1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/zil.h>
35 #include <sys/callb.h>
36 #include <sys/trace_zfs.h>
37
38 /*
39 * ZFS Transaction Groups
40 * ----------------------
41 *
42 * ZFS transaction groups are, as the name implies, groups of transactions
43 * that act on persistent state. ZFS asserts consistency at the granularity of
44 * these transaction groups. Each successive transaction group (txg) is
45 * assigned a 64-bit consecutive identifier. There are three active
46 * transaction group states: open, quiescing, or syncing. At any given time,
47 * there may be an active txg associated with each state; each active txg may
48 * either be processing, or blocked waiting to enter the next state. There may
49 * be up to three active txgs, and there is always a txg in the open state
50 * (though it may be blocked waiting to enter the quiescing state). In broad
51 * strokes, transactions -- operations that change in-memory structures -- are
52 * accepted into the txg in the open state, and are completed while the txg is
53 * in the open or quiescing states. The accumulated changes are written to
54 * disk in the syncing state.
55 *
56 * Open
57 *
58 * When a new txg becomes active, it first enters the open state. New
59 * transactions -- updates to in-memory structures -- are assigned to the
60 * currently open txg. There is always a txg in the open state so that ZFS can
61 * accept new changes (though the txg may refuse new changes if it has hit
62 * some limit). ZFS advances the open txg to the next state for a variety of
63 * reasons such as it hitting a time or size threshold, or the execution of an
64 * administrative action that must be completed in the syncing state.
65 *
66 * Quiescing
67 *
68 * After a txg exits the open state, it enters the quiescing state. The
69 * quiescing state is intended to provide a buffer between accepting new
70 * transactions in the open state and writing them out to stable storage in
71 * the syncing state. While quiescing, transactions can continue their
72 * operation without delaying either of the other states. Typically, a txg is
73 * in the quiescing state very briefly since the operations are bounded by
74 * software latencies rather than, say, slower I/O latencies. After all
75 * transactions complete, the txg is ready to enter the next state.
76 *
77 * Syncing
78 *
79 * In the syncing state, the in-memory state built up during the open and (to
80 * a lesser degree) the quiescing states is written to stable storage. The
81 * process of writing out modified data can, in turn modify more data. For
82 * example when we write new blocks, we need to allocate space for them; those
83 * allocations modify metadata (space maps)... which themselves must be
84 * written to stable storage. During the sync state, ZFS iterates, writing out
85 * data until it converges and all in-memory changes have been written out.
86 * The first such pass is the largest as it encompasses all the modified user
87 * data (as opposed to filesystem metadata). Subsequent passes typically have
88 * far less data to write as they consist exclusively of filesystem metadata.
89 *
90 * To ensure convergence, after a certain number of passes ZFS begins
91 * overwriting locations on stable storage that had been allocated earlier in
92 * the syncing state (and subsequently freed). ZFS usually allocates new
93 * blocks to optimize for large, continuous, writes. For the syncing state to
94 * converge however it must complete a pass where no new blocks are allocated
95 * since each allocation requires a modification of persistent metadata.
96 * Further, to hasten convergence, after a prescribed number of passes, ZFS
97 * also defers frees, and stops compressing.
98 *
99 * In addition to writing out user data, we must also execute synctasks during
100 * the syncing context. A synctask is the mechanism by which some
101 * administrative activities work such as creating and destroying snapshots or
102 * datasets. Note that when a synctask is initiated it enters the open txg,
103 * and ZFS then pushes that txg as quickly as possible to completion of the
104 * syncing state in order to reduce the latency of the administrative
105 * activity. To complete the syncing state, ZFS writes out a new uberblock,
106 * the root of the tree of blocks that comprise all state stored on the ZFS
107 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
108 * now transition to the syncing state.
109 */
110
111 static void txg_sync_thread(void *arg);
112 static void txg_quiesce_thread(void *arg);
113
114 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
115
116 /*
117 * Prepare the txg subsystem.
