1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2015 - 2016 CESNET
3 */
4
5 #include <stdint.h>
6 #include <unistd.h>
7 #include <stdbool.h>
8 #include <err.h>
9 #include <sys/types.h>
10 #include <dirent.h>
11 #include <sys/stat.h>
12 #include <fcntl.h>
13 #include <sys/mman.h>
14
15 #include <libsze2.h>
16
17 #include <rte_mbuf.h>
18 #include <rte_ethdev_driver.h>
19 #include <rte_ethdev_pci.h>
20 #include <rte_malloc.h>
21 #include <rte_memcpy.h>
22 #include <rte_kvargs.h>
23 #include <rte_dev.h>
24
25 #include "rte_eth_szedata2.h"
26 #include "szedata2_logs.h"
27
28 #define RTE_ETH_SZEDATA2_MAX_RX_QUEUES 32
29 #define RTE_ETH_SZEDATA2_MAX_TX_QUEUES 32
30 #define RTE_ETH_SZEDATA2_TX_LOCK_SIZE (32 * 1024 * 1024)
31
32 /**
33 * size of szedata2_packet header with alignment
34 */
35 #define RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED 8
36
37 #define RTE_SZEDATA2_DRIVER_NAME net_szedata2
38
39 #define SZEDATA2_DEV_PATH_FMT "/dev/szedataII%u"
40
41 /**
42 * Format string for suffix used to differentiate between Ethernet ports
43 * on the same PCI device.
44 */
45 #define SZEDATA2_ETH_DEV_NAME_SUFFIX_FMT "-port%u"
46
47 /**
48 * Maximum number of ports for one device.
49 */
50 #define SZEDATA2_MAX_PORTS 2
51
52 /**
53 * Entry in list of PCI devices for this driver.
54 */
55 struct pci_dev_list_entry;
56 struct pci_dev_list_entry {
57 LIST_ENTRY(pci_dev_list_entry) next;
58 struct rte_pci_device *pci_dev;
59 unsigned int port_count;
60 };
61
62 /* List of PCI devices with number of ports for this driver. */
63 LIST_HEAD(pci_dev_list, pci_dev_list_entry) szedata2_pci_dev_list =
64 LIST_HEAD_INITIALIZER(szedata2_pci_dev_list);
65
66 struct port_info {
67 unsigned int rx_base_id;
68 unsigned int tx_base_id;
69 unsigned int rx_count;
70 unsigned int tx_count;
71 int numa_node;
72 };
73
74 struct pmd_internals {
75 struct rte_eth_dev *dev;
76 uint16_t max_rx_queues;
77 uint16_t max_tx_queues;
78 unsigned int rxq_base_id;
79 unsigned int txq_base_id;
80 char *sze_dev_path;
81 };
82
83 struct szedata2_rx_queue {
84 struct pmd_internals *priv;
85 struct szedata *sze;
86 uint8_t rx_channel;
87 uint16_t qid;
88 uint16_t in_port;
89 struct rte_mempool *mb_pool;
90 volatile uint64_t rx_pkts;
91 volatile uint64_t rx_bytes;
92 volatile uint64_t err_pkts;
93 };
94
95 struct szedata2_tx_queue {
96 struct pmd_internals *priv;
97 struct szedata *sze;
98 uint8_t tx_channel;
99 uint16_t qid;
100 volatile uint64_t tx_pkts;
101 volatile uint64_t tx_bytes;
102 volatile uint64_t err_pkts;
103 };
104
105 static struct rte_ether_addr eth_addr = {
106 .addr_bytes = { 0x00, 0x11, 0x17, 0x00, 0x00, 0x00 }
107 };
108
109 static uint16_t
eth_szedata2_rx(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)110 eth_szedata2_rx(void *queue,
111 struct rte_mbuf **bufs,
112 uint16_t nb_pkts)
113 {
114 unsigned int i;
115 struct rte_mbuf *mbuf;
116 struct szedata2_rx_queue *sze_q = queue;
117 struct rte_pktmbuf_pool_private *mbp_priv;
118 uint16_t num_rx = 0;
119 uint16_t buf_size;
120 uint16_t sg_size;
121 uint16_t hw_size;
122 uint16_t packet_size;
123 uint64_t num_bytes = 0;
124 struct szedata *sze = sze_q->sze;
125 uint8_t *header_ptr = NULL; /* header of packet */
126 uint8_t *packet_ptr1 = NULL;
127 uint8_t *packet_ptr2 = NULL;
128 uint16_t packet_len1 = 0;
129 uint16_t packet_len2 = 0;
130 uint16_t hw_data_align;
131
132 if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
133 return 0;
134
135 /*
136 * Reads the given number of packets from szedata2 channel given
137 * by queue and copies the packet data into a newly allocated mbuf
138 * to return.
139 */
140 for (i = 0; i < nb_pkts; i++) {
141 mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
142
143 if (unlikely(mbuf == NULL)) {
144 sze_q->priv->dev->data->rx_mbuf_alloc_failed++;
145 break;
146 }
147
148 /* get the next sze packet */
149 if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
150 sze->ct_rx_lck->next == NULL) {
151 /* unlock old data */
152 szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
153 sze->ct_rx_lck_orig = NULL;
154 sze->ct_rx_lck = NULL;
155 }
156
157 if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
158 /* nothing to read, lock new data */
159 sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
160 sze->ct_rx_lck_orig = sze->ct_rx_lck;
161
162 if (sze->ct_rx_lck == NULL) {
163 /* nothing to lock */
164 rte_pktmbuf_free(mbuf);
165 break;
166 }
167
168 sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
169 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
170
171 if (!sze->ct_rx_rem_bytes) {
172 rte_pktmbuf_free(mbuf);
173 break;
174 }
175 }
176
177 if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
178 /*
179 * cut in header
180 * copy parts of header to merge buffer
181 */
182 if (sze->ct_rx_lck->next == NULL) {
183 rte_pktmbuf_free(mbuf);
184 break;
185 }
186
187 /* copy first part of header */
188 rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
189 sze->ct_rx_rem_bytes);
190
191 /* copy second part of header */
192 sze->ct_rx_lck = sze->ct_rx_lck->next;
193 sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
194 rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
195 sze->ct_rx_cur_ptr,
196 RTE_SZE2_PACKET_HEADER_SIZE -
197 sze->ct_rx_rem_bytes);
198
199 sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
200 sze->ct_rx_rem_bytes;
201 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
202 RTE_SZE2_PACKET_HEADER_SIZE +
203 sze->ct_rx_rem_bytes;
204
205 header_ptr = (uint8_t *)sze->ct_rx_buffer;
206 } else {
207 /* not cut */
208 header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
209 sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
210 sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
211 }
212
213 sg_size = le16toh(*((uint16_t *)header_ptr));
214 hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
215 packet_size = sg_size -
216 RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
217
218
219 /* checks if packet all right */
220 if (!sg_size)
221 errx(5, "Zero segsize");
222
223 /* check sg_size and hwsize */
224 if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
225 errx(10, "Hwsize bigger than expected. Segsize: %d, "
226 "hwsize: %d", sg_size, hw_size);
227 }
228
229 hw_data_align =
230 RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size) -
231 RTE_SZE2_PACKET_HEADER_SIZE;
232
233 if (sze->ct_rx_rem_bytes >=
234 (uint16_t)(sg_size -
235 RTE_SZE2_PACKET_HEADER_SIZE)) {
236 /* no cut */
237 /* one packet ready - go to another */
238 packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
239 packet_len1 = packet_size;
240 packet_ptr2 = NULL;
241 packet_len2 = 0;
242
243 sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
244 RTE_SZE2_PACKET_HEADER_SIZE;
245 sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
246 RTE_SZE2_PACKET_HEADER_SIZE;
247 } else {
248 /* cut in data */
249 if (sze->ct_rx_lck->next == NULL) {
250 errx(6, "Need \"next\" lock, "
251 "but it is missing: %u",
252 sze->ct_rx_rem_bytes);
253 }
254
255 /* skip hw data */
256 if (sze->ct_rx_rem_bytes <= hw_data_align) {
257 uint16_t rem_size = hw_data_align -
258 sze->ct_rx_rem_bytes;
259
260 /* MOVE to next lock */
261 sze->ct_rx_lck = sze->ct_rx_lck->next;
262 sze->ct_rx_cur_ptr =
263 (void *)(((uint8_t *)
264 (sze->ct_rx_lck->start)) + rem_size);
265
266 packet_ptr1 = sze->ct_rx_cur_ptr;
267 packet_len1 = packet_size;
268 packet_ptr2 = NULL;
269 packet_len2 = 0;
270
271 sze->ct_rx_cur_ptr +=
272 RTE_SZE2_ALIGN8(packet_size);
273 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
274 rem_size - RTE_SZE2_ALIGN8(packet_size);
275 } else {
276 /* get pointer and length from first part */
277 packet_ptr1 = sze->ct_rx_cur_ptr +
278 hw_data_align;
279 packet_len1 = sze->ct_rx_rem_bytes -
280 hw_data_align;
281
282 /* MOVE to next lock */
283 sze->ct_rx_lck = sze->ct_rx_lck->next;
284 sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
285
286 /* get pointer and length from second part */
