1 /* SPDX-License-Identifier: BSD-3-Clause
2 *
3 * Copyright(c) 2019-2020 Xilinx, Inc.
4 * Copyright(c) 2016-2019 Solarflare Communications Inc.
5 *
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
8 */
9
10 /* EF10 native datapath implementation */
11
12 #include <stdbool.h>
13
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23
24 #include "sfc_debug.h"
25 #include "sfc_tweak.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_kvargs.h"
28 #include "sfc_ef10.h"
29
30 #define SFC_EF10_RX_EV_ENCAP_SUPPORT 1
31 #include "sfc_ef10_rx_ev.h"
32
33 #define sfc_ef10_rx_err(dpq, ...) \
34 SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
35
36 #define sfc_ef10_rx_info(dpq, ...) \
37 SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, INFO, dpq, __VA_ARGS__)
38
39 /**
40 * Maximum number of descriptors/buffers in the Rx ring.
41 * It should guarantee that corresponding event queue never overfill.
42 * EF10 native datapath uses event queue of the same size as Rx queue.
43 * Maximum number of events on datapath can be estimated as number of
44 * Rx queue entries (one event per Rx buffer in the worst case) plus
45 * Rx error and flush events.
46 */
47 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
48 ((_ndesc) - 1 /* head must not step on tail */ - \
49 (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
50 1 /* Rx error */ - 1 /* flush */)
51
52 struct sfc_ef10_rx_sw_desc {
53 struct rte_mbuf *mbuf;
54 };
55
56 struct sfc_ef10_rxq {
57 /* Used on data path */
58 unsigned int flags;
59 #define SFC_EF10_RXQ_STARTED 0x1
60 #define SFC_EF10_RXQ_NOT_RUNNING 0x2
61 #define SFC_EF10_RXQ_EXCEPTION 0x4
62 #define SFC_EF10_RXQ_RSS_HASH 0x8
63 #define SFC_EF10_RXQ_FLAG_INTR_EN 0x10
64 unsigned int ptr_mask;
65 unsigned int pending;
66 unsigned int completed;
67 unsigned int evq_read_ptr;
68 unsigned int evq_read_ptr_primed;
69 efx_qword_t *evq_hw_ring;
70 struct sfc_ef10_rx_sw_desc *sw_ring;
71 uint64_t rearm_data;
72 struct rte_mbuf *scatter_pkt;
73 volatile void *evq_prime;
74 uint16_t prefix_size;
75
76 /* Used on refill */
77 uint16_t buf_size;
78 unsigned int added;
79 unsigned int max_fill_level;
80 unsigned int refill_threshold;
81 struct rte_mempool *refill_mb_pool;
82 efx_qword_t *rxq_hw_ring;
83 volatile void *doorbell;
84
85 /* Datapath receive queue anchor */
86 struct sfc_dp_rxq dp;
87 };
88
89 static inline struct sfc_ef10_rxq *
sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq * dp_rxq)90 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
91 {
92 return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
93 }
94
95 static void
sfc_ef10_rx_qprime(struct sfc_ef10_rxq * rxq)96 sfc_ef10_rx_qprime(struct sfc_ef10_rxq *rxq)
97 {
98 sfc_ef10_ev_qprime(rxq->evq_prime, rxq->evq_read_ptr, rxq->ptr_mask);
99 rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
100 }
101
102 static void
sfc_ef10_rx_qrefill(struct sfc_ef10_rxq * rxq)103 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
104 {
105 const unsigned int ptr_mask = rxq->ptr_mask;
106 const uint32_t buf_size = rxq->buf_size;
107 unsigned int free_space;
108 unsigned int bulks;
109 void *objs[SFC_RX_REFILL_BULK];
110 unsigned int added = rxq->added;
111
112 RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
113
114 free_space = rxq->max_fill_level - (added - rxq->completed);
115
116 if (free_space < rxq->refill_threshold)
117 return;
118
119 bulks = free_space / RTE_DIM(objs);
120 /* refill_threshold guarantees that bulks is positive */
121 SFC_ASSERT(bulks > 0);
122
123 do {
124 unsigned int id;
125 unsigned int i;
126
127 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
128 RTE_DIM(objs)) < 0)) {
129 struct rte_eth_dev_data *dev_data =
130 rte_eth_devices[rxq->dp.dpq.port_id].data;
131
132 /*
133 * It is hardly a safe way to increment counter
134 * from different contexts, but all PMDs do it.
