1 //===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Scudo Hardened Allocator implementation.
10 /// It uses the sanitizer_common allocator as a base and aims at mitigating
11 /// heap corruption vulnerabilities. It provides a checksum-guarded chunk
12 /// header, a delayed free list, and additional sanity checks.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "scudo_allocator.h"
17 #include "scudo_crc32.h"
18 #include "scudo_errors.h"
19 #include "scudo_flags.h"
20 #include "scudo_interface_internal.h"
21 #include "scudo_tsd.h"
22 #include "scudo_utils.h"
23 
24 #include "sanitizer_common/sanitizer_allocator_checks.h"
25 #include "sanitizer_common/sanitizer_allocator_interface.h"
26 #include "sanitizer_common/sanitizer_quarantine.h"
27 
28 #ifdef GWP_ASAN_HOOKS
29 # include "gwp_asan/guarded_pool_allocator.h"
30 # include "gwp_asan/optional/backtrace.h"
31 # include "gwp_asan/optional/options_parser.h"
32 #include "gwp_asan/optional/segv_handler.h"
33 #endif // GWP_ASAN_HOOKS
34 
35 #include <errno.h>
36 #include <string.h>
37 
38 namespace __scudo {
39 
40 // Global static cookie, initialized at start-up.
41 static u32 Cookie;
42 
43 // We default to software CRC32 if the alternatives are not supported, either
44 // at compilation or at runtime.
45 static atomic_uint8_t HashAlgorithm = { CRC32Software };
46 
computeCRC32(u32 Crc,uptr Value,uptr * Array,uptr ArraySize)47 inline u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
48   // If the hardware CRC32 feature is defined here, it was enabled everywhere,
49   // as opposed to only for scudo_crc32.cpp. This means that other hardware
50   // specific instructions were likely emitted at other places, and as a
51   // result there is no reason to not use it here.
52 #if defined(__CRC32__) || defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
53   Crc = CRC32_INTRINSIC(Crc, Value);
54   for (uptr i = 0; i < ArraySize; i++)
55     Crc = CRC32_INTRINSIC(Crc, Array[i]);
56   return Crc;
57 #else
58   if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
59     Crc = computeHardwareCRC32(Crc, Value);
60     for (uptr i = 0; i < ArraySize; i++)
61       Crc = computeHardwareCRC32(Crc, Array[i]);
62     return Crc;
63   }
64   Crc = computeSoftwareCRC32(Crc, Value);
65   for (uptr i = 0; i < ArraySize; i++)
66     Crc = computeSoftwareCRC32(Crc, Array[i]);
67   return Crc;
68 #endif  // defined(__CRC32__) || defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
69 }
70 
71 static BackendT &getBackend();
72 
73 namespace Chunk {
getAtomicHeader(void * Ptr)74   static inline AtomicPackedHeader *getAtomicHeader(void *Ptr) {
75     return reinterpret_cast<AtomicPackedHeader *>(reinterpret_cast<uptr>(Ptr) -
76         getHeaderSize());
77   }
78   static inline
getConstAtomicHeader(const void * Ptr)79   const AtomicPackedHeader *getConstAtomicHeader(const void *Ptr) {
80     return reinterpret_cast<const AtomicPackedHeader *>(
81         reinterpret_cast<uptr>(Ptr) - getHeaderSize());
82   }
83 
isAligned(const void * Ptr)84   static inline bool isAligned(const void *Ptr) {
85     return IsAligned(reinterpret_cast<uptr>(Ptr), MinAlignment);
86   }
87 
88   // We can't use the offset member of the chunk itself, as we would double
89   // fetch it without any warranty that it wouldn't have been tampered. To
90   // prevent this, we work with a local copy of the header.
getBackendPtr(const void * Ptr,UnpackedHeader * Header)91   static inline void *getBackendPtr(const void *Ptr, UnpackedHeader *Header) {
92     return reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
93         getHeaderSize() - (Header->Offset << MinAlignmentLog));
94   }
95 
96   // Returns the usable size for a chunk, meaning the amount of bytes from the
97   // beginning of the user data to the end of the backend allocated chunk.
getUsableSize(const void * Ptr,UnpackedHeader * Header)98   static inline uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) {
99     const uptr ClassId = Header->ClassId;
100     if (ClassId)
101       return PrimaryT::ClassIdToSize(ClassId) - getHeaderSize() -
102           (Header->Offset << MinAlignmentLog);
103     return SecondaryT::GetActuallyAllocatedSize(
104         getBackendPtr(Ptr, Header)) - getHeaderSize();
105   }
106 
107   // Returns the size the user requested when allocating the chunk.