287 packet_ptr2 = sze->ct_rx_cur_ptr;
288 packet_len2 = packet_size - packet_len1;
289
290 sze->ct_rx_cur_ptr +=
291 RTE_SZE2_ALIGN8(packet_size) -
292 packet_len1;
293 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
294 (RTE_SZE2_ALIGN8(packet_size) -
295 packet_len1);
296 }
297 }
298
299 if (unlikely(packet_ptr1 == NULL)) {
300 rte_pktmbuf_free(mbuf);
301 break;
302 }
303
304 /* get the space available for data in the mbuf */
305 mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
306 buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
307 RTE_PKTMBUF_HEADROOM);
308
309 if (packet_size <= buf_size) {
310 /* sze packet will fit in one mbuf, go ahead and copy */
311 rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
312 packet_ptr1, packet_len1);
313 if (packet_ptr2 != NULL) {
314 rte_memcpy((void *)(rte_pktmbuf_mtod(mbuf,
315 uint8_t *) + packet_len1),
316 packet_ptr2, packet_len2);
317 }
318 mbuf->data_len = (uint16_t)packet_size;
319
320 mbuf->pkt_len = packet_size;
321 mbuf->port = sze_q->in_port;
322 bufs[num_rx] = mbuf;
323 num_rx++;
324 num_bytes += packet_size;
325 } else {
326 /*
327 * sze packet will not fit in one mbuf,
328 * scattered mode is not enabled, drop packet
329 */
330 PMD_DRV_LOG(ERR,
331 "SZE segment %d bytes will not fit in one mbuf "
332 "(%d bytes), scattered mode is not enabled, "
333 "drop packet!!",
334 packet_size, buf_size);
335 rte_pktmbuf_free(mbuf);
336 }
337 }
338
339 sze_q->rx_pkts += num_rx;
340 sze_q->rx_bytes += num_bytes;
341 return num_rx;
342 }
343
344 static uint16_t
eth_szedata2_rx_scattered(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)345 eth_szedata2_rx_scattered(void *queue,
346 struct rte_mbuf **bufs,
347 uint16_t nb_pkts)
348 {
349 unsigned int i;
350 struct rte_mbuf *mbuf;
351 struct szedata2_rx_queue *sze_q = queue;
352 struct rte_pktmbuf_pool_private *mbp_priv;
353 uint16_t num_rx = 0;
354 uint16_t buf_size;
355 uint16_t sg_size;
356 uint16_t hw_size;
357 uint16_t packet_size;
358 uint64_t num_bytes = 0;
359 struct szedata *sze = sze_q->sze;
360 uint8_t *header_ptr = NULL; /* header of packet */
361 uint8_t *packet_ptr1 = NULL;
362 uint8_t *packet_ptr2 = NULL;
363 uint16_t packet_len1 = 0;
364 uint16_t packet_len2 = 0;
365 uint16_t hw_data_align;
366 uint64_t *mbuf_failed_ptr =
367 &sze_q->priv->dev->data->rx_mbuf_alloc_failed;
368
369 if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
370 return 0;
371
372 /*
373 * Reads the given number of packets from szedata2 channel given
374 * by queue and copies the packet data into a newly allocated mbuf
375 * to return.
376 */
377 for (i = 0; i < nb_pkts; i++) {
378 const struct szedata_lock *ct_rx_lck_backup;
379 unsigned int ct_rx_rem_bytes_backup;
380 unsigned char *ct_rx_cur_ptr_backup;
381
382 /* get the next sze packet */
383 if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
384 sze->ct_rx_lck->next == NULL) {
385 /* unlock old data */
386 szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
387 sze->ct_rx_lck_orig = NULL;
388 sze->ct_rx_lck = NULL;
389 }
390
391 /*
392 * Store items from sze structure which can be changed
393 * before mbuf allocating. Use these items in case of mbuf
394 * allocating failure.
395 */
396 ct_rx_lck_backup = sze->ct_rx_lck;
397 ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
398 ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
399
400 if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
401 /* nothing to read, lock new data */
402 sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
403 sze->ct_rx_lck_orig = sze->ct_rx_lck;
404
405 /*
406 * Backup items from sze structure must be updated
407 * after locking to contain pointers to new locks.
408 */
409 ct_rx_lck_backup = sze->ct_rx_lck;
410 ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
411 ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
412
413 if (sze->ct_rx_lck == NULL)
414 /* nothing to lock */
415 break;
416
417 sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
418 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
419
420 if (!sze->ct_rx_rem_bytes)
421 break;
422 }
423
424 if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
425 /*
426 * cut in header - copy parts of header to merge buffer
427 */
428 if (sze->ct_rx_lck->next == NULL)
429 break;
430
431 /* copy first part of header */
432 rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
433 sze->ct_rx_rem_bytes);
434
435 /* copy second part of header */
436 sze->ct_rx_lck = sze->ct_rx_lck->next;
437 sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
438 rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
439 sze->ct_rx_cur_ptr,
440 RTE_SZE2_PACKET_HEADER_SIZE -
441 sze->ct_rx_rem_bytes);
442
443 sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
444 sze->ct_rx_rem_bytes;
445 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
446 RTE_SZE2_PACKET_HEADER_SIZE +
447 sze->ct_rx_rem_bytes;
448
449 header_ptr = (uint8_t *)sze->ct_rx_buffer;
450 } else {
451 /* not cut */
452 header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
453 sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
454 sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
455 }
456
457 sg_size = le16toh(*((uint16_t *)header_ptr));
458 hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
459 packet_size = sg_size -
460 RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
461
462
463 /* checks if packet all right */
464 if (!sg_size)
465 errx(5, "Zero segsize");
466
467 /* check sg_size and hwsize */
468 if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
469 errx(10, "Hwsize bigger than expected. Segsize: %d, "
470 "hwsize: %d", sg_size, hw_size);
471 }
472
473 hw_data_align =
474 RTE_SZE2_ALIGN8((RTE_SZE2_PACKET_HEADER_SIZE +
475 hw_size)) - RTE_SZE2_PACKET_HEADER_SIZE;
476
477 if (sze->ct_rx_rem_bytes >=
478 (uint16_t)(sg_size -
479 RTE_SZE2_PACKET_HEADER_SIZE)) {
480 /* no cut */
481 /* one packet ready - go to another */
482 packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
483 packet_len1 = packet_size;
484 packet_ptr2 = NULL;
485 packet_len2 = 0;
486
487 sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
488 RTE_SZE2_PACKET_HEADER_SIZE;
489 sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
490 RTE_SZE2_PACKET_HEADER_SIZE;
491 } else {
492 /* cut in data */
493 if (sze->ct_rx_lck->next == NULL) {
494 errx(6, "Need \"next\" lock, but it is "
495 "missing: %u", sze->ct_rx_rem_bytes);
496 }
497
498 /* skip hw data */
499 if (sze->ct_rx_rem_bytes <= hw_data_align) {
500 uint16_t rem_size = hw_data_align -
501 sze->ct_rx_rem_bytes;
502
503 /* MOVE to next lock */
504 sze->ct_rx_lck = sze->ct_rx_lck->next;
505 sze->ct_rx_cur_ptr =
506 (void *)(((uint8_t *)
507 (sze->ct_rx_lck->start)) + rem_size);
508
509 packet_ptr1 = sze->ct_rx_cur_ptr;
510 packet_len1 = packet_size;
511 packet_ptr2 = NULL;
512 packet_len2 = 0;
513
514 sze->ct_rx_cur_ptr +=
515 RTE_SZE2_ALIGN8(packet_size);
516 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
517 rem_size - RTE_SZE2_ALIGN8(packet_size);
518 } else {
519 /* get pointer and length from first part */
520 packet_ptr1 = sze->ct_rx_cur_ptr +
521 hw_data_align;
522 packet_len1 = sze->ct_rx_rem_bytes -
523 hw_data_align;
524
525 /* MOVE to next lock */
526 sze->ct_rx_lck = sze->ct_rx_lck->next;
527 sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
528
529 /* get pointer and length from second part */
530 packet_ptr2 = sze->ct_rx_cur_ptr;
531 packet_len2 = packet_size - packet_len1;
532
533 sze->ct_rx_cur_ptr +=
534 RTE_SZE2_ALIGN8(packet_size) -
535 packet_len1;
536 sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
537 (RTE_SZE2_ALIGN8(packet_size) -
538 packet_len1);
539 }
540 }
541
542 if (unlikely(packet_ptr1 == NULL))
543 break;
544
545 mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
546
547 if (unlikely(mbuf == NULL)) {
548 /*
549 * Restore items from sze structure to state after
550 * unlocking (eventually locking).
