1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 2007-2008,2010
7 * Swinburne University of Technology, Melbourne, Australia.
8 * Copyright (c) 2009-2010 Lawrence Stewart <[email protected]>
9 * Copyright (c) 2010 The FreeBSD Foundation
10 * Copyright (c) 2010-2011 Juniper Networks, Inc.
11 * All rights reserved.
12 *
13 * Portions of this software were developed at the Centre for Advanced Internet
14 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15 * James Healy and David Hayes, made possible in part by a grant from the Cisco
16 * University Research Program Fund at Community Foundation Silicon Valley.
17 *
18 * Portions of this software were developed at the Centre for Advanced
19 * Internet Architectures, Swinburne University of Technology, Melbourne,
20 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21 *
22 * Portions of this software were developed by Robert N. M. Watson under
23 * contract to Juniper Networks, Inc.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. Redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution.
33 * 3. Neither the name of the University nor the names of its contributors
34 * may be used to endorse or promote products derived from this software
35 * without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 * SUCH DAMAGE.
48 *
49 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
50 */
51
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54
55 #include "opt_inet.h"
56 #include "opt_inet6.h"
57 #include "opt_ipsec.h"
58 #include "opt_tcpdebug.h"
59
60 #include <sys/param.h>
61 #include <sys/arb.h>
62 #include <sys/kernel.h>
63 #ifdef TCP_HHOOK
64 #include <sys/hhook.h>
65 #endif
66 #include <sys/malloc.h>
67 #include <sys/mbuf.h>
68 #include <sys/proc.h> /* for proc0 declaration */
69 #include <sys/protosw.h>
70 #include <sys/qmath.h>
71 #include <sys/sdt.h>
72 #include <sys/signalvar.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/sysctl.h>
76 #include <sys/syslog.h>
77 #include <sys/systm.h>
78 #include <sys/stats.h>
79
80 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
81
82 #include <vm/uma.h>
83
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/route.h>
87 #include <net/vnet.h>
88
89 #define TCPSTATES /* for logging */
90
91 #include <netinet/in.h>
92 #include <netinet/in_kdtrace.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
97 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
98 #include <netinet/ip_var.h>
99 #include <netinet/ip_options.h>
100 #include <netinet/ip6.h>
101 #include <netinet/icmp6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet6/nd6.h>
106 #include <netinet/tcp.h>
107 #include <netinet/tcp_fsm.h>
108 #include <netinet/tcp_log_buf.h>
109 #include <netinet/tcp_seq.h>
110 #include <netinet/tcp_timer.h>
111 #include <netinet/tcp_var.h>
112 #include <netinet6/tcp6_var.h>
113 #include <netinet/tcpip.h>
114 #include <netinet/cc/cc.h>
115 #include <netinet/tcp_fastopen.h>
116 #ifdef TCPPCAP
117 #include <netinet/tcp_pcap.h>
118 #endif
119 #include <netinet/tcp_syncache.h>
120 #ifdef TCPDEBUG
121 #include <netinet/tcp_debug.h>
122 #endif /* TCPDEBUG */
123 #ifdef TCP_OFFLOAD
124 #include <netinet/tcp_offload.h>
125 #endif
126
127 #include <netipsec/ipsec_support.h>
128
129 #include <machine/in_cksum.h>
130
131 #include <security/mac/mac_framework.h>
132
133 const int tcprexmtthresh = 3;
134
135 VNET_DEFINE(int, tcp_log_in_vain) = 0;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
137 &VNET_NAME(tcp_log_in_vain), 0,
138 "Log all incoming TCP segments to closed ports");
139
140 VNET_DEFINE(int, blackhole) = 0;
141 #define V_blackhole VNET(blackhole)
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
143 &VNET_NAME(blackhole), 0,
144 "Do not send RST on segments to closed ports");
145
146 VNET_DEFINE(int, tcp_delack_enabled) = 1;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
148 &VNET_NAME(tcp_delack_enabled), 0,
149 "Delay ACK to try and piggyback it onto a data packet");
150
151 VNET_DEFINE(int, drop_synfin) = 0;
152 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
153 &VNET_NAME(drop_synfin), 0,
154 "Drop TCP packets with SYN+FIN set");
155
156 VNET_DEFINE(int, tcp_do_prr_conservative) = 0;
157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr_conservative, CTLFLAG_VNET | CTLFLAG_RW,
158 &VNET_NAME(tcp_do_prr_conservative), 0,
159 "Do conservative Proportional Rate Reduction");
160
161 VNET_DEFINE(int, tcp_do_prr) = 1;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr, CTLFLAG_VNET | CTLFLAG_RW,
163 &VNET_NAME(tcp_do_prr), 1,
164 "Enable Proportional Rate Reduction per RFC 6937");
165
166 VNET_DEFINE(int, tcp_do_newcwv) = 0;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
168 &VNET_NAME(tcp_do_newcwv), 0,
169 "Enable New Congestion Window Validation per RFC7661");
170
171 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
173 &VNET_NAME(tcp_do_rfc6675_pipe), 0,
174 "Use calculated pipe/in-flight bytes per RFC 6675");
175
176 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
178 &VNET_NAME(tcp_do_rfc3042), 0,
179 "Enable RFC 3042 (Limited Transmit)");
180
181 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
183 &VNET_NAME(tcp_do_rfc3390), 0,
184 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
185
186 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
188 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
189 "Slow-start flight size (initial congestion window) in number of segments");
190
191 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
193 &VNET_NAME(tcp_do_rfc3465), 0,
194 "Enable RFC 3465 (Appropriate Byte Counting)");
195
196 VNET_DEFINE(int, tcp_abc_l_var) = 2;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
198 &VNET_NAME(tcp_abc_l_var), 2,
199 "Cap the max cwnd increment during slow-start to this number of segments");
200
201 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn,
202 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
203 "TCP ECN");
204
205 VNET_DEFINE(int, tcp_do_ecn) = 2;
206 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
207 &VNET_NAME(tcp_do_ecn), 0,
208 "TCP ECN support");
209
210 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
211 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
212 &VNET_NAME(tcp_ecn_maxretries), 0,
213 "Max retries before giving up on ECN");
214
215 VNET_DEFINE(int, tcp_insecure_syn) = 0;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
217 &VNET_NAME(tcp_insecure_syn), 0,
218 "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
219
220 VNET_DEFINE(int, tcp_insecure_rst) = 0;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
222 &VNET_NAME(tcp_insecure_rst), 0,
223 "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
224
225 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
226 #define V_tcp_recvspace VNET(tcp_recvspace)
227 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
228 &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
229
230 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
232 &VNET_NAME(tcp_do_autorcvbuf), 0,
233 "Enable automatic receive buffer sizing");
234
235 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
236 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
237 &VNET_NAME(tcp_autorcvbuf_max), 0,
238 "Max size of automatic receive buffer");
239
240 VNET_DEFINE(struct inpcbhead, tcb);
241 #define tcb6 tcb /* for KAME src sync over BSD*'s */
242 VNET_DEFINE(struct inpcbinfo, tcbinfo);
243
244 /*
245 * TCP statistics are stored in an array of counter(9)s, which size matches
246 * size of struct tcpstat. TCP running connection count is a regular array.
247 */
248 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
249 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
250 tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
251 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
252 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
253 CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
254 "TCP connection counts by TCP state");
255
256 static void
tcp_vnet_init(const void * unused)257 tcp_vnet_init(const void *unused)
258 {
259
260 COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
261 VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
262 }
263 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
264 tcp_vnet_init, NULL);
265
266 #ifdef VIMAGE
267 static void
tcp_vnet_uninit(const void * unused)268 tcp_vnet_uninit(const void *unused)
269 {
270
271 COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
272 VNET_PCPUSTAT_FREE(tcpstat);
273 }
274 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
275 tcp_vnet_uninit, NULL);
276 #endif /* VIMAGE */
277
278 /*
279 * Kernel module interface for updating tcpstat. The first argument is an index
280 * into tcpstat treated as an array.
281 */
282 void
kmod_tcpstat_add(int statnum,int val)283 kmod_tcpstat_add(int statnum, int val)
284 {
285
286 counter_u64_add(VNET(tcpstat)[statnum], val);
287 }
288
289 #ifdef TCP_HHOOK
290 /*
291 * Wrapper for the TCP established input helper hook.
292 */
293 void
hhook_run_tcp_est_in(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to)294 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
295 {
296 struct tcp_hhook_data hhook_data;
297
298 if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
299 hhook_data.tp = tp;
300 hhook_data.th = th;
301 hhook_data.to = to;
302
303 hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
304 tp->osd);
305 }
306 }
307 #endif
308
309 /*
310 * CC wrapper hook functions
311 */
312 void
cc_ack_received(struct tcpcb * tp,struct tcphdr * th,uint16_t nsegs,uint16_t type)313 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
314 uint16_t type)
315 {
316 #ifdef STATS
317 int32_t gput;
318 #endif
319
320 INP_WLOCK_ASSERT(tp->t_inpcb);
321
322 tp->ccv->nsegs = nsegs;
323 tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
324 if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
325 (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
326 (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
327 tp->ccv->flags |= CCF_CWND_LIMITED;
328 else
329 tp->ccv->flags &= ~CCF_CWND_LIMITED;
330
331 if (type == CC_ACK) {
332 #ifdef STATS
333 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
334 ((int32_t)tp->snd_cwnd) - tp->snd_wnd);
335 if (!IN_RECOVERY(tp->t_flags))
336 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
337 tp->ccv->bytes_this_ack / (tcp_maxseg(tp) * nsegs));
338 if ((tp->t_flags & TF_GPUTINPROG) &&
339 SEQ_GEQ(th->th_ack, tp->gput_ack)) {
340 /*
341 * Compute goodput in bits per millisecond.
342 */
343 gput = (((int64_t)(th->th_ack - tp->gput_seq)) << 3) /
344 max(1, tcp_ts_getticks() - tp->gput_ts);
345 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
346 gput);
347 /*
348 * XXXLAS: This is a temporary hack, and should be
349 * chained off VOI_TCP_GPUT when stats(9) grows an API
350 * to deal with chained VOIs.
351 */
352 if (tp->t_stats_gput_prev > 0)
353 stats_voi_update_abs_s32(tp->t_stats,
354 VOI_TCP_GPUT_ND,
355 ((gput - tp->t_stats_gput_prev) * 100) /
356 tp->t_stats_gput_prev);
357 tp->t_flags &= ~TF_GPUTINPROG;
358 tp->t_stats_gput_prev = gput;
359 }
360 #endif /* STATS */
361 if (tp->snd_cwnd > tp->snd_ssthresh) {
362 tp->t_bytes_acked += tp->ccv->bytes_this_ack;
363 if (tp->t_bytes_acked >= tp->snd_cwnd) {
364 tp->t_bytes_acked -= tp->snd_cwnd;
365 tp->ccv->flags |= CCF_ABC_SENTAWND;
366 }
367 } else {
368 tp->ccv->flags &= ~CCF_ABC_SENTAWND;
369 tp->t_bytes_acked = 0;
370 }
371 }
372
373 if (CC_ALGO(tp)->ack_received != NULL) {
374 /* XXXLAS: Find a way to live without this */
375 tp->ccv->curack = th->th_ack;
376 CC_ALGO(tp)->ack_received(tp->ccv, type);
377 }
378 #ifdef STATS
379 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
380 #endif
381 }
382
383 void
cc_conn_init(struct tcpcb * tp)384 cc_conn_init(struct tcpcb *tp)
385 {
386 struct hc_metrics_lite metrics;
387 struct inpcb *inp = tp->t_inpcb;
388 u_int maxseg;
389 int rtt;
390
391 INP_WLOCK_ASSERT(tp->t_inpcb);
392
393 tcp_hc_get(&inp->inp_inc, &metrics);
394 maxseg = tcp_maxseg(tp);
395
396 if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
397 tp->t_srtt = rtt;
398 tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
399 TCPSTAT_INC(tcps_usedrtt);
400 if (metrics.rmx_rttvar) {
401 tp->t_rttvar = metrics.rmx_rttvar;
402 TCPSTAT_INC(tcps_usedrttvar);
403 } else {
404 /* default variation is +- 1 rtt */
405 tp->t_rttvar =
406 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
407 }
408 TCPT_RANGESET(tp->t_rxtcur,
409 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
410 tp->t_rttmin, TCPTV_REXMTMAX);
411 }
412 if (metrics.rmx_ssthresh) {
413 /*
414 * There's some sort of gateway or interface
415 * buffer limit on the path. Use this to set
416 * the slow start threshold, but set the
417 * threshold to no less than 2*mss.
418 */
419 tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
420 TCPSTAT_INC(tcps_usedssthresh);
421 }
422
423 /*
424 * Set the initial slow-start flight size.
425 *
426 * If a SYN or SYN/ACK was lost and retransmitted, we have to
427 * reduce the initial CWND to one segment as congestion is likely
428 * requiring us to be cautious.
429 */
430 if (tp->snd_cwnd == 1)
431 tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */
432 else
433 tp->snd_cwnd = tcp_compute_initwnd(maxseg);
434
435 if (CC_ALGO(tp)->conn_init != NULL)
436 CC_ALGO(tp)->conn_init(tp->ccv);
437 }
438
439 void inline
cc_cong_signal(struct tcpcb * tp,struct tcphdr * th,uint32_t type)440 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
441 {
442 INP_WLOCK_ASSERT(tp->t_inpcb);
443
444 #ifdef STATS
445 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
446 #endif
447
448 switch(type) {
449 case CC_NDUPACK:
450 if (!IN_FASTRECOVERY(tp->t_flags)) {
451 tp->snd_recover = tp->snd_max;
452 if (tp->t_flags2 & TF2_ECN_PERMIT)
453 tp->t_flags2 |= TF2_ECN_SND_CWR;
454 }
455 break;
456 case CC_ECN:
457 if (!IN_CONGRECOVERY(tp->t_flags) ||
458 /*
459 * Allow ECN reaction on ACK to CWR, if
460 * that data segment was also CE marked.
461 */
462 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
463 EXIT_CONGRECOVERY(tp->t_flags);
464 TCPSTAT_INC(tcps_ecn_rcwnd);
465 tp->snd_recover = tp->snd_max + 1;
466 if (tp->t_flags2 & TF2_ECN_PERMIT)
467 tp->t_flags2 |= TF2_ECN_SND_CWR;
468 }
469 break;
470 case CC_RTO:
471 tp->t_dupacks = 0;
472 tp->t_bytes_acked = 0;
473 EXIT_RECOVERY(tp->t_flags);
474 if (tp->t_flags2 & TF2_ECN_PERMIT)
475 tp->t_flags2 |= TF2_ECN_SND_CWR;
476 break;
477 case CC_RTO_ERR:
478 TCPSTAT_INC(tcps_sndrexmitbad);
479 /* RTO was unnecessary, so reset everything. */
480 tp->snd_cwnd = tp->snd_cwnd_prev;
481 tp->snd_ssthresh = tp->snd_ssthresh_prev;
482 tp->snd_recover = tp->snd_recover_prev;
483 if (tp->t_flags & TF_WASFRECOVERY)
484 ENTER_FASTRECOVERY(tp->t_flags);
485 if (tp->t_flags & TF_WASCRECOVERY)
486 ENTER_CONGRECOVERY(tp->t_flags);
487 tp->snd_nxt = tp->snd_max;
488 tp->t_flags &= ~TF_PREVVALID;
489 tp->t_badrxtwin = 0;
490 break;
491 }
492
493 if (CC_ALGO(tp)->cong_signal != NULL) {
494 if (th != NULL)
495 tp->ccv->curack = th->th_ack;
496 CC_ALGO(tp)->cong_signal(tp->ccv, type);
497 }
498 }
499
500 void inline
cc_post_recovery(struct tcpcb * tp,struct tcphdr * th)501 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
502 {
503 INP_WLOCK_ASSERT(tp->t_inpcb);
504
505 /* XXXLAS: KASSERT that we're in recovery? */
506
507 if (CC_ALGO(tp)->post_recovery != NULL) {
508 tp->ccv->curack = th->th_ack;
509 CC_ALGO(tp)->post_recovery(tp->ccv);
510 }
511 /* XXXLAS: EXIT_RECOVERY ? */
512 tp->t_bytes_acked = 0;
513 tp->sackhint.prr_out = 0;
514 }
515
516 /*
517 * Indicate whether this ack should be delayed. We can delay the ack if
518 * following conditions are met:
519 * - There is no delayed ack timer in progress.
520 * - Our last ack wasn't a 0-sized window. We never want to delay
521 * the ack that opens up a 0-sized window.
522 * - LRO wasn't used for this segment. We make sure by checking that the
523 * segment size is not larger than the MSS.
