1# 2005 November 30 2# 3# The author disclaims copyright to this source code. In place of 4# a legal notice, here is a blessing: 5# 6# May you do good and not evil. 7# May you find forgiveness for yourself and forgive others. 8# May you share freely, never taking more than you give. 9# 10#*********************************************************************** 11# 12# This file contains tests to ensure that the library handles malloc() failures 13# correctly. The emphasis of these tests are the _prepare(), _step() and 14# _finalize() calls. 15# 16# $Id: malloc3.test,v 1.24 2008/10/14 15:54:08 drh Exp $ 17 18set testdir [file dirname $argv0] 19source $testdir/tester.tcl 20source $testdir/malloc_common.tcl 21 22# Only run these tests if memory debugging is turned on. 23# 24if {!$MEMDEBUG} { 25 puts "Skipping malloc3 tests: not compiled with -DSQLITE_MEMDEBUG..." 26 finish_test 27 return 28} 29 30# Do not run these tests if F2FS batch writes are supported. In this case, 31# it is possible for a single DML statement in an implicit transaction 32# to fail with SQLITE_NOMEM, but for the transaction to still end up 33# committed to disk. Which confuses the tests in this module. 34# 35if {[atomic_batch_write test.db]} { 36 puts "Skipping malloc3 tests: atomic-batch support" 37 finish_test 38 return 39} 40 41 42# Do not run these tests with an in-memory journal. 43# 44# In the pager layer, if an IO or OOM error occurs during a ROLLBACK, or 45# when flushing a page to disk due to cache-stress, the pager enters an 46# "error state". The only way out of the error state is to unlock the 47# database file and end the transaction, leaving whatever journal and 48# database files happen to be on disk in place. The next time the current 49# (or any other) connection opens a read transaction, hot-journal rollback 50# is performed if necessary. 51# 52# Of course, this doesn't work with an in-memory journal. 53# 54if {[permutation]=="inmemory_journal"} { 55 finish_test 56 return 57} 58 59#-------------------------------------------------------------------------- 60# NOTES ON RECOVERING FROM A MALLOC FAILURE 61# 62# The tests in this file test the behaviours described in the following 63# paragraphs. These tests test the behaviour of the system when malloc() fails 64# inside of a call to _prepare(), _step(), _finalize() or _reset(). The 65# handling of malloc() failures within ancillary procedures is tested 66# elsewhere. 67# 68# Overview: 69# 70# Executing a statement is done in three stages (prepare, step and finalize). A 71# malloc() failure may occur within any stage. If a memory allocation fails 72# during statement preparation, no statement handle is returned. From the users 73# point of view the system state is as if _prepare() had never been called. 74# 75# If the memory allocation fails during the _step() or _finalize() calls, then 76# the database may be left in one of two states (after finalize() has been 77# called): 78# 79# * As if the neither _step() nor _finalize() had ever been called on 80# the statement handle (i.e. any changes made by the statement are 81# rolled back). 82# * The current transaction may be rolled back. In this case a hot-journal 83# may or may not actually be present in the filesystem. 84# 85# The caller can tell the difference between these two scenarios by invoking 86# _get_autocommit(). 87# 88# 89# Handling of sqlite3_reset(): 90# 91# If a malloc() fails while executing an sqlite3_reset() call, this is handled 92# in the same way as a failure within _finalize(). The statement handle 93# is not deleted and must be passed to _finalize() for resource deallocation. 