getSize(const void * Ptr,UnpackedHeader * Header)108   static inline uptr getSize(const void *Ptr, UnpackedHeader *Header) {
109     const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
110     if (Header->ClassId)
111       return SizeOrUnusedBytes;
112     return SecondaryT::GetActuallyAllocatedSize(
113         getBackendPtr(Ptr, Header)) - getHeaderSize() - SizeOrUnusedBytes;
114   }
115 
116   // Compute the checksum of the chunk pointer and its header.
computeChecksum(const void * Ptr,UnpackedHeader * Header)117   static inline u16 computeChecksum(const void *Ptr, UnpackedHeader *Header) {
118     UnpackedHeader ZeroChecksumHeader = *Header;
119     ZeroChecksumHeader.Checksum = 0;
120     uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
121     memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
122     const u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(Ptr),
123                                  HeaderHolder, ARRAY_SIZE(HeaderHolder));
124     return static_cast<u16>(Crc);
125   }
126 
127   // Checks the validity of a chunk by verifying its checksum. It doesn't
128   // incur termination in the event of an invalid chunk.
isValid(const void * Ptr)129   static inline bool isValid(const void *Ptr) {
130     PackedHeader NewPackedHeader =
131         atomic_load_relaxed(getConstAtomicHeader(Ptr));
132     UnpackedHeader NewUnpackedHeader =
133         bit_cast<UnpackedHeader>(NewPackedHeader);
134     return (NewUnpackedHeader.Checksum ==
135             computeChecksum(Ptr, &NewUnpackedHeader));
136   }
137 
138   // Ensure that ChunkAvailable is 0, so that if a 0 checksum is ever valid
139   // for a fully nulled out header, its state will be available anyway.
140   COMPILER_CHECK(ChunkAvailable == 0);
141 
142   // Loads and unpacks the header, verifying the checksum in the process.
143   static inline
loadHeader(const void * Ptr,UnpackedHeader * NewUnpackedHeader)144   void loadHeader(const void *Ptr, UnpackedHeader *NewUnpackedHeader) {
145     PackedHeader NewPackedHeader =
146         atomic_load_relaxed(getConstAtomicHeader(Ptr));
147     *NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
148     if (UNLIKELY(NewUnpackedHeader->Checksum !=
149         computeChecksum(Ptr, NewUnpackedHeader)))
150       dieWithMessage("corrupted chunk header at address %p\n", Ptr);
151   }
152 
153   // Packs and stores the header, computing the checksum in the process.
storeHeader(void * Ptr,UnpackedHeader * NewUnpackedHeader)154   static inline void storeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader) {
155     NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
156     PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
157     atomic_store_relaxed(getAtomicHeader(Ptr), NewPackedHeader);
158   }
159 
160   // Packs and stores the header, computing the checksum in the process. We
161   // compare the current header with the expected provided one to ensure that
162   // we are not being raced by a corruption occurring in another thread.
compareExchangeHeader(void * Ptr,UnpackedHeader * NewUnpackedHeader,UnpackedHeader * OldUnpackedHeader)163   static inline void compareExchangeHeader(void *Ptr,
164                                            UnpackedHeader *NewUnpackedHeader,
165                                            UnpackedHeader *OldUnpackedHeader) {
166     NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
167     PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
168     PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
169     if (UNLIKELY(!atomic_compare_exchange_strong(
170             getAtomicHeader(Ptr), &OldPackedHeader, NewPackedHeader,
171             memory_order_relaxed)))
172       dieWithMessage("race on chunk header at address %p\n", Ptr);
173   }
174 }  // namespace Chunk
175 
176 struct QuarantineCallback {
QuarantineCallback__scudo::QuarantineCallback177   explicit QuarantineCallback(AllocatorCacheT *Cache)
178     : Cache_(Cache) {}
179 
180   // Chunk recycling function, returns a quarantined chunk to the backend,
181   // first making sure it hasn't been tampered with.
Recycle__scudo::QuarantineCallback182   void Recycle(void *Ptr) {
183     UnpackedHeader Header;
184     Chunk::loadHeader(Ptr, &Header);
185     if (UNLIKELY(Header.State != ChunkQuarantine))
186       dieWithMessage("invalid chunk state when recycling address %p\n", Ptr);
187     UnpackedHeader NewHeader = Header;
188     NewHeader.State = ChunkAvailable;
189     Chunk::compareExchangeHeader(Ptr, &NewHeader, &Header);
190     void *BackendPtr = Chunk::getBackendPtr(Ptr, &Header);
191     if (Header.ClassId)
192       getBackend().deallocatePrimary(Cache_, BackendPtr, Header.ClassId);
193     else
194       getBackend().deallocateSecondary(BackendPtr);
195   }
196 
197   // Internal quarantine allocation and deallocation functions. We first check
198   // that the batches are indeed serviced by the Primary.