524 */
525 #define DELAY_ACK(tp, tlen) \
526 ((!tcp_timer_active(tp, TT_DELACK) && \
527 (tp->t_flags & TF_RXWIN0SENT) == 0) && \
528 (tlen <= tp->t_maxseg) && \
529 (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
530
531 void inline
cc_ecnpkt_handler(struct tcpcb * tp,struct tcphdr * th,uint8_t iptos)532 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
533 {
534 INP_WLOCK_ASSERT(tp->t_inpcb);
535
536 if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
537 switch (iptos & IPTOS_ECN_MASK) {
538 case IPTOS_ECN_CE:
539 tp->ccv->flags |= CCF_IPHDR_CE;
540 break;
541 case IPTOS_ECN_ECT0:
542 /* FALLTHROUGH */
543 case IPTOS_ECN_ECT1:
544 /* FALLTHROUGH */
545 case IPTOS_ECN_NOTECT:
546 tp->ccv->flags &= ~CCF_IPHDR_CE;
547 break;
548 }
549
550 if (th->th_flags & TH_CWR)
551 tp->ccv->flags |= CCF_TCPHDR_CWR;
552 else
553 tp->ccv->flags &= ~CCF_TCPHDR_CWR;
554
555 CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
556
557 if (tp->ccv->flags & CCF_ACKNOW) {
558 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
559 tp->t_flags |= TF_ACKNOW;
560 }
561 }
562 }
563
564 /*
565 * TCP input handling is split into multiple parts:
566 * tcp6_input is a thin wrapper around tcp_input for the extended
567 * ip6_protox[] call format in ip6_input
568 * tcp_input handles primary segment validation, inpcb lookup and
569 * SYN processing on listen sockets
570 * tcp_do_segment processes the ACK and text of the segment for
571 * establishing, established and closing connections
572 */
573 #ifdef INET6
574 int
tcp6_input(struct mbuf ** mp,int * offp,int proto)575 tcp6_input(struct mbuf **mp, int *offp, int proto)
576 {
577 struct mbuf *m;
578 struct in6_ifaddr *ia6;
579 struct ip6_hdr *ip6;
580
581 m = *mp;
582 if (m->m_len < *offp + sizeof(struct tcphdr)) {
583 m = m_pullup(m, *offp + sizeof(struct tcphdr));
584 if (m == NULL) {
585 *mp = m;
586 TCPSTAT_INC(tcps_rcvshort);
587 return (IPPROTO_DONE);
588 }
589 }
590
591 /*
592 * draft-itojun-ipv6-tcp-to-anycast
593 * better place to put this in?
594 */
595 ip6 = mtod(m, struct ip6_hdr *);
596 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
597 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
598 ifa_free(&ia6->ia_ifa);
599 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
600 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
601 *mp = NULL;
602 return (IPPROTO_DONE);
603 }
604 if (ia6)
605 ifa_free(&ia6->ia_ifa);
606
607 *mp = m;
608 return (tcp_input(mp, offp, proto));
609 }
610 #endif /* INET6 */
611
612 int
tcp_input(struct mbuf ** mp,int * offp,int proto)613 tcp_input(struct mbuf **mp, int *offp, int proto)
614 {
615 struct mbuf *m = *mp;
616 struct tcphdr *th = NULL;
617 struct ip *ip = NULL;
618 struct inpcb *inp = NULL;
619 struct tcpcb *tp = NULL;
620 struct socket *so = NULL;
621 u_char *optp = NULL;
622 int off0;
623 int optlen = 0;
624 #ifdef INET
625 int len;
626 uint8_t ipttl;
627 #endif
628 int tlen = 0, off;
629 int drop_hdrlen;
630 int thflags;
631 int rstreason = 0; /* For badport_bandlim accounting purposes */
632 uint8_t iptos;
633 struct m_tag *fwd_tag = NULL;
634 #ifdef INET6
635 struct ip6_hdr *ip6 = NULL;
636 int isipv6;
637 #else
638 const void *ip6 = NULL;
639 #endif /* INET6 */
640 struct tcpopt to; /* options in this segment */
641 char *s = NULL; /* address and port logging */
642 #ifdef TCPDEBUG
643 /*
644 * The size of tcp_saveipgen must be the size of the max ip header,
645 * now IPv6.
646 */
647 u_char tcp_saveipgen[IP6_HDR_LEN];
648 struct tcphdr tcp_savetcp;
649 short ostate = 0;
650 #endif
651
652 NET_EPOCH_ASSERT();
653
654 #ifdef INET6
655 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
656 #endif
657
658 off0 = *offp;
659 m = *mp;
660 *mp = NULL;
661 to.to_flags = 0;
662 TCPSTAT_INC(tcps_rcvtotal);
663
664 #ifdef INET6
665 if (isipv6) {
666 ip6 = mtod(m, struct ip6_hdr *);
667 th = (struct tcphdr *)((caddr_t)ip6 + off0);
668 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
669 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
670 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
671 th->th_sum = m->m_pkthdr.csum_data;
672 else
673 th->th_sum = in6_cksum_pseudo(ip6, tlen,
674 IPPROTO_TCP, m->m_pkthdr.csum_data);
675 th->th_sum ^= 0xffff;
676 } else
677 th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
678 if (th->th_sum) {
679 TCPSTAT_INC(tcps_rcvbadsum);
680 goto drop;
681 }
682
683 /*
684 * Be proactive about unspecified IPv6 address in source.
685 * As we use all-zero to indicate unbounded/unconnected pcb,
686 * unspecified IPv6 address can be used to confuse us.
687 *
688 * Note that packets with unspecified IPv6 destination is
689 * already dropped in ip6_input.
690 */
691 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
692 /* XXX stat */
693 goto drop;
694 }
695 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
696 }
697 #endif
698 #if defined(INET) && defined(INET6)
699 else
700 #endif
701 #ifdef INET
702 {
703 /*
704 * Get IP and TCP header together in first mbuf.
705 * Note: IP leaves IP header in first mbuf.
706 */
707 if (off0 > sizeof (struct ip)) {
708 ip_stripoptions(m);
709 off0 = sizeof(struct ip);
710 }
711 if (m->m_len < sizeof (struct tcpiphdr)) {
712 if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
713 == NULL) {
714 TCPSTAT_INC(tcps_rcvshort);
715 return (IPPROTO_DONE);
716 }
717 }
718 ip = mtod(m, struct ip *);
719 th = (struct tcphdr *)((caddr_t)ip + off0);
720 tlen = ntohs(ip->ip_len) - off0;
721
722 iptos = ip->ip_tos;
723 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
724 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
725 th->th_sum = m->m_pkthdr.csum_data;
726 else
727 th->th_sum = in_pseudo(ip->ip_src.s_addr,
728 ip->ip_dst.s_addr,
729 htonl(m->m_pkthdr.csum_data + tlen +
730 IPPROTO_TCP));
731 th->th_sum ^= 0xffff;
732 } else {
733 struct ipovly *ipov = (struct ipovly *)ip;
734
735 /*
736 * Checksum extended TCP header and data.
737 */
738 len = off0 + tlen;
739 ipttl = ip->ip_ttl;
740 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
741 ipov->ih_len = htons(tlen);
742 th->th_sum = in_cksum(m, len);
743 /* Reset length for SDT probes. */
744 ip->ip_len = htons(len);
745 /* Reset TOS bits */
746 ip->ip_tos = iptos;
747 /* Re-initialization for later version check */
748 ip->ip_ttl = ipttl;
749 ip->ip_v = IPVERSION;
750 ip->ip_hl = off0 >> 2;
751 }
752
753 if (th->th_sum) {
754 TCPSTAT_INC(tcps_rcvbadsum);
755 goto drop;
756 }
757 }
758 #endif /* INET */
759
760 /*
761 * Check that TCP offset makes sense,
762 * pull out TCP options and adjust length. XXX
763 */
764 off = th->th_off << 2;
765 if (off < sizeof (struct tcphdr) || off > tlen) {
766 TCPSTAT_INC(tcps_rcvbadoff);
767 goto drop;
768 }
769 tlen -= off; /* tlen is used instead of ti->ti_len */
770 if (off > sizeof (struct tcphdr)) {
771 #ifdef INET6
772 if (isipv6) {
773 if (m->m_len < off0 + off) {
774 m = m_pullup(m, off0 + off);
775 if (m == NULL) {
776 TCPSTAT_INC(tcps_rcvshort);
777 return (IPPROTO_DONE);
778 }
779 }
780 ip6 = mtod(m, struct ip6_hdr *);
781 th = (struct tcphdr *)((caddr_t)ip6 + off0);
782 }
783 #endif
784 #if defined(INET) && defined(INET6)
785 else
786 #endif
787 #ifdef INET
788 {
789 if (m->m_len < sizeof(struct ip) + off) {
790 if ((m = m_pullup(m, sizeof (struct ip) + off))
791 == NULL) {
792 TCPSTAT_INC(tcps_rcvshort);
793 return (IPPROTO_DONE);
794 }
795 ip = mtod(m, struct ip *);
796 th = (struct tcphdr *)((caddr_t)ip + off0);
797 }
798 }
799 #endif
800 optlen = off - sizeof (struct tcphdr);
801 optp = (u_char *)(th + 1);
802 }
803 thflags = th->th_flags;
804
805 /*
806 * Convert TCP protocol specific fields to host format.
807 */
808 tcp_fields_to_host(th);
809
810 /*
811 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
812 */
813 drop_hdrlen = off0 + off;
814
815 /*
816 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
817 */
818 if (
819 #ifdef INET6
820 (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
821 #ifdef INET
822 || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
823 #endif
824 #endif
825 #if defined(INET) && !defined(INET6)
826 (m->m_flags & M_IP_NEXTHOP)
827 #endif
828 )
829 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
830
831 findpcb:
832 #ifdef INET6
833 if (isipv6 && fwd_tag != NULL) {
834 struct sockaddr_in6 *next_hop6;
835
836 next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
837 /*
838 * Transparently forwarded. Pretend to be the destination.
839 * Already got one like this?
840 */
841 inp = in6_pcblookup_mbuf(&V_tcbinfo,
842 &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
843 INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
844 if (!inp) {
845 /*
846 * It's new. Try to find the ambushing socket.
847 * Because we've rewritten the destination address,
848 * any hardware-generated hash is ignored.
849 */
850 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
851 th->th_sport, &next_hop6->sin6_addr,
852 next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
853 th->th_dport, INPLOOKUP_WILDCARD |
854 INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
855 }
856 } else if (isipv6) {
857 inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
858 th->th_sport, &ip6->ip6_dst, th->th_dport,
859 INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
860 m->m_pkthdr.rcvif, m);
861 }
862 #endif /* INET6 */
863 #if defined(INET6) && defined(INET)
864 else
865 #endif
866 #ifdef INET
867 if (fwd_tag != NULL) {
868 struct sockaddr_in *next_hop;
869
870 next_hop = (struct sockaddr_in *)(fwd_tag+1);
871 /*
872 * Transparently forwarded. Pretend to be the destination.
873 * already got one like this?
874 */
875 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
876 ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
877 m->m_pkthdr.rcvif, m);
878 if (!inp) {
879 /*
880 * It's new. Try to find the ambushing socket.
881 * Because we've rewritten the destination address,
882 * any hardware-generated hash is ignored.
883 */
884 inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
885 th->th_sport, next_hop->sin_addr,
886 next_hop->sin_port ? ntohs(next_hop->sin_port) :
887 th->th_dport, INPLOOKUP_WILDCARD |
888 INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
889 }
890 } else
891 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
892 th->th_sport, ip->ip_dst, th->th_dport,
893 INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
894 m->m_pkthdr.rcvif, m);
895 #endif /* INET */
896
897 /*
898 * If the INPCB does not exist then all data in the incoming
899 * segment is discarded and an appropriate RST is sent back.
900 * XXX MRT Send RST using which routing table?
901 */
902 if (inp == NULL) {
903 /*
904 * Log communication attempts to ports that are not
905 * in use.
906 */
907 if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
908 V_tcp_log_in_vain == 2) {
909 if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
910 log(LOG_INFO, "%s; %s: Connection attempt "
911 "to closed port\n", s, __func__);
912 }
913 /*
914 * When blackholing do not respond with a RST but
915 * completely ignore the segment and drop it.
916 */
917 if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
918 V_blackhole == 2)
919 goto dropunlock;
920
921 rstreason = BANDLIM_RST_CLOSEDPORT;
922 goto dropwithreset;
923 }
924 INP_WLOCK_ASSERT(inp);
925 /*
926 * While waiting for inp lock during the lookup, another thread
927 * can have dropped the inpcb, in which case we need to loop back
928 * and try to find a new inpcb to deliver to.
929 */
930 if (inp->inp_flags & INP_DROPPED) {
931 INP_WUNLOCK(inp);
932 inp = NULL;
933 goto findpcb;
934 }
935 if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
936 (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
937 ((inp->inp_socket == NULL) ||
938 (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
939 inp->inp_flowid = m->m_pkthdr.flowid;
940 inp->inp_flowtype = M_HASHTYPE_GET(m);
941 }
942 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
943 #ifdef INET6
944 if (isipv6 && IPSEC_ENABLED(ipv6) &&
945 IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
946 goto dropunlock;
947 }
948 #ifdef INET
949 else
950 #endif
951 #endif /* INET6 */
952 #ifdef INET
953 if (IPSEC_ENABLED(ipv4) &&
954 IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
955 goto dropunlock;
956 }
957 #endif /* INET */
958 #endif /* IPSEC */
959
960 /*
961 * Check the minimum TTL for socket.
962 */
963 if (inp->inp_ip_minttl != 0) {
964 #ifdef INET6
965 if (isipv6) {
966 if (inp->inp_ip_minttl > ip6->ip6_hlim)
967 goto dropunlock;
968 } else
969 #endif
970 if (inp->inp_ip_minttl > ip->ip_ttl)
971 goto dropunlock;
972 }
973
974 /*
975 * A previous connection in TIMEWAIT state is supposed to catch stray
976 * or duplicate segments arriving late. If this segment was a
977 * legitimate new connection attempt, the old INPCB gets removed and
978 * we can try again to find a listening socket.
979 *
980 * At this point, due to earlier optimism, we may hold only an inpcb
981 * lock, and not the inpcbinfo write lock. If so, we need to try to
982 * acquire it, or if that fails, acquire a reference on the inpcb,
983 * drop all locks, acquire a global write lock, and then re-acquire
984 * the inpcb lock. We may at that point discover that another thread
985 * has tried to free the inpcb, in which case we need to loop back
986 * and try to find a new inpcb to deliver to.
987 *
988 * XXXRW: It may be time to rethink timewait locking.
989 */
990 if (inp->inp_flags & INP_TIMEWAIT) {
991 tcp_dooptions(&to, optp, optlen,
992 (thflags & TH_SYN) ? TO_SYN : 0);
993 /*
994 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
995 */
996 if (tcp_twcheck(inp, &to, th, m, tlen))
997 goto findpcb;
998 return (IPPROTO_DONE);
999 }
1000 /*
1001 * The TCPCB may no longer exist if the connection is winding
1002 * down or it is in the CLOSED state. Either way we drop the
1003 * segment and send an appropriate response.
1004 */
1005 tp = intotcpcb(inp);
1006 if (tp == NULL || tp->t_state == TCPS_CLOSED) {
1007 rstreason = BANDLIM_RST_CLOSEDPORT;
1008 goto dropwithreset;
1009 }
1010
1011 #ifdef TCP_OFFLOAD
1012 if (tp->t_flags & TF_TOE) {
1013 tcp_offload_input(tp, m);
1014 m = NULL; /* consumed by the TOE driver */
1015 goto dropunlock;
1016 }
1017 #endif
1018
1019 #ifdef MAC
1020 INP_WLOCK_ASSERT(inp);
1021 if (mac_inpcb_check_deliver(inp, m))
1022 goto dropunlock;
1023 #endif
1024 so = inp->inp_socket;
1025 KASSERT(so != NULL, ("%s: so == NULL", __func__));
1026 #ifdef TCPDEBUG
1027 if (so->so_options & SO_DEBUG) {
1028 ostate = tp->t_state;
1029 #ifdef INET6
1030 if (isipv6) {
1031 bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1032 } else
1033 #endif
1034 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1035 tcp_savetcp = *th;
1036 }
1037 #endif /* TCPDEBUG */
1038 /*
1039 * When the socket is accepting connections (the INPCB is in LISTEN
1040 * state) we look into the SYN cache if this is a new connection
1041 * attempt or the completion of a previous one.
1042 */
1043 KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1044 ("%s: so accepting but tp %p not listening", __func__, tp));
1045 if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1046 struct in_conninfo inc;
1047
1048 bzero(&inc, sizeof(inc));
1049 #ifdef INET6
1050 if (isipv6) {
1051 inc.inc_flags |= INC_ISIPV6;
1052 if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1053 inc.inc_flags |= INC_IPV6MINMTU;
1054 inc.inc6_faddr = ip6->ip6_src;
1055 inc.inc6_laddr = ip6->ip6_dst;
1056 } else
1057 #endif
1058 {
1059 inc.inc_faddr = ip->ip_src;
1060 inc.inc_laddr = ip->ip_dst;
1061 }
1062 inc.inc_fport = th->th_sport;
1063 inc.inc_lport = th->th_dport;
1064 inc.inc_fibnum = so->so_fibnum;
1065
1066 /*
1067 * Check for an existing connection attempt in syncache if
1068 * the flag is only ACK. A successful lookup creates a new
1069 * socket appended to the listen queue in SYN_RECEIVED state.
1070 */
1071 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1072 /*
1073 * Parse the TCP options here because
1074 * syncookies need access to the reflected
1075 * timestamp.
1076 */
1077 tcp_dooptions(&to, optp, optlen, 0);
1078 /*
1079 * NB: syncache_expand() doesn't unlock
1080 * inp and tcpinfo locks.
1081 */
1082 rstreason = syncache_expand(&inc, &to, th, &so, m);
1083 if (rstreason < 0) {
1084 /*
1085 * A failing TCP MD5 signature comparison
1086 * must result in the segment being dropped
1087 * and must not produce any response back
1088 * to the sender.
1089 */
1090 goto dropunlock;
1091 } else if (rstreason == 0) {
1092 /*
1093 * No syncache entry or ACK was not
1094 * for our SYN/ACK. Send a RST.
1095 * NB: syncache did its own logging
1096 * of the failure cause.