118 */
119 void
txg_init(dsl_pool_t * dp,uint64_t txg)120 txg_init(dsl_pool_t *dp, uint64_t txg)
121 {
122 tx_state_t *tx = &dp->dp_tx;
123 int c;
124 bzero(tx, sizeof (tx_state_t));
125
126 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
127
128 for (c = 0; c < max_ncpus; c++) {
129 int i;
130
131 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
132 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
133 NULL);
134 for (i = 0; i < TXG_SIZE; i++) {
135 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
136 NULL);
137 list_create(&tx->tx_cpu[c].tc_callbacks[i],
138 sizeof (dmu_tx_callback_t),
139 offsetof(dmu_tx_callback_t, dcb_node));
140 }
141 }
142
143 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
144
145 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
146 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
147 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
148 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
149 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
150
151 tx->tx_open_txg = txg;
152 }
153
154 /*
155 * Close down the txg subsystem.
156 */
157 void
txg_fini(dsl_pool_t * dp)158 txg_fini(dsl_pool_t *dp)
159 {
160 tx_state_t *tx = &dp->dp_tx;
161 int c;
162
163 ASSERT0(tx->tx_threads);
164
165 mutex_destroy(&tx->tx_sync_lock);
166
167 cv_destroy(&tx->tx_sync_more_cv);
168 cv_destroy(&tx->tx_sync_done_cv);
169 cv_destroy(&tx->tx_quiesce_more_cv);
170 cv_destroy(&tx->tx_quiesce_done_cv);
171 cv_destroy(&tx->tx_exit_cv);
172
173 for (c = 0; c < max_ncpus; c++) {
174 int i;
175
176 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
177 mutex_destroy(&tx->tx_cpu[c].tc_lock);
178 for (i = 0; i < TXG_SIZE; i++) {
179 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
180 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
181 }
182 }
183
184 if (tx->tx_commit_cb_taskq != NULL)
185 taskq_destroy(tx->tx_commit_cb_taskq);
186
187 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
188
189 bzero(tx, sizeof (tx_state_t));
190 }
191
192 /*
193 * Start syncing transaction groups.
194 */
195 void
txg_sync_start(dsl_pool_t * dp)196 txg_sync_start(dsl_pool_t *dp)
197 {
198 tx_state_t *tx = &dp->dp_tx;
199
200 mutex_enter(&tx->tx_sync_lock);
201
202 dprintf("pool %p\n", dp);
203
204 ASSERT0(tx->tx_threads);
205
206 tx->tx_threads = 2;
207
208 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
209 dp, 0, &p0, TS_RUN, defclsyspri);
210
211 /*
212 * The sync thread can need a larger-than-default stack size on
213 * 32-bit x86. This is due in part to nested pools and
214 * scrub_visitbp() recursion.
215 */
216 tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
217 dp, 0, &p0, TS_RUN, defclsyspri);
218
219 mutex_exit(&tx->tx_sync_lock);
220 }
221
222 static void
txg_thread_enter(tx_state_t * tx,callb_cpr_t * cpr)223 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
224 {
225 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
226 mutex_enter(&tx->tx_sync_lock);
227 }
228
229 static void
txg_thread_exit(tx_state_t * tx,callb_cpr_t * cpr,kthread_t ** tpp)230 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
231 {
232 ASSERT(*tpp != NULL);
233 *tpp = NULL;
234 tx->tx_threads--;
235 cv_broadcast(&tx->tx_exit_cv);
236 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
237 thread_exit();
238 }
239
240 static void
txg_thread_wait(tx_state_t * tx,callb_cpr_t * cpr,kcondvar_t * cv,clock_t time)241 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
242 {
243 CALLB_CPR_SAFE_BEGIN(cpr);
244
245 if (time) {
246 (void) cv_timedwait_idle(cv, &tx->tx_sync_lock,
247 ddi_get_lbolt() + time);
248 } else {
249 cv_wait_idle(cv, &tx->tx_sync_lock);
250 }
251
252 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
253 }
254
255 /*
256 * Stop syncing transaction groups.
257 */
258 void
txg_sync_stop(dsl_pool_t * dp)259 txg_sync_stop(dsl_pool_t *dp)
260 {
261 tx_state_t *tx = &dp->dp_tx;
262
263 dprintf("pool %p\n", dp);
264 /*
265 * Finish off any work in progress.
266 */
267 ASSERT3U(tx->tx_threads, ==, 2);
268
269 /*
270 * We need to ensure that we've vacated the deferred metaslab trees.
271 */
272 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
273
274 /*
275 * Wake all sync threads and wait for them to die.
