xref: /f-stack/freebsd/kern/uipc_socket.c (revision 22ce4aff)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/fcntl.h>
116 #include <sys/limits.h>
117 #include <sys/lock.h>
118 #include <sys/mac.h>
119 #include <sys/malloc.h>
120 #include <sys/mbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/domain.h>
123 #include <sys/file.h>			/* for struct knote */
124 #include <sys/hhook.h>
125 #include <sys/kernel.h>
126 #include <sys/khelp.h>
127 #include <sys/ktls.h>
128 #include <sys/event.h>
129 #include <sys/eventhandler.h>
130 #include <sys/poll.h>
131 #include <sys/proc.h>
132 #include <sys/protosw.h>
133 #include <sys/sbuf.h>
134 #include <sys/socket.h>
135 #include <sys/socketvar.h>
136 #include <sys/resourcevar.h>
137 #include <net/route.h>
138 #include <sys/signalvar.h>
139 #include <sys/stat.h>
140 #include <sys/sx.h>
141 #include <sys/sysctl.h>
142 #include <sys/taskqueue.h>
143 #include <sys/uio.h>
144 #include <sys/un.h>
145 #include <sys/unpcb.h>
146 #include <sys/jail.h>
147 #include <sys/syslog.h>
148 #include <netinet/in.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/tcp.h>
151 
152 #include <net/vnet.h>
153 
154 #include <security/mac/mac_framework.h>
155 
156 #include <vm/uma.h>
157 
158 #ifdef COMPAT_FREEBSD32
159 #include <sys/mount.h>
160 #include <sys/sysent.h>
161 #include <compat/freebsd32/freebsd32.h>
162 #endif
163 
164 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
165 		    int flags);
166 static void	so_rdknl_lock(void *);
167 static void	so_rdknl_unlock(void *);
168 static void	so_rdknl_assert_lock(void *, int);
169 static void	so_wrknl_lock(void *);
170 static void	so_wrknl_unlock(void *);
171 static void	so_wrknl_assert_lock(void *, int);
172 
173 static void	filt_sordetach(struct knote *kn);
174 static int	filt_soread(struct knote *kn, long hint);
175 static void	filt_sowdetach(struct knote *kn);
176 static int	filt_sowrite(struct knote *kn, long hint);
177 static int	filt_soempty(struct knote *kn, long hint);
178 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
179 fo_kqfilter_t	soo_kqfilter;
180 
181 static struct filterops soread_filtops = {
182 	.f_isfd = 1,
183 	.f_detach = filt_sordetach,
184 	.f_event = filt_soread,
185 };
186 static struct filterops sowrite_filtops = {
187 	.f_isfd = 1,
188 	.f_detach = filt_sowdetach,
189 	.f_event = filt_sowrite,
190 };
191 static struct filterops soempty_filtops = {
192 	.f_isfd = 1,
193 	.f_detach = filt_sowdetach,
194 	.f_event = filt_soempty,
195 };
196 
197 so_gen_t	so_gencnt;	/* generation count for sockets */
198 
199 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
200 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
201 
202 #define	VNET_SO_ASSERT(so)						\
203 	VNET_ASSERT(curvnet != NULL,					\
204 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
205 
206 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
207 #define	V_socket_hhh		VNET(socket_hhh)
208 
209 /*
210  * Limit on the number of connections in the listen queue waiting
211  * for accept(2).
212  * NB: The original sysctl somaxconn is still available but hidden
213  * to prevent confusion about the actual purpose of this number.
214  */
215 static u_int somaxconn = SOMAXCONN;
216 
217 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)218 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
219 {
220 	int error;
221 	int val;
222 
223 	val = somaxconn;
224 	error = sysctl_handle_int(oidp, &val, 0, req);
225 	if (error || !req->newptr )
226 		return (error);
227 
228 	/*
229 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
230 	 *   3 * so_qlimit / 2
231 	 * below, will not overflow.
232          */
233 
234 	if (val < 1 || val > UINT_MAX / 3)
235 		return (EINVAL);
236 
237 	somaxconn = val;
238 	return (0);
239 }
240 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
241     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
242     sysctl_somaxconn, "I",
243     "Maximum listen socket pending connection accept queue size");
244 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
245     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0,
246     sizeof(int), sysctl_somaxconn, "I",
247     "Maximum listen socket pending connection accept queue size (compat)");
248 
249 static int numopensockets;
250 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
251     &numopensockets, 0, "Number of open sockets");
252 
253 /*
254  * accept_mtx locks down per-socket fields relating to accept queues.  See
255  * socketvar.h for an annotation of the protected fields of struct socket.
256  */
257 struct mtx accept_mtx;
258 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
259 
260 /*
261  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
262  * so_gencnt field.
263  */
264 static struct mtx so_global_mtx;
265 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
266 
267 /*
268  * General IPC sysctl name space, used by sockets and a variety of other IPC
269  * types.
270  */
271 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
272     "IPC");
273 
274 /*
275  * Initialize the socket subsystem and set up the socket
276  * memory allocator.
277  */
278 static uma_zone_t socket_zone;
279 int	maxsockets;
280 
281 static void
socket_zone_change(void * tag)282 socket_zone_change(void *tag)
283 {
284 
285 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
286 }
287 
288 static void
socket_hhook_register(int subtype)289 socket_hhook_register(int subtype)
290 {
291 
292 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
293 	    &V_socket_hhh[subtype],
294 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
295 		printf("%s: WARNING: unable to register hook\n", __func__);
296 }
297 
298 static void
socket_hhook_deregister(int subtype)299 socket_hhook_deregister(int subtype)
300 {
301 
302 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
303 		printf("%s: WARNING: unable to deregister hook\n", __func__);
304 }
305 
306 static void
socket_init(void * tag)307 socket_init(void *tag)
308 {
309 
310 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
311 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
312 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
313 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
314 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
315 	    EVENTHANDLER_PRI_FIRST);
316 }
317 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
318 
319 static void
socket_vnet_init(const void * unused __unused)320 socket_vnet_init(const void *unused __unused)
321 {
322 	int i;
323 
324 	/* We expect a contiguous range */
325 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
326 		socket_hhook_register(i);
327 }
328 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
329     socket_vnet_init, NULL);
330 
331 static void
socket_vnet_uninit(const void * unused __unused)332 socket_vnet_uninit(const void *unused __unused)
333 {
334 	int i;
335 
336 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
337 		socket_hhook_deregister(i);
338 }
339 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
340     socket_vnet_uninit, NULL);
341 
342 /*
343  * Initialise maxsockets.  This SYSINIT must be run after
344  * tunable_mbinit().
345  */
346 static void
init_maxsockets(void * ignored)347 init_maxsockets(void *ignored)
348 {
349 
350 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
351 	maxsockets = imax(maxsockets, maxfiles);
352 }
353 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
354 
355 /*
356  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
357  * of the change so that they can update their dependent limits as required.
358  */
359 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)360 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
361 {
362 	int error, newmaxsockets;
363 
364 	newmaxsockets = maxsockets;
365 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
366 	if (error == 0 && req->newptr) {
367 		if (newmaxsockets > maxsockets &&
368 		    newmaxsockets <= maxfiles) {
369 			maxsockets = newmaxsockets;
370 			EVENTHANDLER_INVOKE(maxsockets_change);
371 		} else
372 			error = EINVAL;
373 	}
374 	return (error);
375 }
376 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
377     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0,
378     sysctl_maxsockets, "IU",
379     "Maximum number of sockets available");
380 
381 /*
382  * Socket operation routines.  These routines are called by the routines in
383  * sys_socket.c or from a system process, and implement the semantics of
384  * socket operations by switching out to the protocol specific routines.
385  */
386 
387 /*
388  * Get a socket structure from our zone, and initialize it.  Note that it
389  * would probably be better to allocate socket and PCB at the same time, but
390  * I'm not convinced that all the protocols can be easily modified to do
391  * this.
392  *
393  * soalloc() returns a socket with a ref count of 0.
394  */
395 static struct socket *
soalloc(struct vnet * vnet)396 soalloc(struct vnet *vnet)
397 {
398 	struct socket *so;
399 
400 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
401 	if (so == NULL)
402 		return (NULL);
403 #ifdef MAC
404 	if (mac_socket_init(so, M_NOWAIT) != 0) {
405 		uma_zfree(socket_zone, so);
406 		return (NULL);
407 	}
408 #endif
409 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
410 		uma_zfree(socket_zone, so);
411 		return (NULL);
412 	}
413 
414 	/*
415 	 * The socket locking protocol allows to lock 2 sockets at a time,
416 	 * however, the first one must be a listening socket.  WITNESS lacks
417 	 * a feature to change class of an existing lock, so we use DUPOK.
418 	 */
419 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
420 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
421 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
422 	so->so_rcv.sb_sel = &so->so_rdsel;
423 	so->so_snd.sb_sel = &so->so_wrsel;
424 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
425 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
426 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
427 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
428 #ifndef FSTACK
429 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
430 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
431 #endif
432 #ifdef VIMAGE
433 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
434 	    __func__, __LINE__, so));
435 	so->so_vnet = vnet;
436 #endif
437 	/* We shouldn't need the so_global_mtx */
438 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
439 		/* Do we need more comprehensive error returns? */
440 		uma_zfree(socket_zone, so);
441 		return (NULL);
442 	}
443 	mtx_lock(&so_global_mtx);
444 	so->so_gencnt = ++so_gencnt;
445 	++numopensockets;
446 #ifdef VIMAGE
447 	vnet->vnet_sockcnt++;
448 #endif
449 	mtx_unlock(&so_global_mtx);
450 
451 	return (so);
452 }
453 
454 /*
455  * Free the storage associated with a socket at the socket layer, tear down
456  * locks, labels, etc.  All protocol state is assumed already to have been
457  * torn down (and possibly never set up) by the caller.
458  */
459 static void
sodealloc(struct socket * so)460 sodealloc(struct socket *so)
461 {
462 
463 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
464 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
465 
466 	mtx_lock(&so_global_mtx);
467 	so->so_gencnt = ++so_gencnt;
468 	--numopensockets;	/* Could be below, but faster here. */
469 #ifdef VIMAGE
470 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
471 	    __func__, __LINE__, so));
472 	so->so_vnet->vnet_sockcnt--;
473 #endif
474 	mtx_unlock(&so_global_mtx);
475 #ifdef MAC
476 	mac_socket_destroy(so);
477 #endif
478 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
479 
480 	crfree(so->so_cred);
481 	khelp_destroy_osd(&so->osd);
482 	if (SOLISTENING(so)) {
483 		if (so->sol_accept_filter != NULL)
484 			accept_filt_setopt(so, NULL);
485 	} else {
486 		if (so->so_rcv.sb_hiwat)
487 			(void)chgsbsize(so->so_cred->cr_uidinfo,
488 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
489 		if (so->so_snd.sb_hiwat)
490 			(void)chgsbsize(so->so_cred->cr_uidinfo,
491 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
492 		sx_destroy(&so->so_snd.sb_sx);
493 		sx_destroy(&so->so_rcv.sb_sx);
494 		SOCKBUF_LOCK_DESTROY(&so->so_snd);
495 		SOCKBUF_LOCK_DESTROY(&so->so_rcv);
496 	}
497 	mtx_destroy(&so->so_lock);
498 	uma_zfree(socket_zone, so);
499 }
500 
501 /*
502  * socreate returns a socket with a ref count of 1.  The socket should be
503  * closed with soclose().
504  */
505 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)506 socreate(int dom, struct socket **aso, int type, int proto,
507     struct ucred *cred, struct thread *td)
508 {
509 	struct protosw *prp;
510 	struct socket *so;
511 	int error;
512 
513 	if (proto)
514 		prp = pffindproto(dom, proto, type);
515 	else
516 		prp = pffindtype(dom, type);
517 
518 	if (prp == NULL) {
519 		/* No support for domain. */
520 		if (pffinddomain(dom) == NULL)
521 			return (EAFNOSUPPORT);
522 		/* No support for socket type. */
523 		if (proto == 0 && type != 0)
524 			return (EPROTOTYPE);
525 		return (EPROTONOSUPPORT);
526 	}
527 	if (prp->pr_usrreqs->pru_attach == NULL ||
528 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
529 		return (EPROTONOSUPPORT);
530 
531 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
532 		return (EPROTONOSUPPORT);
533 
534 	if (prp->pr_type != type)
535 		return (EPROTOTYPE);
536 	so = soalloc(CRED_TO_VNET(cred));
537 	if (so == NULL)
538 		return (ENOBUFS);
539 
540 	so->so_type = type;
541 	so->so_cred = crhold(cred);
542 	if ((prp->pr_domain->dom_family == PF_INET) ||
543 	    (prp->pr_domain->dom_family == PF_INET6) ||
544 	    (prp->pr_domain->dom_family == PF_ROUTE))
545 		so->so_fibnum = td->td_proc->p_fibnum;
546 	else
547 		so->so_fibnum = 0;
548 	so->so_proto = prp;
549 #ifdef MAC
550 	mac_socket_create(cred, so);
551 #endif
552 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
553 	    so_rdknl_assert_lock);
554 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
555 	    so_wrknl_assert_lock);
556 	/*
557 	 * Auto-sizing of socket buffers is managed by the protocols and
558 	 * the appropriate flags must be set in the pru_attach function.
559 	 */
560 	CURVNET_SET(so->so_vnet);
561 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
562 	CURVNET_RESTORE();
563 	if (error) {
564 		sodealloc(so);
565 		return (error);
566 	}
567 	soref(so);
568 	*aso = so;
569 	return (0);
570 }
571 
572 #ifdef REGRESSION
573 static int regression_sonewconn_earlytest = 1;
574 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
575     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
576 #endif
577 
578 static struct timeval overinterval = { 60, 0 };
579 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
580     &overinterval,
581     "Delay in seconds between warnings for listen socket overflows");
582 
583 /*
584  * When an attempt at a new connection is noted on a socket which accepts
585  * connections, sonewconn is called.  If the connection is possible (subject
586  * to space constraints, etc.) then we allocate a new structure, properly
587  * linked into the data structure of the original socket, and return this.
588  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
589  *
590  * Note: the ref count on the socket is 0 on return.
591  */
592 struct socket *
sonewconn(struct socket * head,int connstatus)593 sonewconn(struct socket *head, int connstatus)
594 {
595 	struct sbuf descrsb;
596 	struct socket *so;
597 	int len, overcount;
598 	u_int qlen;
599 	const char localprefix[] = "local:";
600 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
601 #if defined(INET6)
602 	char addrbuf[INET6_ADDRSTRLEN];
603 #elif defined(INET)
604 	char addrbuf[INET_ADDRSTRLEN];
605 #endif
606 	bool dolog, over;
607 
608 	SOLISTEN_LOCK(head);
609 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
610 #ifdef REGRESSION
611 	if (regression_sonewconn_earlytest && over) {
612 #else
613 	if (over) {
614 #endif
615 		head->sol_overcount++;
616 		dolog = !!ratecheck(&head->sol_lastover, &overinterval);
617 
618 		/*
619 		 * If we're going to log, copy the overflow count and queue
620 		 * length from the listen socket before dropping the lock.
621 		 * Also, reset the overflow count.
622 		 */
623 		if (dolog) {
624 			overcount = head->sol_overcount;
625 			head->sol_overcount = 0;
626 			qlen = head->sol_qlen;
627 		}
628 		SOLISTEN_UNLOCK(head);
629 
630 		if (dolog) {
631 			/*
632 			 * Try to print something descriptive about the
633 			 * socket for the error message.
634 			 */
635 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
636 			    SBUF_FIXEDLEN);
637 			switch (head->so_proto->pr_domain->dom_family) {
638 #if defined(INET) || defined(INET6)
639 #ifdef INET
640 			case AF_INET:
641 #endif
642 #ifdef INET6
643 			case AF_INET6:
644 				if (head->so_proto->pr_domain->dom_family ==
645 				    AF_INET6 ||
646 				    (sotoinpcb(head)->inp_inc.inc_flags &
647 				    INC_ISIPV6)) {
648 					ip6_sprintf(addrbuf,
649 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
650 					sbuf_printf(&descrsb, "[%s]", addrbuf);
651 				} else
652 #endif
653 				{
654 #ifdef INET
655 					inet_ntoa_r(
656 					    sotoinpcb(head)->inp_inc.inc_laddr,
657 					    addrbuf);
658 					sbuf_cat(&descrsb, addrbuf);
659 #endif
660 				}
661 				sbuf_printf(&descrsb, ":%hu (proto %u)",
662 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
663 				    head->so_proto->pr_protocol);
664 				break;
665 #endif /* INET || INET6 */
666 			case AF_UNIX:
667 				sbuf_cat(&descrsb, localprefix);
668 				if (sotounpcb(head)->unp_addr != NULL)
669 					len =
670 					    sotounpcb(head)->unp_addr->sun_len -
671 					    offsetof(struct sockaddr_un,
672 					    sun_path);
673 				else
674 					len = 0;
675 				if (len > 0)
676 					sbuf_bcat(&descrsb,
677 					    sotounpcb(head)->unp_addr->sun_path,
678 					    len);
679 				else
680 					sbuf_cat(&descrsb, "(unknown)");
681 				break;
682 			}
683 
684 			/*
685 			 * If we can't print something more specific, at least
686 			 * print the domain name.