199   // TODO(kostyak): figure out the best way to protect the batches.
Allocate__scudo::QuarantineCallback200   void *Allocate(uptr Size) {
201     const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
202     return getBackend().allocatePrimary(Cache_, BatchClassId);
203   }
204 
Deallocate__scudo::QuarantineCallback205   void Deallocate(void *Ptr) {
206     const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
207     getBackend().deallocatePrimary(Cache_, Ptr, BatchClassId);
208   }
209 
210   AllocatorCacheT *Cache_;
211   COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
212 };
213 
214 typedef Quarantine<QuarantineCallback, void> QuarantineT;
215 typedef QuarantineT::Cache QuarantineCacheT;
216 COMPILER_CHECK(sizeof(QuarantineCacheT) <=
217                sizeof(ScudoTSD::QuarantineCachePlaceHolder));
218 
getQuarantineCache(ScudoTSD * TSD)219 QuarantineCacheT *getQuarantineCache(ScudoTSD *TSD) {
220   return reinterpret_cast<QuarantineCacheT *>(TSD->QuarantineCachePlaceHolder);
221 }
222 
223 #ifdef GWP_ASAN_HOOKS
224 static gwp_asan::GuardedPoolAllocator GuardedAlloc;
225 #endif // GWP_ASAN_HOOKS
226 
227 struct Allocator {
228   static const uptr MaxAllowedMallocSize =
229       FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);
230 
231   BackendT Backend;
232   QuarantineT Quarantine;
233 
234   u32 QuarantineChunksUpToSize;
235 
236   bool DeallocationTypeMismatch;
237   bool ZeroContents;
238   bool DeleteSizeMismatch;
239 
240   bool CheckRssLimit;
241   uptr HardRssLimitMb;
242   uptr SoftRssLimitMb;
243   atomic_uint8_t RssLimitExceeded;
244   atomic_uint64_t RssLastCheckedAtNS;
245 
Allocator__scudo::Allocator246   explicit Allocator(LinkerInitialized)
247     : Quarantine(LINKER_INITIALIZED) {}
248 
249   NOINLINE void performSanityChecks();
250 
init__scudo::Allocator251   void init() {
252     SanitizerToolName = "Scudo";
253     PrimaryAllocatorName = "ScudoPrimary";
254     SecondaryAllocatorName = "ScudoSecondary";
255 
256     initFlags();
257 
258     performSanityChecks();
259 
260     // Check if hardware CRC32 is supported in the binary and by the platform,
261     // if so, opt for the CRC32 hardware version of the checksum.
262     if (&computeHardwareCRC32 && hasHardwareCRC32())
263       atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);
264 
265     SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
266     Backend.init(common_flags()->allocator_release_to_os_interval_ms);
267     HardRssLimitMb = common_flags()->hard_rss_limit_mb;
268     SoftRssLimitMb = common_flags()->soft_rss_limit_mb;
269     Quarantine.Init(
270         static_cast<uptr>(getFlags()->QuarantineSizeKb) << 10,
271         static_cast<uptr>(getFlags()->ThreadLocalQuarantineSizeKb) << 10);
272     QuarantineChunksUpToSize = (Quarantine.GetCacheSize() == 0) ? 0 :
273         getFlags()->QuarantineChunksUpToSize;
274     DeallocationTypeMismatch = getFlags()->DeallocationTypeMismatch;
275     DeleteSizeMismatch = getFlags()->DeleteSizeMismatch;
276     ZeroContents = getFlags()->ZeroContents;
277 
278     if (UNLIKELY(!GetRandom(reinterpret_cast<void *>(&Cookie), sizeof(Cookie),
279                             /*blocking=*/false))) {
280       Cookie = static_cast<u32>((NanoTime() >> 12) ^
281                                 (reinterpret_cast<uptr>(this) >> 4));
282     }
283 
284     CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
285     if (CheckRssLimit)
286       atomic_store_relaxed(&RssLastCheckedAtNS, MonotonicNanoTime());
287   }
288 
289   // Helper function that checks for a valid Scudo chunk. nullptr isn't.
isValidPointer__scudo::Allocator290   bool isValidPointer(const void *Ptr) {
291     initThreadMaybe();
292     if (UNLIKELY(!Ptr))
293       return false;
294     if (!Chunk::isAligned(Ptr))
295       return false;
296     return Chunk::isValid(Ptr);
297   }
298 
299   NOINLINE bool isRssLimitExceeded();
300 
301   // Allocates a chunk.
