xref: /sqlite-3.40.0/src/date.c (revision 26e817f6)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** SQLite processes all times and dates as julian day numbers.  The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
23 **
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
26 **
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
31 **
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar.  Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale.  Beware of this difference.
36 **
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
39 **
40 **      Jean Meeus
41 **      Astronomical Algorithms, 2nd Edition, 1998
42 **      ISBN 0-943396-61-1
43 **      Willmann-Bell, Inc
44 **      Richmond, Virginia (USA)
45 */
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
50 
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
52 
53 /*
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute.  The substitute function itself is
56 ** defined in "os_win.c".
57 */
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59     (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm *__cdecl localtime(const time_t *);
61 #endif
62 
63 /*
64 ** A structure for holding a single date and time.
65 */
66 typedef struct DateTime DateTime;
67 struct DateTime {
68   sqlite3_int64 iJD;  /* The julian day number times 86400000 */
69   int Y, M, D;        /* Year, month, and day */
70   int h, m;           /* Hour and minutes */
71   int tz;             /* Timezone offset in minutes */
72   double s;           /* Seconds */
73   char validJD;       /* True (1) if iJD is valid */
74   char rawS;          /* Raw numeric value stored in s */
75   char validYMD;      /* True (1) if Y,M,D are valid */
76   char validHMS;      /* True (1) if h,m,s are valid */
77   char validTZ;       /* True (1) if tz is valid */
78   char tzSet;         /* Timezone was set explicitly */
79   char isError;       /* An overflow has occurred */
80 };
81 
82 
83 /*
84 ** Convert zDate into one or more integers according to the conversion
85 ** specifier zFormat.
86 **
87 ** zFormat[] contains 4 characters for each integer converted, except for
88 ** the last integer which is specified by three characters.  The meaning
89 ** of a four-character format specifiers ABCD is:
90 **
91 **    A:   number of digits to convert.  Always "2" or "4".
92 **    B:   minimum value.  Always "0" or "1".
93 **    C:   maximum value, decoded as:
94 **           a:  12
95 **           b:  14
96 **           c:  24
97 **           d:  31
98 **           e:  59
99 **           f:  9999
100 **    D:   the separator character, or \000 to indicate this is the
101 **         last number to convert.
102 **
103 ** Example:  To translate an ISO-8601 date YYYY-MM-DD, the format would
104 ** be "40f-21a-20c".  The "40f-" indicates the 4-digit year followed by "-".
105 ** The "21a-" indicates the 2-digit month followed by "-".  The "20c" indicates
106 ** the 2-digit day which is the last integer in the set.
107 **
108 ** The function returns the number of successful conversions.
109 */
getDigits(const char * zDate,const char * zFormat,...)110 static int getDigits(const char *zDate, const char *zFormat, ...){
111   /* The aMx[] array translates the 3rd character of each format
112   ** spec into a max size:    a   b   c   d   e     f */
113   static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 };
114   va_list ap;
115   int cnt = 0;
116   char nextC;
117   va_start(ap, zFormat);
118   do{
119     char N = zFormat[0] - '0';
120     char min = zFormat[1] - '0';
121     int val = 0;
122     u16 max;
123 
124     assert( zFormat[2]>='a' && zFormat[2]<='f' );
125     max = aMx[zFormat[2] - 'a'];
126     nextC = zFormat[3];
127     val = 0;
128     while( N-- ){
129       if( !sqlite3Isdigit(*zDate) ){
130         goto end_getDigits;
131       }
132       val = val*10 + *zDate - '0';
133       zDate++;
134     }
135     if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
136       goto end_getDigits;
137     }
138     *va_arg(ap,int*) = val;
139     zDate++;
140     cnt++;
141     zFormat += 4;
142   }while( nextC );
143 end_getDigits:
144   va_end(ap);
145   return cnt;
146 }
147 
148 /*
149 ** Parse a timezone extension on the end of a date-time.
150 ** The extension is of the form:
151 **
152 **        (+/-)HH:MM
153 **
154 ** Or the "zulu" notation:
155 **
156 **        Z
157 **
158 ** If the parse is successful, write the number of minutes
159 ** of change in p->tz and return 0.  If a parser error occurs,
160 ** return non-zero.
161 **
162 ** A missing specifier is not considered an error.
163 */
parseTimezone(const char * zDate,DateTime * p)164 static int parseTimezone(const char *zDate, DateTime *p){
165   int sgn = 0;
166   int nHr, nMn;
167   int c;
168   while( sqlite3Isspace(*zDate) ){ zDate++; }
169   p->tz = 0;
170   c = *zDate;
171   if( c=='-' ){
172     sgn = -1;
173   }else if( c=='+' ){
174     sgn = +1;
175   }else if( c=='Z' || c=='z' ){
176     zDate++;
177     goto zulu_time;
178   }else{
179     return c!=0;
180   }
181   zDate++;
182   if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
183     return 1;
184   }
185   zDate += 5;
186   p->tz = sgn*(nMn + nHr*60);
187 zulu_time:
188   while( sqlite3Isspace(*zDate) ){ zDate++; }
189   p->tzSet = 1;
190   return *zDate!=0;
191 }
192 
193 /*
194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
195 ** The HH, MM, and SS must each be exactly 2 digits.  The
196 ** fractional seconds FFFF can be one or more digits.
197 **
198 ** Return 1 if there is a parsing error and 0 on success.
