
parse_cb_ipv4vlan_rule(char * str,struct rte_acl_rule * v,int has_userdata)960 parse_cb_ipv4vlan_rule(char *str, struct rte_acl_rule *v, int has_userdata)
961 {
962 	int i, rc;
963 	char *s, *sp, *in[CB_FLD_NUM];
964 	static const char *dlm = " \t\n";
965 	int dim = has_userdata ? CB_FLD_NUM : CB_FLD_USERDATA;
966 	s = str;
967 
968 	for (i = 0; i != dim; i++, s = NULL) {
969 		in[i] = strtok_r(s, dlm, &sp);
970 		if (in[i] == NULL)
971 			return -EINVAL;
972 	}
973 
974 	rc = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
975 			&v->field[SRC_FIELD_IPV4].value.u32,
976 			&v->field[SRC_FIELD_IPV4].mask_range.u32);
977 	if (rc != 0) {
978 			acl_log("failed to read source address/mask: %s\n",
979 			in[CB_FLD_SRC_ADDR]);
980 		return rc;
981 	}
982 
983 	rc = parse_ipv4_net(in[CB_FLD_DST_ADDR],
984 			&v->field[DST_FIELD_IPV4].value.u32,
985 			&v->field[DST_FIELD_IPV4].mask_range.u32);
986 	if (rc != 0) {
987 		acl_log("failed to read destination address/mask: %s\n",
988 			in[CB_FLD_DST_ADDR]);
989 		return rc;
990 	}
991 
992 	GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
993 		v->field[SRCP_FIELD_IPV4].value.u16,
994 		0, UINT16_MAX, 0);
995 	GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
996 		v->field[SRCP_FIELD_IPV4].mask_range.u16,
997 		0, UINT16_MAX, 0);
998 
999 	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
1000 			sizeof(cb_port_delim)) != 0)
1001 		return -EINVAL;
1002 
1003 	GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
1004 		v->field[DSTP_FIELD_IPV4].value.u16,
1005 		0, UINT16_MAX, 0);
1006 	GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
1007 		v->field[DSTP_FIELD_IPV4].mask_range.u16,
1008 		0, UINT16_MAX, 0);
1009 
1010 	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
1011 			sizeof(cb_port_delim)) != 0)
1012 		return -EINVAL;
1013 
1014 	if (v->field[SRCP_FIELD_IPV4].mask_range.u16
1015 			< v->field[SRCP_FIELD_IPV4].value.u16
1016 			|| v->field[DSTP_FIELD_IPV4].mask_range.u16
1017 			< v->field[DSTP_FIELD_IPV4].value.u16)
1018 		return -EINVAL;
1019 
1020 	GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].value.u8,
1021 		0, UINT8_MAX, '/');
1022 	GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].mask_range.u8,
1023 		0, UINT8_MAX, 0);
1024 
1025 	if (has_userdata)
1026 		GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata, 0,
1027 			UINT32_MAX, 0);
1028 
1029 	return 0;
1030 }
1031 
1032 static int
add_rules(const char * rule_path,struct rte_acl_rule ** proute_base,unsigned int * proute_num,struct rte_acl_rule ** pacl_base,unsigned int * pacl_num,uint32_t rule_size,int (* parser)(char *,struct rte_acl_rule *,int))1033 add_rules(const char *rule_path,
1034 		struct rte_acl_rule **proute_base,
1035 		unsigned int *proute_num,
1036 		struct rte_acl_rule **pacl_base,
1037 		unsigned int *pacl_num, uint32_t rule_size,
1038 		int (*parser)(char *, struct rte_acl_rule*, int))
1039 {
1040 	uint8_t *acl_rules, *route_rules;
1041 	struct rte_acl_rule *next;
1042 	unsigned int acl_num = 0, route_num = 0, total_num = 0;
1043 	unsigned int acl_cnt = 0, route_cnt = 0;
1044 	char buff[LINE_MAX];
1045 	FILE *fh = fopen(rule_path, "rb");
1046 	unsigned int i = 0;
1047 	int val;
1048 
1049 	if (fh == NULL)
1050 		rte_exit(EXIT_FAILURE, "%s: Open %s failed\n", __func__,
1051 			rule_path);
1052 
1053 	while ((fgets(buff, LINE_MAX, fh) != NULL)) {
1054 		if (buff[0] == ROUTE_LEAD_CHAR)
1055 			route_num++;
1056 		else if (buff[0] == ACL_LEAD_CHAR)
1057 			acl_num++;
1058 	}
1059 
1060 	if (0 == route_num)
1061 		rte_exit(EXIT_FAILURE, "Not find any route entries in %s!\n",
1062 				rule_path);
1063 
1064 	val = fseek(fh, 0, SEEK_SET);
1065 	if (val < 0) {
1066 		rte_exit(EXIT_FAILURE, "%s: File seek operation failed\n",
1067 			__func__);
1068 	}
1069 
1070 	acl_rules = calloc(acl_num, rule_size);
1071 
1072 	if (NULL == acl_rules)
1073 		rte_exit(EXIT_FAILURE, "%s: failed to malloc memory\n",
1074 			__func__);
1075 
1076 	route_rules = calloc(route_num, rule_size);
1077 
1078 	if (NULL == route_rules)
1079 		rte_exit(EXIT_FAILURE, "%s: failed to malloc memory\n",
1080 			__func__);
1081 
1082 	i = 0;
1083 	while (fgets(buff, LINE_MAX, fh) != NULL) {
1084 		i++;
1085 
1086 		if (is_bypass_line(buff))
1087 			continue;
1088 
1089 		char s = buff[0];
1090 
1091 		/* Route entry */
1092 		if (s == ROUTE_LEAD_CHAR)
1093 			next = (struct rte_acl_rule *)(route_rules +
1094 				route_cnt * rule_size);
1095 
1096 		/* ACL entry */
1097 		else if (s == ACL_LEAD_CHAR)
1098 			next = (struct rte_acl_rule *)(acl_rules +
1099 				acl_cnt * rule_size);
1100 
1101 		/* Illegal line */
1102 		else
1103 			rte_exit(EXIT_FAILURE,
1104 				"%s Line %u: should start with leading "