276 */
277 mutex_enter(&tx->tx_sync_lock);
278
279 ASSERT3U(tx->tx_threads, ==, 2);
280
281 tx->tx_exiting = 1;
282
283 cv_broadcast(&tx->tx_quiesce_more_cv);
284 cv_broadcast(&tx->tx_quiesce_done_cv);
285 cv_broadcast(&tx->tx_sync_more_cv);
286
287 while (tx->tx_threads != 0)
288 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
289
290 tx->tx_exiting = 0;
291
292 mutex_exit(&tx->tx_sync_lock);
293 }
294
295 uint64_t
txg_hold_open(dsl_pool_t * dp,txg_handle_t * th)296 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
297 {
298 tx_state_t *tx = &dp->dp_tx;
299 tx_cpu_t *tc;
300 uint64_t txg;
301
302 /*
303 * It appears the processor id is simply used as a "random"
304 * number to index into the array, and there isn't any other
305 * significance to the chosen tx_cpu. Because.. Why not use
306 * the current cpu to index into the array?
307 */
308 tc = &tx->tx_cpu[CPU_SEQID_UNSTABLE];
309
310 mutex_enter(&tc->tc_open_lock);
311 txg = tx->tx_open_txg;
312
313 mutex_enter(&tc->tc_lock);
314 tc->tc_count[txg & TXG_MASK]++;
315 mutex_exit(&tc->tc_lock);
316
317 th->th_cpu = tc;
318 th->th_txg = txg;
319
320 return (txg);
321 }
322
323 void
txg_rele_to_quiesce(txg_handle_t * th)324 txg_rele_to_quiesce(txg_handle_t *th)
325 {
326 tx_cpu_t *tc = th->th_cpu;
327
328 ASSERT(!MUTEX_HELD(&tc->tc_lock));
329 mutex_exit(&tc->tc_open_lock);
330 }
331
332 void
txg_register_callbacks(txg_handle_t * th,list_t * tx_callbacks)333 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
334 {
335 tx_cpu_t *tc = th->th_cpu;
336 int g = th->th_txg & TXG_MASK;
337
338 mutex_enter(&tc->tc_lock);
339 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
340 mutex_exit(&tc->tc_lock);
341 }
342
343 void
txg_rele_to_sync(txg_handle_t * th)344 txg_rele_to_sync(txg_handle_t *th)
345 {
346 tx_cpu_t *tc = th->th_cpu;
347 int g = th->th_txg & TXG_MASK;
348
349 mutex_enter(&tc->tc_lock);
350 ASSERT(tc->tc_count[g] != 0);
351 if (--tc->tc_count[g] == 0)
352 cv_broadcast(&tc->tc_cv[g]);
353 mutex_exit(&tc->tc_lock);
354
355 th->th_cpu = NULL; /* defensive */
356 }
357
358 /*
359 * Blocks until all transactions in the group are committed.
360 *
361 * On return, the transaction group has reached a stable state in which it can
362 * then be passed off to the syncing context.
363 */
364 static void
txg_quiesce(dsl_pool_t * dp,uint64_t txg)365 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
366 {
367 tx_state_t *tx = &dp->dp_tx;
368 uint64_t tx_open_time;
369 int g = txg & TXG_MASK;
370 int c;
371
372 /*
373 * Grab all tc_open_locks so nobody else can get into this txg.
374 */
375 for (c = 0; c < max_ncpus; c++)
376 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
377
378 ASSERT(txg == tx->tx_open_txg);
379 tx->tx_open_txg++;
380 tx->tx_open_time = tx_open_time = gethrtime();
381
382 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
383 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
384
385 /*
386 * Now that we've incremented tx_open_txg, we can let threads
387 * enter the next transaction group.
388 */
389 for (c = 0; c < max_ncpus; c++)
390 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
391
392 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
393 spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);
394
395 /*
396 * Quiesce the transaction group by waiting for everyone to txg_exit().
397 */
398 for (c = 0; c < max_ncpus; c++) {
399 tx_cpu_t *tc = &tx->tx_cpu[c];
400 mutex_enter(&tc->tc_lock);
401 while (tc->tc_count[g] != 0)
402 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
403 mutex_exit(&tc->tc_lock);
404 }
405
406 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
407 }
408
409 static void
txg_do_callbacks(list_t * cb_list)410 txg_do_callbacks(list_t *cb_list)
411 {
412 dmu_tx_do_callbacks(cb_list, 0);
413
414 list_destroy(cb_list);
415
416 kmem_free(cb_list, sizeof (list_t));
417 }
418
419 /*
420 * Dispatch the commit callbacks registered on this txg to worker threads.