135 */
136 dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
137 /* Return if we have posted nothing yet */
138 if (added == rxq->added)
139 return;
140 /* Push posted */
141 break;
142 }
143
144 for (i = 0, id = added & ptr_mask;
145 i < RTE_DIM(objs);
146 ++i, ++id) {
147 struct rte_mbuf *m = objs[i];
148 struct sfc_ef10_rx_sw_desc *rxd;
149 rte_iova_t phys_addr;
150
151 __rte_mbuf_raw_sanity_check(m);
152
153 SFC_ASSERT((id & ~ptr_mask) == 0);
154 rxd = &rxq->sw_ring[id];
155 rxd->mbuf = m;
156
157 /*
158 * Avoid writing to mbuf. It is cheaper to do it
159 * when we receive packet and fill in nearby
160 * structure members.
161 */
162
163 phys_addr = rte_mbuf_data_iova_default(m);
164 EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
165 ESF_DZ_RX_KER_BYTE_CNT, buf_size,
166 ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
167 }
168
169 added += RTE_DIM(objs);
170 } while (--bulks > 0);
171
172 SFC_ASSERT(rxq->added != added);
173 rxq->added = added;
174 sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
175 }
176
177 static void
sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq * rxq,unsigned int next_id)178 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
179 {
180 struct rte_mbuf *next_mbuf;
181
182 /* Prefetch next bunch of software descriptors */
183 if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
184 rte_prefetch0(&rxq->sw_ring[next_id]);
185
186 /*
187 * It looks strange to prefetch depending on previous prefetch
188 * data, but measurements show that it is really efficient and
189 * increases packet rate.
190 */
191 next_mbuf = rxq->sw_ring[next_id].mbuf;
192 if (likely(next_mbuf != NULL)) {
193 /* Prefetch the next mbuf structure */
194 rte_mbuf_prefetch_part1(next_mbuf);
195
196 /* Prefetch pseudo header of the next packet */
197 /* data_off is not filled in yet */
198 /* Yes, data could be not ready yet, but we hope */
199 rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
200 RTE_PKTMBUF_HEADROOM);
201 }
202 }
203
204 static struct rte_mbuf **
sfc_ef10_rx_pending(struct sfc_ef10_rxq * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)205 sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
206 uint16_t nb_pkts)
207 {
208 uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
209
210 SFC_ASSERT(rxq->pending == rxq->completed || rxq->scatter_pkt == NULL);
211
212 if (n_rx_pkts != 0) {
213 unsigned int completed = rxq->completed;
214
215 rxq->completed = completed + n_rx_pkts;
216
217 do {
218 *rx_pkts++ =
219 rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
220 } while (completed != rxq->completed);
221 }
222
223 return rx_pkts;
224 }
225
226 /*
227 * Below Rx pseudo-header (aka Rx prefix) accessors rely on the
228 * following fields layout.