551 */
552 sze->ct_rx_lck = ct_rx_lck_backup;
553 sze->ct_rx_rem_bytes = ct_rx_rem_bytes_backup;
554 sze->ct_rx_cur_ptr = ct_rx_cur_ptr_backup;
555 sze_q->priv->dev->data->rx_mbuf_alloc_failed++;
556 break;
557 }
558
559 /* get the space available for data in the mbuf */
560 mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
561 buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
562 RTE_PKTMBUF_HEADROOM);
563
564 if (packet_size <= buf_size) {
565 /* sze packet will fit in one mbuf, go ahead and copy */
566 rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
567 packet_ptr1, packet_len1);
568 if (packet_ptr2 != NULL) {
569 rte_memcpy((void *)
570 (rte_pktmbuf_mtod(mbuf, uint8_t *) +
571 packet_len1), packet_ptr2, packet_len2);
572 }
573 mbuf->data_len = (uint16_t)packet_size;
574 } else {
575 /*
576 * sze packet will not fit in one mbuf,
577 * scatter packet into more mbufs
578 */
579 struct rte_mbuf *m = mbuf;
580 uint16_t len = rte_pktmbuf_tailroom(mbuf);
581
582 /* copy first part of packet */
583 /* fill first mbuf */
584 rte_memcpy(rte_pktmbuf_append(mbuf, len), packet_ptr1,
585 len);
586 packet_len1 -= len;
587 packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
588
589 while (packet_len1 > 0) {
590 /* fill new mbufs */
591 m->next = rte_pktmbuf_alloc(sze_q->mb_pool);
592
593 if (unlikely(m->next == NULL)) {
594 rte_pktmbuf_free(mbuf);
595 /*
596 * Restore items from sze structure
597 * to state after unlocking (eventually
598 * locking).
599 */
600 sze->ct_rx_lck = ct_rx_lck_backup;
601 sze->ct_rx_rem_bytes =
602 ct_rx_rem_bytes_backup;
603 sze->ct_rx_cur_ptr =
604 ct_rx_cur_ptr_backup;
605 (*mbuf_failed_ptr)++;
606 goto finish;
607 }
608
609 m = m->next;
610
611 len = RTE_MIN(rte_pktmbuf_tailroom(m),
612 packet_len1);
613 rte_memcpy(rte_pktmbuf_append(mbuf, len),
614 packet_ptr1, len);
615
616 (mbuf->nb_segs)++;
617 packet_len1 -= len;
618 packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
619 }
620
621 if (packet_ptr2 != NULL) {
622 /* copy second part of packet, if exists */
623 /* fill the rest of currently last mbuf */
624 len = rte_pktmbuf_tailroom(m);
625 rte_memcpy(rte_pktmbuf_append(mbuf, len),
626 packet_ptr2, len);
627 packet_len2 -= len;
628 packet_ptr2 = ((uint8_t *)packet_ptr2) + len;
629
630 while (packet_len2 > 0) {
631 /* fill new mbufs */
632 m->next = rte_pktmbuf_alloc(
633 sze_q->mb_pool);
634
635 if (unlikely(m->next == NULL)) {
636 rte_pktmbuf_free(mbuf);
637 /*
638 * Restore items from sze
639 * structure to state after
640 * unlocking (eventually
641 * locking).
642 */
643 sze->ct_rx_lck =
644 ct_rx_lck_backup;
645 sze->ct_rx_rem_bytes =
646 ct_rx_rem_bytes_backup;
647 sze->ct_rx_cur_ptr =
648 ct_rx_cur_ptr_backup;
649 (*mbuf_failed_ptr)++;
650 goto finish;
651 }
652
653 m = m->next;
654
655 len = RTE_MIN(rte_pktmbuf_tailroom(m),
656 packet_len2);
657 rte_memcpy(
658 rte_pktmbuf_append(mbuf, len),
659 packet_ptr2, len);
660
661 (mbuf->nb_segs)++;
662 packet_len2 -= len;
663 packet_ptr2 = ((uint8_t *)packet_ptr2) +
664 len;
665 }
666 }
667 }
668 mbuf->pkt_len = packet_size;
669 mbuf->port = sze_q->in_port;
670 bufs[num_rx] = mbuf;
671 num_rx++;
672 num_bytes += packet_size;
673 }
674
675 finish:
676 sze_q->rx_pkts += num_rx;
677 sze_q->rx_bytes += num_bytes;
678 return num_rx;
679 }
680
681 static uint16_t
eth_szedata2_tx(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)682 eth_szedata2_tx(void *queue,
683 struct rte_mbuf **bufs,
684 uint16_t nb_pkts)
685 {
686 struct rte_mbuf *mbuf;
687 struct szedata2_tx_queue *sze_q = queue;
688 uint16_t num_tx = 0;
689 uint64_t num_bytes = 0;
690
691 const struct szedata_lock *lck;
692 uint32_t lock_size;
693 uint32_t lock_size2;
694 void *dst;
695 uint32_t pkt_len;
696 uint32_t hwpkt_len;
697 uint32_t unlock_size;
698 uint32_t rem_len;
699 uint16_t mbuf_segs;
700 uint16_t pkt_left = nb_pkts;
701
702 if (sze_q->sze == NULL || nb_pkts == 0)
703 return 0;
704
705 while (pkt_left > 0) {
706 unlock_size = 0;
707 lck = szedata_tx_lock_data(sze_q->sze,
708 RTE_ETH_SZEDATA2_TX_LOCK_SIZE,
709 sze_q->tx_channel);
710 if (lck == NULL)
711 continue;
712
713 dst = lck->start;
714 lock_size = lck->len;
715 lock_size2 = lck->next ? lck->next->len : 0;
716
717 next_packet:
718 mbuf = bufs[nb_pkts - pkt_left];
719
720 pkt_len = mbuf->pkt_len;
721 mbuf_segs = mbuf->nb_segs;
722
723 hwpkt_len = RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
724 RTE_SZE2_ALIGN8(pkt_len);
725
726 if (lock_size + lock_size2 < hwpkt_len) {
727 szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
728 continue;
729 }
730
731 num_bytes += pkt_len;
732
733 if (lock_size > hwpkt_len) {
734 void *tmp_dst;
735
736 rem_len = 0;
737
738 /* write packet length at first 2 bytes in 8B header */
739 *((uint16_t *)dst) = htole16(
740 RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
741 pkt_len);
742 *(((uint16_t *)dst) + 1) = htole16(0);
743
744 /* copy packet from mbuf */
745 tmp_dst = ((uint8_t *)(dst)) +
746 RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
747 if (mbuf_segs == 1) {
748 /*
749 * non-scattered packet,
750 * transmit from one mbuf
751 */
752 rte_memcpy(tmp_dst,
753 rte_pktmbuf_mtod(mbuf, const void *),
754 pkt_len);
755 } else {
756 /* scattered packet, transmit from more mbufs */
757 struct rte_mbuf *m = mbuf;
758 while (m) {
759 rte_memcpy(tmp_dst,
760 rte_pktmbuf_mtod(m,
761 const void *),
762 m->data_len);
763 tmp_dst = ((uint8_t *)(tmp_dst)) +
764 m->data_len;
765 m = m->next;
766 }
767 }
768
769
770 dst = ((uint8_t *)dst) + hwpkt_len;
771 unlock_size += hwpkt_len;
772 lock_size -= hwpkt_len;
773
774 rte_pktmbuf_free(mbuf);
775 num_tx++;
776 pkt_left--;
777 if (pkt_left == 0) {
778 szedata_tx_unlock_data(sze_q->sze, lck,
779 unlock_size);
780 break;
781 }
782 goto next_packet;
783 } else if (lock_size + lock_size2 >= hwpkt_len) {
784 void *tmp_dst;
785 uint16_t write_len;
786
787 /* write packet length at first 2 bytes in 8B header */
788 *((uint16_t *)dst) =
789 htole16(RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
790 pkt_len);
791 *(((uint16_t *)dst) + 1) = htole16(0);