687 			 */
688 			if (sbuf_finish(&descrsb) != 0 ||
689 			    sbuf_len(&descrsb) <= 0) {
690 				sbuf_clear(&descrsb);
691 				sbuf_cat(&descrsb,
692 				    head->so_proto->pr_domain->dom_name ?:
693 				    "unknown");
694 				sbuf_finish(&descrsb);
695 			}
696 			KASSERT(sbuf_len(&descrsb) > 0,
697 			    ("%s: sbuf creation failed", __func__));
698 			log(LOG_DEBUG,
699 			    "%s: pcb %p (%s): Listen queue overflow: "
700 			    "%i already in queue awaiting acceptance "
701 			    "(%d occurrences)\n",
702 			    __func__, head->so_pcb, sbuf_data(&descrsb),
703 			    qlen, overcount);
704 			sbuf_delete(&descrsb);
705 
706 			overcount = 0;
707 		}
708 
709 		return (NULL);
710 	}
711 	SOLISTEN_UNLOCK(head);
712 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
713 	    __func__, head));
714 	so = soalloc(head->so_vnet);
715 	if (so == NULL) {
716 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
717 		    "limit reached or out of memory\n",
718 		    __func__, head->so_pcb);
719 		return (NULL);
720 	}
721 	so->so_listen = head;
722 	so->so_type = head->so_type;
723 	so->so_linger = head->so_linger;
724 	so->so_state = head->so_state | SS_NOFDREF;
725 	so->so_fibnum = head->so_fibnum;
726 	so->so_proto = head->so_proto;
727 	so->so_cred = crhold(head->so_cred);
728 #ifdef MAC
729 	mac_socket_newconn(head, so);
730 #endif
731 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
732 	    so_rdknl_assert_lock);
733 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
734 	    so_wrknl_assert_lock);
735 	VNET_SO_ASSERT(head);
736 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
737 		sodealloc(so);
738 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
739 		    __func__, head->so_pcb);
740 		return (NULL);
741 	}
742 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
743 		sodealloc(so);
744 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
745 		    __func__, head->so_pcb);
746 		return (NULL);
747 	}
748 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
749 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
750 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
751 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
752 	so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
753 	so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
754 
755 	SOLISTEN_LOCK(head);
756 	if (head->sol_accept_filter != NULL)
757 		connstatus = 0;
758 	so->so_state |= connstatus;
759 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
760 	soref(head); /* A socket on (in)complete queue refs head. */
761 	if (connstatus) {
762 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
763 		so->so_qstate = SQ_COMP;
764 		head->sol_qlen++;
765 		solisten_wakeup(head);	/* unlocks */
766 	} else {
767 		/*
768 		 * Keep removing sockets from the head until there's room for
769 		 * us to insert on the tail.  In pre-locking revisions, this
770 		 * was a simple if(), but as we could be racing with other
771 		 * threads and soabort() requires dropping locks, we must
772 		 * loop waiting for the condition to be true.
773 		 */
774 		while (head->sol_incqlen > head->sol_qlimit) {
775 			struct socket *sp;
776 
777 			sp = TAILQ_FIRST(&head->sol_incomp);
778 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
779 			head->sol_incqlen--;
780 			SOCK_LOCK(sp);
781 			sp->so_qstate = SQ_NONE;
782 			sp->so_listen = NULL;
783 			SOCK_UNLOCK(sp);
784 			sorele(head);	/* does SOLISTEN_UNLOCK, head stays */
785 			soabort(sp);
786 			SOLISTEN_LOCK(head);
787 		}
788 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
789 		so->so_qstate = SQ_INCOMP;
790 		head->sol_incqlen++;
791 		SOLISTEN_UNLOCK(head);
792 	}
793 	return (so);
794 }
795 
796 #if defined(SCTP) || defined(SCTP_SUPPORT)
797 /*
798  * Socket part of sctp_peeloff().  Detach a new socket from an
799  * association.  The new socket is returned with a reference.
800  */
801 struct socket *
802 sopeeloff(struct socket *head)
803 {
804 	struct socket *so;
805 
806 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
807 	    __func__, __LINE__, head));
808 	so = soalloc(head->so_vnet);
809 	if (so == NULL) {
810 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
811 		    "limit reached or out of memory\n",
812 		    __func__, head->so_pcb);
813 		return (NULL);
814 	}
815 	so->so_type = head->so_type;
816 	so->so_options = head->so_options;
817 	so->so_linger = head->so_linger;
818 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
819 	so->so_fibnum = head->so_fibnum;
820 	so->so_proto = head->so_proto;
821 	so->so_cred = crhold(head->so_cred);
822 #ifdef MAC
823 	mac_socket_newconn(head, so);
824 #endif
825 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
826 	    so_rdknl_assert_lock);
827 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
828 	    so_wrknl_assert_lock);
829 	VNET_SO_ASSERT(head);
830 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
831 		sodealloc(so);
832 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
833 		    __func__, head->so_pcb);
834 		return (NULL);
835 	}
836 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
837 		sodealloc(so);
838 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
839 		    __func__, head->so_pcb);
840 		return (NULL);
841 	}
842 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
843 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
844 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
845 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
846 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
847 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
848 
849 	soref(so);
850 
851 	return (so);
852 }
853 #endif	/* SCTP */
854 
855 int
856 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
857 {
858 	int error;
859 
860 	CURVNET_SET(so->so_vnet);
861 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
862 	CURVNET_RESTORE();
863 	return (error);
864 }
865 
866 int
867 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
868 {
869 	int error;
870 
871 	CURVNET_SET(so->so_vnet);
872 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
873 	CURVNET_RESTORE();
874 	return (error);
875 }
876 
877 /*
878  * solisten() transitions a socket from a non-listening state to a listening
879  * state, but can also be used to update the listen queue depth on an
880  * existing listen socket.  The protocol will call back into the sockets
881  * layer using solisten_proto_check() and solisten_proto() to check and set
882  * socket-layer listen state.  Call backs are used so that the protocol can
883  * acquire both protocol and socket layer locks in whatever order is required
884  * by the protocol.
885  *
886  * Protocol implementors are advised to hold the socket lock across the
887  * socket-layer test and set to avoid races at the socket layer.
888  */
889 int
890 solisten(struct socket *so, int backlog, struct thread *td)
891 {
892 	int error;
893 
894 	CURVNET_SET(so->so_vnet);
895 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
896 	CURVNET_RESTORE();
897 	return (error);
898 }
899 
900 int
901 solisten_proto_check(struct socket *so)
902 {
903 
904 	SOCK_LOCK_ASSERT(so);
905 
906 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
907 	    SS_ISDISCONNECTING))
908 		return (EINVAL);
909 	return (0);
910 }
911 
912 void
913 solisten_proto(struct socket *so, int backlog)
914 {
915 	int sbrcv_lowat, sbsnd_lowat;
916 	u_int sbrcv_hiwat, sbsnd_hiwat;
917 	short sbrcv_flags, sbsnd_flags;
918 	sbintime_t sbrcv_timeo, sbsnd_timeo;
919 
920 	SOCK_LOCK_ASSERT(so);
921 
922 	if (SOLISTENING(so))
923 		goto listening;
924 
925 	/*
926 	 * Change this socket to listening state.
927 	 */
928 	sbrcv_lowat = so->so_rcv.sb_lowat;
929 	sbsnd_lowat = so->so_snd.sb_lowat;
930 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
931 	sbsnd_hiwat = so->so_snd.sb_hiwat;
932 	sbrcv_flags = so->so_rcv.sb_flags;
933 	sbsnd_flags = so->so_snd.sb_flags;
934 	sbrcv_timeo = so->so_rcv.sb_timeo;
935 	sbsnd_timeo = so->so_snd.sb_timeo;
936 
937 	sbdestroy(&so->so_snd, so);
938 	sbdestroy(&so->so_rcv, so);
939 	sx_destroy(&so->so_snd.sb_sx);
940 	sx_destroy(&so->so_rcv.sb_sx);
941 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
942 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
943 
944 #ifdef INVARIANTS
945 	bzero(&so->so_rcv,
946 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
947 #endif
948 
949 	so->sol_sbrcv_lowat = sbrcv_lowat;
950 	so->sol_sbsnd_lowat = sbsnd_lowat;
951 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
952 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
953 	so->sol_sbrcv_flags = sbrcv_flags;
954 	so->sol_sbsnd_flags = sbsnd_flags;
955 	so->sol_sbrcv_timeo = sbrcv_timeo;
956 	so->sol_sbsnd_timeo = sbsnd_timeo;
957 
958 	so->sol_qlen = so->sol_incqlen = 0;
959 	TAILQ_INIT(&so->sol_incomp);
960 	TAILQ_INIT(&so->sol_comp);
961 
962 	so->sol_accept_filter = NULL;
963 	so->sol_accept_filter_arg = NULL;
964 	so->sol_accept_filter_str = NULL;
965 
966 	so->sol_upcall = NULL;
967 	so->sol_upcallarg = NULL;
968 
969 	so->so_options |= SO_ACCEPTCONN;
970 
971 listening:
972 	if (backlog < 0 || backlog > somaxconn)
973 		backlog = somaxconn;
974 	so->sol_qlimit = backlog;
975 }
976 
977 /*
978  * Wakeup listeners/subsystems once we have a complete connection.
979  * Enters with lock, returns unlocked.
980  */
981 void
982 solisten_wakeup(struct socket *sol)
983 {
984 
985 	if (sol->sol_upcall != NULL)
986 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
987 	else {
988 		selwakeuppri(&sol->so_rdsel, PSOCK);
989 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
990 	}
991 	SOLISTEN_UNLOCK(sol);
992 	wakeup_one(&sol->sol_comp);
993 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
994 		pgsigio(&sol->so_sigio, SIGIO, 0);
995 }
996 
997 /*
998  * Return single connection off a listening socket queue.  Main consumer of
999  * the function is kern_accept4().  Some modules, that do their own accept
1000  * management also use the function.
1001  *
1002  * Listening socket must be locked on entry and is returned unlocked on
1003  * return.
1004  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1005  */
1006 int
1007 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1008 {
1009 	struct socket *so;
1010 	int error;
1011 
1012 	SOLISTEN_LOCK_ASSERT(head);
1013 
1014 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1015 	    head->so_error == 0) {
1016 		error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH,
1017 		    "accept", 0);
1018 		if (error != 0) {
1019 			SOLISTEN_UNLOCK(head);
1020 			return (error);
1021 		}
1022 	}
1023 	if (head->so_error) {
1024 		error = head->so_error;
1025 		head->so_error = 0;
1026 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1027 		error = EWOULDBLOCK;
1028 	else
1029 		error = 0;
1030 	if (error) {
1031 		SOLISTEN_UNLOCK(head);
1032 		return (error);
1033 	}
1034 	so = TAILQ_FIRST(&head->sol_comp);
1035 	SOCK_LOCK(so);
1036 	KASSERT(so->so_qstate == SQ_COMP,
1037 	    ("%s: so %p not SQ_COMP", __func__, so));
1038 	soref(so);
1039 	head->sol_qlen--;
1040 	so->so_qstate = SQ_NONE;
1041 	so->so_listen = NULL;
1042 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1043 	if (flags & ACCEPT4_INHERIT)
1044 		so->so_state |= (head->so_state & SS_NBIO);
1045 	else
1046 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1047 	SOCK_UNLOCK(so);
1048 	sorele(head);
1049 
1050 	*ret = so;
1051 	return (0);
1052 }
1053 
1054 /*
1055  * Evaluate the reference count and named references on a socket; if no
1056  * references remain, free it.  This should be called whenever a reference is
1057  * released, such as in sorele(), but also when named reference flags are
1058  * cleared in socket or protocol code.
1059  *
1060  * sofree() will free the socket if:
1061  *
1062  * - There are no outstanding file descriptor references or related consumers
1063  *   (so_count == 0).
1064  *
1065  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
1066  *
1067  * - The protocol does not have an outstanding strong reference on the socket
1068  *   (SS_PROTOREF).
1069  *
1070  * - The socket is not in a completed connection queue, so a process has been
1071  *   notified that it is present.  If it is removed, the user process may
1072  *   block in accept() despite select() saying the socket was ready.
1073  */
1074 void
1075 sofree(struct socket *so)
1076 {
1077 	struct protosw *pr = so->so_proto;
1078 
1079 	SOCK_LOCK_ASSERT(so);
1080 
1081 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
1082 	    (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) {
1083 		SOCK_UNLOCK(so);
1084 		return;
1085 	}
1086 
1087 	if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
1088 		struct socket *sol;
1089 
1090 		sol = so->so_listen;
1091 		KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
1092 
1093 		/*
1094 		 * To solve race between close of a listening socket and
1095 		 * a socket on its incomplete queue, we need to lock both.
1096 		 * The order is first listening socket, then regular.
1097 		 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
1098 		 * function and the listening socket are the only pointers
1099 		 * to so.  To preserve so and sol, we reference both and then
1100 		 * relock.
1101 		 * After relock the socket may not move to so_comp since it
1102 		 * doesn't have PCB already, but it may be removed from
1103 		 * so_incomp. If that happens, we share responsiblity on
1104 		 * freeing the socket, but soclose() has already removed
1105 		 * it from queue.
1106 		 */
1107 		soref(sol);
1108 		soref(so);
1109 		SOCK_UNLOCK(so);
1110 		SOLISTEN_LOCK(sol);
1111 		SOCK_LOCK(so);
1112 		if (so->so_qstate == SQ_INCOMP) {
1113 			KASSERT(so->so_listen == sol,
1114 			    ("%s: so %p migrated out of sol %p",
1115 			    __func__, so, sol));
1116 			TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
1117 			sol->sol_incqlen--;
1118 			/* This is guarenteed not to be the last. */
1119 			refcount_release(&sol->so_count);
1120 			so->so_qstate = SQ_NONE;
1121 			so->so_listen = NULL;
1122 		} else
1123 			KASSERT(so->so_listen == NULL,
1124 			    ("%s: so %p not on (in)comp with so_listen",
1125 			    __func__, so));
1126 		sorele(sol);
1127 		KASSERT(so->so_count == 1,
1128 		    ("%s: so %p count %u", __func__, so, so->so_count));
1129 		so->so_count = 0;
1130 	}
1131 	if (SOLISTENING(so))
1132 		so->so_error = ECONNABORTED;
1133 	SOCK_UNLOCK(so);
1134 
1135 	if (so->so_dtor != NULL)
1136 		so->so_dtor(so);
1137 
1138 	VNET_SO_ASSERT(so);
1139 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1140 		(*pr->pr_domain->dom_dispose)(so);
1141 	if (pr->pr_usrreqs->pru_detach != NULL)
1142 		(*pr->pr_usrreqs->pru_detach)(so);
1143 
1144 	/*
1145 	 * From this point on, we assume that no other references to this
1146 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1147 	 * to be acquired or held.
1148 	 *
1149 	 * We used to do a lot of socket buffer and socket locking here, as
1150 	 * well as invoke sorflush() and perform wakeups.  The direct call to
1151 	 * dom_dispose() and sbdestroy() are an inlining of what was
1152 	 * necessary from sorflush().
1153 	 *
1154 	 * Notice that the socket buffer and kqueue state are torn down
1155 	 * before calling pru_detach.  This means that protocols shold not
1156 	 * assume they can perform socket wakeups, etc, in their detach code.
1157 	 */
1158 	if (!SOLISTENING(so)) {
1159 		sbdestroy(&so->so_snd, so);
1160 		sbdestroy(&so->so_rcv, so);
1161 	}
1162 	seldrain(&so->so_rdsel);
1163 	seldrain(&so->so_wrsel);
1164 	knlist_destroy(&so->so_rdsel.si_note);
1165 	knlist_destroy(&so->so_wrsel.si_note);
1166 	sodealloc(so);
1167 }
1168 
1169 /*
1170  * Close a socket on last file table reference removal.  Initiate disconnect
1171  * if connected.  Free socket when disconnect complete.
1172  *
1173  * This function will sorele() the socket.  Note that soclose() may be called
1174  * prior to the ref count reaching zero.  The actual socket structure will
1175  * not be freed until the ref count reaches zero.