199 */
parseHhMmSs(const char * zDate,DateTime * p)200 static int parseHhMmSs(const char *zDate, DateTime *p){
201   int h, m, s;
202   double ms = 0.0;
203   if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
204     return 1;
205   }
206   zDate += 5;
207   if( *zDate==':' ){
208     zDate++;
209     if( getDigits(zDate, "20e", &s)!=1 ){
210       return 1;
211     }
212     zDate += 2;
213     if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
214       double rScale = 1.0;
215       zDate++;
216       while( sqlite3Isdigit(*zDate) ){
217         ms = ms*10.0 + *zDate - '0';
218         rScale *= 10.0;
219         zDate++;
220       }
221       ms /= rScale;
222     }
223   }else{
224     s = 0;
225   }
226   p->validJD = 0;
227   p->rawS = 0;
228   p->validHMS = 1;
229   p->h = h;
230   p->m = m;
231   p->s = s + ms;
232   if( parseTimezone(zDate, p) ) return 1;
233   p->validTZ = (p->tz!=0)?1:0;
234   return 0;
235 }
236 
237 /*
238 ** Put the DateTime object into its error state.
239 */
datetimeError(DateTime * p)240 static void datetimeError(DateTime *p){
241   memset(p, 0, sizeof(*p));
242   p->isError = 1;
243 }
244 
245 /*
246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
247 ** that the YYYY-MM-DD is according to the Gregorian calendar.
248 **
249 ** Reference:  Meeus page 61
250 */
computeJD(DateTime * p)251 static void computeJD(DateTime *p){
252   int Y, M, D, A, B, X1, X2;
253 
254   if( p->validJD ) return;
255   if( p->validYMD ){
256     Y = p->Y;
257     M = p->M;
258     D = p->D;
259   }else{
260     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
261     M = 1;
262     D = 1;
263   }
264   if( Y<-4713 || Y>9999 || p->rawS ){
265     datetimeError(p);
266     return;
267   }
268   if( M<=2 ){
269     Y--;
270     M += 12;
271   }
272   A = Y/100;
273   B = 2 - A + (A/4);
274   X1 = 36525*(Y+4716)/100;
275   X2 = 306001*(M+1)/10000;
276   p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
277   p->validJD = 1;
278   if( p->validHMS ){
279     p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000 + 0.5);
280     if( p->validTZ ){
281       p->iJD -= p->tz*60000;
282       p->validYMD = 0;
283       p->validHMS = 0;
284       p->validTZ = 0;
285     }
286   }
287 }
288 
289 /*
290 ** Parse dates of the form
291 **
292 **     YYYY-MM-DD HH:MM:SS.FFF
293 **     YYYY-MM-DD HH:MM:SS
294 **     YYYY-MM-DD HH:MM
295 **     YYYY-MM-DD
296 **
297 ** Write the result into the DateTime structure and return 0
298 ** on success and 1 if the input string is not a well-formed
299 ** date.
300 */
parseYyyyMmDd(const char * zDate,DateTime * p)301 static int parseYyyyMmDd(const char *zDate, DateTime *p){
302   int Y, M, D, neg;
303 
304   if( zDate[0]=='-' ){
305     zDate++;
306     neg = 1;
307   }else{
308     neg = 0;
309   }
310   if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
311     return 1;
312   }
313   zDate += 10;
314   while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
315   if( parseHhMmSs(zDate, p)==0 ){
316     /* We got the time */
317   }else if( *zDate==0 ){
318     p->validHMS = 0;
319   }else{
320     return 1;
321   }
322   p->validJD = 0;
323   p->validYMD = 1;
324   p->Y = neg ? -Y : Y;
325   p->M = M;
326   p->D = D;
327   if( p->validTZ ){
328     computeJD(p);
329   }
330   return 0;
331 }
332 
333 /*
334 ** Set the time to the current time reported by the VFS.
335 **
336 ** Return the number of errors.
337 */
setDateTimeToCurrent(sqlite3_context * context,DateTime * p)338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
339   p->iJD = sqlite3StmtCurrentTime(context);
340   if( p->iJD>0 ){
341     p->validJD = 1;
342     return 0;
343   }else{
344     return 1;
345   }
346 }
347 
348 /*
349 ** Input "r" is a numeric quantity which might be a julian day number,
350 ** or the number of seconds since 1970.  If the value if r is within
351 ** range of a julian day number, install it as such and set validJD.
352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
353 */
setRawDateNumber(DateTime * p,double r)354 static void setRawDateNumber(DateTime *p, double r){
355   p->s = r;
356   p->rawS = 1;
357   if( r>=0.0 && r<5373484.5 ){
358     p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
359     p->validJD = 1;
360   }
361 }
362 
363 /*
364 ** Attempt to parse the given string into a julian day number.  Return
365 ** the number of errors.
366 **
367 ** The following are acceptable forms for the input string:
368 **
369 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
370 **      DDDD.DD
371 **      now
372 **
373 ** In the first form, the +/-HH:MM is always optional.  The fractional
374 ** seconds extension (the ".FFF") is optional.  The seconds portion
375 ** (":SS.FFF") is option.  The year and date can be omitted as long
376 ** as there is a time string.  The time string can be omitted as long
377 ** as there is a year and date.
378 */
parseDateOrTime(sqlite3_context * context,const char * zDate,DateTime * p)379 static int parseDateOrTime(
380   sqlite3_context *context,
381   const char *zDate,
382   DateTime *p
383 ){
384   double r;
385   if( parseYyyyMmDd(zDate,p)==0 ){
386     return 0;
387   }else if( parseHhMmSs(zDate, p)==0 ){
388     return 0;
389   }else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){
390     return setDateTimeToCurrent(context, p);
391   }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){
392     setRawDateNumber(p, r);
393     return 0;
394   }
395   return 1;
396 }
397 
398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value
400 ** for DateTime.iJD.
