1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001 McAfee, Inc.
5 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Jonathan Lemon
9 * and McAfee Research, the Security Research Division of McAfee, Inc. under
10 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11 * DARPA CHATS research program. [2001 McAfee, Inc.]
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h> /* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63
64 #include <vm/uma.h>
65
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/ip_options.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet/icmp6.h>
82 #include <netinet6/nd6.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet6/in6_pcb.h>
85 #endif
86 #include <netinet/tcp.h>
87 #include <netinet/tcp_fastopen.h>
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_syncache.h>
93 #ifdef INET6
94 #include <netinet6/tcp6_var.h>
95 #endif
96 #ifdef TCP_OFFLOAD
97 #include <netinet/toecore.h>
98 #endif
99
100 #include <netipsec/ipsec_support.h>
101
102 #include <machine/in_cksum.h>
103
104 #include <security/mac/mac_framework.h>
105
106 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
107 #define V_tcp_syncookies VNET(tcp_syncookies)
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
109 &VNET_NAME(tcp_syncookies), 0,
110 "Use TCP SYN cookies if the syncache overflows");
111
112 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
113 #define V_tcp_syncookiesonly VNET(tcp_syncookiesonly)
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
115 &VNET_NAME(tcp_syncookiesonly), 0,
116 "Use only TCP SYN cookies");
117
118 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
119 #define V_functions_inherit_listen_socket_stack \
120 VNET(functions_inherit_listen_socket_stack)
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
122 CTLFLAG_VNET | CTLFLAG_RW,
123 &VNET_NAME(functions_inherit_listen_socket_stack), 0,
124 "Inherit listen socket's stack");
125
126 #ifdef TCP_OFFLOAD
127 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
128 #endif
129
130 static void syncache_drop(struct syncache *, struct syncache_head *);
131 static void syncache_free(struct syncache *);
132 static void syncache_insert(struct syncache *, struct syncache_head *);
133 static int syncache_respond(struct syncache *, const struct mbuf *, int);
134 static struct socket *syncache_socket(struct syncache *, struct socket *,
135 struct mbuf *m);
136 static void syncache_timeout(struct syncache *sc, struct syncache_head *sch,
137 int docallout);
138 static void syncache_timer(void *);
139
140 static uint32_t syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
141 uint8_t *, uintptr_t);
142 static tcp_seq syncookie_generate(struct syncache_head *, struct syncache *);
143 static struct syncache
144 *syncookie_lookup(struct in_conninfo *, struct syncache_head *,
145 struct syncache *, struct tcphdr *, struct tcpopt *,
146 struct socket *);
147 static void syncache_pause(struct in_conninfo *);
148 static void syncache_unpause(void *);
149 static void syncookie_reseed(void *);
150 #ifdef INVARIANTS
151 static int syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
152 struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
153 struct socket *lso);
154 #endif
155
156 /*
157 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
158 * 3 retransmits corresponds to a timeout with default values of
159 * tcp_rexmit_initial * ( 1 +
160 * tcp_backoff[1] +
161 * tcp_backoff[2] +
162 * tcp_backoff[3]) + 3 * tcp_rexmit_slop,
163 * 1000 ms * (1 + 2 + 4 + 8) + 3 * 200 ms = 15600 ms,
164 * the odds are that the user has given up attempting to connect by then.
165 */
166 #define SYNCACHE_MAXREXMTS 3
167
168 /* Arbitrary values */
169 #define TCP_SYNCACHE_HASHSIZE 512
170 #define TCP_SYNCACHE_BUCKETLIMIT 30
171
172 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
173 #define V_tcp_syncache VNET(tcp_syncache)
174
175 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache,
176 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
177 "TCP SYN cache");
178
179 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
180 &VNET_NAME(tcp_syncache.bucket_limit), 0,
181 "Per-bucket hash limit for syncache");
182
183 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
184 &VNET_NAME(tcp_syncache.cache_limit), 0,
185 "Overall entry limit for syncache");
186
187 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
188 &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
189
190 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
191 &VNET_NAME(tcp_syncache.hashsize), 0,
192 "Size of TCP syncache hashtable");
193
194 static int
sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)195 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
196 {
197 int error;
198 u_int new;
199
200 new = V_tcp_syncache.rexmt_limit;
201 error = sysctl_handle_int(oidp, &new, 0, req);
202 if ((error == 0) && (req->newptr != NULL)) {
203 if (new > TCP_MAXRXTSHIFT)
204 error = EINVAL;
205 else
206 V_tcp_syncache.rexmt_limit = new;
207 }
208 return (error);
209 }
210
211 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
212 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
213 &VNET_NAME(tcp_syncache.rexmt_limit), 0,
214 sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
215 "Limit on SYN/ACK retransmissions");
216
217 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
218 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
219 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
220 "Send reset on socket allocation failure");
221
222 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
223
224 #define SCH_LOCK(sch) mtx_lock(&(sch)->sch_mtx)
225 #define SCH_UNLOCK(sch) mtx_unlock(&(sch)->sch_mtx)
226 #define SCH_LOCK_ASSERT(sch) mtx_assert(&(sch)->sch_mtx, MA_OWNED)
227
228 /*
229 * Requires the syncache entry to be already removed from the bucket list.
230 */
231 static void
syncache_free(struct syncache * sc)232 syncache_free(struct syncache *sc)
233 {
234
235 if (sc->sc_ipopts)
236 (void) m_free(sc->sc_ipopts);
237 if (sc->sc_cred)
238 crfree(sc->sc_cred);
239 #ifdef MAC
240 mac_syncache_destroy(&sc->sc_label);
241 #endif
242
243 uma_zfree(V_tcp_syncache.zone, sc);
244 }
245
246 void
syncache_init(void)247 syncache_init(void)
248 {
249 int i;
250
251 V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
252 V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
253 V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
254 V_tcp_syncache.hash_secret = arc4random();
255
256 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
257 &V_tcp_syncache.hashsize);
258 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
259 &V_tcp_syncache.bucket_limit);
260 if (!powerof2(V_tcp_syncache.hashsize) ||
261 V_tcp_syncache.hashsize == 0) {
262 printf("WARNING: syncache hash size is not a power of 2.\n");
263 V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
264 }
265 V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
266
267 /* Set limits. */
268 V_tcp_syncache.cache_limit =
269 V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
270 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
271 &V_tcp_syncache.cache_limit);
272
273 /* Allocate the hash table. */
274 V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
275 sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
276
277 #ifdef VIMAGE
278 V_tcp_syncache.vnet = curvnet;
279 #endif
280
281 /* Initialize the hash buckets. */
282 for (i = 0; i < V_tcp_syncache.hashsize; i++) {
283 TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
284 mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
285 NULL, MTX_DEF);
286 callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
287 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
288 V_tcp_syncache.hashbase[i].sch_length = 0;
289 V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
290 V_tcp_syncache.hashbase[i].sch_last_overflow =
291 -(SYNCOOKIE_LIFETIME + 1);
292 }
293
294 /* Create the syncache entry zone. */
295 V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
296 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
297 V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
298 V_tcp_syncache.cache_limit);
299
300 /* Start the SYN cookie reseeder callout. */
301 callout_init(&V_tcp_syncache.secret.reseed, 1);
302 arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
303 arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
304 callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
305 syncookie_reseed, &V_tcp_syncache);
306
307 /* Initialize the pause machinery. */
308 mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF);
309 callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx,
310 0);
311 V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME;
312 V_tcp_syncache.pause_backoff = 0;
313 V_tcp_syncache.paused = false;
314 }
315
316 #ifdef VIMAGE
317 void
syncache_destroy(void)318 syncache_destroy(void)
319 {
320 struct syncache_head *sch;
321 struct syncache *sc, *nsc;
322 int i;
323
324 /*
325 * Stop the re-seed timer before freeing resources. No need to
326 * possibly schedule it another time.
327 */
328 callout_drain(&V_tcp_syncache.secret.reseed);
329
330 /* Stop the SYN cache pause callout. */
331 mtx_lock(&V_tcp_syncache.pause_mtx);
332 if (callout_stop(&V_tcp_syncache.pause_co) == 0) {
333 mtx_unlock(&V_tcp_syncache.pause_mtx);
334 callout_drain(&V_tcp_syncache.pause_co);
335 } else
336 mtx_unlock(&V_tcp_syncache.pause_mtx);
337
338 /* Cleanup hash buckets: stop timers, free entries, destroy locks. */
339 for (i = 0; i < V_tcp_syncache.hashsize; i++) {
340 sch = &V_tcp_syncache.hashbase[i];
341 callout_drain(&sch->sch_timer);
342
343 SCH_LOCK(sch);
344 TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
345 syncache_drop(sc, sch);
346 SCH_UNLOCK(sch);
347 KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
348 ("%s: sch->sch_bucket not empty", __func__));
349 KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
350 __func__, sch->sch_length));
351 mtx_destroy(&sch->sch_mtx);
352 }
353
354 KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
355 ("%s: cache_count not 0", __func__));
356
357 /* Free the allocated global resources. */
358 uma_zdestroy(V_tcp_syncache.zone);
359 free(V_tcp_syncache.hashbase, M_SYNCACHE);
360 mtx_destroy(&V_tcp_syncache.pause_mtx);
361 }
362 #endif
363
364 /*
365 * Inserts a syncache entry into the specified bucket row.
366 * Locks and unlocks the syncache_head autonomously.
367 */
368 static void
syncache_insert(struct syncache * sc,struct syncache_head * sch)369 syncache_insert(struct syncache *sc, struct syncache_head *sch)
370 {
371 struct syncache *sc2;
372
373 SCH_LOCK(sch);
374
375 /*
376 * Make sure that we don't overflow the per-bucket limit.
377 * If the bucket is full, toss the oldest element.
378 */
379 if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
380 KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
381 ("sch->sch_length incorrect"));
382 syncache_pause(&sc->sc_inc);
383 sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
384 sch->sch_last_overflow = time_uptime;
385 syncache_drop(sc2, sch);
386 }
387
388 /* Put it into the bucket. */
389 TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
390 sch->sch_length++;
391
392 #ifdef TCP_OFFLOAD
393 if (ADDED_BY_TOE(sc)) {
394 struct toedev *tod = sc->sc_tod;
395
396 tod->tod_syncache_added(tod, sc->sc_todctx);
397 }
398 #endif
399
400 /* Reinitialize the bucket row's timer. */
401 if (sch->sch_length == 1)
402 sch->sch_nextc = ticks + INT_MAX;
403 syncache_timeout(sc, sch, 1);
404
405 SCH_UNLOCK(sch);
406
407 TCPSTATES_INC(TCPS_SYN_RECEIVED);
408 TCPSTAT_INC(tcps_sc_added);
409 }
410
411 /*
412 * Remove and free entry from syncache bucket row.