1097 */
1098 rstreason = BANDLIM_RST_OPENPORT;
1099 goto dropwithreset;
1100 }
1101 tfo_socket_result:
1102 if (so == NULL) {
1103 /*
1104 * We completed the 3-way handshake
1105 * but could not allocate a socket
1106 * either due to memory shortage,
1107 * listen queue length limits or
1108 * global socket limits. Send RST
1109 * or wait and have the remote end
1110 * retransmit the ACK for another
1111 * try.
1112 */
1113 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1114 log(LOG_DEBUG, "%s; %s: Listen socket: "
1115 "Socket allocation failed due to "
1116 "limits or memory shortage, %s\n",
1117 s, __func__,
1118 V_tcp_sc_rst_sock_fail ?
1119 "sending RST" : "try again");
1120 if (V_tcp_sc_rst_sock_fail) {
1121 rstreason = BANDLIM_UNLIMITED;
1122 goto dropwithreset;
1123 } else
1124 goto dropunlock;
1125 }
1126 /*
1127 * Socket is created in state SYN_RECEIVED.
1128 * Unlock the listen socket, lock the newly
1129 * created socket and update the tp variable.
1130 */
1131 INP_WUNLOCK(inp); /* listen socket */
1132 inp = sotoinpcb(so);
1133 /*
1134 * New connection inpcb is already locked by
1135 * syncache_expand().
1136 */
1137 INP_WLOCK_ASSERT(inp);
1138 tp = intotcpcb(inp);
1139 KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1140 ("%s: ", __func__));
1141 /*
1142 * Process the segment and the data it
1143 * contains. tcp_do_segment() consumes
1144 * the mbuf chain and unlocks the inpcb.
1145 */
1146 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1147 tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1148 iptos);
1149 return (IPPROTO_DONE);
1150 }
1151 /*
1152 * Segment flag validation for new connection attempts:
1153 *
1154 * Our (SYN|ACK) response was rejected.
1155 * Check with syncache and remove entry to prevent
1156 * retransmits.
1157 *
1158 * NB: syncache_chkrst does its own logging of failure
1159 * causes.
1160 */
1161 if (thflags & TH_RST) {
1162 syncache_chkrst(&inc, th, m);
1163 goto dropunlock;
1164 }
1165 /*
1166 * We can't do anything without SYN.
1167 */
1168 if ((thflags & TH_SYN) == 0) {
1169 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1170 log(LOG_DEBUG, "%s; %s: Listen socket: "
1171 "SYN is missing, segment ignored\n",
1172 s, __func__);
1173 TCPSTAT_INC(tcps_badsyn);
1174 goto dropunlock;
1175 }
1176 /*
1177 * (SYN|ACK) is bogus on a listen socket.
1178 */
1179 if (thflags & TH_ACK) {
1180 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1181 log(LOG_DEBUG, "%s; %s: Listen socket: "
1182 "SYN|ACK invalid, segment rejected\n",
1183 s, __func__);
1184 syncache_badack(&inc); /* XXX: Not needed! */
1185 TCPSTAT_INC(tcps_badsyn);
1186 rstreason = BANDLIM_RST_OPENPORT;
1187 goto dropwithreset;
1188 }
1189 /*
1190 * If the drop_synfin option is enabled, drop all
1191 * segments with both the SYN and FIN bits set.
1192 * This prevents e.g. nmap from identifying the
1193 * TCP/IP stack.
1194 * XXX: Poor reasoning. nmap has other methods
1195 * and is constantly refining its stack detection
1196 * strategies.
1197 * XXX: This is a violation of the TCP specification
1198 * and was used by RFC1644.
1199 */
1200 if ((thflags & TH_FIN) && V_drop_synfin) {
1201 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1202 log(LOG_DEBUG, "%s; %s: Listen socket: "
1203 "SYN|FIN segment ignored (based on "
1204 "sysctl setting)\n", s, __func__);
1205 TCPSTAT_INC(tcps_badsyn);
1206 goto dropunlock;
1207 }
1208 /*
1209 * Segment's flags are (SYN) or (SYN|FIN).
1210 *
1211 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1212 * as they do not affect the state of the TCP FSM.
1213 * The data pointed to by TH_URG and th_urp is ignored.
1214 */
1215 KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1216 ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1217 KASSERT(thflags & (TH_SYN),
1218 ("%s: Listen socket: TH_SYN not set", __func__));
1219 #ifdef INET6
1220 /*
1221 * If deprecated address is forbidden,
1222 * we do not accept SYN to deprecated interface
1223 * address to prevent any new inbound connection from
1224 * getting established.
1225 * When we do not accept SYN, we send a TCP RST,
1226 * with deprecated source address (instead of dropping
1227 * it). We compromise it as it is much better for peer
1228 * to send a RST, and RST will be the final packet
1229 * for the exchange.
1230 *
1231 * If we do not forbid deprecated addresses, we accept
1232 * the SYN packet. RFC2462 does not suggest dropping
1233 * SYN in this case.
1234 * If we decipher RFC2462 5.5.4, it says like this:
1235 * 1. use of deprecated addr with existing
1236 * communication is okay - "SHOULD continue to be
1237 * used"
1238 * 2. use of it with new communication:
1239 * (2a) "SHOULD NOT be used if alternate address
1240 * with sufficient scope is available"
1241 * (2b) nothing mentioned otherwise.
1242 * Here we fall into (2b) case as we have no choice in
1243 * our source address selection - we must obey the peer.
1244 *
1245 * The wording in RFC2462 is confusing, and there are
1246 * multiple description text for deprecated address
1247 * handling - worse, they are not exactly the same.
1248 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1249 */
1250 if (isipv6 && !V_ip6_use_deprecated) {
1251 struct in6_ifaddr *ia6;
1252
1253 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1254 if (ia6 != NULL &&
1255 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1256 ifa_free(&ia6->ia_ifa);
1257 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1258 log(LOG_DEBUG, "%s; %s: Listen socket: "
1259 "Connection attempt to deprecated "
1260 "IPv6 address rejected\n",
1261 s, __func__);
1262 rstreason = BANDLIM_RST_OPENPORT;
1263 goto dropwithreset;
1264 }
1265 if (ia6)
1266 ifa_free(&ia6->ia_ifa);
1267 }
1268 #endif /* INET6 */
1269 /*
1270 * Basic sanity checks on incoming SYN requests:
1271 * Don't respond if the destination is a link layer
1272 * broadcast according to RFC1122 4.2.3.10, p. 104.
1273 * If it is from this socket it must be forged.
1274 * Don't respond if the source or destination is a
1275 * global or subnet broad- or multicast address.
1276 * Note that it is quite possible to receive unicast
1277 * link-layer packets with a broadcast IP address. Use
1278 * in_broadcast() to find them.
1279 */
1280 if (m->m_flags & (M_BCAST|M_MCAST)) {
1281 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1282 log(LOG_DEBUG, "%s; %s: Listen socket: "
1283 "Connection attempt from broad- or multicast "
1284 "link layer address ignored\n", s, __func__);
1285 goto dropunlock;
1286 }
1287 #ifdef INET6
1288 if (isipv6) {
1289 if (th->th_dport == th->th_sport &&
1290 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1291 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1292 log(LOG_DEBUG, "%s; %s: Listen socket: "
1293 "Connection attempt to/from self "
1294 "ignored\n", s, __func__);
1295 goto dropunlock;
1296 }
1297 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1298 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1299 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1300 log(LOG_DEBUG, "%s; %s: Listen socket: "
1301 "Connection attempt from/to multicast "
1302 "address ignored\n", s, __func__);
1303 goto dropunlock;
1304 }
1305 }
1306 #endif
1307 #if defined(INET) && defined(INET6)
1308 else
1309 #endif
1310 #ifdef INET
1311 {
1312 if (th->th_dport == th->th_sport &&
1313 ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1314 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1315 log(LOG_DEBUG, "%s; %s: Listen socket: "
1316 "Connection attempt from/to self "
1317 "ignored\n", s, __func__);
1318 goto dropunlock;
1319 }
1320 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1321 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1322 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1323 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1324 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1325 log(LOG_DEBUG, "%s; %s: Listen socket: "
1326 "Connection attempt from/to broad- "
1327 "or multicast address ignored\n",
1328 s, __func__);
1329 goto dropunlock;
1330 }
1331 }
1332 #endif
1333 /*
1334 * SYN appears to be valid. Create compressed TCP state
1335 * for syncache.
1336 */
1337 #ifdef TCPDEBUG
1338 if (so->so_options & SO_DEBUG)
1339 tcp_trace(TA_INPUT, ostate, tp,
1340 (void *)tcp_saveipgen, &tcp_savetcp, 0);
1341 #endif
1342 TCP_PROBE3(debug__input, tp, th, m);
1343 tcp_dooptions(&to, optp, optlen, TO_SYN);
1344 if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL, iptos))
1345 goto tfo_socket_result;
1346
1347 /*
1348 * Entry added to syncache and mbuf consumed.
1349 * Only the listen socket is unlocked by syncache_add().
1350 */
1351 INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1352 return (IPPROTO_DONE);
1353 } else if (tp->t_state == TCPS_LISTEN) {
1354 /*
1355 * When a listen socket is torn down the SO_ACCEPTCONN
1356 * flag is removed first while connections are drained
1357 * from the accept queue in a unlock/lock cycle of the
1358 * ACCEPT_LOCK, opening a race condition allowing a SYN
1359 * attempt go through unhandled.
1360 */
1361 goto dropunlock;
1362 }
1363 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1364 if (tp->t_flags & TF_SIGNATURE) {
1365 tcp_dooptions(&to, optp, optlen, thflags);
1366 if ((to.to_flags & TOF_SIGNATURE) == 0) {
1367 TCPSTAT_INC(tcps_sig_err_nosigopt);
1368 goto dropunlock;
1369 }
1370 if (!TCPMD5_ENABLED() ||
1371 TCPMD5_INPUT(m, th, to.to_signature) != 0)
1372 goto dropunlock;
1373 }
1374 #endif
1375 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1376
1377 /*
1378 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1379 * state. tcp_do_segment() always consumes the mbuf chain, unlocks
1380 * the inpcb, and unlocks pcbinfo.
1381 */
1382 tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos);
1383 return (IPPROTO_DONE);
1384
1385 dropwithreset:
1386 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1387
1388 if (inp != NULL) {
1389 tcp_dropwithreset(m, th, tp, tlen, rstreason);
1390 INP_WUNLOCK(inp);
1391 } else
1392 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1393 m = NULL; /* mbuf chain got consumed. */
1394 goto drop;
1395
1396 dropunlock:
1397 if (m != NULL)
1398 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1399
1400 if (inp != NULL)
1401 INP_WUNLOCK(inp);
1402
1403 drop:
1404 INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1405 if (s != NULL)
1406 free(s, M_TCPLOG);
1407 if (m != NULL)
1408 m_freem(m);
1409 return (IPPROTO_DONE);
1410 }
1411
1412 /*
1413 * Automatic sizing of receive socket buffer. Often the send
1414 * buffer size is not optimally adjusted to the actual network
1415 * conditions at hand (delay bandwidth product). Setting the
1416 * buffer size too small limits throughput on links with high
1417 * bandwidth and high delay (eg. trans-continental/oceanic links).
1418 *
1419 * On the receive side the socket buffer memory is only rarely
1420 * used to any significant extent. This allows us to be much
1421 * more aggressive in scaling the receive socket buffer. For
1422 * the case that the buffer space is actually used to a large
1423 * extent and we run out of kernel memory we can simply drop
1424 * the new segments; TCP on the sender will just retransmit it
1425 * later. Setting the buffer size too big may only consume too
1426 * much kernel memory if the application doesn't read() from
1427 * the socket or packet loss or reordering makes use of the
1428 * reassembly queue.
1429 *
1430 * The criteria to step up the receive buffer one notch are:
1431 * 1. Application has not set receive buffer size with
1432 * SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1433 * 2. the number of bytes received during 1/2 of an sRTT
1434 * is at least 3/8 of the current socket buffer size.
1435 * 3. receive buffer size has not hit maximal automatic size;
1436 *
1437 * If all of the criteria are met we increaset the socket buffer
1438 * by a 1/2 (bounded by the max). This allows us to keep ahead
1439 * of slow-start but also makes it so our peer never gets limited
1440 * by our rwnd which we then open up causing a burst.
1441 *
1442 * This algorithm does two steps per RTT at most and only if
1443 * we receive a bulk stream w/o packet losses or reorderings.
1444 * Shrinking the buffer during idle times is not necessary as
1445 * it doesn't consume any memory when idle.
1446 *
1447 * TODO: Only step up if the application is actually serving
1448 * the buffer to better manage the socket buffer resources.
1449 */
1450 int
tcp_autorcvbuf(struct mbuf * m,struct tcphdr * th,struct socket * so,struct tcpcb * tp,int tlen)1451 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1452 struct tcpcb *tp, int tlen)
1453 {
1454 int newsize = 0;
1455
1456 if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1457 tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1458 TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1459 ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1460 if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1461 so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1462 newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1463 }
1464 TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1465
1466 /* Start over with next RTT. */
1467 tp->rfbuf_ts = 0;
1468 tp->rfbuf_cnt = 0;
1469 } else {
1470 tp->rfbuf_cnt += tlen; /* add up */
1471 }
1472 return (newsize);
1473 }
1474
1475 void
tcp_handle_wakeup(struct tcpcb * tp,struct socket * so)1476 tcp_handle_wakeup(struct tcpcb *tp, struct socket *so)
1477 {
1478 /*
1479 * Since tp might be gone if the session entered
1480 * the TIME_WAIT state before coming here, we need
1481 * to check if the socket is still connected.
1482 */
1483 if ((so->so_state & SS_ISCONNECTED) == 0)
1484 return;
1485 INP_LOCK_ASSERT(tp->t_inpcb);
1486 if (tp->t_flags & TF_WAKESOR) {
1487 tp->t_flags &= ~TF_WAKESOR;
1488 SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
1489 sorwakeup(so);
1490 }
1491 if (tp->t_flags & TF_WAKESOW) {
1492 tp->t_flags &= ~TF_WAKESOW;
1493 SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
1494 sowwakeup(so);
1495 }
1496 }
1497
1498 void
tcp_do_segment(struct mbuf * m,struct tcphdr * th,struct socket * so,struct tcpcb * tp,int drop_hdrlen,int tlen,uint8_t iptos)1499 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1500 struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos)
1501 {
1502 int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1503 int rstreason, todrop, win, incforsyn = 0;
1504 uint32_t tiwin;
1505 uint16_t nsegs;
1506 char *s;
1507 struct in_conninfo *inc;
1508 struct mbuf *mfree;
1509 struct tcpopt to;
1510 int tfo_syn;
1511
1512 #ifdef TCPDEBUG
1513 /*
1514 * The size of tcp_saveipgen must be the size of the max ip header,
1515 * now IPv6.
1516 */
1517 u_char tcp_saveipgen[IP6_HDR_LEN];
1518 struct tcphdr tcp_savetcp;
1519 short ostate = 0;
1520 #endif
1521 thflags = th->th_flags;
1522 inc = &tp->t_inpcb->inp_inc;
1523 tp->sackhint.last_sack_ack = 0;
1524 sack_changed = 0;
1525 nsegs = max(1, m->m_pkthdr.lro_nsegs);
1526
1527 NET_EPOCH_ASSERT();
1528 INP_WLOCK_ASSERT(tp->t_inpcb);
1529 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1530 __func__));
1531 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1532 __func__));
1533
1534 #ifdef TCPPCAP
1535 /* Save segment, if requested. */
1536 tcp_pcap_add(th, m, &(tp->t_inpkts));
1537 #endif
1538 TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1539 tlen, NULL, true);
1540
1541 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1542 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1543 log(LOG_DEBUG, "%s; %s: "
1544 "SYN|FIN segment ignored (based on "
1545 "sysctl setting)\n", s, __func__);
1546 free(s, M_TCPLOG);
1547 }
1548 goto drop;
1549 }
1550
1551 /*
1552 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1553 * check SEQ.ACK first.
1554 */
1555 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1556 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1557 rstreason = BANDLIM_UNLIMITED;
1558 goto dropwithreset;
1559 }
1560
1561 /*
1562 * Segment received on connection.
1563 * Reset idle time and keep-alive timer.
1564 * XXX: This should be done after segment
1565 * validation to ignore broken/spoofed segs.
1566 */
1567 tp->t_rcvtime = ticks;
1568
1569 /*
1570 * Scale up the window into a 32-bit value.
1571 * For the SYN_SENT state the scale is zero.
1572 */
1573 tiwin = th->th_win << tp->snd_scale;
1574 #ifdef STATS
1575 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
1576 #endif
1577
1578 /*
1579 * TCP ECN processing.
1580 */
1581 if (tp->t_flags2 & TF2_ECN_PERMIT) {
1582 if (thflags & TH_CWR) {
1583 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
1584 tp->t_flags |= TF_ACKNOW;
1585 }
1586 switch (iptos & IPTOS_ECN_MASK) {
1587 case IPTOS_ECN_CE:
1588 tp->t_flags2 |= TF2_ECN_SND_ECE;
1589 TCPSTAT_INC(tcps_ecn_ce);
1590 break;
1591 case IPTOS_ECN_ECT0:
1592 TCPSTAT_INC(tcps_ecn_ect0);
1593 break;
1594 case IPTOS_ECN_ECT1:
1595 TCPSTAT_INC(tcps_ecn_ect1);
1596 break;
1597 }
1598
1599 /* Process a packet differently from RFC3168. */
1600 cc_ecnpkt_handler(tp, th, iptos);
1601
1602 /* Congestion experienced. */
1603 if (thflags & TH_ECE) {
1604 cc_cong_signal(tp, th, CC_ECN);
1605 }
1606 }
1607
1608 /*
1609 * Parse options on any incoming segment.