94# Attempting to _step() or _reset() the statement after a failed _reset() will 95# always return SQLITE_NOMEM. 96# 97# 98# Other active SQL statements: 99# 100# The effect of a malloc failure on concurrently executing SQL statements, 101# particularly when the statement is executing with READ_UNCOMMITTED set and 102# the malloc() failure mandates statement rollback only. Currently, if 103# transaction rollback is required, all other vdbe's are aborted. 104# 105# Non-transient mallocs in btree.c: 106# * The Btree structure itself 107# * Each BtCursor structure 108# 109# Mallocs in pager.c: 110# readMasterJournal() - Space to read the master journal name 111# pager_delmaster() - Space for the entire master journal file 112# 113# sqlite3pager_open() - The pager structure itself 114# sqlite3_pagerget() - Space for a new page 115# pager_open_journal() - Pager.aInJournal[] bitmap 116# sqlite3pager_write() - For in-memory databases only: history page and 117# statement history page. 118# pager_stmt_begin() - Pager.aInStmt[] bitmap 119# 120# None of the above are a huge problem. The most troublesome failures are the 121# transient malloc() calls in btree.c, which can occur during the tree-balance 122# operation. This means the tree being balanced will be internally inconsistent 123# after the malloc() fails. To avoid the corrupt tree being read by a 124# READ_UNCOMMITTED query, we have to make sure the transaction or statement 125# rollback occurs before sqlite3_step() returns, not during a subsequent 126# sqlite3_finalize(). 127#-------------------------------------------------------------------------- 128 129#-------------------------------------------------------------------------- 130# NOTES ON TEST IMPLEMENTATION 131# 132# The tests in this file are implemented differently from those in other 133# files. Instead, tests are specified using three primitives: SQL, PREP and 134# TEST. Each primitive has a single argument. Primitives are processed in 135# the order they are specified in the file. 136# 137# A TEST primitive specifies a TCL script as its argument. When a TEST 138# directive is encountered the Tcl script is evaluated. Usually, this Tcl 139# script contains one or more calls to [do_test]. 140# 141# A PREP primitive specifies an SQL script as its argument. When a PREP 142# directive is encountered the SQL is evaluated using database connection 143# [db]. 144# 145# The SQL primitives are where the action happens. An SQL primitive must 146# contain a single, valid SQL statement as its argument. When an SQL 147# primitive is encountered, it is evaluated one or more times to test the 148# behaviour of the system when malloc() fails during preparation or 149# execution of said statement. The Nth time the statement is executed, 150# the Nth malloc is said to fail. The statement is executed until it 151# succeeds, i.e. (M+1) times, where M is the number of mallocs() required 152# to prepare and execute the statement. 153# 154# Each time an SQL statement fails, the driver program (see proc [run_test] 155# below) figures out if a transaction has been automatically rolled back. 156# If not, it executes any TEST block immediately proceeding the SQL 157# statement, then reexecutes the SQL statement with the next value of N. 158# 159# If a transaction has been automatically rolled back, then the driver 160# program executes all the SQL specified as part of SQL or PREP primitives 161# between the current SQL statement and the most recent "BEGIN". Any 162# TEST block immediately proceeding the SQL statement is evaluated, and 163# then the SQL statement reexecuted with the incremented N value. 164# 165# That make any sense? If not, read the code in [run_test] and it might. 