413 * Expects locked syncache head.
414 */
415 static void
syncache_drop(struct syncache * sc,struct syncache_head * sch)416 syncache_drop(struct syncache *sc, struct syncache_head *sch)
417 {
418
419 SCH_LOCK_ASSERT(sch);
420
421 TCPSTATES_DEC(TCPS_SYN_RECEIVED);
422 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
423 sch->sch_length--;
424
425 #ifdef TCP_OFFLOAD
426 if (ADDED_BY_TOE(sc)) {
427 struct toedev *tod = sc->sc_tod;
428
429 tod->tod_syncache_removed(tod, sc->sc_todctx);
430 }
431 #endif
432
433 syncache_free(sc);
434 }
435
436 /*
437 * Engage/reengage time on bucket row.
438 */
439 static void
syncache_timeout(struct syncache * sc,struct syncache_head * sch,int docallout)440 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
441 {
442 int rexmt;
443
444 if (sc->sc_rxmits == 0)
445 rexmt = tcp_rexmit_initial;
446 else
447 TCPT_RANGESET(rexmt,
448 tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
449 tcp_rexmit_min, TCPTV_REXMTMAX);
450 sc->sc_rxttime = ticks + rexmt;
451 sc->sc_rxmits++;
452 if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
453 sch->sch_nextc = sc->sc_rxttime;
454 if (docallout)
455 callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
456 syncache_timer, (void *)sch);
457 }
458 }
459
460 /*
461 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
462 * If we have retransmitted an entry the maximum number of times, expire it.
463 * One separate timer for each bucket row.
464 */
465 static void
syncache_timer(void * xsch)466 syncache_timer(void *xsch)
467 {
468 struct syncache_head *sch = (struct syncache_head *)xsch;
469 struct syncache *sc, *nsc;
470 struct epoch_tracker et;
471 int tick = ticks;
472 char *s;
473 bool paused;
474
475 CURVNET_SET(sch->sch_sc->vnet);
476
477 /* NB: syncache_head has already been locked by the callout. */
478 SCH_LOCK_ASSERT(sch);
479
480 /*
481 * In the following cycle we may remove some entries and/or
482 * advance some timeouts, so re-initialize the bucket timer.
483 */
484 sch->sch_nextc = tick + INT_MAX;
485
486 /*
487 * If we have paused processing, unconditionally remove
488 * all syncache entries.
489 */
490 mtx_lock(&V_tcp_syncache.pause_mtx);
491 paused = V_tcp_syncache.paused;
492 mtx_unlock(&V_tcp_syncache.pause_mtx);
493
494 TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
495 if (paused) {
496 syncache_drop(sc, sch);
497 continue;
498 }
499 /*
500 * We do not check if the listen socket still exists
501 * and accept the case where the listen socket may be
502 * gone by the time we resend the SYN/ACK. We do
503 * not expect this to happens often. If it does,
504 * then the RST will be sent by the time the remote
505 * host does the SYN/ACK->ACK.
506 */
507 if (TSTMP_GT(sc->sc_rxttime, tick)) {
508 if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
509 sch->sch_nextc = sc->sc_rxttime;
510 continue;
511 }
512 if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
513 sc->sc_flags &= ~SCF_ECN;
514 }
515 if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
516 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
517 log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
518 "giving up and removing syncache entry\n",
519 s, __func__);
520 free(s, M_TCPLOG);
521 }
522 syncache_drop(sc, sch);
523 TCPSTAT_INC(tcps_sc_stale);
524 continue;
525 }
526 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
527 log(LOG_DEBUG, "%s; %s: Response timeout, "
528 "retransmitting (%u) SYN|ACK\n",
529 s, __func__, sc->sc_rxmits);
530 free(s, M_TCPLOG);
531 }
532
533 NET_EPOCH_ENTER(et);
534 syncache_respond(sc, NULL, TH_SYN|TH_ACK);
535 NET_EPOCH_EXIT(et);
536 TCPSTAT_INC(tcps_sc_retransmitted);
537 syncache_timeout(sc, sch, 0);
538 }
539 if (!TAILQ_EMPTY(&(sch)->sch_bucket))
540 callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
541 syncache_timer, (void *)(sch));
542 CURVNET_RESTORE();
543 }
544
545 /*
546 * Returns true if the system is only using cookies at the moment.
547 * This could be due to a sysadmin decision to only use cookies, or it
548 * could be due to the system detecting an attack.
549 */
550 static inline bool
syncache_cookiesonly(void)551 syncache_cookiesonly(void)
552 {
553
554 return (V_tcp_syncookies && (V_tcp_syncache.paused ||
555 V_tcp_syncookiesonly));
556 }
557
558 /*
559 * Find the hash bucket for the given connection.
560 */
561 static struct syncache_head *
syncache_hashbucket(struct in_conninfo * inc)562 syncache_hashbucket(struct in_conninfo *inc)
563 {
564 uint32_t hash;
565
566 /*
567 * The hash is built on foreign port + local port + foreign address.
568 * We rely on the fact that struct in_conninfo starts with 16 bits
569 * of foreign port, then 16 bits of local port then followed by 128
570 * bits of foreign address. In case of IPv4 address, the first 3
571 * 32-bit words of the address always are zeroes.
572 */
573 hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
574 V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
575
576 return (&V_tcp_syncache.hashbase[hash]);
577 }
578
579 /*
580 * Find an entry in the syncache.
581 * Returns always with locked syncache_head plus a matching entry or NULL.
582 */
583 static struct syncache *
syncache_lookup(struct in_conninfo * inc,struct syncache_head ** schp)584 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
585 {
586 struct syncache *sc;
587 struct syncache_head *sch;
588
589 *schp = sch = syncache_hashbucket(inc);
590 SCH_LOCK(sch);
591
592 /* Circle through bucket row to find matching entry. */
593 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
594 if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
595 sizeof(struct in_endpoints)) == 0)
596 break;
597
598 return (sc); /* Always returns with locked sch. */
599 }
600
601 /*
602 * This function is called when we get a RST for a
603 * non-existent connection, so that we can see if the
604 * connection is in the syn cache. If it is, zap it.
605 * If required send a challenge ACK.
606 */
607 void
syncache_chkrst(struct in_conninfo * inc,struct tcphdr * th,struct mbuf * m)608 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m)
609 {
610 struct syncache *sc;
611 struct syncache_head *sch;
612 char *s = NULL;
613
614 if (syncache_cookiesonly())
615 return;
616 sc = syncache_lookup(inc, &sch); /* returns locked sch */
617 SCH_LOCK_ASSERT(sch);
618
619 /*
620 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
621 * See RFC 793 page 65, section SEGMENT ARRIVES.
622 */
623 if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
624 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
625 log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
626 "FIN flag set, segment ignored\n", s, __func__);
627 TCPSTAT_INC(tcps_badrst);
628 goto done;
629 }
630
631 /*
632 * No corresponding connection was found in syncache.
633 * If syncookies are enabled and possibly exclusively
634 * used, or we are under memory pressure, a valid RST
635 * may not find a syncache entry. In that case we're
636 * done and no SYN|ACK retransmissions will happen.
637 * Otherwise the RST was misdirected or spoofed.
638 */
639 if (sc == NULL) {
640 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
641 log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
642 "syncache entry (possibly syncookie only), "
643 "segment ignored\n", s, __func__);
644 TCPSTAT_INC(tcps_badrst);
645 goto done;
646 }
647
648 /*
649 * If the RST bit is set, check the sequence number to see
650 * if this is a valid reset segment.
651 *
652 * RFC 793 page 37:
653 * In all states except SYN-SENT, all reset (RST) segments
654 * are validated by checking their SEQ-fields. A reset is
655 * valid if its sequence number is in the window.
656 *
657 * RFC 793 page 69:
658 * There are four cases for the acceptability test for an incoming
659 * segment:
660 *
661 * Segment Receive Test
662 * Length Window
663 * ------- ------- -------------------------------------------
664 * 0 0 SEG.SEQ = RCV.NXT
665 * 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
666 * >0 0 not acceptable
667 * >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
668 * or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
669 *
670 * Note that when receiving a SYN segment in the LISTEN state,
671 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
672 * described in RFC 793, page 66.
673 */
674 if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
675 SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
676 (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
677 if (V_tcp_insecure_rst ||
678 th->th_seq == sc->sc_irs + 1) {
679 syncache_drop(sc, sch);
680 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
681 log(LOG_DEBUG,
682 "%s; %s: Our SYN|ACK was rejected, "
683 "connection attempt aborted by remote "
684 "endpoint\n",
685 s, __func__);
686 TCPSTAT_INC(tcps_sc_reset);
687 } else {
688 TCPSTAT_INC(tcps_badrst);
689 /* Send challenge ACK. */
690 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
691 log(LOG_DEBUG, "%s; %s: RST with invalid "
692 " SEQ %u != NXT %u (+WND %u), "
693 "sending challenge ACK\n",
694 s, __func__,
695 th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
696 syncache_respond(sc, m, TH_ACK);
697 }
698 } else {
699 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
700 log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
701 "NXT %u (+WND %u), segment ignored\n",
702 s, __func__,
703 th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
704 TCPSTAT_INC(tcps_badrst);
705 }
706
707 done:
708 if (s != NULL)
709 free(s, M_TCPLOG);
710 SCH_UNLOCK(sch);
711 }
712
713 void
syncache_badack(struct in_conninfo * inc)714 syncache_badack(struct in_conninfo *inc)
715 {
716 struct syncache *sc;
717 struct syncache_head *sch;
718
719 if (syncache_cookiesonly())
720 return;
721 sc = syncache_lookup(inc, &sch); /* returns locked sch */
722 SCH_LOCK_ASSERT(sch);
723 if (sc != NULL) {
724 syncache_drop(sc, sch);
725 TCPSTAT_INC(tcps_sc_badack);
726 }
727 SCH_UNLOCK(sch);
728 }
729
730 void
syncache_unreach(struct in_conninfo * inc,tcp_seq th_seq)731 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
732 {
733 struct syncache *sc;
734 struct syncache_head *sch;
735
736 if (syncache_cookiesonly())
737 return;
738 sc = syncache_lookup(inc, &sch); /* returns locked sch */
739 SCH_LOCK_ASSERT(sch);
740 if (sc == NULL)
741 goto done;
742
743 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
744 if (ntohl(th_seq) != sc->sc_iss)
745 goto done;
746
747 /*
748 * If we've rertransmitted 3 times and this is our second error,
749 * we remove the entry. Otherwise, we allow it to continue on.
750 * This prevents us from incorrectly nuking an entry during a
751 * spurious network outage.
752 *
753 * See tcp_notify().
