xref: /sqlite-3.40.0/src/vdbeaux.c (revision 093677ad)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
sqlite3VdbeCreate(Parse * pParse)25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->ppVPrev = &p->pVNext;
34   }
35   p->pVNext = db->pVdbe;
36   p->ppVPrev = &db->pVdbe;
37   db->pVdbe = p;
38   assert( p->eVdbeState==VDBE_INIT_STATE );
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
sqlite3VdbeParser(Vdbe * p)52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
sqlite3VdbeError(Vdbe * p,const char * zFormat,...)59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
sqlite3VdbeSetSql(Vdbe * p,const char * z,int n,u8 prepFlags)70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
sqlite3VdbeAddDblquoteStr(sqlite3 * db,Vdbe * p,const char * z)84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
sqlite3VdbeUsesDoubleQuotedString(Vdbe * pVdbe,const char * zId)103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap byte-code between two VDBE structures.
119 **
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA.  The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again.  The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
125 ** finalized.
126 */
sqlite3VdbeSwap(Vdbe * pA,Vdbe * pB)127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
128   Vdbe tmp, *pTmp, **ppTmp;
129   char *zTmp;
130   assert( pA->db==pB->db );
131   tmp = *pA;
132   *pA = *pB;
133   *pB = tmp;
134   pTmp = pA->pVNext;
135   pA->pVNext = pB->pVNext;
136   pB->pVNext = pTmp;
137   ppTmp = pA->ppVPrev;
138   pA->ppVPrev = pB->ppVPrev;
139   pB->ppVPrev = ppTmp;
140   zTmp = pA->zSql;
141   pA->zSql = pB->zSql;
142   pB->zSql = zTmp;
143 #ifdef SQLITE_ENABLE_NORMALIZE
144   zTmp = pA->zNormSql;
145   pA->zNormSql = pB->zNormSql;
146   pB->zNormSql = zTmp;
147 #endif
148   pB->expmask = pA->expmask;
149   pB->prepFlags = pA->prepFlags;
150   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
151   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
152 }
153 
154 /*
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
158 **
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
163 */
growOpArray(Vdbe * v,int nOp)164 static int growOpArray(Vdbe *v, int nOp){
165   VdbeOp *pNew;
166   Parse *p = v->pParse;
167 
168   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169   ** more frequent reallocs and hence provide more opportunities for
170   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
171   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
172   ** by the minimum* amount required until the size reaches 512.  Normal
173   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174   ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
177                         : (sqlite3_int64)v->nOpAlloc+nOp);
178 #else
179   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
180                         : (sqlite3_int64)(1024/sizeof(Op)));
181   UNUSED_PARAMETER(nOp);
182 #endif
183 
184   /* Ensure that the size of a VDBE does not grow too large */
185   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
186     sqlite3OomFault(p->db);
187     return SQLITE_NOMEM;
188   }
189 
190   assert( nOp<=(int)(1024/sizeof(Op)) );
191   assert( nNew>=(v->nOpAlloc+nOp) );
192   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
193   if( pNew ){
194     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
195     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
196     v->aOp = pNew;
197   }
198   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
199 }
200 
201 #ifdef SQLITE_DEBUG
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
206 **
207 ** Other useful labels for breakpoints include:
208 **   test_trace_breakpoint(pc,pOp)
209 **   sqlite3CorruptError(lineno)
210 **   sqlite3MisuseError(lineno)
211 **   sqlite3CantopenError(lineno)
212 */
test_addop_breakpoint(int pc,Op * pOp)213 static void test_addop_breakpoint(int pc, Op *pOp){
214   static int n = 0;
215   n++;
216 }
217 #endif
218 
219 /*
220 ** Add a new instruction to the list of instructions current in the
221 ** VDBE.  Return the address of the new instruction.
222 **
223 ** Parameters:
224 **
225 **    p               Pointer to the VDBE
226 **
227 **    op              The opcode for this instruction
228 **
229 **    p1, p2, p3      Operands
230 **
231 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
232 ** the sqlite3VdbeChangeP4() function to change the value of the P4
233 ** operand.
234 */
growOp3(Vdbe * p,int op,int p1,int p2,int p3)235 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
236   assert( p->nOpAlloc<=p->nOp );
237   if( growOpArray(p, 1) ) return 1;
238   assert( p->nOpAlloc>p->nOp );
239   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
240 }
sqlite3VdbeAddOp3(Vdbe * p,int op,int p1,int p2,int p3)241 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
242   int i;
243   VdbeOp *pOp;
244 
245   i = p->nOp;
246   assert( p->eVdbeState==VDBE_INIT_STATE );
247   assert( op>=0 && op<0xff );
248   if( p->nOpAlloc<=i ){
249     return growOp3(p, op, p1, p2, p3);
250   }
251   assert( p->aOp!=0 );
252   p->nOp++;
253   pOp = &p->aOp[i];
254   assert( pOp!=0 );
255   pOp->opcode = (u8)op;
256   pOp->p5 = 0;
257   pOp->p1 = p1;
258   pOp->p2 = p2;
259   pOp->p3 = p3;
260   pOp->p4.p = 0;
261   pOp->p4type = P4_NOTUSED;
262 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
263   pOp->zComment = 0;
264 #endif
265 #ifdef SQLITE_DEBUG
266   if( p->db->flags & SQLITE_VdbeAddopTrace ){
267     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
268     test_addop_breakpoint(i, &p->aOp[i]);
269   }
270 #endif
271 #ifdef VDBE_PROFILE
272   pOp->cycles = 0;
273   pOp->cnt = 0;
274 #endif
275 #ifdef SQLITE_VDBE_COVERAGE
276   pOp->iSrcLine = 0;
277 #endif
278   return i;
279 }
sqlite3VdbeAddOp0(Vdbe * p,int op)280 int sqlite3VdbeAddOp0(Vdbe *p, int op){
281   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
282 }
sqlite3VdbeAddOp1(Vdbe * p,int op,int p1)283 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
284   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
285 }
sqlite3VdbeAddOp2(Vdbe * p,int op,int p1,int p2)286 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
287   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
288 }
289 
290 /* Generate code for an unconditional jump to instruction iDest
291 */
sqlite3VdbeGoto(Vdbe * p,int iDest)292 int sqlite3VdbeGoto(Vdbe *p, int iDest){
293   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
294 }
295 
296 /* Generate code to cause the string zStr to be loaded into
297 ** register iDest
298 */
sqlite3VdbeLoadString(Vdbe * p,int iDest,const char * zStr)299 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
300   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
301 }
302 
303 /*
304 ** Generate code that initializes multiple registers to string or integer
305 ** constants.  The registers begin with iDest and increase consecutively.
306 ** One register is initialized for each characgter in zTypes[].  For each
307 ** "s" character in zTypes[], the register is a string if the argument is
308 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
309 ** in zTypes[], the register is initialized to an integer.
310 **
311 ** If the input string does not end with "X" then an OP_ResultRow instruction
312 ** is generated for the values inserted.
313 */
sqlite3VdbeMultiLoad(Vdbe * p,int iDest,const char * zTypes,...)314 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
315   va_list ap;
316   int i;
317   char c;
318   va_start(ap, zTypes);
319   for(i=0; (c = zTypes[i])!=0; i++){
320     if( c=='s' ){
321       const char *z = va_arg(ap, const char*);
322       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
323     }else if( c=='i' ){
324       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
325     }else{
326       goto skip_op_resultrow;
327     }
328   }
329   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
330 skip_op_resultrow:
331   va_end(ap);
332 }
333 
334 /*
335 ** Add an opcode that includes the p4 value as a pointer.
336 */
sqlite3VdbeAddOp4(Vdbe * p,int op,int p1,int p2,int p3,const char * zP4,int p4type)337 int sqlite3VdbeAddOp4(
338   Vdbe *p,            /* Add the opcode to this VM */
339   int op,             /* The new opcode */
340   int p1,             /* The P1 operand */
341   int p2,             /* The P2 operand */
342   int p3,             /* The P3 operand */
343   const char *zP4,    /* The P4 operand */
344   int p4type          /* P4 operand type */
345 ){
346   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
347   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
348   return addr;
349 }
350 
351 /*
352 ** Add an OP_Function or OP_PureFunc opcode.
353 **
354 ** The eCallCtx argument is information (typically taken from Expr.op2)
355 ** that describes the calling context of the function.  0 means a general
356 ** function call.  NC_IsCheck means called by a check constraint,
357 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
358 ** means in the WHERE clause of a partial index.  NC_GenCol means called
359 ** while computing a generated column value.  0 is the usual case.
360 */
sqlite3VdbeAddFunctionCall(Parse * pParse,int p1,int p2,int p3,int nArg,const FuncDef * pFunc,int eCallCtx)361 int sqlite3VdbeAddFunctionCall(
362   Parse *pParse,        /* Parsing context */
363   int p1,               /* Constant argument mask */
364   int p2,               /* First argument register */
365   int p3,               /* Register into which results are written */
366   int nArg,             /* Number of argument */
367   const FuncDef *pFunc, /* The function to be invoked */
368   int eCallCtx          /* Calling context */
369 ){
370   Vdbe *v = pParse->pVdbe;
371   int nByte;
372   int addr;
373   sqlite3_context *pCtx;
374   assert( v );
375   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
376   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
377   if( pCtx==0 ){
378     assert( pParse->db->mallocFailed );
379     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
380     return 0;
381   }
382   pCtx->pOut = 0;
383   pCtx->pFunc = (FuncDef*)pFunc;
384   pCtx->pVdbe = 0;
385   pCtx->isError = 0;
386   pCtx->argc = nArg;
387   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
388   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
389                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
390   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
391   sqlite3MayAbort(pParse);
392   return addr;
393 }
394 
395 /*
396 ** Add an opcode that includes the p4 value with a P4_INT64 or
397 ** P4_REAL type.
398 */
sqlite3VdbeAddOp4Dup8(Vdbe * p,int op,int p1,int p2,int p3,const u8 * zP4,int p4type)399 int sqlite3VdbeAddOp4Dup8(
400   Vdbe *p,            /* Add the opcode to this VM */
401   int op,             /* The new opcode */
402   int p1,             /* The P1 operand */
403   int p2,             /* The P2 operand */
404   int p3,             /* The P3 operand */
405   const u8 *zP4,      /* The P4 operand */
406   int p4type          /* P4 operand type */
407 ){
408   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
409   if( p4copy ) memcpy(p4copy, zP4, 8);
410   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
411 }
412 
413 #ifndef SQLITE_OMIT_EXPLAIN
414 /*
415 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
416 ** 0 means "none".
417 */
sqlite3VdbeExplainParent(Parse * pParse)418 int sqlite3VdbeExplainParent(Parse *pParse){
419   VdbeOp *pOp;
420   if( pParse->addrExplain==0 ) return 0;
421   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
422   return pOp->p2;
423 }
424 
425 /*
426 ** Set a debugger breakpoint on the following routine in order to
427 ** monitor the EXPLAIN QUERY PLAN code generation.
428 */
429 #if defined(SQLITE_DEBUG)
sqlite3ExplainBreakpoint(const char * z1,const char * z2)430 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
431   (void)z1;
432   (void)z2;
433 }
434 #endif
435 
436 /*
437 ** Add a new OP_Explain opcode.
438 **
439 ** If the bPush flag is true, then make this opcode the parent for
440 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
441 */
sqlite3VdbeExplain(Parse * pParse,u8 bPush,const char * zFmt,...)442 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
443 #ifndef SQLITE_DEBUG
444   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
445   ** But omit them (for performance) during production builds */
446   if( pParse->explain==2 )
447 #endif
448   {
449     char *zMsg;
450     Vdbe *v;
451     va_list ap;
452     int iThis;
453     va_start(ap, zFmt);
454     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
455     va_end(ap);
456     v = pParse->pVdbe;
457     iThis = v->nOp;
458     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
459                       zMsg, P4_DYNAMIC);
460     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z);
461     if( bPush){
462       pParse->addrExplain = iThis;
463     }
464   }
465 }
466 
467 /*
468 ** Pop the EXPLAIN QUERY PLAN stack one level.
469 */
sqlite3VdbeExplainPop(Parse * pParse)470 void sqlite3VdbeExplainPop(Parse *pParse){
471   sqlite3ExplainBreakpoint("POP", 0);
472   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
473 }
474 #endif /* SQLITE_OMIT_EXPLAIN */
475 
476 /*
477 ** Add an OP_ParseSchema opcode.  This routine is broken out from
478 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
479 ** as having been used.
480 **
481 ** The zWhere string must have been obtained from sqlite3_malloc().
482 ** This routine will take ownership of the allocated memory.
483 */
sqlite3VdbeAddParseSchemaOp(Vdbe * p,int iDb,char * zWhere,u16 p5)484 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
485   int j;
486   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
487   sqlite3VdbeChangeP5(p, p5);
488   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
489   sqlite3MayAbort(p->pParse);
490 }
491 
492 /*
493 ** Add an opcode that includes the p4 value as an integer.
494 */
sqlite3VdbeAddOp4Int(Vdbe * p,int op,int p1,int p2,int p3,int p4)495 int sqlite3VdbeAddOp4Int(
496   Vdbe *p,            /* Add the opcode to this VM */
497   int op,             /* The new opcode */
498   int p1,             /* The P1 operand */
499   int p2,             /* The P2 operand */
500   int p3,             /* The P3 operand */
501   int p4              /* The P4 operand as an integer */
502 ){
503   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
504   if( p->db->mallocFailed==0 ){
505     VdbeOp *pOp = &p->aOp[addr];
506     pOp->p4type = P4_INT32;
507     pOp->p4.i = p4;
508   }
509   return addr;
510 }
511 
512 /* Insert the end of a co-routine
513 */
sqlite3VdbeEndCoroutine(Vdbe * v,int regYield)514 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
515   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
516 
517   /* Clear the temporary register cache, thereby ensuring that each
518   ** co-routine has its own independent set of registers, because co-routines
519   ** might expect their registers to be preserved across an OP_Yield, and
520   ** that could cause problems if two or more co-routines are using the same
521   ** temporary register.
522   */
523   v->pParse->nTempReg = 0;
524   v->pParse->nRangeReg = 0;
525 }
526 
527 /*
528 ** Create a new symbolic label for an instruction that has yet to be
529 ** coded.  The symbolic label is really just a negative number.  The
530 ** label can be used as the P2 value of an operation.  Later, when
531 ** the label is resolved to a specific address, the VDBE will scan
532 ** through its operation list and change all values of P2 which match
533 ** the label into the resolved address.
534 **
535 ** The VDBE knows that a P2 value is a label because labels are
536 ** always negative and P2 values are suppose to be non-negative.
537 ** Hence, a negative P2 value is a label that has yet to be resolved.
538 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
539 ** property.
540 **
541 ** Variable usage notes:
542 **
543 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
544 **                         into.  For testing (SQLITE_DEBUG), unresolved
545 **                         labels stores -1, but that is not required.
546 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
547 **     Parse.nLabel        The *negative* of the number of labels that have
548 **                         been issued.  The negative is stored because
549 **                         that gives a performance improvement over storing
550 **                         the equivalent positive value.
551 */
sqlite3VdbeMakeLabel(Parse * pParse)552 int sqlite3VdbeMakeLabel(Parse *pParse){
553   return --pParse->nLabel;
554 }
555 
556 /*
557 ** Resolve label "x" to be the address of the next instruction to
558 ** be inserted.  The parameter "x" must have been obtained from
559 ** a prior call to sqlite3VdbeMakeLabel().
560 */
resizeResolveLabel(Parse * p,Vdbe * v,int j)561 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
562   int nNewSize = 10 - p->nLabel;
563   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
564                      nNewSize*sizeof(p->aLabel[0]));
565   if( p->aLabel==0 ){
566     p->nLabelAlloc = 0;
567   }else{
568 #ifdef SQLITE_DEBUG
569     int i;
570     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
571 #endif
572     p->nLabelAlloc = nNewSize;
573     p->aLabel[j] = v->nOp;
574   }
575 }
sqlite3VdbeResolveLabel(Vdbe * v,int x)576 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
577   Parse *p = v->pParse;
578   int j = ADDR(x);
579   assert( v->eVdbeState==VDBE_INIT_STATE );
580   assert( j<-p->nLabel );
581   assert( j>=0 );
582 #ifdef SQLITE_DEBUG
583   if( p->db->flags & SQLITE_VdbeAddopTrace ){
584     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
585   }
586 #endif
587   if( p->nLabelAlloc + p->nLabel < 0 ){
588     resizeResolveLabel(p,v,j);
589   }else{
590     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
591     p->aLabel[j] = v->nOp;
592   }
593 }
594 
595 /*
596 ** Mark the VDBE as one that can only be run one time.
597 */
sqlite3VdbeRunOnlyOnce(Vdbe * p)598 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
599   sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
600 }
601 
602 /*
603 ** Mark the VDBE as one that can be run multiple times.
604 */
sqlite3VdbeReusable(Vdbe * p)605 void sqlite3VdbeReusable(Vdbe *p){
606   int i;
607   for(i=1; ALWAYS(i<p->nOp); i++){
608     if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
609       p->aOp[1].opcode = OP_Noop;
610       break;
611     }
612   }
613 }
614 
615 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
616 
617 /*
618 ** The following type and function are used to iterate through all opcodes
619 ** in a Vdbe main program and each of the sub-programs (triggers) it may
620 ** invoke directly or indirectly. It should be used as follows:
621 **
622 **   Op *pOp;
623 **   VdbeOpIter sIter;
624 **
625 **   memset(&sIter, 0, sizeof(sIter));
626 **   sIter.v = v;                            // v is of type Vdbe*
627 **   while( (pOp = opIterNext(&sIter)) ){
628 **     // Do something with pOp
629 **   }
630 **   sqlite3DbFree(v->db, sIter.apSub);
631 **
632 */
633 typedef struct VdbeOpIter VdbeOpIter;
634 struct VdbeOpIter {
635   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
636   SubProgram **apSub;        /* Array of subprograms */
637   int nSub;                  /* Number of entries in apSub */
638   int iAddr;                 /* Address of next instruction to return */
639   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
640 };
opIterNext(VdbeOpIter * p)641 static Op *opIterNext(VdbeOpIter *p){
642   Vdbe *v = p->v;
643   Op *pRet = 0;
644   Op *aOp;
645   int nOp;
646 
647   if( p->iSub<=p->nSub ){
648 
649     if( p->iSub==0 ){
650       aOp = v->aOp;
651       nOp = v->nOp;
652     }else{
653       aOp = p->apSub[p->iSub-1]->aOp;
654       nOp = p->apSub[p->iSub-1]->nOp;
655     }
656     assert( p->iAddr<nOp );
657 
658     pRet = &aOp[p->iAddr];
659     p->iAddr++;
660     if( p->iAddr==nOp ){
661       p->iSub++;
662       p->iAddr = 0;
663     }
664 
665     if( pRet->p4type==P4_SUBPROGRAM ){
666       int nByte = (p->nSub+1)*sizeof(SubProgram*);
667       int j;
668       for(j=0; j<p->nSub; j++){
669         if( p->apSub[j]==pRet->p4.pProgram ) break;
670       }
671       if( j==p->nSub ){
672         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
673         if( !p->apSub ){
674           pRet = 0;
675         }else{
676           p->apSub[p->nSub++] = pRet->p4.pProgram;
677         }
678       }
679     }
680   }
681 
682   return pRet;
683 }
684 
685 /*
686 ** Check if the program stored in the VM associated with pParse may
687 ** throw an ABORT exception (causing the statement, but not entire transaction
688 ** to be rolled back). This condition is true if the main program or any
689 ** sub-programs contains any of the following:
690 **
691 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
692 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
693 **   *  OP_Destroy
694 **   *  OP_VUpdate
695 **   *  OP_VCreate
696 **   *  OP_VRename
697 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
698 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
699 **      (for CREATE TABLE AS SELECT ...)
700 **
701 ** Then check that the value of Parse.mayAbort is true if an
702 ** ABORT may be thrown, or false otherwise. Return true if it does
703 ** match, or false otherwise. This function is intended to be used as
704 ** part of an assert statement in the compiler. Similar to:
705 **
706 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
707 */
sqlite3VdbeAssertMayAbort(Vdbe * v,int mayAbort)708 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
709   int hasAbort = 0;
710   int hasFkCounter = 0;
711   int hasCreateTable = 0;
712   int hasCreateIndex = 0;
713   int hasInitCoroutine = 0;
714   Op *pOp;
715   VdbeOpIter sIter;
716 
717   if( v==0 ) return 0;
718   memset(&sIter, 0, sizeof(sIter));
719   sIter.v = v;
720 
721   while( (pOp = opIterNext(&sIter))!=0 ){
722     int opcode = pOp->opcode;
723     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
724      || opcode==OP_VDestroy
725      || opcode==OP_VCreate
726      || opcode==OP_ParseSchema
727      || opcode==OP_Function || opcode==OP_PureFunc
728      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
729       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
730     ){
731       hasAbort = 1;
732       break;
733     }
734     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
735     if( mayAbort ){
736       /* hasCreateIndex may also be set for some DELETE statements that use
737       ** OP_Clear. So this routine may end up returning true in the case
738       ** where a "DELETE FROM tbl" has a statement-journal but does not
739       ** require one. This is not so bad - it is an inefficiency, not a bug. */
740       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
741       if( opcode==OP_Clear ) hasCreateIndex = 1;
742     }
743     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
744 #ifndef SQLITE_OMIT_FOREIGN_KEY
745     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
746       hasFkCounter = 1;
747     }
748 #endif
749   }
750   sqlite3DbFree(v->db, sIter.apSub);
751 
752   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
753   ** If malloc failed, then the while() loop above may not have iterated
754   ** through all opcodes and hasAbort may be set incorrectly. Return
755   ** true for this case to prevent the assert() in the callers frame
756   ** from failing.  */
757   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
758         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
759   );
760 }
761 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
762 
763 #ifdef SQLITE_DEBUG
764 /*
765 ** Increment the nWrite counter in the VDBE if the cursor is not an
766 ** ephemeral cursor, or if the cursor argument is NULL.
767 */
sqlite3VdbeIncrWriteCounter(Vdbe * p,VdbeCursor * pC)768 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
769   if( pC==0
770    || (pC->eCurType!=CURTYPE_SORTER
771        && pC->eCurType!=CURTYPE_PSEUDO
772        && !pC->isEphemeral)
773   ){
774     p->nWrite++;
775   }
776 }
777 #endif
778 
779 #ifdef SQLITE_DEBUG
780 /*
781 ** Assert if an Abort at this point in time might result in a corrupt
782 ** database.