421 *
422 * If no callbacks are registered for a given TXG, nothing happens.
423 * This function creates a taskq for the associated pool, if needed.
424 */
425 static void
txg_dispatch_callbacks(dsl_pool_t * dp,uint64_t txg)426 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
427 {
428 int c;
429 tx_state_t *tx = &dp->dp_tx;
430 list_t *cb_list;
431
432 for (c = 0; c < max_ncpus; c++) {
433 tx_cpu_t *tc = &tx->tx_cpu[c];
434 /*
435 * No need to lock tx_cpu_t at this point, since this can
436 * only be called once a txg has been synced.
437 */
438
439 int g = txg & TXG_MASK;
440
441 if (list_is_empty(&tc->tc_callbacks[g]))
442 continue;
443
444 if (tx->tx_commit_cb_taskq == NULL) {
445 /*
446 * Commit callback taskq hasn't been created yet.
447 */
448 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
449 100, defclsyspri, boot_ncpus, boot_ncpus * 2,
450 TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
451 TASKQ_THREADS_CPU_PCT);
452 }
453
454 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
455 list_create(cb_list, sizeof (dmu_tx_callback_t),
456 offsetof(dmu_tx_callback_t, dcb_node));
457
458 list_move_tail(cb_list, &tc->tc_callbacks[g]);
459
460 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
461 txg_do_callbacks, cb_list, TQ_SLEEP);
462 }
463 }
464
465 /*
466 * Wait for pending commit callbacks of already-synced transactions to finish
467 * processing.
468 * Calling this function from within a commit callback will deadlock.
469 */
470 void
txg_wait_callbacks(dsl_pool_t * dp)471 txg_wait_callbacks(dsl_pool_t *dp)
472 {
473 tx_state_t *tx = &dp->dp_tx;
474
475 if (tx->tx_commit_cb_taskq != NULL)
476 taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
477 }
478
479 static boolean_t
txg_is_syncing(dsl_pool_t * dp)480 txg_is_syncing(dsl_pool_t *dp)
481 {
482 tx_state_t *tx = &dp->dp_tx;
483 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
484 return (tx->tx_syncing_txg != 0);
485 }
486
487 static boolean_t
txg_is_quiescing(dsl_pool_t * dp)488 txg_is_quiescing(dsl_pool_t *dp)
489 {
490 tx_state_t *tx = &dp->dp_tx;
491 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
492 return (tx->tx_quiescing_txg != 0);
493 }
494
495 static boolean_t
txg_has_quiesced_to_sync(dsl_pool_t * dp)496 txg_has_quiesced_to_sync(dsl_pool_t *dp)
497 {
498 tx_state_t *tx = &dp->dp_tx;
499 ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
500 return (tx->tx_quiesced_txg != 0);
501 }
502
503 static void
txg_sync_thread(void * arg)504 txg_sync_thread(void *arg)
505 {
506 dsl_pool_t *dp = arg;
507 spa_t *spa = dp->dp_spa;
508 tx_state_t *tx = &dp->dp_tx;
509 callb_cpr_t cpr;
510 clock_t start, delta;
511
512 (void) spl_fstrans_mark();
513 txg_thread_enter(tx, &cpr);
514
515 start = delta = 0;
516 for (;;) {
517 clock_t timeout = zfs_txg_timeout * hz;
518 clock_t timer;
519 uint64_t txg;
520 uint64_t dirty_min_bytes =
521 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
522
523 /*
524 * We sync when we're scanning, there's someone waiting
525 * on us, or the quiesce thread has handed off a txg to
526 * us, or we have reached our timeout.
527 */
528 timer = (delta >= timeout ? 0 : timeout - delta);
529 while (!dsl_scan_active(dp->dp_scan) &&
530 !tx->tx_exiting && timer > 0 &&
531 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
532 !txg_has_quiesced_to_sync(dp) &&
533 dp->dp_dirty_total < dirty_min_bytes) {
534 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
535 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
536 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
537 delta = ddi_get_lbolt() - start;
538 timer = (delta > timeout ? 0 : timeout - delta);
539 }
540
541 /*
542 * Wait until the quiesce thread hands off a txg to us,
543 * prompting it to do so if necessary.