302   void *
allocate__scudo::Allocator303   allocate(uptr Size, uptr Alignment, AllocType Type,
304            bool ForceZeroContents = false) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
305     initThreadMaybe();
306 
307     if (UNLIKELY(Alignment > MaxAlignment)) {
308       if (AllocatorMayReturnNull())
309         return nullptr;
310       reportAllocationAlignmentTooBig(Alignment, MaxAlignment);
311     }
312     if (UNLIKELY(Alignment < MinAlignment))
313       Alignment = MinAlignment;
314 
315 #ifdef GWP_ASAN_HOOKS
316     if (UNLIKELY(GuardedAlloc.shouldSample())) {
317       if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
318         if (SCUDO_CAN_USE_HOOKS && &__sanitizer_malloc_hook)
319           __sanitizer_malloc_hook(Ptr, Size);
320         return Ptr;
321       }
322     }
323 #endif // GWP_ASAN_HOOKS
324 
325     const uptr NeededSize = RoundUpTo(Size ? Size : 1, MinAlignment) +
326         Chunk::getHeaderSize();
327     const uptr AlignedSize = (Alignment > MinAlignment) ?
328         NeededSize + (Alignment - Chunk::getHeaderSize()) : NeededSize;
329     if (UNLIKELY(Size >= MaxAllowedMallocSize) ||
330         UNLIKELY(AlignedSize >= MaxAllowedMallocSize)) {
331       if (AllocatorMayReturnNull())
332         return nullptr;
333       reportAllocationSizeTooBig(Size, AlignedSize, MaxAllowedMallocSize);
334     }
335 
336     if (CheckRssLimit && UNLIKELY(isRssLimitExceeded())) {
337       if (AllocatorMayReturnNull())
338         return nullptr;
339       reportRssLimitExceeded();
340     }
341 
342     // Primary and Secondary backed allocations have a different treatment. We
343     // deal with alignment requirements of Primary serviced allocations here,
344     // but the Secondary will take care of its own alignment needs.
345     void *BackendPtr;
346     uptr BackendSize;
347     u8 ClassId;
348     if (PrimaryT::CanAllocate(AlignedSize, MinAlignment)) {
349       BackendSize = AlignedSize;
350       ClassId = SizeClassMap::ClassID(BackendSize);
351       bool UnlockRequired;
352       ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
353       BackendPtr = Backend.allocatePrimary(&TSD->Cache, ClassId);
354       if (UnlockRequired)
355         TSD->unlock();
356     } else {
357       BackendSize = NeededSize;
358       ClassId = 0;
359       BackendPtr = Backend.allocateSecondary(BackendSize, Alignment);
360     }
361     if (UNLIKELY(!BackendPtr)) {
362       SetAllocatorOutOfMemory();
363       if (AllocatorMayReturnNull())
364         return nullptr;
365       reportOutOfMemory(Size);
366     }
367 
368     // If requested, we will zero out the entire contents of the returned chunk.
369     if ((ForceZeroContents || ZeroContents) && ClassId)
370       memset(BackendPtr, 0, PrimaryT::ClassIdToSize(ClassId));
371 
372     UnpackedHeader Header = {};
373     uptr UserPtr = reinterpret_cast<uptr>(BackendPtr) + Chunk::getHeaderSize();
374     if (UNLIKELY(!IsAligned(UserPtr, Alignment))) {
375       // Since the Secondary takes care of alignment, a non-aligned pointer
376       // means it is from the Primary. It is also the only case where the offset
377       // field of the header would be non-zero.
378       DCHECK(ClassId);
379       const uptr AlignedUserPtr = RoundUpTo(UserPtr, Alignment);
380       Header.Offset = (AlignedUserPtr - UserPtr) >> MinAlignmentLog;
381       UserPtr = AlignedUserPtr;
382     }
383     DCHECK_LE(UserPtr + Size, reinterpret_cast<uptr>(BackendPtr) + BackendSize);
384     Header.State = ChunkAllocated;
385     Header.AllocType = Type;
386     if (ClassId) {
387       Header.ClassId = ClassId;
388       Header.SizeOrUnusedBytes = Size;
389     } else {
390       // The secondary fits the allocations to a page, so the amount of unused
391       // bytes is the difference between the end of the user allocation and the
392       // next page boundary.