783 */
sqlite3VdbeAssertAbortable(Vdbe * p)784 void sqlite3VdbeAssertAbortable(Vdbe *p){
785   assert( p->nWrite==0 || p->usesStmtJournal );
786 }
787 #endif
788 
789 /*
790 ** This routine is called after all opcodes have been inserted.  It loops
791 ** through all the opcodes and fixes up some details.
792 **
793 ** (1) For each jump instruction with a negative P2 value (a label)
794 **     resolve the P2 value to an actual address.
795 **
796 ** (2) Compute the maximum number of arguments used by any SQL function
797 **     and store that value in *pMaxFuncArgs.
798 **
799 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
800 **     indicate what the prepared statement actually does.
801 **
802 ** (4) (discontinued)
803 **
804 ** (5) Reclaim the memory allocated for storing labels.
805 **
806 ** This routine will only function correctly if the mkopcodeh.tcl generator
807 ** script numbers the opcodes correctly.  Changes to this routine must be
808 ** coordinated with changes to mkopcodeh.tcl.
809 */
resolveP2Values(Vdbe * p,int * pMaxFuncArgs)810 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
811   int nMaxArgs = *pMaxFuncArgs;
812   Op *pOp;
813   Parse *pParse = p->pParse;
814   int *aLabel = pParse->aLabel;
815   p->readOnly = 1;
816   p->bIsReader = 0;
817   pOp = &p->aOp[p->nOp-1];
818   assert( p->aOp[0].opcode==OP_Init );
819   while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){
820     /* Only JUMP opcodes and the short list of special opcodes in the switch
821     ** below need to be considered.  The mkopcodeh.tcl generator script groups
822     ** all these opcodes together near the front of the opcode list.  Skip
823     ** any opcode that does not need processing by virtual of the fact that
824     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
825     */
826     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
827       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
828       ** cases from this switch! */
829       switch( pOp->opcode ){
830         case OP_Transaction: {
831           if( pOp->p2!=0 ) p->readOnly = 0;
832           /* no break */ deliberate_fall_through
833         }
834         case OP_AutoCommit:
835         case OP_Savepoint: {
836           p->bIsReader = 1;
837           break;
838         }
839 #ifndef SQLITE_OMIT_WAL
840         case OP_Checkpoint:
841 #endif
842         case OP_Vacuum:
843         case OP_JournalMode: {
844           p->readOnly = 0;
845           p->bIsReader = 1;
846           break;
847         }
848         case OP_Init: {
849           assert( pOp->p2>=0 );
850           goto resolve_p2_values_loop_exit;
851         }
852 #ifndef SQLITE_OMIT_VIRTUALTABLE
853         case OP_VUpdate: {
854           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
855           break;
856         }
857         case OP_VFilter: {
858           int n;
859           assert( (pOp - p->aOp) >= 3 );
860           assert( pOp[-1].opcode==OP_Integer );
861           n = pOp[-1].p1;
862           if( n>nMaxArgs ) nMaxArgs = n;
863           /* Fall through into the default case */
864           /* no break */ deliberate_fall_through
865         }
866 #endif
867         default: {
868           if( pOp->p2<0 ){
869             /* The mkopcodeh.tcl script has so arranged things that the only
870             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
871             ** have non-negative values for P2. */
872             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
873             assert( ADDR(pOp->p2)<-pParse->nLabel );
874             pOp->p2 = aLabel[ADDR(pOp->p2)];
875           }
876           break;
877         }
878       }
879       /* The mkopcodeh.tcl script has so arranged things that the only
880       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
881       ** have non-negative values for P2. */
882       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
883     }
884     assert( pOp>p->aOp );
885     pOp--;
886   }
887 resolve_p2_values_loop_exit:
888   if( aLabel ){
889     sqlite3DbNNFreeNN(p->db, pParse->aLabel);
890     pParse->aLabel = 0;
891   }
892   pParse->nLabel = 0;
893   *pMaxFuncArgs = nMaxArgs;
894   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
895 }
896 
897 #ifdef SQLITE_DEBUG
898 /*
899 ** Check to see if a subroutine contains a jump to a location outside of
900 ** the subroutine.  If a jump outside the subroutine is detected, add code
901 ** that will cause the program to halt with an error message.
902 **
903 ** The subroutine consists of opcodes between iFirst and iLast.  Jumps to
904 ** locations within the subroutine are acceptable.  iRetReg is a register
905 ** that contains the return address.  Jumps to outside the range of iFirst
906 ** through iLast are also acceptable as long as the jump destination is
907 ** an OP_Return to iReturnAddr.
908 **
909 ** A jump to an unresolved label means that the jump destination will be
910 ** beyond the current address.  That is normally a jump to an early
911 ** termination and is consider acceptable.
912 **
913 ** This routine only runs during debug builds.  The purpose is (of course)
914 ** to detect invalid escapes out of a subroutine.  The OP_Halt opcode
915 ** is generated rather than an assert() or other error, so that ".eqp full"
916 ** will still work to show the original bytecode, to aid in debugging.
917 */
sqlite3VdbeNoJumpsOutsideSubrtn(Vdbe * v,int iFirst,int iLast,int iRetReg)918 void sqlite3VdbeNoJumpsOutsideSubrtn(
919   Vdbe *v,          /* The byte-code program under construction */
920   int iFirst,       /* First opcode of the subroutine */
921   int iLast,        /* Last opcode of the subroutine */
922   int iRetReg       /* Subroutine return address register */
923 ){
924   VdbeOp *pOp;
925   Parse *pParse;
926   int i;
927   sqlite3_str *pErr = 0;
928   assert( v!=0 );
929   pParse = v->pParse;
930   assert( pParse!=0 );
931   if( pParse->nErr ) return;
932   assert( iLast>=iFirst );
933   assert( iLast<v->nOp );
934   pOp = &v->aOp[iFirst];
935   for(i=iFirst; i<=iLast; i++, pOp++){
936     if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
937       int iDest = pOp->p2;   /* Jump destination */
938       if( iDest==0 ) continue;
939       if( pOp->opcode==OP_Gosub ) continue;
940       if( iDest<0 ){
941         int j = ADDR(iDest);
942         assert( j>=0 );
943         if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
944           continue;
945         }
946         iDest = pParse->aLabel[j];
947       }
948       if( iDest<iFirst || iDest>iLast ){
949         int j = iDest;
950         for(; j<v->nOp; j++){
951           VdbeOp *pX = &v->aOp[j];
952           if( pX->opcode==OP_Return ){
953             if( pX->p1==iRetReg ) break;
954             continue;
955           }
956           if( pX->opcode==OP_Noop ) continue;
957           if( pX->opcode==OP_Explain ) continue;
958           if( pErr==0 ){
959             pErr = sqlite3_str_new(0);
960           }else{
961             sqlite3_str_appendchar(pErr, 1, '\n');
962           }
963           sqlite3_str_appendf(pErr,
964               "Opcode at %d jumps to %d which is outside the "
965               "subroutine at %d..%d",
966               i, iDest, iFirst, iLast);
967           break;
968         }
969       }
970     }
971   }
972   if( pErr ){
973     char *zErr = sqlite3_str_finish(pErr);
974     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
975     sqlite3_free(zErr);
976     sqlite3MayAbort(pParse);
977   }
978 }
979 #endif /* SQLITE_DEBUG */
980 
981 /*
982 ** Return the address of the next instruction to be inserted.
983 */
sqlite3VdbeCurrentAddr(Vdbe * p)984 int sqlite3VdbeCurrentAddr(Vdbe *p){
985   assert( p->eVdbeState==VDBE_INIT_STATE );
986   return p->nOp;
987 }
988 
989 /*
990 ** Verify that at least N opcode slots are available in p without
991 ** having to malloc for more space (except when compiled using
992 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
993 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
994 ** fail due to a OOM fault and hence that the return value from
995 ** sqlite3VdbeAddOpList() will always be non-NULL.
996 */
997 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
sqlite3VdbeVerifyNoMallocRequired(Vdbe * p,int N)998 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
999   assert( p->nOp + N <= p->nOpAlloc );
1000 }
1001 #endif
1002 
1003 /*
1004 ** Verify that the VM passed as the only argument does not contain
1005 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1006 ** by code in pragma.c to ensure that the implementation of certain
1007 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1008 ** script.
1009 */
1010 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
sqlite3VdbeVerifyNoResultRow(Vdbe * p)1011 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
1012   int i;
1013   for(i=0; i<p->nOp; i++){
1014     assert( p->aOp[i].opcode!=OP_ResultRow );
1015   }
1016 }
1017 #endif
1018 
1019 /*
1020 ** Generate code (a single OP_Abortable opcode) that will
1021 ** verify that the VDBE program can safely call Abort in the current
1022 ** context.
1023 */
1024 #if defined(SQLITE_DEBUG)
sqlite3VdbeVerifyAbortable(Vdbe * p,int onError)1025 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
1026   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
1027 }
1028 #endif
1029 
1030 /*
1031 ** This function returns a pointer to the array of opcodes associated with
1032 ** the Vdbe passed as the first argument. It is the callers responsibility
1033 ** to arrange for the returned array to be eventually freed using the
1034 ** vdbeFreeOpArray() function.
1035 **
1036 ** Before returning, *pnOp is set to the number of entries in the returned
1037 ** array. Also, *pnMaxArg is set to the larger of its current value and
1038 ** the number of entries in the Vdbe.apArg[] array required to execute the
1039 ** returned program.
1040 */
sqlite3VdbeTakeOpArray(Vdbe * p,int * pnOp,int * pnMaxArg)1041 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
1042   VdbeOp *aOp = p->aOp;
1043   assert( aOp && !p->db->mallocFailed );
1044 
1045   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1046   assert( DbMaskAllZero(p->btreeMask) );
1047 
1048   resolveP2Values(p, pnMaxArg);
1049   *pnOp = p->nOp;
1050   p->aOp = 0;
1051   return aOp;
1052 }
1053 
1054 /*
1055 ** Add a whole list of operations to the operation stack.  Return a
1056 ** pointer to the first operation inserted.
1057 **
1058 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1059 ** so that the jump target is relative to the first operation inserted.
1060 */
sqlite3VdbeAddOpList(Vdbe * p,int nOp,VdbeOpList const * aOp,int iLineno)1061 VdbeOp *sqlite3VdbeAddOpList(
1062   Vdbe *p,                     /* Add opcodes to the prepared statement */
1063   int nOp,                     /* Number of opcodes to add */
1064   VdbeOpList const *aOp,       /* The opcodes to be added */
1065   int iLineno                  /* Source-file line number of first opcode */
1066 ){
1067   int i;
1068   VdbeOp *pOut, *pFirst;
1069   assert( nOp>0 );
1070   assert( p->eVdbeState==VDBE_INIT_STATE );
1071   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
1072     return 0;
1073   }
1074   pFirst = pOut = &p->aOp[p->nOp];
1075   for(i=0; i<nOp; i++, aOp++, pOut++){
1076     pOut->opcode = aOp->opcode;
1077     pOut->p1 = aOp->p1;
1078     pOut->p2 = aOp->p2;
1079     assert( aOp->p2>=0 );
1080     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
1081       pOut->p2 += p->nOp;
1082     }
1083     pOut->p3 = aOp->p3;
1084     pOut->p4type = P4_NOTUSED;
1085     pOut->p4.p = 0;
1086     pOut->p5 = 0;
1087 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1088     pOut->zComment = 0;
1089 #endif
1090 #ifdef SQLITE_VDBE_COVERAGE
1091     pOut->iSrcLine = iLineno+i;
1092 #else
1093     (void)iLineno;
1094 #endif
1095 #ifdef SQLITE_DEBUG
1096     if( p->db->flags & SQLITE_VdbeAddopTrace ){
1097       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1098     }
1099 #endif
1100   }
1101   p->nOp += nOp;
1102   return pFirst;
1103 }
1104 
1105 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1106 /*
1107 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1108 */
sqlite3VdbeScanStatus(Vdbe * p,int addrExplain,int addrLoop,int addrVisit,LogEst nEst,const char * zName)1109 void sqlite3VdbeScanStatus(
1110   Vdbe *p,                        /* VM to add scanstatus() to */
1111   int addrExplain,                /* Address of OP_Explain (or 0) */
1112   int addrLoop,                   /* Address of loop counter */
1113   int addrVisit,                  /* Address of rows visited counter */
1114   LogEst nEst,                    /* Estimated number of output rows */
1115   const char *zName               /* Name of table or index being scanned */
1116 ){
1117   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1118   ScanStatus *aNew;
1119   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1120   if( aNew ){
1121     ScanStatus *pNew = &aNew[p->nScan++];
1122     pNew->addrExplain = addrExplain;
1123     pNew->addrLoop = addrLoop;
1124     pNew->addrVisit = addrVisit;
1125     pNew->nEst = nEst;
1126     pNew->zName = sqlite3DbStrDup(p->db, zName);
1127     p->aScan = aNew;
1128   }
1129 }
1130 #endif
1131 
1132 
1133 /*
1134 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1135 ** for a specific instruction.
1136 */
sqlite3VdbeChangeOpcode(Vdbe * p,int addr,u8 iNewOpcode)1137 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1138   assert( addr>=0 );
1139   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1140 }
sqlite3VdbeChangeP1(Vdbe * p,int addr,int val)1141 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1142   assert( addr>=0 );
1143   sqlite3VdbeGetOp(p,addr)->p1 = val;
1144 }
sqlite3VdbeChangeP2(Vdbe * p,int addr,int val)1145 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1146   assert( addr>=0 || p->db->mallocFailed );
1147   sqlite3VdbeGetOp(p,addr)->p2 = val;
1148 }
sqlite3VdbeChangeP3(Vdbe * p,int addr,int val)1149 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1150   assert( addr>=0 );
1151   sqlite3VdbeGetOp(p,addr)->p3 = val;
1152 }
sqlite3VdbeChangeP5(Vdbe * p,u16 p5)1153 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1154   assert( p->nOp>0 || p->db->mallocFailed );
1155   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1156 }
1157 
1158 /*
1159 ** If the previous opcode is an OP_Column that delivers results
1160 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1161 ** opcode.
1162 */
sqlite3VdbeTypeofColumn(Vdbe * p,int iDest)1163 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){
1164   VdbeOp *pOp = sqlite3VdbeGetLastOp(p);
1165   if( pOp->p3==iDest && pOp->opcode==OP_Column ){
1166     pOp->p5 |= OPFLAG_TYPEOFARG;
1167   }
1168 }
1169 
1170 /*
1171 ** Change the P2 operand of instruction addr so that it points to
1172 ** the address of the next instruction to be coded.
1173 */
sqlite3VdbeJumpHere(Vdbe * p,int addr)1174 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1175   sqlite3VdbeChangeP2(p, addr, p->nOp);
1176 }
1177 
1178 /*
1179 ** Change the P2 operand of the jump instruction at addr so that
1180 ** the jump lands on the next opcode.  Or if the jump instruction was
1181 ** the previous opcode (and is thus a no-op) then simply back up
1182 ** the next instruction counter by one slot so that the jump is
1183 ** overwritten by the next inserted opcode.
1184 **
1185 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1186 ** strives to omit useless byte-code like this:
1187 **
1188 **        7   Once 0 8 0
1189 **        8   ...
1190 */
sqlite3VdbeJumpHereOrPopInst(Vdbe * p,int addr)1191 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1192   if( addr==p->nOp-1 ){
1193     assert( p->aOp[addr].opcode==OP_Once
1194          || p->aOp[addr].opcode==OP_If
1195          || p->aOp[addr].opcode==OP_FkIfZero );
1196     assert( p->aOp[addr].p4type==0 );
1197 #ifdef SQLITE_VDBE_COVERAGE
1198     sqlite3VdbeGetLastOp(p)->iSrcLine = 0;  /* Erase VdbeCoverage() macros */
1199 #endif
1200     p->nOp--;
1201   }else{
1202     sqlite3VdbeChangeP2(p, addr, p->nOp);
1203   }
1204 }
1205 
1206 
1207 /*
1208 ** If the input FuncDef structure is ephemeral, then free it.  If
1209 ** the FuncDef is not ephermal, then do nothing.
1210 */
freeEphemeralFunction(sqlite3 * db,FuncDef * pDef)1211 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1212   assert( db!=0 );
1213   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1214     sqlite3DbNNFreeNN(db, pDef);
1215   }
1216 }
1217 
1218 /*
1219 ** Delete a P4 value if necessary.
1220 */
freeP4Mem(sqlite3 * db,Mem * p)1221 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1222   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1223   sqlite3DbNNFreeNN(db, p);
1224 }
freeP4FuncCtx(sqlite3 * db,sqlite3_context * p)1225 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1226   assert( db!=0 );
1227   freeEphemeralFunction(db, p->pFunc);
1228   sqlite3DbNNFreeNN(db, p);
1229 }
freeP4(sqlite3 * db,int p4type,void * p4)1230 static void freeP4(sqlite3 *db, int p4type, void *p4){
1231   assert( db );
1232   switch( p4type ){
1233     case P4_FUNCCTX: {
1234       freeP4FuncCtx(db, (sqlite3_context*)p4);
1235       break;
1236     }
1237     case P4_REAL:
1238     case P4_INT64:
1239     case P4_DYNAMIC:
1240     case P4_INTARRAY: {
1241       if( p4 ) sqlite3DbNNFreeNN(db, p4);
1242       break;
1243     }
1244     case P4_KEYINFO: {
1245       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1246       break;
1247     }
1248 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1249     case P4_EXPR: {
1250       sqlite3ExprDelete(db, (Expr*)p4);
1251       break;
1252     }
1253 #endif
1254     case P4_FUNCDEF: {
1255       freeEphemeralFunction(db, (FuncDef*)p4);
1256       break;
1257     }
1258     case P4_MEM: {
1259       if( db->pnBytesFreed==0 ){
1260         sqlite3ValueFree((sqlite3_value*)p4);
1261       }else{
1262         freeP4Mem(db, (Mem*)p4);
1263       }
1264       break;
1265     }
1266     case P4_VTAB : {
1267       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1268       break;
1269     }
1270   }
1271 }
1272 
1273 /*
1274 ** Free the space allocated for aOp and any p4 values allocated for the
1275 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1276 ** nOp entries.
1277 */
vdbeFreeOpArray(sqlite3 * db,Op * aOp,int nOp)1278 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1279   assert( nOp>=0 );
1280   assert( db!=0 );
1281   if( aOp ){
1282     Op *pOp = &aOp[nOp-1];
1283     while(1){  /* Exit via break */
1284       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1285 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1286       sqlite3DbFree(db, pOp->zComment);
1287 #endif
1288       if( pOp==aOp ) break;
1289       pOp--;
1290     }
1291     sqlite3DbNNFreeNN(db, aOp);
1292   }
1293 }
1294 
1295 /*
1296 ** Link the SubProgram object passed as the second argument into the linked
1297 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1298 ** objects when the VM is no longer required.
1299 */
sqlite3VdbeLinkSubProgram(Vdbe * pVdbe,SubProgram * p)1300 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1301   p->pNext = pVdbe->pProgram;
1302   pVdbe->pProgram = p;
1303 }
1304 
1305 /*
1306 ** Return true if the given Vdbe has any SubPrograms.
1307 */
sqlite3VdbeHasSubProgram(Vdbe * pVdbe)1308 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1309   return pVdbe->pProgram!=0;
1310 }
1311 
1312 /*
1313 ** Change the opcode at addr into OP_Noop
1314 */
sqlite3VdbeChangeToNoop(Vdbe * p,int addr)1315 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1316   VdbeOp *pOp;
1317   if( p->db->mallocFailed ) return 0;
1318   assert( addr>=0 && addr<p->nOp );
1319   pOp = &p->aOp[addr];
1320   freeP4(p->db, pOp->p4type, pOp->p4.p);
1321   pOp->p4type = P4_NOTUSED;
1322   pOp->p4.z = 0;
1323   pOp->opcode = OP_Noop;
1324   return 1;
1325 }
1326 
1327 /*
1328 ** If the last opcode is "op" and it is not a jump destination,
1329 ** then remove it.  Return true if and only if an opcode was removed.
1330 */
sqlite3VdbeDeletePriorOpcode(Vdbe * p,u8 op)1331 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1332   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1333     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1334   }else{
1335     return 0;
1336   }
1337 }
1338 
1339 #ifdef SQLITE_DEBUG
1340 /*
1341 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1342 ** registers, except any identified by mask, are no longer in use.
1343 */
sqlite3VdbeReleaseRegisters(Parse * pParse,int iFirst,int N,u32 mask,int bUndefine)1344 void sqlite3VdbeReleaseRegisters(
1345   Parse *pParse,       /* Parsing context */
1346   int iFirst,          /* Index of first register to be released */
1347   int N,               /* Number of registers to release */
1348   u32 mask,            /* Mask of registers to NOT release */
1349   int bUndefine        /* If true, mark registers as undefined */
1350 ){
1351   if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
1352   assert( pParse->pVdbe );
1353   assert( iFirst>=1 );
1354   assert( iFirst+N-1<=pParse->nMem );
1355   if( N<=31 && mask!=0 ){
1356     while( N>0 && (mask&1)!=0 ){
1357       mask >>= 1;
1358       iFirst++;
1359       N--;
1360     }
1361     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1362       mask &= ~MASKBIT32(N-1);
1363       N--;
1364     }
1365   }
1366   if( N>0 ){
1367     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1368     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1369   }
1370 }
1371 #endif /* SQLITE_DEBUG */
1372 
1373 
1374 /*
1375 ** Change the value of the P4 operand for a specific instruction.
1376 ** This routine is useful when a large program is loaded from a
1377 ** static array using sqlite3VdbeAddOpList but we want to make a
1378 ** few minor changes to the program.
1379 **
1380 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1381 ** the string is made into memory obtained from sqlite3_malloc().
1382 ** A value of n==0 means copy bytes of zP4 up to and including the
1383 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1384 **
1385 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1386 ** to a string or structure that is guaranteed to exist for the lifetime of
1387 ** the Vdbe. In these cases we can just copy the pointer.
1388 **
1389 ** If addr<0 then change P4 on the most recently inserted instruction.