792
793 /*
794 * If the raw packet (pkt_len) is smaller than lock_size
795 * get the correct length for memcpy
796 */
797 write_len =
798 pkt_len < lock_size -
799 RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED ?
800 pkt_len :
801 lock_size - RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
802
803 rem_len = hwpkt_len - lock_size;
804
805 tmp_dst = ((uint8_t *)(dst)) +
806 RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
807 if (mbuf_segs == 1) {
808 /*
809 * non-scattered packet,
810 * transmit from one mbuf
811 */
812 /* copy part of packet to first area */
813 rte_memcpy(tmp_dst,
814 rte_pktmbuf_mtod(mbuf, const void *),
815 write_len);
816
817 if (lck->next)
818 dst = lck->next->start;
819
820 /* copy part of packet to second area */
821 rte_memcpy(dst,
822 (const void *)(rte_pktmbuf_mtod(mbuf,
823 const uint8_t *) +
824 write_len), pkt_len - write_len);
825 } else {
826 /* scattered packet, transmit from more mbufs */
827 struct rte_mbuf *m = mbuf;
828 uint16_t written = 0;
829 uint16_t to_write = 0;
830 bool new_mbuf = true;
831 uint16_t write_off = 0;
832
833 /* copy part of packet to first area */
834 while (m && written < write_len) {
835 to_write = RTE_MIN(m->data_len,
836 write_len - written);
837 rte_memcpy(tmp_dst,
838 rte_pktmbuf_mtod(m,
839 const void *),
840 to_write);
841
842 tmp_dst = ((uint8_t *)(tmp_dst)) +
843 to_write;
844 if (m->data_len <= write_len -
845 written) {
846 m = m->next;
847 new_mbuf = true;
848 } else {
849 new_mbuf = false;
850 }
851 written += to_write;
852 }
853
854 if (lck->next)
855 dst = lck->next->start;
856
857 tmp_dst = dst;
858 written = 0;
859 write_off = new_mbuf ? 0 : to_write;
860
861 /* copy part of packet to second area */
862 while (m && written < pkt_len - write_len) {
863 rte_memcpy(tmp_dst, (const void *)
864 (rte_pktmbuf_mtod(m,
865 uint8_t *) + write_off),
866 m->data_len - write_off);
867
868 tmp_dst = ((uint8_t *)(tmp_dst)) +
869 (m->data_len - write_off);
870 written += m->data_len - write_off;
871 m = m->next;
872 write_off = 0;
873 }
874 }
875
876 dst = ((uint8_t *)dst) + rem_len;
877 unlock_size += hwpkt_len;
878 lock_size = lock_size2 - rem_len;
879 lock_size2 = 0;
880
881 rte_pktmbuf_free(mbuf);
882 num_tx++;
883 }
884
885 szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
886 pkt_left--;
887 }
888
889 sze_q->tx_pkts += num_tx;
890 sze_q->err_pkts += nb_pkts - num_tx;
891 sze_q->tx_bytes += num_bytes;
892 return num_tx;
893 }
894
895 static int
eth_rx_queue_start(struct rte_eth_dev * dev,uint16_t rxq_id)896 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rxq_id)
897 {
898 struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
899 int ret;
900 struct pmd_internals *internals = (struct pmd_internals *)
901 dev->data->dev_private;
902
903 if (rxq->sze == NULL) {
904 uint32_t rx = 1 << rxq->rx_channel;
905 uint32_t tx = 0;
906 rxq->sze = szedata_open(internals->sze_dev_path);
907 if (rxq->sze == NULL)
908 return -EINVAL;
909 ret = szedata_subscribe3(rxq->sze, &rx, &tx);
910 if (ret != 0 || rx == 0)
911 goto err;
912 }
913
914 ret = szedata_start(rxq->sze);
915 if (ret != 0)
916 goto err;
917 dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STARTED;
918 return 0;
919
920 err:
921 szedata_close(rxq->sze);
922 rxq->sze = NULL;
923 return -EINVAL;
924 }
925
926 static int
eth_rx_queue_stop(struct rte_eth_dev * dev,uint16_t rxq_id)927 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rxq_id)
928 {
929 struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
930
931 if (rxq->sze != NULL) {
932 szedata_close(rxq->sze);
933 rxq->sze = NULL;
934 }
935
936 dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
937 return 0;
938 }
939
940 static int
eth_tx_queue_start(struct rte_eth_dev * dev,uint16_t txq_id)941 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t txq_id)
942 {
943 struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
944 int ret;
945 struct pmd_internals *internals = (struct pmd_internals *)
946 dev->data->dev_private;
947
948 if (txq->sze == NULL) {
949 uint32_t rx = 0;
950 uint32_t tx = 1 << txq->tx_channel;
951 txq->sze = szedata_open(internals->sze_dev_path);
952 if (txq->sze == NULL)
953 return -EINVAL;
954 ret = szedata_subscribe3(txq->sze, &rx, &tx);
955 if (ret != 0 || tx == 0)
956 goto err;
957 }
958
959 ret = szedata_start(txq->sze);
960 if (ret != 0)
961 goto err;
962 dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STARTED;
963 return 0;
964
965 err:
966 szedata_close(txq->sze);
967 txq->sze = NULL;
968 return -EINVAL;
969 }
970
971 static int
eth_tx_queue_stop(struct rte_eth_dev * dev,uint16_t txq_id)972 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t txq_id)
973 {
974 struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
975
976 if (txq->sze != NULL) {
977 szedata_close(txq->sze);
978 txq->sze = NULL;
979 }
980
981 dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
982 return 0;
983 }
984
985 static int
eth_dev_start(struct rte_eth_dev * dev)986 eth_dev_start(struct rte_eth_dev *dev)
987 {
988 int ret;
989 uint16_t i;
990 uint16_t nb_rx = dev->data->nb_rx_queues;
991 uint16_t nb_tx = dev->data->nb_tx_queues;
992
993 for (i = 0; i < nb_rx; i++) {
994 ret = eth_rx_queue_start(dev, i);
995 if (ret != 0)
996 goto err_rx;
997 }
998
999 for (i = 0; i < nb_tx; i++) {
1000 ret = eth_tx_queue_start(dev, i);
1001 if (ret != 0)
1002 goto err_tx;
1003 }
1004
1005 return 0;
1006
1007 err_tx:
1008 for (i = 0; i < nb_tx; i++)
1009 eth_tx_queue_stop(dev, i);
1010 err_rx:
1011 for (i = 0; i < nb_rx; i++)
1012 eth_rx_queue_stop(dev, i);
1013 return ret;
1014 }
1015
1016 static int
eth_dev_stop(struct rte_eth_dev * dev)1017 eth_dev_stop(struct rte_eth_dev *dev)
1018 {
1019 uint16_t i;
1020 uint16_t nb_rx = dev->data->nb_rx_queues;
1021 uint16_t nb_tx = dev->data->nb_tx_queues;
1022 int ret;
1023
1024 dev->data->dev_started = 0;
1025
1026 for (i = 0; i < nb_tx; i++) {
1027 ret = eth_tx_queue_stop(dev, i);
1028 if (ret != 0)
1029 return ret;
1030 }
1031
1032 for (i = 0; i < nb_rx; i++) {
1033 ret = eth_rx_queue_stop(dev, i);
1034 if (ret != 0)
1035 return ret;
1036 }
1037
1038 return 0;
1039 }
1040
1041 static int