1610 */
1611 tcp_dooptions(&to, (u_char *)(th + 1),
1612 (th->th_off << 2) - sizeof(struct tcphdr),
1613 (thflags & TH_SYN) ? TO_SYN : 0);
1614
1615 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1616 if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1617 (to.to_flags & TOF_SIGNATURE) == 0) {
1618 TCPSTAT_INC(tcps_sig_err_sigopt);
1619 /* XXX: should drop? */
1620 }
1621 #endif
1622 /*
1623 * If echoed timestamp is later than the current time,
1624 * fall back to non RFC1323 RTT calculation. Normalize
1625 * timestamp if syncookies were used when this connection
1626 * was established.
1627 */
1628 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1629 to.to_tsecr -= tp->ts_offset;
1630 if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1631 to.to_tsecr = 0;
1632 else if (tp->t_flags & TF_PREVVALID &&
1633 tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
1634 cc_cong_signal(tp, th, CC_RTO_ERR);
1635 }
1636 /*
1637 * Process options only when we get SYN/ACK back. The SYN case
1638 * for incoming connections is handled in tcp_syncache.
1639 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1640 * or <SYN,ACK>) segment itself is never scaled.
1641 * XXX this is traditional behavior, may need to be cleaned up.
1642 */
1643 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1644 /* Handle parallel SYN for ECN */
1645 if (!(thflags & TH_ACK) &&
1646 ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) &&
1647 ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) {
1648 tp->t_flags2 |= TF2_ECN_PERMIT;
1649 tp->t_flags2 |= TF2_ECN_SND_ECE;
1650 TCPSTAT_INC(tcps_ecn_shs);
1651 }
1652 if ((to.to_flags & TOF_SCALE) &&
1653 (tp->t_flags & TF_REQ_SCALE)) {
1654 tp->t_flags |= TF_RCVD_SCALE;
1655 tp->snd_scale = to.to_wscale;
1656 } else
1657 tp->t_flags &= ~TF_REQ_SCALE;
1658 /*
1659 * Initial send window. It will be updated with
1660 * the next incoming segment to the scaled value.
1661 */
1662 tp->snd_wnd = th->th_win;
1663 if ((to.to_flags & TOF_TS) &&
1664 (tp->t_flags & TF_REQ_TSTMP)) {
1665 tp->t_flags |= TF_RCVD_TSTMP;
1666 tp->ts_recent = to.to_tsval;
1667 tp->ts_recent_age = tcp_ts_getticks();
1668 } else
1669 tp->t_flags &= ~TF_REQ_TSTMP;
1670 if (to.to_flags & TOF_MSS)
1671 tcp_mss(tp, to.to_mss);
1672 if ((tp->t_flags & TF_SACK_PERMIT) &&
1673 (to.to_flags & TOF_SACKPERM) == 0)
1674 tp->t_flags &= ~TF_SACK_PERMIT;
1675 if (IS_FASTOPEN(tp->t_flags)) {
1676 if (to.to_flags & TOF_FASTOPEN) {
1677 uint16_t mss;
1678
1679 if (to.to_flags & TOF_MSS)
1680 mss = to.to_mss;
1681 else
1682 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
1683 mss = TCP6_MSS;
1684 else
1685 mss = TCP_MSS;
1686 tcp_fastopen_update_cache(tp, mss,
1687 to.to_tfo_len, to.to_tfo_cookie);
1688 } else
1689 tcp_fastopen_disable_path(tp);
1690 }
1691 }
1692
1693 /*
1694 * If timestamps were negotiated during SYN/ACK and a
1695 * segment without a timestamp is received, silently drop
1696 * the segment, unless it is a RST segment or missing timestamps are
1697 * tolerated.
1698 * See section 3.2 of RFC 7323.
1699 */
1700 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1701 if (((thflags & TH_RST) != 0) || V_tcp_tolerate_missing_ts) {
1702 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1703 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1704 "segment processed normally\n",
1705 s, __func__);
1706 free(s, M_TCPLOG);
1707 }
1708 } else {
1709 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1710 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1711 "segment silently dropped\n", s, __func__);
1712 free(s, M_TCPLOG);
1713 }
1714 goto drop;
1715 }
1716 }
1717 /*
1718 * If timestamps were not negotiated during SYN/ACK and a
1719 * segment with a timestamp is received, ignore the
1720 * timestamp and process the packet normally.
1721 * See section 3.2 of RFC 7323.
1722 */
1723 if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1724 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1725 log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1726 "segment processed normally\n", s, __func__);
1727 free(s, M_TCPLOG);
1728 }
1729 }
1730
1731 /*
1732 * Header prediction: check for the two common cases
1733 * of a uni-directional data xfer. If the packet has
1734 * no control flags, is in-sequence, the window didn't
1735 * change and we're not retransmitting, it's a
1736 * candidate. If the length is zero and the ack moved
1737 * forward, we're the sender side of the xfer. Just
1738 * free the data acked & wake any higher level process
1739 * that was blocked waiting for space. If the length
1740 * is non-zero and the ack didn't move, we're the
1741 * receiver side. If we're getting packets in-order
1742 * (the reassembly queue is empty), add the data to
1743 * the socket buffer and note that we need a delayed ack.
1744 * Make sure that the hidden state-flags are also off.
1745 * Since we check for TCPS_ESTABLISHED first, it can only
1746 * be TH_NEEDSYN.
1747 */
1748 if (tp->t_state == TCPS_ESTABLISHED &&
1749 th->th_seq == tp->rcv_nxt &&
1750 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1751 tp->snd_nxt == tp->snd_max &&
1752 tiwin && tiwin == tp->snd_wnd &&
1753 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1754 SEGQ_EMPTY(tp) &&
1755 ((to.to_flags & TOF_TS) == 0 ||
1756 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1757 /*
1758 * If last ACK falls within this segment's sequence numbers,
1759 * record the timestamp.
1760 * NOTE that the test is modified according to the latest
1761 * proposal of the [email protected] list (Braden 1993/04/26).
1762 */
1763 if ((to.to_flags & TOF_TS) != 0 &&
1764 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1765 tp->ts_recent_age = tcp_ts_getticks();
1766 tp->ts_recent = to.to_tsval;
1767 }
1768
1769 if (tlen == 0) {
1770 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1771 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1772 !IN_RECOVERY(tp->t_flags) &&
1773 (to.to_flags & TOF_SACK) == 0 &&
1774 TAILQ_EMPTY(&tp->snd_holes)) {
1775 /*
1776 * This is a pure ack for outstanding data.
1777 */
1778 TCPSTAT_INC(tcps_predack);
1779
1780 /*
1781 * "bad retransmit" recovery without timestamps.
1782 */
1783 if ((to.to_flags & TOF_TS) == 0 &&
1784 tp->t_rxtshift == 1 &&
1785 tp->t_flags & TF_PREVVALID &&
1786 (int)(ticks - tp->t_badrxtwin) < 0) {
1787 cc_cong_signal(tp, th, CC_RTO_ERR);
1788 }
1789
1790 /*
1791 * Recalculate the transmit timer / rtt.
1792 *
1793 * Some boxes send broken timestamp replies
1794 * during the SYN+ACK phase, ignore
1795 * timestamps of 0 or we could calculate a
1796 * huge RTT and blow up the retransmit timer.
1797 */
1798 if ((to.to_flags & TOF_TS) != 0 &&
1799 to.to_tsecr) {
1800 uint32_t t;
1801
1802 t = tcp_ts_getticks() - to.to_tsecr;
1803 if (!tp->t_rttlow || tp->t_rttlow > t)
1804 tp->t_rttlow = t;
1805 tcp_xmit_timer(tp,
1806 TCP_TS_TO_TICKS(t) + 1);
1807 } else if (tp->t_rtttime &&
1808 SEQ_GT(th->th_ack, tp->t_rtseq)) {
1809 if (!tp->t_rttlow ||
1810 tp->t_rttlow > ticks - tp->t_rtttime)
1811 tp->t_rttlow = ticks - tp->t_rtttime;
1812 tcp_xmit_timer(tp,
1813 ticks - tp->t_rtttime);
1814 }
1815 acked = BYTES_THIS_ACK(tp, th);
1816
1817 #ifdef TCP_HHOOK
1818 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1819 hhook_run_tcp_est_in(tp, th, &to);
1820 #endif
1821
1822 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1823 TCPSTAT_ADD(tcps_rcvackbyte, acked);
1824 sbdrop(&so->so_snd, acked);
1825 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1826 SEQ_LEQ(th->th_ack, tp->snd_recover))
1827 tp->snd_recover = th->th_ack - 1;
1828
1829 /*
1830 * Let the congestion control algorithm update
1831 * congestion control related information. This
1832 * typically means increasing the congestion
1833 * window.
1834 */
1835 cc_ack_received(tp, th, nsegs, CC_ACK);
1836
1837 tp->snd_una = th->th_ack;
1838 /*
1839 * Pull snd_wl2 up to prevent seq wrap relative
1840 * to th_ack.
1841 */
1842 tp->snd_wl2 = th->th_ack;
1843 tp->t_dupacks = 0;
1844 m_freem(m);
1845
1846 /*
1847 * If all outstanding data are acked, stop
1848 * retransmit timer, otherwise restart timer
1849 * using current (possibly backed-off) value.
1850 * If process is waiting for space,
1851 * wakeup/selwakeup/signal. If data
1852 * are ready to send, let tcp_output
1853 * decide between more output or persist.
1854 */
1855 #ifdef TCPDEBUG
1856 if (so->so_options & SO_DEBUG)
1857 tcp_trace(TA_INPUT, ostate, tp,
1858 (void *)tcp_saveipgen,
1859 &tcp_savetcp, 0);
1860 #endif
1861 TCP_PROBE3(debug__input, tp, th, m);
1862 if (tp->snd_una == tp->snd_max)
1863 tcp_timer_activate(tp, TT_REXMT, 0);
1864 else if (!tcp_timer_active(tp, TT_PERSIST))
1865 tcp_timer_activate(tp, TT_REXMT,
1866 tp->t_rxtcur);
1867 tp->t_flags |= TF_WAKESOW;
1868 if (sbavail(&so->so_snd))
1869 (void) tp->t_fb->tfb_tcp_output(tp);
1870 goto check_delack;
1871 }
1872 } else if (th->th_ack == tp->snd_una &&
1873 tlen <= sbspace(&so->so_rcv)) {
1874 int newsize = 0; /* automatic sockbuf scaling */
1875
1876 /*
1877 * This is a pure, in-sequence data packet with
1878 * nothing on the reassembly queue and we have enough
1879 * buffer space to take it.
1880 */
1881 /* Clean receiver SACK report if present */
1882 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1883 tcp_clean_sackreport(tp);
1884 TCPSTAT_INC(tcps_preddat);
1885 tp->rcv_nxt += tlen;
1886 if (tlen &&
1887 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
1888 (tp->t_fbyte_in == 0)) {
1889 tp->t_fbyte_in = ticks;
1890 if (tp->t_fbyte_in == 0)
1891 tp->t_fbyte_in = 1;
1892 if (tp->t_fbyte_out && tp->t_fbyte_in)
1893 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
1894 }
1895 /*
1896 * Pull snd_wl1 up to prevent seq wrap relative to
1897 * th_seq.
1898 */
1899 tp->snd_wl1 = th->th_seq;
1900 /*
1901 * Pull rcv_up up to prevent seq wrap relative to
1902 * rcv_nxt.
1903 */
1904 tp->rcv_up = tp->rcv_nxt;
1905 TCPSTAT_ADD(tcps_rcvpack, nsegs);
1906 TCPSTAT_ADD(tcps_rcvbyte, tlen);
1907 #ifdef TCPDEBUG
1908 if (so->so_options & SO_DEBUG)
1909 tcp_trace(TA_INPUT, ostate, tp,
1910 (void *)tcp_saveipgen, &tcp_savetcp, 0);
1911 #endif
1912 TCP_PROBE3(debug__input, tp, th, m);
1913
1914 newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1915
1916 /* Add data to socket buffer. */
1917 SOCKBUF_LOCK(&so->so_rcv);
1918 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1919 m_freem(m);
1920 } else {
1921 /*
1922 * Set new socket buffer size.
1923 * Give up when limit is reached.
1924 */
1925 if (newsize)
1926 if (!sbreserve_locked(&so->so_rcv,
1927 newsize, so, NULL))
1928 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1929 m_adj(m, drop_hdrlen); /* delayed header drop */
1930 sbappendstream_locked(&so->so_rcv, m, 0);
1931 }
1932 SOCKBUF_UNLOCK(&so->so_rcv);
1933 tp->t_flags |= TF_WAKESOR;
1934 if (DELAY_ACK(tp, tlen)) {
1935 tp->t_flags |= TF_DELACK;
1936 } else {
1937 tp->t_flags |= TF_ACKNOW;
1938 tp->t_fb->tfb_tcp_output(tp);
1939 }
1940 goto check_delack;
1941 }
1942 }
1943
1944 /*
1945 * Calculate amount of space in receive window,
1946 * and then do TCP input processing.
1947 * Receive window is amount of space in rcv queue,
1948 * but not less than advertised window.
1949 */
1950 win = sbspace(&so->so_rcv);
1951 if (win < 0)
1952 win = 0;
1953 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1954
1955 switch (tp->t_state) {
1956 /*
1957 * If the state is SYN_RECEIVED:
1958 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1959 */
1960 case TCPS_SYN_RECEIVED:
1961 if ((thflags & TH_ACK) &&
1962 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1963 SEQ_GT(th->th_ack, tp->snd_max))) {
1964 rstreason = BANDLIM_RST_OPENPORT;
1965 goto dropwithreset;
1966 }
1967 if (IS_FASTOPEN(tp->t_flags)) {
1968 /*
1969 * When a TFO connection is in SYN_RECEIVED, the
1970 * only valid packets are the initial SYN, a
1971 * retransmit/copy of the initial SYN (possibly with
1972 * a subset of the original data), a valid ACK, a
1973 * FIN, or a RST.
1974 */
1975 if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1976 rstreason = BANDLIM_RST_OPENPORT;
1977 goto dropwithreset;
1978 } else if (thflags & TH_SYN) {
1979 /* non-initial SYN is ignored */
1980 if ((tcp_timer_active(tp, TT_DELACK) ||
1981 tcp_timer_active(tp, TT_REXMT)))
1982 goto drop;
1983 } else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1984 goto drop;
1985 }
1986 }
1987 break;
1988
1989 /*
1990 * If the state is SYN_SENT:
1991 * if seg contains a RST with valid ACK (SEQ.ACK has already
1992 * been verified), then drop the connection.
1993 * if seg contains a RST without an ACK, drop the seg.
1994 * if seg does not contain SYN, then drop the seg.
1995 * Otherwise this is an acceptable SYN segment
1996 * initialize tp->rcv_nxt and tp->irs
1997 * if seg contains ack then advance tp->snd_una
1998 * if seg contains an ECE and ECN support is enabled, the stream
1999 * is ECN capable.
2000 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2001 * arrange for segment to be acked (eventually)
2002 * continue processing rest of data/controls, beginning with URG
2003 */
2004 case TCPS_SYN_SENT:
2005 if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2006 TCP_PROBE5(connect__refused, NULL, tp,
2007 m, tp, th);
2008 tp = tcp_drop(tp, ECONNREFUSED);
2009 }
2010 if (thflags & TH_RST)
2011 goto drop;
2012 if (!(thflags & TH_SYN))
2013 goto drop;
2014
2015 tp->irs = th->th_seq;
2016 tcp_rcvseqinit(tp);
2017 if (thflags & TH_ACK) {
2018 int tfo_partial_ack = 0;
2019
2020 TCPSTAT_INC(tcps_connects);
2021 soisconnected(so);
2022 #ifdef MAC
2023 mac_socketpeer_set_from_mbuf(m, so);
2024 #endif
2025 /* Do window scaling on this connection? */
2026 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2027 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2028 tp->rcv_scale = tp->request_r_scale;
2029 }
2030 tp->rcv_adv += min(tp->rcv_wnd,
2031 TCP_MAXWIN << tp->rcv_scale);
2032 tp->snd_una++; /* SYN is acked */
2033 /*
2034 * If not all the data that was sent in the TFO SYN
2035 * has been acked, resend the remainder right away.
2036 */
2037 if (IS_FASTOPEN(tp->t_flags) &&
2038 (tp->snd_una != tp->snd_max)) {
2039 tp->snd_nxt = th->th_ack;
2040 tfo_partial_ack = 1;
2041 }
2042 /*
2043 * If there's data, delay ACK; if there's also a FIN
2044 * ACKNOW will be turned on later.
2045 */
2046 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2047 tcp_timer_activate(tp, TT_DELACK,
2048 tcp_delacktime);
2049 else
2050 tp->t_flags |= TF_ACKNOW;
2051
2052 if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
2053 (V_tcp_do_ecn == 1)) {
2054 tp->t_flags2 |= TF2_ECN_PERMIT;
2055 TCPSTAT_INC(tcps_ecn_shs);
2056 }
2057
2058 /*
2059 * Received <SYN,ACK> in SYN_SENT[*] state.
2060 * Transitions:
2061 * SYN_SENT --> ESTABLISHED
2062 * SYN_SENT* --> FIN_WAIT_1
2063 */
2064 tp->t_starttime = ticks;
2065 if (tp->t_flags & TF_NEEDFIN) {
2066 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2067 tp->t_flags &= ~TF_NEEDFIN;
2068 thflags &= ~TH_SYN;
2069 } else {
2070 tcp_state_change(tp, TCPS_ESTABLISHED);
2071 TCP_PROBE5(connect__established, NULL, tp,
2072 m, tp, th);
2073 cc_conn_init(tp);
2074 tcp_timer_activate(tp, TT_KEEP,
2075 TP_KEEPIDLE(tp));
2076 }
2077 } else {
2078 /*
2079 * Received initial SYN in SYN-SENT[*] state =>
2080 * simultaneous open.