1390 */
vdbeChangeP4Full(Vdbe * p,Op * pOp,const char * zP4,int n)1391 static void SQLITE_NOINLINE vdbeChangeP4Full(
1392   Vdbe *p,
1393   Op *pOp,
1394   const char *zP4,
1395   int n
1396 ){
1397   if( pOp->p4type ){
1398     freeP4(p->db, pOp->p4type, pOp->p4.p);
1399     pOp->p4type = 0;
1400     pOp->p4.p = 0;
1401   }
1402   if( n<0 ){
1403     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1404   }else{
1405     if( n==0 ) n = sqlite3Strlen30(zP4);
1406     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1407     pOp->p4type = P4_DYNAMIC;
1408   }
1409 }
sqlite3VdbeChangeP4(Vdbe * p,int addr,const char * zP4,int n)1410 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1411   Op *pOp;
1412   sqlite3 *db;
1413   assert( p!=0 );
1414   db = p->db;
1415   assert( p->eVdbeState==VDBE_INIT_STATE );
1416   assert( p->aOp!=0 || db->mallocFailed );
1417   if( db->mallocFailed ){
1418     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1419     return;
1420   }
1421   assert( p->nOp>0 );
1422   assert( addr<p->nOp );
1423   if( addr<0 ){
1424     addr = p->nOp - 1;
1425   }
1426   pOp = &p->aOp[addr];
1427   if( n>=0 || pOp->p4type ){
1428     vdbeChangeP4Full(p, pOp, zP4, n);
1429     return;
1430   }
1431   if( n==P4_INT32 ){
1432     /* Note: this cast is safe, because the origin data point was an int
1433     ** that was cast to a (const char *). */
1434     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1435     pOp->p4type = P4_INT32;
1436   }else if( zP4!=0 ){
1437     assert( n<0 );
1438     pOp->p4.p = (void*)zP4;
1439     pOp->p4type = (signed char)n;
1440     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1441   }
1442 }
1443 
1444 /*
1445 ** Change the P4 operand of the most recently coded instruction
1446 ** to the value defined by the arguments.  This is a high-speed
1447 ** version of sqlite3VdbeChangeP4().
1448 **
1449 ** The P4 operand must not have been previously defined.  And the new
1450 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1451 ** those cases.
1452 */
sqlite3VdbeAppendP4(Vdbe * p,void * pP4,int n)1453 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1454   VdbeOp *pOp;
1455   assert( n!=P4_INT32 && n!=P4_VTAB );
1456   assert( n<=0 );
1457   if( p->db->mallocFailed ){
1458     freeP4(p->db, n, pP4);
1459   }else{
1460     assert( pP4!=0 );
1461     assert( p->nOp>0 );
1462     pOp = &p->aOp[p->nOp-1];
1463     assert( pOp->p4type==P4_NOTUSED );
1464     pOp->p4type = n;
1465     pOp->p4.p = pP4;
1466   }
1467 }
1468 
1469 /*
1470 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1471 ** index given.
1472 */
sqlite3VdbeSetP4KeyInfo(Parse * pParse,Index * pIdx)1473 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1474   Vdbe *v = pParse->pVdbe;
1475   KeyInfo *pKeyInfo;
1476   assert( v!=0 );
1477   assert( pIdx!=0 );
1478   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1479   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1480 }
1481 
1482 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1483 /*
1484 ** Change the comment on the most recently coded instruction.  Or
1485 ** insert a No-op and add the comment to that new instruction.  This
1486 ** makes the code easier to read during debugging.  None of this happens
1487 ** in a production build.
1488 */
vdbeVComment(Vdbe * p,const char * zFormat,va_list ap)1489 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1490   assert( p->nOp>0 || p->aOp==0 );
1491   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
1492   if( p->nOp ){
1493     assert( p->aOp );
1494     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1495     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1496   }
1497 }
sqlite3VdbeComment(Vdbe * p,const char * zFormat,...)1498 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1499   va_list ap;
1500   if( p ){
1501     va_start(ap, zFormat);
1502     vdbeVComment(p, zFormat, ap);
1503     va_end(ap);
1504   }
1505 }
sqlite3VdbeNoopComment(Vdbe * p,const char * zFormat,...)1506 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1507   va_list ap;
1508   if( p ){
1509     sqlite3VdbeAddOp0(p, OP_Noop);
1510     va_start(ap, zFormat);
1511     vdbeVComment(p, zFormat, ap);
1512     va_end(ap);
1513   }
1514 }
1515 #endif  /* NDEBUG */
1516 
1517 #ifdef SQLITE_VDBE_COVERAGE
1518 /*
1519 ** Set the value if the iSrcLine field for the previously coded instruction.
1520 */
sqlite3VdbeSetLineNumber(Vdbe * v,int iLine)1521 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1522   sqlite3VdbeGetLastOp(v)->iSrcLine = iLine;
1523 }
1524 #endif /* SQLITE_VDBE_COVERAGE */
1525 
1526 /*
1527 ** Return the opcode for a given address.  The address must be non-negative.
1528 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1529 **
1530 ** If a memory allocation error has occurred prior to the calling of this
1531 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1532 ** is readable but not writable, though it is cast to a writable value.
1533 ** The return of a dummy opcode allows the call to continue functioning
1534 ** after an OOM fault without having to check to see if the return from
1535 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1536 ** dummy will never be written to.  This is verified by code inspection and
1537 ** by running with Valgrind.
1538 */
sqlite3VdbeGetOp(Vdbe * p,int addr)1539 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1540   /* C89 specifies that the constant "dummy" will be initialized to all
1541   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1542   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1543   assert( p->eVdbeState==VDBE_INIT_STATE );
1544   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1545   if( p->db->mallocFailed ){
1546     return (VdbeOp*)&dummy;
1547   }else{
1548     return &p->aOp[addr];
1549   }
1550 }
1551 
1552 /* Return the most recently added opcode
1553 */
sqlite3VdbeGetLastOp(Vdbe * p)1554 VdbeOp * sqlite3VdbeGetLastOp(Vdbe *p){
1555   return sqlite3VdbeGetOp(p, p->nOp - 1);
1556 }
1557 
1558 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1559 /*
1560 ** Return an integer value for one of the parameters to the opcode pOp
1561 ** determined by character c.
1562 */
translateP(char c,const Op * pOp)1563 static int translateP(char c, const Op *pOp){
1564   if( c=='1' ) return pOp->p1;
1565   if( c=='2' ) return pOp->p2;
1566   if( c=='3' ) return pOp->p3;
1567   if( c=='4' ) return pOp->p4.i;
1568   return pOp->p5;
1569 }
1570 
1571 /*
1572 ** Compute a string for the "comment" field of a VDBE opcode listing.
1573 **
1574 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1575 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1576 ** absence of other comments, this synopsis becomes the comment on the opcode.
1577 ** Some translation occurs:
1578 **
1579 **       "PX"      ->  "r[X]"
1580 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1581 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1582 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1583 */
sqlite3VdbeDisplayComment(sqlite3 * db,const Op * pOp,const char * zP4)1584 char *sqlite3VdbeDisplayComment(
1585   sqlite3 *db,       /* Optional - Oom error reporting only */
1586   const Op *pOp,     /* The opcode to be commented */
1587   const char *zP4    /* Previously obtained value for P4 */
1588 ){
1589   const char *zOpName;
1590   const char *zSynopsis;
1591   int nOpName;
1592   int ii;
1593   char zAlt[50];
1594   StrAccum x;
1595 
1596   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1597   zOpName = sqlite3OpcodeName(pOp->opcode);
1598   nOpName = sqlite3Strlen30(zOpName);
1599   if( zOpName[nOpName+1] ){
1600     int seenCom = 0;
1601     char c;
1602     zSynopsis = zOpName + nOpName + 1;
1603     if( strncmp(zSynopsis,"IF ",3)==0 ){
1604       sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1605       zSynopsis = zAlt;
1606     }
1607     for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1608       if( c=='P' ){
1609         c = zSynopsis[++ii];
1610         if( c=='4' ){
1611           sqlite3_str_appendall(&x, zP4);
1612         }else if( c=='X' ){
1613           if( pOp->zComment && pOp->zComment[0] ){
1614             sqlite3_str_appendall(&x, pOp->zComment);
1615             seenCom = 1;
1616             break;
1617           }
1618         }else{
1619           int v1 = translateP(c, pOp);
1620           int v2;
1621           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1622             ii += 3;
1623             v2 = translateP(zSynopsis[ii], pOp);
1624             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1625               ii += 2;
1626               v2++;
1627             }
1628             if( v2<2 ){
1629               sqlite3_str_appendf(&x, "%d", v1);
1630             }else{
1631               sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1632             }
1633           }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1634             sqlite3_context *pCtx = pOp->p4.pCtx;
1635             if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1636               sqlite3_str_appendf(&x, "%d", v1);
1637             }else if( pCtx->argc>1 ){
1638               sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1639             }else if( x.accError==0 ){
1640               assert( x.nChar>2 );
1641               x.nChar -= 2;
1642               ii++;
1643             }
1644             ii += 3;
1645           }else{
1646             sqlite3_str_appendf(&x, "%d", v1);
1647             if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1648               ii += 4;
1649             }
1650           }
1651         }
1652       }else{
1653         sqlite3_str_appendchar(&x, 1, c);
1654       }
1655     }
1656     if( !seenCom && pOp->zComment ){
1657       sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1658     }
1659   }else if( pOp->zComment ){
1660     sqlite3_str_appendall(&x, pOp->zComment);
1661   }
1662   if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1663     sqlite3OomFault(db);
1664   }
1665   return sqlite3StrAccumFinish(&x);
1666 }
1667 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1668 
1669 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1670 /*
1671 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1672 ** that can be displayed in the P4 column of EXPLAIN output.
1673 */
displayP4Expr(StrAccum * p,Expr * pExpr)1674 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1675   const char *zOp = 0;
1676   switch( pExpr->op ){
1677     case TK_STRING:
1678       assert( !ExprHasProperty(pExpr, EP_IntValue) );
1679       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1680       break;
1681     case TK_INTEGER:
1682       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1683       break;
1684     case TK_NULL:
1685       sqlite3_str_appendf(p, "NULL");
1686       break;
1687     case TK_REGISTER: {
1688       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1689       break;
1690     }
1691     case TK_COLUMN: {
1692       if( pExpr->iColumn<0 ){
1693         sqlite3_str_appendf(p, "rowid");
1694       }else{
1695         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1696       }
1697       break;
1698     }
1699     case TK_LT:      zOp = "LT";      break;
1700     case TK_LE:      zOp = "LE";      break;
1701     case TK_GT:      zOp = "GT";      break;
1702     case TK_GE:      zOp = "GE";      break;
1703     case TK_NE:      zOp = "NE";      break;
1704     case TK_EQ:      zOp = "EQ";      break;
1705     case TK_IS:      zOp = "IS";      break;
1706     case TK_ISNOT:   zOp = "ISNOT";   break;
1707     case TK_AND:     zOp = "AND";     break;
1708     case TK_OR:      zOp = "OR";      break;
1709     case TK_PLUS:    zOp = "ADD";     break;
1710     case TK_STAR:    zOp = "MUL";     break;
1711     case TK_MINUS:   zOp = "SUB";     break;
1712     case TK_REM:     zOp = "REM";     break;
1713     case TK_BITAND:  zOp = "BITAND";  break;
1714     case TK_BITOR:   zOp = "BITOR";   break;
1715     case TK_SLASH:   zOp = "DIV";     break;
1716     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1717     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1718     case TK_CONCAT:  zOp = "CONCAT";  break;
1719     case TK_UMINUS:  zOp = "MINUS";   break;
1720     case TK_UPLUS:   zOp = "PLUS";    break;
1721     case TK_BITNOT:  zOp = "BITNOT";  break;
1722     case TK_NOT:     zOp = "NOT";     break;
1723     case TK_ISNULL:  zOp = "ISNULL";  break;
1724     case TK_NOTNULL: zOp = "NOTNULL"; break;
1725 
1726     default:
1727       sqlite3_str_appendf(p, "%s", "expr");
1728       break;
1729   }
1730 
1731   if( zOp ){
1732     sqlite3_str_appendf(p, "%s(", zOp);
1733     displayP4Expr(p, pExpr->pLeft);
1734     if( pExpr->pRight ){
1735       sqlite3_str_append(p, ",", 1);
1736       displayP4Expr(p, pExpr->pRight);
1737     }
1738     sqlite3_str_append(p, ")", 1);
1739   }
1740 }
1741 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1742 
1743 
1744 #if VDBE_DISPLAY_P4
1745 /*
1746 ** Compute a string that describes the P4 parameter for an opcode.
1747 ** Use zTemp for any required temporary buffer space.
1748 */
sqlite3VdbeDisplayP4(sqlite3 * db,Op * pOp)1749 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1750   char *zP4 = 0;
1751   StrAccum x;
1752 
1753   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1754   switch( pOp->p4type ){
1755     case P4_KEYINFO: {
1756       int j;
1757       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1758       assert( pKeyInfo->aSortFlags!=0 );
1759       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1760       for(j=0; j<pKeyInfo->nKeyField; j++){
1761         CollSeq *pColl = pKeyInfo->aColl[j];
1762         const char *zColl = pColl ? pColl->zName : "";
1763         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1764         sqlite3_str_appendf(&x, ",%s%s%s",
1765                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1766                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1767                zColl);
1768       }
1769       sqlite3_str_append(&x, ")", 1);
1770       break;
1771     }
1772 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1773     case P4_EXPR: {
1774       displayP4Expr(&x, pOp->p4.pExpr);
1775       break;
1776     }
1777 #endif
1778     case P4_COLLSEQ: {
1779       static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1780       CollSeq *pColl = pOp->p4.pColl;
1781       assert( pColl->enc<4 );
1782       sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1783                           encnames[pColl->enc]);
1784       break;
1785     }
1786     case P4_FUNCDEF: {
1787       FuncDef *pDef = pOp->p4.pFunc;
1788       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1789       break;
1790     }
1791     case P4_FUNCCTX: {
1792       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1793       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1794       break;
1795     }
1796     case P4_INT64: {
1797       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1798       break;
1799     }
1800     case P4_INT32: {
1801       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1802       break;
1803     }
1804     case P4_REAL: {
1805       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1806       break;
1807     }
1808     case P4_MEM: {
1809       Mem *pMem = pOp->p4.pMem;
1810       if( pMem->flags & MEM_Str ){
1811         zP4 = pMem->z;
1812       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1813         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1814       }else if( pMem->flags & MEM_Real ){
1815         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1816       }else if( pMem->flags & MEM_Null ){
1817         zP4 = "NULL";
1818       }else{
1819         assert( pMem->flags & MEM_Blob );
1820         zP4 = "(blob)";
1821       }
1822       break;
1823     }
1824 #ifndef SQLITE_OMIT_VIRTUALTABLE
1825     case P4_VTAB: {
1826       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1827       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1828       break;
1829     }
1830 #endif
1831     case P4_INTARRAY: {
1832       u32 i;
1833       u32 *ai = pOp->p4.ai;
1834       u32 n = ai[0];   /* The first element of an INTARRAY is always the
1835                        ** count of the number of elements to follow */
1836       for(i=1; i<=n; i++){
1837         sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1838       }
1839       sqlite3_str_append(&x, "]", 1);
1840       break;
1841     }
1842     case P4_SUBPROGRAM: {
1843       zP4 = "program";
1844       break;
1845     }
1846     case P4_TABLE: {
1847       zP4 = pOp->p4.pTab->zName;
1848       break;
1849     }
1850     default: {
1851       zP4 = pOp->p4.z;
1852     }
1853   }
1854   if( zP4 ) sqlite3_str_appendall(&x, zP4);
1855   if( (x.accError & SQLITE_NOMEM)!=0 ){
1856     sqlite3OomFault(db);
1857   }
1858   return sqlite3StrAccumFinish(&x);
1859 }
1860 #endif /* VDBE_DISPLAY_P4 */
1861 
1862 /*
1863 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1864 **
1865 ** The prepared statements need to know in advance the complete set of
1866 ** attached databases that will be use.  A mask of these databases
1867 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1868 ** p->btreeMask of databases that will require a lock.
1869 */
sqlite3VdbeUsesBtree(Vdbe * p,int i)1870 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1871   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1872   assert( i<(int)sizeof(p->btreeMask)*8 );
1873   DbMaskSet(p->btreeMask, i);
1874   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1875     DbMaskSet(p->lockMask, i);
1876   }
1877 }
1878 
1879 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1880 /*
1881 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1882 ** this routine obtains the mutex associated with each BtShared structure
1883 ** that may be accessed by the VM passed as an argument. In doing so it also
1884 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1885 ** that the correct busy-handler callback is invoked if required.
1886 **
1887 ** If SQLite is not threadsafe but does support shared-cache mode, then
1888 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1889 ** of all of BtShared structures accessible via the database handle
1890 ** associated with the VM.
1891 **
1892 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1893 ** function is a no-op.
1894 **
1895 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1896 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1897 ** corresponding to btrees that use shared cache.  Then the runtime of
1898 ** this routine is N*N.  But as N is rarely more than 1, this should not
1899 ** be a problem.
1900 */
sqlite3VdbeEnter(Vdbe * p)1901 void sqlite3VdbeEnter(Vdbe *p){
1902   int i;
1903   sqlite3 *db;
1904   Db *aDb;
1905   int nDb;
1906   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1907   db = p->db;
1908   aDb = db->aDb;
1909   nDb = db->nDb;
1910   for(i=0; i<nDb; i++){
1911     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1912       sqlite3BtreeEnter(aDb[i].pBt);
1913     }
1914   }
1915 }
1916 #endif
1917 
1918 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1919 /*
1920 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1921 */
vdbeLeave(Vdbe * p)1922 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1923   int i;
1924   sqlite3 *db;
1925   Db *aDb;
1926   int nDb;
1927   db = p->db;
1928   aDb = db->aDb;
1929   nDb = db->nDb;
1930   for(i=0; i<nDb; i++){
1931     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1932       sqlite3BtreeLeave(aDb[i].pBt);
1933     }
1934   }
1935 }
sqlite3VdbeLeave(Vdbe * p)1936 void sqlite3VdbeLeave(Vdbe *p){
1937   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1938   vdbeLeave(p);
1939 }
1940 #endif
1941 
1942 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1943 /*
1944 ** Print a single opcode.  This routine is used for debugging only.
1945 */
sqlite3VdbePrintOp(FILE * pOut,int pc,VdbeOp * pOp)1946 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1947   char *zP4;
1948   char *zCom;
1949   sqlite3 dummyDb;
1950   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1951   if( pOut==0 ) pOut = stdout;
1952   sqlite3BeginBenignMalloc();
1953   dummyDb.mallocFailed = 1;
1954   zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1955 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1956   zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1957 #else
1958   zCom = 0;
1959 #endif
1960   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1961   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1962   ** information from the vdbe.c source text */
1963   fprintf(pOut, zFormat1, pc,
1964       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1965       zP4 ? zP4 : "", pOp->p5,
1966       zCom ? zCom : ""
1967   );
1968   fflush(pOut);
1969   sqlite3_free(zP4);
1970   sqlite3_free(zCom);
1971   sqlite3EndBenignMalloc();
1972 }
1973 #endif
1974 
1975 /*
1976 ** Initialize an array of N Mem element.
1977 **
1978 ** This is a high-runner, so only those fields that really do need to
1979 ** be initialized are set.  The Mem structure is organized so that
1980 ** the fields that get initialized are nearby and hopefully on the same
1981 ** cache line.
1982 **
1983 **    Mem.flags = flags
1984 **    Mem.db = db
1985 **    Mem.szMalloc = 0
1986 **
1987 ** All other fields of Mem can safely remain uninitialized for now.  They
1988 ** will be initialized before use.
1989 */
initMemArray(Mem * p,int N,sqlite3 * db,u16 flags)1990 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1991   if( N>0 ){
1992     do{
1993       p->flags = flags;
1994       p->db = db;
1995       p->szMalloc = 0;
1996 #ifdef SQLITE_DEBUG
1997       p->pScopyFrom = 0;
1998 #endif
1999       p++;
2000     }while( (--N)>0 );
2001   }
2002 }
2003 
2004 /*
2005 ** Release auxiliary memory held in an array of N Mem elements.
2006 **
2007 ** After this routine returns, all Mem elements in the array will still
2008 ** be valid.  Those Mem elements that were not holding auxiliary resources
2009 ** will be unchanged.  Mem elements which had something freed will be
2010 ** set to MEM_Undefined.
2011 */
releaseMemArray(Mem * p,int N)2012 static void releaseMemArray(Mem *p, int N){
2013   if( p && N ){
2014     Mem *pEnd = &p[N];
2015     sqlite3 *db = p->db;
2016     if( db->pnBytesFreed ){
2017       do{
2018         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
2019       }while( (++p)<pEnd );
2020       return;
2021     }
2022     do{
2023       assert( (&p[1])==pEnd || p[0].db==p[1].db );
2024       assert( sqlite3VdbeCheckMemInvariants(p) );
2025 
2026       /* This block is really an inlined version of sqlite3VdbeMemRelease()
2027       ** that takes advantage of the fact that the memory cell value is
2028       ** being set to NULL after releasing any dynamic resources.
2029       **
2030       ** The justification for duplicating code is that according to
2031       ** callgrind, this causes a certain test case to hit the CPU 4.7
2032       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2033       ** sqlite3MemRelease() were called from here. With -O2, this jumps
2034       ** to 6.6 percent. The test case is inserting 1000 rows into a table
2035       ** with no indexes using a single prepared INSERT statement, bind()
2036       ** and reset(). Inserts are grouped into a transaction.
2037       */
2038       testcase( p->flags & MEM_Agg );
2039       testcase( p->flags & MEM_Dyn );
2040       if( p->flags&(MEM_Agg|MEM_Dyn) ){
2041         testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
2042         sqlite3VdbeMemRelease(p);
2043         p->flags = MEM_Undefined;
2044       }else if( p->szMalloc ){
2045         sqlite3DbNNFreeNN(db, p->zMalloc);
2046         p->szMalloc = 0;
2047         p->flags = MEM_Undefined;
2048       }
2049 #ifdef SQLITE_DEBUG
2050       else{
2051         p->flags = MEM_Undefined;
2052       }
2053 #endif
2054     }while( (++p)<pEnd );
2055   }
2056 }
2057 
2058 #ifdef SQLITE_DEBUG
2059 /*
2060 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
2061 ** and false if something is wrong.
2062 **
2063 ** This routine is intended for use inside of assert() statements only.
2064 */
sqlite3VdbeFrameIsValid(VdbeFrame * pFrame)2065 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
2066   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
2067   return 1;
2068 }
2069 #endif
2070 
2071 
2072 /*
2073 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2074 ** that deletes the Frame object that is attached to it as a blob.