eth_dev_configure(struct rte_eth_dev * dev)1042 eth_dev_configure(struct rte_eth_dev *dev)
1043 {
1044 struct rte_eth_dev_data *data = dev->data;
1045 if (data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
1046 dev->rx_pkt_burst = eth_szedata2_rx_scattered;
1047 data->scattered_rx = 1;
1048 } else {
1049 dev->rx_pkt_burst = eth_szedata2_rx;
1050 data->scattered_rx = 0;
1051 }
1052 return 0;
1053 }
1054
1055 static int
eth_dev_info(struct rte_eth_dev * dev,struct rte_eth_dev_info * dev_info)1056 eth_dev_info(struct rte_eth_dev *dev,
1057 struct rte_eth_dev_info *dev_info)
1058 {
1059 struct pmd_internals *internals = dev->data->dev_private;
1060
1061 dev_info->if_index = 0;
1062 dev_info->max_mac_addrs = 1;
1063 dev_info->max_rx_pktlen = (uint32_t)-1;
1064 dev_info->max_rx_queues = internals->max_rx_queues;
1065 dev_info->max_tx_queues = internals->max_tx_queues;
1066 dev_info->min_rx_bufsize = 0;
1067 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_SCATTER;
1068 dev_info->tx_offload_capa = 0;
1069 dev_info->rx_queue_offload_capa = 0;
1070 dev_info->tx_queue_offload_capa = 0;
1071 dev_info->speed_capa = ETH_LINK_SPEED_100G;
1072
1073 return 0;
1074 }
1075
1076 static int
eth_stats_get(struct rte_eth_dev * dev,struct rte_eth_stats * stats)1077 eth_stats_get(struct rte_eth_dev *dev,
1078 struct rte_eth_stats *stats)
1079 {
1080 uint16_t i;
1081 uint16_t nb_rx = dev->data->nb_rx_queues;
1082 uint16_t nb_tx = dev->data->nb_tx_queues;
1083 uint64_t rx_total = 0;
1084 uint64_t tx_total = 0;
1085 uint64_t tx_err_total = 0;
1086 uint64_t rx_total_bytes = 0;
1087 uint64_t tx_total_bytes = 0;
1088
1089 for (i = 0; i < nb_rx; i++) {
1090 struct szedata2_rx_queue *rxq = dev->data->rx_queues[i];
1091
1092 if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
1093 stats->q_ipackets[i] = rxq->rx_pkts;
1094 stats->q_ibytes[i] = rxq->rx_bytes;
1095 }
1096 rx_total += rxq->rx_pkts;
1097 rx_total_bytes += rxq->rx_bytes;
1098 }
1099
1100 for (i = 0; i < nb_tx; i++) {
1101 struct szedata2_tx_queue *txq = dev->data->tx_queues[i];
1102
1103 if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
1104 stats->q_opackets[i] = txq->tx_pkts;
1105 stats->q_obytes[i] = txq->tx_bytes;
1106 }
1107 tx_total += txq->tx_pkts;
1108 tx_total_bytes += txq->tx_bytes;
1109 tx_err_total += txq->err_pkts;
1110 }
1111
1112 stats->ipackets = rx_total;
1113 stats->opackets = tx_total;
1114 stats->ibytes = rx_total_bytes;
1115 stats->obytes = tx_total_bytes;
1116 stats->oerrors = tx_err_total;
1117 stats->rx_nombuf = dev->data->rx_mbuf_alloc_failed;
1118
1119 return 0;
1120 }
1121
1122 static int
eth_stats_reset(struct rte_eth_dev * dev)1123 eth_stats_reset(struct rte_eth_dev *dev)
1124 {
1125 uint16_t i;
1126 uint16_t nb_rx = dev->data->nb_rx_queues;
1127 uint16_t nb_tx = dev->data->nb_tx_queues;
1128
1129 for (i = 0; i < nb_rx; i++) {
1130 struct szedata2_rx_queue *rxq = dev->data->rx_queues[i];
1131 rxq->rx_pkts = 0;
1132 rxq->rx_bytes = 0;
1133 rxq->err_pkts = 0;
1134 }
1135 for (i = 0; i < nb_tx; i++) {
1136 struct szedata2_tx_queue *txq = dev->data->tx_queues[i];
1137 txq->tx_pkts = 0;
1138 txq->tx_bytes = 0;
1139 txq->err_pkts = 0;
1140 }
1141
1142 return 0;
1143 }
1144
1145 static void
eth_rx_queue_release(void * q)1146 eth_rx_queue_release(void *q)
1147 {
1148 struct szedata2_rx_queue *rxq = (struct szedata2_rx_queue *)q;
1149
1150 if (rxq != NULL) {
1151 if (rxq->sze != NULL)
1152 szedata_close(rxq->sze);
1153 rte_free(rxq);
1154 }
1155 }
1156
1157 static void
eth_tx_queue_release(void * q)1158 eth_tx_queue_release(void *q)
1159 {
1160 struct szedata2_tx_queue *txq = (struct szedata2_tx_queue *)q;
1161
1162 if (txq != NULL) {
1163 if (txq->sze != NULL)
1164 szedata_close(txq->sze);
1165 rte_free(txq);
1166 }
1167 }
1168
1169 static int
eth_dev_close(struct rte_eth_dev * dev)1170 eth_dev_close(struct rte_eth_dev *dev)
1171 {
1172 struct pmd_internals *internals = dev->data->dev_private;
1173 uint16_t i;
1174 uint16_t nb_rx = dev->data->nb_rx_queues;
1175 uint16_t nb_tx = dev->data->nb_tx_queues;
1176 int ret;
1177
1178 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1179 return 0;
1180
1181 ret = eth_dev_stop(dev);
1182
1183 free(internals->sze_dev_path);
1184
1185 for (i = 0; i < nb_rx; i++) {
1186 eth_rx_queue_release(dev->data->rx_queues[i]);
1187 dev->data->rx_queues[i] = NULL;
1188 }
1189 dev->data->nb_rx_queues = 0;
1190 for (i = 0; i < nb_tx; i++) {
1191 eth_tx_queue_release(dev->data->tx_queues[i]);
1192 dev->data->tx_queues[i] = NULL;
1193 }
1194 dev->data->nb_tx_queues = 0;
1195
1196 return ret;
1197 }
1198
1199 static int
eth_link_update(struct rte_eth_dev * dev,int wait_to_complete __rte_unused)1200 eth_link_update(struct rte_eth_dev *dev,
1201 int wait_to_complete __rte_unused)
1202 {
1203 struct rte_eth_link link;
1204
1205 memset(&link, 0, sizeof(link));
1206
1207 link.link_speed = ETH_SPEED_NUM_100G;
1208 link.link_duplex = ETH_LINK_FULL_DUPLEX;
1209 link.link_status = ETH_LINK_UP;
1210 link.link_autoneg = ETH_LINK_FIXED;
1211
1212 rte_eth_linkstatus_set(dev, &link);
1213 return 0;
1214 }
1215
1216 static int
eth_dev_set_link_up(struct rte_eth_dev * dev __rte_unused)1217 eth_dev_set_link_up(struct rte_eth_dev *dev __rte_unused)
1218 {
1219 PMD_DRV_LOG(WARNING, "Setting link up is not supported.");
1220 return 0;
1221 }
1222
1223 static int
eth_dev_set_link_down(struct rte_eth_dev * dev __rte_unused)1224 eth_dev_set_link_down(struct rte_eth_dev *dev __rte_unused)
1225 {
1226 PMD_DRV_LOG(WARNING, "Setting link down is not supported.");
1227 return 0;
1228 }
1229
1230 static int
eth_rx_queue_setup(struct rte_eth_dev * dev,uint16_t rx_queue_id,uint16_t nb_rx_desc __rte_unused,unsigned int socket_id,const struct rte_eth_rxconf * rx_conf __rte_unused,struct rte_mempool * mb_pool)1231 eth_rx_queue_setup(struct rte_eth_dev *dev,
1232 uint16_t rx_queue_id,
1233 uint16_t nb_rx_desc __rte_unused,
1234 unsigned int socket_id,
1235 const struct rte_eth_rxconf *rx_conf __rte_unused,
1236 struct rte_mempool *mb_pool)
1237 {
1238 struct szedata2_rx_queue *rxq;
1239 int ret;
1240 struct pmd_internals *internals = dev->data->dev_private;