401 **
402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
403 ** such a large integer literal, so we have to encode it.
404 */
405 #define INT_464269060799999  ((((i64)0x1a640)<<32)|0x1072fdff)
406 
407 /*
408 ** Return TRUE if the given julian day number is within range.
409 **
410 ** The input is the JulianDay times 86400000.
411 */
validJulianDay(sqlite3_int64 iJD)412 static int validJulianDay(sqlite3_int64 iJD){
413   return iJD>=0 && iJD<=INT_464269060799999;
414 }
415 
416 /*
417 ** Compute the Year, Month, and Day from the julian day number.
418 */
computeYMD(DateTime * p)419 static void computeYMD(DateTime *p){
420   int Z, A, B, C, D, E, X1;
421   if( p->validYMD ) return;
422   if( !p->validJD ){
423     p->Y = 2000;
424     p->M = 1;
425     p->D = 1;
426   }else if( !validJulianDay(p->iJD) ){
427     datetimeError(p);
428     return;
429   }else{
430     Z = (int)((p->iJD + 43200000)/86400000);
431     A = (int)((Z - 1867216.25)/36524.25);
432     A = Z + 1 + A - (A/4);
433     B = A + 1524;
434     C = (int)((B - 122.1)/365.25);
435     D = (36525*(C&32767))/100;
436     E = (int)((B-D)/30.6001);
437     X1 = (int)(30.6001*E);
438     p->D = B - D - X1;
439     p->M = E<14 ? E-1 : E-13;
440     p->Y = p->M>2 ? C - 4716 : C - 4715;
441   }
442   p->validYMD = 1;
443 }
444 
445 /*
446 ** Compute the Hour, Minute, and Seconds from the julian day number.
447 */
computeHMS(DateTime * p)448 static void computeHMS(DateTime *p){
449   int s;
450   if( p->validHMS ) return;
451   computeJD(p);
452   s = (int)((p->iJD + 43200000) % 86400000);
453   p->s = s/1000.0;
454   s = (int)p->s;
455   p->s -= s;
456   p->h = s/3600;
457   s -= p->h*3600;
458   p->m = s/60;
459   p->s += s - p->m*60;
460   p->rawS = 0;
461   p->validHMS = 1;
462 }
463 
464 /*
465 ** Compute both YMD and HMS
466 */
computeYMD_HMS(DateTime * p)467 static void computeYMD_HMS(DateTime *p){
468   computeYMD(p);
469   computeHMS(p);
470 }
471 
472 /*
473 ** Clear the YMD and HMS and the TZ
474 */
clearYMD_HMS_TZ(DateTime * p)475 static void clearYMD_HMS_TZ(DateTime *p){
476   p->validYMD = 0;
477   p->validHMS = 0;
478   p->validTZ = 0;
479 }
480 
481 #ifndef SQLITE_OMIT_LOCALTIME
482 /*
483 ** On recent Windows platforms, the localtime_s() function is available
484 ** as part of the "Secure CRT". It is essentially equivalent to
485 ** localtime_r() available under most POSIX platforms, except that the
486 ** order of the parameters is reversed.
487 **
488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
489 **
490 ** If the user has not indicated to use localtime_r() or localtime_s()
491 ** already, check for an MSVC build environment that provides
492 ** localtime_s().
493 */
494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
495     && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
496 #undef  HAVE_LOCALTIME_S
497 #define HAVE_LOCALTIME_S 1
498 #endif
499 
500 /*
501 ** The following routine implements the rough equivalent of localtime_r()
502 ** using whatever operating-system specific localtime facility that
503 ** is available.  This routine returns 0 on success and
504 ** non-zero on any kind of error.
505 **
506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this
507 ** routine will always fail.  If bLocaltimeFault is nonzero and
508 ** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is
509 ** invoked in place of the OS-defined localtime() function.
510 **
511 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
512 ** library function localtime_r() is used to assist in the calculation of
513 ** local time.
514 */
osLocaltime(time_t * t,struct tm * pTm)515 static int osLocaltime(time_t *t, struct tm *pTm){
516   int rc;
517 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
518   struct tm *pX;
519 #if SQLITE_THREADSAFE>0
520   sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
521 #endif
522   sqlite3_mutex_enter(mutex);
523   pX = localtime(t);
524 #ifndef SQLITE_UNTESTABLE
525   if( sqlite3GlobalConfig.bLocaltimeFault ){
526     if( sqlite3GlobalConfig.xAltLocaltime!=0
527      && 0==sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm)
528     ){
529       pX = pTm;
530     }else{
531       pX = 0;
532     }
533   }
534 #endif
535   if( pX ) *pTm = *pX;
536 #if SQLITE_THREADSAFE>0
537   sqlite3_mutex_leave(mutex);
538 #endif
539   rc = pX==0;
540 #else
541 #ifndef SQLITE_UNTESTABLE
542   if( sqlite3GlobalConfig.bLocaltimeFault ){
543     if( sqlite3GlobalConfig.xAltLocaltime!=0 ){
544       return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm);
545     }else{
546       return 1;
547     }
548   }
549 #endif
550 #if HAVE_LOCALTIME_R
551   rc = localtime_r(t, pTm)==0;
552 #else
553   rc = localtime_s(pTm, t);
554 #endif /* HAVE_LOCALTIME_R */
555 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
556   return rc;
557 }
558 #endif /* SQLITE_OMIT_LOCALTIME */
559 
560 
561 #ifndef SQLITE_OMIT_LOCALTIME
562 /*
563 ** Assuming the input DateTime is UTC, move it to its localtime equivalent.