2075 **
2076 ** This routine does not delete the Frame right away.  It merely adds the
2077 ** frame to a list of frames to be deleted when the Vdbe halts.
2078 */
sqlite3VdbeFrameMemDel(void * pArg)2079 void sqlite3VdbeFrameMemDel(void *pArg){
2080   VdbeFrame *pFrame = (VdbeFrame*)pArg;
2081   assert( sqlite3VdbeFrameIsValid(pFrame) );
2082   pFrame->pParent = pFrame->v->pDelFrame;
2083   pFrame->v->pDelFrame = pFrame;
2084 }
2085 
2086 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2087 /*
2088 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2089 ** QUERY PLAN output.
2090 **
2091 ** Return SQLITE_ROW on success.  Return SQLITE_DONE if there are no
2092 ** more opcodes to be displayed.
2093 */
sqlite3VdbeNextOpcode(Vdbe * p,Mem * pSub,int eMode,int * piPc,int * piAddr,Op ** paOp)2094 int sqlite3VdbeNextOpcode(
2095   Vdbe *p,         /* The statement being explained */
2096   Mem *pSub,       /* Storage for keeping track of subprogram nesting */
2097   int eMode,       /* 0: normal.  1: EQP.  2:  TablesUsed */
2098   int *piPc,       /* IN/OUT: Current rowid.  Overwritten with next rowid */
2099   int *piAddr,     /* OUT: Write index into (*paOp)[] here */
2100   Op **paOp        /* OUT: Write the opcode array here */
2101 ){
2102   int nRow;                            /* Stop when row count reaches this */
2103   int nSub = 0;                        /* Number of sub-vdbes seen so far */
2104   SubProgram **apSub = 0;              /* Array of sub-vdbes */
2105   int i;                               /* Next instruction address */
2106   int rc = SQLITE_OK;                  /* Result code */
2107   Op *aOp = 0;                         /* Opcode array */
2108   int iPc;                             /* Rowid.  Copy of value in *piPc */
2109 
2110   /* When the number of output rows reaches nRow, that means the
2111   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2112   ** nRow is the sum of the number of rows in the main program, plus
2113   ** the sum of the number of rows in all trigger subprograms encountered
2114   ** so far.  The nRow value will increase as new trigger subprograms are
2115   ** encountered, but p->pc will eventually catch up to nRow.
2116   */
2117   nRow = p->nOp;
2118   if( pSub!=0 ){
2119     if( pSub->flags&MEM_Blob ){
2120       /* pSub is initiallly NULL.  It is initialized to a BLOB by
2121       ** the P4_SUBPROGRAM processing logic below */
2122       nSub = pSub->n/sizeof(Vdbe*);
2123       apSub = (SubProgram **)pSub->z;
2124     }
2125     for(i=0; i<nSub; i++){
2126       nRow += apSub[i]->nOp;
2127     }
2128   }
2129   iPc = *piPc;
2130   while(1){  /* Loop exits via break */
2131     i = iPc++;
2132     if( i>=nRow ){
2133       p->rc = SQLITE_OK;
2134       rc = SQLITE_DONE;
2135       break;
2136     }
2137     if( i<p->nOp ){
2138       /* The rowid is small enough that we are still in the
2139       ** main program. */
2140       aOp = p->aOp;
2141     }else{
2142       /* We are currently listing subprograms.  Figure out which one and
2143       ** pick up the appropriate opcode. */
2144       int j;
2145       i -= p->nOp;
2146       assert( apSub!=0 );
2147       assert( nSub>0 );
2148       for(j=0; i>=apSub[j]->nOp; j++){
2149         i -= apSub[j]->nOp;
2150         assert( i<apSub[j]->nOp || j+1<nSub );
2151       }
2152       aOp = apSub[j]->aOp;
2153     }
2154 
2155     /* When an OP_Program opcode is encounter (the only opcode that has
2156     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2157     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2158     ** has not already been seen.
2159     */
2160     if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2161       int nByte = (nSub+1)*sizeof(SubProgram*);
2162       int j;
2163       for(j=0; j<nSub; j++){
2164         if( apSub[j]==aOp[i].p4.pProgram ) break;
2165       }
2166       if( j==nSub ){
2167         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2168         if( p->rc!=SQLITE_OK ){
2169           rc = SQLITE_ERROR;
2170           break;
2171         }
2172         apSub = (SubProgram **)pSub->z;
2173         apSub[nSub++] = aOp[i].p4.pProgram;
2174         MemSetTypeFlag(pSub, MEM_Blob);
2175         pSub->n = nSub*sizeof(SubProgram*);
2176         nRow += aOp[i].p4.pProgram->nOp;
2177       }
2178     }
2179     if( eMode==0 ) break;
2180 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2181     if( eMode==2 ){
2182       Op *pOp = aOp + i;
2183       if( pOp->opcode==OP_OpenRead ) break;
2184       if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2185       if( pOp->opcode==OP_ReopenIdx ) break;
2186     }else
2187 #endif
2188     {
2189       assert( eMode==1 );
2190       if( aOp[i].opcode==OP_Explain ) break;
2191       if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2192     }
2193   }
2194   *piPc = iPc;
2195   *piAddr = i;
2196   *paOp = aOp;
2197   return rc;
2198 }
2199 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2200 
2201 
2202 /*
2203 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2204 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2205 */
sqlite3VdbeFrameDelete(VdbeFrame * p)2206 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2207   int i;
2208   Mem *aMem = VdbeFrameMem(p);
2209   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2210   assert( sqlite3VdbeFrameIsValid(p) );
2211   for(i=0; i<p->nChildCsr; i++){
2212     if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
2213   }
2214   releaseMemArray(aMem, p->nChildMem);
2215   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2216   sqlite3DbFree(p->v->db, p);
2217 }
2218 
2219 #ifndef SQLITE_OMIT_EXPLAIN
2220 /*
2221 ** Give a listing of the program in the virtual machine.
2222 **
2223 ** The interface is the same as sqlite3VdbeExec().  But instead of
2224 ** running the code, it invokes the callback once for each instruction.
2225 ** This feature is used to implement "EXPLAIN".
2226 **
2227 ** When p->explain==1, each instruction is listed.  When
2228 ** p->explain==2, only OP_Explain instructions are listed and these
2229 ** are shown in a different format.  p->explain==2 is used to implement
2230 ** EXPLAIN QUERY PLAN.
2231 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
2232 ** are also shown, so that the boundaries between the main program and
2233 ** each trigger are clear.
2234 **
2235 ** When p->explain==1, first the main program is listed, then each of
2236 ** the trigger subprograms are listed one by one.
2237 */
sqlite3VdbeList(Vdbe * p)2238 int sqlite3VdbeList(
2239   Vdbe *p                   /* The VDBE */
2240 ){
2241   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
2242   sqlite3 *db = p->db;                 /* The database connection */
2243   int i;                               /* Loop counter */
2244   int rc = SQLITE_OK;                  /* Return code */
2245   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
2246   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2247   Op *aOp;                             /* Array of opcodes */
2248   Op *pOp;                             /* Current opcode */
2249 
2250   assert( p->explain );
2251   assert( p->eVdbeState==VDBE_RUN_STATE );
2252   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2253 
2254   /* Even though this opcode does not use dynamic strings for
2255   ** the result, result columns may become dynamic if the user calls
2256   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2257   */
2258   releaseMemArray(pMem, 8);
2259   p->pResultSet = 0;
2260 
2261   if( p->rc==SQLITE_NOMEM ){
2262     /* This happens if a malloc() inside a call to sqlite3_column_text() or
2263     ** sqlite3_column_text16() failed.  */
2264     sqlite3OomFault(db);
2265     return SQLITE_ERROR;
2266   }
2267 
2268   if( bListSubprogs ){
2269     /* The first 8 memory cells are used for the result set.  So we will
2270     ** commandeer the 9th cell to use as storage for an array of pointers
2271     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
2272     ** cells.  */
2273     assert( p->nMem>9 );
2274     pSub = &p->aMem[9];
2275   }else{
2276     pSub = 0;
2277   }
2278 
2279   /* Figure out which opcode is next to display */
2280   rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2281 
2282   if( rc==SQLITE_OK ){
2283     pOp = aOp + i;
2284     if( AtomicLoad(&db->u1.isInterrupted) ){
2285       p->rc = SQLITE_INTERRUPT;
2286       rc = SQLITE_ERROR;
2287       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2288     }else{
2289       char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2290       if( p->explain==2 ){
2291         sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2292         sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2293         sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2294         sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2295         p->nResColumn = 4;
2296       }else{
2297         sqlite3VdbeMemSetInt64(pMem+0, i);
2298         sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2299                              -1, SQLITE_UTF8, SQLITE_STATIC);
2300         sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2301         sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2302         sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2303         /* pMem+5 for p4 is done last */
2304         sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2305 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2306         {
2307           char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2308           sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2309         }
2310 #else
2311         sqlite3VdbeMemSetNull(pMem+7);
2312 #endif
2313         sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2314         p->nResColumn = 8;
2315       }
2316       p->pResultSet = pMem;
2317       if( db->mallocFailed ){
2318         p->rc = SQLITE_NOMEM;
2319         rc = SQLITE_ERROR;
2320       }else{
2321         p->rc = SQLITE_OK;
2322         rc = SQLITE_ROW;
2323       }
2324     }
2325   }
2326   return rc;
2327 }
2328 #endif /* SQLITE_OMIT_EXPLAIN */
2329 
2330 #ifdef SQLITE_DEBUG
2331 /*
2332 ** Print the SQL that was used to generate a VDBE program.
2333 */
sqlite3VdbePrintSql(Vdbe * p)2334 void sqlite3VdbePrintSql(Vdbe *p){
2335   const char *z = 0;
2336   if( p->zSql ){
2337     z = p->zSql;
2338   }else if( p->nOp>=1 ){
2339     const VdbeOp *pOp = &p->aOp[0];
2340     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2341       z = pOp->p4.z;
2342       while( sqlite3Isspace(*z) ) z++;
2343     }
2344   }
2345   if( z ) printf("SQL: [%s]\n", z);
2346 }
2347 #endif
2348 
2349 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2350 /*
2351 ** Print an IOTRACE message showing SQL content.
2352 */
sqlite3VdbeIOTraceSql(Vdbe * p)2353 void sqlite3VdbeIOTraceSql(Vdbe *p){
2354   int nOp = p->nOp;
2355   VdbeOp *pOp;
2356   if( sqlite3IoTrace==0 ) return;
2357   if( nOp<1 ) return;
2358   pOp = &p->aOp[0];
2359   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2360     int i, j;
2361     char z[1000];
2362     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2363     for(i=0; sqlite3Isspace(z[i]); i++){}
2364     for(j=0; z[i]; i++){
2365       if( sqlite3Isspace(z[i]) ){
2366         if( z[i-1]!=' ' ){
2367           z[j++] = ' ';
2368         }
2369       }else{
2370         z[j++] = z[i];
2371       }
2372     }
2373     z[j] = 0;
2374     sqlite3IoTrace("SQL %s\n", z);
2375   }
2376 }
2377 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2378 
2379 /* An instance of this object describes bulk memory available for use
2380 ** by subcomponents of a prepared statement.  Space is allocated out
2381 ** of a ReusableSpace object by the allocSpace() routine below.
2382 */
2383 struct ReusableSpace {
2384   u8 *pSpace;            /* Available memory */
2385   sqlite3_int64 nFree;   /* Bytes of available memory */
2386   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2387 };
2388 
2389 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2390 ** from the ReusableSpace object.  Return a pointer to the allocated
2391 ** memory on success.  If insufficient memory is available in the
2392 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2393 ** value by the amount needed and return NULL.
2394 **
2395 ** If pBuf is not initially NULL, that means that the memory has already
2396 ** been allocated by a prior call to this routine, so just return a copy
2397 ** of pBuf and leave ReusableSpace unchanged.
2398 **
2399 ** This allocator is employed to repurpose unused slots at the end of the
2400 ** opcode array of prepared state for other memory needs of the prepared
2401 ** statement.
2402 */
allocSpace(struct ReusableSpace * p,void * pBuf,sqlite3_int64 nByte)2403 static void *allocSpace(
2404   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2405   void *pBuf,               /* Pointer to a prior allocation */
2406   sqlite3_int64 nByte       /* Bytes of memory needed. */
2407 ){
2408   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2409   if( pBuf==0 ){
2410     nByte = ROUND8P(nByte);
2411     if( nByte <= p->nFree ){
2412       p->nFree -= nByte;
2413       pBuf = &p->pSpace[p->nFree];
2414     }else{
2415       p->nNeeded += nByte;
2416     }
2417   }
2418   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2419   return pBuf;
2420 }
2421 
2422 /*
2423 ** Rewind the VDBE back to the beginning in preparation for
2424 ** running it.
2425 */
sqlite3VdbeRewind(Vdbe * p)2426 void sqlite3VdbeRewind(Vdbe *p){
2427 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2428   int i;
2429 #endif
2430   assert( p!=0 );
2431   assert( p->eVdbeState==VDBE_INIT_STATE
2432        || p->eVdbeState==VDBE_READY_STATE
2433        || p->eVdbeState==VDBE_HALT_STATE );
2434 
2435   /* There should be at least one opcode.
2436   */
2437   assert( p->nOp>0 );
2438 
2439   p->eVdbeState = VDBE_READY_STATE;
2440 
2441 #ifdef SQLITE_DEBUG
2442   for(i=0; i<p->nMem; i++){
2443     assert( p->aMem[i].db==p->db );
2444   }
2445 #endif
2446   p->pc = -1;
2447   p->rc = SQLITE_OK;
2448   p->errorAction = OE_Abort;
2449   p->nChange = 0;
2450   p->cacheCtr = 1;
2451   p->minWriteFileFormat = 255;
2452   p->iStatement = 0;
2453   p->nFkConstraint = 0;
2454 #ifdef VDBE_PROFILE
2455   for(i=0; i<p->nOp; i++){
2456     p->aOp[i].cnt = 0;
2457     p->aOp[i].cycles = 0;
2458   }
2459 #endif
2460 }
2461 
2462 /*
2463 ** Prepare a virtual machine for execution for the first time after
2464 ** creating the virtual machine.  This involves things such
2465 ** as allocating registers and initializing the program counter.
2466 ** After the VDBE has be prepped, it can be executed by one or more
2467 ** calls to sqlite3VdbeExec().
2468 **
2469 ** This function may be called exactly once on each virtual machine.
2470 ** After this routine is called the VM has been "packaged" and is ready
2471 ** to run.  After this routine is called, further calls to
2472 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2473 ** the Vdbe from the Parse object that helped generate it so that the
2474 ** the Vdbe becomes an independent entity and the Parse object can be
2475 ** destroyed.
2476 **
2477 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2478 ** to its initial state after it has been run.
2479 */
sqlite3VdbeMakeReady(Vdbe * p,Parse * pParse)2480 void sqlite3VdbeMakeReady(
2481   Vdbe *p,                       /* The VDBE */
2482   Parse *pParse                  /* Parsing context */
2483 ){
2484   sqlite3 *db;                   /* The database connection */
2485   int nVar;                      /* Number of parameters */
2486   int nMem;                      /* Number of VM memory registers */
2487   int nCursor;                   /* Number of cursors required */
2488   int nArg;                      /* Number of arguments in subprograms */
2489   int n;                         /* Loop counter */
2490   struct ReusableSpace x;        /* Reusable bulk memory */
2491 
2492   assert( p!=0 );
2493   assert( p->nOp>0 );
2494   assert( pParse!=0 );
2495   assert( p->eVdbeState==VDBE_INIT_STATE );
2496   assert( pParse==p->pParse );
2497   p->pVList = pParse->pVList;
2498   pParse->pVList =  0;
2499   db = p->db;
2500   assert( db->mallocFailed==0 );
2501   nVar = pParse->nVar;
2502   nMem = pParse->nMem;
2503   nCursor = pParse->nTab;
2504   nArg = pParse->nMaxArg;
2505 
2506   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2507   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2508   ** space at the end of aMem[] for cursors 1 and greater.
2509   ** See also: allocateCursor().
2510   */
2511   nMem += nCursor;
2512   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2513 
2514   /* Figure out how much reusable memory is available at the end of the
2515   ** opcode array.  This extra memory will be reallocated for other elements
2516   ** of the prepared statement.
2517   */
2518   n = ROUND8P(sizeof(Op)*p->nOp);             /* Bytes of opcode memory used */
2519   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2520   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2521   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2522   assert( x.nFree>=0 );
2523   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2524 
2525   resolveP2Values(p, &nArg);
2526   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2527   if( pParse->explain ){
2528     static const char * const azColName[] = {
2529        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2530        "id", "parent", "notused", "detail"
2531     };
2532     int iFirst, mx, i;
2533     if( nMem<10 ) nMem = 10;
2534     p->explain = pParse->explain;
2535     if( pParse->explain==2 ){
2536       sqlite3VdbeSetNumCols(p, 4);
2537       iFirst = 8;
2538       mx = 12;
2539     }else{
2540       sqlite3VdbeSetNumCols(p, 8);
2541       iFirst = 0;
2542       mx = 8;
2543     }
2544     for(i=iFirst; i<mx; i++){
2545       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2546                             azColName[i], SQLITE_STATIC);
2547     }
2548   }
2549   p->expired = 0;
2550 
2551   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2552   ** passes.  On the first pass, we try to reuse unused memory at the
2553   ** end of the opcode array.  If we are unable to satisfy all memory
2554   ** requirements by reusing the opcode array tail, then the second
2555   ** pass will fill in the remainder using a fresh memory allocation.
2556   **
2557   ** This two-pass approach that reuses as much memory as possible from
2558   ** the leftover memory at the end of the opcode array.  This can significantly
2559   ** reduce the amount of memory held by a prepared statement.
2560   */
2561   x.nNeeded = 0;
2562   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2563   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2564   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2565   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2566 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2567   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2568 #endif
2569   if( x.nNeeded ){
2570     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2571     x.nFree = x.nNeeded;
2572     if( !db->mallocFailed ){
2573       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2574       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2575       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2576       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2577 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2578       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2579 #endif
2580     }
2581   }
2582 
2583   if( db->mallocFailed ){
2584     p->nVar = 0;
2585     p->nCursor = 0;
2586     p->nMem = 0;
2587   }else{
2588     p->nCursor = nCursor;
2589     p->nVar = (ynVar)nVar;
2590     initMemArray(p->aVar, nVar, db, MEM_Null);
2591     p->nMem = nMem;
2592     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2593     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2594 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2595     memset(p->anExec, 0, p->nOp*sizeof(i64));
2596 #endif
2597   }
2598   sqlite3VdbeRewind(p);
2599 }
2600 
2601 /*
2602 ** Close a VDBE cursor and release all the resources that cursor
2603 ** happens to hold.
2604 */
sqlite3VdbeFreeCursor(Vdbe * p,VdbeCursor * pCx)2605 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2606   if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
2607 }
sqlite3VdbeFreeCursorNN(Vdbe * p,VdbeCursor * pCx)2608 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
2609   switch( pCx->eCurType ){
2610     case CURTYPE_SORTER: {
2611       sqlite3VdbeSorterClose(p->db, pCx);
2612       break;
2613     }
2614     case CURTYPE_BTREE: {
2615       assert( pCx->uc.pCursor!=0 );
2616       sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2617       break;
2618     }
2619 #ifndef SQLITE_OMIT_VIRTUALTABLE
2620     case CURTYPE_VTAB: {
2621       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2622       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2623       assert( pVCur->pVtab->nRef>0 );
2624       pVCur->pVtab->nRef--;
2625       pModule->xClose(pVCur);
2626       break;
2627     }
2628 #endif
2629   }
2630 }
2631 
2632 /*
2633 ** Close all cursors in the current frame.
2634 */
closeCursorsInFrame(Vdbe * p)2635 static void closeCursorsInFrame(Vdbe *p){
2636   int i;
2637   for(i=0; i<p->nCursor; i++){
2638     VdbeCursor *pC = p->apCsr[i];
2639     if( pC ){
2640       sqlite3VdbeFreeCursorNN(p, pC);
2641       p->apCsr[i] = 0;
2642     }
2643   }
2644 }
2645 
2646 /*
2647 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2648 ** is used, for example, when a trigger sub-program is halted to restore
2649 ** control to the main program.
2650 */
sqlite3VdbeFrameRestore(VdbeFrame * pFrame)2651 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2652   Vdbe *v = pFrame->v;
2653   closeCursorsInFrame(v);
2654 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2655   v->anExec = pFrame->anExec;
2656 #endif
2657   v->aOp = pFrame->aOp;
2658   v->nOp = pFrame->nOp;
2659   v->aMem = pFrame->aMem;
2660   v->nMem = pFrame->nMem;
2661   v->apCsr = pFrame->apCsr;
2662   v->nCursor = pFrame->nCursor;
2663   v->db->lastRowid = pFrame->lastRowid;
2664   v->nChange = pFrame->nChange;
2665   v->db->nChange = pFrame->nDbChange;
2666   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2667   v->pAuxData = pFrame->pAuxData;
2668   pFrame->pAuxData = 0;
2669   return pFrame->pc;
2670 }
2671 
2672 /*
2673 ** Close all cursors.
2674 **
2675 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2676 ** cell array. This is necessary as the memory cell array may contain
2677 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2678 ** open cursors.
2679 */
closeAllCursors(Vdbe * p)2680 static void closeAllCursors(Vdbe *p){
2681   if( p->pFrame ){
2682     VdbeFrame *pFrame;
2683     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2684     sqlite3VdbeFrameRestore(pFrame);
2685     p->pFrame = 0;
2686     p->nFrame = 0;
2687   }
2688   assert( p->nFrame==0 );
2689   closeCursorsInFrame(p);
2690   releaseMemArray(p->aMem, p->nMem);
2691   while( p->pDelFrame ){
2692     VdbeFrame *pDel = p->pDelFrame;
2693     p->pDelFrame = pDel->pParent;
2694     sqlite3VdbeFrameDelete(pDel);
2695   }
2696 
2697   /* Delete any auxdata allocations made by the VM */
2698   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2699   assert( p->pAuxData==0 );
2700 }
2701 
2702 /*
2703 ** Set the number of result columns that will be returned by this SQL
2704 ** statement. This is now set at compile time, rather than during
2705 ** execution of the vdbe program so that sqlite3_column_count() can
2706 ** be called on an SQL statement before sqlite3_step().