754 */
755 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
756 sc->sc_flags |= SCF_UNREACH;
757 goto done;
758 }
759 syncache_drop(sc, sch);
760 TCPSTAT_INC(tcps_sc_unreach);
761 done:
762 SCH_UNLOCK(sch);
763 }
764
765 #ifdef LVS_TCPOPT_TOA
766
767 #ifndef TCPOPT_TOA
768 #define TCPOPT_TOA 254
769 #define TCPOLEN_TOA 8
770 #endif
771
772 static void
syncache_get_toa(struct mbuf * m,struct socket * so)773 syncache_get_toa(struct mbuf *m, struct socket *so)
774 {
775 int length;
776 u_char *ptr = NULL;
777 struct tcphdr *th = NULL;
778
779 struct ipovly *ipov = mtod(m, struct ipovly *);
780 struct ip *ip = (struct ip *)ipov;
781
782 #ifdef INET6
783 struct ip6_hdr *ip6 = (struct ip6_hdr *)ipov;
784
785 if (ip->ip_v == 6) {
786 /*
787 * FIXME: ipv6 not support now
788 * th = ???
789 */
790
791 return;
792
793 } else
794 #endif
795 {
796 th = (struct tcphdr *)((caddr_t)ip + (ntohs(ip->ip_len) - ntohs(ipov->ih_len)));
797 }
798
799 length = (th->th_off << 2) - sizeof (struct tcphdr);
800 ptr = (u_char *)(th + 1);
801
802 while (length > 0) {
803 int opcode = *ptr++;
804 int opsize;
805
806 switch (opcode) {
807 case TCPOPT_EOL:
808 return;
809
810 case TCPOPT_NOP:
811 length--;
812 continue;
813
814 default:
815 opsize = *ptr++;
816 if (opsize < 2 || opsize > length) {
817 return;
818 }
819
820 if (TCPOPT_TOA == opcode && TCPOLEN_TOA == opsize) {
821 bcopy(ptr - 2, so->so_toa, TCPOLEN_TOA);
822 return;
823 }
824
825 ptr += opsize - 2;
826 length -= opsize;
827 }
828 }
829 }
830 #endif
831
832 /*
833 * Build a new TCP socket structure from a syncache entry.
834 *
835 * On success return the newly created socket with its underlying inp locked.
836 */
837 static struct socket *
syncache_socket(struct syncache * sc,struct socket * lso,struct mbuf * m)838 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
839 {
840 struct tcp_function_block *blk;
841 struct inpcb *inp = NULL;
842 struct socket *so;
843 struct tcpcb *tp;
844 int error;
845 char *s;
846
847 NET_EPOCH_ASSERT();
848
849 /*
850 * Ok, create the full blown connection, and set things up
851 * as they would have been set up if we had created the
852 * connection when the SYN arrived. If we can't create
853 * the connection, abort it.
854 */
855 so = sonewconn(lso, 0);
856 if (so == NULL) {
857 /*
858 * Drop the connection; we will either send a RST or
859 * have the peer retransmit its SYN again after its
860 * RTO and try again.
861 */
862 TCPSTAT_INC(tcps_listendrop);
863 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
864 log(LOG_DEBUG, "%s; %s: Socket create failed "
865 "due to limits or memory shortage\n",
866 s, __func__);
867 free(s, M_TCPLOG);
868 }
869 goto abort2;
870 }
871
872 #ifdef LVS_TCPOPT_TOA
873 syncache_get_toa(m, so);
874 #endif
875
876 #ifdef MAC
877 mac_socketpeer_set_from_mbuf(m, so);
878 #endif
879
880 inp = sotoinpcb(so);
881 inp->inp_inc.inc_fibnum = so->so_fibnum;
882 INP_WLOCK(inp);
883 /*
884 * Exclusive pcbinfo lock is not required in syncache socket case even
885 * if two inpcb locks can be acquired simultaneously:
886 * - the inpcb in LISTEN state,
887 * - the newly created inp.
888 *
889 * In this case, an inp cannot be at same time in LISTEN state and
890 * just created by an accept() call.
891 */
892 INP_HASH_WLOCK(&V_tcbinfo);
893
894 /* Insert new socket into PCB hash list. */
895 inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
896 #ifdef INET6
897 if (sc->sc_inc.inc_flags & INC_ISIPV6) {
898 inp->inp_vflag &= ~INP_IPV4;
899 inp->inp_vflag |= INP_IPV6;
900 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
901 } else {
902 inp->inp_vflag &= ~INP_IPV6;
903 inp->inp_vflag |= INP_IPV4;
904 #endif
905 inp->inp_ip_ttl = sc->sc_ip_ttl;
906 inp->inp_ip_tos = sc->sc_ip_tos;
907 inp->inp_laddr = sc->sc_inc.inc_laddr;
908 #ifdef INET6
909 }
910 #endif
911
912 /*
913 * If there's an mbuf and it has a flowid, then let's initialise the
914 * inp with that particular flowid.
915 */
916 if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
917 inp->inp_flowid = m->m_pkthdr.flowid;
918 inp->inp_flowtype = M_HASHTYPE_GET(m);
919 #ifdef NUMA
920 inp->inp_numa_domain = m->m_pkthdr.numa_domain;
921 #endif
922 }
923
924 inp->inp_lport = sc->sc_inc.inc_lport;
925 #ifdef INET6
926 if (inp->inp_vflag & INP_IPV6PROTO) {
927 struct inpcb *oinp = sotoinpcb(lso);
928
929 /*
930 * Inherit socket options from the listening socket.
931 * Note that in6p_inputopts are not (and should not be)
932 * copied, since it stores previously received options and is
933 * used to detect if each new option is different than the
934 * previous one and hence should be passed to a user.
935 * If we copied in6p_inputopts, a user would not be able to
936 * receive options just after calling the accept system call.
937 */
938 inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
939 if (oinp->in6p_outputopts)
940 inp->in6p_outputopts =
941 ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
942 inp->in6p_hops = oinp->in6p_hops;
943 }
944
945 if (sc->sc_inc.inc_flags & INC_ISIPV6) {
946 struct in6_addr laddr6;
947 struct sockaddr_in6 sin6;
948
949 sin6.sin6_family = AF_INET6;
950 sin6.sin6_len = sizeof(sin6);
951 sin6.sin6_addr = sc->sc_inc.inc6_faddr;
952 sin6.sin6_port = sc->sc_inc.inc_fport;
953 sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
954 laddr6 = inp->in6p_laddr;
955 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
956 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
957 if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
958 thread0.td_ucred, m, false)) != 0) {
959 inp->in6p_laddr = laddr6;
960 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
961 log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
962 "with error %i\n",
963 s, __func__, error);
964 free(s, M_TCPLOG);
965 }
966 INP_HASH_WUNLOCK(&V_tcbinfo);
967 goto abort;
968 }
969 /* Override flowlabel from in6_pcbconnect. */
970 inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
971 inp->inp_flow |= sc->sc_flowlabel;
972 }
973 #endif /* INET6 */
974 #if defined(INET) && defined(INET6)
975 else
976 #endif
977 #ifdef INET
978 {
979 struct in_addr laddr;
980 struct sockaddr_in sin;
981
982 inp->inp_options = (m) ? ip_srcroute(m) : NULL;
983
984 if (inp->inp_options == NULL) {
985 inp->inp_options = sc->sc_ipopts;
986 sc->sc_ipopts = NULL;
987 }
988
989 sin.sin_family = AF_INET;
990 sin.sin_len = sizeof(sin);
991 sin.sin_addr = sc->sc_inc.inc_faddr;
992 sin.sin_port = sc->sc_inc.inc_fport;
993 bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
994 laddr = inp->inp_laddr;
995 if (inp->inp_laddr.s_addr == INADDR_ANY)
996 inp->inp_laddr = sc->sc_inc.inc_laddr;
997 if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
998 thread0.td_ucred, m, false)) != 0) {
999 inp->inp_laddr = laddr;
1000 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
1001 log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
1002 "with error %i\n",
1003 s, __func__, error);
1004 free(s, M_TCPLOG);
1005 }
1006 INP_HASH_WUNLOCK(&V_tcbinfo);
1007 goto abort;
1008 }
1009 }
1010 #endif /* INET */
1011 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1012 /* Copy old policy into new socket's. */
1013 if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
1014 printf("syncache_socket: could not copy policy\n");
1015 #endif
1016 INP_HASH_WUNLOCK(&V_tcbinfo);
1017 tp = intotcpcb(inp);
1018 tcp_state_change(tp, TCPS_SYN_RECEIVED);
1019 tp->iss = sc->sc_iss;
1020 tp->irs = sc->sc_irs;
1021 tcp_rcvseqinit(tp);
1022 tcp_sendseqinit(tp);
1023 blk = sototcpcb(lso)->t_fb;
1024 if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
1025 /*
1026 * Our parents t_fb was not the default,
1027 * we need to release our ref on tp->t_fb and
1028 * pickup one on the new entry.
1029 */
1030 struct tcp_function_block *rblk;
1031
1032 rblk = find_and_ref_tcp_fb(blk);
1033 KASSERT(rblk != NULL,
1034 ("cannot find blk %p out of syncache?", blk));
1035 if (tp->t_fb->tfb_tcp_fb_fini)
1036 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
1037 refcount_release(&tp->t_fb->tfb_refcnt);
1038 tp->t_fb = rblk;
1039 /*
1040 * XXXrrs this is quite dangerous, it is possible
1041 * for the new function to fail to init. We also
1042 * are not asking if the handoff_is_ok though at
1043 * the very start thats probalbly ok.
1044 */
1045 if (tp->t_fb->tfb_tcp_fb_init) {
1046 (*tp->t_fb->tfb_tcp_fb_init)(tp);
1047 }
1048 }
1049 tp->snd_wl1 = sc->sc_irs;
1050 tp->snd_max = tp->iss + 1;
1051 tp->snd_nxt = tp->iss + 1;
1052 tp->rcv_up = sc->sc_irs + 1;
1053 tp->rcv_wnd = sc->sc_wnd;
1054 tp->rcv_adv += tp->rcv_wnd;
1055 tp->last_ack_sent = tp->rcv_nxt;
1056
1057 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
1058 if (sc->sc_flags & SCF_NOOPT)
1059 tp->t_flags |= TF_NOOPT;
1060 else {
1061 if (sc->sc_flags & SCF_WINSCALE) {
1062 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
1063 tp->snd_scale = sc->sc_requested_s_scale;
1064 tp->request_r_scale = sc->sc_requested_r_scale;
1065 }
1066 if (sc->sc_flags & SCF_TIMESTAMP) {
1067 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
1068 tp->ts_recent = sc->sc_tsreflect;
1069 tp->ts_recent_age = tcp_ts_getticks();
1070 tp->ts_offset = sc->sc_tsoff;
1071 }
1072 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1073 if (sc->sc_flags & SCF_SIGNATURE)
1074 tp->t_flags |= TF_SIGNATURE;
1075 #endif
1076 if (sc->sc_flags & SCF_SACK)
1077 tp->t_flags |= TF_SACK_PERMIT;
1078 }
1079
1080 if (sc->sc_flags & SCF_ECN)
1081 tp->t_flags2 |= TF2_ECN_PERMIT;
1082
1083 /*
1084 * Set up MSS and get cached values from tcp_hostcache.