544 */
545 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
546 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
547 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
548 cv_broadcast(&tx->tx_quiesce_more_cv);
549 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
550 }
551
552 if (tx->tx_exiting)
553 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
554
555 /*
556 * Consume the quiesced txg which has been handed off to
557 * us. This may cause the quiescing thread to now be
558 * able to quiesce another txg, so we must signal it.
559 */
560 ASSERT(tx->tx_quiesced_txg != 0);
561 txg = tx->tx_quiesced_txg;
562 tx->tx_quiesced_txg = 0;
563 tx->tx_syncing_txg = txg;
564 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
565 cv_broadcast(&tx->tx_quiesce_more_cv);
566
567 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
568 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
569 mutex_exit(&tx->tx_sync_lock);
570
571 txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp);
572 start = ddi_get_lbolt();
573 spa_sync(spa, txg);
574 delta = ddi_get_lbolt() - start;
575 spa_txg_history_fini_io(spa, ts);
576
577 mutex_enter(&tx->tx_sync_lock);
578 tx->tx_synced_txg = txg;
579 tx->tx_syncing_txg = 0;
580 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
581 cv_broadcast(&tx->tx_sync_done_cv);
582
583 /*
584 * Dispatch commit callbacks to worker threads.
585 */
586 txg_dispatch_callbacks(dp, txg);
587 }
588 }
589
590 static void
txg_quiesce_thread(void * arg)591 txg_quiesce_thread(void *arg)
592 {
593 dsl_pool_t *dp = arg;
594 tx_state_t *tx = &dp->dp_tx;
595 callb_cpr_t cpr;
596
597 txg_thread_enter(tx, &cpr);
598
599 for (;;) {
600 uint64_t txg;
601
602 /*
603 * We quiesce when there's someone waiting on us.
604 * However, we can only have one txg in "quiescing" or
605 * "quiesced, waiting to sync" state. So we wait until
606 * the "quiesced, waiting to sync" txg has been consumed
607 * by the sync thread.
608 */
609 while (!tx->tx_exiting &&
610 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
611 txg_has_quiesced_to_sync(dp)))
612 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
613
614 if (tx->tx_exiting)
615 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
616
617 txg = tx->tx_open_txg;
618 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
619 txg, tx->tx_quiesce_txg_waiting,
620 tx->tx_sync_txg_waiting);
621 tx->tx_quiescing_txg = txg;
622
623 mutex_exit(&tx->tx_sync_lock);
624 txg_quiesce(dp, txg);
625 mutex_enter(&tx->tx_sync_lock);
626
627 /*
628 * Hand this txg off to the sync thread.
629 */
630 dprintf("quiesce done, handing off txg %llu\n", txg);
631 tx->tx_quiescing_txg = 0;
632 tx->tx_quiesced_txg = txg;
633 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
634 cv_broadcast(&tx->tx_sync_more_cv);
635 cv_broadcast(&tx->tx_quiesce_done_cv);
636 }
637 }
638
639 /*
640 * Delay this thread by delay nanoseconds if we are still in the open
641 * transaction group and there is already a waiting txg quiescing or quiesced.
642 * Abort the delay if this txg stalls or enters the quiescing state.
643 */
644 void
txg_delay(dsl_pool_t * dp,uint64_t txg,hrtime_t delay,hrtime_t resolution)645 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
646 {
647 tx_state_t *tx = &dp->dp_tx;
648 hrtime_t start = gethrtime();
649
650 /* don't delay if this txg could transition to quiescing immediately */
651 if (tx->tx_open_txg > txg ||
652 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
653 return;
654
655 mutex_enter(&tx->tx_sync_lock);
656 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
657 mutex_exit(&tx->tx_sync_lock);
658 return;
659 }
660
661 while (gethrtime() - start < delay &&
662 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
663 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
664 &tx->tx_sync_lock, delay, resolution, 0);
665 }
666
667 DMU_TX_STAT_BUMP(dmu_tx_delay);
668
669 mutex_exit(&tx->tx_sync_lock);
670 }
671
672 static boolean_t
txg_wait_synced_impl(dsl_pool_t * dp,uint64_t txg,boolean_t wait_sig)673 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
674 {
675 tx_state_t *tx = &dp->dp_tx;
676
677 ASSERT(!dsl_pool_config_held(dp));
678
679 mutex_enter(&tx->tx_sync_lock);
680 ASSERT3U(tx->tx_threads, ==, 2);
681 if (txg == 0)
682 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
683 if (tx->tx_sync_txg_waiting < txg)
684 tx->tx_sync_txg_waiting = txg;
685 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
686 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
687 while (tx->tx_synced_txg < txg) {
688 dprintf("broadcasting sync more "
689 "tx_synced=%llu waiting=%llu dp=%px\n",
690 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
691 cv_broadcast(&tx->tx_sync_more_cv);
692 if (wait_sig) {
693 /*
694 * Condition wait here but stop if the thread receives a
695 * signal. The caller may call txg_wait_synced*() again
696 * to resume waiting for this txg.