229 */
230 static const efx_rx_prefix_layout_t sfc_ef10_rx_prefix_layout = {
231 .erpl_fields = {
232 [EFX_RX_PREFIX_FIELD_RSS_HASH] =
233 { 0, sizeof(uint32_t) * CHAR_BIT, B_FALSE },
234 [EFX_RX_PREFIX_FIELD_LENGTH] =
235 { 8 * CHAR_BIT, sizeof(uint16_t) * CHAR_BIT, B_FALSE },
236 }
237 };
238 static uint16_t
sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t * pseudo_hdr)239 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
240 {
241 return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
242 }
243
244 static uint32_t
sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t * pseudo_hdr)245 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
246 {
247 return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
248 }
249
250 static struct rte_mbuf **
sfc_ef10_rx_process_event(struct sfc_ef10_rxq * rxq,efx_qword_t rx_ev,struct rte_mbuf ** rx_pkts,struct rte_mbuf ** const rx_pkts_end)251 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
252 struct rte_mbuf **rx_pkts,
253 struct rte_mbuf ** const rx_pkts_end)
254 {
255 const unsigned int ptr_mask = rxq->ptr_mask;
256 unsigned int pending = rxq->pending;
257 unsigned int ready;
258 struct sfc_ef10_rx_sw_desc *rxd;
259 struct rte_mbuf *m;
260 struct rte_mbuf *m0;
261 const uint8_t *pseudo_hdr;
262 uint16_t seg_len;
263
264 ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
265 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
266
267 if (ready == 0) {
268 /* Rx abort - it was no enough descriptors for Rx packet */
269 rte_pktmbuf_free(rxq->scatter_pkt);
270 rxq->scatter_pkt = NULL;
271 return rx_pkts;
272 }
273
274 rxq->pending = pending + ready;
275
276 if (rx_ev.eq_u64[0] &
277 rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
278 (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
279 SFC_ASSERT(rxq->completed == pending);
280 do {
281 rxd = &rxq->sw_ring[pending++ & ptr_mask];
282 rte_mbuf_raw_free(rxd->mbuf);
283 } while (pending != rxq->pending);
284 rxq->completed = pending;
285 return rx_pkts;
286 }
287
288 /* If scattered packet is in progress */
289 if (rxq->scatter_pkt != NULL) {
290 /* Events for scattered packet frags are not merged */
291 SFC_ASSERT(ready == 1);
292 SFC_ASSERT(rxq->completed == pending);
293
294 /* There is no pseudo-header in scatter segments. */
295 seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES);
296
297 rxd = &rxq->sw_ring[pending++ & ptr_mask];
298 m = rxd->mbuf;
299
300 __rte_mbuf_raw_sanity_check(m);
301
302 m->data_off = RTE_PKTMBUF_HEADROOM;
303 rte_pktmbuf_data_len(m) = seg_len;
304 rte_pktmbuf_pkt_len(m) = seg_len;
305
306 rxq->scatter_pkt->nb_segs++;
307 rte_pktmbuf_pkt_len(rxq->scatter_pkt) += seg_len;
308 rte_pktmbuf_lastseg(rxq->scatter_pkt)->next = m;
309
310 if (~rx_ev.eq_u64[0] &
311 rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
312 *rx_pkts++ = rxq->scatter_pkt;
313 rxq->scatter_pkt = NULL;
314 }
315 rxq->completed = pending;
316 return rx_pkts;
317 }
318
319 rxd = &rxq->sw_ring[pending++ & ptr_mask];
320
321 sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
322
323 m = rxd->mbuf;
324
325 RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
326 m->rearm_data[0] = rxq->rearm_data;
327
328 /* Classify packet based on Rx event */
329 /* Mask RSS hash offload flag if RSS is not enabled */
330 sfc_ef10_rx_ev_to_offloads(rx_ev, m,
331 (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
332 ~0ull : ~PKT_RX_RSS_HASH);
333
334 /* data_off already moved past pseudo header */
335 pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
336
337 /*
338 * Always get RSS hash from pseudo header to avoid
339 * condition/branching. If it is valid or not depends on
340 * PKT_RX_RSS_HASH in m->ol_flags.