166# 167# Extra restriction imposed by the implementation: 168# 169# * If a PREP block starts a transaction, it must finish it. 170# * A PREP block may not close a transaction it did not start. 171# 172#-------------------------------------------------------------------------- 173 174 175# These procs are used to build up a "program" in global variable 176# ::run_test_script. At the end of this file, the proc [run_test] is used 177# to execute the program (and all test cases contained therein). 178# 179set ::run_test_sql_id 0 180set ::run_test_script [list] 181proc TEST {id t} {lappend ::run_test_script -test [list $id $t]} 182proc PREP {p} {lappend ::run_test_script -prep [string trim $p]} 183proc DEBUG {s} {lappend ::run_test_script -debug $s} 184 185# SQL -- 186# 187# SQL ?-norollback? <sql-text> 188# 189# Add an 'SQL' primitive to the program (see notes above). If the -norollback 190# switch is present, then the statement is not allowed to automatically roll 191# back any active transaction if malloc() fails. It must rollback the statement 192# transaction only. 193# 194proc SQL {a1 {a2 ""}} { 195 # An SQL primitive parameter is a list of three elements, an id, a boolean 196 # value indicating if the statement may cause transaction rollback when 197 # malloc() fails, and the sql statement itself. 198 set id [incr ::run_test_sql_id] 199 if {$a2 == ""} { 200 lappend ::run_test_script -sql [list $id true [string trim $a1]] 201 } else { 202 lappend ::run_test_script -sql [list $id false [string trim $a2]] 203 } 204} 205 206# TEST_AUTOCOMMIT -- 207# 208# A shorthand test to see if a transaction is active or not. The first 209# argument - $id - is the integer number of the test case. The second 210# argument is either 1 or 0, the expected value of the auto-commit flag. 211# 212proc TEST_AUTOCOMMIT {id a} { 213 TEST $id "do_test \$testid { sqlite3_get_autocommit \$::DB } {$a}" 214} 215 216#-------------------------------------------------------------------------- 217# Start of test program declaration 218# 219 220 221# Warm body test. A malloc() fails in the middle of a CREATE TABLE statement 222# in a single-statement transaction on an empty database. Not too much can go 223# wrong here. 224# 225TEST 1 { 226 do_test $testid { 227 execsql {SELECT tbl_name FROM sqlite_master;} 228 } {} 229} 230SQL { 231 CREATE TABLE IF NOT EXISTS abc(a, b, c); 232} 233TEST 2 { 234 do_test $testid.1 { 235 execsql {SELECT tbl_name FROM sqlite_master;} 236 } {abc} 237} 238 239# Insert a couple of rows into the table. each insert is in its own 240# transaction. test that the table is unpopulated before running the inserts 241# (and hence after each failure of the first insert), and that it has been 242# populated correctly after the final insert succeeds. 243# 244TEST 3 { 245 do_test $testid.2 { 246 execsql {SELECT * FROM abc} 247 } {} 248} 249SQL {INSERT INTO abc VALUES(1, 2, 3);} 250SQL {INSERT INTO abc VALUES(4, 5, 6);} 251SQL {INSERT INTO abc VALUES(7, 8, 9);} 252TEST 4 { 253 do_test $testid { 254 execsql {SELECT * FROM abc} 255 } {1 2 3 4 5 6 7 8 9} 256} 257 258# Test a CREATE INDEX statement. Because the table 'abc' is so small, the index 259# will all fit on a single page, so this doesn't test too much that the CREATE 260# TABLE statement didn't test. A few of the transient malloc()s in btree.c 261# perhaps. 