564 */
toLocaltime(DateTime * p,sqlite3_context * pCtx)565 static int toLocaltime(
566   DateTime *p,                   /* Date at which to calculate offset */
567   sqlite3_context *pCtx          /* Write error here if one occurs */
568 ){
569   time_t t;
570   struct tm sLocal;
571   int iYearDiff;
572 
573   /* Initialize the contents of sLocal to avoid a compiler warning. */
574   memset(&sLocal, 0, sizeof(sLocal));
575 
576   computeJD(p);
577   if( p->iJD<2108667600*(i64)100000 /* 1970-01-01 */
578    || p->iJD>2130141456*(i64)100000 /* 2038-01-18 */
579   ){
580     /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
581     ** works for years between 1970 and 2037. For dates outside this range,
582     ** SQLite attempts to map the year into an equivalent year within this
583     ** range, do the calculation, then map the year back.
584     */
585     DateTime x = *p;
586     computeYMD_HMS(&x);
587     iYearDiff = (2000 + x.Y%4) - x.Y;
588     x.Y += iYearDiff;
589     x.validJD = 0;
590     computeJD(&x);
591     t = (time_t)(x.iJD/1000 -  21086676*(i64)10000);
592   }else{
593     iYearDiff = 0;
594     t = (time_t)(p->iJD/1000 -  21086676*(i64)10000);
595   }
596   if( osLocaltime(&t, &sLocal) ){
597     sqlite3_result_error(pCtx, "local time unavailable", -1);
598     return SQLITE_ERROR;
599   }
600   p->Y = sLocal.tm_year + 1900 - iYearDiff;
601   p->M = sLocal.tm_mon + 1;
602   p->D = sLocal.tm_mday;
603   p->h = sLocal.tm_hour;
604   p->m = sLocal.tm_min;
605   p->s = sLocal.tm_sec + (p->iJD%1000)*0.001;
606   p->validYMD = 1;
607   p->validHMS = 1;
608   p->validJD = 0;
609   p->rawS = 0;
610   p->validTZ = 0;
611   p->isError = 0;
612   return SQLITE_OK;
613 }
614 #endif /* SQLITE_OMIT_LOCALTIME */
615 
616 /*
617 ** The following table defines various date transformations of the form
618 **
619 **            'NNN days'
620 **
621 ** Where NNN is an arbitrary floating-point number and "days" can be one
622 ** of several units of time.
623 */
624 static const struct {
625   u8 nName;           /* Length of the name */
626   char zName[7];      /* Name of the transformation */
627   float rLimit;       /* Maximum NNN value for this transform */
628   float rXform;       /* Constant used for this transform */
629 } aXformType[] = {
630   { 6, "second", 4.6427e+14,       1.0  },
631   { 6, "minute", 7.7379e+12,      60.0  },
632   { 4, "hour",   1.2897e+11,    3600.0  },
633   { 3, "day",    5373485.0,    86400.0  },
634   { 5, "month",  176546.0,   2592000.0  },
635   { 4, "year",   14713.0,   31536000.0  },
636 };
637 
638 /*
639 ** Process a modifier to a date-time stamp.  The modifiers are
640 ** as follows:
641 **
642 **     NNN days
643 **     NNN hours
644 **     NNN minutes
645 **     NNN.NNNN seconds
646 **     NNN months
647 **     NNN years
648 **     start of month
649 **     start of year
650 **     start of week
651 **     start of day
652 **     weekday N
653 **     unixepoch
654 **     localtime
655 **     utc
656 **
657 ** Return 0 on success and 1 if there is any kind of error. If the error
658 ** is in a system call (i.e. localtime()), then an error message is written
659 ** to context pCtx. If the error is an unrecognized modifier, no error is
660 ** written to pCtx.
661 */
parseModifier(sqlite3_context * pCtx,const char * z,int n,DateTime * p,int idx)662 static int parseModifier(
663   sqlite3_context *pCtx,      /* Function context */
664   const char *z,              /* The text of the modifier */
665   int n,                      /* Length of zMod in bytes */
666   DateTime *p,                /* The date/time value to be modified */
667   int idx                     /* Parameter index of the modifier */
668 ){
669   int rc = 1;
670   double r;
671   switch(sqlite3UpperToLower[(u8)z[0]] ){
672     case 'a': {
673       /*
674       **    auto
675       **
676       ** If rawS is available, then interpret as a julian day number, or
677       ** a unix timestamp, depending on its magnitude.
678       */
679       if( sqlite3_stricmp(z, "auto")==0 ){
680         if( idx>1 ) return 1; /* IMP: R-33611-57934 */
681         if( !p->rawS || p->validJD ){
682           rc = 0;
683           p->rawS = 0;
684         }else if( p->s>=-21086676*(i64)10000        /* -4713-11-24 12:00:00 */
685                && p->s<=(25340230*(i64)10000)+799   /*  9999-12-31 23:59:59 */
686         ){
687           r = p->s*1000.0 + 210866760000000.0;
688           clearYMD_HMS_TZ(p);
689           p->iJD = (sqlite3_int64)(r + 0.5);
690           p->validJD = 1;
691           p->rawS = 0;
692           rc = 0;
693         }
694       }
695       break;
696     }
697     case 'j': {
698       /*
699       **    julianday
700       **
701       ** Always interpret the prior number as a julian-day value.  If this
702       ** is not the first modifier, or if the prior argument is not a numeric
703       ** value in the allowed range of julian day numbers understood by
704       ** SQLite (0..5373484.5) then the result will be NULL.