2707 */
sqlite3VdbeSetNumCols(Vdbe * p,int nResColumn)2708 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2709   int n;
2710   sqlite3 *db = p->db;
2711 
2712   if( p->nResColumn ){
2713     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2714     sqlite3DbFree(db, p->aColName);
2715   }
2716   n = nResColumn*COLNAME_N;
2717   p->nResColumn = (u16)nResColumn;
2718   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2719   if( p->aColName==0 ) return;
2720   initMemArray(p->aColName, n, db, MEM_Null);
2721 }
2722 
2723 /*
2724 ** Set the name of the idx'th column to be returned by the SQL statement.
2725 ** zName must be a pointer to a nul terminated string.
2726 **
2727 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2728 **
2729 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2730 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2731 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2732 */
sqlite3VdbeSetColName(Vdbe * p,int idx,int var,const char * zName,void (* xDel)(void *))2733 int sqlite3VdbeSetColName(
2734   Vdbe *p,                         /* Vdbe being configured */
2735   int idx,                         /* Index of column zName applies to */
2736   int var,                         /* One of the COLNAME_* constants */
2737   const char *zName,               /* Pointer to buffer containing name */
2738   void (*xDel)(void*)              /* Memory management strategy for zName */
2739 ){
2740   int rc;
2741   Mem *pColName;
2742   assert( idx<p->nResColumn );
2743   assert( var<COLNAME_N );
2744   if( p->db->mallocFailed ){
2745     assert( !zName || xDel!=SQLITE_DYNAMIC );
2746     return SQLITE_NOMEM_BKPT;
2747   }
2748   assert( p->aColName!=0 );
2749   pColName = &(p->aColName[idx+var*p->nResColumn]);
2750   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2751   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2752   return rc;
2753 }
2754 
2755 /*
2756 ** A read or write transaction may or may not be active on database handle
2757 ** db. If a transaction is active, commit it. If there is a
2758 ** write-transaction spanning more than one database file, this routine
2759 ** takes care of the super-journal trickery.
2760 */
vdbeCommit(sqlite3 * db,Vdbe * p)2761 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2762   int i;
2763   int nTrans = 0;  /* Number of databases with an active write-transaction
2764                    ** that are candidates for a two-phase commit using a
2765                    ** super-journal */
2766   int rc = SQLITE_OK;
2767   int needXcommit = 0;
2768 
2769 #ifdef SQLITE_OMIT_VIRTUALTABLE
2770   /* With this option, sqlite3VtabSync() is defined to be simply
2771   ** SQLITE_OK so p is not used.
2772   */
2773   UNUSED_PARAMETER(p);
2774 #endif
2775 
2776   /* Before doing anything else, call the xSync() callback for any
2777   ** virtual module tables written in this transaction. This has to
2778   ** be done before determining whether a super-journal file is
2779   ** required, as an xSync() callback may add an attached database
2780   ** to the transaction.
2781   */
2782   rc = sqlite3VtabSync(db, p);
2783 
2784   /* This loop determines (a) if the commit hook should be invoked and
2785   ** (b) how many database files have open write transactions, not
2786   ** including the temp database. (b) is important because if more than
2787   ** one database file has an open write transaction, a super-journal
2788   ** file is required for an atomic commit.
2789   */
2790   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2791     Btree *pBt = db->aDb[i].pBt;
2792     if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2793       /* Whether or not a database might need a super-journal depends upon
2794       ** its journal mode (among other things).  This matrix determines which
2795       ** journal modes use a super-journal and which do not */
2796       static const u8 aMJNeeded[] = {
2797         /* DELETE   */  1,
2798         /* PERSIST   */ 1,
2799         /* OFF       */ 0,
2800         /* TRUNCATE  */ 1,
2801         /* MEMORY    */ 0,
2802         /* WAL       */ 0
2803       };
2804       Pager *pPager;   /* Pager associated with pBt */
2805       needXcommit = 1;
2806       sqlite3BtreeEnter(pBt);
2807       pPager = sqlite3BtreePager(pBt);
2808       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2809        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2810        && sqlite3PagerIsMemdb(pPager)==0
2811       ){
2812         assert( i!=1 );
2813         nTrans++;
2814       }
2815       rc = sqlite3PagerExclusiveLock(pPager);
2816       sqlite3BtreeLeave(pBt);
2817     }
2818   }
2819   if( rc!=SQLITE_OK ){
2820     return rc;
2821   }
2822 
2823   /* If there are any write-transactions at all, invoke the commit hook */
2824   if( needXcommit && db->xCommitCallback ){
2825     rc = db->xCommitCallback(db->pCommitArg);
2826     if( rc ){
2827       return SQLITE_CONSTRAINT_COMMITHOOK;
2828     }
2829   }
2830 
2831   /* The simple case - no more than one database file (not counting the
2832   ** TEMP database) has a transaction active.   There is no need for the
2833   ** super-journal.
2834   **
2835   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2836   ** string, it means the main database is :memory: or a temp file.  In
2837   ** that case we do not support atomic multi-file commits, so use the
2838   ** simple case then too.
2839   */
2840   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2841    || nTrans<=1
2842   ){
2843     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2844       Btree *pBt = db->aDb[i].pBt;
2845       if( pBt ){
2846         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2847       }
2848     }
2849 
2850     /* Do the commit only if all databases successfully complete phase 1.
2851     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2852     ** IO error while deleting or truncating a journal file. It is unlikely,
2853     ** but could happen. In this case abandon processing and return the error.
2854     */
2855     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2856       Btree *pBt = db->aDb[i].pBt;
2857       if( pBt ){
2858         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2859       }
2860     }
2861     if( rc==SQLITE_OK ){
2862       sqlite3VtabCommit(db);
2863     }
2864   }
2865 
2866   /* The complex case - There is a multi-file write-transaction active.
2867   ** This requires a super-journal file to ensure the transaction is
2868   ** committed atomically.
2869   */
2870 #ifndef SQLITE_OMIT_DISKIO
2871   else{
2872     sqlite3_vfs *pVfs = db->pVfs;
2873     char *zSuper = 0;   /* File-name for the super-journal */
2874     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2875     sqlite3_file *pSuperJrnl = 0;
2876     i64 offset = 0;
2877     int res;
2878     int retryCount = 0;
2879     int nMainFile;
2880 
2881     /* Select a super-journal file name */
2882     nMainFile = sqlite3Strlen30(zMainFile);
2883     zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2884     if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2885     zSuper += 4;
2886     do {
2887       u32 iRandom;
2888       if( retryCount ){
2889         if( retryCount>100 ){
2890           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2891           sqlite3OsDelete(pVfs, zSuper, 0);
2892           break;
2893         }else if( retryCount==1 ){
2894           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2895         }
2896       }
2897       retryCount++;
2898       sqlite3_randomness(sizeof(iRandom), &iRandom);
2899       sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2900                                (iRandom>>8)&0xffffff, iRandom&0xff);
2901       /* The antipenultimate character of the super-journal name must
2902       ** be "9" to avoid name collisions when using 8+3 filenames. */
2903       assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2904       sqlite3FileSuffix3(zMainFile, zSuper);
2905       rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2906     }while( rc==SQLITE_OK && res );
2907     if( rc==SQLITE_OK ){
2908       /* Open the super-journal. */
2909       rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2910           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2911           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2912       );
2913     }
2914     if( rc!=SQLITE_OK ){
2915       sqlite3DbFree(db, zSuper-4);
2916       return rc;
2917     }
2918 
2919     /* Write the name of each database file in the transaction into the new
2920     ** super-journal file. If an error occurs at this point close
2921     ** and delete the super-journal file. All the individual journal files
2922     ** still have 'null' as the super-journal pointer, so they will roll
2923     ** back independently if a failure occurs.
2924     */
2925     for(i=0; i<db->nDb; i++){
2926       Btree *pBt = db->aDb[i].pBt;
2927       if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2928         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2929         if( zFile==0 ){
2930           continue;  /* Ignore TEMP and :memory: databases */
2931         }
2932         assert( zFile[0]!=0 );
2933         rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2934         offset += sqlite3Strlen30(zFile)+1;
2935         if( rc!=SQLITE_OK ){
2936           sqlite3OsCloseFree(pSuperJrnl);
2937           sqlite3OsDelete(pVfs, zSuper, 0);
2938           sqlite3DbFree(db, zSuper-4);
2939           return rc;
2940         }
2941       }
2942     }
2943 
2944     /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2945     ** flag is set this is not required.
2946     */
2947     if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2948      && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2949     ){
2950       sqlite3OsCloseFree(pSuperJrnl);
2951       sqlite3OsDelete(pVfs, zSuper, 0);
2952       sqlite3DbFree(db, zSuper-4);
2953       return rc;
2954     }
2955 
2956     /* Sync all the db files involved in the transaction. The same call
2957     ** sets the super-journal pointer in each individual journal. If
2958     ** an error occurs here, do not delete the super-journal file.
2959     **
2960     ** If the error occurs during the first call to
2961     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2962     ** super-journal file will be orphaned. But we cannot delete it,
2963     ** in case the super-journal file name was written into the journal
2964     ** file before the failure occurred.
2965     */
2966     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2967       Btree *pBt = db->aDb[i].pBt;
2968       if( pBt ){
2969         rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2970       }
2971     }
2972     sqlite3OsCloseFree(pSuperJrnl);
2973     assert( rc!=SQLITE_BUSY );
2974     if( rc!=SQLITE_OK ){
2975       sqlite3DbFree(db, zSuper-4);
2976       return rc;
2977     }
2978 
2979     /* Delete the super-journal file. This commits the transaction. After
2980     ** doing this the directory is synced again before any individual
2981     ** transaction files are deleted.
2982     */
2983     rc = sqlite3OsDelete(pVfs, zSuper, 1);
2984     sqlite3DbFree(db, zSuper-4);
2985     zSuper = 0;
2986     if( rc ){
2987       return rc;
2988     }
2989 
2990     /* All files and directories have already been synced, so the following
2991     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2992     ** deleting or truncating journals. If something goes wrong while
2993     ** this is happening we don't really care. The integrity of the
2994     ** transaction is already guaranteed, but some stray 'cold' journals
2995     ** may be lying around. Returning an error code won't help matters.
2996     */
2997     disable_simulated_io_errors();
2998     sqlite3BeginBenignMalloc();
2999     for(i=0; i<db->nDb; i++){
3000       Btree *pBt = db->aDb[i].pBt;
3001       if( pBt ){
3002         sqlite3BtreeCommitPhaseTwo(pBt, 1);
3003       }
3004     }
3005     sqlite3EndBenignMalloc();
3006     enable_simulated_io_errors();
3007 
3008     sqlite3VtabCommit(db);
3009   }
3010 #endif
3011 
3012   return rc;
3013 }
3014 
3015 /*
3016 ** This routine checks that the sqlite3.nVdbeActive count variable
3017 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3018 ** currently active. An assertion fails if the two counts do not match.
3019 ** This is an internal self-check only - it is not an essential processing
3020 ** step.
3021 **
3022 ** This is a no-op if NDEBUG is defined.
3023 */
3024 #ifndef NDEBUG
checkActiveVdbeCnt(sqlite3 * db)3025 static void checkActiveVdbeCnt(sqlite3 *db){
3026   Vdbe *p;
3027   int cnt = 0;
3028   int nWrite = 0;
3029   int nRead = 0;
3030   p = db->pVdbe;
3031   while( p ){
3032     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
3033       cnt++;
3034       if( p->readOnly==0 ) nWrite++;
3035       if( p->bIsReader ) nRead++;
3036     }
3037     p = p->pVNext;
3038   }
3039   assert( cnt==db->nVdbeActive );
3040   assert( nWrite==db->nVdbeWrite );
3041   assert( nRead==db->nVdbeRead );
3042 }
3043 #else
3044 #define checkActiveVdbeCnt(x)
3045 #endif
3046 
3047 /*
3048 ** If the Vdbe passed as the first argument opened a statement-transaction,
3049 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3050 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3051 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3052 ** statement transaction is committed.
3053 **
3054 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3055 ** Otherwise SQLITE_OK.
3056 */
vdbeCloseStatement(Vdbe * p,int eOp)3057 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
3058   sqlite3 *const db = p->db;
3059   int rc = SQLITE_OK;
3060   int i;
3061   const int iSavepoint = p->iStatement-1;
3062 
3063   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
3064   assert( db->nStatement>0 );
3065   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
3066 
3067   for(i=0; i<db->nDb; i++){
3068     int rc2 = SQLITE_OK;
3069     Btree *pBt = db->aDb[i].pBt;
3070     if( pBt ){
3071       if( eOp==SAVEPOINT_ROLLBACK ){
3072         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
3073       }
3074       if( rc2==SQLITE_OK ){
3075         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
3076       }
3077       if( rc==SQLITE_OK ){
3078         rc = rc2;
3079       }
3080     }
3081   }
3082   db->nStatement--;
3083   p->iStatement = 0;
3084 
3085   if( rc==SQLITE_OK ){
3086     if( eOp==SAVEPOINT_ROLLBACK ){
3087       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
3088     }
3089     if( rc==SQLITE_OK ){
3090       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
3091     }
3092   }
3093 
3094   /* If the statement transaction is being rolled back, also restore the
3095   ** database handles deferred constraint counter to the value it had when
3096   ** the statement transaction was opened.  */
3097   if( eOp==SAVEPOINT_ROLLBACK ){
3098     db->nDeferredCons = p->nStmtDefCons;
3099     db->nDeferredImmCons = p->nStmtDefImmCons;
3100   }
3101   return rc;
3102 }
sqlite3VdbeCloseStatement(Vdbe * p,int eOp)3103 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
3104   if( p->db->nStatement && p->iStatement ){
3105     return vdbeCloseStatement(p, eOp);
3106   }
3107   return SQLITE_OK;
3108 }
3109 
3110 
3111 /*
3112 ** This function is called when a transaction opened by the database
3113 ** handle associated with the VM passed as an argument is about to be
3114 ** committed. If there are outstanding deferred foreign key constraint
3115 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3116 **
3117 ** If there are outstanding FK violations and this function returns
3118 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3119 ** and write an error message to it. Then return SQLITE_ERROR.
3120 */
3121 #ifndef SQLITE_OMIT_FOREIGN_KEY
sqlite3VdbeCheckFk(Vdbe * p,int deferred)3122 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
3123   sqlite3 *db = p->db;
3124   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3125    || (!deferred && p->nFkConstraint>0)
3126   ){
3127     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3128     p->errorAction = OE_Abort;
3129     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3130     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
3131     return SQLITE_CONSTRAINT_FOREIGNKEY;
3132   }
3133   return SQLITE_OK;
3134 }
3135 #endif
3136 
3137 /*
3138 ** This routine is called the when a VDBE tries to halt.  If the VDBE
3139 ** has made changes and is in autocommit mode, then commit those
3140 ** changes.  If a rollback is needed, then do the rollback.
3141 **
3142 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3143 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT.  It is harmless to
3144 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3145 **
3146 ** Return an error code.  If the commit could not complete because of
3147 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
3148 ** means the close did not happen and needs to be repeated.
3149 */
sqlite3VdbeHalt(Vdbe * p)3150 int sqlite3VdbeHalt(Vdbe *p){
3151   int rc;                         /* Used to store transient return codes */
3152   sqlite3 *db = p->db;
3153 
3154   /* This function contains the logic that determines if a statement or
3155   ** transaction will be committed or rolled back as a result of the
3156   ** execution of this virtual machine.
3157   **
3158   ** If any of the following errors occur:
3159   **
3160   **     SQLITE_NOMEM
3161   **     SQLITE_IOERR
3162   **     SQLITE_FULL
3163   **     SQLITE_INTERRUPT
3164   **
3165   ** Then the internal cache might have been left in an inconsistent
3166   ** state.  We need to rollback the statement transaction, if there is
3167   ** one, or the complete transaction if there is no statement transaction.
3168   */
3169 
3170   assert( p->eVdbeState==VDBE_RUN_STATE );
3171   if( db->mallocFailed ){
3172     p->rc = SQLITE_NOMEM_BKPT;
3173   }
3174   closeAllCursors(p);
3175   checkActiveVdbeCnt(db);
3176 
3177   /* No commit or rollback needed if the program never started or if the
3178   ** SQL statement does not read or write a database file.  */
3179   if( p->bIsReader ){
3180     int mrc;   /* Primary error code from p->rc */
3181     int eStatementOp = 0;
3182     int isSpecialError;            /* Set to true if a 'special' error */
3183 
3184     /* Lock all btrees used by the statement */
3185     sqlite3VdbeEnter(p);
3186 
3187     /* Check for one of the special errors */
3188     if( p->rc ){
3189       mrc = p->rc & 0xff;
3190       isSpecialError = mrc==SQLITE_NOMEM
3191                     || mrc==SQLITE_IOERR
3192                     || mrc==SQLITE_INTERRUPT
3193                     || mrc==SQLITE_FULL;
3194     }else{
3195       mrc = isSpecialError = 0;
3196     }
3197     if( isSpecialError ){
3198       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3199       ** no rollback is necessary. Otherwise, at least a savepoint
3200       ** transaction must be rolled back to restore the database to a
3201       ** consistent state.
3202       **
3203       ** Even if the statement is read-only, it is important to perform
3204       ** a statement or transaction rollback operation. If the error
3205       ** occurred while writing to the journal, sub-journal or database
3206       ** file as part of an effort to free up cache space (see function
3207       ** pagerStress() in pager.c), the rollback is required to restore
3208       ** the pager to a consistent state.
3209       */
3210       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3211         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3212           eStatementOp = SAVEPOINT_ROLLBACK;
3213         }else{
3214           /* We are forced to roll back the active transaction. Before doing
3215           ** so, abort any other statements this handle currently has active.
3216           */
3217           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3218           sqlite3CloseSavepoints(db);
3219           db->autoCommit = 1;
3220           p->nChange = 0;
3221         }
3222       }
3223     }
3224 
3225     /* Check for immediate foreign key violations. */
3226     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3227       sqlite3VdbeCheckFk(p, 0);
3228     }
3229 
3230     /* If the auto-commit flag is set and this is the only active writer
3231     ** VM, then we do either a commit or rollback of the current transaction.
3232     **
3233     ** Note: This block also runs if one of the special errors handled
3234     ** above has occurred.
3235     */
3236     if( !sqlite3VtabInSync(db)
3237      && db->autoCommit
3238      && db->nVdbeWrite==(p->readOnly==0)
3239     ){
3240       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3241         rc = sqlite3VdbeCheckFk(p, 1);
3242         if( rc!=SQLITE_OK ){
3243           if( NEVER(p->readOnly) ){
3244             sqlite3VdbeLeave(p);
3245             return SQLITE_ERROR;
3246           }
3247           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3248         }else if( db->flags & SQLITE_CorruptRdOnly ){
3249           rc = SQLITE_CORRUPT;
3250           db->flags &= ~SQLITE_CorruptRdOnly;
3251         }else{
3252           /* The auto-commit flag is true, the vdbe program was successful
3253           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3254           ** key constraints to hold up the transaction. This means a commit
3255           ** is required. */
3256           rc = vdbeCommit(db, p);
3257         }
3258         if( rc==SQLITE_BUSY && p->readOnly ){
3259           sqlite3VdbeLeave(p);
3260           return SQLITE_BUSY;
3261         }else if( rc!=SQLITE_OK ){
3262           p->rc = rc;
3263           sqlite3RollbackAll(db, SQLITE_OK);
3264           p->nChange = 0;
3265         }else{
3266           db->nDeferredCons = 0;
3267           db->nDeferredImmCons = 0;
3268           db->flags &= ~(u64)SQLITE_DeferFKs;
3269           sqlite3CommitInternalChanges(db);
3270         }
3271       }else{
3272         sqlite3RollbackAll(db, SQLITE_OK);
3273         p->nChange = 0;
3274       }
3275       db->nStatement = 0;
3276     }else if( eStatementOp==0 ){
3277       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3278         eStatementOp = SAVEPOINT_RELEASE;
3279       }else if( p->errorAction==OE_Abort ){
3280         eStatementOp = SAVEPOINT_ROLLBACK;
3281       }else{
3282         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3283         sqlite3CloseSavepoints(db);
3284         db->autoCommit = 1;
3285         p->nChange = 0;
3286       }
3287     }
3288 
3289     /* If eStatementOp is non-zero, then a statement transaction needs to
3290     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3291     ** do so. If this operation returns an error, and the current statement
3292     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3293     ** current statement error code.
3294     */
3295     if( eStatementOp ){
3296       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3297       if( rc ){
3298         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3299           p->rc = rc;
3300           sqlite3DbFree(db, p->zErrMsg);
3301           p->zErrMsg = 0;
3302         }
3303         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3304         sqlite3CloseSavepoints(db);
3305         db->autoCommit = 1;
3306         p->nChange = 0;
3307       }
3308     }
3309 
3310     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3311     ** has been rolled back, update the database connection change-counter.
3312     */
3313     if( p->changeCntOn ){
3314       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3315         sqlite3VdbeSetChanges(db, p->nChange);
3316       }else{
3317         sqlite3VdbeSetChanges(db, 0);
3318       }
3319       p->nChange = 0;
3320     }
3321 
3322     /* Release the locks */
3323     sqlite3VdbeLeave(p);
3324   }
3325 
3326   /* We have successfully halted and closed the VM.  Record this fact. */
3327   db->nVdbeActive--;
3328   if( !p->readOnly ) db->nVdbeWrite--;
3329   if( p->bIsReader ) db->nVdbeRead--;
3330   assert( db->nVdbeActive>=db->nVdbeRead );
3331   assert( db->nVdbeRead>=db->nVdbeWrite );
3332   assert( db->nVdbeWrite>=0 );
3333   p->eVdbeState = VDBE_HALT_STATE;
3334   checkActiveVdbeCnt(db);
3335   if( db->mallocFailed ){
3336     p->rc = SQLITE_NOMEM_BKPT;
3337   }
3338 
3339   /* If the auto-commit flag is set to true, then any locks that were held
3340   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3341   ** to invoke any required unlock-notify callbacks.
3342   */
3343   if( db->autoCommit ){
3344     sqlite3ConnectionUnlocked(db);
3345   }
3346 
3347   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3348   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3349 }
3350 
3351 
3352 /*
3353 ** Each VDBE holds the result of the most recent sqlite3_step() call
3354 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3355 */
sqlite3VdbeResetStepResult(Vdbe * p)3356 void sqlite3VdbeResetStepResult(Vdbe *p){
3357   p->rc = SQLITE_OK;
3358 }
3359 
3360 /*
3361 ** Copy the error code and error message belonging to the VDBE passed
3362 ** as the first argument to its database handle (so that they will be
3363 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3364 **
3365 ** This function does not clear the VDBE error code or message, just
3366 ** copies them to the database handle.