1176  */
1177 int
1178 soclose(struct socket *so)
1179 {
1180 	struct accept_queue lqueue;
1181 	bool listening;
1182 	int error = 0;
1183 
1184 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
1185 
1186 	CURVNET_SET(so->so_vnet);
1187 	funsetown(&so->so_sigio);
1188 	if (so->so_state & SS_ISCONNECTED) {
1189 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1190 			error = sodisconnect(so);
1191 			if (error) {
1192 				if (error == ENOTCONN)
1193 					error = 0;
1194 				goto drop;
1195 			}
1196 		}
1197 
1198 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1199 			if ((so->so_state & SS_ISDISCONNECTING) &&
1200 			    (so->so_state & SS_NBIO))
1201 				goto drop;
1202 			while (so->so_state & SS_ISCONNECTED) {
1203 				error = tsleep(&so->so_timeo,
1204 				    PSOCK | PCATCH, "soclos",
1205 				    so->so_linger * hz);
1206 				if (error)
1207 					break;
1208 			}
1209 		}
1210 	}
1211 
1212 drop:
1213 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
1214 		(*so->so_proto->pr_usrreqs->pru_close)(so);
1215 
1216 	SOCK_LOCK(so);
1217 	if ((listening = (so->so_options & SO_ACCEPTCONN))) {
1218 		struct socket *sp;
1219 
1220 		TAILQ_INIT(&lqueue);
1221 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1222 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1223 
1224 		so->sol_qlen = so->sol_incqlen = 0;
1225 
1226 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1227 			SOCK_LOCK(sp);
1228 			sp->so_qstate = SQ_NONE;
1229 			sp->so_listen = NULL;
1230 			SOCK_UNLOCK(sp);
1231 			/* Guaranteed not to be the last. */
1232 			refcount_release(&so->so_count);
1233 		}
1234 	}
1235 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
1236 	so->so_state |= SS_NOFDREF;
1237 	sorele(so);
1238 	if (listening) {
1239 		struct socket *sp, *tsp;
1240 
1241 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) {
1242 			SOCK_LOCK(sp);
1243 			if (sp->so_count == 0) {
1244 				SOCK_UNLOCK(sp);
1245 				soabort(sp);
1246 			} else
1247 				/* sp is now in sofree() */
1248 				SOCK_UNLOCK(sp);
1249 		}
1250 	}
1251 	CURVNET_RESTORE();
1252 	return (error);
1253 }
1254 
1255 /*
1256  * soabort() is used to abruptly tear down a connection, such as when a
1257  * resource limit is reached (listen queue depth exceeded), or if a listen
1258  * socket is closed while there are sockets waiting to be accepted.
1259  *
1260  * This interface is tricky, because it is called on an unreferenced socket,
1261  * and must be called only by a thread that has actually removed the socket
1262  * from the listen queue it was on, or races with other threads are risked.
1263  *
1264  * This interface will call into the protocol code, so must not be called
1265  * with any socket locks held.  Protocols do call it while holding their own
1266  * recursible protocol mutexes, but this is something that should be subject
1267  * to review in the future.
1268  */
1269 void
1270 soabort(struct socket *so)
1271 {
1272 
1273 	/*
1274 	 * In as much as is possible, assert that no references to this
1275 	 * socket are held.  This is not quite the same as asserting that the
1276 	 * current thread is responsible for arranging for no references, but
1277 	 * is as close as we can get for now.
1278 	 */
1279 	KASSERT(so->so_count == 0, ("soabort: so_count"));
1280 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
1281 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
1282 	VNET_SO_ASSERT(so);
1283 
1284 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
1285 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
1286 	SOCK_LOCK(so);
1287 	sofree(so);
1288 }
1289 
1290 int
1291 soaccept(struct socket *so, struct sockaddr **nam)
1292 {
1293 	int error;
1294 
1295 	SOCK_LOCK(so);
1296 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
1297 	so->so_state &= ~SS_NOFDREF;
1298 	SOCK_UNLOCK(so);
1299 
1300 	CURVNET_SET(so->so_vnet);
1301 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
1302 	CURVNET_RESTORE();
1303 	return (error);
1304 }
1305 
1306 int
1307 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1308 {
1309 
1310 	return (soconnectat(AT_FDCWD, so, nam, td));
1311 }
1312 
1313 int
1314 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1315 {
1316 	int error;
1317 
1318 	if (so->so_options & SO_ACCEPTCONN)
1319 		return (EOPNOTSUPP);
1320 
1321 	CURVNET_SET(so->so_vnet);
1322 	/*
1323 	 * If protocol is connection-based, can only connect once.
1324 	 * Otherwise, if connected, try to disconnect first.  This allows
1325 	 * user to disconnect by connecting to, e.g., a null address.
1326 	 */
1327 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1328 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1329 	    (error = sodisconnect(so)))) {
1330 		error = EISCONN;
1331 	} else {
1332 		/*
1333 		 * Prevent accumulated error from previous connection from
1334 		 * biting us.
1335 		 */
1336 		so->so_error = 0;
1337 		if (fd == AT_FDCWD) {
1338 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1339 			    nam, td);
1340 		} else {
1341 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1342 			    so, nam, td);
1343 		}
1344 	}
1345 	CURVNET_RESTORE();
1346 
1347 	return (error);
1348 }
1349 
1350 int
1351 soconnect2(struct socket *so1, struct socket *so2)
1352 {
1353 	int error;
1354 
1355 	CURVNET_SET(so1->so_vnet);
1356 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1357 	CURVNET_RESTORE();
1358 	return (error);
1359 }
1360 
1361 int
1362 sodisconnect(struct socket *so)
1363 {
1364 	int error;
1365 
1366 	if ((so->so_state & SS_ISCONNECTED) == 0)
1367 		return (ENOTCONN);
1368 	if (so->so_state & SS_ISDISCONNECTING)
1369 		return (EALREADY);
1370 	VNET_SO_ASSERT(so);
1371 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1372 	return (error);
1373 }
1374 
1375 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1376 
1377 int
1378 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1379     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1380 {
1381 	long space;
1382 	ssize_t resid;
1383 	int clen = 0, error, dontroute;
1384 
1385 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1386 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1387 	    ("sosend_dgram: !PR_ATOMIC"));
1388 
1389 	if (uio != NULL)
1390 		resid = uio->uio_resid;
1391 	else
1392 		resid = top->m_pkthdr.len;
1393 	/*
1394 	 * In theory resid should be unsigned.  However, space must be
1395 	 * signed, as it might be less than 0 if we over-committed, and we
1396 	 * must use a signed comparison of space and resid.  On the other
1397 	 * hand, a negative resid causes us to loop sending 0-length
1398 	 * segments to the protocol.
1399 	 */
1400 	if (resid < 0) {
1401 		error = EINVAL;
1402 		goto out;
1403 	}
1404 
1405 	dontroute =
1406 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1407 	if (td != NULL)
1408 		td->td_ru.ru_msgsnd++;
1409 	if (control != NULL)
1410 		clen = control->m_len;
1411 
1412 	SOCKBUF_LOCK(&so->so_snd);
1413 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1414 		SOCKBUF_UNLOCK(&so->so_snd);
1415 		error = EPIPE;
1416 		goto out;
1417 	}
1418 	if (so->so_error) {
1419 		error = so->so_error;
1420 		so->so_error = 0;
1421 		SOCKBUF_UNLOCK(&so->so_snd);
1422 		goto out;
1423 	}
1424 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1425 		/*
1426 		 * `sendto' and `sendmsg' is allowed on a connection-based
1427 		 * socket if it supports implied connect.  Return ENOTCONN if
1428 		 * not connected and no address is supplied.
1429 		 */
1430 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1431 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1432 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1433 			    !(resid == 0 && clen != 0)) {
1434 				SOCKBUF_UNLOCK(&so->so_snd);
1435 				error = ENOTCONN;
1436 				goto out;
1437 			}
1438 		} else if (addr == NULL) {
1439 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1440 				error = ENOTCONN;
1441 			else
1442 				error = EDESTADDRREQ;
1443 			SOCKBUF_UNLOCK(&so->so_snd);
1444 			goto out;
1445 		}
1446 	}
1447 
1448 	/*
1449 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1450 	 * problem and need fixing.
1451 	 */
1452 	space = sbspace(&so->so_snd);
1453 	if (flags & MSG_OOB)
1454 		space += 1024;
1455 	space -= clen;
1456 	SOCKBUF_UNLOCK(&so->so_snd);
1457 	if (resid > space) {
1458 		error = EMSGSIZE;
1459 		goto out;
1460 	}
1461 	if (uio == NULL) {
1462 		resid = 0;
1463 		if (flags & MSG_EOR)
1464 			top->m_flags |= M_EOR;
1465 	} else {
1466 		/*
1467 		 * Copy the data from userland into a mbuf chain.
1468 		 * If no data is to be copied in, a single empty mbuf
1469 		 * is returned.
1470 		 */
1471 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1472 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1473 		if (top == NULL) {
1474 			error = EFAULT;	/* only possible error */
1475 			goto out;
1476 		}
1477 		space -= resid - uio->uio_resid;
1478 		resid = uio->uio_resid;
1479 	}
1480 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1481 	/*
1482 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1483 	 * than with.
1484 	 */
1485 	if (dontroute) {
1486 		SOCK_LOCK(so);
1487 		so->so_options |= SO_DONTROUTE;
1488 		SOCK_UNLOCK(so);
1489 	}
1490 	/*
1491 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1492 	 * of date.  We could have received a reset packet in an interrupt or
1493 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1494 	 * probably recheck again inside the locking protection here, but
1495 	 * there are probably other places that this also happens.  We must
1496 	 * rethink this.
1497 	 */
1498 	VNET_SO_ASSERT(so);
1499 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1500 	    (flags & MSG_OOB) ? PRUS_OOB :
1501 	/*
1502 	 * If the user set MSG_EOF, the protocol understands this flag and
1503 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1504 	 */
1505 	    ((flags & MSG_EOF) &&
1506 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1507 	     (resid <= 0)) ?
1508 		PRUS_EOF :
1509 		/* If there is more to send set PRUS_MORETOCOME */
1510 		(flags & MSG_MORETOCOME) ||
1511 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1512 		top, addr, control, td);
1513 	if (dontroute) {
1514 		SOCK_LOCK(so);
1515 		so->so_options &= ~SO_DONTROUTE;
1516 		SOCK_UNLOCK(so);
1517 	}
1518 	clen = 0;
1519 	control = NULL;
1520 	top = NULL;
1521 out:
1522 	if (top != NULL)
1523 		m_freem(top);
1524 	if (control != NULL)
1525 		m_freem(control);
1526 	return (error);
1527 }
1528 
1529 /*
1530  * Send on a socket.  If send must go all at once and message is larger than
1531  * send buffering, then hard error.  Lock against other senders.  If must go
1532  * all at once and not enough room now, then inform user that this would
1533  * block and do nothing.  Otherwise, if nonblocking, send as much as
1534  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1535  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1536  * in mbuf chain must be small enough to send all at once.
1537  *
1538  * Returns nonzero on error, timeout or signal; callers must check for short
1539  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1540  * on return.
1541  */
1542 int
1543 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1544     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1545 {
1546 	long space;
1547 	ssize_t resid;
1548 	int clen = 0, error, dontroute;
1549 	int atomic = sosendallatonce(so) || top;
1550 	int pru_flag;
1551 #ifdef KERN_TLS
1552 	struct ktls_session *tls;
1553 	int tls_enq_cnt, tls_pruflag;
1554 	uint8_t tls_rtype;
1555 
1556 	tls = NULL;
1557 	tls_rtype = TLS_RLTYPE_APP;
1558 #endif
1559 	if (uio != NULL)
1560 		resid = uio->uio_resid;
1561 	else if ((top->m_flags & M_PKTHDR) != 0)
1562 		resid = top->m_pkthdr.len;
1563 	else
1564 		resid = m_length(top, NULL);
1565 	/*
1566 	 * In theory resid should be unsigned.  However, space must be
1567 	 * signed, as it might be less than 0 if we over-committed, and we
1568 	 * must use a signed comparison of space and resid.  On the other
1569 	 * hand, a negative resid causes us to loop sending 0-length
1570 	 * segments to the protocol.
1571 	 *
1572 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1573 	 * type sockets since that's an error.
1574 	 */
1575 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1576 		error = EINVAL;
1577 		goto out;
1578 	}
1579 
1580 	dontroute =
1581 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1582 	    (so->so_proto->pr_flags & PR_ATOMIC);
1583 	if (td != NULL)
1584 		td->td_ru.ru_msgsnd++;
1585 	if (control != NULL)
1586 		clen = control->m_len;
1587 
1588 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1589 	if (error)
1590 		goto out;
1591 
1592 #ifdef KERN_TLS
1593 	tls_pruflag = 0;
1594 	tls = ktls_hold(so->so_snd.sb_tls_info);
1595 	if (tls != NULL) {
1596 		if (tls->mode == TCP_TLS_MODE_SW)
1597 			tls_pruflag = PRUS_NOTREADY;
1598 
1599 		if (control != NULL) {
1600 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1601 
1602 			if (clen >= sizeof(*cm) &&
1603 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1604 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1605 				clen = 0;
1606 				m_freem(control);
1607 				control = NULL;
1608 				atomic = 1;
1609 			}
1610 		}
1611 	}
1612 #endif
1613 
1614 restart:
1615 	do {
1616 		SOCKBUF_LOCK(&so->so_snd);
1617 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1618 			SOCKBUF_UNLOCK(&so->so_snd);
1619 			error = EPIPE;
1620 			goto release;
1621 		}
1622 		if (so->so_error) {
1623 			error = so->so_error;
1624 			so->so_error = 0;
1625 			SOCKBUF_UNLOCK(&so->so_snd);
1626 			goto release;
1627 		}
1628 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1629 			/*
1630 			 * `sendto' and `sendmsg' is allowed on a connection-
1631 			 * based socket if it supports implied connect.
1632 			 * Return ENOTCONN if not connected and no address is
1633 			 * supplied.
1634 			 */
1635 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1636 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1637 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1638 				    !(resid == 0 && clen != 0)) {
1639 					SOCKBUF_UNLOCK(&so->so_snd);
1640 					error = ENOTCONN;
1641 					goto release;
1642 				}
1643 			} else if (addr == NULL) {
1644 				SOCKBUF_UNLOCK(&so->so_snd);
1645 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1646 					error = ENOTCONN;
1647 				else
1648 					error = EDESTADDRREQ;
1649 				goto release;
1650 			}
1651 		}
1652 		space = sbspace(&so->so_snd);
1653 		if (flags & MSG_OOB)
1654 			space += 1024;
1655 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1656 		    clen > so->so_snd.sb_hiwat) {
1657 			SOCKBUF_UNLOCK(&so->so_snd);
1658 			error = EMSGSIZE;
1659 			goto release;
1660 		}
1661 		if (space < resid + clen &&
1662 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1663 			if ((so->so_state & SS_NBIO) ||
1664 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1665 				SOCKBUF_UNLOCK(&so->so_snd);
1666 				error = EWOULDBLOCK;
1667 				goto release;
1668 			}
1669 			error = sbwait(&so->so_snd);
1670 			SOCKBUF_UNLOCK(&so->so_snd);
1671 			if (error)
1672 				goto release;
1673 			goto restart;
1674 		}
1675 		SOCKBUF_UNLOCK(&so->so_snd);
1676 		space -= clen;
1677 		do {
1678 			if (uio == NULL) {
1679 				resid = 0;
1680 				if (flags & MSG_EOR)
1681 					top->m_flags |= M_EOR;
1682 #ifdef KERN_TLS
1683 				if (tls != NULL) {
1684 					ktls_frame(top, tls, &tls_enq_cnt,
1685 					    tls_rtype);
1686 					tls_rtype = TLS_RLTYPE_APP;
1687 				}
1688 #endif
1689 			} else {
1690 				/*
1691 				 * Copy the data from userland into a mbuf
1692 				 * chain.  If resid is 0, which can happen
1693 				 * only if we have control to send, then
1694 				 * a single empty mbuf is returned.  This
1695 				 * is a workaround to prevent protocol send
1696 				 * methods to panic.
1697 				 */
1698 #ifdef KERN_TLS
1699 				if (tls != NULL) {
1700 					top = m_uiotombuf(uio, M_WAITOK, space,
1701 					    tls->params.max_frame_len,
1702 					    M_EXTPG |
1703 					    ((flags & MSG_EOR) ? M_EOR : 0));
1704 					if (top != NULL) {
1705 						ktls_frame(top, tls,
1706 						    &tls_enq_cnt, tls_rtype);
1707 					}
1708 					tls_rtype = TLS_RLTYPE_APP;
1709 				} else
1710 #endif
1711 					top = m_uiotombuf(uio, M_WAITOK, space,
1712 					    (atomic ? max_hdr : 0),
1713 					    (atomic ? M_PKTHDR : 0) |
1714 					    ((flags & MSG_EOR) ? M_EOR : 0));
1715 				if (top == NULL) {
1716 					error = EFAULT; /* only possible error */
1717 					goto release;
1718 				}
1719 				space -= resid - uio->uio_resid;
1720 				resid = uio->uio_resid;
1721 			}
1722 			if (dontroute) {
1723 				SOCK_LOCK(so);
1724 				so->so_options |= SO_DONTROUTE;
1725 				SOCK_UNLOCK(so);
1726 			}
1727 			/*
1728 			 * XXX all the SBS_CANTSENDMORE checks previously
1729 			 * done could be out of date.  We could have received
1730 			 * a reset packet in an interrupt or maybe we slept
1731 			 * while doing page faults in uiomove() etc.  We
1732 			 * could probably recheck again inside the locking
1733 			 * protection here, but there are probably other
1734 			 * places that this also happens.  We must rethink
1735 			 * this.