705       */
706       if( sqlite3_stricmp(z, "julianday")==0 ){
707         if( idx>1 ) return 1;  /* IMP: R-31176-64601 */
708         if( p->validJD && p->rawS ){
709           rc = 0;
710           p->rawS = 0;
711         }
712       }
713       break;
714     }
715 #ifndef SQLITE_OMIT_LOCALTIME
716     case 'l': {
717       /*    localtime
718       **
719       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
720       ** show local time.
721       */
722       if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){
723         rc = toLocaltime(p, pCtx);
724       }
725       break;
726     }
727 #endif
728     case 'u': {
729       /*
730       **    unixepoch
731       **
732       ** Treat the current value of p->s as the number of
733       ** seconds since 1970.  Convert to a real julian day number.
734       */
735       if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){
736         if( idx>1 ) return 1;  /* IMP: R-49255-55373 */
737         r = p->s*1000.0 + 210866760000000.0;
738         if( r>=0.0 && r<464269060800000.0 ){
739           clearYMD_HMS_TZ(p);
740           p->iJD = (sqlite3_int64)(r + 0.5);
741           p->validJD = 1;
742           p->rawS = 0;
743           rc = 0;
744         }
745       }
746 #ifndef SQLITE_OMIT_LOCALTIME
747       else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){
748         if( p->tzSet==0 ){
749           i64 iOrigJD;              /* Original localtime */
750           i64 iGuess;               /* Guess at the corresponding utc time */
751           int cnt = 0;              /* Safety to prevent infinite loop */
752           int iErr;                 /* Guess is off by this much */
753 
754           computeJD(p);
755           iGuess = iOrigJD = p->iJD;
756           iErr = 0;
757           do{
758             DateTime new;
759             memset(&new, 0, sizeof(new));
760             iGuess -= iErr;
761             new.iJD = iGuess;
762             new.validJD = 1;
763             rc = toLocaltime(&new, pCtx);
764             if( rc ) return rc;
765             computeJD(&new);
766             iErr = new.iJD - iOrigJD;
767           }while( iErr && cnt++<3 );
768           memset(p, 0, sizeof(*p));
769           p->iJD = iGuess;
770           p->validJD = 1;
771           p->tzSet = 1;
772         }
773         rc = SQLITE_OK;
774       }
775 #endif
776       break;
777     }
778     case 'w': {
779       /*
780       **    weekday N
781       **
782       ** Move the date to the same time on the next occurrence of
783       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
784       ** date is already on the appropriate weekday, this is a no-op.
785       */
786       if( sqlite3_strnicmp(z, "weekday ", 8)==0
787                && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0
788                && r>=0.0 && r<7.0 && (n=(int)r)==r ){
789         sqlite3_int64 Z;
790         computeYMD_HMS(p);
791         p->validTZ = 0;
792         p->validJD = 0;
793         computeJD(p);
794         Z = ((p->iJD + 129600000)/86400000) % 7;
795         if( Z>n ) Z -= 7;
796         p->iJD += (n - Z)*86400000;
797         clearYMD_HMS_TZ(p);
798         rc = 0;
799       }
800       break;
801     }
802     case 's': {
803       /*
804       **    start of TTTTT
805       **
806       ** Move the date backwards to the beginning of the current day,
807       ** or month or year.
808       */
809       if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break;
810       if( !p->validJD && !p->validYMD && !p->validHMS ) break;
811       z += 9;
812       computeYMD(p);
813       p->validHMS = 1;
814       p->h = p->m = 0;
815       p->s = 0.0;
816       p->rawS = 0;
817       p->validTZ = 0;
818       p->validJD = 0;
819       if( sqlite3_stricmp(z,"month")==0 ){
820         p->D = 1;
821         rc = 0;
822       }else if( sqlite3_stricmp(z,"year")==0 ){
823         p->M = 1;
824         p->D = 1;
825         rc = 0;
826       }else if( sqlite3_stricmp(z,"day")==0 ){
827         rc = 0;
828       }
829       break;
830     }
831     case '+':
832     case '-':
833     case '0':
834     case '1':
835     case '2':
836     case '3':
837     case '4':
838     case '5':
839     case '6':
840     case '7':
841     case '8':
842     case '9': {
843       double rRounder;
844       int i;
845       for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
846       if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){
847         rc = 1;
848         break;
849       }
850       if( z[n]==':' ){
851         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
852         ** specified number of hours, minutes, seconds, and fractional seconds
853         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
854         ** omitted.