2081 * If it succeeds, connection is * half-synchronized.
2082 * Otherwise, do 3-way handshake:
2083 * SYN-SENT -> SYN-RECEIVED
2084 * SYN-SENT* -> SYN-RECEIVED*
2085 */
2086 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2087 tcp_timer_activate(tp, TT_REXMT, 0);
2088 tcp_state_change(tp, TCPS_SYN_RECEIVED);
2089 }
2090
2091 INP_WLOCK_ASSERT(tp->t_inpcb);
2092
2093 /*
2094 * Advance th->th_seq to correspond to first data byte.
2095 * If data, trim to stay within window,
2096 * dropping FIN if necessary.
2097 */
2098 th->th_seq++;
2099 if (tlen > tp->rcv_wnd) {
2100 todrop = tlen - tp->rcv_wnd;
2101 m_adj(m, -todrop);
2102 tlen = tp->rcv_wnd;
2103 thflags &= ~TH_FIN;
2104 TCPSTAT_INC(tcps_rcvpackafterwin);
2105 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2106 }
2107 tp->snd_wl1 = th->th_seq - 1;
2108 tp->rcv_up = th->th_seq;
2109 /*
2110 * Client side of transaction: already sent SYN and data.
2111 * If the remote host used T/TCP to validate the SYN,
2112 * our data will be ACK'd; if so, enter normal data segment
2113 * processing in the middle of step 5, ack processing.
2114 * Otherwise, goto step 6.
2115 */
2116 if (thflags & TH_ACK)
2117 goto process_ACK;
2118
2119 goto step6;
2120
2121 /*
2122 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2123 * do normal processing.
2124 *
2125 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later.
2126 */
2127 case TCPS_LAST_ACK:
2128 case TCPS_CLOSING:
2129 break; /* continue normal processing */
2130 }
2131
2132 /*
2133 * States other than LISTEN or SYN_SENT.
2134 * First check the RST flag and sequence number since reset segments
2135 * are exempt from the timestamp and connection count tests. This
2136 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2137 * below which allowed reset segments in half the sequence space
2138 * to fall though and be processed (which gives forged reset
2139 * segments with a random sequence number a 50 percent chance of
2140 * killing a connection).
2141 * Then check timestamp, if present.
2142 * Then check the connection count, if present.
2143 * Then check that at least some bytes of segment are within
2144 * receive window. If segment begins before rcv_nxt,
2145 * drop leading data (and SYN); if nothing left, just ack.
2146 */
2147 if (thflags & TH_RST) {
2148 /*
2149 * RFC5961 Section 3.2
2150 *
2151 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2152 * - If RST is in window, we send challenge ACK.
2153 *
2154 * Note: to take into account delayed ACKs, we should
2155 * test against last_ack_sent instead of rcv_nxt.
2156 * Note 2: we handle special case of closed window, not
2157 * covered by the RFC.
2158 */
2159 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2160 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2161 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2162 KASSERT(tp->t_state != TCPS_SYN_SENT,
2163 ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2164 __func__, th, tp));
2165
2166 if (V_tcp_insecure_rst ||
2167 tp->last_ack_sent == th->th_seq) {
2168 TCPSTAT_INC(tcps_drops);
2169 /* Drop the connection. */
2170 switch (tp->t_state) {
2171 case TCPS_SYN_RECEIVED:
2172 so->so_error = ECONNREFUSED;
2173 goto close;
2174 case TCPS_ESTABLISHED:
2175 case TCPS_FIN_WAIT_1:
2176 case TCPS_FIN_WAIT_2:
2177 case TCPS_CLOSE_WAIT:
2178 case TCPS_CLOSING:
2179 case TCPS_LAST_ACK:
2180 so->so_error = ECONNRESET;
2181 close:
2182 /* FALLTHROUGH */
2183 default:
2184 tp = tcp_close(tp);
2185 }
2186 } else {
2187 TCPSTAT_INC(tcps_badrst);
2188 /* Send challenge ACK. */
2189 tcp_respond(tp, mtod(m, void *), th, m,
2190 tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2191 tp->last_ack_sent = tp->rcv_nxt;
2192 m = NULL;
2193 }
2194 }
2195 goto drop;
2196 }
2197
2198 /*
2199 * RFC5961 Section 4.2
2200 * Send challenge ACK for any SYN in synchronized state.
2201 */
2202 if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2203 tp->t_state != TCPS_SYN_RECEIVED) {
2204 TCPSTAT_INC(tcps_badsyn);
2205 if (V_tcp_insecure_syn &&
2206 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2207 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2208 tp = tcp_drop(tp, ECONNRESET);
2209 rstreason = BANDLIM_UNLIMITED;
2210 } else {
2211 /* Send challenge ACK. */
2212 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2213 tp->snd_nxt, TH_ACK);
2214 tp->last_ack_sent = tp->rcv_nxt;
2215 m = NULL;
2216 }
2217 goto drop;
2218 }
2219
2220 /*
2221 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2222 * and it's less than ts_recent, drop it.
2223 */
2224 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2225 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2226 /* Check to see if ts_recent is over 24 days old. */
2227 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2228 /*
2229 * Invalidate ts_recent. If this segment updates
2230 * ts_recent, the age will be reset later and ts_recent
2231 * will get a valid value. If it does not, setting
2232 * ts_recent to zero will at least satisfy the
2233 * requirement that zero be placed in the timestamp
2234 * echo reply when ts_recent isn't valid. The
2235 * age isn't reset until we get a valid ts_recent
2236 * because we don't want out-of-order segments to be
2237 * dropped when ts_recent is old.
2238 */
2239 tp->ts_recent = 0;
2240 } else {
2241 TCPSTAT_INC(tcps_rcvduppack);
2242 TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2243 TCPSTAT_INC(tcps_pawsdrop);
2244 if (tlen)
2245 goto dropafterack;
2246 goto drop;
2247 }
2248 }
2249
2250 /*
2251 * In the SYN-RECEIVED state, validate that the packet belongs to
2252 * this connection before trimming the data to fit the receive
2253 * window. Check the sequence number versus IRS since we know
2254 * the sequence numbers haven't wrapped. This is a partial fix
2255 * for the "LAND" DoS attack.
2256 */
2257 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2258 rstreason = BANDLIM_RST_OPENPORT;
2259 goto dropwithreset;
2260 }
2261
2262 todrop = tp->rcv_nxt - th->th_seq;
2263 if (todrop > 0) {
2264 if (thflags & TH_SYN) {
2265 thflags &= ~TH_SYN;
2266 th->th_seq++;
2267 if (th->th_urp > 1)
2268 th->th_urp--;
2269 else
2270 thflags &= ~TH_URG;
2271 todrop--;
2272 }
2273 /*
2274 * Following if statement from Stevens, vol. 2, p. 960.
2275 */
2276 if (todrop > tlen
2277 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2278 /*
2279 * Any valid FIN must be to the left of the window.
2280 * At this point the FIN must be a duplicate or out
2281 * of sequence; drop it.
2282 */
2283 thflags &= ~TH_FIN;
2284
2285 /*
2286 * Send an ACK to resynchronize and drop any data.
2287 * But keep on processing for RST or ACK.
2288 */
2289 tp->t_flags |= TF_ACKNOW;
2290 todrop = tlen;
2291 TCPSTAT_INC(tcps_rcvduppack);
2292 TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2293 } else {
2294 TCPSTAT_INC(tcps_rcvpartduppack);
2295 TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2296 }
2297 /*
2298 * DSACK - add SACK block for dropped range
2299 */
2300 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
2301 tcp_update_sack_list(tp, th->th_seq,
2302 th->th_seq + todrop);
2303 /*
2304 * ACK now, as the next in-sequence segment
2305 * will clear the DSACK block again
2306 */
2307 tp->t_flags |= TF_ACKNOW;
2308 }
2309 drop_hdrlen += todrop; /* drop from the top afterwards */
2310 th->th_seq += todrop;
2311 tlen -= todrop;
2312 if (th->th_urp > todrop)
2313 th->th_urp -= todrop;
2314 else {
2315 thflags &= ~TH_URG;
2316 th->th_urp = 0;
2317 }
2318 }
2319
2320 /*
2321 * If new data are received on a connection after the
2322 * user processes are gone, then RST the other end.
2323 */
2324 if ((so->so_state & SS_NOFDREF) &&
2325 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2326 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2327 log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2328 "after socket was closed, "
2329 "sending RST and removing tcpcb\n",
2330 s, __func__, tcpstates[tp->t_state], tlen);
2331 free(s, M_TCPLOG);
2332 }
2333 tp = tcp_close(tp);
2334 TCPSTAT_INC(tcps_rcvafterclose);
2335 rstreason = BANDLIM_UNLIMITED;
2336 goto dropwithreset;
2337 }
2338
2339 /*
2340 * If segment ends after window, drop trailing data
2341 * (and PUSH and FIN); if nothing left, just ACK.
2342 */
2343 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2344 if (todrop > 0) {
2345 TCPSTAT_INC(tcps_rcvpackafterwin);
2346 if (todrop >= tlen) {
2347 TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2348 /*
2349 * If window is closed can only take segments at
2350 * window edge, and have to drop data and PUSH from
2351 * incoming segments. Continue processing, but
2352 * remember to ack. Otherwise, drop segment
2353 * and ack.
2354 */
2355 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2356 tp->t_flags |= TF_ACKNOW;
2357 TCPSTAT_INC(tcps_rcvwinprobe);
2358 } else
2359 goto dropafterack;
2360 } else
2361 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2362 m_adj(m, -todrop);
2363 tlen -= todrop;
2364 thflags &= ~(TH_PUSH|TH_FIN);
2365 }
2366
2367 /*
2368 * If last ACK falls within this segment's sequence numbers,
2369 * record its timestamp.
2370 * NOTE:
2371 * 1) That the test incorporates suggestions from the latest
2372 * proposal of the [email protected] list (Braden 1993/04/26).
2373 * 2) That updating only on newer timestamps interferes with
2374 * our earlier PAWS tests, so this check should be solely
2375 * predicated on the sequence space of this segment.
2376 * 3) That we modify the segment boundary check to be
2377 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2378 * instead of RFC1323's
2379 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2380 * This modified check allows us to overcome RFC1323's
2381 * limitations as described in Stevens TCP/IP Illustrated
2382 * Vol. 2 p.869. In such cases, we can still calculate the
2383 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2384 */
2385 if ((to.to_flags & TOF_TS) != 0 &&
2386 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2387 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2388 ((thflags & (TH_SYN|TH_FIN)) != 0))) {
2389 tp->ts_recent_age = tcp_ts_getticks();
2390 tp->ts_recent = to.to_tsval;
2391 }
2392
2393 /*
2394 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
2395 * flag is on (half-synchronized state), then queue data for
2396 * later processing; else drop segment and return.
2397 */
2398 if ((thflags & TH_ACK) == 0) {
2399 if (tp->t_state == TCPS_SYN_RECEIVED ||
2400 (tp->t_flags & TF_NEEDSYN)) {
2401 if (tp->t_state == TCPS_SYN_RECEIVED &&
2402 IS_FASTOPEN(tp->t_flags)) {
2403 tp->snd_wnd = tiwin;
2404 cc_conn_init(tp);
2405 }
2406 goto step6;
2407 } else if (tp->t_flags & TF_ACKNOW)
2408 goto dropafterack;
2409 else
2410 goto drop;
2411 }
2412
2413 /*
2414 * Ack processing.
2415 */
2416 switch (tp->t_state) {
2417 /*
2418 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2419 * ESTABLISHED state and continue processing.
2420 * The ACK was checked above.
2421 */
2422 case TCPS_SYN_RECEIVED:
2423
2424 TCPSTAT_INC(tcps_connects);
2425 soisconnected(so);
2426 /* Do window scaling? */
2427 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2428 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2429 tp->rcv_scale = tp->request_r_scale;
2430 }
2431 tp->snd_wnd = tiwin;
2432 /*
2433 * Make transitions:
2434 * SYN-RECEIVED -> ESTABLISHED
2435 * SYN-RECEIVED* -> FIN-WAIT-1
2436 */
2437 tp->t_starttime = ticks;
2438 if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
2439 tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2440 tp->t_tfo_pending = NULL;
2441 }
2442 if (tp->t_flags & TF_NEEDFIN) {
2443 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2444 tp->t_flags &= ~TF_NEEDFIN;
2445 } else {
2446 tcp_state_change(tp, TCPS_ESTABLISHED);
2447 TCP_PROBE5(accept__established, NULL, tp,
2448 m, tp, th);
2449 /*
2450 * TFO connections call cc_conn_init() during SYN
2451 * processing. Calling it again here for such
2452 * connections is not harmless as it would undo the
2453 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2454 * is retransmitted.
2455 */
2456 if (!IS_FASTOPEN(tp->t_flags))
2457 cc_conn_init(tp);
2458 tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2459 }
2460 /*
2461 * Account for the ACK of our SYN prior to
2462 * regular ACK processing below, except for
2463 * simultaneous SYN, which is handled later.
2464 */
2465 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
2466 incforsyn = 1;
2467 /*
2468 * If segment contains data or ACK, will call tcp_reass()
2469 * later; if not, do so now to pass queued data to user.
2470 */
2471 if (tlen == 0 && (thflags & TH_FIN) == 0)
2472 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2473 (struct mbuf *)0);
2474 tp->snd_wl1 = th->th_seq - 1;
2475 /* FALLTHROUGH */
2476
2477 /*
2478 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2479 * ACKs. If the ack is in the range
2480 * tp->snd_una < th->th_ack <= tp->snd_max
2481 * then advance tp->snd_una to th->th_ack and drop
2482 * data from the retransmission queue. If this ACK reflects
2483 * more up to date window information we update our window information.
2484 */
2485 case TCPS_ESTABLISHED:
2486 case TCPS_FIN_WAIT_1:
2487 case TCPS_FIN_WAIT_2:
2488 case TCPS_CLOSE_WAIT:
2489 case TCPS_CLOSING:
2490 case TCPS_LAST_ACK:
2491 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2492 TCPSTAT_INC(tcps_rcvacktoomuch);
2493 goto dropafterack;
2494 }
2495 if ((tp->t_flags & TF_SACK_PERMIT) &&
2496 ((to.to_flags & TOF_SACK) ||
2497 !TAILQ_EMPTY(&tp->snd_holes)))
2498 sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2499 else
2500 /*
2501 * Reset the value so that previous (valid) value
2502 * from the last ack with SACK doesn't get used.
2503 */
2504 tp->sackhint.sacked_bytes = 0;
2505
2506 #ifdef TCP_HHOOK
2507 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2508 hhook_run_tcp_est_in(tp, th, &to);
2509 #endif
2510
2511 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2512 u_int maxseg;
2513
2514 maxseg = tcp_maxseg(tp);
2515 if (tlen == 0 &&
2516 (tiwin == tp->snd_wnd ||
2517 (tp->t_flags & TF_SACK_PERMIT))) {
2518 /*
2519 * If this is the first time we've seen a
2520 * FIN from the remote, this is not a
2521 * duplicate and it needs to be processed
2522 * normally. This happens during a
2523 * simultaneous close.
2524 */
2525 if ((thflags & TH_FIN) &&
2526 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2527 tp->t_dupacks = 0;
2528 break;
2529 }
2530 TCPSTAT_INC(tcps_rcvdupack);
2531 /*
2532 * If we have outstanding data (other than
2533 * a window probe), this is a completely
2534 * duplicate ack (ie, window info didn't
2535 * change and FIN isn't set),
2536 * the ack is the biggest we've
2537 * seen and we've seen exactly our rexmt
2538 * threshold of them, assume a packet
2539 * has been dropped and retransmit it.
2540 * Kludge snd_nxt & the congestion
2541 * window so we send only this one
2542 * packet.
2543 *
2544 * We know we're losing at the current
2545 * window size so do congestion avoidance
2546 * (set ssthresh to half the current window
2547 * and pull our congestion window back to
2548 * the new ssthresh).
2549 *
2550 * Dup acks mean that packets have left the
2551 * network (they're now cached at the receiver)
2552 * so bump cwnd by the amount in the receiver
2553 * to keep a constant cwnd packets in the
2554 * network.
2555 *
2556 * When using TCP ECN, notify the peer that
2557 * we reduced the cwnd.
2558 */
2559 /*
2560 * Following 2 kinds of acks should not affect
2561 * dupack counting:
2562 * 1) Old acks
2563 * 2) Acks with SACK but without any new SACK
2564 * information in them. These could result from
2565 * any anomaly in the network like a switch
2566 * duplicating packets or a possible DoS attack.
2567 */
2568 if (th->th_ack != tp->snd_una ||
2569 ((tp->t_flags & TF_SACK_PERMIT) &&
2570 !sack_changed))
2571 break;
2572 else if (!tcp_timer_active(tp, TT_REXMT))
2573 tp->t_dupacks = 0;
2574 else if (++tp->t_dupacks > tcprexmtthresh ||
2575 IN_FASTRECOVERY(tp->t_flags)) {
2576 cc_ack_received(tp, th, nsegs,
2577 CC_DUPACK);
2578 if (V_tcp_do_prr &&
2579 IN_FASTRECOVERY(tp->t_flags) &&
2580 (tp->t_flags & TF_SACK_PERMIT)) {
2581 int snd_cnt = 0, limit = 0;
2582 int del_data = 0, pipe = 0;
2583 /*
2584 * In a duplicate ACK del_data is only the
2585 * diff_in_sack. If no SACK is used del_data
2586 * will be 0. Pipe is the amount of data we
2587 * estimate to be in the network.