262# 263SQL {CREATE INDEX abc_i ON abc(a, b, c);} 264TEST 4 { 265 do_test $testid { 266 execsql { 267 SELECT * FROM abc ORDER BY a DESC; 268 } 269 } {7 8 9 4 5 6 1 2 3} 270} 271 272# Test a DELETE statement. Also create a trigger and a view, just to make sure 273# these statements don't have any obvious malloc() related bugs in them. Note 274# that the test above will be executed each time the DELETE fails, so we're 275# also testing rollback of a DELETE from a table with an index on it. 276# 277SQL {DELETE FROM abc WHERE a > 2;} 278SQL {CREATE TRIGGER abc_t AFTER INSERT ON abc BEGIN SELECT 'trigger!'; END;} 279SQL {CREATE VIEW abc_v AS SELECT * FROM abc;} 280TEST 5 { 281 do_test $testid { 282 execsql { 283 SELECT name, tbl_name FROM sqlite_master ORDER BY name; 284 SELECT * FROM abc; 285 } 286 } {abc abc abc_i abc abc_t abc abc_v abc_v 1 2 3} 287} 288 289set sql { 290 BEGIN;DELETE FROM abc; 291} 292for {set i 1} {$i < 100} {incr i} { 293 set a $i 294 set b "String value $i" 295 set c [string repeat X $i] 296 append sql "INSERT INTO abc VALUES ($a, '$b', '$c');" 297} 298append sql {COMMIT;} 299PREP $sql 300 301SQL { 302 DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5); 303} 304TEST 6 { 305 do_test $testid.1 { 306 execsql {SELECT count(*) FROM abc} 307 } {94} 308 do_test $testid.2 { 309 execsql { 310 SELECT min( 311 (oid == a) AND 'String value ' || a == b AND a == length(c) 312 ) FROM abc; 313 } 314 } {1} 315} 316SQL { 317 DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5); 318} 319TEST 7 { 320 do_test $testid { 321 execsql {SELECT count(*) FROM abc} 322 } {89} 323 do_test $testid { 324 execsql { 325 SELECT min( 326 (oid == a) AND 'String value ' || a == b AND a == length(c) 327 ) FROM abc; 328 } 329 } {1} 330} 331SQL { 332 DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5); 333} 334TEST 9 { 335 do_test $testid { 336 execsql {SELECT count(*) FROM abc} 337 } {84} 338 do_test $testid { 339 execsql { 340 SELECT min( 341 (oid == a) AND 'String value ' || a == b AND a == length(c) 342 ) FROM abc; 343 } 344 } {1} 345} 346 347set padding [string repeat X 500] 348PREP [subst { 349 DROP TABLE abc; 350 CREATE TABLE abc(a PRIMARY KEY, padding, b, c); 351 INSERT INTO abc VALUES(0, '$padding', 2, 2); 352 INSERT INTO abc VALUES(3, '$padding', 5, 5); 353 INSERT INTO abc VALUES(6, '$padding', 8, 8); 354}] 355 356TEST 10 { 357 do_test $testid { 358 execsql {SELECT a, b, c FROM abc} 359 } {0 2 2 3 5 5 6 8 8} 360} 361 362SQL {BEGIN;} 363SQL {INSERT INTO abc VALUES(9, 'XXXXX', 11, 12);} 364TEST_AUTOCOMMIT 11 0 365SQL -norollback {UPDATE abc SET a = a + 1, c = c + 1;} 366TEST_AUTOCOMMIT 12 0 367SQL {DELETE FROM abc WHERE a = 10;} 368TEST_AUTOCOMMIT 13 0 369SQL {COMMIT;} 370 371TEST 14 { 372 do_test $testid.1 { 373 sqlite3_get_autocommit $::DB 374 } {1} 375 do_test $testid.2 { 376 execsql {SELECT a, b, c FROM abc} 377 } {1 2 3 4 5 6 7 8 9} 378} 379 380PREP [subst { 381 DROP TABLE abc; 382 CREATE TABLE abc(a, padding, b, c); 383 INSERT INTO abc VALUES(1, '$padding', 2, 3); 384 INSERT INTO abc VALUES(4, '$padding', 5, 6); 385 INSERT INTO abc VALUES(7, '$padding', 8, 9); 386 CREATE INDEX abc_i ON abc(a, padding, b, c); 387}] 388 389TEST 15 { 390 db eval {PRAGMA cache_size = 10} 391} 392 393SQL {BEGIN;} 394SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} 395TEST 16 { 396 do_test $testid { 397 execsql {SELECT a, count(*) FROM abc GROUP BY a;} 398 } {1 2 4 2 7 2} 399} 400SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} 401TEST 17 { 402 do_test $testid { 403 execsql {SELECT a, count(*) FROM abc GROUP BY a;} 404 } {1 4 4 4 7 4} 405} 406SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} 407TEST 18 { 408 do_test $testid { 409 execsql {SELECT a, count(*) FROM abc GROUP BY a;} 410 } {1 8 4 8 7 8} 411} 412SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} 413TEST 19 { 414 do_test $testid { 415 execsql {SELECT a, count(*) FROM abc GROUP BY a;} 416 } {1 16 4 16 7 16} 417} 418SQL {COMMIT;} 419TEST 21 { 420 do_test $testid { 421 execsql {SELECT a, count(*) FROM