855         */
856         const char *z2 = z;
857         DateTime tx;
858         sqlite3_int64 day;
859         if( !sqlite3Isdigit(*z2) ) z2++;
860         memset(&tx, 0, sizeof(tx));
861         if( parseHhMmSs(z2, &tx) ) break;
862         computeJD(&tx);
863         tx.iJD -= 43200000;
864         day = tx.iJD/86400000;
865         tx.iJD -= day*86400000;
866         if( z[0]=='-' ) tx.iJD = -tx.iJD;
867         computeJD(p);
868         clearYMD_HMS_TZ(p);
869         p->iJD += tx.iJD;
870         rc = 0;
871         break;
872       }
873 
874       /* If control reaches this point, it means the transformation is
875       ** one of the forms like "+NNN days".  */
876       z += n;
877       while( sqlite3Isspace(*z) ) z++;
878       n = sqlite3Strlen30(z);
879       if( n>10 || n<3 ) break;
880       if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--;
881       computeJD(p);
882       rc = 1;
883       rRounder = r<0 ? -0.5 : +0.5;
884       for(i=0; i<ArraySize(aXformType); i++){
885         if( aXformType[i].nName==n
886          && sqlite3_strnicmp(aXformType[i].zName, z, n)==0
887          && r>-aXformType[i].rLimit && r<aXformType[i].rLimit
888         ){
889           switch( i ){
890             case 4: { /* Special processing to add months */
891               int x;
892               assert( strcmp(aXformType[i].zName,"month")==0 );
893               computeYMD_HMS(p);
894               p->M += (int)r;
895               x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
896               p->Y += x;
897               p->M -= x*12;
898               p->validJD = 0;
899               r -= (int)r;
900               break;
901             }
902             case 5: { /* Special processing to add years */
903               int y = (int)r;
904               assert( strcmp(aXformType[i].zName,"year")==0 );
905               computeYMD_HMS(p);
906               p->Y += y;
907               p->validJD = 0;
908               r -= (int)r;
909               break;
910             }
911           }
912           computeJD(p);
913           p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder);
914           rc = 0;
915           break;
916         }
917       }
918       clearYMD_HMS_TZ(p);
919       break;
920     }
921     default: {
922       break;
923     }
924   }
925   return rc;
926 }
927 
928 /*
929 ** Process time function arguments.  argv[0] is a date-time stamp.
930 ** argv[1] and following are modifiers.  Parse them all and write
931 ** the resulting time into the DateTime structure p.  Return 0
932 ** on success and 1 if there are any errors.
933 **
934 ** If there are zero parameters (if even argv[0] is undefined)
935 ** then assume a default value of "now" for argv[0].
936 */
isDate(sqlite3_context * context,int argc,sqlite3_value ** argv,DateTime * p)937 static int isDate(
938   sqlite3_context *context,
939   int argc,
940   sqlite3_value **argv,
941   DateTime *p
942 ){
943   int i, n;
944   const unsigned char *z;
945   int eType;
946   memset(p, 0, sizeof(*p));
947   if( argc==0 ){
948     if( !sqlite3NotPureFunc(context) ) return 1;
949     return setDateTimeToCurrent(context, p);
950   }
951   if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
952                    || eType==SQLITE_INTEGER ){
953     setRawDateNumber(p, sqlite3_value_double(argv[0]));
954   }else{
955     z = sqlite3_value_text(argv[0]);
956     if( !z || parseDateOrTime(context, (char*)z, p) ){
957       return 1;
958     }
959   }
960   for(i=1; i<argc; i++){
961     z = sqlite3_value_text(argv[i]);
962     n = sqlite3_value_bytes(argv[i]);
963     if( z==0 || parseModifier(context, (char*)z, n, p, i) ) return 1;
964   }
965   computeJD(p);
966   if( p->isError || !validJulianDay(p->iJD) ) return 1;
967   return 0;
968 }
969 
970 
971 /*
972 ** The following routines implement the various date and time functions
973 ** of SQLite.
974 */
975 
976 /*
977 **    julianday( TIMESTRING, MOD, MOD, ...)
978 **
979 ** Return the julian day number of the date specified in the arguments
980 */
juliandayFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)981 static void juliandayFunc(
982   sqlite3_context *context,
983   int argc,
984   sqlite3_value **argv
985 ){
986   DateTime x;
987   if( isDate(context, argc, argv, &x)==0 ){
988     computeJD(&x);
989     sqlite3_result_double(context, x.iJD/86400000.0);
990   }
991 }
992 
993 /*
994 **    unixepoch( TIMESTRING, MOD, MOD, ...)
995 **
996 ** Return the number of seconds (including fractional seconds) since
997 ** the unix epoch of 1970-01-01 00:00:00 GMT.
998 */
unixepochFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)999 static void unixepochFunc(
1000   sqlite3_context *context,
1001   int argc,
1002   sqlite3_value **argv
1003 ){
1004   DateTime x;
1005   if( isDate(context, argc, argv, &x)==0 ){
1006     computeJD(&x);
1007     sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000);
1008   }
1009 }
1010 
1011 /*
1012 **    datetime( TIMESTRING, MOD, MOD, ...)
1013 **
1014 ** Return YYYY-MM-DD HH:MM:SS
1015 */
datetimeFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)1016 static void datetimeFunc(
1017   sqlite3_context *context,
1018   int argc,
1019   sqlite3_value **argv
1020 ){
1021   DateTime x;
1022   if( isDate(context, argc, argv, &x)==0 ){
1023     int Y, s;
1024     char zBuf[24];
1025     computeYMD_HMS(&x);
1026     Y = x.Y;
1027     if( Y<0 ) Y = -Y;
1028     zBuf[1] = '0' + (Y/1000)%10;
1029     zBuf[2] = '0' + (Y/100)%10;
1030     zBuf[3] = '0' + (Y/10)%10;
1031     zBuf[4] = '0' + (Y)%10;
1032     zBuf[5] = '-';
1033     zBuf[6] = '0' + (x.M/10)%10;
1034     zBuf[7] = '0' + (x.M)%10;
1035     zBuf[8] = '-';
1036     zBuf[9] = '0' + (x.D/10)%10;
1037     zBuf[10] = '0' + (x.D)%10;
1038     zBuf[11] = ' ';
1039     zBuf[12] = '0' + (x.h/10)%10;
1040     zBuf[13] = '0' + (x.h)%10;
1041     zBuf[14] = ':';
1042     zBuf[15] = '0' + (x.m/10)%10;
1043     zBuf[16] = '0' + (x.m)%10;
1044     zBuf[17] = ':';
1045     s = (int)x.s;
1046     zBuf[18] = '0' + (s/10)%10;
1047     zBuf[19] = '0' + (s)%10;
1048     zBuf[20] = 0;
1049     if( x.Y<0 ){
1050       zBuf[0] = '-';
1051       sqlite3_result_text(context, zBuf, 20, SQLITE_TRANSIENT);
1052     }else{
1053       sqlite3_result_text(context, &zBuf[1], 19, SQLITE_TRANSIENT);
1054     }
1055   }
1056 }
1057 
1058 /*
1059 **    time( TIMESTRING, MOD, MOD, ...)