1105 				"char %c or %c\n",
1106 				rule_path, i, ROUTE_LEAD_CHAR, ACL_LEAD_CHAR);
1107 
1108 		if (parser(buff + 1, next, s == ROUTE_LEAD_CHAR) != 0)
1109 			rte_exit(EXIT_FAILURE,
1110 				"%s Line %u: parse rules error\n",
1111 				rule_path, i);
1112 
1113 		if (s == ROUTE_LEAD_CHAR) {
1114 			/* Check the forwarding port number */
1115 			if ((enabled_port_mask & (1 << next->data.userdata)) ==
1116 					0)
1117 				rte_exit(EXIT_FAILURE,
1118 					"%s Line %u: fwd number illegal:%u\n",
1119 					rule_path, i, next->data.userdata);
1120 			next->data.userdata += FWD_PORT_SHIFT;
1121 			route_cnt++;
1122 		} else {
1123 			next->data.userdata = ACL_DENY_SIGNATURE + acl_cnt;
1124 			acl_cnt++;
1125 		}
1126 
1127 		next->data.priority = RTE_ACL_MAX_PRIORITY - total_num;
1128 		next->data.category_mask = -1;
1129 		total_num++;
1130 	}
1131 
1132 	fclose(fh);
1133 
1134 	*pacl_base = (struct rte_acl_rule *)acl_rules;
1135 	*pacl_num = acl_num;
1136 	*proute_base = (struct rte_acl_rule *)route_rules;
1137 	*proute_num = route_cnt;
1138 
1139 	return 0;
1140 }
1141 
1142 static int
usage_acl_alg(char * buf,size_t sz)1143 usage_acl_alg(char *buf, size_t sz)
1144 {
1145 	uint32_t i, n, rc, tn;
1146 
1147 	n = 0;
1148 	tn = 0;
1149 	for (i = 0; i < RTE_DIM(acl_alg); i++) {
1150 		rc = snprintf(buf + n, sz - n,
1151 			i == RTE_DIM(acl_alg) - 1 ? "%s" : "%s|",
1152 			acl_alg[i].name);
1153 		tn += rc;
1154 		if (rc < sz - n)
1155 			n += rc;
1156 	}
1157 
1158 	return tn;
1159 }
1160 
1161 static const char *
str_acl_alg(enum rte_acl_classify_alg alg)1162 str_acl_alg(enum rte_acl_classify_alg alg)
1163 {
1164 	uint32_t i;
1165 
1166 	for (i = 0; i != RTE_DIM(acl_alg); i++) {
1167 		if (alg == acl_alg[i].alg)
1168 			return acl_alg[i].name;
1169 	}
1170 
1171 	return "default";
1172 }
1173 
1174 static enum rte_acl_classify_alg
parse_acl_alg(const char * alg)1175 parse_acl_alg(const char *alg)
1176 {
1177 	uint32_t i;
1178 
1179 	for (i = 0; i != RTE_DIM(acl_alg); i++) {
1180 		if (strcmp(alg, acl_alg[i].name) == 0)
1181 			return acl_alg[i].alg;
1182 	}
1183 
1184 	return RTE_ACL_CLASSIFY_DEFAULT;
1185 }
1186 
1187 static void
dump_acl_config(void)1188 dump_acl_config(void)
1189 {
1190 	printf("ACL option are:\n");
1191 	printf(OPT_RULE_IPV4": %s\n", parm_config.rule_ipv4_name);
1192 	printf(OPT_RULE_IPV6": %s\n", parm_config.rule_ipv6_name);
1193 	printf(OPT_ALG": %s\n", str_acl_alg(parm_config.alg));
1194 }
1195 
1196 static int
check_acl_config(void)1197 check_acl_config(void)
1198 {
1199 	if (parm_config.rule_ipv4_name == NULL) {
1200 		acl_log("ACL IPv4 rule file not specified\n");
1201 		return -1;
1202 	} else if (parm_config.rule_ipv6_name == NULL) {
1203 		acl_log("ACL IPv6 rule file not specified\n");
1204 		return -1;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static struct rte_acl_ctx*
setup_acl(struct rte_acl_rule * route_base,struct rte_acl_rule * acl_base,unsigned int route_num,unsigned int acl_num,int ipv6,int socketid)1211 setup_acl(struct rte_acl_rule *route_base,
1212 		struct rte_acl_rule *acl_base, unsigned int route_num,
1213 		unsigned int acl_num, int ipv6, int socketid)
1214 {
1215 	char name[PATH_MAX];
1216 	struct rte_acl_param acl_param;
1217 	struct rte_acl_config acl_build_param;
1218 	struct rte_acl_ctx *context;
1219 	int dim = ipv6 ? RTE_DIM(ipv6_defs) : RTE_DIM(ipv4_defs);
1220 
1221 	/* Create ACL contexts */
1222 	snprintf(name, sizeof(name), "%s%d",
1223 			ipv6 ? L3FWD_ACL_IPV6_NAME : L3FWD_ACL_IPV4_NAME,
1224 			socketid);
1225 
1226 	acl_param.name = name;
1227 	acl_param.socket_id = socketid;
1228 	acl_param.rule_size = RTE_ACL_RULE_SZ(dim);
1229 	acl_param.max_rule_num = MAX_ACL_RULE_NUM;
1230 
1231 	if ((context = rte_acl_create(&acl_param)) == NULL)
1232 		rte_exit(EXIT_FAILURE, "Failed to create ACL context\n");
1233 
1234 	if (parm_config.alg != RTE_ACL_CLASSIFY_DEFAULT &&
1235 			rte_acl_set_ctx_classify(context, parm_config.alg) != 0)
1236 		rte_exit(EXIT_FAILURE,
1237 			"Failed to setup classify method for  ACL context\n");
1238 
1239 	if (rte_acl_add_rules(context, route_base, route_num) < 0)
1240 			rte_exit(EXIT_FAILURE, "add rules failed\n");
1241 
1242 	if (rte_acl_add_rules(context, acl_base, acl_num) < 0)
1243 			rte_exit(EXIT_FAILURE, "add rules failed\n");
1244 
1245 	/* Perform builds */
1246 	memset(&acl_build_param, 0, sizeof(acl_build_param));
1247 
1248 	acl_build_param.num_categories = DEFAULT_MAX_CATEGORIES;
1249 	acl_build_param.num_fields = dim;
1250 	memcpy(&acl_build_param.defs, ipv6 ? ipv6_defs : ipv4_defs,
1251 		ipv6 ? sizeof(ipv6_defs) : sizeof(ipv4_defs));
1252 
1253 	if (rte_acl_build(context, &acl_build_param) != 0)