1736 			 */
1737 			VNET_SO_ASSERT(so);
1738 
1739 			pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
1740 			/*
1741 			 * If the user set MSG_EOF, the protocol understands
1742 			 * this flag and nothing left to send then use
1743 			 * PRU_SEND_EOF instead of PRU_SEND.
1744 			 */
1745 			    ((flags & MSG_EOF) &&
1746 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1747 			     (resid <= 0)) ?
1748 				PRUS_EOF :
1749 			/* If there is more to send set PRUS_MORETOCOME. */
1750 			    (flags & MSG_MORETOCOME) ||
1751 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1752 
1753 #ifdef KERN_TLS
1754 			pru_flag |= tls_pruflag;
1755 #endif
1756 
1757 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1758 			    pru_flag, top, addr, control, td);
1759 
1760 			if (dontroute) {
1761 				SOCK_LOCK(so);
1762 				so->so_options &= ~SO_DONTROUTE;
1763 				SOCK_UNLOCK(so);
1764 			}
1765 
1766 #ifdef KERN_TLS
1767 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1768 				/*
1769 				 * Note that error is intentionally
1770 				 * ignored.
1771 				 *
1772 				 * Like sendfile(), we rely on the
1773 				 * completion routine (pru_ready())
1774 				 * to free the mbufs in the event that
1775 				 * pru_send() encountered an error and
1776 				 * did not append them to the sockbuf.
1777 				 */
1778 				soref(so);
1779 				ktls_enqueue(top, so, tls_enq_cnt);
1780 			}
1781 #endif
1782 			clen = 0;
1783 			control = NULL;
1784 			top = NULL;
1785 			if (error)
1786 				goto release;
1787 		} while (resid && space > 0);
1788 	} while (resid);
1789 
1790 release:
1791 	sbunlock(&so->so_snd);
1792 out:
1793 #ifdef KERN_TLS
1794 	if (tls != NULL)
1795 		ktls_free(tls);
1796 #endif
1797 	if (top != NULL)
1798 		m_freem(top);
1799 	if (control != NULL)
1800 		m_freem(control);
1801 	return (error);
1802 }
1803 
1804 int
1805 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1806     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1807 {
1808 	int error;
1809 
1810 	CURVNET_SET(so->so_vnet);
1811 	if (!SOLISTENING(so))
1812 		error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
1813 		    top, control, flags, td);
1814 	else {
1815 		m_freem(top);
1816 		m_freem(control);
1817 		error = ENOTCONN;
1818 	}
1819 	CURVNET_RESTORE();
1820 	return (error);
1821 }
1822 
1823 /*
1824  * The part of soreceive() that implements reading non-inline out-of-band
1825  * data from a socket.  For more complete comments, see soreceive(), from
1826  * which this code originated.
1827  *
1828  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1829  * unable to return an mbuf chain to the caller.
1830  */
1831 static int
1832 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1833 {
1834 	struct protosw *pr = so->so_proto;
1835 	struct mbuf *m;
1836 	int error;
1837 
1838 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1839 	VNET_SO_ASSERT(so);
1840 
1841 	m = m_get(M_WAITOK, MT_DATA);
1842 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1843 	if (error)
1844 		goto bad;
1845 	do {
1846 		error = uiomove(mtod(m, void *),
1847 		    (int) min(uio->uio_resid, m->m_len), uio);
1848 		m = m_free(m);
1849 	} while (uio->uio_resid && error == 0 && m);
1850 bad:
1851 	if (m != NULL)
1852 		m_freem(m);
1853 	return (error);
1854 }
1855 
1856 /*
1857  * Following replacement or removal of the first mbuf on the first mbuf chain
1858  * of a socket buffer, push necessary state changes back into the socket
1859  * buffer so that other consumers see the values consistently.  'nextrecord'
1860  * is the callers locally stored value of the original value of
1861  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1862  * NOTE: 'nextrecord' may be NULL.
1863  */
1864 static __inline void
1865 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1866 {
1867 
1868 	SOCKBUF_LOCK_ASSERT(sb);
1869 	/*
1870 	 * First, update for the new value of nextrecord.  If necessary, make
1871 	 * it the first record.
1872 	 */
1873 	if (sb->sb_mb != NULL)
1874 		sb->sb_mb->m_nextpkt = nextrecord;
1875 	else
1876 		sb->sb_mb = nextrecord;
1877 
1878 	/*
1879 	 * Now update any dependent socket buffer fields to reflect the new
1880 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1881 	 * addition of a second clause that takes care of the case where
1882 	 * sb_mb has been updated, but remains the last record.
1883 	 */
1884 	if (sb->sb_mb == NULL) {
1885 		sb->sb_mbtail = NULL;
1886 		sb->sb_lastrecord = NULL;
1887 	} else if (sb->sb_mb->m_nextpkt == NULL)
1888 		sb->sb_lastrecord = sb->sb_mb;
1889 }
1890 
1891 /*
1892  * Implement receive operations on a socket.  We depend on the way that
1893  * records are added to the sockbuf by sbappend.  In particular, each record
1894  * (mbufs linked through m_next) must begin with an address if the protocol
1895  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1896  * data, and then zero or more mbufs of data.  In order to allow parallelism
1897  * between network receive and copying to user space, as well as avoid
1898  * sleeping with a mutex held, we release the socket buffer mutex during the
1899  * user space copy.  Although the sockbuf is locked, new data may still be
1900  * appended, and thus we must maintain consistency of the sockbuf during that
1901  * time.
1902  *
1903  * The caller may receive the data as a single mbuf chain by supplying an
1904  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1905  * the count in uio_resid.
1906  */
1907 int
1908 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1909     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1910 {
1911 	struct mbuf *m, **mp;
1912 	int flags, error, offset;
1913 	ssize_t len;
1914 	struct protosw *pr = so->so_proto;
1915 	struct mbuf *nextrecord;
1916 	int moff, type = 0;
1917 	ssize_t orig_resid = uio->uio_resid;
1918 
1919 	mp = mp0;
1920 	if (psa != NULL)
1921 		*psa = NULL;
1922 	if (controlp != NULL)
1923 		*controlp = NULL;
1924 	if (flagsp != NULL)
1925 		flags = *flagsp &~ MSG_EOR;
1926 	else
1927 		flags = 0;
1928 	if (flags & MSG_OOB)
1929 		return (soreceive_rcvoob(so, uio, flags));
1930 	if (mp != NULL)
1931 		*mp = NULL;
1932 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1933 	    && uio->uio_resid) {
1934 		VNET_SO_ASSERT(so);
1935 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1936 	}
1937 
1938 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1939 	if (error)
1940 		return (error);
1941 
1942 restart:
1943 	SOCKBUF_LOCK(&so->so_rcv);
1944 	m = so->so_rcv.sb_mb;
1945 	/*
1946 	 * If we have less data than requested, block awaiting more (subject
1947 	 * to any timeout) if:
1948 	 *   1. the current count is less than the low water mark, or
1949 	 *   2. MSG_DONTWAIT is not set
1950 	 */
1951 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1952 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1953 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1954 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1955 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1956 		    ("receive: m == %p sbavail == %u",
1957 		    m, sbavail(&so->so_rcv)));
1958 		if (so->so_error) {
1959 			if (m != NULL)
1960 				goto dontblock;
1961 			error = so->so_error;
1962 			if ((flags & MSG_PEEK) == 0)
1963 				so->so_error = 0;
1964 			SOCKBUF_UNLOCK(&so->so_rcv);
1965 			goto release;
1966 		}
1967 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1968 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1969 			if (m != NULL)
1970 				goto dontblock;
1971 #ifdef KERN_TLS
1972 			else if (so->so_rcv.sb_tlsdcc == 0 &&
1973 			    so->so_rcv.sb_tlscc == 0) {
1974 #else
1975 			else {
1976 #endif
1977 				SOCKBUF_UNLOCK(&so->so_rcv);
1978 				goto release;
1979 			}
1980 		}
1981 		for (; m != NULL; m = m->m_next)
1982 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1983 				m = so->so_rcv.sb_mb;
1984 				goto dontblock;
1985 			}
1986 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
1987 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
1988 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1989 			SOCKBUF_UNLOCK(&so->so_rcv);
1990 			error = ENOTCONN;
1991 			goto release;
1992 		}
1993 		if (uio->uio_resid == 0) {
1994 			SOCKBUF_UNLOCK(&so->so_rcv);
1995 			goto release;
1996 		}
1997 		if ((so->so_state & SS_NBIO) ||
1998 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1999 			SOCKBUF_UNLOCK(&so->so_rcv);
2000 			error = EWOULDBLOCK;
2001 			goto release;
2002 		}
2003 		SBLASTRECORDCHK(&so->so_rcv);
2004 		SBLASTMBUFCHK(&so->so_rcv);
2005 		error = sbwait(&so->so_rcv);
2006 		SOCKBUF_UNLOCK(&so->so_rcv);
2007 		if (error)
2008 			goto release;
2009 		goto restart;
2010 	}
2011 dontblock:
2012 	/*
2013 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2014 	 * pointer to the next record in the socket buffer.  We must keep the
2015 	 * various socket buffer pointers and local stack versions of the
2016 	 * pointers in sync, pushing out modifications before dropping the
2017 	 * socket buffer mutex, and re-reading them when picking it up.
2018 	 *
2019 	 * Otherwise, we will race with the network stack appending new data
2020 	 * or records onto the socket buffer by using inconsistent/stale
2021 	 * versions of the field, possibly resulting in socket buffer
2022 	 * corruption.
2023 	 *
2024 	 * By holding the high-level sblock(), we prevent simultaneous
2025 	 * readers from pulling off the front of the socket buffer.
2026 	 */
2027 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2028 	if (uio->uio_td)
2029 		uio->uio_td->td_ru.ru_msgrcv++;
2030 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2031 	SBLASTRECORDCHK(&so->so_rcv);
2032 	SBLASTMBUFCHK(&so->so_rcv);
2033 	nextrecord = m->m_nextpkt;
2034 	if (pr->pr_flags & PR_ADDR) {
2035 		KASSERT(m->m_type == MT_SONAME,
2036 		    ("m->m_type == %d", m->m_type));
2037 		orig_resid = 0;
2038 		if (psa != NULL)
2039 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2040 			    M_NOWAIT);
2041 		if (flags & MSG_PEEK) {
2042 			m = m->m_next;
2043 		} else {
2044 			sbfree(&so->so_rcv, m);
2045 			so->so_rcv.sb_mb = m_free(m);
2046 			m = so->so_rcv.sb_mb;
2047 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2048 		}
2049 	}
2050 
2051 	/*
2052 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2053 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2054 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2055 	 * perform externalization (or freeing if controlp == NULL).
2056 	 */
2057 	if (m != NULL && m->m_type == MT_CONTROL) {
2058 		struct mbuf *cm = NULL, *cmn;
2059 		struct mbuf **cme = &cm;
2060 #ifdef KERN_TLS
2061 		struct cmsghdr *cmsg;
2062 		struct tls_get_record tgr;
2063 
2064 		/*
2065 		 * For MSG_TLSAPPDATA, check for a non-application data
2066 		 * record.  If found, return ENXIO without removing
2067 		 * it from the receive queue.  This allows a subsequent
2068 		 * call without MSG_TLSAPPDATA to receive it.
2069 		 * Note that, for TLS, there should only be a single
2070 		 * control mbuf with the TLS_GET_RECORD message in it.
2071 		 */
2072 		if (flags & MSG_TLSAPPDATA) {
2073 			cmsg = mtod(m, struct cmsghdr *);
2074 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2075 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2076 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2077 				/* This will need to change for TLS 1.3. */
2078 				if (tgr.tls_type != TLS_RLTYPE_APP) {
2079 					SOCKBUF_UNLOCK(&so->so_rcv);
2080 					error = ENXIO;
2081 					goto release;
2082 				}
2083 			}
2084 		}
2085 #endif
2086 
2087 		do {
2088 			if (flags & MSG_PEEK) {
2089 				if (controlp != NULL) {
2090 					*controlp = m_copym(m, 0, m->m_len,
2091 					    M_NOWAIT);
2092 					controlp = &(*controlp)->m_next;
2093 				}
2094 				m = m->m_next;
2095 			} else {
2096 				sbfree(&so->so_rcv, m);
2097 				so->so_rcv.sb_mb = m->m_next;
2098 				m->m_next = NULL;
2099 				*cme = m;
2100 				cme = &(*cme)->m_next;
2101 				m = so->so_rcv.sb_mb;
2102 			}
2103 		} while (m != NULL && m->m_type == MT_CONTROL);
2104 		if ((flags & MSG_PEEK) == 0)
2105 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2106 		while (cm != NULL) {
2107 			cmn = cm->m_next;
2108 			cm->m_next = NULL;
2109 			if (pr->pr_domain->dom_externalize != NULL) {
2110 				SOCKBUF_UNLOCK(&so->so_rcv);
2111 				VNET_SO_ASSERT(so);
2112 				error = (*pr->pr_domain->dom_externalize)
2113 				    (cm, controlp, flags);
2114 				SOCKBUF_LOCK(&so->so_rcv);
2115 			} else if (controlp != NULL)
2116 				*controlp = cm;
2117 			else
2118 				m_freem(cm);
2119 			if (controlp != NULL) {
2120 				orig_resid = 0;
2121 				while (*controlp != NULL)
2122 					controlp = &(*controlp)->m_next;
2123 			}
2124 			cm = cmn;
2125 		}
2126 		if (m != NULL)
2127 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2128 		else
2129 			nextrecord = so->so_rcv.sb_mb;
2130 		orig_resid = 0;
2131 	}
2132 	if (m != NULL) {
2133 		if ((flags & MSG_PEEK) == 0) {
2134 			KASSERT(m->m_nextpkt == nextrecord,
2135 			    ("soreceive: post-control, nextrecord !sync"));
2136 			if (nextrecord == NULL) {
2137 				KASSERT(so->so_rcv.sb_mb == m,
2138 				    ("soreceive: post-control, sb_mb!=m"));
2139 				KASSERT(so->so_rcv.sb_lastrecord == m,
2140 				    ("soreceive: post-control, lastrecord!=m"));
2141 			}
2142 		}
2143 		type = m->m_type;
2144 		if (type == MT_OOBDATA)
2145 			flags |= MSG_OOB;
2146 	} else {
2147 		if ((flags & MSG_PEEK) == 0) {
2148 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2149 			    ("soreceive: sb_mb != nextrecord"));
2150 			if (so->so_rcv.sb_mb == NULL) {
2151 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2152 				    ("soreceive: sb_lastercord != NULL"));
2153 			}
2154 		}
2155 	}
2156 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2157 	SBLASTRECORDCHK(&so->so_rcv);
2158 	SBLASTMBUFCHK(&so->so_rcv);
2159 
2160 	/*
2161 	 * Now continue to read any data mbufs off of the head of the socket
2162 	 * buffer until the read request is satisfied.  Note that 'type' is
2163 	 * used to store the type of any mbuf reads that have happened so far
2164 	 * such that soreceive() can stop reading if the type changes, which
2165 	 * causes soreceive() to return only one of regular data and inline
2166 	 * out-of-band data in a single socket receive operation.
2167 	 */
2168 	moff = 0;
2169 	offset = 0;
2170 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2171 	    && error == 0) {
2172 		/*
2173 		 * If the type of mbuf has changed since the last mbuf
2174 		 * examined ('type'), end the receive operation.
2175 		 */
2176 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2177 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2178 			if (type != m->m_type)
2179 				break;
2180 		} else if (type == MT_OOBDATA)
2181 			break;
2182 		else
2183 		    KASSERT(m->m_type == MT_DATA,
2184 			("m->m_type == %d", m->m_type));
2185 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2186 		len = uio->uio_resid;
2187 		if (so->so_oobmark && len > so->so_oobmark - offset)
2188 			len = so->so_oobmark - offset;
2189 		if (len > m->m_len - moff)
2190 			len = m->m_len - moff;
2191 		/*
2192 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2193 		 * them out via the uio, then free.  Sockbuf must be
2194 		 * consistent here (points to current mbuf, it points to next
2195 		 * record) when we drop priority; we must note any additions
2196 		 * to the sockbuf when we block interrupts again.