3367 */
sqlite3VdbeTransferError(Vdbe * p)3368 int sqlite3VdbeTransferError(Vdbe *p){
3369   sqlite3 *db = p->db;
3370   int rc = p->rc;
3371   if( p->zErrMsg ){
3372     db->bBenignMalloc++;
3373     sqlite3BeginBenignMalloc();
3374     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3375     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3376     sqlite3EndBenignMalloc();
3377     db->bBenignMalloc--;
3378   }else if( db->pErr ){
3379     sqlite3ValueSetNull(db->pErr);
3380   }
3381   db->errCode = rc;
3382   db->errByteOffset = -1;
3383   return rc;
3384 }
3385 
3386 #ifdef SQLITE_ENABLE_SQLLOG
3387 /*
3388 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3389 ** invoke it.
3390 */
vdbeInvokeSqllog(Vdbe * v)3391 static void vdbeInvokeSqllog(Vdbe *v){
3392   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3393     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3394     assert( v->db->init.busy==0 );
3395     if( zExpanded ){
3396       sqlite3GlobalConfig.xSqllog(
3397           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3398       );
3399       sqlite3DbFree(v->db, zExpanded);
3400     }
3401   }
3402 }
3403 #else
3404 # define vdbeInvokeSqllog(x)
3405 #endif
3406 
3407 /*
3408 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3409 ** Write any error messages into *pzErrMsg.  Return the result code.
3410 **
3411 ** After this routine is run, the VDBE should be ready to be executed
3412 ** again.
3413 **
3414 ** To look at it another way, this routine resets the state of the
3415 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3416 ** VDBE_READY_STATE.
3417 */
sqlite3VdbeReset(Vdbe * p)3418 int sqlite3VdbeReset(Vdbe *p){
3419 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3420   int i;
3421 #endif
3422 
3423   sqlite3 *db;
3424   db = p->db;
3425 
3426   /* If the VM did not run to completion or if it encountered an
3427   ** error, then it might not have been halted properly.  So halt
3428   ** it now.
3429   */
3430   if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
3431 
3432   /* If the VDBE has been run even partially, then transfer the error code
3433   ** and error message from the VDBE into the main database structure.  But
3434   ** if the VDBE has just been set to run but has not actually executed any
3435   ** instructions yet, leave the main database error information unchanged.
3436   */
3437   if( p->pc>=0 ){
3438     vdbeInvokeSqllog(p);
3439     if( db->pErr || p->zErrMsg ){
3440       sqlite3VdbeTransferError(p);
3441     }else{
3442       db->errCode = p->rc;
3443     }
3444   }
3445 
3446   /* Reset register contents and reclaim error message memory.
3447   */
3448 #ifdef SQLITE_DEBUG
3449   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3450   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3451   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3452   if( p->aMem ){
3453     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3454   }
3455 #endif
3456   if( p->zErrMsg ){
3457     sqlite3DbFree(db, p->zErrMsg);
3458     p->zErrMsg = 0;
3459   }
3460   p->pResultSet = 0;
3461 #ifdef SQLITE_DEBUG
3462   p->nWrite = 0;
3463 #endif
3464 
3465   /* Save profiling information from this VDBE run.
3466   */
3467 #ifdef VDBE_PROFILE
3468   {
3469     FILE *out = fopen("vdbe_profile.out", "a");
3470     if( out ){
3471       fprintf(out, "---- ");
3472       for(i=0; i<p->nOp; i++){
3473         fprintf(out, "%02x", p->aOp[i].opcode);
3474       }
3475       fprintf(out, "\n");
3476       if( p->zSql ){
3477         char c, pc = 0;
3478         fprintf(out, "-- ");
3479         for(i=0; (c = p->zSql[i])!=0; i++){
3480           if( pc=='\n' ) fprintf(out, "-- ");
3481           putc(c, out);
3482           pc = c;
3483         }
3484         if( pc!='\n' ) fprintf(out, "\n");
3485       }
3486       for(i=0; i<p->nOp; i++){
3487         char zHdr[100];
3488         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3489            p->aOp[i].cnt,
3490            p->aOp[i].cycles,
3491            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3492         );
3493         fprintf(out, "%s", zHdr);
3494         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3495       }
3496       fclose(out);
3497     }
3498   }
3499 #endif
3500   return p->rc & db->errMask;
3501 }
3502 
3503 /*
3504 ** Clean up and delete a VDBE after execution.  Return an integer which is
3505 ** the result code.  Write any error message text into *pzErrMsg.
3506 */
sqlite3VdbeFinalize(Vdbe * p)3507 int sqlite3VdbeFinalize(Vdbe *p){
3508   int rc = SQLITE_OK;
3509   assert( VDBE_RUN_STATE>VDBE_READY_STATE );
3510   assert( VDBE_HALT_STATE>VDBE_READY_STATE );
3511   assert( VDBE_INIT_STATE<VDBE_READY_STATE );
3512   if( p->eVdbeState>=VDBE_READY_STATE ){
3513     rc = sqlite3VdbeReset(p);
3514     assert( (rc & p->db->errMask)==rc );
3515   }
3516   sqlite3VdbeDelete(p);
3517   return rc;
3518 }
3519 
3520 /*
3521 ** If parameter iOp is less than zero, then invoke the destructor for
3522 ** all auxiliary data pointers currently cached by the VM passed as
3523 ** the first argument.
3524 **
3525 ** Or, if iOp is greater than or equal to zero, then the destructor is
3526 ** only invoked for those auxiliary data pointers created by the user
3527 ** function invoked by the OP_Function opcode at instruction iOp of
3528 ** VM pVdbe, and only then if:
3529 **
3530 **    * the associated function parameter is the 32nd or later (counting
3531 **      from left to right), or
3532 **
3533 **    * the corresponding bit in argument mask is clear (where the first
3534 **      function parameter corresponds to bit 0 etc.).
3535 */
sqlite3VdbeDeleteAuxData(sqlite3 * db,AuxData ** pp,int iOp,int mask)3536 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3537   while( *pp ){
3538     AuxData *pAux = *pp;
3539     if( (iOp<0)
3540      || (pAux->iAuxOp==iOp
3541           && pAux->iAuxArg>=0
3542           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3543     ){
3544       testcase( pAux->iAuxArg==31 );
3545       if( pAux->xDeleteAux ){
3546         pAux->xDeleteAux(pAux->pAux);
3547       }
3548       *pp = pAux->pNextAux;
3549       sqlite3DbFree(db, pAux);
3550     }else{
3551       pp= &pAux->pNextAux;
3552     }
3553   }
3554 }
3555 
3556 /*
3557 ** Free all memory associated with the Vdbe passed as the second argument,
3558 ** except for object itself, which is preserved.
3559 **
3560 ** The difference between this function and sqlite3VdbeDelete() is that
3561 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3562 ** the database connection and frees the object itself.
3563 */
sqlite3VdbeClearObject(sqlite3 * db,Vdbe * p)3564 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3565   SubProgram *pSub, *pNext;
3566   assert( db!=0 );
3567   assert( p->db==0 || p->db==db );
3568   if( p->aColName ){
3569     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3570     sqlite3DbNNFreeNN(db, p->aColName);
3571   }
3572   for(pSub=p->pProgram; pSub; pSub=pNext){
3573     pNext = pSub->pNext;
3574     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3575     sqlite3DbFree(db, pSub);
3576   }
3577   if( p->eVdbeState!=VDBE_INIT_STATE ){
3578     releaseMemArray(p->aVar, p->nVar);
3579     if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList);
3580     if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree);
3581   }
3582   vdbeFreeOpArray(db, p->aOp, p->nOp);
3583   if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql);
3584 #ifdef SQLITE_ENABLE_NORMALIZE
3585   sqlite3DbFree(db, p->zNormSql);
3586   {
3587     DblquoteStr *pThis, *pNext;
3588     for(pThis=p->pDblStr; pThis; pThis=pNext){
3589       pNext = pThis->pNextStr;
3590       sqlite3DbFree(db, pThis);
3591     }
3592   }
3593 #endif
3594 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3595   {
3596     int i;
3597     for(i=0; i<p->nScan; i++){
3598       sqlite3DbFree(db, p->aScan[i].zName);
3599     }
3600     sqlite3DbFree(db, p->aScan);
3601   }
3602 #endif
3603 }
3604 
3605 /*
3606 ** Delete an entire VDBE.
3607 */
sqlite3VdbeDelete(Vdbe * p)3608 void sqlite3VdbeDelete(Vdbe *p){
3609   sqlite3 *db;
3610 
3611   assert( p!=0 );
3612   db = p->db;
3613   assert( db!=0 );
3614   assert( sqlite3_mutex_held(db->mutex) );
3615   sqlite3VdbeClearObject(db, p);
3616   if( db->pnBytesFreed==0 ){
3617     assert( p->ppVPrev!=0 );
3618     *p->ppVPrev = p->pVNext;
3619     if( p->pVNext ){
3620       p->pVNext->ppVPrev = p->ppVPrev;
3621     }
3622   }
3623   sqlite3DbNNFreeNN(db, p);
3624 }
3625 
3626 /*
3627 ** The cursor "p" has a pending seek operation that has not yet been
3628 ** carried out.  Seek the cursor now.  If an error occurs, return
3629 ** the appropriate error code.
3630 */
sqlite3VdbeFinishMoveto(VdbeCursor * p)3631 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3632   int res, rc;
3633 #ifdef SQLITE_TEST
3634   extern int sqlite3_search_count;
3635 #endif
3636   assert( p->deferredMoveto );
3637   assert( p->isTable );
3638   assert( p->eCurType==CURTYPE_BTREE );
3639   rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3640   if( rc ) return rc;
3641   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3642 #ifdef SQLITE_TEST
3643   sqlite3_search_count++;
3644 #endif
3645   p->deferredMoveto = 0;
3646   p->cacheStatus = CACHE_STALE;
3647   return SQLITE_OK;
3648 }
3649 
3650 /*
3651 ** Something has moved cursor "p" out of place.  Maybe the row it was
3652 ** pointed to was deleted out from under it.  Or maybe the btree was
3653 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3654 ** is supposed to be pointing.  If the row was deleted out from under the
3655 ** cursor, set the cursor to point to a NULL row.
3656 */
sqlite3VdbeHandleMovedCursor(VdbeCursor * p)3657 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
3658   int isDifferentRow, rc;
3659   assert( p->eCurType==CURTYPE_BTREE );
3660   assert( p->uc.pCursor!=0 );
3661   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3662   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3663   p->cacheStatus = CACHE_STALE;
3664   if( isDifferentRow ) p->nullRow = 1;
3665   return rc;
3666 }
3667 
3668 /*
3669 ** Check to ensure that the cursor is valid.  Restore the cursor
3670 ** if need be.  Return any I/O error from the restore operation.
3671 */
sqlite3VdbeCursorRestore(VdbeCursor * p)3672 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3673   assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
3674   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3675     return sqlite3VdbeHandleMovedCursor(p);
3676   }
3677   return SQLITE_OK;
3678 }
3679 
3680 /*
3681 ** The following functions:
3682 **
3683 ** sqlite3VdbeSerialType()
3684 ** sqlite3VdbeSerialTypeLen()
3685 ** sqlite3VdbeSerialLen()
3686 ** sqlite3VdbeSerialPut()  <--- in-lined into OP_MakeRecord as of 2022-04-02
3687 ** sqlite3VdbeSerialGet()
3688 **
3689 ** encapsulate the code that serializes values for storage in SQLite
3690 ** data and index records. Each serialized value consists of a
3691 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3692 ** integer, stored as a varint.
3693 **
3694 ** In an SQLite index record, the serial type is stored directly before
3695 ** the blob of data that it corresponds to. In a table record, all serial
3696 ** types are stored at the start of the record, and the blobs of data at
3697 ** the end. Hence these functions allow the caller to handle the
3698 ** serial-type and data blob separately.
3699 **
3700 ** The following table describes the various storage classes for data:
3701 **
3702 **   serial type        bytes of data      type
3703 **   --------------     ---------------    ---------------
3704 **      0                     0            NULL
3705 **      1                     1            signed integer
3706 **      2                     2            signed integer
3707 **      3                     3            signed integer
3708 **      4                     4            signed integer
3709 **      5                     6            signed integer
3710 **      6                     8            signed integer
3711 **      7                     8            IEEE float
3712 **      8                     0            Integer constant 0
3713 **      9                     0            Integer constant 1
3714 **     10,11                               reserved for expansion
3715 **    N>=12 and even       (N-12)/2        BLOB
3716 **    N>=13 and odd        (N-13)/2        text
3717 **
3718 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3719 ** of SQLite will not understand those serial types.
3720 */
3721 
3722 #if 0 /* Inlined into the OP_MakeRecord opcode */
3723 /*
3724 ** Return the serial-type for the value stored in pMem.
3725 **
3726 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3727 **
3728 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3729 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3730 ** can omit some redundant tests and make that opcode a lot faster.  So
3731 ** this routine is now only used by the STAT3 logic and STAT3 support has
3732 ** ended.  The code is kept here for historical reference only.
3733 */
3734 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3735   int flags = pMem->flags;
3736   u32 n;
3737 
3738   assert( pLen!=0 );
3739   if( flags&MEM_Null ){
3740     *pLen = 0;
3741     return 0;
3742   }
3743   if( flags&(MEM_Int|MEM_IntReal) ){
3744     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3745 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3746     i64 i = pMem->u.i;
3747     u64 u;
3748     testcase( flags & MEM_Int );
3749     testcase( flags & MEM_IntReal );
3750     if( i<0 ){
3751       u = ~i;
3752     }else{
3753       u = i;
3754     }
3755     if( u<=127 ){
3756       if( (i&1)==i && file_format>=4 ){
3757         *pLen = 0;
3758         return 8+(u32)u;
3759       }else{
3760         *pLen = 1;
3761         return 1;
3762       }
3763     }
3764     if( u<=32767 ){ *pLen = 2; return 2; }
3765     if( u<=8388607 ){ *pLen = 3; return 3; }
3766     if( u<=2147483647 ){ *pLen = 4; return 4; }
3767     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3768     *pLen = 8;
3769     if( flags&MEM_IntReal ){
3770       /* If the value is IntReal and is going to take up 8 bytes to store
3771       ** as an integer, then we might as well make it an 8-byte floating
3772       ** point value */
3773       pMem->u.r = (double)pMem->u.i;
3774       pMem->flags &= ~MEM_IntReal;
3775       pMem->flags |= MEM_Real;
3776       return 7;
3777     }
3778     return 6;
3779   }
3780   if( flags&MEM_Real ){
3781     *pLen = 8;
3782     return 7;
3783   }
3784   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3785   assert( pMem->n>=0 );
3786   n = (u32)pMem->n;
3787   if( flags & MEM_Zero ){
3788     n += pMem->u.nZero;
3789   }
3790   *pLen = n;
3791   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3792 }
3793 #endif /* inlined into OP_MakeRecord */
3794 
3795 /*
3796 ** The sizes for serial types less than 128
3797 */
3798 const u8 sqlite3SmallTypeSizes[128] = {
3799         /*  0   1   2   3   4   5   6   7   8   9 */
3800 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3801 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3802 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3803 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3804 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3805 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3806 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3807 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3808 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3809 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3810 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3811 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3812 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3813 };
3814 
3815 /*
3816 ** Return the length of the data corresponding to the supplied serial-type.
3817 */
sqlite3VdbeSerialTypeLen(u32 serial_type)3818 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3819   if( serial_type>=128 ){
3820     return (serial_type-12)/2;
3821   }else{
3822     assert( serial_type<12
3823             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3824     return sqlite3SmallTypeSizes[serial_type];
3825   }
3826 }
sqlite3VdbeOneByteSerialTypeLen(u8 serial_type)3827 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3828   assert( serial_type<128 );
3829   return sqlite3SmallTypeSizes[serial_type];
3830 }
3831 
3832 /*
3833 ** If we are on an architecture with mixed-endian floating
3834 ** points (ex: ARM7) then swap the lower 4 bytes with the
3835 ** upper 4 bytes.  Return the result.
3836 **
3837 ** For most architectures, this is a no-op.
3838 **
3839 ** (later):  It is reported to me that the mixed-endian problem
3840 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3841 ** that early versions of GCC stored the two words of a 64-bit
3842 ** float in the wrong order.  And that error has been propagated
3843 ** ever since.  The blame is not necessarily with GCC, though.
3844 ** GCC might have just copying the problem from a prior compiler.
3845 ** I am also told that newer versions of GCC that follow a different
3846 ** ABI get the byte order right.
3847 **
3848 ** Developers using SQLite on an ARM7 should compile and run their
3849 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3850 ** enabled, some asserts below will ensure that the byte order of
3851 ** floating point values is correct.
3852 **
3853 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3854 ** and has send his findings to the SQLite developers.  Frank
3855 ** writes that some Linux kernels offer floating point hardware
3856 ** emulation that uses only 32-bit mantissas instead of a full
3857 ** 48-bits as required by the IEEE standard.  (This is the
3858 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3859 ** byte swapping becomes very complicated.  To avoid problems,
3860 ** the necessary byte swapping is carried out using a 64-bit integer
3861 ** rather than a 64-bit float.  Frank assures us that the code here
3862 ** works for him.  We, the developers, have no way to independently
3863 ** verify this, but Frank seems to know what he is talking about
3864 ** so we trust him.
3865 */
3866 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
sqlite3FloatSwap(u64 in)3867 u64 sqlite3FloatSwap(u64 in){
3868   union {
3869     u64 r;
3870     u32 i[2];
3871   } u;
3872   u32 t;
3873 
3874   u.r = in;
3875   t = u.i[0];
3876   u.i[0] = u.i[1];
3877   u.i[1] = t;
3878   return u.r;
3879 }
3880 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
3881 
3882 
3883 /* Input "x" is a sequence of unsigned characters that represent a
3884 ** big-endian integer.  Return the equivalent native integer
3885 */
3886 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3887 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3888 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3889 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3890 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3891 
3892 /*
3893 ** Deserialize the data blob pointed to by buf as serial type serial_type
3894 ** and store the result in pMem.
3895 **
3896 ** This function is implemented as two separate routines for performance.
3897 ** The few cases that require local variables are broken out into a separate
3898 ** routine so that in most cases the overhead of moving the stack pointer
3899 ** is avoided.
3900 */
serialGet(const unsigned char * buf,u32 serial_type,Mem * pMem)3901 static void serialGet(
3902   const unsigned char *buf,     /* Buffer to deserialize from */
3903   u32 serial_type,              /* Serial type to deserialize */
3904   Mem *pMem                     /* Memory cell to write value into */
3905 ){
3906   u64 x = FOUR_BYTE_UINT(buf);
3907   u32 y = FOUR_BYTE_UINT(buf+4);
3908   x = (x<<32) + y;
3909   if( serial_type==6 ){
3910     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3911     ** twos-complement integer. */
3912     pMem->u.i = *(i64*)&x;
3913     pMem->flags = MEM_Int;
3914     testcase( pMem->u.i<0 );
3915   }else{
3916     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3917     ** floating point number. */
3918 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3919     /* Verify that integers and floating point values use the same
3920     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3921     ** defined that 64-bit floating point values really are mixed
3922     ** endian.
3923     */
3924     static const u64 t1 = ((u64)0x3ff00000)<<32;
3925     static const double r1 = 1.0;
3926     u64 t2 = t1;
3927     swapMixedEndianFloat(t2);
3928     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3929 #endif
3930     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3931     swapMixedEndianFloat(x);
3932     memcpy(&pMem->u.r, &x, sizeof(x));
3933     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3934   }
3935 }
sqlite3VdbeSerialGet(const unsigned char * buf,u32 serial_type,Mem * pMem)3936 void sqlite3VdbeSerialGet(
3937   const unsigned char *buf,     /* Buffer to deserialize from */
3938   u32 serial_type,              /* Serial type to deserialize */
3939   Mem *pMem                     /* Memory cell to write value into */
3940 ){
3941   switch( serial_type ){
3942     case 10: { /* Internal use only: NULL with virtual table
3943                ** UPDATE no-change flag set */
3944       pMem->flags = MEM_Null|MEM_Zero;
3945       pMem->n = 0;
3946       pMem->u.nZero = 0;
3947       return;
3948     }
3949     case 11:   /* Reserved for future use */
3950     case 0: {  /* Null */
3951       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3952       pMem->flags = MEM_Null;
3953       return;
3954     }
3955     case 1: {
3956       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3957       ** integer. */
3958       pMem->u.i = ONE_BYTE_INT(buf);
3959       pMem->flags = MEM_Int;
3960       testcase( pMem->u.i<0 );
3961       return;
3962     }
3963     case 2: { /* 2-byte signed integer */
3964       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3965       ** twos-complement integer. */
3966       pMem->u.i = TWO_BYTE_INT(buf);
3967       pMem->flags = MEM_Int;
3968       testcase( pMem->u.i<0 );
3969       return;
3970     }
3971     case 3: { /* 3-byte signed integer */
3972       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3973       ** twos-complement integer. */
3974       pMem->u.i = THREE_BYTE_INT(buf);
3975       pMem->flags = MEM_Int;
3976       testcase( pMem->u.i<0 );
3977       return;
3978     }
3979     case 4: { /* 4-byte signed integer */
3980       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3981       ** twos-complement integer. */
3982       pMem->u.i = FOUR_BYTE_INT(buf);
3983 #ifdef __HP_cc
3984       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3985       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3986 #endif
3987       pMem->flags = MEM_Int;
3988       testcase( pMem->u.i<0 );
3989       return;
3990     }
3991     case 5: { /* 6-byte signed integer */
3992       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3993       ** twos-complement integer. */
3994       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3995       pMem->flags = MEM_Int;
3996       testcase( pMem->u.i<0 );
3997       return;
3998     }
3999     case 6:   /* 8-byte signed integer */
4000     case 7: { /* IEEE floating point */
4001       /* These use local variables, so do them in a separate routine
4002       ** to avoid having to move the frame pointer in the common case */
4003       serialGet(buf,serial_type,pMem);
4004       return;
4005     }
4006     case 8:    /* Integer 0 */
4007     case 9: {  /* Integer 1 */
4008       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4009       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4010       pMem->u.i = serial_type-8;
4011       pMem->flags = MEM_Int;
4012       return;
4013     }
4014     default: {
4015       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4016       ** length.