1241 uint8_t rx_channel = internals->rxq_base_id + rx_queue_id;
1242 uint32_t rx = 1 << rx_channel;
1243 uint32_t tx = 0;
1244
1245 PMD_INIT_FUNC_TRACE();
1246
1247 if (dev->data->rx_queues[rx_queue_id] != NULL) {
1248 eth_rx_queue_release(dev->data->rx_queues[rx_queue_id]);
1249 dev->data->rx_queues[rx_queue_id] = NULL;
1250 }
1251
1252 rxq = rte_zmalloc_socket("szedata2 rx queue",
1253 sizeof(struct szedata2_rx_queue),
1254 RTE_CACHE_LINE_SIZE, socket_id);
1255 if (rxq == NULL) {
1256 PMD_INIT_LOG(ERR, "rte_zmalloc_socket() failed for rx queue id "
1257 "%" PRIu16 "!", rx_queue_id);
1258 return -ENOMEM;
1259 }
1260
1261 rxq->priv = internals;
1262 rxq->sze = szedata_open(internals->sze_dev_path);
1263 if (rxq->sze == NULL) {
1264 PMD_INIT_LOG(ERR, "szedata_open() failed for rx queue id "
1265 "%" PRIu16 "!", rx_queue_id);
1266 eth_rx_queue_release(rxq);
1267 return -EINVAL;
1268 }
1269 ret = szedata_subscribe3(rxq->sze, &rx, &tx);
1270 if (ret != 0 || rx == 0) {
1271 PMD_INIT_LOG(ERR, "szedata_subscribe3() failed for rx queue id "
1272 "%" PRIu16 "!", rx_queue_id);
1273 eth_rx_queue_release(rxq);
1274 return -EINVAL;
1275 }
1276 rxq->rx_channel = rx_channel;
1277 rxq->qid = rx_queue_id;
1278 rxq->in_port = dev->data->port_id;
1279 rxq->mb_pool = mb_pool;
1280 rxq->rx_pkts = 0;
1281 rxq->rx_bytes = 0;
1282 rxq->err_pkts = 0;
1283
1284 dev->data->rx_queues[rx_queue_id] = rxq;
1285
1286 PMD_INIT_LOG(DEBUG, "Configured rx queue id %" PRIu16 " on socket "
1287 "%u (channel id %u).", rxq->qid, socket_id,
1288 rxq->rx_channel);
1289
1290 return 0;
1291 }
1292
1293 static int
eth_tx_queue_setup(struct rte_eth_dev * dev,uint16_t tx_queue_id,uint16_t nb_tx_desc __rte_unused,unsigned int socket_id,const struct rte_eth_txconf * tx_conf __rte_unused)1294 eth_tx_queue_setup(struct rte_eth_dev *dev,
1295 uint16_t tx_queue_id,
1296 uint16_t nb_tx_desc __rte_unused,
1297 unsigned int socket_id,
1298 const struct rte_eth_txconf *tx_conf __rte_unused)
1299 {
1300 struct szedata2_tx_queue *txq;
1301 int ret;
1302 struct pmd_internals *internals = dev->data->dev_private;
1303 uint8_t tx_channel = internals->txq_base_id + tx_queue_id;
1304 uint32_t rx = 0;
1305 uint32_t tx = 1 << tx_channel;
1306
1307 PMD_INIT_FUNC_TRACE();
1308
1309 if (dev->data->tx_queues[tx_queue_id] != NULL) {
1310 eth_tx_queue_release(dev->data->tx_queues[tx_queue_id]);
1311 dev->data->tx_queues[tx_queue_id] = NULL;
1312 }
1313
1314 txq = rte_zmalloc_socket("szedata2 tx queue",
1315 sizeof(struct szedata2_tx_queue),
1316 RTE_CACHE_LINE_SIZE, socket_id);
1317 if (txq == NULL) {
1318 PMD_INIT_LOG(ERR, "rte_zmalloc_socket() failed for tx queue id "
1319 "%" PRIu16 "!", tx_queue_id);
1320 return -ENOMEM;
1321 }
1322
1323 txq->priv = internals;
1324 txq->sze = szedata_open(internals->sze_dev_path);
1325 if (txq->sze == NULL) {
1326 PMD_INIT_LOG(ERR, "szedata_open() failed for tx queue id "
1327 "%" PRIu16 "!", tx_queue_id);
1328 eth_tx_queue_release(txq);
1329 return -EINVAL;
1330 }
1331 ret = szedata_subscribe3(txq->sze, &rx, &tx);
1332 if (ret != 0 || tx == 0) {
1333 PMD_INIT_LOG(ERR, "szedata_subscribe3() failed for tx queue id "
1334 "%" PRIu16 "!", tx_queue_id);
1335 eth_tx_queue_release(txq);
1336 return -EINVAL;
1337 }
1338 txq->tx_channel = tx_channel;
1339 txq->qid = tx_queue_id;
1340 txq->tx_pkts = 0;
1341 txq->tx_bytes = 0;
1342 txq->err_pkts = 0;
1343
1344 dev->data->tx_queues[tx_queue_id] = txq;
1345
1346 PMD_INIT_LOG(DEBUG, "Configured tx queue id %" PRIu16 " on socket "
1347 "%u (channel id %u).", txq->qid, socket_id,
1348 txq->tx_channel);
1349
1350 return 0;
1351 }
1352
1353 static int
eth_mac_addr_set(struct rte_eth_dev * dev __rte_unused,struct rte_ether_addr * mac_addr __rte_unused)1354 eth_mac_addr_set(struct rte_eth_dev *dev __rte_unused,
1355 struct rte_ether_addr *mac_addr __rte_unused)
1356 {
1357 return 0;
1358 }
1359
1360 static int
eth_promiscuous_enable(struct rte_eth_dev * dev __rte_unused)1361 eth_promiscuous_enable(struct rte_eth_dev *dev __rte_unused)
1362 {
1363 PMD_DRV_LOG(WARNING, "Enabling promiscuous mode is not supported. "
1364 "The card is always in promiscuous mode.");
1365 return 0;
1366 }
1367
1368 static int
eth_promiscuous_disable(struct rte_eth_dev * dev __rte_unused)1369 eth_promiscuous_disable(struct rte_eth_dev *dev __rte_unused)
1370 {
1371 PMD_DRV_LOG(WARNING, "Disabling promiscuous mode is not supported. "
1372 "The card is always in promiscuous mode.");
1373 return -ENOTSUP;
1374 }
1375
1376 static int
eth_allmulticast_enable(struct rte_eth_dev * dev __rte_unused)1377 eth_allmulticast_enable(struct rte_eth_dev *dev __rte_unused)
1378 {
1379 PMD_DRV_LOG(WARNING, "Enabling allmulticast mode is not supported.");
1380 return -ENOTSUP;
1381 }
1382
1383 static int
eth_allmulticast_disable(struct rte_eth_dev * dev __rte_unused)1384 eth_allmulticast_disable(struct rte_eth_dev *dev __rte_unused)
1385 {
1386 PMD_DRV_LOG(WARNING, "Disabling allmulticast mode is not supported.");
1387 return -ENOTSUP;
1388 }
1389
1390 static const struct eth_dev_ops ops = {
1391 .dev_start = eth_dev_start,
1392 .dev_stop = eth_dev_stop,
1393 .dev_set_link_up = eth_dev_set_link_up,
1394 .dev_set_link_down = eth_dev_set_link_down,
1395 .dev_close = eth_dev_close,
1396 .dev_configure = eth_dev_configure,
1397 .dev_infos_get = eth_dev_info,
1398 .promiscuous_enable = eth_promiscuous_enable,
1399 .promiscuous_disable = eth_promiscuous_disable,
1400 .allmulticast_enable = eth_allmulticast_enable,
1401 .allmulticast_disable = eth_allmulticast_disable,
1402 .rx_queue_start = eth_rx_queue_start,
1403 .rx_queue_stop = eth_rx_queue_stop,
1404 .tx_queue_start = eth_tx_queue_start,
1405 .tx_queue_stop = eth_tx_queue_stop,
1406 .rx_queue_setup = eth_rx_queue_setup,
1407 .tx_queue_setup = eth_tx_queue_setup,
1408 .rx_queue_release = eth_rx_queue_release,
1409 .tx_queue_release = eth_tx_queue_release,
1410 .link_update = eth_link_update,
1411 .stats_get = eth_stats_get,
1412 .stats_reset = eth_stats_reset,
1413 .mac_addr_set = eth_mac_addr_set,
1414 };
1415
1416 /*
1417 * This function goes through sysfs and looks for an index of szedata2
1418 * device file (/dev/szedataIIX, where X is the index).