abc GROUP BY a;} 422 } {1 16 4 16 7 16} 423} 424 425SQL {BEGIN;} 426SQL {DELETE FROM abc WHERE oid %2} 427TEST 22 { 428 do_test $testid { 429 execsql {SELECT a, count(*) FROM abc GROUP BY a;} 430 } {1 8 4 8 7 8} 431} 432SQL {DELETE FROM abc} 433TEST 23 { 434 do_test $testid { 435 execsql {SELECT * FROM abc} 436 } {} 437} 438SQL {ROLLBACK;} 439TEST 24 { 440 do_test $testid { 441 execsql {SELECT a, count(*) FROM abc GROUP BY a;} 442 } {1 16 4 16 7 16} 443} 444 445# Test some schema modifications inside of a transaction. These should all 446# cause transaction rollback if they fail. Also query a view, to cover a bit 447# more code. 448# 449PREP {DROP VIEW abc_v;} 450TEST 25 { 451 do_test $testid { 452 execsql { 453 SELECT name, tbl_name FROM sqlite_master; 454 } 455 } {abc abc abc_i abc} 456} 457SQL {BEGIN;} 458SQL {CREATE TABLE def(d, e, f);} 459SQL {CREATE TABLE ghi(g, h, i);} 460TEST 26 { 461 do_test $testid { 462 execsql { 463 SELECT name, tbl_name FROM sqlite_master; 464 } 465 } {abc abc abc_i abc def def ghi ghi} 466} 467SQL {CREATE VIEW v1 AS SELECT * FROM def, ghi} 468SQL {CREATE UNIQUE INDEX ghi_i1 ON ghi(g);} 469TEST 27 { 470 do_test $testid { 471 execsql { 472 SELECT name, tbl_name FROM sqlite_master; 473 } 474 } {abc abc abc_i abc def def ghi ghi v1 v1 ghi_i1 ghi} 475} 476SQL {INSERT INTO def VALUES('a', 'b', 'c')} 477SQL {INSERT INTO def VALUES(1, 2, 3)} 478SQL -norollback {INSERT INTO ghi SELECT * FROM def} 479TEST 28 { 480 do_test $testid { 481 execsql { 482 SELECT * FROM def, ghi WHERE d = g; 483 } 484 } {a b c a b c 1 2 3 1 2 3} 485} 486SQL {COMMIT} 487TEST 29 { 488 do_test $testid { 489 execsql { 490 SELECT * FROM v1 WHERE d = g; 491 } 492 } {a b c a b c 1 2 3 1 2 3} 493} 494 495# Test a simple multi-file transaction 496# 497forcedelete test2.db 498ifcapable attach { 499 SQL {ATTACH 'test2.db' AS aux;} 500 SQL {BEGIN} 501 SQL {CREATE TABLE aux.tbl2(x, y, z)} 502 SQL {INSERT INTO tbl2 VALUES(1, 2, 3)} 503 SQL {INSERT INTO def VALUES(4, 5, 6)} 504 TEST 30 { 505 do_test $testid { 506 execsql { 507 SELECT * FROM tbl2, def WHERE d = x; 508 } 509 } {1 2 3 1 2 3} 510 } 511 SQL {COMMIT} 512 TEST 31 { 513 do_test $testid { 514 execsql { 515 SELECT * FROM tbl2, def WHERE d = x; 516 } 517 } {1 2 3 1 2 3} 518 } 519} 520 521# Test what happens when a malloc() fails while there are other active 522# statements. This changes the way sqlite3VdbeHalt() works. 523TEST 32 { 524 if {![info exists ::STMT32]} { 525 set sql "SELECT name FROM sqlite_master" 526 set ::STMT32 [sqlite3_prepare $::DB $sql -1 DUMMY] 527 do_test $testid { 528 sqlite3_step $::STMT32 529 } {SQLITE_ROW} 530 } 531} 532SQL BEGIN 533TEST 33 { 534 do_test $testid { 535 execsql {SELECT * FROM ghi} 536 } {a b c 1 2 3} 537} 538SQL -norollback { 539 -- There is a unique index on ghi(g), so this statement may not cause 540 -- an automatic ROLLBACK. Hence the "-norollback" switch. 541 INSERT INTO ghi SELECT '2'||g, h, i FROM ghi; 542} 543TEST 34 { 544 if {[info exists ::STMT32]} { 545 do_test $testid { 546 sqlite3_finalize $::STMT32 547 } {SQLITE_OK} 548 unset ::STMT32 549 } 550} 551SQL COMMIT 552 553# 554# End of test program declaration 555#-------------------------------------------------------------------------- 556 557proc run_test {arglist iRepeat {pcstart 0} {iFailStart 1}} { 558 if {[llength $arglist] %2} { 559 error "Uneven number of arguments to TEST" 560 } 561 562 for {set i 0} {$i < $pcstart} {incr i} { 563 set k2 [lindex $arglist [expr {2 * $i}]] 564 set v2 [lindex $arglist [expr {2 * $i + 1}]] 565 set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit 566 switch -- $k2 { 567 -sql {db eval [lindex $v2 2]} 568 -prep {db eval $v2} 569 -debug {eval $v2} 570 } 571 set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit 572 if {$ac && !