2588 */
2589 del_data = tp->sackhint.delivered_data;
2590 if (V_tcp_do_rfc6675_pipe)
2591 pipe = tcp_compute_pipe(tp);
2592 else
2593 pipe = (tp->snd_nxt - tp->snd_fack) +
2594 tp->sackhint.sack_bytes_rexmit;
2595 tp->sackhint.prr_delivered += del_data;
2596 if (pipe >= tp->snd_ssthresh) {
2597 if (tp->sackhint.recover_fs == 0)
2598 tp->sackhint.recover_fs =
2599 imax(1, tp->snd_nxt - tp->snd_una);
2600 snd_cnt = howmany((long)tp->sackhint.prr_delivered *
2601 tp->snd_ssthresh, tp->sackhint.recover_fs) -
2602 tp->sackhint.prr_out;
2603 } else {
2604 if (V_tcp_do_prr_conservative)
2605 limit = tp->sackhint.prr_delivered -
2606 tp->sackhint.prr_out;
2607 else
2608 limit = imax(tp->sackhint.prr_delivered -
2609 tp->sackhint.prr_out,
2610 del_data) + maxseg;
2611 snd_cnt = imin(tp->snd_ssthresh - pipe, limit);
2612 }
2613 snd_cnt = imax(snd_cnt, 0) / maxseg;
2614 /*
2615 * Send snd_cnt new data into the network in
2616 * response to this ACK. If there is a going
2617 * to be a SACK retransmission, adjust snd_cwnd
2618 * accordingly.
2619 */
2620 tp->snd_cwnd = imax(maxseg, tp->snd_nxt - tp->snd_recover +
2621 tp->sackhint.sack_bytes_rexmit + (snd_cnt * maxseg));
2622 } else if ((tp->t_flags & TF_SACK_PERMIT) &&
2623 IN_FASTRECOVERY(tp->t_flags)) {
2624 int awnd;
2625
2626 /*
2627 * Compute the amount of data in flight first.
2628 * We can inject new data into the pipe iff
2629 * we have less than 1/2 the original window's
2630 * worth of data in flight.
2631 */
2632 if (V_tcp_do_rfc6675_pipe)
2633 awnd = tcp_compute_pipe(tp);
2634 else
2635 awnd = (tp->snd_nxt - tp->snd_fack) +
2636 tp->sackhint.sack_bytes_rexmit;
2637
2638 if (awnd < tp->snd_ssthresh) {
2639 tp->snd_cwnd += maxseg;
2640 if (tp->snd_cwnd > tp->snd_ssthresh)
2641 tp->snd_cwnd = tp->snd_ssthresh;
2642 }
2643 } else
2644 tp->snd_cwnd += maxseg;
2645 (void) tp->t_fb->tfb_tcp_output(tp);
2646 goto drop;
2647 } else if (tp->t_dupacks == tcprexmtthresh) {
2648 tcp_seq onxt = tp->snd_nxt;
2649
2650 /*
2651 * If we're doing sack, or prr, check
2652 * to see if we're already in sack
2653 * recovery. If we're not doing sack,
2654 * check to see if we're in newreno
2655 * recovery.
2656 */
2657 if (V_tcp_do_prr ||
2658 (tp->t_flags & TF_SACK_PERMIT)) {
2659 if (IN_FASTRECOVERY(tp->t_flags)) {
2660 tp->t_dupacks = 0;
2661 break;
2662 }
2663 } else {
2664 if (SEQ_LEQ(th->th_ack,
2665 tp->snd_recover)) {
2666 tp->t_dupacks = 0;
2667 break;
2668 }
2669 }
2670 /* Congestion signal before ack. */
2671 cc_cong_signal(tp, th, CC_NDUPACK);
2672 cc_ack_received(tp, th, nsegs,
2673 CC_DUPACK);
2674 tcp_timer_activate(tp, TT_REXMT, 0);
2675 tp->t_rtttime = 0;
2676 if (V_tcp_do_prr) {
2677 /*
2678 * snd_ssthresh is already updated by
2679 * cc_cong_signal.
2680 */
2681 tp->sackhint.prr_delivered =
2682 tp->sackhint.sacked_bytes;
2683 tp->sackhint.recover_fs = max(1,
2684 tp->snd_nxt - tp->snd_una);
2685 }
2686 if (tp->t_flags & TF_SACK_PERMIT) {
2687 TCPSTAT_INC(
2688 tcps_sack_recovery_episode);
2689 tp->snd_recover = tp->snd_nxt;
2690 tp->snd_cwnd = maxseg;
2691 (void) tp->t_fb->tfb_tcp_output(tp);
2692 goto drop;
2693 }
2694 tp->snd_nxt = th->th_ack;
2695 tp->snd_cwnd = maxseg;
2696 (void) tp->t_fb->tfb_tcp_output(tp);
2697 KASSERT(tp->snd_limited <= 2,
2698 ("%s: tp->snd_limited too big",
2699 __func__));
2700 tp->snd_cwnd = tp->snd_ssthresh +
2701 maxseg *
2702 (tp->t_dupacks - tp->snd_limited);
2703 if (SEQ_GT(onxt, tp->snd_nxt))
2704 tp->snd_nxt = onxt;
2705 goto drop;
2706 } else if (V_tcp_do_rfc3042) {
2707 /*
2708 * Process first and second duplicate
2709 * ACKs. Each indicates a segment
2710 * leaving the network, creating room
2711 * for more. Make sure we can send a
2712 * packet on reception of each duplicate
2713 * ACK by increasing snd_cwnd by one
2714 * segment. Restore the original
2715 * snd_cwnd after packet transmission.
2716 */
2717 cc_ack_received(tp, th, nsegs,
2718 CC_DUPACK);
2719 uint32_t oldcwnd = tp->snd_cwnd;
2720 tcp_seq oldsndmax = tp->snd_max;
2721 u_int sent;
2722 int avail;
2723
2724 KASSERT(tp->t_dupacks == 1 ||
2725 tp->t_dupacks == 2,
2726 ("%s: dupacks not 1 or 2",
2727 __func__));
2728 if (tp->t_dupacks == 1)
2729 tp->snd_limited = 0;
2730 tp->snd_cwnd =
2731 (tp->snd_nxt - tp->snd_una) +
2732 (tp->t_dupacks - tp->snd_limited) *
2733 maxseg;
2734 /*
2735 * Only call tcp_output when there
2736 * is new data available to be sent.
2737 * Otherwise we would send pure ACKs.
2738 */
2739 SOCKBUF_LOCK(&so->so_snd);
2740 avail = sbavail(&so->so_snd) -
2741 (tp->snd_nxt - tp->snd_una);
2742 SOCKBUF_UNLOCK(&so->so_snd);
2743 if (avail > 0)
2744 (void) tp->t_fb->tfb_tcp_output(tp);
2745 sent = tp->snd_max - oldsndmax;
2746 if (sent > maxseg) {
2747 KASSERT((tp->t_dupacks == 2 &&
2748 tp->snd_limited == 0) ||
2749 (sent == maxseg + 1 &&
2750 tp->t_flags & TF_SENTFIN),
2751 ("%s: sent too much",
2752 __func__));
2753 tp->snd_limited = 2;
2754 } else if (sent > 0)
2755 ++tp->snd_limited;
2756 tp->snd_cwnd = oldcwnd;
2757 goto drop;
2758 }
2759 }
2760 break;
2761 } else {
2762 /*
2763 * This ack is advancing the left edge, reset the
2764 * counter.
2765 */
2766 tp->t_dupacks = 0;
2767 /*
2768 * If this ack also has new SACK info, increment the
2769 * counter as per rfc6675. The variable
2770 * sack_changed tracks all changes to the SACK
2771 * scoreboard, including when partial ACKs without
2772 * SACK options are received, and clear the scoreboard
2773 * from the left side. Such partial ACKs should not be
2774 * counted as dupacks here.
2775 */
2776 if ((tp->t_flags & TF_SACK_PERMIT) &&
2777 (to.to_flags & TOF_SACK) &&
2778 sack_changed)
2779 tp->t_dupacks++;
2780 }
2781
2782 KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2783 ("%s: th_ack <= snd_una", __func__));
2784
2785 /*
2786 * If the congestion window was inflated to account
2787 * for the other side's cached packets, retract it.
2788 */
2789 if (IN_FASTRECOVERY(tp->t_flags)) {
2790 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2791 if (tp->t_flags & TF_SACK_PERMIT)
2792 if (V_tcp_do_prr)
2793 tcp_prr_partialack(tp, th);
2794 else
2795 tcp_sack_partialack(tp, th);
2796 else
2797 tcp_newreno_partial_ack(tp, th);
2798 } else
2799 cc_post_recovery(tp, th);
2800 }
2801 /*
2802 * If we reach this point, ACK is not a duplicate,
2803 * i.e., it ACKs something we sent.
2804 */
2805 if (tp->t_flags & TF_NEEDSYN) {
2806 /*
2807 * T/TCP: Connection was half-synchronized, and our
2808 * SYN has been ACK'd (so connection is now fully
2809 * synchronized). Go to non-starred state,
2810 * increment snd_una for ACK of SYN, and check if
2811 * we can do window scaling.
2812 */
2813 tp->t_flags &= ~TF_NEEDSYN;
2814 tp->snd_una++;
2815 /* Do window scaling? */
2816 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2817 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2818 tp->rcv_scale = tp->request_r_scale;
2819 /* Send window already scaled. */
2820 }
2821 }
2822
2823 process_ACK:
2824 INP_WLOCK_ASSERT(tp->t_inpcb);
2825
2826 /*
2827 * Adjust for the SYN bit in sequence space,
2828 * but don't account for it in cwnd calculations.
2829 * This is for the SYN_RECEIVED, non-simultaneous
2830 * SYN case. SYN_SENT and simultaneous SYN are
2831 * treated elsewhere.
2832 */
2833 if (incforsyn)
2834 tp->snd_una++;
2835 acked = BYTES_THIS_ACK(tp, th);
2836 KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2837 "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2838 tp->snd_una, th->th_ack, tp, m));
2839 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2840 TCPSTAT_ADD(tcps_rcvackbyte, acked);
2841
2842 /*
2843 * If we just performed our first retransmit, and the ACK
2844 * arrives within our recovery window, then it was a mistake
2845 * to do the retransmit in the first place. Recover our
2846 * original cwnd and ssthresh, and proceed to transmit where
2847 * we left off.
2848 */
2849 if (tp->t_rxtshift == 1 &&
2850 tp->t_flags & TF_PREVVALID &&
2851 tp->t_badrxtwin &&
2852 SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
2853 cc_cong_signal(tp, th, CC_RTO_ERR);
2854
2855 /*
2856 * If we have a timestamp reply, update smoothed
2857 * round trip time. If no timestamp is present but
2858 * transmit timer is running and timed sequence
2859 * number was acked, update smoothed round trip time.
2860 * Since we now have an rtt measurement, cancel the
2861 * timer backoff (cf., Phil Karn's retransmit alg.).
2862 * Recompute the initial retransmit timer.
2863 *
2864 * Some boxes send broken timestamp replies
2865 * during the SYN+ACK phase, ignore
2866 * timestamps of 0 or we could calculate a
2867 * huge RTT and blow up the retransmit timer.
2868 */
2869 if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2870 uint32_t t;
2871
2872 t = tcp_ts_getticks() - to.to_tsecr;
2873 if (!tp->t_rttlow || tp->t_rttlow > t)
2874 tp->t_rttlow = t;
2875 tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2876 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2877 if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2878 tp->t_rttlow = ticks - tp->t_rtttime;
2879 tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2880 }
2881
2882 /*
2883 * If all outstanding data is acked, stop retransmit
2884 * timer and remember to restart (more output or persist).
2885 * If there is more data to be acked, restart retransmit
2886 * timer, using current (possibly backed-off) value.
2887 */
2888 if (th->th_ack == tp->snd_max) {
2889 tcp_timer_activate(tp, TT_REXMT, 0);
2890 needoutput = 1;
2891 } else if (!tcp_timer_active(tp, TT_PERSIST))
2892 tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2893
2894 /*
2895 * If no data (only SYN) was ACK'd,
2896 * skip rest of ACK processing.
2897 */
2898 if (acked == 0)
2899 goto step6;
2900
2901 /*
2902 * Let the congestion control algorithm update congestion
2903 * control related information. This typically means increasing
2904 * the congestion window.
2905 */
2906 cc_ack_received(tp, th, nsegs, CC_ACK);
2907
2908 SOCKBUF_LOCK(&so->so_snd);
2909 if (acked > sbavail(&so->so_snd)) {
2910 if (tp->snd_wnd >= sbavail(&so->so_snd))
2911 tp->snd_wnd -= sbavail(&so->so_snd);
2912 else
2913 tp->snd_wnd = 0;
2914 mfree = sbcut_locked(&so->so_snd,
2915 (int)sbavail(&so->so_snd));
2916 ourfinisacked = 1;
2917 } else {
2918 mfree = sbcut_locked(&so->so_snd, acked);
2919 if (tp->snd_wnd >= (uint32_t) acked)
2920 tp->snd_wnd -= acked;
2921 else
2922 tp->snd_wnd = 0;
2923 ourfinisacked = 0;
2924 }
2925 SOCKBUF_UNLOCK(&so->so_snd);
2926 tp->t_flags |= TF_WAKESOW;
2927 m_freem(mfree);
2928 /* Detect una wraparound. */
2929 if (!IN_RECOVERY(tp->t_flags) &&
2930 SEQ_GT(tp->snd_una, tp->snd_recover) &&
2931 SEQ_LEQ(th->th_ack, tp->snd_recover))
2932 tp->snd_recover = th->th_ack - 1;
2933 /* XXXLAS: Can this be moved up into cc_post_recovery? */
2934 if (IN_RECOVERY(tp->t_flags) &&
2935 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2936 EXIT_RECOVERY(tp->t_flags);
2937 }
2938 tp->snd_una = th->th_ack;
2939 if (tp->t_flags & TF_SACK_PERMIT) {
2940 if (SEQ_GT(tp->snd_una, tp->snd_recover))
2941 tp->snd_recover = tp->snd_una;
2942 }
2943 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2944 tp->snd_nxt = tp->snd_una;
2945
2946 switch (tp->t_state) {
2947 /*
2948 * In FIN_WAIT_1 STATE in addition to the processing
2949 * for the ESTABLISHED state if our FIN is now acknowledged
2950 * then enter FIN_WAIT_2.
2951 */
2952 case TCPS_FIN_WAIT_1:
2953 if (ourfinisacked) {
2954 /*
2955 * If we can't receive any more
2956 * data, then closing user can proceed.
2957 * Starting the timer is contrary to the
2958 * specification, but if we don't get a FIN
2959 * we'll hang forever.
2960 *
2961 * XXXjl:
2962 * we should release the tp also, and use a
2963 * compressed state.
2964 */
2965 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2966 soisdisconnected(so);
2967 tcp_timer_activate(tp, TT_2MSL,
2968 (tcp_fast_finwait2_recycle ?
2969 tcp_finwait2_timeout :
2970 TP_MAXIDLE(tp)));
2971 }
2972 tcp_state_change(tp, TCPS_FIN_WAIT_2);
2973 }
2974 break;
2975
2976 /*
2977 * In CLOSING STATE in addition to the processing for
2978 * the ESTABLISHED state if the ACK acknowledges our FIN
2979 * then enter the TIME-WAIT state, otherwise ignore
2980 * the segment.
2981 */
2982 case TCPS_CLOSING:
2983 if (ourfinisacked) {
2984 tcp_twstart(tp);
2985 m_freem(m);
2986 return;
2987 }
2988 break;
2989
2990 /*
2991 * In LAST_ACK, we may still be waiting for data to drain
2992 * and/or to be acked, as well as for the ack of our FIN.
2993 * If our FIN is now acknowledged, delete the TCB,
2994 * enter the closed state and return.
2995 */
2996 case TCPS_LAST_ACK:
2997 if (ourfinisacked) {
2998 tp = tcp_close(tp);
2999 goto drop;
3000 }
3001 break;
3002 }
3003 }
3004
3005 step6:
3006 INP_WLOCK_ASSERT(tp->t_inpcb);
3007
3008 /*
3009 * Update window information.
3010 * Don't look at window if no ACK: TAC's send garbage on first SYN.
3011 */
3012 if ((thflags & TH_ACK) &&
3013 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
3014 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
3015 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
3016 /* keep track of pure window updates */
3017 if (tlen == 0 &&
3018 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
3019 TCPSTAT_INC(tcps_rcvwinupd);
3020 tp->snd_wnd = tiwin;
3021 tp->snd_wl1 = th->th_seq;
3022 tp->snd_wl2 = th->th_ack;
3023 if (tp->snd_wnd > tp->max_sndwnd)
3024 tp->max_sndwnd = tp->snd_wnd;
3025 needoutput = 1;
3026 }
3027
3028 /*
3029 * Process segments with URG.
3030 */
3031 if ((thflags & TH_URG) && th->th_urp &&
3032 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3033 /*
3034 * This is a kludge, but if we receive and accept
3035 * random urgent pointers, we'll crash in
3036 * soreceive. It's hard to imagine someone
3037 * actually wanting to send this much urgent data.
3038 */
3039 SOCKBUF_LOCK(&so->so_rcv);
3040 if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
3041 th->th_urp = 0; /* XXX */
3042 thflags &= ~TH_URG; /* XXX */
3043 SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */
3044 goto dodata; /* XXX */
3045 }
3046 /*
3047 * If this segment advances the known urgent pointer,
3048 * then mark the data stream. This should not happen
3049 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3050 * a FIN has been received from the remote side.