1254 		rte_exit(EXIT_FAILURE, "Failed to build ACL trie\n");
1255 
1256 	rte_acl_dump(context);
1257 
1258 	return context;
1259 }
1260 
1261 static int
app_acl_init(void)1262 app_acl_init(void)
1263 {
1264 	unsigned lcore_id;
1265 	unsigned int i;
1266 	int socketid;
1267 	struct rte_acl_rule *acl_base_ipv4, *route_base_ipv4,
1268 		*acl_base_ipv6, *route_base_ipv6;
1269 	unsigned int acl_num_ipv4 = 0, route_num_ipv4 = 0,
1270 		acl_num_ipv6 = 0, route_num_ipv6 = 0;
1271 
1272 	if (check_acl_config() != 0)
1273 		rte_exit(EXIT_FAILURE, "Failed to get valid ACL options\n");
1274 
1275 	dump_acl_config();
1276 
1277 	/* Load  rules from the input file */
1278 	if (add_rules(parm_config.rule_ipv4_name, &route_base_ipv4,
1279 			&route_num_ipv4, &acl_base_ipv4, &acl_num_ipv4,
1280 			sizeof(struct acl4_rule), &parse_cb_ipv4vlan_rule) < 0)
1281 		rte_exit(EXIT_FAILURE, "Failed to add rules\n");
1282 
1283 	acl_log("IPv4 Route entries %u:\n", route_num_ipv4);
1284 	dump_ipv4_rules((struct acl4_rule *)route_base_ipv4, route_num_ipv4, 1);
1285 
1286 	acl_log("IPv4 ACL entries %u:\n", acl_num_ipv4);
1287 	dump_ipv4_rules((struct acl4_rule *)acl_base_ipv4, acl_num_ipv4, 1);
1288 
1289 	if (add_rules(parm_config.rule_ipv6_name, &route_base_ipv6,
1290 			&route_num_ipv6,
1291 			&acl_base_ipv6, &acl_num_ipv6,
1292 			sizeof(struct acl6_rule), &parse_cb_ipv6_rule) < 0)
1293 		rte_exit(EXIT_FAILURE, "Failed to add rules\n");
1294 
1295 	acl_log("IPv6 Route entries %u:\n", route_num_ipv6);
1296 	dump_ipv6_rules((struct acl6_rule *)route_base_ipv6, route_num_ipv6, 1);
1297 
1298 	acl_log("IPv6 ACL entries %u:\n", acl_num_ipv6);
1299 	dump_ipv6_rules((struct acl6_rule *)acl_base_ipv6, acl_num_ipv6, 1);
1300 
1301 	memset(&acl_config, 0, sizeof(acl_config));
1302 
1303 	/* Check sockets a context should be created on */
1304 	if (!numa_on)
1305 		acl_config.mapped[0] = 1;
1306 	else {
1307 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1308 			if (rte_lcore_is_enabled(lcore_id) == 0)
1309 				continue;
1310 
1311 			socketid = rte_lcore_to_socket_id(lcore_id);
1312 			if (socketid >= NB_SOCKETS) {
1313 				acl_log("Socket %d of lcore %u is out "
1314 					"of range %d\n",
1315 					socketid, lcore_id, NB_SOCKETS);
1316 				free(route_base_ipv4);
1317 				free(route_base_ipv6);
1318 				free(acl_base_ipv4);
1319 				free(acl_base_ipv6);
1320 				return -1;
1321 			}
1322 
1323 			acl_config.mapped[socketid] = 1;
1324 		}
1325 	}
1326 
1327 	for (i = 0; i < NB_SOCKETS; i++) {
1328 		if (acl_config.mapped[i]) {
1329 			acl_config.acx_ipv4[i] = setup_acl(route_base_ipv4,
1330 				acl_base_ipv4, route_num_ipv4, acl_num_ipv4,
1331 				0, i);
1332 
1333 			acl_config.acx_ipv6[i] = setup_acl(route_base_ipv6,
1334 				acl_base_ipv6, route_num_ipv6, acl_num_ipv6,
1335 				1, i);
1336 		}
1337 	}
1338 
1339 	free(route_base_ipv4);
1340 	free(route_base_ipv6);
1341 
1342 #ifdef L3FWDACL_DEBUG
1343 	acl_config.rule_ipv4 = (struct acl4_rule *)acl_base_ipv4;
1344 	acl_config.rule_ipv6 = (struct acl6_rule *)acl_base_ipv6;
1345 #else
1346 	free(acl_base_ipv4);
1347 	free(acl_base_ipv6);
1348 #endif
1349 
1350 	return 0;
1351 }
1352 
1353 /***********************end of ACL part******************************/
1354 
1355 struct lcore_conf {
1356 	uint16_t n_rx_queue;
1357 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
1358 	uint16_t n_tx_port;
1359 	uint16_t tx_port_id[RTE_MAX_ETHPORTS];
1360 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
1361 	struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
1362 } __rte_cache_aligned;
1363 
1364 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
1365 
1366 /* Enqueue a single packet, and send burst if queue is filled */
1367 static inline void
send_single_packet(struct rte_mbuf * m,uint16_t port)1368 send_single_packet(struct rte_mbuf *m, uint16_t port)
1369 {
1370 	uint32_t lcore_id;
1371 	struct lcore_conf *qconf;
1372 	struct rte_ether_hdr *eh;
1373 
1374 	lcore_id = rte_lcore_id();
1375 
1376 	/* update src and dst mac*/
1377 	eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1378 	memcpy(eh, &port_l2hdr[port],
1379 			sizeof(eh->dst_addr) + sizeof(eh->src_addr));
1380 
1381 	qconf = &lcore_conf[lcore_id];
1382 	rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
1383 			qconf->tx_buffer[port], m);
1384 }
1385 
1386 #ifdef DO_RFC_1812_CHECKS
1387 static inline int
is_valid_ipv4_pkt(struct rte_ipv4_hdr * pkt,uint32_t link_len)1388 is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
1389 {
1390 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
1391 	/*
1392 	 * 1. The packet length reported by the Link Layer must be large
1393 	 * enough to hold the minimum length legal IP datagram (20 bytes).