4017       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4018       ** (N-13)/2 bytes in length. */
4019       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
4020       pMem->z = (char *)buf;
4021       pMem->n = (serial_type-12)/2;
4022       pMem->flags = aFlag[serial_type&1];
4023       return;
4024     }
4025   }
4026   return;
4027 }
4028 /*
4029 ** This routine is used to allocate sufficient space for an UnpackedRecord
4030 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4031 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4032 **
4033 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4034 ** the unaligned buffer passed via the second and third arguments (presumably
4035 ** stack space). If the former, then *ppFree is set to a pointer that should
4036 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4037 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4038 ** before returning.
4039 **
4040 ** If an OOM error occurs, NULL is returned.
4041 */
sqlite3VdbeAllocUnpackedRecord(KeyInfo * pKeyInfo)4042 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
4043   KeyInfo *pKeyInfo               /* Description of the record */
4044 ){
4045   UnpackedRecord *p;              /* Unpacked record to return */
4046   int nByte;                      /* Number of bytes required for *p */
4047   nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4048   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4049   if( !p ) return 0;
4050   p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
4051   assert( pKeyInfo->aSortFlags!=0 );
4052   p->pKeyInfo = pKeyInfo;
4053   p->nField = pKeyInfo->nKeyField + 1;
4054   return p;
4055 }
4056 
4057 /*
4058 ** Given the nKey-byte encoding of a record in pKey[], populate the
4059 ** UnpackedRecord structure indicated by the fourth argument with the
4060 ** contents of the decoded record.
4061 */
sqlite3VdbeRecordUnpack(KeyInfo * pKeyInfo,int nKey,const void * pKey,UnpackedRecord * p)4062 void sqlite3VdbeRecordUnpack(
4063   KeyInfo *pKeyInfo,     /* Information about the record format */
4064   int nKey,              /* Size of the binary record */
4065   const void *pKey,      /* The binary record */
4066   UnpackedRecord *p      /* Populate this structure before returning. */
4067 ){
4068   const unsigned char *aKey = (const unsigned char *)pKey;
4069   u32 d;
4070   u32 idx;                        /* Offset in aKey[] to read from */
4071   u16 u;                          /* Unsigned loop counter */
4072   u32 szHdr;
4073   Mem *pMem = p->aMem;
4074 
4075   p->default_rc = 0;
4076   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4077   idx = getVarint32(aKey, szHdr);
4078   d = szHdr;
4079   u = 0;
4080   while( idx<szHdr && d<=(u32)nKey ){
4081     u32 serial_type;
4082 
4083     idx += getVarint32(&aKey[idx], serial_type);
4084     pMem->enc = pKeyInfo->enc;
4085     pMem->db = pKeyInfo->db;
4086     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4087     pMem->szMalloc = 0;
4088     pMem->z = 0;
4089     sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4090     d += sqlite3VdbeSerialTypeLen(serial_type);
4091     pMem++;
4092     if( (++u)>=p->nField ) break;
4093   }
4094   if( d>(u32)nKey && u ){
4095     assert( CORRUPT_DB );
4096     /* In a corrupt record entry, the last pMem might have been set up using
4097     ** uninitialized memory. Overwrite its value with NULL, to prevent
4098     ** warnings from MSAN. */
4099     sqlite3VdbeMemSetNull(pMem-1);
4100   }
4101   assert( u<=pKeyInfo->nKeyField + 1 );
4102   p->nField = u;
4103 }
4104 
4105 #ifdef SQLITE_DEBUG
4106 /*
4107 ** This function compares two index or table record keys in the same way
4108 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4109 ** this function deserializes and compares values using the
4110 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4111 ** in assert() statements to ensure that the optimized code in
4112 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4113 **
4114 ** Return true if the result of comparison is equivalent to desiredResult.
4115 ** Return false if there is a disagreement.
4116 */
vdbeRecordCompareDebug(int nKey1,const void * pKey1,const UnpackedRecord * pPKey2,int desiredResult)4117 static int vdbeRecordCompareDebug(
4118   int nKey1, const void *pKey1, /* Left key */
4119   const UnpackedRecord *pPKey2, /* Right key */
4120   int desiredResult             /* Correct answer */
4121 ){
4122   u32 d1;            /* Offset into aKey[] of next data element */
4123   u32 idx1;          /* Offset into aKey[] of next header element */
4124   u32 szHdr1;        /* Number of bytes in header */
4125   int i = 0;
4126   int rc = 0;
4127   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4128   KeyInfo *pKeyInfo;
4129   Mem mem1;
4130 
4131   pKeyInfo = pPKey2->pKeyInfo;
4132   if( pKeyInfo->db==0 ) return 1;
4133   mem1.enc = pKeyInfo->enc;
4134   mem1.db = pKeyInfo->db;
4135   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4136   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4137 
4138   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4139   ** We could initialize it, as shown here, to silence those complaints.
4140   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4141   ** the unnecessary initialization has a measurable negative performance
4142   ** impact, since this routine is a very high runner.  And so, we choose
4143   ** to ignore the compiler warnings and leave this variable uninitialized.
4144   */
4145   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4146 
4147   idx1 = getVarint32(aKey1, szHdr1);
4148   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4149   d1 = szHdr1;
4150   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4151   assert( pKeyInfo->aSortFlags!=0 );
4152   assert( pKeyInfo->nKeyField>0 );
4153   assert( idx1<=szHdr1 || CORRUPT_DB );
4154   do{
4155     u32 serial_type1;
4156 
4157     /* Read the serial types for the next element in each key. */
4158     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4159 
4160     /* Verify that there is enough key space remaining to avoid
4161     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4162     ** always be greater than or equal to the amount of required key space.
4163     ** Use that approximation to avoid the more expensive call to
4164     ** sqlite3VdbeSerialTypeLen() in the common case.
4165     */
4166     if( d1+(u64)serial_type1+2>(u64)nKey1
4167      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4168     ){
4169       break;
4170     }
4171 
4172     /* Extract the values to be compared.
4173     */
4174     sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4175     d1 += sqlite3VdbeSerialTypeLen(serial_type1);
4176 
4177     /* Do the comparison
4178     */
4179     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4180                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4181     if( rc!=0 ){
4182       assert( mem1.szMalloc==0 );  /* See comment below */
4183       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4184        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4185       ){
4186         rc = -rc;
4187       }
4188       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4189         rc = -rc;  /* Invert the result for DESC sort order. */
4190       }
4191       goto debugCompareEnd;
4192     }
4193     i++;
4194   }while( idx1<szHdr1 && i<pPKey2->nField );
4195 
4196   /* No memory allocation is ever used on mem1.  Prove this using
4197   ** the following assert().  If the assert() fails, it indicates a
4198   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4199   */
4200   assert( mem1.szMalloc==0 );
4201 
4202   /* rc==0 here means that one of the keys ran out of fields and
4203   ** all the fields up to that point were equal. Return the default_rc
4204   ** value.  */
4205   rc = pPKey2->default_rc;
4206 
4207 debugCompareEnd:
4208   if( desiredResult==0 && rc==0 ) return 1;
4209   if( desiredResult<0 && rc<0 ) return 1;
4210   if( desiredResult>0 && rc>0 ) return 1;
4211   if( CORRUPT_DB ) return 1;
4212   if( pKeyInfo->db->mallocFailed ) return 1;
4213   return 0;
4214 }
4215 #endif
4216 
4217 #ifdef SQLITE_DEBUG
4218 /*
4219 ** Count the number of fields (a.k.a. columns) in the record given by
4220 ** pKey,nKey.  The verify that this count is less than or equal to the
4221 ** limit given by pKeyInfo->nAllField.
4222 **
4223 ** If this constraint is not satisfied, it means that the high-speed
4224 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4225 ** not work correctly.  If this assert() ever fires, it probably means
4226 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4227 ** incorrectly.
4228 */
vdbeAssertFieldCountWithinLimits(int nKey,const void * pKey,const KeyInfo * pKeyInfo)4229 static void vdbeAssertFieldCountWithinLimits(
4230   int nKey, const void *pKey,   /* The record to verify */
4231   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4232 ){
4233   int nField = 0;
4234   u32 szHdr;
4235   u32 idx;
4236   u32 notUsed;
4237   const unsigned char *aKey = (const unsigned char*)pKey;
4238 
4239   if( CORRUPT_DB ) return;
4240   idx = getVarint32(aKey, szHdr);
4241   assert( nKey>=0 );
4242   assert( szHdr<=(u32)nKey );
4243   while( idx<szHdr ){
4244     idx += getVarint32(aKey+idx, notUsed);
4245     nField++;
4246   }
4247   assert( nField <= pKeyInfo->nAllField );
4248 }
4249 #else
4250 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4251 #endif
4252 
4253 /*
4254 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4255 ** using the collation sequence pColl. As usual, return a negative , zero
4256 ** or positive value if *pMem1 is less than, equal to or greater than
4257 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4258 */
vdbeCompareMemString(const Mem * pMem1,const Mem * pMem2,const CollSeq * pColl,u8 * prcErr)4259 static int vdbeCompareMemString(
4260   const Mem *pMem1,
4261   const Mem *pMem2,
4262   const CollSeq *pColl,
4263   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4264 ){
4265   if( pMem1->enc==pColl->enc ){
4266     /* The strings are already in the correct encoding.  Call the
4267      ** comparison function directly */
4268     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4269   }else{
4270     int rc;
4271     const void *v1, *v2;
4272     Mem c1;
4273     Mem c2;
4274     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4275     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4276     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4277     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4278     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4279     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4280     if( (v1==0 || v2==0) ){
4281       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4282       rc = 0;
4283     }else{
4284       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4285     }
4286     sqlite3VdbeMemReleaseMalloc(&c1);
4287     sqlite3VdbeMemReleaseMalloc(&c2);
4288     return rc;
4289   }
4290 }
4291 
4292 /*
4293 ** The input pBlob is guaranteed to be a Blob that is not marked
4294 ** with MEM_Zero.  Return true if it could be a zero-blob.
4295 */
isAllZero(const char * z,int n)4296 static int isAllZero(const char *z, int n){
4297   int i;
4298   for(i=0; i<n; i++){
4299     if( z[i] ) return 0;
4300   }
4301   return 1;
4302 }
4303 
4304 /*
4305 ** Compare two blobs.  Return negative, zero, or positive if the first
4306 ** is less than, equal to, or greater than the second, respectively.
4307 ** If one blob is a prefix of the other, then the shorter is the lessor.
4308 */
sqlite3BlobCompare(const Mem * pB1,const Mem * pB2)4309 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4310   int c;
4311   int n1 = pB1->n;
4312   int n2 = pB2->n;
4313 
4314   /* It is possible to have a Blob value that has some non-zero content
4315   ** followed by zero content.  But that only comes up for Blobs formed
4316   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4317   ** sqlite3MemCompare(). */
4318   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4319   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4320 
4321   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4322     if( pB1->flags & pB2->flags & MEM_Zero ){
4323       return pB1->u.nZero - pB2->u.nZero;
4324     }else if( pB1->flags & MEM_Zero ){
4325       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4326       return pB1->u.nZero - n2;
4327     }else{
4328       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4329       return n1 - pB2->u.nZero;
4330     }
4331   }
4332   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4333   if( c ) return c;
4334   return n1 - n2;
4335 }
4336 
4337 /*
4338 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4339 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4340 ** equal to, or greater than the second (double).
4341 */
sqlite3IntFloatCompare(i64 i,double r)4342 int sqlite3IntFloatCompare(i64 i, double r){
4343   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4344     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4345     testcase( x<r );
4346     testcase( x>r );
4347     testcase( x==r );
4348     if( x<r ) return -1;
4349     if( x>r ) return +1;  /*NO_TEST*/ /* work around bugs in gcov */
4350     return 0;             /*NO_TEST*/ /* work around bugs in gcov */
4351   }else{
4352     i64 y;
4353     double s;
4354     if( r<-9223372036854775808.0 ) return +1;
4355     if( r>=9223372036854775808.0 ) return -1;
4356     y = (i64)r;
4357     if( i<y ) return -1;
4358     if( i>y ) return +1;
4359     s = (double)i;
4360     if( s<r ) return -1;
4361     if( s>r ) return +1;
4362     return 0;
4363   }
4364 }
4365 
4366 /*
4367 ** Compare the values contained by the two memory cells, returning
4368 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4369 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4370 ** and reals) sorted numerically, followed by text ordered by the collating
4371 ** sequence pColl and finally blob's ordered by memcmp().
4372 **
4373 ** Two NULL values are considered equal by this function.
4374 */
sqlite3MemCompare(const Mem * pMem1,const Mem * pMem2,const CollSeq * pColl)4375 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4376   int f1, f2;
4377   int combined_flags;
4378 
4379   f1 = pMem1->flags;
4380   f2 = pMem2->flags;
4381   combined_flags = f1|f2;
4382   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4383 
4384   /* If one value is NULL, it is less than the other. If both values
4385   ** are NULL, return 0.
4386   */
4387   if( combined_flags&MEM_Null ){
4388     return (f2&MEM_Null) - (f1&MEM_Null);
4389   }
4390 
4391   /* At least one of the two values is a number
4392   */
4393   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4394     testcase( combined_flags & MEM_Int );
4395     testcase( combined_flags & MEM_Real );
4396     testcase( combined_flags & MEM_IntReal );
4397     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4398       testcase( f1 & f2 & MEM_Int );
4399       testcase( f1 & f2 & MEM_IntReal );
4400       if( pMem1->u.i < pMem2->u.i ) return -1;
4401       if( pMem1->u.i > pMem2->u.i ) return +1;
4402       return 0;
4403     }
4404     if( (f1 & f2 & MEM_Real)!=0 ){
4405       if( pMem1->u.r < pMem2->u.r ) return -1;
4406       if( pMem1->u.r > pMem2->u.r ) return +1;
4407       return 0;
4408     }
4409     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4410       testcase( f1 & MEM_Int );
4411       testcase( f1 & MEM_IntReal );
4412       if( (f2&MEM_Real)!=0 ){
4413         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4414       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4415         if( pMem1->u.i < pMem2->u.i ) return -1;
4416         if( pMem1->u.i > pMem2->u.i ) return +1;
4417         return 0;
4418       }else{
4419         return -1;
4420       }
4421     }
4422     if( (f1&MEM_Real)!=0 ){
4423       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4424         testcase( f2 & MEM_Int );
4425         testcase( f2 & MEM_IntReal );
4426         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4427       }else{
4428         return -1;
4429       }
4430     }
4431     return +1;
4432   }
4433 
4434   /* If one value is a string and the other is a blob, the string is less.
4435   ** If both are strings, compare using the collating functions.
4436   */
4437   if( combined_flags&MEM_Str ){
4438     if( (f1 & MEM_Str)==0 ){
4439       return 1;
4440     }
4441     if( (f2 & MEM_Str)==0 ){
4442       return -1;
4443     }
4444 
4445     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4446     assert( pMem1->enc==SQLITE_UTF8 ||
4447             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4448 
4449     /* The collation sequence must be defined at this point, even if
4450     ** the user deletes the collation sequence after the vdbe program is
4451     ** compiled (this was not always the case).
4452     */
4453     assert( !pColl || pColl->xCmp );
4454 
4455     if( pColl ){
4456       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4457     }
4458     /* If a NULL pointer was passed as the collate function, fall through
4459     ** to the blob case and use memcmp().  */
4460   }
4461 
4462   /* Both values must be blobs.  Compare using memcmp().  */
4463   return sqlite3BlobCompare(pMem1, pMem2);
4464 }
4465 
4466 
4467 /*
4468 ** The first argument passed to this function is a serial-type that
4469 ** corresponds to an integer - all values between 1 and 9 inclusive
4470 ** except 7. The second points to a buffer containing an integer value
4471 ** serialized according to serial_type. This function deserializes
4472 ** and returns the value.
4473 */
vdbeRecordDecodeInt(u32 serial_type,const u8 * aKey)4474 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4475   u32 y;
4476   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4477   switch( serial_type ){
4478     case 0:
4479     case 1:
4480       testcase( aKey[0]&0x80 );
4481       return ONE_BYTE_INT(aKey);
4482     case 2:
4483       testcase( aKey[0]&0x80 );
4484       return TWO_BYTE_INT(aKey);
4485     case 3:
4486       testcase( aKey[0]&0x80 );
4487       return THREE_BYTE_INT(aKey);
4488     case 4: {
4489       testcase( aKey[0]&0x80 );
4490       y = FOUR_BYTE_UINT(aKey);
4491       return (i64)*(int*)&y;
4492     }
4493     case 5: {
4494       testcase( aKey[0]&0x80 );
4495       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4496     }
4497     case 6: {
4498       u64 x = FOUR_BYTE_UINT(aKey);
4499       testcase( aKey[0]&0x80 );
4500       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4501       return (i64)*(i64*)&x;
4502     }
4503   }
4504 
4505   return (serial_type - 8);
4506 }
4507 
4508 /*
4509 ** This function compares the two table rows or index records
4510 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4511 ** or positive integer if key1 is less than, equal to or
4512 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4513 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4514 ** key must be a parsed key such as obtained from
4515 ** sqlite3VdbeParseRecord.
4516 **
4517 ** If argument bSkip is non-zero, it is assumed that the caller has already
4518 ** determined that the first fields of the keys are equal.
4519 **
4520 ** Key1 and Key2 do not have to contain the same number of fields. If all
4521 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4522 ** returned.
4523 **
4524 ** If database corruption is discovered, set pPKey2->errCode to
4525 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4526 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4527 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4528 */
sqlite3VdbeRecordCompareWithSkip(int nKey1,const void * pKey1,UnpackedRecord * pPKey2,int bSkip)4529 int sqlite3VdbeRecordCompareWithSkip(
4530   int nKey1, const void *pKey1,   /* Left key */
4531   UnpackedRecord *pPKey2,         /* Right key */
4532   int bSkip                       /* If true, skip the first field */
4533 ){
4534   u32 d1;                         /* Offset into aKey[] of next data element */
4535   int i;                          /* Index of next field to compare */
4536   u32 szHdr1;                     /* Size of record header in bytes */
4537   u32 idx1;                       /* Offset of first type in header */
4538   int rc = 0;                     /* Return value */
4539   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4540   KeyInfo *pKeyInfo;
4541   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4542   Mem mem1;
4543 
4544   /* If bSkip is true, then the caller has already determined that the first
4545   ** two elements in the keys are equal. Fix the various stack variables so
4546   ** that this routine begins comparing at the second field. */
4547   if( bSkip ){
4548     u32 s1 = aKey1[1];
4549     if( s1<0x80 ){
4550       idx1 = 2;
4551     }else{
4552       idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
4553     }
4554     szHdr1 = aKey1[0];
4555     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4556     i = 1;
4557     pRhs++;
4558   }else{
4559     if( (szHdr1 = aKey1[0])<0x80 ){
4560       idx1 = 1;
4561     }else{
4562       idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
4563     }
4564     d1 = szHdr1;
4565     i = 0;
4566   }
4567   if( d1>(unsigned)nKey1 ){
4568     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4569     return 0;  /* Corruption */
4570   }
4571 
4572   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4573   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4574        || CORRUPT_DB );
4575   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4576   assert( pPKey2->pKeyInfo->nKeyField>0 );
4577   assert( idx1<=szHdr1 || CORRUPT_DB );
4578   while( 1 /*exit-by-break*/ ){
4579     u32 serial_type;
4580 
4581     /* RHS is an integer */
4582     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4583       testcase( pRhs->flags & MEM_Int );
4584       testcase( pRhs->flags & MEM_IntReal );
4585       serial_type = aKey1[idx1];
4586       testcase( serial_type==12 );
4587       if( serial_type>=10 ){
4588         rc = serial_type==10 ? -1 : +1;
4589       }else if( serial_type==0 ){
4590         rc = -1;
4591       }else if( serial_type==7 ){
4592         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4593         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4594       }else{
4595         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4596         i64 rhs = pRhs->u.i;
4597         if( lhs<rhs ){
4598           rc = -1;
4599         }else if( lhs>rhs ){
4600           rc = +1;
4601         }
4602       }
4603     }
4604 
4605     /* RHS is real */
4606     else if( pRhs->flags & MEM_Real ){
4607       serial_type = aKey1[idx1];
4608       if( serial_type>=10 ){
4609         /* Serial types 12 or greater are strings and blobs (greater than
4610         ** numbers). Types 10 and 11 are currently "reserved for future
4611         ** use", so it doesn't really matter what the results of comparing
4612         ** them to numberic values are.  */
4613         rc = serial_type==10 ? -1 : +1;
4614       }else if( serial_type==0 ){
4615         rc = -1;
4616       }else{
4617         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4618         if( serial_type==7 ){
4619           if( mem1.u.r<pRhs->u.r ){
4620             rc = -1;
4621           }else if( mem1.u.r>pRhs->u.r ){
4622             rc = +1;
4623           }
4624         }else{
4625           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4626         }
4627       }
4628     }
4629 
4630     /* RHS is a string */
4631     else if( pRhs->flags & MEM_Str ){
4632       getVarint32NR(&aKey1[idx1], serial_type);
4633       testcase( serial_type==12 );
4634       if( serial_type<12 ){
4635         rc = -1;
4636       }else if( !(serial_type & 0x01) ){
4637         rc = +1;
4638       }else{
4639         mem1.n = (serial_type - 12) / 2;
4640         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4641         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4642         if( (d1+mem1.n) > (unsigned)nKey1
4643          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4644         ){
4645           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4646           return 0;                /* Corruption */
4647         }else if( pKeyInfo->aColl[i] ){
4648           mem1.enc = pKeyInfo->enc;
4649           mem1.db = pKeyInfo->db;
4650           mem1.flags = MEM_Str;
4651           mem1.z = (char*)&aKey1[d1];
4652           rc = vdbeCompareMemString(
4653               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4654           );
4655         }else{
4656           int nCmp = MIN(mem1.n, pRhs->n);
4657           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4658           if( rc==0 ) rc = mem1.n - pRhs->n;
4659         }
4660       }
4661     }
4662 
4663     /* RHS is a blob */
4664     else if( pRhs->flags & MEM_Blob ){
4665       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4666       getVarint32NR(&aKey1[idx1], serial_type);
4667       testcase( serial_type==12 );
4668       if( serial_type<12 || (serial_type & 0x01) ){
4669         rc = -1;
4670       }else{
4671         int nStr = (serial_type - 12) / 2;
4672         testcase( (d1+nStr)==(unsigned)nKey1 );
4673         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4674         if( (d1+nStr) > (unsigned)nKey1 ){
4675           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4676           return 0;                /* Corruption */
4677         }else if( pRhs->flags & MEM_Zero ){
4678           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4679             rc = 1;
4680           }else{
4681             rc = nStr - pRhs->u.nZero;
4682           }
4683         }else{
4684           int nCmp = MIN(nStr, pRhs->n);
4685           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4686           if( rc==0 ) rc = nStr - pRhs->n;
4687         }
4688       }
4689     }
4690 
4691     /* RHS is null */
4692     else{
4693       serial_type = aKey1[idx1];
4694       rc = (serial_type!=0 && serial_type!=10);
4695     }
4696 
4697     if( rc!=0 ){
4698       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4699       if( sortFlags ){
4700         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4701          || ((sortFlags & KEYINFO_ORDER_DESC)
4702            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4703         ){
4704           rc = -rc;
4705         }
4706       }
4707       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4708       assert( mem1.szMalloc==0 );  /* See comment below */
4709       return rc;
4710     }
4711 
4712     i++;
4713     if( i==pPKey2->nField ) break;
4714     pRhs++;
4715     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4716     if( d1>(unsigned)nKey1 ) break;
4717     idx1 += sqlite3VarintLen(serial_type);
4718     if( idx1>=(unsigned)szHdr1 ){
4719       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4720       return 0;  /* Corrupt index */
4721     }
4722   }
4723 
4724   /* No memory allocation is ever used on mem1.  Prove this using
4725   ** the following assert().  If the assert() fails, it indicates a
4726   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4727   assert( mem1.szMalloc==0 );
4728 
4729   /* rc==0 here means that one or both of the keys ran out of fields and
4730   ** all the fields up to that point were equal. Return the default_rc
4731   ** value.  */
4732   assert( CORRUPT_DB
4733        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4734        || pPKey2->pKeyInfo->db->mallocFailed
4735   );
4736   pPKey2->eqSeen = 1;
4737   return pPKey2->default_rc;
4738 }
sqlite3VdbeRecordCompare(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)4739 int sqlite3VdbeRecordCompare(
4740   int nKey1, const void *pKey1,   /* Left key */
4741   UnpackedRecord *pPKey2          /* Right key */
4742 ){
4743   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4744 }
4745 
4746 
4747 /*
4748 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4749 ** that (a) the first field of pPKey2 is an integer, and (b) the
4750 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4751 ** byte (i.e. is less than 128).