697 */
698 if (cv_wait_io_sig(&tx->tx_sync_done_cv,
699 &tx->tx_sync_lock) == 0) {
700 mutex_exit(&tx->tx_sync_lock);
701 return (B_TRUE);
702 }
703 } else {
704 cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
705 }
706 }
707 mutex_exit(&tx->tx_sync_lock);
708 return (B_FALSE);
709 }
710
711 void
txg_wait_synced(dsl_pool_t * dp,uint64_t txg)712 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
713 {
714 VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
715 }
716
717 /*
718 * Similar to a txg_wait_synced but it can be interrupted from a signal.
719 * Returns B_TRUE if the thread was signaled while waiting.
720 */
721 boolean_t
txg_wait_synced_sig(dsl_pool_t * dp,uint64_t txg)722 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
723 {
724 return (txg_wait_synced_impl(dp, txg, B_TRUE));
725 }
726
727 /*
728 * Wait for the specified open transaction group. Set should_quiesce
729 * when the current open txg should be quiesced immediately.
730 */
731 void
txg_wait_open(dsl_pool_t * dp,uint64_t txg,boolean_t should_quiesce)732 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce)
733 {
734 tx_state_t *tx = &dp->dp_tx;
735
736 ASSERT(!dsl_pool_config_held(dp));
737
738 mutex_enter(&tx->tx_sync_lock);
739 ASSERT3U(tx->tx_threads, ==, 2);
740 if (txg == 0)
741 txg = tx->tx_open_txg + 1;
742 if (tx->tx_quiesce_txg_waiting < txg && should_quiesce)
743 tx->tx_quiesce_txg_waiting = txg;
744 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
745 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
746 while (tx->tx_open_txg < txg) {
747 cv_broadcast(&tx->tx_quiesce_more_cv);
748 /*
749 * Callers setting should_quiesce will use cv_wait_io() and
750 * be accounted for as iowait time. Otherwise, the caller is
751 * understood to be idle and cv_wait_sig() is used to prevent
752 * incorrectly inflating the system load average.
753 */
754 if (should_quiesce == B_TRUE) {
755 cv_wait_io(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
756 } else {
757 cv_wait_idle(&tx->tx_quiesce_done_cv,
758 &tx->tx_sync_lock);
759 }
760 }
761 mutex_exit(&tx->tx_sync_lock);
762 }
763
764 /*
765 * If there isn't a txg syncing or in the pipeline, push another txg through
766 * the pipeline by quiescing the open txg.
767 */
768 void
txg_kick(dsl_pool_t * dp)769 txg_kick(dsl_pool_t *dp)
770 {
771 tx_state_t *tx = &dp->dp_tx;
772
773 ASSERT(!dsl_pool_config_held(dp));
774
775 mutex_enter(&tx->tx_sync_lock);
776 if (!txg_is_syncing(dp) &&
777 !txg_is_quiescing(dp) &&
778 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
779 tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
780 tx->tx_quiesced_txg <= tx->tx_synced_txg) {
781 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
782 cv_broadcast(&tx->tx_quiesce_more_cv);
783 }
784 mutex_exit(&tx->tx_sync_lock);
785 }
786
787 boolean_t
txg_stalled(dsl_pool_t * dp)788 txg_stalled(dsl_pool_t *dp)
789 {
790 tx_state_t *tx = &dp->dp_tx;
791 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
792 }
793
794 boolean_t
txg_sync_waiting(dsl_pool_t * dp)795 txg_sync_waiting(dsl_pool_t *dp)
796 {
797 tx_state_t *tx = &dp->dp_tx;
798
799 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
800 tx->tx_quiesced_txg != 0);
801 }
802
803 /*
804 * Verify that this txg is active (open, quiescing, syncing). Non-active
805 * txg's should not be manipulated.