3051 * In these states we ignore the URG.
3052 *
3053 * According to RFC961 (Assigned Protocols),
3054 * the urgent pointer points to the last octet
3055 * of urgent data. We continue, however,
3056 * to consider it to indicate the first octet
3057 * of data past the urgent section as the original
3058 * spec states (in one of two places).
3059 */
3060 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3061 tp->rcv_up = th->th_seq + th->th_urp;
3062 so->so_oobmark = sbavail(&so->so_rcv) +
3063 (tp->rcv_up - tp->rcv_nxt) - 1;
3064 if (so->so_oobmark == 0)
3065 so->so_rcv.sb_state |= SBS_RCVATMARK;
3066 sohasoutofband(so);
3067 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3068 }
3069 SOCKBUF_UNLOCK(&so->so_rcv);
3070 /*
3071 * Remove out of band data so doesn't get presented to user.
3072 * This can happen independent of advancing the URG pointer,
3073 * but if two URG's are pending at once, some out-of-band
3074 * data may creep in... ick.
3075 */
3076 if (th->th_urp <= (uint32_t)tlen &&
3077 !(so->so_options & SO_OOBINLINE)) {
3078 /* hdr drop is delayed */
3079 tcp_pulloutofband(so, th, m, drop_hdrlen);
3080 }
3081 } else {
3082 /*
3083 * If no out of band data is expected,
3084 * pull receive urgent pointer along
3085 * with the receive window.
3086 */
3087 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3088 tp->rcv_up = tp->rcv_nxt;
3089 }
3090 dodata: /* XXX */
3091 INP_WLOCK_ASSERT(tp->t_inpcb);
3092
3093 /*
3094 * Process the segment text, merging it into the TCP sequencing queue,
3095 * and arranging for acknowledgment of receipt if necessary.
3096 * This process logically involves adjusting tp->rcv_wnd as data
3097 * is presented to the user (this happens in tcp_usrreq.c,
3098 * case PRU_RCVD). If a FIN has already been received on this
3099 * connection then we just ignore the text.
3100 */
3101 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3102 IS_FASTOPEN(tp->t_flags));
3103 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
3104 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3105 tcp_seq save_start = th->th_seq;
3106 tcp_seq save_rnxt = tp->rcv_nxt;
3107 int save_tlen = tlen;
3108 m_adj(m, drop_hdrlen); /* delayed header drop */
3109 /*
3110 * Insert segment which includes th into TCP reassembly queue
3111 * with control block tp. Set thflags to whether reassembly now
3112 * includes a segment with FIN. This handles the common case
3113 * inline (segment is the next to be received on an established
3114 * connection, and the queue is empty), avoiding linkage into
3115 * and removal from the queue and repetition of various
3116 * conversions.
3117 * Set DELACK for segments received in order, but ack
3118 * immediately when segments are out of order (so
3119 * fast retransmit can work).
3120 */
3121 if (th->th_seq == tp->rcv_nxt &&
3122 SEGQ_EMPTY(tp) &&
3123 (TCPS_HAVEESTABLISHED(tp->t_state) ||
3124 tfo_syn)) {
3125 if (DELAY_ACK(tp, tlen) || tfo_syn)
3126 tp->t_flags |= TF_DELACK;
3127 else
3128 tp->t_flags |= TF_ACKNOW;
3129 tp->rcv_nxt += tlen;
3130 if (tlen &&
3131 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
3132 (tp->t_fbyte_in == 0)) {
3133 tp->t_fbyte_in = ticks;
3134 if (tp->t_fbyte_in == 0)
3135 tp->t_fbyte_in = 1;
3136 if (tp->t_fbyte_out && tp->t_fbyte_in)
3137 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
3138 }
3139 thflags = th->th_flags & TH_FIN;
3140 TCPSTAT_INC(tcps_rcvpack);
3141 TCPSTAT_ADD(tcps_rcvbyte, tlen);
3142 SOCKBUF_LOCK(&so->so_rcv);
3143 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3144 m_freem(m);
3145 else
3146 sbappendstream_locked(&so->so_rcv, m, 0);
3147 SOCKBUF_UNLOCK(&so->so_rcv);
3148 tp->t_flags |= TF_WAKESOR;
3149 } else {
3150 /*
3151 * XXX: Due to the header drop above "th" is
3152 * theoretically invalid by now. Fortunately
3153 * m_adj() doesn't actually frees any mbufs
3154 * when trimming from the head.
3155 */
3156 tcp_seq temp = save_start;
3157 thflags = tcp_reass(tp, th, &temp, &tlen, m);
3158 tp->t_flags |= TF_ACKNOW;
3159 }
3160 if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
3161 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
3162 /*
3163 * DSACK actually handled in the fastpath
3164 * above.
3165 */
3166 tcp_update_sack_list(tp, save_start,
3167 save_start + save_tlen);
3168 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3169 if ((tp->rcv_numsacks >= 1) &&
3170 (tp->sackblks[0].end == save_start)) {
3171 /*
3172 * Partial overlap, recorded at todrop
3173 * above.
3174 */
3175 tcp_update_sack_list(tp,
3176 tp->sackblks[0].start,
3177 tp->sackblks[0].end);
3178 } else {
3179 tcp_update_dsack_list(tp, save_start,
3180 save_start + save_tlen);
3181 }
3182 } else if (tlen >= save_tlen) {
3183 /* Update of sackblks. */
3184 tcp_update_dsack_list(tp, save_start,
3185 save_start + save_tlen);
3186 } else if (tlen > 0) {
3187 tcp_update_dsack_list(tp, save_start,
3188 save_start + tlen);
3189 }
3190 }
3191 #if 0
3192 /*
3193 * Note the amount of data that peer has sent into
3194 * our window, in order to estimate the sender's
3195 * buffer size.
3196 * XXX: Unused.
3197 */
3198 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3199 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3200 else
3201 len = so->so_rcv.sb_hiwat;
3202 #endif
3203 } else {
3204 m_freem(m);
3205 thflags &= ~TH_FIN;
3206 }
3207
3208 /*
3209 * If FIN is received ACK the FIN and let the user know
3210 * that the connection is closing.
3211 */
3212 if (thflags & TH_FIN) {
3213 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3214 socantrcvmore(so);
3215 /* The socket upcall is handled by socantrcvmore. */
3216 tp->t_flags &= ~TF_WAKESOR;
3217 /*
3218 * If connection is half-synchronized
3219 * (ie NEEDSYN flag on) then delay ACK,
3220 * so it may be piggybacked when SYN is sent.
3221 * Otherwise, since we received a FIN then no
3222 * more input can be expected, send ACK now.
3223 */
3224 if (tp->t_flags & TF_NEEDSYN)
3225 tp->t_flags |= TF_DELACK;
3226 else
3227 tp->t_flags |= TF_ACKNOW;
3228 tp->rcv_nxt++;
3229 }
3230 switch (tp->t_state) {
3231 /*
3232 * In SYN_RECEIVED and ESTABLISHED STATES
3233 * enter the CLOSE_WAIT state.
3234 */
3235 case TCPS_SYN_RECEIVED:
3236 tp->t_starttime = ticks;
3237 /* FALLTHROUGH */
3238 case TCPS_ESTABLISHED:
3239 tcp_state_change(tp, TCPS_CLOSE_WAIT);
3240 break;
3241
3242 /*
3243 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3244 * enter the CLOSING state.
3245 */
3246 case TCPS_FIN_WAIT_1:
3247 tcp_state_change(tp, TCPS_CLOSING);
3248 break;
3249
3250 /*
3251 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3252 * starting the time-wait timer, turning off the other
3253 * standard timers.
3254 */
3255 case TCPS_FIN_WAIT_2:
3256 tcp_twstart(tp);
3257 return;
3258 }
3259 }
3260 #ifdef TCPDEBUG
3261 if (so->so_options & SO_DEBUG)
3262 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3263 &tcp_savetcp, 0);
3264 #endif
3265 TCP_PROBE3(debug__input, tp, th, m);
3266
3267 /*
3268 * Return any desired output.
3269 */
3270 if (needoutput || (tp->t_flags & TF_ACKNOW))
3271 (void) tp->t_fb->tfb_tcp_output(tp);
3272
3273 check_delack:
3274 INP_WLOCK_ASSERT(tp->t_inpcb);
3275
3276 if (tp->t_flags & TF_DELACK) {
3277 tp->t_flags &= ~TF_DELACK;
3278 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3279 }
3280 tcp_handle_wakeup(tp, so);
3281 INP_WUNLOCK(tp->t_inpcb);
3282 return;
3283
3284 dropafterack:
3285 /*
3286 * Generate an ACK dropping incoming segment if it occupies
3287 * sequence space, where the ACK reflects our state.
3288 *
3289 * We can now skip the test for the RST flag since all
3290 * paths to this code happen after packets containing
3291 * RST have been dropped.
3292 *
3293 * In the SYN-RECEIVED state, don't send an ACK unless the
3294 * segment we received passes the SYN-RECEIVED ACK test.
3295 * If it fails send a RST. This breaks the loop in the
3296 * "LAND" DoS attack, and also prevents an ACK storm
3297 * between two listening ports that have been sent forged
3298 * SYN segments, each with the source address of the other.
3299 */
3300 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3301 (SEQ_GT(tp->snd_una, th->th_ack) ||
3302 SEQ_GT(th->th_ack, tp->snd_max)) ) {
3303 rstreason = BANDLIM_RST_OPENPORT;
3304 goto dropwithreset;
3305 }
3306 #ifdef TCPDEBUG
3307 if (so->so_options & SO_DEBUG)
3308 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3309 &tcp_savetcp, 0);
3310 #endif
3311 TCP_PROBE3(debug__input, tp, th, m);
3312 tp->t_flags |= TF_ACKNOW;
3313 (void) tp->t_fb->tfb_tcp_output(tp);
3314 tcp_handle_wakeup(tp, so);
3315 INP_WUNLOCK(tp->t_inpcb);
3316 m_freem(m);
3317 return;
3318
3319 dropwithreset:
3320 if (tp != NULL) {
3321 tcp_dropwithreset(m, th, tp, tlen, rstreason);
3322 tcp_handle_wakeup(tp, so);
3323 INP_WUNLOCK(tp->t_inpcb);
3324 } else
3325 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3326 return;
3327
3328 drop:
3329 /*
3330 * Drop space held by incoming segment and return.
3331 */
3332 #ifdef TCPDEBUG
3333 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3334 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3335 &tcp_savetcp, 0);
3336 #endif
3337 TCP_PROBE3(debug__input, tp, th, m);
3338 if (tp != NULL) {
3339 tcp_handle_wakeup(tp, so);
3340 INP_WUNLOCK(tp->t_inpcb);
3341 }
3342 m_freem(m);
3343 }
3344
3345 /*
3346 * Issue RST and make ACK acceptable to originator of segment.
3347 * The mbuf must still include the original packet header.
3348 * tp may be NULL.
3349 */
3350 void
tcp_dropwithreset(struct mbuf * m,struct tcphdr * th,struct tcpcb * tp,int tlen,int rstreason)3351 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3352 int tlen, int rstreason)
3353 {
3354 #ifdef INET
3355 struct ip *ip;
3356 #endif
3357 #ifdef INET6
3358 struct ip6_hdr *ip6;
3359 #endif
3360
3361 if (tp != NULL) {
3362 INP_WLOCK_ASSERT(tp->t_inpcb);
3363 }
3364
3365 /* Don't bother if destination was broadcast/multicast. */
3366 if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3367 goto drop;
3368 #ifdef INET6
3369 if (mtod(m, struct ip *)->ip_v == 6) {
3370 ip6 = mtod(m, struct ip6_hdr *);
3371 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3372 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3373 goto drop;
3374 /* IPv6 anycast check is done at tcp6_input() */
3375 }
3376 #endif
3377 #if defined(INET) && defined(INET6)
3378 else
3379 #endif
3380 #ifdef INET
3381 {
3382 ip = mtod(m, struct ip *);
3383 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3384 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3385 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3386 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3387 goto drop;
3388 }
3389 #endif
3390
3391 /* Perform bandwidth limiting. */
3392 if (badport_bandlim(rstreason) < 0)
3393 goto drop;
3394
3395 /* tcp_respond consumes the mbuf chain. */
3396 if (th->th_flags & TH_ACK) {
3397 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3398 th->th_ack, TH_RST);
3399 } else {
3400 if (th->th_flags & TH_SYN)
3401 tlen++;
3402 if (th->th_flags & TH_FIN)
3403 tlen++;
3404 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3405 (tcp_seq)0, TH_RST|TH_ACK);
3406 }
3407 return;
3408 drop:
3409 m_freem(m);
3410 }
3411
3412 /*
3413 * Parse TCP options and place in tcpopt.
3414 */
3415 void
tcp_dooptions(struct tcpopt * to,u_char * cp,int cnt,int flags)3416 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3417 {
3418 int opt, optlen;
3419
3420 to->to_flags = 0;
3421 for (; cnt > 0; cnt -= optlen, cp += optlen) {
3422 opt = cp[0];
3423 if (opt == TCPOPT_EOL)
3424 break;
3425 if (opt == TCPOPT_NOP)
3426 optlen = 1;
3427 else {
3428 if (cnt < 2)
3429 break;
3430 optlen = cp[1];
3431 if (optlen < 2 || optlen > cnt)
3432 break;
3433 }
3434 switch (opt) {
3435 case TCPOPT_MAXSEG:
3436 if (optlen != TCPOLEN_MAXSEG)
3437 continue;
3438 if (!(flags & TO_SYN))
3439 continue;
3440 to->to_flags |= TOF_MSS;
3441 bcopy((char *)cp + 2,
3442 (char *)&to->to_mss, sizeof(to->to_mss));
3443 to->to_mss = ntohs(to->to_mss);
3444 break;
3445 case TCPOPT_WINDOW:
3446 if (optlen != TCPOLEN_WINDOW)
3447 continue;
3448 if (!(flags & TO_SYN))
3449 continue;
3450 to->to_flags |= TOF_SCALE;
3451 to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3452 break;
3453 case TCPOPT_TIMESTAMP:
3454 if (optlen != TCPOLEN_TIMESTAMP)
3455 continue;
3456 to->to_flags |= TOF_TS;
3457 bcopy((char *)cp + 2,
3458 (char *)&to->to_tsval, sizeof(to->to_tsval));
3459 to->to_tsval = ntohl(to->to_tsval);
3460 bcopy((char *)cp + 6,
3461 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3462 to->to_tsecr = ntohl(to->to_tsecr);
3463 break;
3464 case TCPOPT_SIGNATURE:
3465 /*
3466 * In order to reply to a host which has set the
3467 * TCP_SIGNATURE option in its initial SYN, we have
3468 * to record the fact that the option was observed
3469 * here for the syncache code to perform the correct
3470 * response.
3471 */
3472 if (optlen != TCPOLEN_SIGNATURE)
3473 continue;
3474 to->to_flags |= TOF_SIGNATURE;
3475 to->to_signature = cp + 2;
3476 break;
3477 case TCPOPT_SACK_PERMITTED:
3478 if (optlen != TCPOLEN_SACK_PERMITTED)
3479 continue;
3480 if (!(flags & TO_SYN))
3481 continue;
3482 if (!V_tcp_do_sack)
3483 continue;
3484 to->to_flags |= TOF_SACKPERM;
3485 break;
3486 case TCPOPT_SACK:
3487 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3488 continue;
3489 if (flags & TO_SYN)
3490 continue;
3491 to->to_flags |= TOF_SACK;
3492 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3493 to->to_sacks = cp + 2;
3494 TCPSTAT_INC(tcps_sack_rcv_blocks);
3495 break;
3496 case TCPOPT_FAST_OPEN:
3497 /*
3498 * Cookie length validation is performed by the
3499 * server side cookie checking code or the client
3500 * side cookie cache update code.
3501 */
3502 if (!(flags & TO_SYN))
3503 continue;
3504 if (!V_tcp_fastopen_client_enable &&
3505 !V_tcp_fastopen_server_enable)
3506 continue;
3507 to->to_flags |= TOF_FASTOPEN;
3508 to->to_tfo_len = optlen - 2;
3509 to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3510 break;
3511 default:
3512 continue;
3513 }
3514 }
3515 }
3516
3517 /*
3518 * Pull out of band byte out of a segment so
3519 * it doesn't appear in the user's data queue.
3520 * It is still reflected in the segment length for
3521 * sequencing purposes.
3522 */
3523 void
tcp_pulloutofband(struct socket * so,struct tcphdr * th,struct mbuf * m,int off)3524 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3525 int off)
3526 {
3527 int cnt = off + th->th_urp - 1;
3528
3529 while (cnt >= 0) {
3530 if (m->m_len > cnt) {
3531 char *cp = mtod(m, caddr_t) + cnt;
3532 struct tcpcb *tp = sototcpcb(so);
3533
3534 INP_WLOCK_ASSERT(tp->t_inpcb);
3535
3536 tp->t_iobc = *cp;
3537 tp->t_oobflags |= TCPOOB_HAVEDATA;
3538 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3539 m->m_len--;
3540 if (m->m_flags & M_PKTHDR)
3541 m->m_pkthdr.len--;
3542 return;
3543 }
3544 cnt -= m->m_len;
3545 m = m->m_next;
3546 if (m == NULL)
3547 break;
3548 }
3549 panic("tcp_pulloutofband");
3550 }
3551
3552 /*
3553 * Collect new round-trip time estimate
3554 * and update averages and current timeout.