1394 	 */
1395 	if (link_len < sizeof(struct rte_ipv4_hdr))
1396 		return -1;
1397 
1398 	/* 2. The IP checksum must be correct. */
1399 	/* this is checked in H/W */
1400 
1401 	/*
1402 	 * 3. The IP version number must be 4. If the version number is not 4
1403 	 * then the packet may be another version of IP, such as IPng or
1404 	 * ST-II.
1405 	 */
1406 	if (((pkt->version_ihl) >> 4) != 4)
1407 		return -3;
1408 	/*
1409 	 * 4. The IP header length field must be large enough to hold the
1410 	 * minimum length legal IP datagram (20 bytes = 5 words).
1411 	 */
1412 	if ((pkt->version_ihl & 0xf) < 5)
1413 		return -4;
1414 
1415 	/*
1416 	 * 5. The IP total length field must be large enough to hold the IP
1417 	 * datagram header, whose length is specified in the IP header length
1418 	 * field.
1419 	 */
1420 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
1421 		return -5;
1422 
1423 	return 0;
1424 }
1425 #endif
1426 
1427 /* main processing loop */
1428 static int
main_loop(__rte_unused void * dummy)1429 main_loop(__rte_unused void *dummy)
1430 {
1431 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1432 	unsigned lcore_id;
1433 	uint64_t prev_tsc, diff_tsc, cur_tsc;
1434 	int i, nb_rx;
1435 	uint16_t portid;
1436 	uint8_t queueid;
1437 	struct lcore_conf *qconf;
1438 	int socketid;
1439 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1440 			/ US_PER_S * BURST_TX_DRAIN_US;
1441 
1442 	prev_tsc = 0;
1443 	lcore_id = rte_lcore_id();
1444 	qconf = &lcore_conf[lcore_id];
1445 	socketid = rte_lcore_to_socket_id(lcore_id);
1446 
1447 	if (qconf->n_rx_queue == 0) {
1448 		RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
1449 		return 0;
1450 	}
1451 
1452 	RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
1453 
1454 	for (i = 0; i < qconf->n_rx_queue; i++) {
1455 
1456 		portid = qconf->rx_queue_list[i].port_id;
1457 		queueid = qconf->rx_queue_list[i].queue_id;
1458 		RTE_LOG(INFO, L3FWD,
1459 			" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1460 			lcore_id, portid, queueid);
1461 	}
1462 
1463 	while (1) {
1464 
1465 		cur_tsc = rte_rdtsc();
1466 
1467 		/*
1468 		 * TX burst queue drain
1469 		 */
1470 		diff_tsc = cur_tsc - prev_tsc;
1471 		if (unlikely(diff_tsc > drain_tsc)) {
1472 			for (i = 0; i < qconf->n_tx_port; ++i) {
1473 				portid = qconf->tx_port_id[i];
1474 				rte_eth_tx_buffer_flush(portid,
1475 						qconf->tx_queue_id[portid],
1476 						qconf->tx_buffer[portid]);
1477 			}
1478 			prev_tsc = cur_tsc;
1479 		}
1480 
1481 		/*
1482 		 * Read packet from RX queues
1483 		 */
1484 		for (i = 0; i < qconf->n_rx_queue; ++i) {
1485 
1486 			portid = qconf->rx_queue_list[i].port_id;
1487 			queueid = qconf->rx_queue_list[i].queue_id;
1488 			nb_rx = rte_eth_rx_burst(portid, queueid,
1489 				pkts_burst, MAX_PKT_BURST);
1490 
1491 			if (nb_rx > 0) {
1492 				struct acl_search_t acl_search;
1493 
1494 				prepare_acl_parameter(pkts_burst, &acl_search,
1495 					nb_rx);
1496 
1497 				if (acl_search.num_ipv4) {
1498 					rte_acl_classify(
1499 						acl_config.acx_ipv4[socketid],
1500 						acl_search.data_ipv4,
1501 						acl_search.res_ipv4,
1502 						acl_search.num_ipv4,
1503 						DEFAULT_MAX_CATEGORIES);
1504 
1505 					send_packets(acl_search.m_ipv4,
1506 						acl_search.res_ipv4,
1507 						acl_search.num_ipv4);
1508 				}
1509 
1510 				if (acl_search.num_ipv6) {
1511 					rte_acl_classify(
1512 						acl_config.acx_ipv6[socketid],
1513 						acl_search.data_ipv6,
1514 						acl_search.res_ipv6,
1515 						acl_search.num_ipv6,
1516 						DEFAULT_MAX_CATEGORIES);
1517 
1518 					send_packets(acl_search.m_ipv6,
1519 						acl_search.res_ipv6,
1520 						acl_search.num_ipv6);
1521 				}
1522 			}
1523 		}
1524 	}
1525 }
1526 
1527 static int
check_lcore_params(void)1528 check_lcore_params(void)
1529 {
1530 	uint8_t queue, lcore;
1531 	uint16_t i;
1532 	int socketid;
1533 
1534 	for (i = 0; i < nb_lcore_params; ++i) {
1535 		queue = lcore_params[i].queue_id;
1536 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
1537 			printf("invalid queue number: %hhu\n", queue);
1538 			return -1;
1539 		}
1540 		lcore = lcore_params[i].lcore_id;
1541 		if (!rte_lcore_is_enabled(lcore)) {
1542 			printf("error: lcore %hhu is not enabled in "
1543 				"lcore mask\n", lcore);
1544 			return -1;
1545 		}
1546 		socketid = rte_lcore_to_socket_id(lcore);
1547 		if (socketid != 0 && numa_on == 0) {
1548 			printf("warning: lcore %hhu is on socket %d "
1549 				"with numa off\n",
1550 				lcore, socketid);
1551 		}
1552 	}
1553 	return 0;
1554 }
1555 
1556 static int
check_port_config(void)1557 check_port_config(void)
1558 {
1559 	unsigned portid;
1560 	uint16_t i;
1561 
1562 	for (i = 0; i < nb_lcore_params; ++i) {
1563 		portid = lcore_params[i].port_id;
1564 
1565 		if ((enabled_port_mask & (1 << portid)) == 0) {
1566 			printf("port %u is not enabled in port mask\n", portid);
1567 			return -1;
1568 		}
1569 		if (!rte_eth_dev_is_valid_port(portid)) {
1570 			printf("port %u is not present on the board\n", portid);
1571 			return -1;
1572 		}
1573 	}
1574 	return 0;
1575 }
1576 
1577 static uint8_t
get_port_n_rx_queues(const uint16_t port)1578 get_port_n_rx_queues(const uint16_t port)
1579 {
1580 	int queue = -1;
1581 	uint16_t i;
1582 
1583 	for (i = 0; i < nb_lcore_params; ++i) {
1584 		if (lcore_params[i].port_id == port &&
1585 				lcore_params[i].queue_id > queue)
1586 			queue = lcore_params[i].queue_id;
1587 	}
1588 	return (uint8_t)(++queue);
1589 }
1590 
1591 static int