341 */
342 m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
343
344 if (ready == 1)
345 seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
346 rxq->prefix_size;
347 else
348 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
349 SFC_ASSERT(seg_len > 0);
350 rte_pktmbuf_data_len(m) = seg_len;
351 rte_pktmbuf_pkt_len(m) = seg_len;
352
353 SFC_ASSERT(m->next == NULL);
354
355 if (~rx_ev.eq_u64[0] & rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
356 *rx_pkts++ = m;
357 rxq->completed = pending;
358 } else {
359 /* Events with CONT bit are not merged */
360 SFC_ASSERT(ready == 1);
361 rxq->scatter_pkt = m;
362 rxq->completed = pending;
363 return rx_pkts;
364 }
365
366 /* Remember mbuf to copy offload flags and packet type from */
367 m0 = m;
368 while (pending != rxq->pending) {
369 rxd = &rxq->sw_ring[pending++ & ptr_mask];
370
371 sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
372
373 m = rxd->mbuf;
374
375 if (rx_pkts != rx_pkts_end) {
376 *rx_pkts++ = m;
377 rxq->completed = pending;
378 }
379
380 RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
381 sizeof(rxq->rearm_data));
382 m->rearm_data[0] = rxq->rearm_data;
383
384 /* Event-dependent information is the same */
385 m->ol_flags = m0->ol_flags;
386 m->packet_type = m0->packet_type;
387
388 /* data_off already moved past pseudo header */
389 pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
390
391 /*
392 * Always get RSS hash from pseudo header to avoid
393 * condition/branching. If it is valid or not depends on
394 * PKT_RX_RSS_HASH in m->ol_flags.
395 */
396 m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
397
398 seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
399 SFC_ASSERT(seg_len > 0);
400 rte_pktmbuf_data_len(m) = seg_len;
401 rte_pktmbuf_pkt_len(m) = seg_len;
402
403 SFC_ASSERT(m->next == NULL);
404 }
405
406 return rx_pkts;
407 }
408
409 static bool
sfc_ef10_rx_get_event(struct sfc_ef10_rxq * rxq,efx_qword_t * rx_ev)410 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
411 {
412 *rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
413
414 if (!sfc_ef10_ev_present(*rx_ev))
415 return false;
416
417 if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
418 FSE_AZ_EV_CODE_RX_EV)) {
419 /*
420 * Do not move read_ptr to keep the event for exception
421 * handling by the control path.
422 */
423 rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
424 sfc_ef10_rx_err(&rxq->dp.dpq,
425 "RxQ exception at EvQ read ptr %#x",
426 rxq->evq_read_ptr);
427 return false;
428 }
429
430 rxq->evq_read_ptr++;
431 return true;
432 }
433
434 static uint16_t
sfc_ef10_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)435 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
436 {
437 struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
438 struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
439 unsigned int evq_old_read_ptr;
440 efx_qword_t rx_ev;
441
442 rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
443
444 if (unlikely(rxq->flags &
445 (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
446 goto done;
447
448 evq_old_read_ptr = rxq->evq_read_ptr;
449 while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
450 /*
451 * DROP_EVENT is an internal to the NIC, software should
452 * never see it and, therefore, may ignore it.
453 */
454
455 rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
456 rx_pkts, rx_pkts_end);
457 }
458
459 sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
460 rxq->evq_read_ptr);
461
462 /* It is not a problem if we refill in the case of exception */
463 sfc_ef10_rx_qrefill(rxq);
464
465 if ((rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN) &&
466 rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
467 sfc_ef10_rx_qprime(rxq);
468
469 done:
470 return nb_pkts - (rx_pkts_end - rx_pkts);
471 }
472
473 const uint32_t *
sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)474 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
475 {
476 static const uint32_t ef10_native_ptypes[] = {
477 RTE_PTYPE_L2_ETHER,
478 RTE_PTYPE_L2_ETHER_ARP,
479 RTE_PTYPE_L2_ETHER_VLAN,
480 RTE_PTYPE_L2_ETHER_QINQ,
481 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
482 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
483 RTE_PTYPE_L4_FRAG,
484 RTE_PTYPE_L4_TCP,
485 RTE_PTYPE_L4_UDP,
486 RTE_PTYPE_UNKNOWN
487 };
488 static const uint32_t ef10_overlay_ptypes[] = {
489 RTE_PTYPE_L2_ETHER,
490 RTE_PTYPE_L2_ETHER_ARP,
491 RTE_PTYPE_L2_ETHER_VLAN,
492 RTE_PTYPE_L2_ETHER_QINQ,
493 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
494 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
495 RTE_PTYPE_L4_FRAG,
496 RTE_PTYPE_L4_TCP,
497 RTE_PTYPE_L4_UDP,
498 RTE_PTYPE_TUNNEL_VXLAN,
499 RTE_PTYPE_TUNNEL_NVGRE,
500 RTE_PTYPE_INNER_L2_ETHER,
501 RTE_PTYPE_INNER_L2_ETHER_VLAN,
502 RTE_PTYPE_INNER_L2_ETHER_QINQ,
503 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
504 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
505 RTE_PTYPE_INNER_L4_FRAG,
506 RTE_PTYPE_INNER_L4_TCP,
507 RTE_PTYPE_INNER_L4_UDP,
508 RTE_PTYPE_UNKNOWN
509 };
510
511 /*
512 * The function returns static set of supported packet types,
513 * so we can't build it dynamically based on supported tunnel
514 * encapsulations and should limit to known sets.