1419 *
1420 * @return
1421 * 0 on success
1422 * -1 on error
1423 */
1424 static int
get_szedata2_index(const struct rte_pci_addr * pcislot_addr,uint32_t * index)1425 get_szedata2_index(const struct rte_pci_addr *pcislot_addr, uint32_t *index)
1426 {
1427 DIR *dir;
1428 struct dirent *entry;
1429 int ret;
1430 uint32_t tmp_index;
1431 FILE *fd;
1432 char pcislot_path[PATH_MAX];
1433 uint32_t domain;
1434 uint8_t bus;
1435 uint8_t devid;
1436 uint8_t function;
1437
1438 dir = opendir("/sys/class/combo");
1439 if (dir == NULL)
1440 return -1;
1441
1442 /*
1443 * Iterate through all combosixX directories.
1444 * When the value in /sys/class/combo/combosixX/device/pcislot
1445 * file is the location of the ethernet device dev, "X" is the
1446 * index of the device.
1447 */
1448 while ((entry = readdir(dir)) != NULL) {
1449 ret = sscanf(entry->d_name, "combosix%u", &tmp_index);
1450 if (ret != 1)
1451 continue;
1452
1453 snprintf(pcislot_path, PATH_MAX,
1454 "/sys/class/combo/combosix%u/device/pcislot",
1455 tmp_index);
1456
1457 fd = fopen(pcislot_path, "r");
1458 if (fd == NULL)
1459 continue;
1460
1461 ret = fscanf(fd, "%8" SCNx32 ":%2" SCNx8 ":%2" SCNx8 ".%" SCNx8,
1462 &domain, &bus, &devid, &function);
1463 fclose(fd);
1464 if (ret != 4)
1465 continue;
1466
1467 if (pcislot_addr->domain == domain &&
1468 pcislot_addr->bus == bus &&
1469 pcislot_addr->devid == devid &&
1470 pcislot_addr->function == function) {
1471 *index = tmp_index;
1472 closedir(dir);
1473 return 0;
1474 }
1475 }
1476
1477 closedir(dir);
1478 return -1;
1479 }
1480
1481 /**
1482 * @brief Initializes rte_eth_dev device.
1483 * @param dev Device to initialize.
1484 * @param pi Structure with info about DMA queues.
1485 * @return 0 on success, negative error code on error.
1486 */
1487 static int
rte_szedata2_eth_dev_init(struct rte_eth_dev * dev,struct port_info * pi)1488 rte_szedata2_eth_dev_init(struct rte_eth_dev *dev, struct port_info *pi)
1489 {
1490 int ret;
1491 uint32_t szedata2_index;
1492 char name[PATH_MAX];
1493 struct rte_eth_dev_data *data = dev->data;
1494 struct pmd_internals *internals = (struct pmd_internals *)
1495 data->dev_private;
1496 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1497
1498 PMD_INIT_FUNC_TRACE();
1499
1500 PMD_INIT_LOG(INFO, "Initializing eth_dev %s (driver %s)", data->name,
1501 RTE_STR(RTE_SZEDATA2_DRIVER_NAME));
1502
1503 /* Fill internal private structure. */
1504 internals->dev = dev;
1505 /* Get index of szedata2 device file and create path to device file */
1506 ret = get_szedata2_index(&pci_dev->addr, &szedata2_index);
1507 if (ret != 0) {
1508 PMD_INIT_LOG(ERR, "Failed to get szedata2 device index!");
1509 return -ENODEV;
1510 }
1511 snprintf(name, PATH_MAX, SZEDATA2_DEV_PATH_FMT, szedata2_index);
1512 internals->sze_dev_path = strdup(name);
1513 if (internals->sze_dev_path == NULL) {
1514 PMD_INIT_LOG(ERR, "strdup() failed!");
1515 return -ENOMEM;
1516 }
1517 PMD_INIT_LOG(INFO, "SZEDATA2 path: %s", internals->sze_dev_path);
1518 internals->max_rx_queues = pi->rx_count;
1519 internals->max_tx_queues = pi->tx_count;
1520 internals->rxq_base_id = pi->rx_base_id;
1521 internals->txq_base_id = pi->tx_base_id;
1522 PMD_INIT_LOG(INFO, "%u RX DMA channels from id %u",
1523 internals->max_rx_queues, internals->rxq_base_id);
1524 PMD_INIT_LOG(INFO, "%u TX DMA channels from id %u",
1525 internals->max_tx_queues, internals->txq_base_id);
1526
1527 /* Set rx, tx burst functions */
1528 if (data->scattered_rx == 1)
1529 dev->rx_pkt_burst = eth_szedata2_rx_scattered;
1530 else
1531 dev->rx_pkt_burst = eth_szedata2_rx;
1532 dev->tx_pkt_burst = eth_szedata2_tx;
1533
1534 /* Set function callbacks for Ethernet API */
1535 dev->dev_ops = &ops;
1536
1537 /* Get link state */
1538 eth_link_update(dev, 0);
1539
1540 /* Allocate space for one mac address */
1541 data->mac_addrs = rte_zmalloc(data->name, sizeof(struct rte_ether_addr),
1542 RTE_CACHE_LINE_SIZE);
1543 if (data->mac_addrs == NULL) {
1544 PMD_INIT_LOG(ERR, "Could not alloc space for MAC address!");
1545 free(internals->sze_dev_path);
1546 return -ENOMEM;
1547 }
1548
1549 rte_ether_addr_copy(ð_addr, data->mac_addrs);
1550
1551 dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1552
1553 PMD_INIT_LOG(INFO, "%s device %s successfully initialized",
1554 RTE_STR(RTE_SZEDATA2_DRIVER_NAME), data->name);
1555
1556 return 0;
1557 }
1558
1559 /**
1560 * @brief Unitializes rte_eth_dev device.
1561 * @param dev Device to uninitialize.
1562 * @return 0 on success, negative error code on error.
1563 */
1564 static int
rte_szedata2_eth_dev_uninit(struct rte_eth_dev * dev)1565 rte_szedata2_eth_dev_uninit(struct rte_eth_dev *dev)
1566 {
1567 PMD_INIT_FUNC_TRACE();
1568
1569 eth_dev_close(dev);
1570
1571 PMD_DRV_LOG(INFO, "%s device %s successfully uninitialized",
1572 RTE_STR(RTE_SZEDATA2_DRIVER_NAME), dev->data->name);
1573
1574 return 0;
1575 }
1576
1577 static const struct rte_pci_id rte_szedata2_pci_id_table[] = {
1578 {
1579 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
1580 PCI_DEVICE_ID_NETCOPE_COMBO80G)
1581 },
1582 {
1583 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
1584 PCI_DEVICE_ID_NETCOPE_COMBO100G)
1585 },
1586 {
1587 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
1588 PCI_DEVICE_ID_NETCOPE_COMBO100G2)
1589 },
1590 {
1591 RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
1592 PCI_DEVICE_ID_NETCOPE_NFB200G2QL)
1593 },
1594 {
1595 RTE_PCI_DEVICE(PCI_VENDOR_ID_SILICOM,
1596 PCI_DEVICE_ID_FB2CGG3)
1597 },
1598 {
1599 RTE_PCI_DEVICE(PCI_VENDOR_ID_SILICOM,
1600 PCI_DEVICE_ID_FB2CGG3D)
1601 },
1602 {
1603 .vendor_id = 0,
1604 }
1605 };
1606
1607 /**
1608 * @brief Gets info about DMA queues for ports.
1609 * @param pci_dev PCI device structure.