3555 */
3556 void
tcp_xmit_timer(struct tcpcb * tp,int rtt)3557 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3558 {
3559 int delta;
3560
3561 INP_WLOCK_ASSERT(tp->t_inpcb);
3562
3563 TCPSTAT_INC(tcps_rttupdated);
3564 tp->t_rttupdated++;
3565 #ifdef STATS
3566 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
3567 imax(0, rtt * 1000 / hz));
3568 #endif
3569 if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3570 /*
3571 * srtt is stored as fixed point with 5 bits after the
3572 * binary point (i.e., scaled by 8). The following magic
3573 * is equivalent to the smoothing algorithm in rfc793 with
3574 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3575 * point). Adjust rtt to origin 0.
3576 */
3577 delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3578 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3579
3580 if ((tp->t_srtt += delta) <= 0)
3581 tp->t_srtt = 1;
3582
3583 /*
3584 * We accumulate a smoothed rtt variance (actually, a
3585 * smoothed mean difference), then set the retransmit
3586 * timer to smoothed rtt + 4 times the smoothed variance.
3587 * rttvar is stored as fixed point with 4 bits after the
3588 * binary point (scaled by 16). The following is
3589 * equivalent to rfc793 smoothing with an alpha of .75
3590 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3591 * rfc793's wired-in beta.
3592 */
3593 if (delta < 0)
3594 delta = -delta;
3595 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3596 if ((tp->t_rttvar += delta) <= 0)
3597 tp->t_rttvar = 1;
3598 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3599 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3600 } else {
3601 /*
3602 * No rtt measurement yet - use the unsmoothed rtt.
3603 * Set the variance to half the rtt (so our first
3604 * retransmit happens at 3*rtt).
3605 */
3606 tp->t_srtt = rtt << TCP_RTT_SHIFT;
3607 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3608 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3609 }
3610 tp->t_rtttime = 0;
3611 tp->t_rxtshift = 0;
3612
3613 /*
3614 * the retransmit should happen at rtt + 4 * rttvar.
3615 * Because of the way we do the smoothing, srtt and rttvar
3616 * will each average +1/2 tick of bias. When we compute
3617 * the retransmit timer, we want 1/2 tick of rounding and
3618 * 1 extra tick because of +-1/2 tick uncertainty in the
3619 * firing of the timer. The bias will give us exactly the
3620 * 1.5 tick we need. But, because the bias is
3621 * statistical, we have to test that we don't drop below
3622 * the minimum feasible timer (which is 2 ticks).
3623 */
3624 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3625 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3626
3627 /*
3628 * We received an ack for a packet that wasn't retransmitted;
3629 * it is probably safe to discard any error indications we've
3630 * received recently. This isn't quite right, but close enough
3631 * for now (a route might have failed after we sent a segment,
3632 * and the return path might not be symmetrical).
3633 */
3634 tp->t_softerror = 0;
3635 }
3636
3637 /*
3638 * Determine a reasonable value for maxseg size.
3639 * If the route is known, check route for mtu.
3640 * If none, use an mss that can be handled on the outgoing interface
3641 * without forcing IP to fragment. If no route is found, route has no mtu,
3642 * or the destination isn't local, use a default, hopefully conservative
3643 * size (usually 512 or the default IP max size, but no more than the mtu
3644 * of the interface), as we can't discover anything about intervening
3645 * gateways or networks. We also initialize the congestion/slow start
3646 * window to be a single segment if the destination isn't local.
3647 * While looking at the routing entry, we also initialize other path-dependent
3648 * parameters from pre-set or cached values in the routing entry.
3649 *
3650 * NOTE that resulting t_maxseg doesn't include space for TCP options or
3651 * IP options, e.g. IPSEC data, since length of this data may vary, and
3652 * thus it is calculated for every segment separately in tcp_output().
3653 *
3654 * NOTE that this routine is only called when we process an incoming
3655 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3656 * settings are handled in tcp_mssopt().
3657 */
3658 void
tcp_mss_update(struct tcpcb * tp,int offer,int mtuoffer,struct hc_metrics_lite * metricptr,struct tcp_ifcap * cap)3659 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3660 struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3661 {
3662 int mss = 0;
3663 uint32_t maxmtu = 0;
3664 struct inpcb *inp = tp->t_inpcb;
3665 struct hc_metrics_lite metrics;
3666 #ifdef INET6
3667 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3668 size_t min_protoh = isipv6 ?
3669 sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3670 sizeof (struct tcpiphdr);
3671 #else
3672 const size_t min_protoh = sizeof(struct tcpiphdr);
3673 #endif
3674
3675 INP_WLOCK_ASSERT(tp->t_inpcb);
3676
3677 if (mtuoffer != -1) {
3678 KASSERT(offer == -1, ("%s: conflict", __func__));
3679 offer = mtuoffer - min_protoh;
3680 }
3681
3682 /* Initialize. */
3683 #ifdef INET6
3684 if (isipv6) {
3685 maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3686 tp->t_maxseg = V_tcp_v6mssdflt;
3687 }
3688 #endif
3689 #if defined(INET) && defined(INET6)
3690 else
3691 #endif
3692 #ifdef INET
3693 {
3694 maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3695 tp->t_maxseg = V_tcp_mssdflt;
3696 }
3697 #endif
3698
3699 /*
3700 * No route to sender, stay with default mss and return.
3701 */
3702 if (maxmtu == 0) {
3703 /*
3704 * In case we return early we need to initialize metrics
3705 * to a defined state as tcp_hc_get() would do for us
3706 * if there was no cache hit.
3707 */
3708 if (metricptr != NULL)
3709 bzero(metricptr, sizeof(struct hc_metrics_lite));
3710 return;
3711 }
3712
3713 /* What have we got? */
3714 switch (offer) {
3715 case 0:
3716 /*
3717 * Offer == 0 means that there was no MSS on the SYN
3718 * segment, in this case we use tcp_mssdflt as
3719 * already assigned to t_maxseg above.
3720 */
3721 offer = tp->t_maxseg;
3722 break;
3723
3724 case -1:
3725 /*
3726 * Offer == -1 means that we didn't receive SYN yet.
3727 */
3728 /* FALLTHROUGH */
3729
3730 default:
3731 /*
3732 * Prevent DoS attack with too small MSS. Round up
3733 * to at least minmss.
3734 */
3735 offer = max(offer, V_tcp_minmss);
3736 }
3737
3738 /*
3739 * rmx information is now retrieved from tcp_hostcache.
3740 */
3741 tcp_hc_get(&inp->inp_inc, &metrics);
3742 if (metricptr != NULL)
3743 bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3744
3745 /*
3746 * If there's a discovered mtu in tcp hostcache, use it.
3747 * Else, use the link mtu.
3748 */
3749 if (metrics.rmx_mtu)
3750 mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3751 else {
3752 #ifdef INET6
3753 if (isipv6) {
3754 mss = maxmtu - min_protoh;
3755 if (!V_path_mtu_discovery &&
3756 !in6_localaddr(&inp->in6p_faddr))
3757 mss = min(mss, V_tcp_v6mssdflt);
3758 }
3759 #endif
3760 #if defined(INET) && defined(INET6)
3761 else
3762 #endif
3763 #ifdef INET
3764 {
3765 mss = maxmtu - min_protoh;
3766 if (!V_path_mtu_discovery &&
3767 !in_localaddr(inp->inp_faddr))
3768 mss = min(mss, V_tcp_mssdflt);
3769 }
3770 #endif
3771 /*
3772 * XXX - The above conditional (mss = maxmtu - min_protoh)
3773 * probably violates the TCP spec.
3774 * The problem is that, since we don't know the
3775 * other end's MSS, we are supposed to use a conservative
3776 * default. But, if we do that, then MTU discovery will
3777 * never actually take place, because the conservative
3778 * default is much less than the MTUs typically seen
3779 * on the Internet today. For the moment, we'll sweep
3780 * this under the carpet.
3781 *
3782 * The conservative default might not actually be a problem
3783 * if the only case this occurs is when sending an initial
3784 * SYN with options and data to a host we've never talked
3785 * to before. Then, they will reply with an MSS value which
3786 * will get recorded and the new parameters should get
3787 * recomputed. For Further Study.
3788 */
3789 }
3790 mss = min(mss, offer);
3791
3792 /*
3793 * Sanity check: make sure that maxseg will be large
3794 * enough to allow some data on segments even if the
3795 * all the option space is used (40bytes). Otherwise
3796 * funny things may happen in tcp_output.
3797 *
3798 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3799 */
3800 mss = max(mss, 64);
3801
3802 tp->t_maxseg = mss;
3803 }
3804
3805 void
tcp_mss(struct tcpcb * tp,int offer)3806 tcp_mss(struct tcpcb *tp, int offer)
3807 {
3808 int mss;
3809 uint32_t bufsize;
3810 struct inpcb *inp;
3811 struct socket *so;
3812 struct hc_metrics_lite metrics;
3813 struct tcp_ifcap cap;
3814
3815 KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3816
3817 bzero(&cap, sizeof(cap));
3818 tcp_mss_update(tp, offer, -1, &metrics, &cap);
3819
3820 mss = tp->t_maxseg;
3821 inp = tp->t_inpcb;
3822
3823 /*
3824 * If there's a pipesize, change the socket buffer to that size,
3825 * don't change if sb_hiwat is different than default (then it
3826 * has been changed on purpose with setsockopt).
3827 * Make the socket buffers an integral number of mss units;
3828 * if the mss is larger than the socket buffer, decrease the mss.
3829 */
3830 so = inp->inp_socket;
3831 SOCKBUF_LOCK(&so->so_snd);
3832 if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3833 bufsize = metrics.rmx_sendpipe;
3834 else
3835 bufsize = so->so_snd.sb_hiwat;
3836 if (bufsize < mss)
3837 mss = bufsize;
3838 else {
3839 bufsize = roundup(bufsize, mss);
3840 if (bufsize > sb_max)
3841 bufsize = sb_max;
3842 if (bufsize > so->so_snd.sb_hiwat)
3843 (void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3844 }
3845 SOCKBUF_UNLOCK(&so->so_snd);
3846 /*
3847 * Sanity check: make sure that maxseg will be large
3848 * enough to allow some data on segments even if the
3849 * all the option space is used (40bytes). Otherwise
3850 * funny things may happen in tcp_output.
3851 *
3852 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3853 */
3854 tp->t_maxseg = max(mss, 64);
3855
3856 SOCKBUF_LOCK(&so->so_rcv);
3857 if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3858 bufsize = metrics.rmx_recvpipe;
3859 else
3860 bufsize = so->so_rcv.sb_hiwat;
3861 if (bufsize > mss) {
3862 bufsize = roundup(bufsize, mss);
3863 if (bufsize > sb_max)
3864 bufsize = sb_max;
3865 if (bufsize > so->so_rcv.sb_hiwat)
3866 (void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3867 }
3868 SOCKBUF_UNLOCK(&so->so_rcv);
3869
3870 /* Check the interface for TSO capabilities. */
3871 if (cap.ifcap & CSUM_TSO) {
3872 tp->t_flags |= TF_TSO;
3873 tp->t_tsomax = cap.tsomax;
3874 tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3875 tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3876 }
3877 }
3878
3879 /*
3880 * Determine the MSS option to send on an outgoing SYN.
3881 */
3882 int
tcp_mssopt(struct in_conninfo * inc)3883 tcp_mssopt(struct in_conninfo *inc)
3884 {
3885 int mss = 0;
3886 uint32_t thcmtu = 0;
3887 uint32_t maxmtu = 0;
3888 size_t min_protoh;
3889
3890 KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3891
3892 #ifdef INET6
3893 if (inc->inc_flags & INC_ISIPV6) {
3894 mss = V_tcp_v6mssdflt;
3895 maxmtu = tcp_maxmtu6(inc, NULL);
3896 min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3897 }
3898 #endif
3899 #if defined(INET) && defined(INET6)
3900 else
3901 #endif
3902 #ifdef INET
3903 {
3904 mss = V_tcp_mssdflt;
3905 maxmtu = tcp_maxmtu(inc, NULL);
3906 min_protoh = sizeof(struct tcpiphdr);
3907 }
3908 #endif
3909 #if defined(INET6) || defined(INET)
3910 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3911 #endif
3912
3913 if (maxmtu && thcmtu)
3914 mss = min(maxmtu, thcmtu) - min_protoh;
3915 else if (maxmtu || thcmtu)
3916 mss = max(maxmtu, thcmtu) - min_protoh;
3917
3918 return (mss);
3919 }
3920
3921 void
tcp_prr_partialack(struct tcpcb * tp,struct tcphdr * th)3922 tcp_prr_partialack(struct tcpcb *tp, struct tcphdr *th)
3923 {
3924 int snd_cnt = 0, limit = 0, del_data = 0, pipe = 0;
3925 int maxseg = tcp_maxseg(tp);
3926
3927 INP_WLOCK_ASSERT(tp->t_inpcb);
3928
3929 tcp_timer_activate(tp, TT_REXMT, 0);
3930 tp->t_rtttime = 0;
3931 /*
3932 * Compute the amount of data that this ACK is indicating
3933 * (del_data) and an estimate of how many bytes are in the
3934 * network.
3935 */
3936 del_data = tp->sackhint.delivered_data;
3937 if (V_tcp_do_rfc6675_pipe)
3938 pipe = tcp_compute_pipe(tp);
3939 else
3940 pipe = (tp->snd_nxt - tp->snd_fack) + tp->sackhint.sack_bytes_rexmit;
3941 tp->sackhint.prr_delivered += del_data;
3942 /*
3943 * Proportional Rate Reduction
3944 */
3945 if (pipe >= tp->snd_ssthresh) {
3946 if (tp->sackhint.recover_fs == 0)
3947 tp->sackhint.recover_fs =
3948 imax(1, tp->snd_nxt - tp->snd_una);
3949 snd_cnt = howmany((long)tp->sackhint.prr_delivered *
3950 tp->snd_ssthresh, tp->sackhint.recover_fs) -
3951 tp->sackhint.prr_out;
3952 } else {
3953 if (V_tcp_do_prr_conservative)
3954 limit = tp->sackhint.prr_delivered -
3955 tp->sackhint.prr_out;
3956 else
3957 limit = imax(tp->sackhint.prr_delivered -
3958 tp->sackhint.prr_out, del_data) +
3959 maxseg;
3960 snd_cnt = imin((tp->snd_ssthresh - pipe), limit);
3961 }
3962 snd_cnt = imax(snd_cnt, 0) / maxseg;
3963 /*
3964 * Send snd_cnt new data into the network in response to this ack.
3965 * If there is going to be a SACK retransmission, adjust snd_cwnd
3966 * accordingly.
3967 */
3968 tp->snd_cwnd = imax(maxseg, tp->snd_nxt - tp->snd_recover +
3969 tp->sackhint.sack_bytes_rexmit + (snd_cnt * maxseg));
3970 tp->t_flags |= TF_ACKNOW;
3971 (void) tcp_output(tp);
3972 }
3973
3974 /*
3975 * On a partial ack arrives, force the retransmission of the
3976 * next unacknowledged segment. Do not clear tp->t_dupacks.
3977 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3978 * be started again.
3979 */
3980 void
tcp_newreno_partial_ack(struct tcpcb * tp,struct tcphdr * th)3981 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3982 {
3983 tcp_seq onxt = tp->snd_nxt;
3984 uint32_t ocwnd = tp->snd_cwnd;
3985 u_int maxseg = tcp_maxseg(tp);
3986
3987 INP_WLOCK_ASSERT(tp->t_inpcb);
3988
3989 tcp_timer_activate(tp, TT_REXMT, 0);
3990 tp->t_rtttime = 0;
3991 tp->snd_nxt = th->th_ack;
3992 /*
3993 * Set snd_cwnd to one segment beyond acknowledged offset.
3994 * (tp->snd_una has not yet been updated when this function is called.)
3995 */
3996 tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3997 tp->t_flags |= TF_ACKNOW;
3998 (void) tp->t_fb->tfb_tcp_output(tp);
3999 tp->snd_cwnd = ocwnd;
4000 if (SEQ_GT(onxt, tp->snd_nxt))
4001 tp->snd_nxt = onxt;
4002 /*
4003 * Partial window deflation. Relies on fact that tp->snd_una
4004 * not updated yet.
4005 */
4006 if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
4007 tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
4008 else
4009 tp->snd_cwnd = 0;
4010 tp->snd_cwnd += maxseg;
4011 }
4012
4013 int
tcp_compute_pipe(struct tcpcb * tp)4014 tcp_compute_pipe(struct tcpcb *tp)
4015 {
4016 return (tp->snd_max - tp->snd_una +
4017 tp->sackhint.sack_bytes_rexmit -
4018 tp->sackhint.sacked_bytes);
4019 }
4020
4021 uint32_t
tcp_compute_initwnd(uint32_t maxseg)4022 tcp_compute_initwnd(uint32_t maxseg)
4023 {
4024 /*
4025 * Calculate the Initial Window, also used as Restart Window
4026 *
4027 * RFC5681 Section 3.1 specifies the default conservative values.
4028 * RFC3390 specifies slightly more aggressive values.
4029 * RFC6928 increases it to ten segments.
4030 * Support for user specified value for initial flight size.
4031 */
4032 if (V_tcp_initcwnd_segments)
4033 return min(V_tcp_initcwnd_segments * maxseg,
4034 max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
4035 else if (V_tcp_do_rfc3390)
4036 return min(4 * maxseg, max(2 * maxseg, 4380));
4037 else {
4038 /* Per RFC5681 Section 3.1 */
4039 if (maxseg > 2190)
4040 return (2 * maxseg);
4041 else if (maxseg > 1095)
4042 return (3 * maxseg);
4043 else
4044 return (4 * maxseg);
4045 }
4046 }
4047