init_lcore_rx_queues(void)1592 init_lcore_rx_queues(void)
1593 {
1594 	uint16_t i, nb_rx_queue;
1595 	uint8_t lcore;
1596 
1597 	for (i = 0; i < nb_lcore_params; ++i) {
1598 		lcore = lcore_params[i].lcore_id;
1599 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
1600 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1601 			printf("error: too many queues (%u) for lcore: %u\n",
1602 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
1603 			return -1;
1604 		} else {
1605 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1606 				lcore_params[i].port_id;
1607 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1608 				lcore_params[i].queue_id;
1609 			lcore_conf[lcore].n_rx_queue++;
1610 		}
1611 	}
1612 	return 0;
1613 }
1614 
1615 /* display usage */
1616 static void
print_usage(const char * prgname)1617 print_usage(const char *prgname)
1618 {
1619 	char alg[PATH_MAX];
1620 
1621 	usage_acl_alg(alg, sizeof(alg));
1622 	printf("%s [EAL options] -- -p PORTMASK -P"
1623 		"  --"OPT_RULE_IPV4"=FILE"
1624 		"  --"OPT_RULE_IPV6"=FILE"
1625 		"  [--"OPT_CONFIG" (port,queue,lcore)[,(port,queue,lcore]]"
1626 		"  [--"OPT_MAX_PKT_LEN" PKTLEN]\n"
1627 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
1628 		"  -P: enable promiscuous mode\n"
1629 		"  --"OPT_CONFIG" (port,queue,lcore): rx queues configuration\n"
1630 		"  --"OPT_NONUMA": optional, disable numa awareness\n"
1631 		"  --"OPT_MAX_PKT_LEN" PKTLEN: maximum packet length in decimal (64-9600)\n"
1632 		"  --"OPT_RULE_IPV4"=FILE: specify the ipv4 rules entries file. "
1633 		"Each rule occupy one line. "
1634 		"2 kinds of rules are supported. "
1635 		"One is ACL entry at while line leads with character '%c', "
1636 		"another is route entry at while line leads with character '%c'.\n"
1637 		"  --"OPT_RULE_IPV6"=FILE: specify the ipv6 rules entries file.\n"
1638 		"  --"OPT_ALG": ACL classify method to use, one of: %s\n",
1639 		prgname, ACL_LEAD_CHAR, ROUTE_LEAD_CHAR, alg);
1640 }
1641 
1642 static int
parse_max_pkt_len(const char * pktlen)1643 parse_max_pkt_len(const char *pktlen)
1644 {
1645 	char *end = NULL;
1646 	unsigned long len;
1647 
1648 	/* parse decimal string */
1649 	len = strtoul(pktlen, &end, 10);
1650 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
1651 		return -1;
1652 
1653 	if (len == 0)
1654 		return -1;
1655 
1656 	return len;
1657 }
1658 
1659 static int
parse_portmask(const char * portmask)1660 parse_portmask(const char *portmask)
1661 {
1662 	char *end = NULL;
1663 	unsigned long pm;
1664 
1665 	/* parse hexadecimal string */
1666 	pm = strtoul(portmask, &end, 16);
1667 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1668 		return 0;
1669 
1670 	return pm;
1671 }
1672 
1673 static int
parse_config(const char * q_arg)1674 parse_config(const char *q_arg)
1675 {
1676 	char s[256];
1677 	const char *p, *p0 = q_arg;
1678 	char *end;
1679 	enum fieldnames {
1680 		FLD_PORT = 0,
1681 		FLD_QUEUE,
1682 		FLD_LCORE,
1683 		_NUM_FLD
1684 	};
1685 	unsigned long int_fld[_NUM_FLD];
1686 	char *str_fld[_NUM_FLD];
1687 	int i;
1688 	unsigned size;
1689 
1690 	nb_lcore_params = 0;
1691 
1692 	while ((p = strchr(p0, '(')) != NULL) {
1693 		++p;
1694 		if ((p0 = strchr(p, ')')) == NULL)
1695 			return -1;
1696 
1697 		size = p0 - p;
1698 		if (size >= sizeof(s))
1699 			return -1;
1700 
1701 		snprintf(s, sizeof(s), "%.*s", size, p);
1702 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1703 				_NUM_FLD)
1704 			return -1;
1705 		for (i = 0; i < _NUM_FLD; i++) {
1706 			errno = 0;
1707 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1708 			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1709 				return -1;
1710 		}
1711 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1712 			printf("exceeded max number of lcore params: %hu\n",
1713 				nb_lcore_params);
1714 			return -1;
1715 		}
1716 		lcore_params_array[nb_lcore_params].port_id =
1717 			(uint8_t)int_fld[FLD_PORT];
1718 		lcore_params_array[nb_lcore_params].queue_id =
1719 			(uint8_t)int_fld[FLD_QUEUE];
1720 		lcore_params_array[nb_lcore_params].lcore_id =
1721 			(uint8_t)int_fld[FLD_LCORE];
1722 		++nb_lcore_params;
1723 	}
1724 	lcore_params = lcore_params_array;
1725 	return 0;
1726 }
1727 
1728 static const char *
parse_eth_dest(const char * optarg)1729 parse_eth_dest(const char *optarg)
1730 {
1731 	unsigned long portid;
1732 	char *port_end;
1733 
1734 	errno = 0;
1735 	portid = strtoul(optarg, &port_end, 0);
1736 	if (errno != 0 || port_end == optarg || *port_end++ != ',')
1737 		return "Invalid format";
1738 	else if (portid >= RTE_MAX_ETHPORTS)
1739 		return "port value exceeds RTE_MAX_ETHPORTS("
1740 			RTE_STR(RTE_MAX_ETHPORTS) ")";
1741 
1742 	if (cmdline_parse_etheraddr(NULL, port_end,
1743 			&port_l2hdr[portid].dst_addr,
1744 			sizeof(port_l2hdr[portid].dst_addr)) < 0)
1745 		return "Invalid ethernet address";
1746 	return NULL;
1747 }
1748 
1749 /* Parse the argument given in the command line of the application */
1750 static int
parse_args(int argc,char ** argv)1751 parse_args(int argc, char **argv)
1752 {
1753 	int opt, ret;
1754 	char **argvopt;
1755 	int option_index;
1756 	char *prgname = argv[0];
1757 	static struct option lgopts[] = {
1758 		{OPT_CONFIG,      1, NULL, OPT_CONFIG_NUM      },
1759 		{OPT_NONUMA,      0, NULL, OPT_NONUMA_NUM      },
1760 		{OPT_MAX_PKT_LEN, 1, NULL, OPT_MAX_PKT_LEN_NUM },
1761 		{OPT_RULE_IPV4,   1, NULL, OPT_RULE_IPV4_NUM   },
1762 		{OPT_RULE_IPV6,   1, NULL, OPT_RULE_IPV6_NUM   },
1763 		{OPT_ALG,         1, NULL, OPT_ALG_NUM         },