515 */
516 switch (tunnel_encaps) {
517 case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
518 1u << EFX_TUNNEL_PROTOCOL_GENEVE |
519 1u << EFX_TUNNEL_PROTOCOL_NVGRE):
520 return ef10_overlay_ptypes;
521 default:
522 SFC_GENERIC_LOG(ERR,
523 "Unexpected set of supported tunnel encapsulations: %#x",
524 tunnel_encaps);
525 /* FALLTHROUGH */
526 case 0:
527 return ef10_native_ptypes;
528 }
529 }
530
531 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
532 static unsigned int
sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq * dp_rxq)533 sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
534 {
535 struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
536 efx_qword_t rx_ev;
537 const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
538 unsigned int pending = rxq->pending;
539 unsigned int ready;
540
541 if (unlikely(rxq->flags &
542 (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
543 goto done;
544
545 while (sfc_ef10_rx_get_event(rxq, &rx_ev)) {
546 ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
547 pending) &
548 EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
549 pending += ready;
550 }
551
552 /*
553 * The function does not process events, so return event queue read
554 * pointer to the original position to allow the events that were
555 * read to be processed later
556 */
557 rxq->evq_read_ptr = evq_old_read_ptr;
558
559 done:
560 return pending - rxq->completed;
561 }
562
563 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
564 static int
sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq * dp_rxq,uint16_t offset)565 sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
566 {
567 struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
568 unsigned int npending = sfc_ef10_rx_qdesc_npending(dp_rxq);
569
570 if (unlikely(offset > rxq->ptr_mask))
571 return -EINVAL;
572
573 if (offset < npending)
574 return RTE_ETH_RX_DESC_DONE;
575
576 if (offset < (rxq->added - rxq->completed))
577 return RTE_ETH_RX_DESC_AVAIL;
578
579 return RTE_ETH_RX_DESC_UNAVAIL;
580 }
581
582
583 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
584 static void
sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info * dev_info)585 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
586 {
587 /*
588 * Number of descriptors just defines maximum number of pushed
589 * descriptors (fill level).
590 */
591 dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
592 dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
593 }
594
595
596 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
597 static int
sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,struct sfc_dp_rx_hw_limits * limits,__rte_unused struct rte_mempool * mb_pool,unsigned int * rxq_entries,unsigned int * evq_entries,unsigned int * rxq_max_fill_level)598 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
599 struct sfc_dp_rx_hw_limits *limits,
600 __rte_unused struct rte_mempool *mb_pool,
601 unsigned int *rxq_entries,
602 unsigned int *evq_entries,
603 unsigned int *rxq_max_fill_level)
604 {
605 /*
606 * rte_ethdev API guarantees that the number meets min, max and
607 * alignment requirements.