1085 * This might overwrite some of the defaults we just set.
1086 */
1087 tcp_mss(tp, sc->sc_peer_mss);
1088
1089 /*
1090 * If the SYN,ACK was retransmitted, indicate that CWND to be
1091 * limited to one segment in cc_conn_init().
1092 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
1093 */
1094 if (sc->sc_rxmits > 1)
1095 tp->snd_cwnd = 1;
1096
1097 #ifdef TCP_OFFLOAD
1098 /*
1099 * Allow a TOE driver to install its hooks. Note that we hold the
1100 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
1101 * new connection before the TOE driver has done its thing.
1102 */
1103 if (ADDED_BY_TOE(sc)) {
1104 struct toedev *tod = sc->sc_tod;
1105
1106 tod->tod_offload_socket(tod, sc->sc_todctx, so);
1107 }
1108 #endif
1109 /*
1110 * Copy and activate timers.
1111 */
1112 tp->t_keepinit = sototcpcb(lso)->t_keepinit;
1113 tp->t_keepidle = sototcpcb(lso)->t_keepidle;
1114 tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
1115 tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
1116 tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1117
1118 TCPSTAT_INC(tcps_accepts);
1119 return (so);
1120
1121 abort:
1122 INP_WUNLOCK(inp);
1123 abort2:
1124 if (so != NULL)
1125 soabort(so);
1126 return (NULL);
1127 }
1128
1129 /*
1130 * This function gets called when we receive an ACK for a
1131 * socket in the LISTEN state. We look up the connection
1132 * in the syncache, and if its there, we pull it out of
1133 * the cache and turn it into a full-blown connection in
1134 * the SYN-RECEIVED state.
1135 *
1136 * On syncache_socket() success the newly created socket
1137 * has its underlying inp locked.
1138 */
1139 int
syncache_expand(struct in_conninfo * inc,struct tcpopt * to,struct tcphdr * th,struct socket ** lsop,struct mbuf * m)1140 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1141 struct socket **lsop, struct mbuf *m)
1142 {
1143 struct syncache *sc;
1144 struct syncache_head *sch;
1145 struct syncache scs;
1146 char *s;
1147 bool locked;
1148
1149 NET_EPOCH_ASSERT();
1150 KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1151 ("%s: can handle only ACK", __func__));
1152
1153 if (syncache_cookiesonly()) {
1154 sc = NULL;
1155 sch = syncache_hashbucket(inc);
1156 locked = false;
1157 } else {
1158 sc = syncache_lookup(inc, &sch); /* returns locked sch */
1159 locked = true;
1160 SCH_LOCK_ASSERT(sch);
1161 }
1162
1163 #ifdef INVARIANTS
1164 /*
1165 * Test code for syncookies comparing the syncache stored
1166 * values with the reconstructed values from the cookie.
1167 */
1168 if (sc != NULL)
1169 syncookie_cmp(inc, sch, sc, th, to, *lsop);
1170 #endif
1171
1172 if (sc == NULL) {
1173 /*
1174 * There is no syncache entry, so see if this ACK is
1175 * a returning syncookie. To do this, first:
1176 * A. Check if syncookies are used in case of syncache
1177 * overflows
1178 * B. See if this socket has had a syncache entry dropped in
1179 * the recent past. We don't want to accept a bogus
1180 * syncookie if we've never received a SYN or accept it
1181 * twice.
1182 * C. check that the syncookie is valid. If it is, then
1183 * cobble up a fake syncache entry, and return.
1184 */
1185 if (locked && !V_tcp_syncookies) {
1186 SCH_UNLOCK(sch);
1187 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1188 log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1189 "segment rejected (syncookies disabled)\n",
1190 s, __func__);
1191 goto failed;
1192 }
1193 if (locked && !V_tcp_syncookiesonly &&
1194 sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1195 SCH_UNLOCK(sch);
1196 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1197 log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1198 "segment rejected (no syncache entry)\n",
1199 s, __func__);
1200 goto failed;
1201 }
1202 bzero(&scs, sizeof(scs));
1203 sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1204 if (locked)
1205 SCH_UNLOCK(sch);
1206 if (sc == NULL) {
1207 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1208 log(LOG_DEBUG, "%s; %s: Segment failed "
1209 "SYNCOOKIE authentication, segment rejected "
1210 "(probably spoofed)\n", s, __func__);
1211 goto failed;
1212 }
1213 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1214 /* If received ACK has MD5 signature, check it. */
1215 if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1216 (!TCPMD5_ENABLED() ||
1217 TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1218 /* Drop the ACK. */
1219 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1220 log(LOG_DEBUG, "%s; %s: Segment rejected, "
1221 "MD5 signature doesn't match.\n",
1222 s, __func__);
1223 free(s, M_TCPLOG);
1224 }
1225 TCPSTAT_INC(tcps_sig_err_sigopt);
1226 return (-1); /* Do not send RST */
1227 }
1228 #endif /* TCP_SIGNATURE */
1229 } else {
1230 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1231 /*
1232 * If listening socket requested TCP digests, check that
1233 * received ACK has signature and it is correct.
1234 * If not, drop the ACK and leave sc entry in th cache,
1235 * because SYN was received with correct signature.
1236 */
1237 if (sc->sc_flags & SCF_SIGNATURE) {
1238 if ((to->to_flags & TOF_SIGNATURE) == 0) {
1239 /* No signature */
1240 TCPSTAT_INC(tcps_sig_err_nosigopt);
1241 SCH_UNLOCK(sch);
1242 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1243 log(LOG_DEBUG, "%s; %s: Segment "
1244 "rejected, MD5 signature wasn't "
1245 "provided.\n", s, __func__);
1246 free(s, M_TCPLOG);
1247 }
1248 return (-1); /* Do not send RST */
1249 }
1250 if (!TCPMD5_ENABLED() ||
1251 TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1252 /* Doesn't match or no SA */
1253 SCH_UNLOCK(sch);
1254 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1255 log(LOG_DEBUG, "%s; %s: Segment "
1256 "rejected, MD5 signature doesn't "
1257 "match.\n", s, __func__);
1258 free(s, M_TCPLOG);
1259 }
1260 return (-1); /* Do not send RST */
1261 }
1262 }
1263 #endif /* TCP_SIGNATURE */
1264
1265 /*
1266 * RFC 7323 PAWS: If we have a timestamp on this segment and
1267 * it's less than ts_recent, drop it.
1268 * XXXMT: RFC 7323 also requires to send an ACK.
1269 * In tcp_input.c this is only done for TCP segments
1270 * with user data, so be consistent here and just drop
1271 * the segment.
1272 */
1273 if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1274 TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1275 SCH_UNLOCK(sch);
1276 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1277 log(LOG_DEBUG,
1278 "%s; %s: SEG.TSval %u < TS.Recent %u, "
1279 "segment dropped\n", s, __func__,
1280 to->to_tsval, sc->sc_tsreflect);
1281 free(s, M_TCPLOG);
1282 }
1283 return (-1); /* Do not send RST */
1284 }
1285
1286 /*
1287 * If timestamps were not negotiated during SYN/ACK and a
1288 * segment with a timestamp is received, ignore the
1289 * timestamp and process the packet normally.
1290 * See section 3.2 of RFC 7323.
1291 */
1292 if (!(sc->sc_flags & SCF_TIMESTAMP) &&
1293 (to->to_flags & TOF_TS)) {
1294 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1295 log(LOG_DEBUG, "%s; %s: Timestamp not "
1296 "expected, segment processed normally\n",
1297 s, __func__);
1298 free(s, M_TCPLOG);
1299 s = NULL;
1300 }
1301 }
1302
1303 /*
1304 * If timestamps were negotiated during SYN/ACK and a
1305 * segment without a timestamp is received, silently drop
1306 * the segment, unless the missing timestamps are tolerated.
1307 * See section 3.2 of RFC 7323.
1308 */
1309 if ((sc->sc_flags & SCF_TIMESTAMP) &&
1310 !(to->to_flags & TOF_TS)) {
1311 if (V_tcp_tolerate_missing_ts) {
1312 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1313 log(LOG_DEBUG,
1314 "%s; %s: Timestamp missing, "
1315 "segment processed normally\n",
1316 s, __func__);
1317 free(s, M_TCPLOG);
1318 }
1319 } else {
1320 SCH_UNLOCK(sch);
1321 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1322 log(LOG_DEBUG,
1323 "%s; %s: Timestamp missing, "
1324 "segment silently dropped\n",
1325 s, __func__);
1326 free(s, M_TCPLOG);
1327 }
1328 return (-1); /* Do not send RST */
1329 }
1330 }
1331
1332 /*
1333 * Pull out the entry to unlock the bucket row.
1334 *
1335 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1336 * tcp_state_change(). The tcpcb is not existent at this
1337 * moment. A new one will be allocated via syncache_socket->
1338 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1339 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1340 */
1341 TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1342 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1343 sch->sch_length--;
1344 #ifdef TCP_OFFLOAD
1345 if (ADDED_BY_TOE(sc)) {
1346 struct toedev *tod = sc->sc_tod;
1347
1348 tod->tod_syncache_removed(tod, sc->sc_todctx);
1349 }
1350 #endif
1351 SCH_UNLOCK(sch);
1352 }
1353
1354 /*
1355 * Segment validation:
1356 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1357 */
1358 if (th->th_ack != sc->sc_iss + 1) {
1359 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1360 log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1361 "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1362 goto failed;
1363 }
1364
1365 /*
1366 * The SEQ must fall in the window starting at the received
1367 * initial receive sequence number + 1 (the SYN).