4752 **
4753 ** To avoid concerns about buffer overreads, this routine is only used
4754 ** on schemas where the maximum valid header size is 63 bytes or less.
4755 */
vdbeRecordCompareInt(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)4756 static int vdbeRecordCompareInt(
4757   int nKey1, const void *pKey1, /* Left key */
4758   UnpackedRecord *pPKey2        /* Right key */
4759 ){
4760   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4761   int serial_type = ((const u8*)pKey1)[1];
4762   int res;
4763   u32 y;
4764   u64 x;
4765   i64 v;
4766   i64 lhs;
4767 
4768   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4769   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4770   switch( serial_type ){
4771     case 1: { /* 1-byte signed integer */
4772       lhs = ONE_BYTE_INT(aKey);
4773       testcase( lhs<0 );
4774       break;
4775     }
4776     case 2: { /* 2-byte signed integer */
4777       lhs = TWO_BYTE_INT(aKey);
4778       testcase( lhs<0 );
4779       break;
4780     }
4781     case 3: { /* 3-byte signed integer */
4782       lhs = THREE_BYTE_INT(aKey);
4783       testcase( lhs<0 );
4784       break;
4785     }
4786     case 4: { /* 4-byte signed integer */
4787       y = FOUR_BYTE_UINT(aKey);
4788       lhs = (i64)*(int*)&y;
4789       testcase( lhs<0 );
4790       break;
4791     }
4792     case 5: { /* 6-byte signed integer */
4793       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4794       testcase( lhs<0 );
4795       break;
4796     }
4797     case 6: { /* 8-byte signed integer */
4798       x = FOUR_BYTE_UINT(aKey);
4799       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4800       lhs = *(i64*)&x;
4801       testcase( lhs<0 );
4802       break;
4803     }
4804     case 8:
4805       lhs = 0;
4806       break;
4807     case 9:
4808       lhs = 1;
4809       break;
4810 
4811     /* This case could be removed without changing the results of running
4812     ** this code. Including it causes gcc to generate a faster switch
4813     ** statement (since the range of switch targets now starts at zero and
4814     ** is contiguous) but does not cause any duplicate code to be generated
4815     ** (as gcc is clever enough to combine the two like cases). Other
4816     ** compilers might be similar.  */
4817     case 0: case 7:
4818       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4819 
4820     default:
4821       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4822   }
4823 
4824   assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
4825   v = pPKey2->u.i;
4826   if( v>lhs ){
4827     res = pPKey2->r1;
4828   }else if( v<lhs ){
4829     res = pPKey2->r2;
4830   }else if( pPKey2->nField>1 ){
4831     /* The first fields of the two keys are equal. Compare the trailing
4832     ** fields.  */
4833     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4834   }else{
4835     /* The first fields of the two keys are equal and there are no trailing
4836     ** fields. Return pPKey2->default_rc in this case. */
4837     res = pPKey2->default_rc;
4838     pPKey2->eqSeen = 1;
4839   }
4840 
4841   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4842   return res;
4843 }
4844 
4845 /*
4846 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4847 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4848 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4849 ** at the start of (pKey1/nKey1) fits in a single byte.
4850 */
vdbeRecordCompareString(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)4851 static int vdbeRecordCompareString(
4852   int nKey1, const void *pKey1, /* Left key */
4853   UnpackedRecord *pPKey2        /* Right key */
4854 ){
4855   const u8 *aKey1 = (const u8*)pKey1;
4856   int serial_type;
4857   int res;
4858 
4859   assert( pPKey2->aMem[0].flags & MEM_Str );
4860   assert( pPKey2->aMem[0].n == pPKey2->n );
4861   assert( pPKey2->aMem[0].z == pPKey2->u.z );
4862   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4863   serial_type = (signed char)(aKey1[1]);
4864 
4865 vrcs_restart:
4866   if( serial_type<12 ){
4867     if( serial_type<0 ){
4868       sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4869       if( serial_type>=12 ) goto vrcs_restart;
4870       assert( CORRUPT_DB );
4871     }
4872     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4873   }else if( !(serial_type & 0x01) ){
4874     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4875   }else{
4876     int nCmp;
4877     int nStr;
4878     int szHdr = aKey1[0];
4879 
4880     nStr = (serial_type-12) / 2;
4881     if( (szHdr + nStr) > nKey1 ){
4882       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4883       return 0;    /* Corruption */
4884     }
4885     nCmp = MIN( pPKey2->n, nStr );
4886     res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
4887 
4888     if( res>0 ){
4889       res = pPKey2->r2;
4890     }else if( res<0 ){
4891       res = pPKey2->r1;
4892     }else{
4893       res = nStr - pPKey2->n;
4894       if( res==0 ){
4895         if( pPKey2->nField>1 ){
4896           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4897         }else{
4898           res = pPKey2->default_rc;
4899           pPKey2->eqSeen = 1;
4900         }
4901       }else if( res>0 ){
4902         res = pPKey2->r2;
4903       }else{
4904         res = pPKey2->r1;
4905       }
4906     }
4907   }
4908 
4909   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4910        || CORRUPT_DB
4911        || pPKey2->pKeyInfo->db->mallocFailed
4912   );
4913   return res;
4914 }
4915 
4916 /*
4917 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4918 ** suitable for comparing serialized records to the unpacked record passed
4919 ** as the only argument.
4920 */
sqlite3VdbeFindCompare(UnpackedRecord * p)4921 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4922   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4923   ** that the size-of-header varint that occurs at the start of each record
4924   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4925   ** also assumes that it is safe to overread a buffer by at least the
4926   ** maximum possible legal header size plus 8 bytes. Because there is
4927   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4928   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4929   ** limit the size of the header to 64 bytes in cases where the first field
4930   ** is an integer.
4931   **
4932   ** The easiest way to enforce this limit is to consider only records with
4933   ** 13 fields or less. If the first field is an integer, the maximum legal
4934   ** header size is (12*5 + 1 + 1) bytes.  */
4935   if( p->pKeyInfo->nAllField<=13 ){
4936     int flags = p->aMem[0].flags;
4937     if( p->pKeyInfo->aSortFlags[0] ){
4938       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4939         return sqlite3VdbeRecordCompare;
4940       }
4941       p->r1 = 1;
4942       p->r2 = -1;
4943     }else{
4944       p->r1 = -1;
4945       p->r2 = 1;
4946     }
4947     if( (flags & MEM_Int) ){
4948       p->u.i = p->aMem[0].u.i;
4949       return vdbeRecordCompareInt;
4950     }
4951     testcase( flags & MEM_Real );
4952     testcase( flags & MEM_Null );
4953     testcase( flags & MEM_Blob );
4954     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4955      && p->pKeyInfo->aColl[0]==0
4956     ){
4957       assert( flags & MEM_Str );
4958       p->u.z = p->aMem[0].z;
4959       p->n = p->aMem[0].n;
4960       return vdbeRecordCompareString;
4961     }
4962   }
4963 
4964   return sqlite3VdbeRecordCompare;
4965 }
4966 
4967 /*
4968 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4969 ** Read the rowid (the last field in the record) and store it in *rowid.
4970 ** Return SQLITE_OK if everything works, or an error code otherwise.
4971 **
4972 ** pCur might be pointing to text obtained from a corrupt database file.
4973 ** So the content cannot be trusted.  Do appropriate checks on the content.
4974 */
sqlite3VdbeIdxRowid(sqlite3 * db,BtCursor * pCur,i64 * rowid)4975 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4976   i64 nCellKey = 0;
4977   int rc;
4978   u32 szHdr;        /* Size of the header */
4979   u32 typeRowid;    /* Serial type of the rowid */
4980   u32 lenRowid;     /* Size of the rowid */
4981   Mem m, v;
4982 
4983   /* Get the size of the index entry.  Only indices entries of less
4984   ** than 2GiB are support - anything large must be database corruption.
4985   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4986   ** this code can safely assume that nCellKey is 32-bits
4987   */
4988   assert( sqlite3BtreeCursorIsValid(pCur) );
4989   nCellKey = sqlite3BtreePayloadSize(pCur);
4990   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4991 
4992   /* Read in the complete content of the index entry */
4993   sqlite3VdbeMemInit(&m, db, 0);
4994   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4995   if( rc ){
4996     return rc;
4997   }
4998 
4999   /* The index entry must begin with a header size */
5000   getVarint32NR((u8*)m.z, szHdr);
5001   testcase( szHdr==3 );
5002   testcase( szHdr==(u32)m.n );
5003   testcase( szHdr>0x7fffffff );
5004   assert( m.n>=0 );
5005   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
5006     goto idx_rowid_corruption;
5007   }
5008 
5009   /* The last field of the index should be an integer - the ROWID.
5010   ** Verify that the last entry really is an integer. */
5011   getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
5012   testcase( typeRowid==1 );
5013   testcase( typeRowid==2 );
5014   testcase( typeRowid==3 );
5015   testcase( typeRowid==4 );
5016   testcase( typeRowid==5 );
5017   testcase( typeRowid==6 );
5018   testcase( typeRowid==8 );
5019   testcase( typeRowid==9 );
5020   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
5021     goto idx_rowid_corruption;
5022   }
5023   lenRowid = sqlite3SmallTypeSizes[typeRowid];
5024   testcase( (u32)m.n==szHdr+lenRowid );
5025   if( unlikely((u32)m.n<szHdr+lenRowid) ){
5026     goto idx_rowid_corruption;
5027   }
5028 
5029   /* Fetch the integer off the end of the index record */
5030   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
5031   *rowid = v.u.i;
5032   sqlite3VdbeMemReleaseMalloc(&m);
5033   return SQLITE_OK;
5034 
5035   /* Jump here if database corruption is detected after m has been
5036   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
5037 idx_rowid_corruption:
5038   testcase( m.szMalloc!=0 );
5039   sqlite3VdbeMemReleaseMalloc(&m);
5040   return SQLITE_CORRUPT_BKPT;
5041 }
5042 
5043 /*
5044 ** Compare the key of the index entry that cursor pC is pointing to against
5045 ** the key string in pUnpacked.  Write into *pRes a number
5046 ** that is negative, zero, or positive if pC is less than, equal to,
5047 ** or greater than pUnpacked.  Return SQLITE_OK on success.
5048 **
5049 ** pUnpacked is either created without a rowid or is truncated so that it
5050 ** omits the rowid at the end.  The rowid at the end of the index entry
5051 ** is ignored as well.  Hence, this routine only compares the prefixes
5052 ** of the keys prior to the final rowid, not the entire key.
5053 */
sqlite3VdbeIdxKeyCompare(sqlite3 * db,VdbeCursor * pC,UnpackedRecord * pUnpacked,int * res)5054 int sqlite3VdbeIdxKeyCompare(
5055   sqlite3 *db,                     /* Database connection */
5056   VdbeCursor *pC,                  /* The cursor to compare against */
5057   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
5058   int *res                         /* Write the comparison result here */
5059 ){
5060   i64 nCellKey = 0;
5061   int rc;
5062   BtCursor *pCur;
5063   Mem m;
5064 
5065   assert( pC->eCurType==CURTYPE_BTREE );
5066   pCur = pC->uc.pCursor;
5067   assert( sqlite3BtreeCursorIsValid(pCur) );
5068   nCellKey = sqlite3BtreePayloadSize(pCur);
5069   /* nCellKey will always be between 0 and 0xffffffff because of the way
5070   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5071   if( nCellKey<=0 || nCellKey>0x7fffffff ){
5072     *res = 0;
5073     return SQLITE_CORRUPT_BKPT;
5074   }
5075   sqlite3VdbeMemInit(&m, db, 0);
5076   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5077   if( rc ){
5078     return rc;
5079   }
5080   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5081   sqlite3VdbeMemReleaseMalloc(&m);
5082   return SQLITE_OK;
5083 }
5084 
5085 /*
5086 ** This routine sets the value to be returned by subsequent calls to
5087 ** sqlite3_changes() on the database handle 'db'.
5088 */
sqlite3VdbeSetChanges(sqlite3 * db,i64 nChange)5089 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5090   assert( sqlite3_mutex_held(db->mutex) );
5091   db->nChange = nChange;
5092   db->nTotalChange += nChange;
5093 }
5094 
5095 /*
5096 ** Set a flag in the vdbe to update the change counter when it is finalised
5097 ** or reset.
5098 */
sqlite3VdbeCountChanges(Vdbe * v)5099 void sqlite3VdbeCountChanges(Vdbe *v){
5100   v->changeCntOn = 1;
5101 }
5102 
5103 /*
5104 ** Mark every prepared statement associated with a database connection
5105 ** as expired.
5106 **
5107 ** An expired statement means that recompilation of the statement is
5108 ** recommend.  Statements expire when things happen that make their
5109 ** programs obsolete.  Removing user-defined functions or collating
5110 ** sequences, or changing an authorization function are the types of
5111 ** things that make prepared statements obsolete.
5112 **
5113 ** If iCode is 1, then expiration is advisory.  The statement should
5114 ** be reprepared before being restarted, but if it is already running
5115 ** it is allowed to run to completion.
5116 **
5117 ** Internally, this function just sets the Vdbe.expired flag on all
5118 ** prepared statements.  The flag is set to 1 for an immediate expiration
5119 ** and set to 2 for an advisory expiration.
5120 */
sqlite3ExpirePreparedStatements(sqlite3 * db,int iCode)5121 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5122   Vdbe *p;
5123   for(p = db->pVdbe; p; p=p->pVNext){
5124     p->expired = iCode+1;
5125   }
5126 }
5127 
5128 /*
5129 ** Return the database associated with the Vdbe.
5130 */
sqlite3VdbeDb(Vdbe * v)5131 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5132   return v->db;
5133 }
5134 
5135 /*
5136 ** Return the SQLITE_PREPARE flags for a Vdbe.
5137 */
sqlite3VdbePrepareFlags(Vdbe * v)5138 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5139   return v->prepFlags;
5140 }
5141 
5142 /*
5143 ** Return a pointer to an sqlite3_value structure containing the value bound
5144 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5145 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5146 ** constants) to the value before returning it.
5147 **
5148 ** The returned value must be freed by the caller using sqlite3ValueFree().
5149 */
sqlite3VdbeGetBoundValue(Vdbe * v,int iVar,u8 aff)5150 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5151   assert( iVar>0 );
5152   if( v ){
5153     Mem *pMem = &v->aVar[iVar-1];
5154     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5155     if( 0==(pMem->flags & MEM_Null) ){
5156       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5157       if( pRet ){
5158         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5159         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5160       }
5161       return pRet;
5162     }
5163   }
5164   return 0;
5165 }
5166 
5167 /*
5168 ** Configure SQL variable iVar so that binding a new value to it signals
5169 ** to sqlite3_reoptimize() that re-preparing the statement may result
5170 ** in a better query plan.
5171 */
sqlite3VdbeSetVarmask(Vdbe * v,int iVar)5172 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5173   assert( iVar>0 );
5174   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5175   if( iVar>=32 ){
5176     v->expmask |= 0x80000000;
5177   }else{
5178     v->expmask |= ((u32)1 << (iVar-1));
5179   }
5180 }
5181 
5182 /*
5183 ** Cause a function to throw an error if it was call from OP_PureFunc
5184 ** rather than OP_Function.
5185 **
5186 ** OP_PureFunc means that the function must be deterministic, and should
5187 ** throw an error if it is given inputs that would make it non-deterministic.
5188 ** This routine is invoked by date/time functions that use non-deterministic
5189 ** features such as 'now'.
5190 */
sqlite3NotPureFunc(sqlite3_context * pCtx)5191 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5192   const VdbeOp *pOp;
5193 #ifdef SQLITE_ENABLE_STAT4
5194   if( pCtx->pVdbe==0 ) return 1;
5195 #endif
5196   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5197   if( pOp->opcode==OP_PureFunc ){
5198     const char *zContext;
5199     char *zMsg;
5200     if( pOp->p5 & NC_IsCheck ){
5201       zContext = "a CHECK constraint";
5202     }else if( pOp->p5 & NC_GenCol ){
5203       zContext = "a generated column";
5204     }else{
5205       zContext = "an index";
5206     }
5207     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5208                            pCtx->pFunc->zName, zContext);
5209     sqlite3_result_error(pCtx, zMsg, -1);
5210     sqlite3_free(zMsg);
5211     return 0;
5212   }
5213   return 1;
5214 }
5215 
5216 #ifndef SQLITE_OMIT_VIRTUALTABLE
5217 /*
5218 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5219 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5220 ** in memory obtained from sqlite3DbMalloc).
5221 */
sqlite3VtabImportErrmsg(Vdbe * p,sqlite3_vtab * pVtab)5222 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5223   if( pVtab->zErrMsg ){
5224     sqlite3 *db = p->db;
5225     sqlite3DbFree(db, p->zErrMsg);
5226     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5227     sqlite3_free(pVtab->zErrMsg);
5228     pVtab->zErrMsg = 0;
5229   }
5230 }
5231 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5232 
5233 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5234 
5235 /*
5236 ** If the second argument is not NULL, release any allocations associated
5237 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5238 ** structure itself, using sqlite3DbFree().
5239 **
5240 ** This function is used to free UnpackedRecord structures allocated by
5241 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5242 */
vdbeFreeUnpacked(sqlite3 * db,int nField,UnpackedRecord * p)5243 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5244   assert( db!=0 );
5245   if( p ){
5246     int i;
5247     for(i=0; i<nField; i++){
5248       Mem *pMem = &p->aMem[i];
5249       if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
5250     }
5251     sqlite3DbNNFreeNN(db, p);
5252   }
5253 }
5254 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5255 
5256 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5257 /*
5258 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5259 ** then cursor passed as the second argument should point to the row about
5260 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5261 ** the required value will be read from the row the cursor points to.
5262 */
sqlite3VdbePreUpdateHook(Vdbe * v,VdbeCursor * pCsr,int op,const char * zDb,Table * pTab,i64 iKey1,int iReg,int iBlobWrite)5263 void sqlite3VdbePreUpdateHook(
5264   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5265   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5266   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5267   const char *zDb,                /* Database name */
5268   Table *pTab,                    /* Modified table */
5269   i64 iKey1,                      /* Initial key value */
5270   int iReg,                       /* Register for new.* record */
5271   int iBlobWrite
5272 ){
5273   sqlite3 *db = v->db;
5274   i64 iKey2;
5275   PreUpdate preupdate;
5276   const char *zTbl = pTab->zName;
5277   static const u8 fakeSortOrder = 0;
5278 
5279   assert( db->pPreUpdate==0 );
5280   memset(&preupdate, 0, sizeof(PreUpdate));
5281   if( HasRowid(pTab)==0 ){
5282     iKey1 = iKey2 = 0;
5283     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5284   }else{
5285     if( op==SQLITE_UPDATE ){
5286       iKey2 = v->aMem[iReg].u.i;
5287     }else{
5288       iKey2 = iKey1;
5289     }
5290   }
5291 
5292   assert( pCsr!=0 );
5293   assert( pCsr->eCurType==CURTYPE_BTREE );
5294   assert( pCsr->nField==pTab->nCol
5295        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5296   );
5297 
5298   preupdate.v = v;
5299   preupdate.pCsr = pCsr;
5300   preupdate.op = op;
5301   preupdate.iNewReg = iReg;
5302   preupdate.keyinfo.db = db;
5303   preupdate.keyinfo.enc = ENC(db);
5304   preupdate.keyinfo.nKeyField = pTab->nCol;
5305   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5306   preupdate.iKey1 = iKey1;
5307   preupdate.iKey2 = iKey2;
5308   preupdate.pTab = pTab;
5309   preupdate.iBlobWrite = iBlobWrite;
5310 
5311   db->pPreUpdate = &preupdate;
5312   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5313   db->pPreUpdate = 0;
5314   sqlite3DbFree(db, preupdate.aRecord);
5315   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5316   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5317   if( preupdate.aNew ){
5318     int i;
5319     for(i=0; i<pCsr->nField; i++){
5320       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5321     }
5322     sqlite3DbNNFreeNN(db, preupdate.aNew);
5323   }
5324 }
5325 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5326