608 */
609 if (nb_rx_desc <= limits->rxq_min_entries)
610 *rxq_entries = limits->rxq_min_entries;
611 else
612 *rxq_entries = rte_align32pow2(nb_rx_desc);
613
614 *evq_entries = *rxq_entries;
615
616 *rxq_max_fill_level = RTE_MIN(nb_rx_desc,
617 SFC_EF10_RXQ_LIMIT(*evq_entries));
618 return 0;
619 }
620
621
622 static uint64_t
sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id,uint16_t prefix_size)623 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
624 {
625 struct rte_mbuf m;
626
627 memset(&m, 0, sizeof(m));
628
629 rte_mbuf_refcnt_set(&m, 1);
630 m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
631 m.nb_segs = 1;
632 m.port = port_id;
633
634 /* rearm_data covers structure members filled in above */
635 rte_compiler_barrier();
636 RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
637 return m.rearm_data[0];
638 }
639
640 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
641 static int
sfc_ef10_rx_qcreate(uint16_t port_id,uint16_t queue_id,const struct rte_pci_addr * pci_addr,int socket_id,const struct sfc_dp_rx_qcreate_info * info,struct sfc_dp_rxq ** dp_rxqp)642 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
643 const struct rte_pci_addr *pci_addr, int socket_id,
644 const struct sfc_dp_rx_qcreate_info *info,
645 struct sfc_dp_rxq **dp_rxqp)
646 {
647 struct sfc_ef10_rxq *rxq;
648 int rc;
649
650 rc = EINVAL;
651 if (info->rxq_entries != info->evq_entries)
652 goto fail_rxq_args;
653
654 rc = ENOMEM;
655 rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
656 RTE_CACHE_LINE_SIZE, socket_id);
657 if (rxq == NULL)
658 goto fail_rxq_alloc;
659
660 sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
661
662 rc = ENOMEM;
663 rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
664 info->rxq_entries,
665 sizeof(*rxq->sw_ring),
666 RTE_CACHE_LINE_SIZE, socket_id);
667 if (rxq->sw_ring == NULL)
668 goto fail_desc_alloc;
669
670 rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
671 if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
672 rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
673 rxq->ptr_mask = info->rxq_entries - 1;
674 rxq->evq_hw_ring = info->evq_hw_ring;
675 rxq->max_fill_level = info->max_fill_level;
676 rxq->refill_threshold = info->refill_threshold;
677 rxq->rearm_data =
678 sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
679 rxq->prefix_size = info->prefix_size;
680 rxq->buf_size = info->buf_size;
681 rxq->refill_mb_pool = info->refill_mb_pool;
682 rxq->rxq_hw_ring = info->rxq_hw_ring;
683 rxq->doorbell = (volatile uint8_t *)info->mem_bar +
684 ER_DZ_RX_DESC_UPD_REG_OFST +
685 (info->hw_index << info->vi_window_shift);
686 rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
687 ER_DZ_EVQ_RPTR_REG_OFST +
688 (info->evq_hw_index << info->vi_window_shift);
689
690 sfc_ef10_rx_info(&rxq->dp.dpq, "RxQ doorbell is %p", rxq->doorbell);
691
692 *dp_rxqp = &rxq->dp;
693 return 0;
694
695 fail_desc_alloc:
696 rte_free(rxq);
697
698 fail_rxq_alloc:
699 fail_rxq_args:
700 return rc;
701 }
702
703 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
704 static void
sfc_ef10_rx_qdestroy(struct sfc_dp_rxq * dp_rxq)705 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
706 {
707 struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
708
709 rte_free(rxq->sw_ring);
710 rte_free(rxq);
711 }
712
713 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
714 static int
sfc_ef10_rx_qstart(struct sfc_dp_rxq * dp_rxq,unsigned int evq_read_ptr,const efx_rx_prefix_layout_t * pinfo)715 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
716 const efx_rx_prefix_layout_t *pinfo)
717 {
718 struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
719
720 SFC_ASSERT(rxq->completed == 0);
721 SFC_ASSERT(rxq->pending == 0);
722 SFC_ASSERT(rxq->added == 0);
723
724 if (pinfo->erpl_length != rxq->prefix_size ||
725 efx_rx_prefix_layout_check(pinfo, &sfc_ef10_rx_prefix_layout) != 0)
726 return ENOTSUP;
727
728 sfc_ef10_rx_qrefill(rxq);
729
730 rxq->evq_read_ptr = evq_read_ptr;
731
732 rxq->flags |= SFC_EF10_RXQ_STARTED;
733 rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
734
735 if (rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN)
736 sfc_ef10_rx_qprime(rxq);
737
738 return 0;
739 }
740
741 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
742 static void
sfc_ef10_rx_qstop(struct sfc_dp_rxq * dp_rxq,unsigned int * evq_read_ptr)743 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
744 {
745 struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
746
747 rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
748
749 *evq_read_ptr = rxq->evq_read_ptr;
750 }
751
752 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
753 static bool
sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq * dp_rxq,__rte_unused unsigned int id)754 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
755 {
756 __rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
757
758 SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
759
760 /*
761 * It is safe to ignore Rx event since we free all mbufs on
762 * queue purge anyway.