1368 */
1369 if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1370 SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1371 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1372 log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1373 "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1374 goto failed;
1375 }
1376
1377 *lsop = syncache_socket(sc, *lsop, m);
1378
1379 if (*lsop == NULL)
1380 TCPSTAT_INC(tcps_sc_aborted);
1381 else
1382 TCPSTAT_INC(tcps_sc_completed);
1383
1384 /* how do we find the inp for the new socket? */
1385 if (sc != &scs)
1386 syncache_free(sc);
1387 return (1);
1388 failed:
1389 if (sc != NULL && sc != &scs)
1390 syncache_free(sc);
1391 if (s != NULL)
1392 free(s, M_TCPLOG);
1393 *lsop = NULL;
1394 return (0);
1395 }
1396
1397 static void
syncache_tfo_expand(struct syncache * sc,struct socket ** lsop,struct mbuf * m,uint64_t response_cookie)1398 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1399 uint64_t response_cookie)
1400 {
1401 struct inpcb *inp;
1402 struct tcpcb *tp;
1403 unsigned int *pending_counter;
1404
1405 NET_EPOCH_ASSERT();
1406
1407 pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1408 *lsop = syncache_socket(sc, *lsop, m);
1409 if (*lsop == NULL) {
1410 TCPSTAT_INC(tcps_sc_aborted);
1411 atomic_subtract_int(pending_counter, 1);
1412 } else {
1413 soisconnected(*lsop);
1414 inp = sotoinpcb(*lsop);
1415 tp = intotcpcb(inp);
1416 tp->t_flags |= TF_FASTOPEN;
1417 tp->t_tfo_cookie.server = response_cookie;
1418 tp->snd_max = tp->iss;
1419 tp->snd_nxt = tp->iss;
1420 tp->t_tfo_pending = pending_counter;
1421 TCPSTAT_INC(tcps_sc_completed);
1422 }
1423 }
1424
1425 /*
1426 * Given a LISTEN socket and an inbound SYN request, add
1427 * this to the syn cache, and send back a segment:
1428 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1429 * to the source.
1430 *
1431 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1432 * Doing so would require that we hold onto the data and deliver it
1433 * to the application. However, if we are the target of a SYN-flood
1434 * DoS attack, an attacker could send data which would eventually
1435 * consume all available buffer space if it were ACKed. By not ACKing
1436 * the data, we avoid this DoS scenario.
1437 *
1438 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1439 * cookie is processed and a new socket is created. In this case, any data
1440 * accompanying the SYN will be queued to the socket by tcp_input() and will
1441 * be ACKed either when the application sends response data or the delayed
1442 * ACK timer expires, whichever comes first.
1443 */
1444 int
syncache_add(struct in_conninfo * inc,struct tcpopt * to,struct tcphdr * th,struct inpcb * inp,struct socket ** lsop,struct mbuf * m,void * tod,void * todctx,uint8_t iptos)1445 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1446 struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1447 void *todctx, uint8_t iptos)
1448 {
1449 struct tcpcb *tp;
1450 struct socket *so;
1451 struct syncache *sc = NULL;
1452 struct syncache_head *sch;
1453 struct mbuf *ipopts = NULL;
1454 u_int ltflags;
1455 int win, ip_ttl, ip_tos;
1456 char *s;
1457 int rv = 0;
1458 #ifdef INET6
1459 int autoflowlabel = 0;
1460 #endif
1461 #ifdef MAC
1462 struct label *maclabel;
1463 #endif
1464 struct syncache scs;
1465 struct ucred *cred;
1466 uint64_t tfo_response_cookie;
1467 unsigned int *tfo_pending = NULL;
1468 int tfo_cookie_valid = 0;
1469 int tfo_response_cookie_valid = 0;
1470 bool locked;
1471
1472 INP_WLOCK_ASSERT(inp); /* listen socket */
1473 KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1474 ("%s: unexpected tcp flags", __func__));
1475
1476 /*
1477 * Combine all so/tp operations very early to drop the INP lock as
1478 * soon as possible.
1479 */
1480 so = *lsop;
1481 KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1482 tp = sototcpcb(so);
1483 cred = crhold(so->so_cred);
1484
1485 #ifdef INET6
1486 if (inc->inc_flags & INC_ISIPV6) {
1487 if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
1488 autoflowlabel = 1;
1489 }
1490 ip_ttl = in6_selecthlim(inp, NULL);
1491 if ((inp->in6p_outputopts == NULL) ||
1492 (inp->in6p_outputopts->ip6po_tclass == -1)) {
1493 ip_tos = 0;
1494 } else {
1495 ip_tos = inp->in6p_outputopts->ip6po_tclass;
1496 }
1497 }
1498 #endif
1499 #if defined(INET6) && defined(INET)
1500 else
1501 #endif
1502 #ifdef INET
1503 {
1504 ip_ttl = inp->inp_ip_ttl;
1505 ip_tos = inp->inp_ip_tos;
1506 }
1507 #endif
1508 win = so->sol_sbrcv_hiwat;
1509 ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1510
1511 if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1512 (tp->t_tfo_pending != NULL) &&
1513 (to->to_flags & TOF_FASTOPEN)) {
1514 /*
1515 * Limit the number of pending TFO connections to
1516 * approximately half of the queue limit. This prevents TFO
1517 * SYN floods from starving the service by filling the
1518 * listen queue with bogus TFO connections.
1519 */
1520 if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1521 (so->sol_qlimit / 2)) {
1522 int result;
1523
1524 result = tcp_fastopen_check_cookie(inc,
1525 to->to_tfo_cookie, to->to_tfo_len,
1526 &tfo_response_cookie);
1527 tfo_cookie_valid = (result > 0);
1528 tfo_response_cookie_valid = (result >= 0);
1529 }
1530
1531 /*
1532 * Remember the TFO pending counter as it will have to be
1533 * decremented below if we don't make it to syncache_tfo_expand().
1534 */
1535 tfo_pending = tp->t_tfo_pending;
1536 }
1537
1538 /* By the time we drop the lock these should no longer be used. */
1539 so = NULL;
1540 tp = NULL;
1541
1542 #ifdef MAC
1543 if (mac_syncache_init(&maclabel) != 0) {
1544 INP_WUNLOCK(inp);
1545 goto done;
1546 } else
1547 mac_syncache_create(maclabel, inp);
1548 #endif
1549 if (!tfo_cookie_valid)
1550 INP_WUNLOCK(inp);
1551
1552 /*
1553 * Remember the IP options, if any.
1554 */
1555 #ifdef INET6
1556 if (!(inc->inc_flags & INC_ISIPV6))
1557 #endif
1558 #ifdef INET
1559 ipopts = (m) ? ip_srcroute(m) : NULL;
1560 #else
1561 ipopts = NULL;
1562 #endif
1563
1564 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1565 /*
1566 * If listening socket requested TCP digests, check that received
1567 * SYN has signature and it is correct. If signature doesn't match
1568 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1569 */
1570 if (ltflags & TF_SIGNATURE) {
1571 if ((to->to_flags & TOF_SIGNATURE) == 0) {
1572 TCPSTAT_INC(tcps_sig_err_nosigopt);
1573 goto done;
1574 }
1575 if (!TCPMD5_ENABLED() ||
1576 TCPMD5_INPUT(m, th, to->to_signature) != 0)
1577 goto done;
1578 }
1579 #endif /* TCP_SIGNATURE */
1580 /*
1581 * See if we already have an entry for this connection.
1582 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1583 *
1584 * XXX: should the syncache be re-initialized with the contents
1585 * of the new SYN here (which may have different options?)
1586 *
1587 * XXX: We do not check the sequence number to see if this is a
1588 * real retransmit or a new connection attempt. The question is
1589 * how to handle such a case; either ignore it as spoofed, or
1590 * drop the current entry and create a new one?
1591 */
1592 if (syncache_cookiesonly()) {
1593 sc = NULL;
1594 sch = syncache_hashbucket(inc);
1595 locked = false;
1596 } else {
1597 sc = syncache_lookup(inc, &sch); /* returns locked sch */
1598 locked = true;
1599 SCH_LOCK_ASSERT(sch);
1600 }
1601 if (sc != NULL) {
1602 if (tfo_cookie_valid)
1603 INP_WUNLOCK(inp);
1604 TCPSTAT_INC(tcps_sc_dupsyn);
1605 if (ipopts) {
1606 /*
1607 * If we were remembering a previous source route,
1608 * forget it and use the new one we've been given.
1609 */
1610 if (sc->sc_ipopts)
1611 (void) m_free(sc->sc_ipopts);
1612 sc->sc_ipopts = ipopts;
1613 }
1614 /*
1615 * Update timestamp if present.
1616 */
1617 if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1618 sc->sc_tsreflect = to->to_tsval;
1619 else
1620 sc->sc_flags &= ~SCF_TIMESTAMP;
1621 /*
1622 * Disable ECN if needed.
1623 */
1624 if ((sc->sc_flags & SCF_ECN) &&
1625 ((th->th_flags & (TH_ECE|TH_CWR)) != (TH_ECE|TH_CWR))) {
1626 sc->sc_flags &= ~SCF_ECN;
1627 }
1628 #ifdef MAC
1629 /*
1630 * Since we have already unconditionally allocated label
1631 * storage, free it up. The syncache entry will already
1632 * have an initialized label we can use.
1633 */
1634 mac_syncache_destroy(&maclabel);
1635 #endif
1636 TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1637 /* Retransmit SYN|ACK and reset retransmit count. */
1638 if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1639 log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1640 "resetting timer and retransmitting SYN|ACK\n",
1641 s, __func__);
1642 free(s, M_TCPLOG);
1643 }
1644 if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1645 sc->sc_rxmits = 0;
1646 syncache_timeout(sc, sch, 1);
1647 TCPSTAT_INC(tcps_sndacks);
1648 TCPSTAT_INC(tcps_sndtotal);
1649 }
1650 SCH_UNLOCK(sch);
1651 goto donenoprobe;
1652 }
1653
1654 if (tfo_cookie_valid) {
1655 bzero(&scs, sizeof(scs));
1656 sc = &scs;
1657 goto skip_alloc;
1658 }
1659
1660 /*
1661 * Skip allocating a syncache entry if we are just going to discard
1662 * it later.
1663 */
1664 if (!locked) {
1665 bzero(&scs, sizeof(scs));
1666 sc = &scs;
1667 } else
1668 sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1669 if (sc == NULL) {
1670 /*
1671 * The zone allocator couldn't provide more entries.
1672 * Treat this as if the cache was full; drop the oldest
1673 * entry and insert the new one.
1674 */
1675 TCPSTAT_INC(tcps_sc_zonefail);
1676 if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1677 sch->sch_last_overflow = time_uptime;
1678 syncache_drop(sc, sch);
1679 syncache_pause(inc);
1680 }
1681 sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1682 if (sc == NULL) {
1683 if (V_tcp_syncookies) {
1684 bzero(&scs, sizeof(scs));
1685 sc = &scs;
1686 } else {
1687 KASSERT(locked,
1688 ("%s: bucket unexpectedly unlocked",
1689 __func__));
1690 SCH_UNLOCK(sch);
1691 if (ipopts)
1692 (void) m_free(ipopts);
1693 goto done;
1694 }
1695 }
1696 }
1697
1698 skip_alloc:
1699 if (!tfo_cookie_valid && tfo_response_cookie_valid)
1700 sc->sc_tfo_cookie = &tfo_response_cookie;
1701
1702 /*
1703 * Fill in the syncache values.