$nac} {set begin_pc $i} 573 } 574 575 db rollback_hook [list incr ::rollback_hook_count] 576 577 set iFail $iFailStart 578 set pc $pcstart 579 while {$pc*2 < [llength $arglist]} { 580 # Fetch the current instruction type and payload. 581 set k [lindex $arglist [expr {2 * $pc}]] 582 set v [lindex $arglist [expr {2 * $pc + 1}]] 583 584 # Id of this iteration: 585 set iterid "pc=$pc.iFail=$iFail$k" 586 587 switch -- $k { 588 589 -test { 590 foreach {id script} $v {} 591 set testid "malloc3-(test $id).$iterid" 592 eval $script 593 incr pc 594 } 595 596 -sql { 597 set ::rollback_hook_count 0 598 599 set id [lindex $v 0] 600 set testid "malloc3-(integrity $id).$iterid" 601 602 set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit 603 sqlite3_memdebug_fail $iFail -repeat 0 604 set rc [catch {db eval [lindex $v 2]} msg] ;# True error occurs 605 set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit 606 607 if {$rc != 0 && $nac && !$ac} { 608 # Before [db eval] the auto-commit flag was clear. Now it 609 # is set. Since an error occurred we assume this was not a 610 # commit - therefore a rollback occurred. Check that the 611 # rollback-hook was invoked. 612 do_test malloc3-rollback_hook_count.$iterid { 613 set ::rollback_hook_count 614 } {1} 615 } 616 617 set nFail [sqlite3_memdebug_fail -1 -benigncnt nBenign] 618 if {$rc == 0} { 619 # Successful execution of sql. The number of failed malloc() 620 # calls should be equal to the number of benign failures. 621 # Otherwise a malloc() failed and the error was not reported. 622 # 623 set expr {$nFail!=$nBenign} 624 if {[expr $expr]} { 625 error "Unreported malloc() failure, test \"$testid\", $expr" 626 } 627 628 if {$ac && !$nac} { 629 # Before the [db eval] the auto-commit flag was set, now it 630 # is clear. We can deduce that a "BEGIN" statement has just 631 # been successfully executed. 632 set begin_pc $pc 633 } 634 635 incr pc 636 set iFail 1 637 integrity_check $testid 638 } elseif {[regexp {.*out of memory} $msg] || [db errorcode] == 3082} { 639 # Out of memory error, as expected. 640 # 641 integrity_check $testid 642 incr iFail 643 if {$nac && !$ac} { 644 if {![lindex $v 1] && [db errorcode] != 3082} { 645 # error "Statement \"[lindex $v 2]\" caused a rollback" 646 } 647 648 for {set i $begin_pc} {$i < $pc} {incr i} { 649 set k2 [lindex $arglist [expr {2 * $i}]] 650 set v2 [lindex $arglist [expr {2 * $i + 1}]] 651 set catchupsql "" 652 switch -- $k2 { 653 -sql {set catchupsql [lindex $v2 2]} 654 -prep {set catchupsql $v2} 655 } 656 db eval $catchupsql 657 } 658 } 659 } else { 660 error $msg 661 } 662 663 # back up to the previous "-test" block. 664 while {[lindex $arglist [expr {2 * ($pc - 1)}]] == "-test"} { 665 incr pc -1 666 } 667 } 668 669 -prep { 670 db eval $v 671 incr pc 672 } 673 674 -debug { 675 eval $v 676 incr pc 677 } 678 679 default { error "Unknown switch: $k" } 680 } 681 } 682} 683 684# Turn off the Tcl interface's prepared statement caching facility. Then 685# run the tests with "persistent" malloc failures. 686sqlite3_extended_result_codes db 1 687db cache size 0 688run_test $::run_test_script 1 689 690# Close and reopen the db. 691db close 692forcedelete test.db test.db-journal test2.db test2.db-journal 693sqlite3 db test.db 694sqlite3_extended_result_codes db 1 695set ::DB [sqlite3_connection_pointer db] 696 697# Turn off the Tcl interface's prepared statement caching facility in 698# the new connnection. Then run the tests with "transient" malloc failures. 699db cache size 0 700run_test $::run_test_script 0 701 702sqlite3_memdebug_fail -1 703finish_test 704