393       const uptr PageSize = GetPageSizeCached();
394       const uptr TrailingBytes = (UserPtr + Size) & (PageSize - 1);
395       if (TrailingBytes)
396         Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
397     }
398     void *Ptr = reinterpret_cast<void *>(UserPtr);
399     Chunk::storeHeader(Ptr, &Header);
400     if (SCUDO_CAN_USE_HOOKS && &__sanitizer_malloc_hook)
401       __sanitizer_malloc_hook(Ptr, Size);
402     return Ptr;
403   }
404 
405   // Place a chunk in the quarantine or directly deallocate it in the event of
406   // a zero-sized quarantine, or if the size of the chunk is greater than the
407   // quarantine chunk size threshold.
quarantineOrDeallocateChunk__scudo::Allocator408   void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header, uptr Size)
409       SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
410     const bool BypassQuarantine = !Size || (Size > QuarantineChunksUpToSize);
411     if (BypassQuarantine) {
412       UnpackedHeader NewHeader = *Header;
413       NewHeader.State = ChunkAvailable;
414       Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
415       void *BackendPtr = Chunk::getBackendPtr(Ptr, Header);
416       if (Header->ClassId) {
417         bool UnlockRequired;
418         ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
419         getBackend().deallocatePrimary(&TSD->Cache, BackendPtr,
420                                        Header->ClassId);
421         if (UnlockRequired)
422           TSD->unlock();
423       } else {
424         getBackend().deallocateSecondary(BackendPtr);
425       }
426     } else {
427       // If a small memory amount was allocated with a larger alignment, we want
428       // to take that into account. Otherwise the Quarantine would be filled
429       // with tiny chunks, taking a lot of VA memory. This is an approximation
430       // of the usable size, that allows us to not call
431       // GetActuallyAllocatedSize.
432       const uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
433       UnpackedHeader NewHeader = *Header;
434       NewHeader.State = ChunkQuarantine;
435       Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
436       bool UnlockRequired;
437       ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
438       Quarantine.Put(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache),
439                      Ptr, EstimatedSize);
440       if (UnlockRequired)
441         TSD->unlock();
442     }
443   }
444 
445   // Deallocates a Chunk, which means either adding it to the quarantine or
446   // directly returning it to the backend if criteria are met.
deallocate__scudo::Allocator447   void deallocate(void *Ptr, uptr DeleteSize, uptr DeleteAlignment,
448                   AllocType Type) {
449     // For a deallocation, we only ensure minimal initialization, meaning thread
450     // local data will be left uninitialized for now (when using ELF TLS). The
451     // fallback cache will be used instead. This is a workaround for a situation
452     // where the only heap operation performed in a thread would be a free past
453     // the TLS destructors, ending up in initialized thread specific data never
454     // being destroyed properly. Any other heap operation will do a full init.
455     initThreadMaybe(/*MinimalInit=*/true);
456     if (SCUDO_CAN_USE_HOOKS && &__sanitizer_free_hook)
457       __sanitizer_free_hook(Ptr);
458     if (UNLIKELY(!Ptr))
459       return;
460 
461 #ifdef GWP_ASAN_HOOKS
462     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
463       GuardedAlloc.deallocate(Ptr);
464       return;
465     }
466 #endif // GWP_ASAN_HOOKS
467 
468     if (UNLIKELY(!Chunk::isAligned(Ptr)))
469       dieWithMessage("misaligned pointer when deallocating address %p\n", Ptr);
470     UnpackedHeader Header;
471     Chunk::loadHeader(Ptr, &Header);
472     if (UNLIKELY(Header.State != ChunkAllocated))
473       dieWithMessage("invalid chunk state when deallocating address %p\n", Ptr);
474     if (DeallocationTypeMismatch) {
475       // The deallocation type has to match the allocation one.
476       if (Header.AllocType != Type) {
477         // With the exception of memalign'd Chunks, that can be still be free'd.
478         if (Header.AllocType != FromMemalign || Type != FromMalloc)
479           dieWithMessage("allocation type mismatch when deallocating address "
480                          "%p\n", Ptr);
481       }
482     }
483     const uptr Size = Chunk::getSize(Ptr, &Header);
484     if (DeleteSizeMismatch) {
485       if (DeleteSize && DeleteSize != Size)
486         dieWithMessage("invalid sized delete when deallocating address %p\n",
487                        Ptr);
488     }
489     (void)DeleteAlignment;  // TODO(kostyak): verify that the alignment matches.