1704 */
1705 #ifdef MAC
1706 sc->sc_label = maclabel;
1707 #endif
1708 sc->sc_cred = cred;
1709 cred = NULL;
1710 sc->sc_ipopts = ipopts;
1711 bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1712 sc->sc_ip_tos = ip_tos;
1713 sc->sc_ip_ttl = ip_ttl;
1714 #ifdef TCP_OFFLOAD
1715 sc->sc_tod = tod;
1716 sc->sc_todctx = todctx;
1717 #endif
1718 sc->sc_irs = th->th_seq;
1719 sc->sc_flags = 0;
1720 sc->sc_flowlabel = 0;
1721
1722 /*
1723 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1724 * win was derived from socket earlier in the function.
1725 */
1726 win = imax(win, 0);
1727 win = imin(win, TCP_MAXWIN);
1728 sc->sc_wnd = win;
1729
1730 if (V_tcp_do_rfc1323) {
1731 /*
1732 * A timestamp received in a SYN makes
1733 * it ok to send timestamp requests and replies.
1734 */
1735 if (to->to_flags & TOF_TS) {
1736 sc->sc_tsreflect = to->to_tsval;
1737 sc->sc_flags |= SCF_TIMESTAMP;
1738 sc->sc_tsoff = tcp_new_ts_offset(inc);
1739 }
1740 if (to->to_flags & TOF_SCALE) {
1741 int wscale = 0;
1742
1743 /*
1744 * Pick the smallest possible scaling factor that
1745 * will still allow us to scale up to sb_max, aka
1746 * kern.ipc.maxsockbuf.
1747 *
1748 * We do this because there are broken firewalls that
1749 * will corrupt the window scale option, leading to
1750 * the other endpoint believing that our advertised
1751 * window is unscaled. At scale factors larger than
1752 * 5 the unscaled window will drop below 1500 bytes,
1753 * leading to serious problems when traversing these
1754 * broken firewalls.
1755 *
1756 * With the default maxsockbuf of 256K, a scale factor
1757 * of 3 will be chosen by this algorithm. Those who
1758 * choose a larger maxsockbuf should watch out
1759 * for the compatibility problems mentioned above.
1760 *
1761 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1762 * or <SYN,ACK>) segment itself is never scaled.
1763 */
1764 while (wscale < TCP_MAX_WINSHIFT &&
1765 (TCP_MAXWIN << wscale) < sb_max)
1766 wscale++;
1767 sc->sc_requested_r_scale = wscale;
1768 sc->sc_requested_s_scale = to->to_wscale;
1769 sc->sc_flags |= SCF_WINSCALE;
1770 }
1771 }
1772 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1773 /*
1774 * If listening socket requested TCP digests, flag this in the
1775 * syncache so that syncache_respond() will do the right thing
1776 * with the SYN+ACK.
1777 */
1778 if (ltflags & TF_SIGNATURE)
1779 sc->sc_flags |= SCF_SIGNATURE;
1780 #endif /* TCP_SIGNATURE */
1781 if (to->to_flags & TOF_SACKPERM)
1782 sc->sc_flags |= SCF_SACK;
1783 if (to->to_flags & TOF_MSS)
1784 sc->sc_peer_mss = to->to_mss; /* peer mss may be zero */
1785 if (ltflags & TF_NOOPT)
1786 sc->sc_flags |= SCF_NOOPT;
1787 if (((th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) &&
1788 V_tcp_do_ecn)
1789 sc->sc_flags |= SCF_ECN;
1790
1791 if (V_tcp_syncookies)
1792 sc->sc_iss = syncookie_generate(sch, sc);
1793 else
1794 sc->sc_iss = arc4random();
1795 #ifdef INET6
1796 if (autoflowlabel) {
1797 if (V_tcp_syncookies)
1798 sc->sc_flowlabel = sc->sc_iss;
1799 else
1800 sc->sc_flowlabel = ip6_randomflowlabel();
1801 sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1802 }
1803 #endif
1804 if (locked)
1805 SCH_UNLOCK(sch);
1806
1807 if (tfo_cookie_valid) {
1808 syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1809 /* INP_WUNLOCK(inp) will be performed by the caller */
1810 rv = 1;
1811 goto tfo_expanded;
1812 }
1813
1814 TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1815 /*
1816 * Do a standard 3-way handshake.
1817 */
1818 if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1819 if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1820 syncache_free(sc);
1821 else if (sc != &scs)
1822 syncache_insert(sc, sch); /* locks and unlocks sch */
1823 TCPSTAT_INC(tcps_sndacks);
1824 TCPSTAT_INC(tcps_sndtotal);
1825 } else {
1826 if (sc != &scs)
1827 syncache_free(sc);
1828 TCPSTAT_INC(tcps_sc_dropped);
1829 }
1830 goto donenoprobe;
1831
1832 done:
1833 TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1834 donenoprobe:
1835 if (m) {
1836 *lsop = NULL;
1837 m_freem(m);
1838 }
1839 /*
1840 * If tfo_pending is not NULL here, then a TFO SYN that did not
1841 * result in a new socket was processed and the associated pending
1842 * counter has not yet been decremented. All such TFO processing paths
1843 * transit this point.
1844 */
1845 if (tfo_pending != NULL)
1846 tcp_fastopen_decrement_counter(tfo_pending);
1847
1848 tfo_expanded:
1849 if (cred != NULL)
1850 crfree(cred);
1851 #ifdef MAC
1852 if (sc == &scs)
1853 mac_syncache_destroy(&maclabel);
1854 #endif
1855 return (rv);
1856 }
1857
1858 /*
1859 * Send SYN|ACK or ACK to the peer. Either in response to a peer's segment,
1860 * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1861 */
1862 static int
syncache_respond(struct syncache * sc,const struct mbuf * m0,int flags)1863 syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags)
1864 {
1865 struct ip *ip = NULL;
1866 struct mbuf *m;
1867 struct tcphdr *th = NULL;
1868 int optlen, error = 0; /* Make compiler happy */
1869 u_int16_t hlen, tlen, mssopt;
1870 struct tcpopt to;
1871 #ifdef INET6
1872 struct ip6_hdr *ip6 = NULL;
1873 #endif
1874
1875 NET_EPOCH_ASSERT();
1876
1877 hlen =
1878 #ifdef INET6
1879 (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1880 #endif
1881 sizeof(struct ip);
1882 tlen = hlen + sizeof(struct tcphdr);
1883
1884 /* Determine MSS we advertize to other end of connection. */
1885 mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1886
1887 /* XXX: Assume that the entire packet will fit in a header mbuf. */
1888 KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1889 ("syncache: mbuf too small"));
1890
1891 /* Create the IP+TCP header from scratch. */
1892 m = m_gethdr(M_NOWAIT, MT_DATA);
1893 if (m == NULL)
1894 return (ENOBUFS);
1895 #ifdef MAC
1896 mac_syncache_create_mbuf(sc->sc_label, m);
1897 #endif
1898 m->m_data += max_linkhdr;
1899 m->m_len = tlen;
1900 m->m_pkthdr.len = tlen;
1901 m->m_pkthdr.rcvif = NULL;
1902
1903 #ifdef INET6
1904 if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1905 ip6 = mtod(m, struct ip6_hdr *);
1906 ip6->ip6_vfc = IPV6_VERSION;
1907 ip6->ip6_nxt = IPPROTO_TCP;
1908 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1909 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1910 ip6->ip6_plen = htons(tlen - hlen);
1911 /* ip6_hlim is set after checksum */
1912 /* Zero out traffic class and flow label. */
1913 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
1914 ip6->ip6_flow |= sc->sc_flowlabel;
1915 ip6->ip6_flow |= htonl(sc->sc_ip_tos << 20);
1916
1917 th = (struct tcphdr *)(ip6 + 1);
1918 }
1919 #endif
1920 #if defined(INET6) && defined(INET)
1921 else
1922 #endif
1923 #ifdef INET
1924 {
1925 ip = mtod(m, struct ip *);
1926 ip->ip_v = IPVERSION;
1927 ip->ip_hl = sizeof(struct ip) >> 2;
1928 ip->ip_len = htons(tlen);
1929 ip->ip_id = 0;
1930 ip->ip_off = 0;
1931 ip->ip_sum = 0;
1932 ip->ip_p = IPPROTO_TCP;
1933 ip->ip_src = sc->sc_inc.inc_laddr;
1934 ip->ip_dst = sc->sc_inc.inc_faddr;
1935 ip->ip_ttl = sc->sc_ip_ttl;
1936 ip->ip_tos = sc->sc_ip_tos;
1937
1938 /*
1939 * See if we should do MTU discovery. Route lookups are
1940 * expensive, so we will only unset the DF bit if:
1941 *
1942 * 1) path_mtu_discovery is disabled
1943 * 2) the SCF_UNREACH flag has been set
1944 */
1945 if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1946 ip->ip_off |= htons(IP_DF);
1947
1948 th = (struct tcphdr *)(ip + 1);
1949 }
1950 #endif /* INET */
1951 th->th_sport = sc->sc_inc.inc_lport;
1952 th->th_dport = sc->sc_inc.inc_fport;
1953
1954 if (flags & TH_SYN)
1955 th->th_seq = htonl(sc->sc_iss);
1956 else
1957 th->th_seq = htonl(sc->sc_iss + 1);
1958 th->th_ack = htonl(sc->sc_irs + 1);
1959 th->th_off = sizeof(struct tcphdr) >> 2;
1960 th->th_x2 = 0;
1961 th->th_flags = flags;
1962 th->th_win = htons(sc->sc_wnd);
1963 th->th_urp = 0;
1964
1965 if ((flags & TH_SYN) && (sc->sc_flags & SCF_ECN)) {
1966 th->th_flags |= TH_ECE;
1967 TCPSTAT_INC(tcps_ecn_shs);
1968 }
1969
1970 /* Tack on the TCP options. */
1971 if ((sc->sc_flags & SCF_NOOPT) == 0) {
1972 to.to_flags = 0;
1973
1974 if (flags & TH_SYN) {
1975 to.to_mss = mssopt;
1976 to.to_flags = TOF_MSS;
1977 if (sc->sc_flags & SCF_WINSCALE) {
1978 to.to_wscale = sc->sc_requested_r_scale;
1979 to.to_flags |= TOF_SCALE;
1980 }
1981 if (sc->sc_flags & SCF_SACK)
1982 to.to_flags |= TOF_SACKPERM;
1983 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1984 if (sc->sc_flags & SCF_SIGNATURE)
1985 to.to_flags |= TOF_SIGNATURE;
1986 #endif
1987 if (sc->sc_tfo_cookie) {
1988 to.to_flags |= TOF_FASTOPEN;
1989 to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1990 to.to_tfo_cookie = sc->sc_tfo_cookie;
1991 /* don't send cookie again when retransmitting response */
1992 sc->sc_tfo_cookie = NULL;
1993 }
1994 }
1995 if (sc->sc_flags & SCF_TIMESTAMP) {
1996 to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1997 to.to_tsecr = sc->sc_tsreflect;
1998 to.to_flags |= TOF_TS;
1999 }
2000 optlen = tcp_addoptions(&to, (u_char *)(th + 1));
2001
2002 /* Adjust headers by option size. */
2003 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2004 m->m_len += optlen;
2005 m->m_pkthdr.len += optlen;
2006 #ifdef INET6
2007 if (sc->sc_inc.inc_flags & INC_ISIPV6)
2008 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
2009 else
2010 #endif
2011 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
2012 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
2013 if (sc->sc_flags & SCF_SIGNATURE) {
2014 KASSERT(to.to_flags & TOF_SIGNATURE,
2015 ("tcp_addoptions() didn't set tcp_signature"));
2016
2017 /* NOTE: to.to_signature is inside of mbuf */
2018 if (!TCPMD5_ENABLED() ||
2019 TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
2020 m_freem(m);
2021 return (EACCES);
2022 }
2023 }
2024 #endif
2025 } else
2026 optlen = 0;
2027
2028 M_SETFIB(m, sc->sc_inc.inc_fibnum);
2029 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2030 /*
2031 * If we have peer's SYN and it has a flowid, then let's assign it to
2032 * our SYN|ACK. ip6_output() and ip_output() will not assign flowid
2033 * to SYN|ACK due to lack of inp here.