2197 		 */
2198 		if (mp == NULL) {
2199 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2200 			SBLASTRECORDCHK(&so->so_rcv);
2201 			SBLASTMBUFCHK(&so->so_rcv);
2202 			SOCKBUF_UNLOCK(&so->so_rcv);
2203 			if ((m->m_flags & M_EXTPG) != 0)
2204 				error = m_unmappedtouio(m, moff, uio, (int)len);
2205 			else
2206 				error = uiomove(mtod(m, char *) + moff,
2207 				    (int)len, uio);
2208 			SOCKBUF_LOCK(&so->so_rcv);
2209 			if (error) {
2210 				/*
2211 				 * The MT_SONAME mbuf has already been removed
2212 				 * from the record, so it is necessary to
2213 				 * remove the data mbufs, if any, to preserve
2214 				 * the invariant in the case of PR_ADDR that
2215 				 * requires MT_SONAME mbufs at the head of
2216 				 * each record.
2217 				 */
2218 				if (pr->pr_flags & PR_ATOMIC &&
2219 				    ((flags & MSG_PEEK) == 0))
2220 					(void)sbdroprecord_locked(&so->so_rcv);
2221 				SOCKBUF_UNLOCK(&so->so_rcv);
2222 				goto release;
2223 			}
2224 		} else
2225 			uio->uio_resid -= len;
2226 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2227 		if (len == m->m_len - moff) {
2228 			if (m->m_flags & M_EOR)
2229 				flags |= MSG_EOR;
2230 			if (flags & MSG_PEEK) {
2231 				m = m->m_next;
2232 				moff = 0;
2233 			} else {
2234 				nextrecord = m->m_nextpkt;
2235 				sbfree(&so->so_rcv, m);
2236 				if (mp != NULL) {
2237 					m->m_nextpkt = NULL;
2238 					*mp = m;
2239 					mp = &m->m_next;
2240 					so->so_rcv.sb_mb = m = m->m_next;
2241 					*mp = NULL;
2242 				} else {
2243 					so->so_rcv.sb_mb = m_free(m);
2244 					m = so->so_rcv.sb_mb;
2245 				}
2246 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2247 				SBLASTRECORDCHK(&so->so_rcv);
2248 				SBLASTMBUFCHK(&so->so_rcv);
2249 			}
2250 		} else {
2251 			if (flags & MSG_PEEK)
2252 				moff += len;
2253 			else {
2254 				if (mp != NULL) {
2255 					if (flags & MSG_DONTWAIT) {
2256 						*mp = m_copym(m, 0, len,
2257 						    M_NOWAIT);
2258 						if (*mp == NULL) {
2259 							/*
2260 							 * m_copym() couldn't
2261 							 * allocate an mbuf.
2262 							 * Adjust uio_resid back
2263 							 * (it was adjusted
2264 							 * down by len bytes,
2265 							 * which we didn't end
2266 							 * up "copying" over).
2267 							 */
2268 							uio->uio_resid += len;
2269 							break;
2270 						}
2271 					} else {
2272 						SOCKBUF_UNLOCK(&so->so_rcv);
2273 						*mp = m_copym(m, 0, len,
2274 						    M_WAITOK);
2275 						SOCKBUF_LOCK(&so->so_rcv);
2276 					}
2277 				}
2278 				sbcut_locked(&so->so_rcv, len);
2279 			}
2280 		}
2281 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2282 		if (so->so_oobmark) {
2283 			if ((flags & MSG_PEEK) == 0) {
2284 				so->so_oobmark -= len;
2285 				if (so->so_oobmark == 0) {
2286 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2287 					break;
2288 				}
2289 			} else {
2290 				offset += len;
2291 				if (offset == so->so_oobmark)
2292 					break;
2293 			}
2294 		}
2295 		if (flags & MSG_EOR)
2296 			break;
2297 		/*
2298 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2299 		 * must not quit until "uio->uio_resid == 0" or an error
2300 		 * termination.  If a signal/timeout occurs, return with a
2301 		 * short count but without error.  Keep sockbuf locked
2302 		 * against other readers.
2303 		 */
2304 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2305 		    !sosendallatonce(so) && nextrecord == NULL) {
2306 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2307 			if (so->so_error ||
2308 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2309 				break;
2310 			/*
2311 			 * Notify the protocol that some data has been
2312 			 * drained before blocking.
2313 			 */
2314 			if (pr->pr_flags & PR_WANTRCVD) {
2315 				SOCKBUF_UNLOCK(&so->so_rcv);
2316 				VNET_SO_ASSERT(so);
2317 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2318 				SOCKBUF_LOCK(&so->so_rcv);
2319 			}
2320 			SBLASTRECORDCHK(&so->so_rcv);
2321 			SBLASTMBUFCHK(&so->so_rcv);
2322 			/*
2323 			 * We could receive some data while was notifying
2324 			 * the protocol. Skip blocking in this case.
2325 			 */
2326 			if (so->so_rcv.sb_mb == NULL) {
2327 				error = sbwait(&so->so_rcv);
2328 				if (error) {
2329 					SOCKBUF_UNLOCK(&so->so_rcv);
2330 					goto release;
2331 				}
2332 			}
2333 			m = so->so_rcv.sb_mb;
2334 			if (m != NULL)
2335 				nextrecord = m->m_nextpkt;
2336 		}
2337 	}
2338 
2339 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2340 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2341 		flags |= MSG_TRUNC;
2342 		if ((flags & MSG_PEEK) == 0)
2343 			(void) sbdroprecord_locked(&so->so_rcv);
2344 	}
2345 	if ((flags & MSG_PEEK) == 0) {
2346 		if (m == NULL) {
2347 			/*
2348 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2349 			 * part makes sure sb_lastrecord is up-to-date if
2350 			 * there is still data in the socket buffer.
2351 			 */
2352 			so->so_rcv.sb_mb = nextrecord;
2353 			if (so->so_rcv.sb_mb == NULL) {
2354 				so->so_rcv.sb_mbtail = NULL;
2355 				so->so_rcv.sb_lastrecord = NULL;
2356 			} else if (nextrecord->m_nextpkt == NULL)
2357 				so->so_rcv.sb_lastrecord = nextrecord;
2358 		}
2359 		SBLASTRECORDCHK(&so->so_rcv);
2360 		SBLASTMBUFCHK(&so->so_rcv);
2361 		/*
2362 		 * If soreceive() is being done from the socket callback,
2363 		 * then don't need to generate ACK to peer to update window,
2364 		 * since ACK will be generated on return to TCP.
2365 		 */
2366 		if (!(flags & MSG_SOCALLBCK) &&
2367 		    (pr->pr_flags & PR_WANTRCVD)) {
2368 			SOCKBUF_UNLOCK(&so->so_rcv);
2369 			VNET_SO_ASSERT(so);
2370 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2371 			SOCKBUF_LOCK(&so->so_rcv);
2372 		}
2373 	}
2374 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2375 	if (orig_resid == uio->uio_resid && orig_resid &&
2376 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2377 		SOCKBUF_UNLOCK(&so->so_rcv);
2378 		goto restart;
2379 	}
2380 	SOCKBUF_UNLOCK(&so->so_rcv);
2381 
2382 	if (flagsp != NULL)
2383 		*flagsp |= flags;
2384 release:
2385 	sbunlock(&so->so_rcv);
2386 	return (error);
2387 }
2388 
2389 /*
2390  * Optimized version of soreceive() for stream (TCP) sockets.
2391  */
2392 int
2393 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2394     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2395 {
2396 	int len = 0, error = 0, flags, oresid;
2397 	struct sockbuf *sb;
2398 	struct mbuf *m, *n = NULL;
2399 
2400 	/* We only do stream sockets. */
2401 	if (so->so_type != SOCK_STREAM)
2402 		return (EINVAL);
2403 	if (psa != NULL)
2404 		*psa = NULL;
2405 	if (flagsp != NULL)
2406 		flags = *flagsp &~ MSG_EOR;
2407 	else
2408 		flags = 0;
2409 	if (controlp != NULL)
2410 		*controlp = NULL;
2411 	if (flags & MSG_OOB)
2412 		return (soreceive_rcvoob(so, uio, flags));
2413 	if (mp0 != NULL)
2414 		*mp0 = NULL;
2415 
2416 	sb = &so->so_rcv;
2417 
2418 #ifdef KERN_TLS
2419 	/*
2420 	 * KTLS store TLS records as records with a control message to
2421 	 * describe the framing.
2422 	 *
2423 	 * We check once here before acquiring locks to optimize the
2424 	 * common case.
2425 	 */
2426 	if (sb->sb_tls_info != NULL)
2427 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2428 		    flagsp));
2429 #endif
2430 
2431 	/* Prevent other readers from entering the socket. */
2432 	error = sblock(sb, SBLOCKWAIT(flags));
2433 	if (error)
2434 		return (error);
2435 	SOCKBUF_LOCK(sb);
2436 
2437 #ifdef KERN_TLS
2438 	if (sb->sb_tls_info != NULL) {
2439 		SOCKBUF_UNLOCK(sb);
2440 		sbunlock(sb);
2441 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2442 		    flagsp));
2443 	}
2444 #endif
2445 
2446 	/* Easy one, no space to copyout anything. */
2447 	if (uio->uio_resid == 0) {
2448 		error = EINVAL;
2449 		goto out;
2450 	}
2451 	oresid = uio->uio_resid;
2452 
2453 	/* We will never ever get anything unless we are or were connected. */
2454 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2455 		error = ENOTCONN;
2456 		goto out;
2457 	}
2458 
2459 restart:
2460 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2461 
2462 	/* Abort if socket has reported problems. */
2463 	if (so->so_error) {
2464 		if (sbavail(sb) > 0)
2465 			goto deliver;
2466 		if (oresid > uio->uio_resid)
2467 			goto out;
2468 		error = so->so_error;
2469 		if (!(flags & MSG_PEEK))
2470 			so->so_error = 0;
2471 		goto out;
2472 	}
2473 
2474 	/* Door is closed.  Deliver what is left, if any. */
2475 	if (sb->sb_state & SBS_CANTRCVMORE) {
2476 		if (sbavail(sb) > 0)
2477 			goto deliver;
2478 		else
2479 			goto out;
2480 	}
2481 
2482 	/* Socket buffer is empty and we shall not block. */
2483 	if (sbavail(sb) == 0 &&
2484 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2485 		error = EAGAIN;
2486 		goto out;
2487 	}
2488 
2489 	/* Socket buffer got some data that we shall deliver now. */
2490 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2491 	    ((so->so_state & SS_NBIO) ||
2492 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2493 	     sbavail(sb) >= sb->sb_lowat ||
2494 	     sbavail(sb) >= uio->uio_resid ||
2495 	     sbavail(sb) >= sb->sb_hiwat) ) {
2496 		goto deliver;
2497 	}
2498 
2499 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2500 	if ((flags & MSG_WAITALL) &&
2501 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2502 		goto deliver;
2503 
2504 	/*
2505 	 * Wait and block until (more) data comes in.
2506 	 * NB: Drops the sockbuf lock during wait.
2507 	 */
2508 	error = sbwait(sb);
2509 	if (error)
2510 		goto out;
2511 	goto restart;
2512 
2513 deliver:
2514 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2515 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2516 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2517 
2518 	/* Statistics. */
2519 	if (uio->uio_td)
2520 		uio->uio_td->td_ru.ru_msgrcv++;
2521 
2522 	/* Fill uio until full or current end of socket buffer is reached. */
2523 	len = min(uio->uio_resid, sbavail(sb));
2524 	if (mp0 != NULL) {
2525 		/* Dequeue as many mbufs as possible. */
2526 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2527 			if (*mp0 == NULL)
2528 				*mp0 = sb->sb_mb;
2529 			else
2530 				m_cat(*mp0, sb->sb_mb);
2531 			for (m = sb->sb_mb;
2532 			     m != NULL && m->m_len <= len;
2533 			     m = m->m_next) {
2534 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2535 				    ("%s: m %p not available", __func__, m));
2536 				len -= m->m_len;
2537 				uio->uio_resid -= m->m_len;
2538 				sbfree(sb, m);
2539 				n = m;
2540 			}
2541 			n->m_next = NULL;
2542 			sb->sb_mb = m;
2543 			sb->sb_lastrecord = sb->sb_mb;
2544 			if (sb->sb_mb == NULL)
2545 				SB_EMPTY_FIXUP(sb);
2546 		}
2547 		/* Copy the remainder. */
2548 		if (len > 0) {
2549 			KASSERT(sb->sb_mb != NULL,
2550 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2551 
2552 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2553 			if (m == NULL)
2554 				len = 0;	/* Don't flush data from sockbuf. */
2555 			else
2556 				uio->uio_resid -= len;
2557 			if (*mp0 != NULL)
2558 				m_cat(*mp0, m);
2559 			else
2560 				*mp0 = m;
2561 			if (*mp0 == NULL) {
2562 				error = ENOBUFS;
2563 				goto out;
2564 			}
2565 		}
2566 	} else {
2567 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2568 		SOCKBUF_UNLOCK(sb);
2569 		error = m_mbuftouio(uio, sb->sb_mb, len);
2570 		SOCKBUF_LOCK(sb);
2571 		if (error)
2572 			goto out;
2573 	}
2574 	SBLASTRECORDCHK(sb);
2575 	SBLASTMBUFCHK(sb);
2576 
2577 	/*
2578 	 * Remove the delivered data from the socket buffer unless we
2579 	 * were only peeking.
2580 	 */
2581 	if (!(flags & MSG_PEEK)) {
2582 		if (len > 0)
2583 			sbdrop_locked(sb, len);
2584 
2585 		/* Notify protocol that we drained some data. */
2586 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2587 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2588 		     !(flags & MSG_SOCALLBCK))) {
2589 			SOCKBUF_UNLOCK(sb);
2590 			VNET_SO_ASSERT(so);
2591 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2592 			SOCKBUF_LOCK(sb);
2593 		}
2594 	}
2595 
2596 	/*
2597 	 * For MSG_WAITALL we may have to loop again and wait for
2598 	 * more data to come in.
2599 	 */
2600 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2601 		goto restart;
2602 out:
2603 	SOCKBUF_LOCK_ASSERT(sb);
2604 	SBLASTRECORDCHK(sb);
2605 	SBLASTMBUFCHK(sb);
2606 	SOCKBUF_UNLOCK(sb);
2607 	sbunlock(sb);
2608 	return (error);
2609 }
2610 
2611 /*
2612  * Optimized version of soreceive() for simple datagram cases from userspace.
2613  * Unlike in the stream case, we're able to drop a datagram if copyout()
2614  * fails, and because we handle datagrams atomically, we don't need to use a
2615  * sleep lock to prevent I/O interlacing.
2616  */
2617 int
2618 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2619     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2620 {
2621 	struct mbuf *m, *m2;
2622 	int flags, error;
2623 	ssize_t len;
2624 	struct protosw *pr = so->so_proto;
2625 	struct mbuf *nextrecord;
2626 
2627 	if (psa != NULL)
2628 		*psa = NULL;
2629 	if (controlp != NULL)
2630 		*controlp = NULL;
2631 	if (flagsp != NULL)
2632 		flags = *flagsp &~ MSG_EOR;
2633 	else
2634 		flags = 0;
2635 
2636 	/*
2637 	 * For any complicated cases, fall back to the full
2638 	 * soreceive_generic().
2639 	 */
2640 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2641 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2642 		    flagsp));
2643 
2644 	/*
2645 	 * Enforce restrictions on use.
2646 	 */
2647 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2648 	    ("soreceive_dgram: wantrcvd"));
2649 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2650 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2651 	    ("soreceive_dgram: SBS_RCVATMARK"));
2652 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2653 	    ("soreceive_dgram: P_CONNREQUIRED"));
2654 
2655 	/*
2656 	 * Loop blocking while waiting for a datagram.
2657 	 */
2658 	SOCKBUF_LOCK(&so->so_rcv);
2659 	while ((m = so->so_rcv.sb_mb) == NULL) {
2660 		KASSERT(sbavail(&so->so_rcv) == 0,
2661 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2662 		    sbavail(&so->so_rcv)));
2663 		if (so->so_error) {
2664 			error = so->so_error;
2665 			so->so_error = 0;
2666 			SOCKBUF_UNLOCK(&so->so_rcv);
2667 			return (error);
2668 		}
2669 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2670 		    uio->uio_resid == 0) {
2671 			SOCKBUF_UNLOCK(&so->so_rcv);
2672 			return (0);
2673 		}
2674 		if ((so->so_state & SS_NBIO) ||
2675 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2676 			SOCKBUF_UNLOCK(&so->so_rcv);
2677 			return (EWOULDBLOCK);
2678 		}
2679 		SBLASTRECORDCHK(&so->so_rcv);
2680 		SBLASTMBUFCHK(&so->so_rcv);
2681 		error = sbwait(&so->so_rcv);
2682 		if (error) {
2683 			SOCKBUF_UNLOCK(&so->so_rcv);
2684 			return (error);
2685 		}
2686 	}
2687 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2688 
2689 	if (uio->uio_td)
2690 		uio->uio_td->td_ru.ru_msgrcv++;
2691 	SBLASTRECORDCHK(&so->so_rcv);
2692 	SBLASTMBUFCHK(&so->so_rcv);
2693 	nextrecord = m->m_nextpkt;
2694 	if (nextrecord == NULL) {
2695 		KASSERT(so->so_rcv.sb_lastrecord == m,
2696 		    ("soreceive_dgram: lastrecord != m"));
2697 	}
2698 
2699 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2700 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2701 
2702 	/*
2703 	 * Pull 'm' and its chain off the front of the packet queue.