490     quarantineOrDeallocateChunk(Ptr, &Header, Size);
491   }
492 
493   // Reallocates a chunk. We can save on a new allocation if the new requested
494   // size still fits in the chunk.
reallocate__scudo::Allocator495   void *reallocate(void *OldPtr, uptr NewSize) {
496     initThreadMaybe();
497 
498 #ifdef GWP_ASAN_HOOKS
499     if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
500       size_t OldSize = GuardedAlloc.getSize(OldPtr);
501       void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
502       if (NewPtr)
503         memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
504       GuardedAlloc.deallocate(OldPtr);
505       return NewPtr;
506     }
507 #endif // GWP_ASAN_HOOKS
508 
509     if (UNLIKELY(!Chunk::isAligned(OldPtr)))
510       dieWithMessage("misaligned address when reallocating address %p\n",
511                      OldPtr);
512     UnpackedHeader OldHeader;
513     Chunk::loadHeader(OldPtr, &OldHeader);
514     if (UNLIKELY(OldHeader.State != ChunkAllocated))
515       dieWithMessage("invalid chunk state when reallocating address %p\n",
516                      OldPtr);
517     if (DeallocationTypeMismatch) {
518       if (UNLIKELY(OldHeader.AllocType != FromMalloc))
519         dieWithMessage("allocation type mismatch when reallocating address "
520                        "%p\n", OldPtr);
521     }
522     const uptr UsableSize = Chunk::getUsableSize(OldPtr, &OldHeader);
523     // The new size still fits in the current chunk, and the size difference
524     // is reasonable.
525     if (NewSize <= UsableSize &&
526         (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
527       UnpackedHeader NewHeader = OldHeader;
528       NewHeader.SizeOrUnusedBytes =
529           OldHeader.ClassId ? NewSize : UsableSize - NewSize;
530       Chunk::compareExchangeHeader(OldPtr, &NewHeader, &OldHeader);
531       return OldPtr;
532     }
533     // Otherwise, we have to allocate a new chunk and copy the contents of the
534     // old one.
535     void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
536     if (NewPtr) {
537       const uptr OldSize = OldHeader.ClassId ? OldHeader.SizeOrUnusedBytes :
538           UsableSize - OldHeader.SizeOrUnusedBytes;
539       memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
540       quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
541     }
542     return NewPtr;
543   }
544 
545   // Helper function that returns the actual usable size of a chunk.
getUsableSize__scudo::Allocator546   uptr getUsableSize(const void *Ptr) {
547     initThreadMaybe();
548     if (UNLIKELY(!Ptr))
549       return 0;
550 
551 #ifdef GWP_ASAN_HOOKS
552     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
553       return GuardedAlloc.getSize(Ptr);
554 #endif // GWP_ASAN_HOOKS
555 
556     UnpackedHeader Header;
557     Chunk::loadHeader(Ptr, &Header);
558     // Getting the usable size of a chunk only makes sense if it's allocated.
559     if (UNLIKELY(Header.State != ChunkAllocated))
560       dieWithMessage("invalid chunk state when sizing address %p\n", Ptr);
561     return Chunk::getUsableSize(Ptr, &Header);
562   }
563 
calloc__scudo::Allocator564   void *calloc(uptr NMemB, uptr Size) {
565     initThreadMaybe();
566     if (UNLIKELY(CheckForCallocOverflow(NMemB, Size))) {
567       if (AllocatorMayReturnNull())
568         return nullptr;
569       reportCallocOverflow(NMemB, Size);
570     }
571     return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
572   }
573 
commitBack__scudo::Allocator574   void commitBack(ScudoTSD *TSD) {
575     Quarantine.Drain(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache));
576     Backend.destroyCache(&TSD->Cache);
577   }
578 
getStats__scudo::Allocator579   uptr getStats(AllocatorStat StatType) {
580     initThreadMaybe();
581     uptr stats[AllocatorStatCount];
582     Backend.getStats(stats);
583     return stats[StatType];
584   }
585 
canReturnNull__scudo::Allocator586   bool canReturnNull() {
587     initThreadMaybe();
588     return AllocatorMayReturnNull();
589   }
590 
setRssLimit__scudo::Allocator591   void setRssLimit(uptr LimitMb, bool HardLimit) {
592     if (HardLimit)
593       HardRssLimitMb = LimitMb;
594     else
595       SoftRssLimitMb = LimitMb;
596     CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
597   }
598 
printStats__scudo::Allocator599   void printStats() {
600     initThreadMaybe();
601     Backend.printStats();
602   }
603 };
604 
performSanityChecks()605 NOINLINE void Allocator::performSanityChecks() {
606   // Verify that the header offset field can hold the maximum offset. In the
607   // case of the Secondary allocator, it takes care of alignment and the
608   // offset will always be 0. In the case of the Primary, the worst case
609   // scenario happens in the last size class, when the backend allocation
610   // would already be aligned on the requested alignment, which would happen
611   // to be the maximum alignment that would fit in that size class. As a
612   // result, the maximum offset will be at most the maximum alignment for the
613   // last size class minus the header size, in multiples of MinAlignment.