806 */
807 #ifdef ZFS_DEBUG
808 void
txg_verify(spa_t * spa,uint64_t txg)809 txg_verify(spa_t *spa, uint64_t txg)
810 {
811 dsl_pool_t *dp __maybe_unused = spa_get_dsl(spa);
812 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
813 return;
814 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
815 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
816 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
817 }
818 #endif
819
820 /*
821 * Per-txg object lists.
822 */
823 void
txg_list_create(txg_list_t * tl,spa_t * spa,size_t offset)824 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
825 {
826 int t;
827
828 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
829
830 tl->tl_offset = offset;
831 tl->tl_spa = spa;
832
833 for (t = 0; t < TXG_SIZE; t++)
834 tl->tl_head[t] = NULL;
835 }
836
837 static boolean_t
txg_list_empty_impl(txg_list_t * tl,uint64_t txg)838 txg_list_empty_impl(txg_list_t *tl, uint64_t txg)
839 {
840 ASSERT(MUTEX_HELD(&tl->tl_lock));
841 TXG_VERIFY(tl->tl_spa, txg);
842 return (tl->tl_head[txg & TXG_MASK] == NULL);
843 }
844
845 boolean_t
txg_list_empty(txg_list_t * tl,uint64_t txg)846 txg_list_empty(txg_list_t *tl, uint64_t txg)
847 {
848 mutex_enter(&tl->tl_lock);
849 boolean_t ret = txg_list_empty_impl(tl, txg);
850 mutex_exit(&tl->tl_lock);
851
852 return (ret);
853 }
854
855 void
txg_list_destroy(txg_list_t * tl)856 txg_list_destroy(txg_list_t *tl)
857 {
858 int t;
859
860 mutex_enter(&tl->tl_lock);
861 for (t = 0; t < TXG_SIZE; t++)
862 ASSERT(txg_list_empty_impl(tl, t));
863 mutex_exit(&tl->tl_lock);
864
865 mutex_destroy(&tl->tl_lock);
866 }
867
868 /*
869 * Returns true if all txg lists are empty.
870 *
871 * Warning: this is inherently racy (an item could be added immediately
872 * after this function returns).
873 */
874 boolean_t
txg_all_lists_empty(txg_list_t * tl)875 txg_all_lists_empty(txg_list_t *tl)
876 {
877 mutex_enter(&tl->tl_lock);
878 for (int i = 0; i < TXG_SIZE; i++) {
879 if (!txg_list_empty_impl(tl, i)) {
880 mutex_exit(&tl->tl_lock);
881 return (B_FALSE);
882 }
883 }
884 mutex_exit(&tl->tl_lock);
885 return (B_TRUE);
886 }
887
888 /*
889 * Add an entry to the list (unless it's already on the list).
890 * Returns B_TRUE if it was actually added.
891 */
892 boolean_t
txg_list_add(txg_list_t * tl,void * p,uint64_t txg)893 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
894 {
895 int t = txg & TXG_MASK;
896 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
897 boolean_t add;
898
899 TXG_VERIFY(tl->tl_spa, txg);
900 mutex_enter(&tl->tl_lock);
901 add = (tn->tn_member[t] == 0);
902 if (add) {
903 tn->tn_member[t] = 1;
904 tn->tn_next[t] = tl->tl_head[t];
905 tl->tl_head[t] = tn;
906 }
907 mutex_exit(&tl->tl_lock);
908
909 return (add);
910 }
911
912 /*
913 * Add an entry to the end of the list, unless it's already on the list.
914 * (walks list to find end)
915 * Returns B_TRUE if it was actually added.
916 */
917 boolean_t
txg_list_add_tail(txg_list_t * tl,void * p,uint64_t txg)918 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
919 {
920 int t = txg & TXG_MASK;
921 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
922 boolean_t add;
923
924 TXG_VERIFY(tl->tl_spa, txg);
925 mutex_enter(&tl->tl_lock);
926 add = (tn->tn_member[t] == 0);
927 if (add) {
928 txg_node_t **tp;
929
930 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
931 continue;
932
933 tn->tn_member[t] = 1;
934 tn->tn_next[t] = NULL;
935 *tp = tn;
936 }
937 mutex_exit(&tl->tl_lock);
938
939 return (add);
940 }
941
942 /*
943 * Remove the head of the list and return it.