2704 	 */
2705 	so->so_rcv.sb_mb = NULL;
2706 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2707 
2708 	/*
2709 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2710 	 */
2711 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2712 		sbfree(&so->so_rcv, m2);
2713 
2714 	/*
2715 	 * Do a few last checks before we let go of the lock.
2716 	 */
2717 	SBLASTRECORDCHK(&so->so_rcv);
2718 	SBLASTMBUFCHK(&so->so_rcv);
2719 	SOCKBUF_UNLOCK(&so->so_rcv);
2720 
2721 	if (pr->pr_flags & PR_ADDR) {
2722 		KASSERT(m->m_type == MT_SONAME,
2723 		    ("m->m_type == %d", m->m_type));
2724 		if (psa != NULL)
2725 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2726 			    M_NOWAIT);
2727 		m = m_free(m);
2728 	}
2729 	if (m == NULL) {
2730 		/* XXXRW: Can this happen? */
2731 		return (0);
2732 	}
2733 
2734 	/*
2735 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2736 	 * queue.
2737 	 *
2738 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2739 	 * in the first mbuf chain on the socket buffer.  We call into the
2740 	 * protocol to perform externalization (or freeing if controlp ==
2741 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2742 	 * MT_DATA mbufs.
2743 	 */
2744 	if (m->m_type == MT_CONTROL) {
2745 		struct mbuf *cm = NULL, *cmn;
2746 		struct mbuf **cme = &cm;
2747 
2748 		do {
2749 			m2 = m->m_next;
2750 			m->m_next = NULL;
2751 			*cme = m;
2752 			cme = &(*cme)->m_next;
2753 			m = m2;
2754 		} while (m != NULL && m->m_type == MT_CONTROL);
2755 		while (cm != NULL) {
2756 			cmn = cm->m_next;
2757 			cm->m_next = NULL;
2758 			if (pr->pr_domain->dom_externalize != NULL) {
2759 				error = (*pr->pr_domain->dom_externalize)
2760 				    (cm, controlp, flags);
2761 			} else if (controlp != NULL)
2762 				*controlp = cm;
2763 			else
2764 				m_freem(cm);
2765 			if (controlp != NULL) {
2766 				while (*controlp != NULL)
2767 					controlp = &(*controlp)->m_next;
2768 			}
2769 			cm = cmn;
2770 		}
2771 	}
2772 	KASSERT(m == NULL || m->m_type == MT_DATA,
2773 	    ("soreceive_dgram: !data"));
2774 	while (m != NULL && uio->uio_resid > 0) {
2775 		len = uio->uio_resid;
2776 		if (len > m->m_len)
2777 			len = m->m_len;
2778 		error = uiomove(mtod(m, char *), (int)len, uio);
2779 		if (error) {
2780 			m_freem(m);
2781 			return (error);
2782 		}
2783 		if (len == m->m_len)
2784 			m = m_free(m);
2785 		else {
2786 			m->m_data += len;
2787 			m->m_len -= len;
2788 		}
2789 	}
2790 	if (m != NULL) {
2791 		flags |= MSG_TRUNC;
2792 		m_freem(m);
2793 	}
2794 	if (flagsp != NULL)
2795 		*flagsp |= flags;
2796 	return (0);
2797 }
2798 
2799 int
2800 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2801     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2802 {
2803 	int error;
2804 
2805 	CURVNET_SET(so->so_vnet);
2806 	if (!SOLISTENING(so))
2807 		error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
2808 		    mp0, controlp, flagsp));
2809 	else
2810 		error = ENOTCONN;
2811 	CURVNET_RESTORE();
2812 	return (error);
2813 }
2814 
2815 int
2816 soshutdown(struct socket *so, int how)
2817 {
2818 	struct protosw *pr = so->so_proto;
2819 	int error, soerror_enotconn;
2820 
2821 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2822 		return (EINVAL);
2823 
2824 	soerror_enotconn = 0;
2825 	if ((so->so_state &
2826 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2827 		/*
2828 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2829 		 * invoked on a datagram sockets, however historically we would
2830 		 * actually tear socket down. This is known to be leveraged by
2831 		 * some applications to unblock process waiting in recvXXX(2)
2832 		 * by other process that it shares that socket with. Try to meet
2833 		 * both backward-compatibility and POSIX requirements by forcing
2834 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2835 		 */
2836 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
2837 			return (ENOTCONN);
2838 		soerror_enotconn = 1;
2839 	}
2840 
2841 	if (SOLISTENING(so)) {
2842 		if (how != SHUT_WR) {
2843 			SOLISTEN_LOCK(so);
2844 			so->so_error = ECONNABORTED;
2845 			solisten_wakeup(so);	/* unlocks so */
2846 		}
2847 		goto done;
2848 	}
2849 
2850 	CURVNET_SET(so->so_vnet);
2851 	if (pr->pr_usrreqs->pru_flush != NULL)
2852 		(*pr->pr_usrreqs->pru_flush)(so, how);
2853 	if (how != SHUT_WR)
2854 		sorflush(so);
2855 	if (how != SHUT_RD) {
2856 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2857 		wakeup(&so->so_timeo);
2858 		CURVNET_RESTORE();
2859 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2860 	}
2861 	wakeup(&so->so_timeo);
2862 	CURVNET_RESTORE();
2863 
2864 done:
2865 	return (soerror_enotconn ? ENOTCONN : 0);
2866 }
2867 
2868 void
2869 sorflush(struct socket *so)
2870 {
2871 	struct sockbuf *sb = &so->so_rcv;
2872 	struct protosw *pr = so->so_proto;
2873 	struct socket aso;
2874 
2875 	VNET_SO_ASSERT(so);
2876 
2877 	/*
2878 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2879 	 * held, and in order to generally avoid holding the lock for a long
2880 	 * time, we make a copy of the socket buffer and clear the original
2881 	 * (except locks, state).  The new socket buffer copy won't have
2882 	 * initialized locks so we can only call routines that won't use or
2883 	 * assert those locks.
2884 	 *
2885 	 * Dislodge threads currently blocked in receive and wait to acquire
2886 	 * a lock against other simultaneous readers before clearing the
2887 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2888 	 * despite any existing socket disposition on interruptable waiting.
2889 	 */
2890 	socantrcvmore(so);
2891 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2892 
2893 	/*
2894 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2895 	 * and mutex data unchanged.
2896 	 */
2897 	SOCKBUF_LOCK(sb);
2898 	bzero(&aso, sizeof(aso));
2899 	aso.so_pcb = so->so_pcb;
2900 	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2901 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2902 	bzero(&sb->sb_startzero,
2903 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2904 	SOCKBUF_UNLOCK(sb);
2905 	sbunlock(sb);
2906 
2907 	/*
2908 	 * Dispose of special rights and flush the copied socket.  Don't call
2909 	 * any unsafe routines (that rely on locks being initialized) on aso.
2910 	 */
2911 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2912 		(*pr->pr_domain->dom_dispose)(&aso);
2913 	sbrelease_internal(&aso.so_rcv, so);
2914 }
2915 
2916 /*
2917  * Wrapper for Socket established helper hook.
2918  * Parameters: socket, context of the hook point, hook id.
2919  */
2920 static int inline
2921 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2922 {
2923 	struct socket_hhook_data hhook_data = {
2924 		.so = so,
2925 		.hctx = hctx,
2926 		.m = NULL,
2927 		.status = 0
2928 	};
2929 
2930 	CURVNET_SET(so->so_vnet);
2931 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2932 	CURVNET_RESTORE();
2933 
2934 	/* Ugly but needed, since hhooks return void for now */
2935 	return (hhook_data.status);
2936 }
2937 
2938 /*
2939  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2940  * additional variant to handle the case where the option value needs to be
2941  * some kind of integer, but not a specific size.  In addition to their use
2942  * here, these functions are also called by the protocol-level pr_ctloutput()
2943  * routines.
2944  */
2945 int
2946 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2947 {
2948 	size_t	valsize;
2949 
2950 	/*
2951 	 * If the user gives us more than we wanted, we ignore it, but if we
2952 	 * don't get the minimum length the caller wants, we return EINVAL.
2953 	 * On success, sopt->sopt_valsize is set to however much we actually
2954 	 * retrieved.
2955 	 */
2956 	if ((valsize = sopt->sopt_valsize) < minlen)
2957 		return EINVAL;
2958 	if (valsize > len)
2959 		sopt->sopt_valsize = valsize = len;
2960 
2961 	if (sopt->sopt_td != NULL)
2962 		return (copyin(sopt->sopt_val, buf, valsize));
2963 
2964 	bcopy(sopt->sopt_val, buf, valsize);
2965 	return (0);
2966 }
2967 
2968 /*
2969  * Kernel version of setsockopt(2).
2970  *
2971  * XXX: optlen is size_t, not socklen_t
2972  */
2973 int
2974 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2975     size_t optlen)
2976 {
2977 	struct sockopt sopt;
2978 
2979 	sopt.sopt_level = level;
2980 	sopt.sopt_name = optname;
2981 	sopt.sopt_dir = SOPT_SET;
2982 	sopt.sopt_val = optval;
2983 	sopt.sopt_valsize = optlen;
2984 	sopt.sopt_td = NULL;
2985 	return (sosetopt(so, &sopt));
2986 }
2987 
2988 int
2989 sosetopt(struct socket *so, struct sockopt *sopt)
2990 {
2991 	int	error, optval;
2992 	struct	linger l;
2993 	struct	timeval tv;
2994 	sbintime_t val;
2995 	uint32_t val32;
2996 #ifdef MAC
2997 	struct mac extmac;
2998 #endif
2999 
3000 	CURVNET_SET(so->so_vnet);
3001 	error = 0;
3002 	if (sopt->sopt_level != SOL_SOCKET) {
3003 		if (so->so_proto->pr_ctloutput != NULL)
3004 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3005 		else
3006 			error = ENOPROTOOPT;
3007 	} else {
3008 		switch (sopt->sopt_name) {
3009 		case SO_ACCEPTFILTER:
3010 			error = accept_filt_setopt(so, sopt);
3011 			if (error)
3012 				goto bad;
3013 			break;
3014 
3015 		case SO_LINGER:
3016 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3017 			if (error)
3018 				goto bad;
3019 			if (l.l_linger < 0 ||
3020 			    l.l_linger > USHRT_MAX ||
3021 			    l.l_linger > (INT_MAX / hz)) {
3022 				error = EDOM;
3023 				goto bad;
3024 			}
3025 			SOCK_LOCK(so);
3026 			so->so_linger = l.l_linger;
3027 			if (l.l_onoff)
3028 				so->so_options |= SO_LINGER;
3029 			else
3030 				so->so_options &= ~SO_LINGER;
3031 			SOCK_UNLOCK(so);
3032 			break;
3033 
3034 		case SO_DEBUG:
3035 		case SO_KEEPALIVE:
3036 		case SO_DONTROUTE:
3037 		case SO_USELOOPBACK:
3038 		case SO_BROADCAST:
3039 		case SO_REUSEADDR:
3040 		case SO_REUSEPORT:
3041 		case SO_REUSEPORT_LB:
3042 		case SO_OOBINLINE:
3043 		case SO_TIMESTAMP:
3044 		case SO_BINTIME:
3045 		case SO_NOSIGPIPE:
3046 		case SO_NO_DDP:
3047 		case SO_NO_OFFLOAD:
3048 			error = sooptcopyin(sopt, &optval, sizeof optval,
3049 			    sizeof optval);
3050 			if (error)
3051 				goto bad;
3052 			SOCK_LOCK(so);
3053 			if (optval)
3054 				so->so_options |= sopt->sopt_name;
3055 			else
3056 				so->so_options &= ~sopt->sopt_name;
3057 			SOCK_UNLOCK(so);
3058 			break;
3059 
3060 		case SO_SETFIB:
3061 			error = sooptcopyin(sopt, &optval, sizeof optval,
3062 			    sizeof optval);
3063 			if (error)
3064 				goto bad;
3065 
3066 			if (optval < 0 || optval >= rt_numfibs) {
3067 				error = EINVAL;
3068 				goto bad;
3069 			}
3070 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3071 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3072 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3073 				so->so_fibnum = optval;
3074 			else
3075 				so->so_fibnum = 0;
3076 			break;
3077 
3078 		case SO_USER_COOKIE:
3079 			error = sooptcopyin(sopt, &val32, sizeof val32,
3080 			    sizeof val32);
3081 			if (error)
3082 				goto bad;
3083 			so->so_user_cookie = val32;
3084 			break;
3085 
3086 		case SO_SNDBUF:
3087 		case SO_RCVBUF:
3088 		case SO_SNDLOWAT:
3089 		case SO_RCVLOWAT:
3090 			error = sooptcopyin(sopt, &optval, sizeof optval,
3091 			    sizeof optval);
3092 			if (error)
3093 				goto bad;
3094 
3095 			/*
3096 			 * Values < 1 make no sense for any of these options,
3097 			 * so disallow them.
3098 			 */
3099 			if (optval < 1) {
3100 				error = EINVAL;
3101 				goto bad;
3102 			}
3103 
3104 			error = sbsetopt(so, sopt->sopt_name, optval);
3105 			break;
3106 
3107 		case SO_SNDTIMEO:
3108 		case SO_RCVTIMEO:
3109 #ifdef COMPAT_FREEBSD32
3110 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3111 				struct timeval32 tv32;
3112 
3113 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3114 				    sizeof tv32);
3115 				CP(tv32, tv, tv_sec);
3116 				CP(tv32, tv, tv_usec);
3117 			} else
3118 #endif
3119 				error = sooptcopyin(sopt, &tv, sizeof tv,
3120 				    sizeof tv);
3121 			if (error)
3122 				goto bad;
3123 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3124 			    tv.tv_usec >= 1000000) {
3125 				error = EDOM;
3126 				goto bad;
3127 			}
3128 			if (tv.tv_sec > INT32_MAX)
3129 				val = SBT_MAX;
3130 			else
3131 				val = tvtosbt(tv);
3132 			switch (sopt->sopt_name) {
3133 			case SO_SNDTIMEO:
3134 				so->so_snd.sb_timeo = val;
3135 				break;
3136 			case SO_RCVTIMEO:
3137 				so->so_rcv.sb_timeo = val;
3138 				break;
3139 			}
3140 			break;
3141 
3142 		case SO_LABEL:
3143 #ifdef MAC
3144 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3145 			    sizeof extmac);
3146 			if (error)
3147 				goto bad;
3148 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3149 			    so, &extmac);
3150 #else
3151 			error = EOPNOTSUPP;
3152 #endif
3153 			break;
3154 
3155 		case SO_TS_CLOCK:
3156 			error = sooptcopyin(sopt, &optval, sizeof optval,
3157 			    sizeof optval);
3158 			if (error)
3159 				goto bad;
3160 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3161 				error = EINVAL;
3162 				goto bad;
3163 			}
3164 			so->so_ts_clock = optval;
3165 			break;
3166 
3167 		case SO_MAX_PACING_RATE:
3168 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3169 			    sizeof(val32));
3170 			if (error)
3171 				goto bad;
3172 			so->so_max_pacing_rate = val32;
3173 			break;
3174 
3175 		default:
3176 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3177 				error = hhook_run_socket(so, sopt,
3178 				    HHOOK_SOCKET_OPT);
3179 			else
3180 				error = ENOPROTOOPT;
3181 			break;
3182 		}
3183 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3184 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3185 	}
3186 bad:
3187 	CURVNET_RESTORE();
3188 	return (error);
3189 }
3190 
3191 /*
3192  * Helper routine for getsockopt.
3193  */
3194 int
3195 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3196 {
3197 	int	error;
3198 	size_t	valsize;
3199 
3200 	error = 0;
3201 
3202 	/*
3203 	 * Documented get behavior is that we always return a value, possibly
3204 	 * truncated to fit in the user's buffer.  Traditional behavior is
3205 	 * that we always tell the user precisely how much we copied, rather
3206 	 * than something useful like the total amount we had available for
3207 	 * her.  Note that this interface is not idempotent; the entire
3208 	 * answer must be generated ahead of time.