614   UnpackedHeader Header = {};
615   const uptr MaxPrimaryAlignment =
616       1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
617   const uptr MaxOffset =
618       (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
619   Header.Offset = MaxOffset;
620   if (Header.Offset != MaxOffset)
621     dieWithMessage("maximum possible offset doesn't fit in header\n");
622   // Verify that we can fit the maximum size or amount of unused bytes in the
623   // header. Given that the Secondary fits the allocation to a page, the worst
624   // case scenario happens in the Primary. It will depend on the second to
625   // last and last class sizes, as well as the dynamic base for the Primary.
626   // The following is an over-approximation that works for our needs.
627   const uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
628   Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
629   if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)
630     dieWithMessage("maximum possible unused bytes doesn't fit in header\n");
631 
632   const uptr LargestClassId = SizeClassMap::kLargestClassID;
633   Header.ClassId = LargestClassId;
634   if (Header.ClassId != LargestClassId)
635     dieWithMessage("largest class ID doesn't fit in header\n");
636 }
637 
638 // Opportunistic RSS limit check. This will update the RSS limit status, if
639 // it can, every 250ms, otherwise it will just return the current one.
isRssLimitExceeded()640 NOINLINE bool Allocator::isRssLimitExceeded() {
641   u64 LastCheck = atomic_load_relaxed(&RssLastCheckedAtNS);
642   const u64 CurrentCheck = MonotonicNanoTime();
643   if (LIKELY(CurrentCheck < LastCheck + (250ULL * 1000000ULL)))
644     return atomic_load_relaxed(&RssLimitExceeded);
645   if (!atomic_compare_exchange_weak(&RssLastCheckedAtNS, &LastCheck,
646                                     CurrentCheck, memory_order_relaxed))
647     return atomic_load_relaxed(&RssLimitExceeded);
648   // TODO(kostyak): We currently use sanitizer_common's GetRSS which reads the
649   //                RSS from /proc/self/statm by default. We might want to
650   //                call getrusage directly, even if it's less accurate.
651   const uptr CurrentRssMb = GetRSS() >> 20;
652   if (HardRssLimitMb && UNLIKELY(HardRssLimitMb < CurrentRssMb))
653     dieWithMessage("hard RSS limit exhausted (%zdMb vs %zdMb)\n",
654                    HardRssLimitMb, CurrentRssMb);
655   if (SoftRssLimitMb) {
656     if (atomic_load_relaxed(&RssLimitExceeded)) {
657       if (CurrentRssMb <= SoftRssLimitMb)
658         atomic_store_relaxed(&RssLimitExceeded, false);
659     } else {
660       if (CurrentRssMb > SoftRssLimitMb) {
661         atomic_store_relaxed(&RssLimitExceeded, true);
662         Printf("Scudo INFO: soft RSS limit exhausted (%zdMb vs %zdMb)\n",
663                SoftRssLimitMb, CurrentRssMb);
664       }
665     }
666   }
667   return atomic_load_relaxed(&RssLimitExceeded);
668 }
669 
670 static Allocator Instance(LINKER_INITIALIZED);
671 
getBackend()672 static BackendT &getBackend() {
673   return Instance.Backend;
674 }
675 
initScudo()676 void initScudo() {
677   Instance.init();
678 #ifdef GWP_ASAN_HOOKS
679   gwp_asan::options::initOptions(__sanitizer::GetEnv("GWP_ASAN_OPTIONS"),
680                                  Printf);
681   gwp_asan::options::Options &Opts = gwp_asan::options::getOptions();
682   Opts.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
683   GuardedAlloc.init(Opts);
684 
685   if (Opts.InstallSignalHandlers)
686     gwp_asan::segv_handler::installSignalHandlers(
687         &GuardedAlloc, __sanitizer::Printf,
688         gwp_asan::backtrace::getPrintBacktraceFunction(),
689         gwp_asan::backtrace::getSegvBacktraceFunction());
690 #endif // GWP_ASAN_HOOKS
691 }
692 
init()693 void ScudoTSD::init() {
694   getBackend().initCache(&Cache);
695   memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
696 }
697 
commitBack()698 void ScudoTSD::commitBack() {
699   Instance.commitBack(this);
700 }
701 
scudoAllocate(uptr Size,uptr Alignment,AllocType Type)702 void *scudoAllocate(uptr Size, uptr Alignment, AllocType Type) {
703   if (Alignment && UNLIKELY(!IsPowerOfTwo(Alignment))) {
704     errno = EINVAL;
705     if (Instance.canReturnNull())
706       return nullptr;