2034 */
2035 if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
2036 m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
2037 M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
2038 }
2039 #ifdef INET6
2040 if (sc->sc_inc.inc_flags & INC_ISIPV6) {
2041 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2042 th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
2043 IPPROTO_TCP, 0);
2044 ip6->ip6_hlim = sc->sc_ip_ttl;
2045 #ifdef TCP_OFFLOAD
2046 if (ADDED_BY_TOE(sc)) {
2047 struct toedev *tod = sc->sc_tod;
2048
2049 error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2050
2051 return (error);
2052 }
2053 #endif
2054 TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
2055 error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2056 }
2057 #endif
2058 #if defined(INET6) && defined(INET)
2059 else
2060 #endif
2061 #ifdef INET
2062 {
2063 m->m_pkthdr.csum_flags = CSUM_TCP;
2064 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2065 htons(tlen + optlen - hlen + IPPROTO_TCP));
2066 #ifdef TCP_OFFLOAD
2067 if (ADDED_BY_TOE(sc)) {
2068 struct toedev *tod = sc->sc_tod;
2069
2070 error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2071
2072 return (error);
2073 }
2074 #endif
2075 TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
2076 error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
2077 }
2078 #endif
2079 return (error);
2080 }
2081
2082 /*
2083 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
2084 * that exceed the capacity of the syncache by avoiding the storage of any
2085 * of the SYNs we receive. Syncookies defend against blind SYN flooding
2086 * attacks where the attacker does not have access to our responses.
2087 *
2088 * Syncookies encode and include all necessary information about the
2089 * connection setup within the SYN|ACK that we send back. That way we
2090 * can avoid keeping any local state until the ACK to our SYN|ACK returns
2091 * (if ever). Normally the syncache and syncookies are running in parallel
2092 * with the latter taking over when the former is exhausted. When matching
2093 * syncache entry is found the syncookie is ignored.
2094 *
2095 * The only reliable information persisting the 3WHS is our initial sequence
2096 * number ISS of 32 bits. Syncookies embed a cryptographically sufficient
2097 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
2098 * of our SYN|ACK. The MAC can be recomputed when the ACK to our SYN|ACK
2099 * returns and signifies a legitimate connection if it matches the ACK.
2100 *
2101 * The available space of 32 bits to store the hash and to encode the SYN
2102 * option information is very tight and we should have at least 24 bits for
2103 * the MAC to keep the number of guesses by blind spoofing reasonably high.
2104 *
2105 * SYN option information we have to encode to fully restore a connection:
2106 * MSS: is imporant to chose an optimal segment size to avoid IP level
2107 * fragmentation along the path. The common MSS values can be encoded
2108 * in a 3-bit table. Uncommon values are captured by the next lower value
2109 * in the table leading to a slight increase in packetization overhead.
2110 * WSCALE: is necessary to allow large windows to be used for high delay-
2111 * bandwidth product links. Not scaling the window when it was initially
2112 * negotiated is bad for performance as lack of scaling further decreases
2113 * the apparent available send window. We only need to encode the WSCALE
2114 * we received from the remote end. Our end can be recalculated at any
2115 * time. The common WSCALE values can be encoded in a 3-bit table.
2116 * Uncommon values are captured by the next lower value in the table
2117 * making us under-estimate the available window size halving our
2118 * theoretically possible maximum throughput for that connection.
2119 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
2120 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
2121 * that are included in all segments on a connection. We enable them when
2122 * the ACK has them.
2123 *
2124 * Security of syncookies and attack vectors:
2125 *
2126 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
2127 * together with the gloabl secret to make it unique per connection attempt.
2128 * Thus any change of any of those parameters results in a different MAC output
2129 * in an unpredictable way unless a collision is encountered. 24 bits of the
2130 * MAC are embedded into the ISS.
2131 *
2132 * To prevent replay attacks two rotating global secrets are updated with a
2133 * new random value every 15 seconds. The life-time of a syncookie is thus
2134 * 15-30 seconds.
2135 *
2136 * Vector 1: Attacking the secret. This requires finding a weakness in the
2137 * MAC itself or the way it is used here. The attacker can do a chosen plain
2138 * text attack by varying and testing the all parameters under his control.
2139 * The strength depends on the size and randomness of the secret, and the
2140 * cryptographic security of the MAC function. Due to the constant updating
2141 * of the secret the attacker has at most 29.999 seconds to find the secret
2142 * and launch spoofed connections. After that he has to start all over again.
2143 *
2144 * Vector 2: Collision attack on the MAC of a single ACK. With a 24 bit MAC
2145 * size an average of 4,823 attempts are required for a 50% chance of success
2146 * to spoof a single syncookie (birthday collision paradox). However the
2147 * attacker is blind and doesn't know if one of his attempts succeeded unless
2148 * he has a side channel to interfere success from. A single connection setup
2149 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
2150 * This many attempts are required for each one blind spoofed connection. For
2151 * every additional spoofed connection he has to launch another N attempts.
2152 * Thus for a sustained rate 100 spoofed connections per second approximately
2153 * 1,800,000 packets per second would have to be sent.
2154 *
2155 * NB: The MAC function should be fast so that it doesn't become a CPU
2156 * exhaustion attack vector itself.
2157 *
2158 * References:
2159 * RFC4987 TCP SYN Flooding Attacks and Common Mitigations
2160 * SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
2161 * http://cr.yp.to/syncookies.html (overview)
2162 * http://cr.yp.to/syncookies/archive (details)
2163 *
2164 *
2165 * Schematic construction of a syncookie enabled Initial Sequence Number:
2166 * 0 1 2 3
2167 * 12345678901234567890123456789012
2168 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2169 *
2170 * x 24 MAC (truncated)
2171 * W 3 Send Window Scale index
2172 * M 3 MSS index
2173 * S 1 SACK permitted
2174 * P 1 Odd/even secret
2175 */
2176
2177 /*
2178 * Distribution and probability of certain MSS values. Those in between are
2179 * rounded down to the next lower one.
2180 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2181 * .2% .3% 5% 7% 7% 20% 15% 45%
2182 */
2183 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2184
2185 /*
2186 * Distribution and probability of certain WSCALE values. We have to map the
2187 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2188 * bits based on prevalence of certain values. Where we don't have an exact
2189 * match for are rounded down to the next lower one letting us under-estimate
2190 * the true available window. At the moment this would happen only for the
2191 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2192 * and window size). The absence of the WSCALE option (no scaling in either
2193 * direction) is encoded with index zero.
2194 * [WSCALE values histograms, Allman, 2012]
2195 * X 10 10 35 5 6 14 10% by host
2196 * X 11 4 5 5 18 49 3% by connections
2197 */
2198 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2199
2200 /*
2201 * Compute the MAC for the SYN cookie. SIPHASH-2-4 is chosen for its speed
2202 * and good cryptographic properties.
2203 */
2204 static uint32_t
syncookie_mac(struct in_conninfo * inc,tcp_seq irs,uint8_t flags,uint8_t * secbits,uintptr_t secmod)2205 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2206 uint8_t *secbits, uintptr_t secmod)
2207 {
2208 SIPHASH_CTX ctx;
2209 uint32_t siphash[2];
2210
2211 SipHash24_Init(&ctx);
2212 SipHash_SetKey(&ctx, secbits);
2213 switch (inc->inc_flags & INC_ISIPV6) {
2214 #ifdef INET
2215 case 0:
2216 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2217 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2218 break;
2219 #endif
2220 #ifdef INET6
2221 case INC_ISIPV6:
2222 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2223 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2224 break;
2225 #endif
2226 }
2227 SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2228 SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2229 SipHash_Update(&ctx, &irs, sizeof(irs));
2230 SipHash_Update(&ctx, &flags, sizeof(flags));
2231 SipHash_Update(&ctx, &secmod, sizeof(secmod));
2232 SipHash_Final((u_int8_t *)&siphash, &ctx);
2233
2234 return (siphash[0] ^ siphash[1]);
2235 }
2236
2237 static tcp_seq
syncookie_generate(struct syncache_head * sch,struct syncache * sc)2238 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2239 {
2240 u_int i, secbit, wscale;
2241 uint32_t iss, hash;
2242 uint8_t *secbits;
2243 union syncookie cookie;
2244
2245 cookie.cookie = 0;
2246
2247 /* Map our computed MSS into the 3-bit index. */
2248 for (i = nitems(tcp_sc_msstab) - 1;
2249 tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2250 i--)
2251 ;
2252 cookie.flags.mss_idx = i;
2253
2254 /*
2255 * Map the send window scale into the 3-bit index but only if
2256 * the wscale option was received.