944 */
945 void *
txg_list_remove(txg_list_t * tl,uint64_t txg)946 txg_list_remove(txg_list_t *tl, uint64_t txg)
947 {
948 int t = txg & TXG_MASK;
949 txg_node_t *tn;
950 void *p = NULL;
951
952 TXG_VERIFY(tl->tl_spa, txg);
953 mutex_enter(&tl->tl_lock);
954 if ((tn = tl->tl_head[t]) != NULL) {
955 ASSERT(tn->tn_member[t]);
956 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
957 p = (char *)tn - tl->tl_offset;
958 tl->tl_head[t] = tn->tn_next[t];
959 tn->tn_next[t] = NULL;
960 tn->tn_member[t] = 0;
961 }
962 mutex_exit(&tl->tl_lock);
963
964 return (p);
965 }
966
967 /*
968 * Remove a specific item from the list and return it.
969 */
970 void *
txg_list_remove_this(txg_list_t * tl,void * p,uint64_t txg)971 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
972 {
973 int t = txg & TXG_MASK;
974 txg_node_t *tn, **tp;
975
976 TXG_VERIFY(tl->tl_spa, txg);
977 mutex_enter(&tl->tl_lock);
978
979 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
980 if ((char *)tn - tl->tl_offset == p) {
981 *tp = tn->tn_next[t];
982 tn->tn_next[t] = NULL;
983 tn->tn_member[t] = 0;
984 mutex_exit(&tl->tl_lock);
985 return (p);
986 }
987 }
988
989 mutex_exit(&tl->tl_lock);
990
991 return (NULL);
992 }
993
994 boolean_t
txg_list_member(txg_list_t * tl,void * p,uint64_t txg)995 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
996 {
997 int t = txg & TXG_MASK;
998 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
999
1000 TXG_VERIFY(tl->tl_spa, txg);
1001 return (tn->tn_member[t] != 0);
1002 }
1003
1004 /*
1005 * Walk a txg list
1006 */
1007 void *
txg_list_head(txg_list_t * tl,uint64_t txg)1008 txg_list_head(txg_list_t *tl, uint64_t txg)
1009 {
1010 int t = txg & TXG_MASK;
1011 txg_node_t *tn;
1012
1013 mutex_enter(&tl->tl_lock);
1014 tn = tl->tl_head[t];
1015 mutex_exit(&tl->tl_lock);
1016
1017 TXG_VERIFY(tl->tl_spa, txg);
1018 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1019 }
1020
1021 void *
txg_list_next(txg_list_t * tl,void * p,uint64_t txg)1022 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
1023 {
1024 int t = txg & TXG_MASK;
1025 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1026
1027 TXG_VERIFY(tl->tl_spa, txg);
1028
1029 mutex_enter(&tl->tl_lock);
1030 tn = tn->tn_next[t];
1031 mutex_exit(&tl->tl_lock);
1032
1033 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1034 }
1035
1036 EXPORT_SYMBOL(txg_init);
1037 EXPORT_SYMBOL(txg_fini);
1038 EXPORT_SYMBOL(txg_sync_start);
1039 EXPORT_SYMBOL(txg_sync_stop);
1040 EXPORT_SYMBOL(txg_hold_open);
1041 EXPORT_SYMBOL(txg_rele_to_quiesce);
1042 EXPORT_SYMBOL(txg_rele_to_sync);
1043 EXPORT_SYMBOL(txg_register_callbacks);
1044 EXPORT_SYMBOL(txg_delay);
1045 EXPORT_SYMBOL(txg_wait_synced);
1046 EXPORT_SYMBOL(txg_wait_open);
1047 EXPORT_SYMBOL(txg_wait_callbacks);
1048 EXPORT_SYMBOL(txg_stalled);
1049 EXPORT_SYMBOL(txg_sync_waiting);
1050
1051 /* BEGIN CSTYLED */
1052 ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, timeout, INT, ZMOD_RW,
1053 "Max seconds worth of delta per txg");
1054 /* END CSTYLED */
1055