707     reportAllocationAlignmentNotPowerOfTwo(Alignment);
708   }
709   return SetErrnoOnNull(Instance.allocate(Size, Alignment, Type));
710 }
711 
scudoDeallocate(void * Ptr,uptr Size,uptr Alignment,AllocType Type)712 void scudoDeallocate(void *Ptr, uptr Size, uptr Alignment, AllocType Type) {
713   Instance.deallocate(Ptr, Size, Alignment, Type);
714 }
715 
scudoRealloc(void * Ptr,uptr Size)716 void *scudoRealloc(void *Ptr, uptr Size) {
717   if (!Ptr)
718     return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
719   if (Size == 0) {
720     Instance.deallocate(Ptr, 0, 0, FromMalloc);
721     return nullptr;
722   }
723   return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
724 }
725 
scudoCalloc(uptr NMemB,uptr Size)726 void *scudoCalloc(uptr NMemB, uptr Size) {
727   return SetErrnoOnNull(Instance.calloc(NMemB, Size));
728 }
729 
scudoValloc(uptr Size)730 void *scudoValloc(uptr Size) {
731   return SetErrnoOnNull(
732       Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
733 }
734 
scudoPvalloc(uptr Size)735 void *scudoPvalloc(uptr Size) {
736   const uptr PageSize = GetPageSizeCached();
737   if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
738     errno = ENOMEM;
739     if (Instance.canReturnNull())
740       return nullptr;
741     reportPvallocOverflow(Size);
742   }
743   // pvalloc(0) should allocate one page.
744   Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
745   return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
746 }
747 
scudoPosixMemalign(void ** MemPtr,uptr Alignment,uptr Size)748 int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
749   if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
750     if (!Instance.canReturnNull())
751       reportInvalidPosixMemalignAlignment(Alignment);
752     return EINVAL;
753   }
754   void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
755   if (UNLIKELY(!Ptr))
756     return ENOMEM;
757   *MemPtr = Ptr;
758   return 0;
759 }
760 
scudoAlignedAlloc(uptr Alignment,uptr Size)761 void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
762   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
763     errno = EINVAL;
764     if (Instance.canReturnNull())
765       return nullptr;
766     reportInvalidAlignedAllocAlignment(Size, Alignment);
767   }
768   return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
769 }
770 
scudoMallocUsableSize(void * Ptr)771 uptr scudoMallocUsableSize(void *Ptr) {
772   return Instance.getUsableSize(Ptr);
773 }
774 
775 }  // namespace __scudo
776 
777 using namespace __scudo;
778 
779 // MallocExtension helper functions
780 
__sanitizer_get_current_allocated_bytes()781 uptr __sanitizer_get_current_allocated_bytes() {
782   return Instance.getStats(AllocatorStatAllocated);
783 }
784 
__sanitizer_get_heap_size()785 uptr __sanitizer_get_heap_size() {
786   return Instance.getStats(AllocatorStatMapped);
787 }
788 
__sanitizer_get_free_bytes()789 uptr __sanitizer_get_free_bytes() {
790   return 1;
791 }
792 
__sanitizer_get_unmapped_bytes()793 uptr __sanitizer_get_unmapped_bytes() {
794   return 1;
795 }
796 
__sanitizer_get_estimated_allocated_size(uptr Size)797 uptr __sanitizer_get_estimated_allocated_size(uptr Size) {
798   return Size;
799 }
800 
__sanitizer_get_ownership(const void * Ptr)801 int __sanitizer_get_ownership(const void *Ptr) {
802   return Instance.isValidPointer(Ptr);
803 }
804 
__sanitizer_get_allocated_size(const void * Ptr)805 uptr __sanitizer_get_allocated_size(const void *Ptr) {
806   return Instance.getUsableSize(Ptr);
807 }
808 
809 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_malloc_hook,void * Ptr,uptr Size)810 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
811                              void *Ptr, uptr Size) {
812   (void)Ptr;
813   (void)Size;
814 }
815 
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_free_hook,void * Ptr)816 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *Ptr) {
817   (void)Ptr;
818 }
819 #endif
820 
821 // Interface functions
822 
__scudo_set_rss_limit(uptr LimitMb,s32 HardLimit)823 void __scudo_set_rss_limit(uptr LimitMb, s32 HardLimit) {
824   if (!SCUDO_CAN_USE_PUBLIC_INTERFACE)
825     return;
826   Instance.setRssLimit(LimitMb, !!HardLimit);
827 }
828 
__scudo_print_stats()829 void __scudo_print_stats() {
830   Instance.printStats();
831 }
832