3209 	 */
3210 	valsize = min(len, sopt->sopt_valsize);
3211 	sopt->sopt_valsize = valsize;
3212 	if (sopt->sopt_val != NULL) {
3213 		if (sopt->sopt_td != NULL)
3214 			error = copyout(buf, sopt->sopt_val, valsize);
3215 		else
3216 			bcopy(buf, sopt->sopt_val, valsize);
3217 	}
3218 	return (error);
3219 }
3220 
3221 int
3222 sogetopt(struct socket *so, struct sockopt *sopt)
3223 {
3224 	int	error, optval;
3225 	struct	linger l;
3226 	struct	timeval tv;
3227 #ifdef MAC
3228 	struct mac extmac;
3229 #endif
3230 
3231 	CURVNET_SET(so->so_vnet);
3232 	error = 0;
3233 	if (sopt->sopt_level != SOL_SOCKET) {
3234 		if (so->so_proto->pr_ctloutput != NULL)
3235 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3236 		else
3237 			error = ENOPROTOOPT;
3238 		CURVNET_RESTORE();
3239 		return (error);
3240 	} else {
3241 		switch (sopt->sopt_name) {
3242 		case SO_ACCEPTFILTER:
3243 			error = accept_filt_getopt(so, sopt);
3244 			break;
3245 
3246 		case SO_LINGER:
3247 			SOCK_LOCK(so);
3248 			l.l_onoff = so->so_options & SO_LINGER;
3249 			l.l_linger = so->so_linger;
3250 			SOCK_UNLOCK(so);
3251 			error = sooptcopyout(sopt, &l, sizeof l);
3252 			break;
3253 
3254 		case SO_USELOOPBACK:
3255 		case SO_DONTROUTE:
3256 		case SO_DEBUG:
3257 		case SO_KEEPALIVE:
3258 		case SO_REUSEADDR:
3259 		case SO_REUSEPORT:
3260 		case SO_REUSEPORT_LB:
3261 		case SO_BROADCAST:
3262 		case SO_OOBINLINE:
3263 		case SO_ACCEPTCONN:
3264 		case SO_TIMESTAMP:
3265 		case SO_BINTIME:
3266 		case SO_NOSIGPIPE:
3267 		case SO_NO_DDP:
3268 		case SO_NO_OFFLOAD:
3269 			optval = so->so_options & sopt->sopt_name;
3270 integer:
3271 			error = sooptcopyout(sopt, &optval, sizeof optval);
3272 			break;
3273 
3274 		case SO_DOMAIN:
3275 			optval = so->so_proto->pr_domain->dom_family;
3276 			goto integer;
3277 
3278 		case SO_TYPE:
3279 			optval = so->so_type;
3280 			goto integer;
3281 
3282 		case SO_PROTOCOL:
3283 			optval = so->so_proto->pr_protocol;
3284 			goto integer;
3285 
3286 		case SO_ERROR:
3287 			SOCK_LOCK(so);
3288 			optval = so->so_error;
3289 			so->so_error = 0;
3290 			SOCK_UNLOCK(so);
3291 			goto integer;
3292 
3293 		case SO_SNDBUF:
3294 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3295 			    so->so_snd.sb_hiwat;
3296 			goto integer;
3297 
3298 		case SO_RCVBUF:
3299 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3300 			    so->so_rcv.sb_hiwat;
3301 			goto integer;
3302 
3303 		case SO_SNDLOWAT:
3304 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3305 			    so->so_snd.sb_lowat;
3306 			goto integer;
3307 
3308 		case SO_RCVLOWAT:
3309 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3310 			    so->so_rcv.sb_lowat;
3311 			goto integer;
3312 
3313 		case SO_SNDTIMEO:
3314 		case SO_RCVTIMEO:
3315 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3316 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
3317 #ifdef COMPAT_FREEBSD32
3318 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3319 				struct timeval32 tv32;
3320 
3321 				CP(tv, tv32, tv_sec);
3322 				CP(tv, tv32, tv_usec);
3323 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3324 			} else
3325 #endif
3326 				error = sooptcopyout(sopt, &tv, sizeof tv);
3327 			break;
3328 
3329 		case SO_LABEL:
3330 #ifdef MAC
3331 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3332 			    sizeof(extmac));
3333 			if (error)
3334 				goto bad;
3335 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3336 			    so, &extmac);
3337 			if (error)
3338 				goto bad;
3339 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3340 #else
3341 			error = EOPNOTSUPP;
3342 #endif
3343 			break;
3344 
3345 		case SO_PEERLABEL:
3346 #ifdef MAC
3347 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3348 			    sizeof(extmac));
3349 			if (error)
3350 				goto bad;
3351 			error = mac_getsockopt_peerlabel(
3352 			    sopt->sopt_td->td_ucred, so, &extmac);
3353 			if (error)
3354 				goto bad;
3355 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3356 #else
3357 			error = EOPNOTSUPP;
3358 #endif
3359 			break;
3360 
3361 		case SO_LISTENQLIMIT:
3362 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3363 			goto integer;
3364 
3365 		case SO_LISTENQLEN:
3366 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3367 			goto integer;
3368 
3369 		case SO_LISTENINCQLEN:
3370 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3371 			goto integer;
3372 
3373 		case SO_TS_CLOCK:
3374 			optval = so->so_ts_clock;
3375 			goto integer;
3376 
3377 		case SO_MAX_PACING_RATE:
3378 			optval = so->so_max_pacing_rate;
3379 			goto integer;
3380 
3381 		default:
3382 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3383 				error = hhook_run_socket(so, sopt,
3384 				    HHOOK_SOCKET_OPT);
3385 			else
3386 				error = ENOPROTOOPT;
3387 			break;
3388 		}
3389 	}
3390 #ifdef MAC
3391 bad:
3392 #endif
3393 	CURVNET_RESTORE();
3394 	return (error);
3395 }
3396 
3397 int
3398 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3399 {
3400 	struct mbuf *m, *m_prev;
3401 	int sopt_size = sopt->sopt_valsize;
3402 
3403 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3404 	if (m == NULL)
3405 		return ENOBUFS;
3406 	if (sopt_size > MLEN) {
3407 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3408 		if ((m->m_flags & M_EXT) == 0) {
3409 			m_free(m);
3410 			return ENOBUFS;
3411 		}
3412 		m->m_len = min(MCLBYTES, sopt_size);
3413 	} else {
3414 		m->m_len = min(MLEN, sopt_size);
3415 	}
3416 	sopt_size -= m->m_len;
3417 	*mp = m;
3418 	m_prev = m;
3419 
3420 	while (sopt_size) {
3421 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3422 		if (m == NULL) {
3423 			m_freem(*mp);
3424 			return ENOBUFS;
3425 		}
3426 		if (sopt_size > MLEN) {
3427 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3428 			    M_NOWAIT);
3429 			if ((m->m_flags & M_EXT) == 0) {
3430 				m_freem(m);
3431 				m_freem(*mp);
3432 				return ENOBUFS;
3433 			}
3434 			m->m_len = min(MCLBYTES, sopt_size);
3435 		} else {
3436 			m->m_len = min(MLEN, sopt_size);
3437 		}
3438 		sopt_size -= m->m_len;
3439 		m_prev->m_next = m;
3440 		m_prev = m;
3441 	}
3442 	return (0);
3443 }
3444 
3445 int
3446 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3447 {
3448 	struct mbuf *m0 = m;
3449 
3450 	if (sopt->sopt_val == NULL)
3451 		return (0);
3452 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3453 		if (sopt->sopt_td != NULL) {
3454 			int error;
3455 
3456 			error = copyin(sopt->sopt_val, mtod(m, char *),
3457 			    m->m_len);
3458 			if (error != 0) {
3459 				m_freem(m0);
3460 				return(error);
3461 			}
3462 		} else
3463 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3464 		sopt->sopt_valsize -= m->m_len;
3465 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3466 		m = m->m_next;
3467 	}
3468 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3469 		panic("ip6_sooptmcopyin");
3470 	return (0);
3471 }
3472 
3473 int
3474 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3475 {
3476 	struct mbuf *m0 = m;
3477 	size_t valsize = 0;
3478 
3479 	if (sopt->sopt_val == NULL)
3480 		return (0);
3481 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3482 		if (sopt->sopt_td != NULL) {
3483 			int error;
3484 
3485 			error = copyout(mtod(m, char *), sopt->sopt_val,
3486 			    m->m_len);
3487 			if (error != 0) {
3488 				m_freem(m0);
3489 				return(error);
3490 			}
3491 		} else
3492 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3493 		sopt->sopt_valsize -= m->m_len;
3494 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3495 		valsize += m->m_len;
3496 		m = m->m_next;
3497 	}
3498 	if (m != NULL) {
3499 		/* enough soopt buffer should be given from user-land */
3500 		m_freem(m0);
3501 		return(EINVAL);
3502 	}
3503 	sopt->sopt_valsize = valsize;
3504 	return (0);
3505 }
3506 
3507 /*
3508  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3509  * out-of-band data, which will then notify socket consumers.
3510  */
3511 void
3512 sohasoutofband(struct socket *so)
3513 {
3514 
3515 	if (so->so_sigio != NULL)
3516 		pgsigio(&so->so_sigio, SIGURG, 0);
3517 	selwakeuppri(&so->so_rdsel, PSOCK);
3518 }
3519 
3520 int
3521 sopoll(struct socket *so, int events, struct ucred *active_cred,
3522     struct thread *td)
3523 {
3524 
3525 	/*
3526 	 * We do not need to set or assert curvnet as long as everyone uses
3527 	 * sopoll_generic().
3528 	 */
3529 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3530 	    td));
3531 }
3532 
3533 int
3534 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3535     struct thread *td)
3536 {
3537 	int revents;
3538 
3539 	SOCK_LOCK(so);
3540 	if (SOLISTENING(so)) {
3541 		if (!(events & (POLLIN | POLLRDNORM)))
3542 			revents = 0;
3543 		else if (!TAILQ_EMPTY(&so->sol_comp))
3544 			revents = events & (POLLIN | POLLRDNORM);
3545 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3546 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3547 		else {
3548 			selrecord(td, &so->so_rdsel);
3549 			revents = 0;
3550 		}
3551 	} else {
3552 		revents = 0;
3553 		SOCKBUF_LOCK(&so->so_snd);
3554 		SOCKBUF_LOCK(&so->so_rcv);
3555 		if (events & (POLLIN | POLLRDNORM))
3556 			if (soreadabledata(so))
3557 				revents |= events & (POLLIN | POLLRDNORM);
3558 		if (events & (POLLOUT | POLLWRNORM))
3559 			if (sowriteable(so))
3560 				revents |= events & (POLLOUT | POLLWRNORM);
3561 		if (events & (POLLPRI | POLLRDBAND))
3562 			if (so->so_oobmark ||
3563 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3564 				revents |= events & (POLLPRI | POLLRDBAND);
3565 		if ((events & POLLINIGNEOF) == 0) {
3566 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3567 				revents |= events & (POLLIN | POLLRDNORM);
3568 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3569 					revents |= POLLHUP;
3570 			}
3571 		}
3572 		if (revents == 0) {
3573 			if (events &
3574 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3575 				selrecord(td, &so->so_rdsel);
3576 				so->so_rcv.sb_flags |= SB_SEL;
3577 			}
3578 			if (events & (POLLOUT | POLLWRNORM)) {
3579 				selrecord(td, &so->so_wrsel);
3580 				so->so_snd.sb_flags |= SB_SEL;
3581 			}
3582 		}
3583 		SOCKBUF_UNLOCK(&so->so_rcv);
3584 		SOCKBUF_UNLOCK(&so->so_snd);
3585 	}
3586 	SOCK_UNLOCK(so);
3587 	return (revents);
3588 }
3589 
3590 int
3591 soo_kqfilter(struct file *fp, struct knote *kn)
3592 {
3593 	struct socket *so = kn->kn_fp->f_data;
3594 	struct sockbuf *sb;
3595 	struct knlist *knl;
3596 
3597 	switch (kn->kn_filter) {
3598 	case EVFILT_READ:
3599 		kn->kn_fop = &soread_filtops;
3600 		knl = &so->so_rdsel.si_note;
3601 		sb = &so->so_rcv;
3602 		break;
3603 	case EVFILT_WRITE:
3604 		kn->kn_fop = &sowrite_filtops;
3605 		knl = &so->so_wrsel.si_note;
3606 		sb = &so->so_snd;
3607 		break;
3608 	case EVFILT_EMPTY:
3609 		kn->kn_fop = &soempty_filtops;
3610 		knl = &so->so_wrsel.si_note;
3611 		sb = &so->so_snd;
3612 		break;
3613 	default:
3614 		return (EINVAL);
3615 	}
3616 
3617 	SOCK_LOCK(so);
3618 	if (SOLISTENING(so)) {
3619 		knlist_add(knl, kn, 1);
3620 	} else {
3621 		SOCKBUF_LOCK(sb);
3622 		knlist_add(knl, kn, 1);
3623 		sb->sb_flags |= SB_KNOTE;
3624 		SOCKBUF_UNLOCK(sb);
3625 	}
3626 	SOCK_UNLOCK(so);
3627 	return (0);
3628 }
3629 
3630 /*
3631  * Some routines that return EOPNOTSUPP for entry points that are not
3632  * supported by a protocol.  Fill in as needed.
3633  */
3634 int
3635 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3636 {
3637 
3638 	return EOPNOTSUPP;
3639 }
3640 
3641 int
3642 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3643 {
3644 
3645 	return EOPNOTSUPP;
3646 }
3647 
3648 int
3649 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3650 {
3651 
3652 	return EOPNOTSUPP;
3653 }
3654 
3655 int
3656 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3657 {
3658 
3659 	return EOPNOTSUPP;
3660 }
3661 
3662 int
3663 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3664     struct thread *td)
3665 {
3666 
3667 	return EOPNOTSUPP;
3668 }
3669 
3670 int
3671 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3672 {
3673 
3674 	return EOPNOTSUPP;
3675 }
3676 
3677 int
3678 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3679     struct thread *td)
3680 {
3681 
3682 	return EOPNOTSUPP;
3683 }
3684 
3685 int
3686 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3687 {
3688 
3689 	return EOPNOTSUPP;
3690 }
3691 
3692 int
3693 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3694     struct ifnet *ifp, struct thread *td)
3695 {
3696 
3697 	return EOPNOTSUPP;
3698 }
3699 
3700 int
3701 pru_disconnect_notsupp(struct socket *so)
3702 {
3703 
3704 	return EOPNOTSUPP;
3705 }
3706 
3707 int
3708 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3709 {
3710 
3711 	return EOPNOTSUPP;
3712 }
3713 
3714 int
3715 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3716 {
3717 
3718 	return EOPNOTSUPP;
3719 }
3720 
3721 int
3722 pru_rcvd_notsupp(struct socket *so, int flags)
3723 {
3724 
3725 	return EOPNOTSUPP;
3726 }
3727 
3728 int
3729 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3730 {
3731 
3732 	return EOPNOTSUPP;
3733 }
3734 
3735 int
3736 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3737     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3738 {
3739 
3740 	return EOPNOTSUPP;
3741 }
3742 
3743 int
3744 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3745 {
3746 
3747 	return (EOPNOTSUPP);
3748 }
3749 
3750 /*
3751  * This isn't really a ``null'' operation, but it's the default one and
3752  * doesn't do anything destructive.
3753  */
3754 int
3755 pru_sense_null(struct socket *so, struct stat *sb)
3756 {
3757 
3758 	sb->st_blksize = so->so_snd.sb_hiwat;
3759 	return 0;
3760 }
3761 
3762 int
3763 pru_shutdown_notsupp(struct socket *so)
3764 {
3765 
3766 	return EOPNOTSUPP;
3767 }
3768 
3769 int
3770 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3771 {
3772 
3773 	return EOPNOTSUPP;
3774 }
3775 
3776 int
3777 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3778     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3779 {
3780 
3781 	return EOPNOTSUPP;
3782 }
3783 
3784 int
3785 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3786     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3787 {
3788 
3789 	return EOPNOTSUPP;
3790 }
3791 
3792 int
3793 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3794     struct thread *td)
3795 {
3796 
3797 	return EOPNOTSUPP;
3798 }
3799 
3800 static void
3801 filt_sordetach(struct knote *kn)
3802 {
3803 	struct socket *so = kn->kn_fp->f_data;
3804 
3805 	so_rdknl_lock(so);
3806 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3807 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3808 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3809 	so_rdknl_unlock(so);
3810 }
3811 
3812 /*ARGSUSED*/
3813 static int
3814 filt_soread(struct knote *kn, long hint)
3815 {
3816 	struct socket *so;
3817 
3818 	so = kn->kn_fp->f_data;
3819 
3820 	if (SOLISTENING(so)) {
3821 		SOCK_LOCK_ASSERT(so);
3822 		kn->kn_data = so->sol_qlen;
3823 		if (so->so_error) {
3824 			kn->kn_flags |= EV_EOF;
3825 			kn->kn_fflags = so->so_error;
3826 			return (1);
3827 		}
3828 		return (!TAILQ_EMPTY(&so->sol_comp));
3829 	}
3830 
3831 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3832 
3833 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3834 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3835 		kn->kn_flags |= EV_EOF;
3836 		kn->kn_fflags = so->so_error;
3837 		return (1);
3838 	} else if (so->so_error)	/* temporary udp error */
3839 		return (1);
3840 
3841 	if (kn->kn_sfflags & NOTE_LOWAT) {
3842 		if (kn->kn_data >= kn->kn_sdata)
3843 			return (1);
3844 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3845 		return (1);
3846 
3847 	/* This hook returning non-zero indicates an event, not error */
3848 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3849 }
3850 
3851 static void
3852 filt_sowdetach(struct knote *kn)
3853 {
3854 	struct socket *so = kn->kn_fp->f_data;
3855 
3856 	so_wrknl_lock(so);
3857 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3858 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3859 		so->so_snd.sb_flags &= ~SB_KNOTE;
3860 	so_wrknl_unlock(so);
3861 }
3862 
3863 /*ARGSUSED*/
3864 static int
3865 filt_sowrite(struct knote *kn, long hint)
3866 {
3867 	struct socket *so;
3868 
3869 	so = kn->kn_fp->f_data;
3870 
3871 	if (SOLISTENING(so))
3872 		return (0);
3873 
3874 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3875 	kn->kn_data = sbspace(&so->so_snd);
3876 
3877 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3878 
3879 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3880 		kn->kn_flags |= EV_EOF;
3881 		kn->kn_fflags = so->so_error;
3882 		return (1);
3883 	} else if (so->so_error)	/* temporary udp error */
3884 		return (1);
3885 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3886 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3887 		return (0);
3888 	else if (kn->kn_sfflags & NOTE_LOWAT)
3889 		return (kn->kn_data >= kn->kn_sdata);
3890 	else
3891 		return (kn->kn_data >= so->so_snd.sb_lowat);
3892 }
3893 
3894 static int
3895 filt_soempty(struct knote *kn, long hint)
3896 {
3897 	struct socket *so;
3898 
3899 	so = kn->kn_fp->f_data;
3900 
3901 	if (SOLISTENING(so))
3902 		return (1);
3903 
3904 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3905 	kn->kn_data = sbused(&so->so_snd);
3906 
3907 	if (kn->kn_data == 0)
3908 		return (1);
3909 	else
3910 		return (0);
3911 }
3912 
3913 int
3914 socheckuid(struct socket *so, uid_t uid)
3915 {
3916 
3917 	if (so == NULL)
3918 		return (EPERM);
3919 	if (so->so_cred->cr_uid != uid)
3920 		return (EPERM);
3921 	return (0);
3922 }
3923 
3924 /*
3925  * These functions are used by protocols to notify the socket layer (and its
3926  * consumers) of state changes in the sockets driven by protocol-side events.