1764 		{OPT_ETH_DEST,    1, NULL, OPT_ETH_DEST_NUM    },
1765 		{NULL,            0, 0,    0                   }
1766 	};
1767 
1768 	argvopt = argv;
1769 
1770 	while ((opt = getopt_long(argc, argvopt, "p:P",
1771 				lgopts, &option_index)) != EOF) {
1772 
1773 		switch (opt) {
1774 		/* portmask */
1775 		case 'p':
1776 			enabled_port_mask = parse_portmask(optarg);
1777 			if (enabled_port_mask == 0) {
1778 				printf("invalid portmask\n");
1779 				print_usage(prgname);
1780 				return -1;
1781 			}
1782 			break;
1783 
1784 		case 'P':
1785 			printf("Promiscuous mode selected\n");
1786 			promiscuous_on = 1;
1787 			break;
1788 
1789 		/* long options */
1790 		case OPT_CONFIG_NUM:
1791 			ret = parse_config(optarg);
1792 			if (ret) {
1793 				printf("invalid config\n");
1794 				print_usage(prgname);
1795 				return -1;
1796 			}
1797 			break;
1798 
1799 		case OPT_NONUMA_NUM:
1800 			printf("numa is disabled\n");
1801 			numa_on = 0;
1802 			break;
1803 
1804 		case OPT_MAX_PKT_LEN_NUM:
1805 			printf("Custom frame size is configured\n");
1806 			max_pkt_len = parse_max_pkt_len(optarg);
1807 			break;
1808 
1809 		case OPT_RULE_IPV4_NUM:
1810 			parm_config.rule_ipv4_name = optarg;
1811 			break;
1812 
1813 		case OPT_RULE_IPV6_NUM:
1814 			parm_config.rule_ipv6_name = optarg;
1815 			break;
1816 
1817 		case OPT_ALG_NUM:
1818 			parm_config.alg = parse_acl_alg(optarg);
1819 			if (parm_config.alg ==
1820 					RTE_ACL_CLASSIFY_DEFAULT) {
1821 				printf("unknown %s value:\"%s\"\n",
1822 					OPT_ALG, optarg);
1823 				print_usage(prgname);
1824 				return -1;
1825 			}
1826 			break;
1827 
1828 		case OPT_ETH_DEST_NUM:
1829 		{
1830 			const char *serr = parse_eth_dest(optarg);
1831 			if (serr != NULL) {
1832 				printf("invalid %s value:\"%s\": %s\n",
1833 					OPT_ETH_DEST, optarg, serr);
1834 				print_usage(prgname);
1835 				return -1;
1836 			}
1837 			break;
1838 		}
1839 		default:
1840 			print_usage(prgname);
1841 			return -1;
1842 		}
1843 	}
1844 
1845 	if (optind >= 0)
1846 		argv[optind-1] = prgname;
1847 
1848 	ret = optind-1;
1849 	optind = 1; /* reset getopt lib */
1850 	return ret;
1851 }
1852 
1853 static void
print_ethaddr(const char * name,const struct rte_ether_addr * eth_addr)1854 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1855 {
1856 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
1857 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1858 	printf("%s%s", name, buf);
1859 }
1860 
1861 static int
init_mem(unsigned nb_mbuf)1862 init_mem(unsigned nb_mbuf)
1863 {
1864 	int socketid;
1865 	unsigned lcore_id;
1866 	char s[64];
1867 
1868 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1869 		if (rte_lcore_is_enabled(lcore_id) == 0)
1870 			continue;
1871 
1872 		if (numa_on)
1873 			socketid = rte_lcore_to_socket_id(lcore_id);
1874 		else
1875 			socketid = 0;
1876 
1877 		if (socketid >= NB_SOCKETS) {
1878 			rte_exit(EXIT_FAILURE,
1879 				"Socket %d of lcore %u is out of range %d\n",
1880 				socketid, lcore_id, NB_SOCKETS);
1881 		}
1882 		if (pktmbuf_pool[socketid] == NULL) {
1883 			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
1884 			pktmbuf_pool[socketid] =
1885 				rte_pktmbuf_pool_create(s, nb_mbuf,
1886 					MEMPOOL_CACHE_SIZE, 0,
1887 					RTE_MBUF_DEFAULT_BUF_SIZE,
1888 					socketid);
1889 			if (pktmbuf_pool[socketid] == NULL)
1890 				rte_exit(EXIT_FAILURE,
1891 					"Cannot init mbuf pool on socket %d\n",
1892 					socketid);
1893 			else
1894 				printf("Allocated mbuf pool on socket %d\n",
1895 					socketid);
1896 		}
1897 	}
1898 	return 0;
1899 }
1900 
1901 /* Check the link status of all ports in up to 9s, and print them finally */
1902 static void
check_all_ports_link_status(uint32_t port_mask)1903 check_all_ports_link_status(uint32_t port_mask)
1904 {
1905 #define CHECK_INTERVAL 100 /* 100ms */
1906 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1907 	uint16_t portid;
1908 	uint8_t count, all_ports_up, print_flag = 0;
1909 	struct rte_eth_link link;
1910 	int ret;
1911 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
1912 
1913 	printf("\nChecking link status");
1914 	fflush(stdout);
1915 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1916 		all_ports_up = 1;
1917 		RTE_ETH_FOREACH_DEV(portid) {
1918 			if ((port_mask & (1 << portid)) == 0)
1919 				continue;
1920 			memset(&link, 0, sizeof(link));
1921 			ret = rte_eth_link_get_nowait(portid, &link);
1922 			if (ret < 0) {
1923 				all_ports_up = 0;
1924 				if (print_flag == 1)
1925 					printf("Port %u link get failed: %s\n",
1926 						portid, rte_strerror(-ret));
1927 				continue;
1928 			}
1929 			/* print link status if flag set */
1930 			if (print_flag == 1) {
1931 				rte_eth_link_to_str(link_status_text,
1932 					sizeof(link_status_text), &link);
1933 				printf("Port %d %s\n", portid,
1934 				       link_status_text);
1935 				continue;
1936 			}
1937 			/* clear all_ports_up flag if any link down */
1938 			if (link.link_status == RTE_ETH_LINK_DOWN) {
1939 				all_ports_up = 0;
1940 				break;
1941 			}
1942 		}
1943 		/* after finally printing all link status, get out */
1944 		if (print_flag == 1)
1945 			break;
1946 
1947 		if (all_ports_up == 0) {
1948 			printf(".");
1949 			fflush(stdout);
1950 			rte_delay_ms(CHECK_INTERVAL);
1951 		}
1952 
1953 		/* set the print_flag if all ports up or timeout */
1954 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1955 			print_flag = 1;
1956 			printf("done\n");
1957 		}
1958 	}
1959 }
1960 
1961 /*
1962  * build-up default values for dest MACs.