1060 **
1061 ** Return HH:MM:SS
1062 */
timeFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)1063 static void timeFunc(
1064   sqlite3_context *context,
1065   int argc,
1066   sqlite3_value **argv
1067 ){
1068   DateTime x;
1069   if( isDate(context, argc, argv, &x)==0 ){
1070     int s;
1071     char zBuf[16];
1072     computeHMS(&x);
1073     zBuf[0] = '0' + (x.h/10)%10;
1074     zBuf[1] = '0' + (x.h)%10;
1075     zBuf[2] = ':';
1076     zBuf[3] = '0' + (x.m/10)%10;
1077     zBuf[4] = '0' + (x.m)%10;
1078     zBuf[5] = ':';
1079     s = (int)x.s;
1080     zBuf[6] = '0' + (s/10)%10;
1081     zBuf[7] = '0' + (s)%10;
1082     zBuf[8] = 0;
1083     sqlite3_result_text(context, zBuf, 8, SQLITE_TRANSIENT);
1084   }
1085 }
1086 
1087 /*
1088 **    date( TIMESTRING, MOD, MOD, ...)
1089 **
1090 ** Return YYYY-MM-DD
1091 */
dateFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)1092 static void dateFunc(
1093   sqlite3_context *context,
1094   int argc,
1095   sqlite3_value **argv
1096 ){
1097   DateTime x;
1098   if( isDate(context, argc, argv, &x)==0 ){
1099     int Y;
1100     char zBuf[16];
1101     computeYMD(&x);
1102     Y = x.Y;
1103     if( Y<0 ) Y = -Y;
1104     zBuf[1] = '0' + (Y/1000)%10;
1105     zBuf[2] = '0' + (Y/100)%10;
1106     zBuf[3] = '0' + (Y/10)%10;
1107     zBuf[4] = '0' + (Y)%10;
1108     zBuf[5] = '-';
1109     zBuf[6] = '0' + (x.M/10)%10;
1110     zBuf[7] = '0' + (x.M)%10;
1111     zBuf[8] = '-';
1112     zBuf[9] = '0' + (x.D/10)%10;
1113     zBuf[10] = '0' + (x.D)%10;
1114     zBuf[11] = 0;
1115     if( x.Y<0 ){
1116       zBuf[0] = '-';
1117       sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT);
1118     }else{
1119       sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT);
1120     }
1121   }
1122 }
1123 
1124 /*
1125 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
1126 **
1127 ** Return a string described by FORMAT.  Conversions as follows:
1128 **
1129 **   %d  day of month
1130 **   %f  ** fractional seconds  SS.SSS
1131 **   %H  hour 00-24
1132 **   %j  day of year 000-366
1133 **   %J  ** julian day number
1134 **   %m  month 01-12
1135 **   %M  minute 00-59
1136 **   %s  seconds since 1970-01-01
1137 **   %S  seconds 00-59
1138 **   %w  day of week 0-6  sunday==0
1139 **   %W  week of year 00-53
1140 **   %Y  year 0000-9999
1141 **   %%  %
1142 */
strftimeFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)1143 static void strftimeFunc(
1144   sqlite3_context *context,
1145   int argc,
1146   sqlite3_value **argv
1147 ){
1148   DateTime x;
1149   size_t i,j;
1150   sqlite3 *db;
1151   const char *zFmt;
1152   sqlite3_str sRes;
1153 
1154 
1155   if( argc==0 ) return;
1156   zFmt = (const char*)sqlite3_value_text(argv[0]);
1157   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
1158   db = sqlite3_context_db_handle(context);
1159   sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
1160 
1161   computeJD(&x);
1162   computeYMD_HMS(&x);
1163   for(i=j=0; zFmt[i]; i++){
1164     if( zFmt[i]!='%' ) continue;
1165     if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
1166     i++;
1167     j = i + 1;
1168     switch( zFmt[i] ){
1169       case 'd': {
1170         sqlite3_str_appendf(&sRes, "%02d", x.D);
1171         break;
1172       }
1173       case 'f': {
1174         double s = x.s;
1175         if( s>59.999 ) s = 59.999;
1176         sqlite3_str_appendf(&sRes, "%06.3f", s);
1177         break;
1178       }
1179       case 'H': {
1180         sqlite3_str_appendf(&sRes, "%02d", x.h);
1181         break;
1182       }
1183       case 'W': /* Fall thru */
1184       case 'j': {
1185         int nDay;             /* Number of days since 1st day of year */
1186         DateTime y = x;
1187         y.validJD = 0;
1188         y.M = 1;
1189         y.D = 1;
1190         computeJD(&y);
1191         nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
1192         if( zFmt[i]=='W' ){
1193           int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1194           wd = (int)(((x.iJD+43200000)/86400000)%7);
1195           sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7);
1196         }else{
1197           sqlite3_str_appendf(&sRes,"%03d",nDay+1);
1198         }
1199         break;
1200       }
1201       case 'J': {
1202         sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0);
1203         break;
1204       }
1205       case 'm': {
1206         sqlite3_str_appendf(&sRes,"%02d",x.M);
1207         break;
1208       }
1209       case 'M': {
1210         sqlite3_str_appendf(&sRes,"%02d",x.m);
1211         break;
1212       }
1213       case 's': {
1214         i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000);
1215         sqlite3_str_appendf(&sRes,"%lld",iS);
1216         break;
1217       }
1218       case 'S': {
1219         sqlite3_str_appendf(&sRes,"%02d",(int)x.s);
1220         break;
1221       }
1222       case 'w': {
1223         sqlite3_str_appendchar(&sRes, 1,
1224                        (char)(((x.iJD+129600000)/86400000) % 7) + '0');
1225         break;
1226       }
1227       case 'Y': {
1228         sqlite3_str_appendf(&sRes,"%04d",x.Y);
1229         break;
1230       }
1231       case '%': {
1232         sqlite3_str_appendchar(&sRes, 1, '%');
1233         break;
1234       }
1235       default: {
1236         sqlite3_str_reset(&sRes);
1237         return;
1238       }
1239     }
1240   }
1241   if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
1242   sqlite3ResultStrAccum(context, &sRes);
1243 }
1244 
1245 /*
1246 ** current_time()
1247 **
1248 ** This function returns the same value as time('now').