3927  */
3928 
3929 /*
3930  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3931  *
3932  * Normal sequence from the active (originating) side is that
3933  * soisconnecting() is called during processing of connect() call, resulting
3934  * in an eventual call to soisconnected() if/when the connection is
3935  * established.  When the connection is torn down soisdisconnecting() is
3936  * called during processing of disconnect() call, and soisdisconnected() is
3937  * called when the connection to the peer is totally severed.  The semantics
3938  * of these routines are such that connectionless protocols can call
3939  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3940  * calls when setting up a ``connection'' takes no time.
3941  *
3942  * From the passive side, a socket is created with two queues of sockets:
3943  * so_incomp for connections in progress and so_comp for connections already
3944  * made and awaiting user acceptance.  As a protocol is preparing incoming
3945  * connections, it creates a socket structure queued on so_incomp by calling
3946  * sonewconn().  When the connection is established, soisconnected() is
3947  * called, and transfers the socket structure to so_comp, making it available
3948  * to accept().
3949  *
3950  * If a socket is closed with sockets on either so_incomp or so_comp, these
3951  * sockets are dropped.
3952  *
3953  * If higher-level protocols are implemented in the kernel, the wakeups done
3954  * here will sometimes cause software-interrupt process scheduling.
3955  */
3956 void
3957 soisconnecting(struct socket *so)
3958 {
3959 
3960 	SOCK_LOCK(so);
3961 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3962 	so->so_state |= SS_ISCONNECTING;
3963 	SOCK_UNLOCK(so);
3964 }
3965 
3966 void
3967 soisconnected(struct socket *so)
3968 {
3969 
3970 	SOCK_LOCK(so);
3971 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3972 	so->so_state |= SS_ISCONNECTED;
3973 
3974 	if (so->so_qstate == SQ_INCOMP) {
3975 		struct socket *head = so->so_listen;
3976 		int ret;
3977 
3978 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3979 		/*
3980 		 * Promoting a socket from incomplete queue to complete, we
3981 		 * need to go through reverse order of locking.  We first do
3982 		 * trylock, and if that doesn't succeed, we go the hard way
3983 		 * leaving a reference and rechecking consistency after proper
3984 		 * locking.
3985 		 */
3986 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3987 			soref(head);
3988 			SOCK_UNLOCK(so);
3989 			SOLISTEN_LOCK(head);
3990 			SOCK_LOCK(so);
3991 			if (__predict_false(head != so->so_listen)) {
3992 				/*
3993 				 * The socket went off the listen queue,
3994 				 * should be lost race to close(2) of sol.
3995 				 * The socket is about to soabort().
3996 				 */
3997 				SOCK_UNLOCK(so);
3998 				sorele(head);
3999 				return;
4000 			}
4001 			/* Not the last one, as so holds a ref. */
4002 			refcount_release(&head->so_count);
4003 		}
4004 again:
4005 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4006 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4007 			head->sol_incqlen--;
4008 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4009 			head->sol_qlen++;
4010 			so->so_qstate = SQ_COMP;
4011 			SOCK_UNLOCK(so);
4012 			solisten_wakeup(head);	/* unlocks */
4013 		} else {
4014 			SOCKBUF_LOCK(&so->so_rcv);
4015 			soupcall_set(so, SO_RCV,
4016 			    head->sol_accept_filter->accf_callback,
4017 			    head->sol_accept_filter_arg);
4018 			so->so_options &= ~SO_ACCEPTFILTER;
4019 			ret = head->sol_accept_filter->accf_callback(so,
4020 			    head->sol_accept_filter_arg, M_NOWAIT);
4021 			if (ret == SU_ISCONNECTED) {
4022 				soupcall_clear(so, SO_RCV);
4023 				SOCKBUF_UNLOCK(&so->so_rcv);
4024 				goto again;
4025 			}
4026 			SOCKBUF_UNLOCK(&so->so_rcv);
4027 			SOCK_UNLOCK(so);
4028 			SOLISTEN_UNLOCK(head);
4029 		}
4030 		return;
4031 	}
4032 	SOCK_UNLOCK(so);
4033 	wakeup(&so->so_timeo);
4034 	sorwakeup(so);
4035 	sowwakeup(so);
4036 }
4037 
4038 void
4039 soisdisconnecting(struct socket *so)
4040 {
4041 
4042 	SOCK_LOCK(so);
4043 	so->so_state &= ~SS_ISCONNECTING;
4044 	so->so_state |= SS_ISDISCONNECTING;
4045 
4046 	if (!SOLISTENING(so)) {
4047 		SOCKBUF_LOCK(&so->so_rcv);
4048 		socantrcvmore_locked(so);
4049 		SOCKBUF_LOCK(&so->so_snd);
4050 		socantsendmore_locked(so);
4051 	}
4052 	SOCK_UNLOCK(so);
4053 	wakeup(&so->so_timeo);
4054 }
4055 
4056 void
4057 soisdisconnected(struct socket *so)
4058 {
4059 
4060 	SOCK_LOCK(so);
4061 
4062 	/*
4063 	 * There is at least one reader of so_state that does not
4064 	 * acquire socket lock, namely soreceive_generic().  Ensure
4065 	 * that it never sees all flags that track connection status
4066 	 * cleared, by ordering the update with a barrier semantic of
4067 	 * our release thread fence.
4068 	 */
4069 	so->so_state |= SS_ISDISCONNECTED;
4070 	atomic_thread_fence_rel();
4071 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4072 
4073 	if (!SOLISTENING(so)) {
4074 		SOCK_UNLOCK(so);
4075 		SOCKBUF_LOCK(&so->so_rcv);
4076 		socantrcvmore_locked(so);
4077 		SOCKBUF_LOCK(&so->so_snd);
4078 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4079 		socantsendmore_locked(so);
4080 	} else
4081 		SOCK_UNLOCK(so);
4082 	wakeup(&so->so_timeo);
4083 }
4084 
4085 /*
4086  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4087  */
4088 struct sockaddr *
4089 sodupsockaddr(const struct sockaddr *sa, int mflags)
4090 {
4091 	struct sockaddr *sa2;
4092 
4093 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4094 	if (sa2)
4095 		bcopy(sa, sa2, sa->sa_len);
4096 	return sa2;
4097 }
4098 
4099 /*
4100  * Register per-socket destructor.
4101  */
4102 void
4103 sodtor_set(struct socket *so, so_dtor_t *func)
4104 {
4105 
4106 	SOCK_LOCK_ASSERT(so);
4107 	so->so_dtor = func;
4108 }
4109 
4110 /*
4111  * Register per-socket buffer upcalls.
4112  */
4113 void
4114 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
4115 {
4116 	struct sockbuf *sb;
4117 
4118 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4119 
4120 	switch (which) {
4121 	case SO_RCV:
4122 		sb = &so->so_rcv;
4123 		break;
4124 	case SO_SND:
4125 		sb = &so->so_snd;
4126 		break;
4127 	default:
4128 		panic("soupcall_set: bad which");
4129 	}
4130 	SOCKBUF_LOCK_ASSERT(sb);
4131 	sb->sb_upcall = func;
4132 	sb->sb_upcallarg = arg;
4133 	sb->sb_flags |= SB_UPCALL;
4134 }
4135 
4136 void
4137 soupcall_clear(struct socket *so, int which)
4138 {
4139 	struct sockbuf *sb;
4140 
4141 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4142 
4143 	switch (which) {
4144 	case SO_RCV:
4145 		sb = &so->so_rcv;
4146 		break;
4147 	case SO_SND:
4148 		sb = &so->so_snd;
4149 		break;
4150 	default:
4151 		panic("soupcall_clear: bad which");
4152 	}
4153 	SOCKBUF_LOCK_ASSERT(sb);
4154 	KASSERT(sb->sb_upcall != NULL,
4155 	    ("%s: so %p no upcall to clear", __func__, so));
4156 	sb->sb_upcall = NULL;
4157 	sb->sb_upcallarg = NULL;
4158 	sb->sb_flags &= ~SB_UPCALL;
4159 }
4160 
4161 void
4162 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4163 {
4164 
4165 	SOLISTEN_LOCK_ASSERT(so);
4166 	so->sol_upcall = func;
4167 	so->sol_upcallarg = arg;
4168 }
4169 
4170 static void
4171 so_rdknl_lock(void *arg)
4172 {
4173 	struct socket *so = arg;
4174 
4175 	if (SOLISTENING(so))
4176 		SOCK_LOCK(so);
4177 	else
4178 		SOCKBUF_LOCK(&so->so_rcv);
4179 }
4180 
4181 static void
4182 so_rdknl_unlock(void *arg)
4183 {
4184 	struct socket *so = arg;
4185 
4186 	if (SOLISTENING(so))
4187 		SOCK_UNLOCK(so);
4188 	else
4189 		SOCKBUF_UNLOCK(&so->so_rcv);
4190 }
4191 
4192 static void
4193 so_rdknl_assert_lock(void *arg, int what)
4194 {
4195 	struct socket *so = arg;
4196 
4197 	if (what == LA_LOCKED) {
4198 		if (SOLISTENING(so))
4199 			SOCK_LOCK_ASSERT(so);
4200 		else
4201 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
4202 	} else {
4203 		if (SOLISTENING(so))
4204 			SOCK_UNLOCK_ASSERT(so);
4205 		else
4206 			SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
4207 	}
4208 }
4209 
4210 static void
4211 so_wrknl_lock(void *arg)
4212 {
4213 	struct socket *so = arg;
4214 
4215 	if (SOLISTENING(so))
4216 		SOCK_LOCK(so);
4217 	else
4218 		SOCKBUF_LOCK(&so->so_snd);
4219 }
4220 
4221 static void
4222 so_wrknl_unlock(void *arg)
4223 {
4224 	struct socket *so = arg;
4225 
4226 	if (SOLISTENING(so))
4227 		SOCK_UNLOCK(so);
4228 	else
4229 		SOCKBUF_UNLOCK(&so->so_snd);
4230 }
4231 
4232 static void
4233 so_wrknl_assert_lock(void *arg, int what)
4234 {
4235 	struct socket *so = arg;
4236 
4237 	if (what == LA_LOCKED) {
4238 		if (SOLISTENING(so))
4239 			SOCK_LOCK_ASSERT(so);
4240 		else
4241 			SOCKBUF_LOCK_ASSERT(&so->so_snd);
4242 	} else {
4243 		if (SOLISTENING(so))
4244 			SOCK_UNLOCK_ASSERT(so);
4245 		else
4246 			SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
4247 	}
4248 }
4249 
4250 /*
4251  * Create an external-format (``xsocket'') structure using the information in
4252  * the kernel-format socket structure pointed to by so.  This is done to
4253  * reduce the spew of irrelevant information over this interface, to isolate
4254  * user code from changes in the kernel structure, and potentially to provide
4255  * information-hiding if we decide that some of this information should be
4256  * hidden from users.
4257  */
4258 void
4259 sotoxsocket(struct socket *so, struct xsocket *xso)
4260 {
4261 
4262 	bzero(xso, sizeof(*xso));
4263 	xso->xso_len = sizeof *xso;
4264 	xso->xso_so = (uintptr_t)so;
4265 	xso->so_type = so->so_type;
4266 	xso->so_options = so->so_options;
4267 	xso->so_linger = so->so_linger;
4268 	xso->so_state = so->so_state;
4269 	xso->so_pcb = (uintptr_t)so->so_pcb;
4270 	xso->xso_protocol = so->so_proto->pr_protocol;
4271 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4272 	xso->so_timeo = so->so_timeo;
4273 	xso->so_error = so->so_error;
4274 	xso->so_uid = so->so_cred->cr_uid;
4275 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4276 	if (SOLISTENING(so)) {
4277 		xso->so_qlen = so->sol_qlen;
4278 		xso->so_incqlen = so->sol_incqlen;
4279 		xso->so_qlimit = so->sol_qlimit;
4280 		xso->so_oobmark = 0;
4281 	} else {
4282 		xso->so_state |= so->so_qstate;
4283 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4284 		xso->so_oobmark = so->so_oobmark;
4285 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4286 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4287 	}
4288 }
4289 
4290 struct sockbuf *
4291 so_sockbuf_rcv(struct socket *so)
4292 {
4293 
4294 	return (&so->so_rcv);
4295 }
4296 
4297 struct sockbuf *
4298 so_sockbuf_snd(struct socket *so)
4299 {
4300 
4301 	return (&so->so_snd);
4302 }
4303 
4304 int
4305 so_state_get(const struct socket *so)
4306 {
4307 
4308 	return (so->so_state);
4309 }
4310 
4311 void
4312 so_state_set(struct socket *so, int val)
4313 {
4314 
4315 	so->so_state = val;
4316 }
4317 
4318 int
4319 so_options_get(const struct socket *so)
4320 {
4321 
4322 	return (so->so_options);
4323 }
4324 
4325 void
4326 so_options_set(struct socket *so, int val)
4327 {
4328 
4329 	so->so_options = val;
4330 }
4331 
4332 int
4333 so_error_get(const struct socket *so)
4334 {
4335 
4336 	return (so->so_error);
4337 }
4338 
4339 void
4340 so_error_set(struct socket *so, int val)
4341 {
4342 
4343 	so->so_error = val;
4344 }
4345 
4346 int
4347 so_linger_get(const struct socket *so)
4348 {
4349 
4350 	return (so->so_linger);
4351 }
4352 
4353 void
4354 so_linger_set(struct socket *so, int val)
4355 {
4356 
4357 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4358 	    ("%s: val %d out of range", __func__, val));
4359 
4360 	so->so_linger = val;
4361 }
4362 
4363 struct protosw *
4364 so_protosw_get(const struct socket *so)
4365 {
4366 
4367 	return (so->so_proto);
4368 }
4369 
4370 void
4371 so_protosw_set(struct socket *so, struct protosw *val)
4372 {
4373 
4374 	so->so_proto = val;
4375 }
4376 
4377 void
4378 so_sorwakeup(struct socket *so)
4379 {
4380 
4381 	sorwakeup(so);
4382 }
4383 
4384 void
4385 so_sowwakeup(struct socket *so)
4386 {
4387 
4388 	sowwakeup(so);
4389 }
4390 
4391 void
4392 so_sorwakeup_locked(struct socket *so)
4393 {
4394 
4395 	sorwakeup_locked(so);
4396 }
4397 
4398 void
4399 so_sowwakeup_locked(struct socket *so)
4400 {
4401 
4402 	sowwakeup_locked(so);
4403 }
4404 
4405 void
4406 so_lock(struct socket *so)
4407 {
4408 
4409 	SOCK_LOCK(so);
4410 }
4411 
4412 void
4413 so_unlock(struct socket *so)
4414 {
4415 
4416 	SOCK_UNLOCK(so);
4417 }
4418