1963  */
1964 static void
set_default_dest_mac(void)1965 set_default_dest_mac(void)
1966 {
1967 	uint32_t i;
1968 
1969 	for (i = 0; i != RTE_DIM(port_l2hdr); i++) {
1970 		port_l2hdr[i].dst_addr.addr_bytes[0] =
1971 				RTE_ETHER_LOCAL_ADMIN_ADDR;
1972 		port_l2hdr[i].dst_addr.addr_bytes[5] = i;
1973 	}
1974 }
1975 
1976 static uint32_t
eth_dev_get_overhead_len(uint32_t max_rx_pktlen,uint16_t max_mtu)1977 eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu)
1978 {
1979 	uint32_t overhead_len;
1980 
1981 	if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu)
1982 		overhead_len = max_rx_pktlen - max_mtu;
1983 	else
1984 		overhead_len = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN;
1985 
1986 	return overhead_len;
1987 }
1988 
1989 static int
config_port_max_pkt_len(struct rte_eth_conf * conf,struct rte_eth_dev_info * dev_info)1990 config_port_max_pkt_len(struct rte_eth_conf *conf,
1991 		struct rte_eth_dev_info *dev_info)
1992 {
1993 	uint32_t overhead_len;
1994 
1995 	if (max_pkt_len == 0)
1996 		return 0;
1997 
1998 	if (max_pkt_len < RTE_ETHER_MIN_LEN || max_pkt_len > MAX_JUMBO_PKT_LEN)
1999 		return -1;
2000 
2001 	overhead_len = eth_dev_get_overhead_len(dev_info->max_rx_pktlen,
2002 			dev_info->max_mtu);
2003 	conf->rxmode.mtu = max_pkt_len - overhead_len;
2004 
2005 	if (conf->rxmode.mtu > RTE_ETHER_MTU)
2006 		conf->txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2007 
2008 	return 0;
2009 }
2010 
2011 int
main(int argc,char ** argv)2012 main(int argc, char **argv)
2013 {
2014 	struct lcore_conf *qconf;
2015 	struct rte_eth_dev_info dev_info;
2016 	struct rte_eth_txconf *txconf;
2017 	int ret;
2018 	unsigned nb_ports;
2019 	uint16_t queueid;
2020 	unsigned lcore_id;
2021 	uint32_t n_tx_queue, nb_lcores;
2022 	uint16_t portid;
2023 	uint8_t nb_rx_queue, queue, socketid;
2024 
2025 	/* init EAL */
2026 	ret = rte_eal_init(argc, argv);
2027 	if (ret < 0)
2028 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2029 	argc -= ret;
2030 	argv += ret;
2031 
2032 	set_default_dest_mac();
2033 
2034 	/* parse application arguments (after the EAL ones) */
2035 	ret = parse_args(argc, argv);
2036 	if (ret < 0)
2037 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
2038 
2039 	if (check_lcore_params() < 0)
2040 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
2041 
2042 	ret = init_lcore_rx_queues();
2043 	if (ret < 0)
2044 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2045 
2046 	nb_ports = rte_eth_dev_count_avail();
2047 
2048 	if (check_port_config() < 0)
2049 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
2050 
2051 	/* Add ACL rules and route entries, build trie */
2052 	if (app_acl_init() < 0)
2053 		rte_exit(EXIT_FAILURE, "app_acl_init failed\n");
2054 
2055 	nb_lcores = rte_lcore_count();
2056 
2057 	/* initialize all ports */
2058 	RTE_ETH_FOREACH_DEV(portid) {
2059 		struct rte_eth_conf local_port_conf = port_conf;
2060 
2061 		/* skip ports that are not enabled */
2062 		if ((enabled_port_mask & (1 << portid)) == 0) {
2063 			printf("\nSkipping disabled port %d\n", portid);
2064 			continue;
2065 		}
2066 
2067 		/* init port */
2068 		printf("Initializing port %d ... ", portid);
2069 		fflush(stdout);
2070 
2071 		nb_rx_queue = get_port_n_rx_queues(portid);
2072 		n_tx_queue = nb_lcores;
2073 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
2074 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
2075 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
2076 			nb_rx_queue, (unsigned)n_tx_queue);
2077 
2078 		ret = rte_eth_dev_info_get(portid, &dev_info);
2079 		if (ret != 0)
2080 			rte_exit(EXIT_FAILURE,
2081 				"Error during getting device (port %u) info: %s\n",
2082 				portid, strerror(-ret));
2083 
2084 		ret = config_port_max_pkt_len(&local_port_conf, &dev_info);
2085 		if (ret != 0)
2086 			rte_exit(EXIT_FAILURE,
2087 				"Invalid max packet length: %u (port %u)\n",
2088 				max_pkt_len, portid);
2089 
2090 		if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
2091 			local_port_conf.txmode.offloads |=
2092 				RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2093 
2094 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2095 			dev_info.flow_type_rss_offloads;
2096 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2097 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
2098 			printf("Port %u modified RSS hash function based on hardware support,"
2099 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
2100 				portid,
2101 				port_conf.rx_adv_conf.rss_conf.rss_hf,
2102 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2103 		}
2104 
2105 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
2106 					(uint16_t)n_tx_queue, &local_port_conf);
2107 		if (ret < 0)
2108 			rte_exit(EXIT_FAILURE,
2109 				"Cannot configure device: err=%d, port=%d\n",
2110 				ret, portid);
2111 
2112 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
2113 						       &nb_txd);
2114 		if (ret < 0)