1249 */
ctimeFunc(sqlite3_context * context,int NotUsed,sqlite3_value ** NotUsed2)1250 static void ctimeFunc(
1251   sqlite3_context *context,
1252   int NotUsed,
1253   sqlite3_value **NotUsed2
1254 ){
1255   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1256   timeFunc(context, 0, 0);
1257 }
1258 
1259 /*
1260 ** current_date()
1261 **
1262 ** This function returns the same value as date('now').
1263 */
cdateFunc(sqlite3_context * context,int NotUsed,sqlite3_value ** NotUsed2)1264 static void cdateFunc(
1265   sqlite3_context *context,
1266   int NotUsed,
1267   sqlite3_value **NotUsed2
1268 ){
1269   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1270   dateFunc(context, 0, 0);
1271 }
1272 
1273 /*
1274 ** current_timestamp()
1275 **
1276 ** This function returns the same value as datetime('now').
1277 */
ctimestampFunc(sqlite3_context * context,int NotUsed,sqlite3_value ** NotUsed2)1278 static void ctimestampFunc(
1279   sqlite3_context *context,
1280   int NotUsed,
1281   sqlite3_value **NotUsed2
1282 ){
1283   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1284   datetimeFunc(context, 0, 0);
1285 }
1286 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1287 
1288 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1289 /*
1290 ** If the library is compiled to omit the full-scale date and time
1291 ** handling (to get a smaller binary), the following minimal version
1292 ** of the functions current_time(), current_date() and current_timestamp()
1293 ** are included instead. This is to support column declarations that
1294 ** include "DEFAULT CURRENT_TIME" etc.
1295 **
1296 ** This function uses the C-library functions time(), gmtime()
1297 ** and strftime(). The format string to pass to strftime() is supplied
1298 ** as the user-data for the function.
1299 */
currentTimeFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)1300 static void currentTimeFunc(
1301   sqlite3_context *context,
1302   int argc,
1303   sqlite3_value **argv
1304 ){
1305   time_t t;
1306   char *zFormat = (char *)sqlite3_user_data(context);
1307   sqlite3_int64 iT;
1308   struct tm *pTm;
1309   struct tm sNow;
1310   char zBuf[20];
1311 
1312   UNUSED_PARAMETER(argc);
1313   UNUSED_PARAMETER(argv);
1314 
1315   iT = sqlite3StmtCurrentTime(context);
1316   if( iT<=0 ) return;
1317   t = iT/1000 - 10000*(sqlite3_int64)21086676;
1318 #if HAVE_GMTIME_R
1319   pTm = gmtime_r(&t, &sNow);
1320 #else
1321   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
1322   pTm = gmtime(&t);
1323   if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
1324   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
1325 #endif
1326   if( pTm ){
1327     strftime(zBuf, 20, zFormat, &sNow);
1328     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1329   }
1330 }
1331 #endif
1332 
1333 /*
1334 ** This function registered all of the above C functions as SQL
1335 ** functions.  This should be the only routine in this file with
1336 ** external linkage.
1337 */
sqlite3RegisterDateTimeFunctions(void)1338 void sqlite3RegisterDateTimeFunctions(void){
1339   static FuncDef aDateTimeFuncs[] = {
1340 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1341     PURE_DATE(julianday,        -1, 0, 0, juliandayFunc ),
1342     PURE_DATE(unixepoch,        -1, 0, 0, unixepochFunc ),
1343     PURE_DATE(date,             -1, 0, 0, dateFunc      ),
1344     PURE_DATE(time,             -1, 0, 0, timeFunc      ),
1345     PURE_DATE(datetime,         -1, 0, 0, datetimeFunc  ),
1346     PURE_DATE(strftime,         -1, 0, 0, strftimeFunc  ),
1347     DFUNCTION(current_time,      0, 0, 0, ctimeFunc     ),
1348     DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1349     DFUNCTION(current_date,      0, 0, 0, cdateFunc     ),
1350 #else
1351     STR_FUNCTION(current_time,      0, "%H:%M:%S",          0, currentTimeFunc),
1352     STR_FUNCTION(current_date,      0, "%Y-%m-%d",          0, currentTimeFunc),
1353     STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1354 #endif
1355   };
1356   sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));
1357 }
1358