763 */
764
765 return false;
766 }
767
768 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
769 static void
sfc_ef10_rx_qpurge(struct sfc_dp_rxq * dp_rxq)770 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
771 {
772 struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
773 unsigned int i;
774 struct sfc_ef10_rx_sw_desc *rxd;
775
776 rte_pktmbuf_free(rxq->scatter_pkt);
777 rxq->scatter_pkt = NULL;
778
779 for (i = rxq->completed; i != rxq->added; ++i) {
780 rxd = &rxq->sw_ring[i & rxq->ptr_mask];
781 rte_mbuf_raw_free(rxd->mbuf);
782 rxd->mbuf = NULL;
783 }
784
785 rxq->completed = rxq->pending = rxq->added = 0;
786
787 rxq->flags &= ~SFC_EF10_RXQ_STARTED;
788 }
789
790 static sfc_dp_rx_intr_enable_t sfc_ef10_rx_intr_enable;
791 static int
sfc_ef10_rx_intr_enable(struct sfc_dp_rxq * dp_rxq)792 sfc_ef10_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
793 {
794 struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
795
796 rxq->flags |= SFC_EF10_RXQ_FLAG_INTR_EN;
797 if (rxq->flags & SFC_EF10_RXQ_STARTED)
798 sfc_ef10_rx_qprime(rxq);
799 return 0;
800 }
801
802 static sfc_dp_rx_intr_disable_t sfc_ef10_rx_intr_disable;
803 static int
sfc_ef10_rx_intr_disable(struct sfc_dp_rxq * dp_rxq)804 sfc_ef10_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
805 {
806 struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
807
808 /* Cannot disarm, just disable rearm */
809 rxq->flags &= ~SFC_EF10_RXQ_FLAG_INTR_EN;
810 return 0;
811 }
812
813 struct sfc_dp_rx sfc_ef10_rx = {
814 .dp = {
815 .name = SFC_KVARG_DATAPATH_EF10,
816 .type = SFC_DP_RX,
817 .hw_fw_caps = SFC_DP_HW_FW_CAP_EF10,
818 },
819 .features = SFC_DP_RX_FEAT_MULTI_PROCESS |
820 SFC_DP_RX_FEAT_INTR,
821 .dev_offload_capa = DEV_RX_OFFLOAD_CHECKSUM |
822 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
823 DEV_RX_OFFLOAD_RSS_HASH,
824 .queue_offload_capa = DEV_RX_OFFLOAD_SCATTER,
825 .get_dev_info = sfc_ef10_rx_get_dev_info,
826 .qsize_up_rings = sfc_ef10_rx_qsize_up_rings,
827 .qcreate = sfc_ef10_rx_qcreate,
828 .qdestroy = sfc_ef10_rx_qdestroy,
829 .qstart = sfc_ef10_rx_qstart,
830 .qstop = sfc_ef10_rx_qstop,
831 .qrx_ev = sfc_ef10_rx_qrx_ev,
832 .qpurge = sfc_ef10_rx_qpurge,
833 .supported_ptypes_get = sfc_ef10_supported_ptypes_get,
834 .qdesc_npending = sfc_ef10_rx_qdesc_npending,
835 .qdesc_status = sfc_ef10_rx_qdesc_status,
836 .intr_enable = sfc_ef10_rx_intr_enable,
837 .intr_disable = sfc_ef10_rx_intr_disable,
838 .pkt_burst = sfc_ef10_recv_pkts,
839 };
840