2115 			rte_exit(EXIT_FAILURE,
2116 				"rte_eth_dev_adjust_nb_rx_tx_desc: err=%d, port=%d\n",
2117 				ret, portid);
2118 
2119 		ret = rte_eth_macaddr_get(portid, &port_l2hdr[portid].src_addr);
2120 		if (ret < 0)
2121 			rte_exit(EXIT_FAILURE,
2122 				"rte_eth_macaddr_get: err=%d, port=%d\n",
2123 				ret, portid);
2124 
2125 		print_ethaddr("Dst MAC:", &port_l2hdr[portid].dst_addr);
2126 		print_ethaddr(", Src MAC:", &port_l2hdr[portid].src_addr);
2127 		printf(", ");
2128 
2129 		/* init memory */
2130 		ret = init_mem(NB_MBUF);
2131 		if (ret < 0)
2132 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
2133 
2134 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2135 			if (rte_lcore_is_enabled(lcore_id) == 0)
2136 				continue;
2137 
2138 			/* Initialize TX buffers */
2139 			qconf = &lcore_conf[lcore_id];
2140 			qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
2141 					RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
2142 					rte_eth_dev_socket_id(portid));
2143 			if (qconf->tx_buffer[portid] == NULL)
2144 				rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
2145 						(unsigned) portid);
2146 
2147 			rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
2148 		}
2149 
2150 		/* init one TX queue per couple (lcore,port) */
2151 		queueid = 0;
2152 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2153 			if (rte_lcore_is_enabled(lcore_id) == 0)
2154 				continue;
2155 
2156 			if (numa_on)
2157 				socketid = (uint8_t)
2158 					rte_lcore_to_socket_id(lcore_id);
2159 			else
2160 				socketid = 0;
2161 
2162 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
2163 			fflush(stdout);
2164 
2165 			ret = rte_eth_dev_info_get(portid, &dev_info);
2166 			if (ret != 0)
2167 				rte_exit(EXIT_FAILURE,
2168 					"Error during getting device (port %u) info: %s\n",
2169 					portid, strerror(-ret));
2170 
2171 			txconf = &dev_info.default_txconf;
2172 			txconf->offloads = local_port_conf.txmode.offloads;
2173 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
2174 						     socketid, txconf);
2175 			if (ret < 0)
2176 				rte_exit(EXIT_FAILURE,
2177 					"rte_eth_tx_queue_setup: err=%d, "
2178 					"port=%d\n", ret, portid);
2179 
2180 			qconf = &lcore_conf[lcore_id];
2181 			qconf->tx_queue_id[portid] = queueid;
2182 			queueid++;
2183 
2184 			qconf->tx_port_id[qconf->n_tx_port] = portid;
2185 			qconf->n_tx_port++;
2186 		}
2187 		printf("\n");
2188 	}
2189 
2190 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2191 		if (rte_lcore_is_enabled(lcore_id) == 0)
2192 			continue;
2193 		qconf = &lcore_conf[lcore_id];
2194 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id);
2195 		fflush(stdout);
2196 		/* init RX queues */
2197 		for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
2198 			struct rte_eth_rxconf rxq_conf;
2199 
2200 			portid = qconf->rx_queue_list[queue].port_id;
2201 			queueid = qconf->rx_queue_list[queue].queue_id;
2202 
2203 			if (numa_on)
2204 				socketid = (uint8_t)
2205 					rte_lcore_to_socket_id(lcore_id);
2206 			else
2207 				socketid = 0;
2208 
2209 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
2210 			fflush(stdout);
2211 
2212 			ret = rte_eth_dev_info_get(portid, &dev_info);
2213 			if (ret != 0)
2214 				rte_exit(EXIT_FAILURE,
2215 					"Error during getting device (port %u) info: %s\n",
2216 					portid, strerror(-ret));
2217 
2218 			rxq_conf = dev_info.default_rxconf;
2219 			rxq_conf.offloads = port_conf.rxmode.offloads;
2220 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
2221 					socketid, &rxq_conf,
2222 					pktmbuf_pool[socketid]);
2223 			if (ret < 0)
2224 				rte_exit(EXIT_FAILURE,
2225 					"rte_eth_rx_queue_setup: err=%d,"
2226 					"port=%d\n", ret, portid);
2227 		}
2228 	}
2229 
2230 	printf("\n");
2231 
2232 	/* start ports */
2233 	RTE_ETH_FOREACH_DEV(portid) {
2234 		if ((enabled_port_mask & (1 << portid)) == 0)
2235 			continue;
2236 
2237 		/* Start device */
2238 		ret = rte_eth_dev_start(portid);
2239 		if (ret < 0)
2240 			rte_exit(EXIT_FAILURE,
2241 				"rte_eth_dev_start: err=%d, port=%d\n",
2242 				ret, portid);
2243 
2244 		/*
2245 		 * If enabled, put device in promiscuous mode.
2246 		 * This allows IO forwarding mode to forward packets
2247 		 * to itself through 2 cross-connected  ports of the
2248 		 * target machine.
2249 		 */
2250 		if (promiscuous_on) {
2251 			ret = rte_eth_promiscuous_enable(portid);
2252 			if (ret != 0)
2253 				rte_exit(EXIT_FAILURE,
2254 					"rte_eth_promiscuous_enable: err=%s, port=%u\n",
2255 					rte_strerror(-ret), portid);
2256 		}
2257 	}
2258 
2259 	check_all_ports_link_status(enabled_port_mask);
2260 
2261 	/* launch per-lcore init on every lcore */
2262 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
2263 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
2264 		if (rte_eal_wait_lcore(lcore_id) < 0)
2265 			return -1;
2266 	}
2267 
2268 	/* clean up the EAL */
2269 	rte_eal_cleanup();
2270 
2271 	return 0;
2272 }
2273