2257 */
2258 if (sc->sc_flags & SCF_WINSCALE) {
2259 wscale = sc->sc_requested_s_scale;
2260 for (i = nitems(tcp_sc_wstab) - 1;
2261 tcp_sc_wstab[i] > wscale && i > 0;
2262 i--)
2263 ;
2264 cookie.flags.wscale_idx = i;
2265 }
2266
2267 /* Can we do SACK? */
2268 if (sc->sc_flags & SCF_SACK)
2269 cookie.flags.sack_ok = 1;
2270
2271 /* Which of the two secrets to use. */
2272 secbit = V_tcp_syncache.secret.oddeven & 0x1;
2273 cookie.flags.odd_even = secbit;
2274
2275 secbits = V_tcp_syncache.secret.key[secbit];
2276 hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2277 (uintptr_t)sch);
2278
2279 /*
2280 * Put the flags into the hash and XOR them to get better ISS number
2281 * variance. This doesn't enhance the cryptographic strength and is
2282 * done to prevent the 8 cookie bits from showing up directly on the
2283 * wire.
2284 */
2285 iss = hash & ~0xff;
2286 iss |= cookie.cookie ^ (hash >> 24);
2287
2288 TCPSTAT_INC(tcps_sc_sendcookie);
2289 return (iss);
2290 }
2291
2292 static struct syncache *
syncookie_lookup(struct in_conninfo * inc,struct syncache_head * sch,struct syncache * sc,struct tcphdr * th,struct tcpopt * to,struct socket * lso)2293 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2294 struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2295 struct socket *lso)
2296 {
2297 uint32_t hash;
2298 uint8_t *secbits;
2299 tcp_seq ack, seq;
2300 int wnd, wscale = 0;
2301 union syncookie cookie;
2302
2303 /*
2304 * Pull information out of SYN-ACK/ACK and revert sequence number
2305 * advances.
2306 */
2307 ack = th->th_ack - 1;
2308 seq = th->th_seq - 1;
2309
2310 /*
2311 * Unpack the flags containing enough information to restore the
2312 * connection.
2313 */
2314 cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2315
2316 /* Which of the two secrets to use. */
2317 secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even];
2318
2319 hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2320
2321 /* The recomputed hash matches the ACK if this was a genuine cookie. */
2322 if ((ack & ~0xff) != (hash & ~0xff))
2323 return (NULL);
2324
2325 /* Fill in the syncache values. */
2326 sc->sc_flags = 0;
2327 bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2328 sc->sc_ipopts = NULL;
2329
2330 sc->sc_irs = seq;
2331 sc->sc_iss = ack;
2332
2333 switch (inc->inc_flags & INC_ISIPV6) {
2334 #ifdef INET
2335 case 0:
2336 sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2337 sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2338 break;
2339 #endif
2340 #ifdef INET6
2341 case INC_ISIPV6:
2342 if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2343 sc->sc_flowlabel =
2344 htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
2345 break;
2346 #endif
2347 }
2348
2349 sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2350
2351 /* We can simply recompute receive window scale we sent earlier. */
2352 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2353 wscale++;
2354
2355 /* Only use wscale if it was enabled in the orignal SYN. */
2356 if (cookie.flags.wscale_idx > 0) {
2357 sc->sc_requested_r_scale = wscale;
2358 sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2359 sc->sc_flags |= SCF_WINSCALE;
2360 }
2361
2362 wnd = lso->sol_sbrcv_hiwat;
2363 wnd = imax(wnd, 0);
2364 wnd = imin(wnd, TCP_MAXWIN);
2365 sc->sc_wnd = wnd;
2366
2367 if (cookie.flags.sack_ok)
2368 sc->sc_flags |= SCF_SACK;
2369
2370 if (to->to_flags & TOF_TS) {
2371 sc->sc_flags |= SCF_TIMESTAMP;
2372 sc->sc_tsreflect = to->to_tsval;
2373 sc->sc_tsoff = tcp_new_ts_offset(inc);
2374 }
2375
2376 if (to->to_flags & TOF_SIGNATURE)
2377 sc->sc_flags |= SCF_SIGNATURE;
2378
2379 sc->sc_rxmits = 0;
2380
2381 TCPSTAT_INC(tcps_sc_recvcookie);
2382 return (sc);
2383 }
2384
2385 #ifdef INVARIANTS
2386 static int
syncookie_cmp(struct in_conninfo * inc,struct syncache_head * sch,struct syncache * sc,struct tcphdr * th,struct tcpopt * to,struct socket * lso)2387 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2388 struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2389 struct socket *lso)
2390 {
2391 struct syncache scs, *scx;
2392 char *s;
2393
2394 bzero(&scs, sizeof(scs));
2395 scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2396
2397 if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2398 return (0);
2399
2400 if (scx != NULL) {
2401 if (sc->sc_peer_mss != scx->sc_peer_mss)
2402 log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2403 s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2404
2405 if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2406 log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2407 s, __func__, sc->sc_requested_r_scale,
2408 scx->sc_requested_r_scale);
2409
2410 if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2411 log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2412 s, __func__, sc->sc_requested_s_scale,
2413 scx->sc_requested_s_scale);
2414
2415 if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2416 log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2417 }
2418
2419 if (s != NULL)
2420 free(s, M_TCPLOG);
2421 return (0);
2422 }
2423 #endif /* INVARIANTS */
2424
2425 static void
syncookie_reseed(void * arg)2426 syncookie_reseed(void *arg)
2427 {
2428 struct tcp_syncache *sc = arg;
2429 uint8_t *secbits;
2430 int secbit;
2431
2432 /*
2433 * Reseeding the secret doesn't have to be protected by a lock.
2434 * It only must be ensured that the new random values are visible
2435 * to all CPUs in a SMP environment. The atomic with release
2436 * semantics ensures that.
2437 */
2438 secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2439 secbits = sc->secret.key[secbit];
2440 arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2441 atomic_add_rel_int(&sc->secret.oddeven, 1);
2442
2443 /* Reschedule ourself. */
2444 callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2445 }
2446
2447 /*
2448 * We have overflowed a bucket. Let's pause dealing with the syncache.
2449 * This function will increment the bucketoverflow statistics appropriately
2450 * (once per pause when pausing is enabled; otherwise, once per overflow).
2451 */
2452 static void
syncache_pause(struct in_conninfo * inc)2453 syncache_pause(struct in_conninfo *inc)
2454 {
2455 time_t delta;
2456 const char *s;
2457
2458 /* XXX:
2459 * 2. Add sysctl read here so we don't get the benefit of this
2460 * change without the new sysctl.
2461 */
2462
2463 /*
2464 * Try an unlocked read. If we already know that another thread
2465 * has activated the feature, there is no need to proceed.
2466 */
2467 if (V_tcp_syncache.paused)
2468 return;
2469
2470 /* Are cookied enabled? If not, we can't pause. */
2471 if (!V_tcp_syncookies) {
2472 TCPSTAT_INC(tcps_sc_bucketoverflow);
2473 return;
2474 }
2475
2476 /*
2477 * We may be the first thread to find an overflow. Get the lock
2478 * and evaluate if we need to take action.
2479 */
2480 mtx_lock(&V_tcp_syncache.pause_mtx);
2481 if (V_tcp_syncache.paused) {
2482 mtx_unlock(&V_tcp_syncache.pause_mtx);
2483 return;
2484 }
2485
2486 /* Activate protection. */
2487 V_tcp_syncache.paused = true;
2488 TCPSTAT_INC(tcps_sc_bucketoverflow);
2489
2490 /*
2491 * Determine the last backoff time. If we are seeing a re-newed
2492 * attack within that same time after last reactivating the syncache,
2493 * consider it an extension of the same attack.
2494 */
2495 delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff;
2496 if (V_tcp_syncache.pause_until + delta - time_uptime > 0) {
2497 if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) {
2498 delta <<= 1;
2499 V_tcp_syncache.pause_backoff++;
2500 }
2501 } else {
2502 delta = TCP_SYNCACHE_PAUSE_TIME;
2503 V_tcp_syncache.pause_backoff = 0;
2504 }
2505
2506 /* Log a warning, including IP addresses, if able. */
2507 if (inc != NULL)
2508 s = tcp_log_addrs(inc, NULL, NULL, NULL);
2509 else
2510 s = (const char *)NULL;
2511 log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for "
2512 "the next %lld seconds%s%s%s\n", (long long)delta,
2513 (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "",
2514 (s != NULL) ? ")" : "");
2515 free(__DECONST(void *, s), M_TCPLOG);
2516
2517 /* Use the calculated delta to set a new pause time. */
2518 V_tcp_syncache.pause_until = time_uptime + delta;
2519 callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause,
2520 &V_tcp_syncache);
2521 mtx_unlock(&V_tcp_syncache.pause_mtx);
2522 }
2523
2524 /* Evaluate whether we need to unpause. */
2525 static void
syncache_unpause(void * arg)2526 syncache_unpause(void *arg)
2527 {
2528 struct tcp_syncache *sc;
2529 time_t delta;
2530
2531 sc = arg;
2532 mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED);
2533 callout_deactivate(&sc->pause_co);
2534
2535 /*
2536 * Check to make sure we are not running early. If the pause
2537 * time has expired, then deactivate the protection.
2538 */
2539 if ((delta = sc->pause_until - time_uptime) > 0)
2540 callout_schedule(&sc->pause_co, delta * hz);
2541 else
2542 sc->paused = false;
2543 }
2544
2545 /*
2546 * Exports the syncache entries to userland so that netstat can display
2547 * them alongside the other sockets. This function is intended to be
2548 * called only from tcp_pcblist.
2549 *
2550 * Due to concurrency on an active system, the number of pcbs exported
2551 * may have no relation to max_pcbs. max_pcbs merely indicates the
2552 * amount of space the caller allocated for this function to use.
2553 */
2554 int
syncache_pcblist(struct sysctl_req * req)2555 syncache_pcblist(struct sysctl_req *req)
2556 {
2557 struct xtcpcb xt;
2558 struct syncache *sc;
2559 struct syncache_head *sch;
2560 int error, i;
2561
2562 bzero(&xt, sizeof(xt));
2563 xt.xt_len = sizeof(xt);
2564 xt.t_state = TCPS_SYN_RECEIVED;
2565 xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2566 xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2567 xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2568 xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2569
2570 for (i = 0; i < V_tcp_syncache.hashsize; i++) {
2571 sch = &V_tcp_syncache.hashbase[i];
2572 SCH_LOCK(sch);
2573 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2574 if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2575 continue;
2576 if (sc->sc_inc.inc_flags & INC_ISIPV6)
2577 xt.xt_inp.inp_vflag = INP_IPV6;
2578 else
2579 xt.xt_inp.inp_vflag = INP_IPV4;
2580 bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2581 sizeof (struct in_conninfo));
2582 error = SYSCTL_OUT(req, &xt, sizeof xt);
2583 if (error) {
2584 SCH_UNLOCK(sch);
2585 return (0);
2586 }
2587 }
2588 SCH_UNLOCK(sch);
2589 }
2590
2591 return (0);
2592 }
2593