1610 * @param port_count Pointer to variable set with number of ports.
1611 * @param pi Pointer to array of structures with info about DMA queues
1612 * for ports.
1613 * @param max_ports Maximum number of ports.
1614 * @return 0 on success, negative error code on error.
1615 */
1616 static int
get_port_info(struct rte_pci_device * pci_dev,unsigned int * port_count,struct port_info * pi,unsigned int max_ports)1617 get_port_info(struct rte_pci_device *pci_dev, unsigned int *port_count,
1618 struct port_info *pi, unsigned int max_ports)
1619 {
1620 struct szedata *szedata_temp;
1621 char sze_dev_path[PATH_MAX];
1622 uint32_t szedata2_index;
1623 int ret;
1624 uint16_t max_rx_queues;
1625 uint16_t max_tx_queues;
1626
1627 if (max_ports == 0)
1628 return -EINVAL;
1629
1630 memset(pi, 0, max_ports * sizeof(struct port_info));
1631 *port_count = 0;
1632
1633 /* Get index of szedata2 device file and create path to device file */
1634 ret = get_szedata2_index(&pci_dev->addr, &szedata2_index);
1635 if (ret != 0) {
1636 PMD_INIT_LOG(ERR, "Failed to get szedata2 device index!");
1637 return -ENODEV;
1638 }
1639 snprintf(sze_dev_path, PATH_MAX, SZEDATA2_DEV_PATH_FMT, szedata2_index);
1640
1641 /*
1642 * Get number of available DMA RX and TX channels, which is maximum
1643 * number of queues that can be created.
1644 */
1645 szedata_temp = szedata_open(sze_dev_path);
1646 if (szedata_temp == NULL) {
1647 PMD_INIT_LOG(ERR, "szedata_open(%s) failed", sze_dev_path);
1648 return -EINVAL;
1649 }
1650 max_rx_queues = szedata_ifaces_available(szedata_temp, SZE2_DIR_RX);
1651 max_tx_queues = szedata_ifaces_available(szedata_temp, SZE2_DIR_TX);
1652 PMD_INIT_LOG(INFO, "Available DMA channels RX: %u TX: %u",
1653 max_rx_queues, max_tx_queues);
1654 if (max_rx_queues > RTE_ETH_SZEDATA2_MAX_RX_QUEUES) {
1655 PMD_INIT_LOG(ERR, "%u RX queues exceeds supported number %u",
1656 max_rx_queues, RTE_ETH_SZEDATA2_MAX_RX_QUEUES);
1657 szedata_close(szedata_temp);
1658 return -EINVAL;
1659 }
1660 if (max_tx_queues > RTE_ETH_SZEDATA2_MAX_TX_QUEUES) {
1661 PMD_INIT_LOG(ERR, "%u TX queues exceeds supported number %u",
1662 max_tx_queues, RTE_ETH_SZEDATA2_MAX_TX_QUEUES);
1663 szedata_close(szedata_temp);
1664 return -EINVAL;
1665 }
1666
1667 if (pci_dev->id.device_id == PCI_DEVICE_ID_NETCOPE_NFB200G2QL) {
1668 unsigned int i;
1669 unsigned int rx_queues = max_rx_queues / max_ports;
1670 unsigned int tx_queues = max_tx_queues / max_ports;
1671
1672 /*
1673 * Number of queues reported by szedata_ifaces_available()
1674 * is the number of all queues from all DMA controllers which
1675 * may reside at different numa locations.
1676 * All queues from the same DMA controller have the same numa
1677 * node.
1678 * Numa node from the first queue of each DMA controller is
1679 * retrieved.
1680 * If the numa node differs from the numa node of the queues
1681 * from the previous DMA controller the queues are assigned
1682 * to the next port.
1683 */
1684
1685 for (i = 0; i < max_ports; i++) {
1686 int numa_rx = szedata_get_area_numa_node(szedata_temp,
1687 SZE2_DIR_RX, rx_queues * i);
1688 int numa_tx = szedata_get_area_numa_node(szedata_temp,
1689 SZE2_DIR_TX, tx_queues * i);
1690 unsigned int port_rx_queues = numa_rx != -1 ?
1691 rx_queues : 0;
1692 unsigned int port_tx_queues = numa_tx != -1 ?
1693 tx_queues : 0;
1694 PMD_INIT_LOG(DEBUG, "%u rx queues from id %u, numa %d",
1695 rx_queues, rx_queues * i, numa_rx);
1696 PMD_INIT_LOG(DEBUG, "%u tx queues from id %u, numa %d",
1697 tx_queues, tx_queues * i, numa_tx);
1698
1699 if (port_rx_queues != 0 && port_tx_queues != 0 &&
1700 numa_rx != numa_tx) {
1701 PMD_INIT_LOG(ERR, "RX queue %u numa %d differs "
1702 "from TX queue %u numa %d "
1703 "unexpectedly",
1704 rx_queues * i, numa_rx,
1705 tx_queues * i, numa_tx);
1706 szedata_close(szedata_temp);
1707 return -EINVAL;
1708 } else if (port_rx_queues == 0 && port_tx_queues == 0) {
1709 continue;
1710 } else {
1711 unsigned int j;
1712 unsigned int current = *port_count;
1713 int port_numa = port_rx_queues != 0 ?
1714 numa_rx : numa_tx;
1715
1716 for (j = 0; j < *port_count; j++) {
1717 if (pi[j].numa_node ==
1718 port_numa) {
1719 current = j;
1720 break;
1721 }
1722 }
1723 if (pi[current].rx_count == 0 &&
1724 pi[current].tx_count == 0) {
1725 pi[current].rx_base_id = rx_queues * i;
1726 pi[current].tx_base_id = tx_queues * i;
1727 (*port_count)++;
1728 } else if ((rx_queues * i !=
1729 pi[current].rx_base_id +
1730 pi[current].rx_count) ||
1731 (tx_queues * i !=
1732 pi[current].tx_base_id +
1733 pi[current].tx_count)) {
1734 PMD_INIT_LOG(ERR, "Queue ids does not "
1735 "fulfill constraints");
1736 szedata_close(szedata_temp);
1737 return -EINVAL;
1738 }
1739 pi[current].rx_count += port_rx_queues;
1740 pi[current].tx_count += port_tx_queues;
1741 pi[current].numa_node = port_numa;
1742 }
1743 }
1744 } else {
1745 pi[0].rx_count = max_rx_queues;
1746 pi[0].tx_count = max_tx_queues;
1747 pi[0].numa_node = pci_dev->device.numa_node;
1748 *port_count = 1;
1749 }
1750
1751 szedata_close(szedata_temp);
1752 return 0;
1753 }
1754
1755 /**
1756 * @brief Allocates rte_eth_dev device.
1757 * @param pci_dev Corresponding PCI device.
1758 * @param numa_node NUMA node on which device is allocated.
1759 * @param port_no Id of rte_eth_device created on PCI device pci_dev.
1760 * @return Pointer to allocated device or NULL on error.
1761 */
1762 static struct rte_eth_dev *
szedata2_eth_dev_allocate(struct rte_pci_device * pci_dev,int numa_node,unsigned int port_no)1763 szedata2_eth_dev_allocate(struct rte_pci_device *pci_dev, int numa_node,
1764 unsigned int port_no)
1765 {
1766 struct rte_eth_dev *eth_dev;
1767 char name[RTE_ETH_NAME_MAX_LEN];
1768
1769 PMD_INIT_FUNC_TRACE();
1770
1771 snprintf(name, RTE_ETH_NAME_MAX_LEN, "%s"
1772 SZEDATA2_ETH_DEV_NAME_SUFFIX_FMT,
1773 pci_dev->device.name, port_no);
1774 PMD_INIT_LOG(DEBUG, "Allocating eth_dev %s", name);
1775
1776 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
1777 eth_dev = rte_eth_dev_allocate(name);
1778 if (!eth_dev)
1779 return NULL;
1780
1781 eth_dev->data->dev_private = rte_zmalloc_socket(name,
1782 sizeof(struct pmd_internals), RTE_CACHE_LINE_SIZE,
1783 numa_node);
1784 if (!eth_dev->data->dev_private) {
1785 rte_eth_dev_release_port(eth_dev);
1786 return NULL;
1787 }
1788 } else {
1789 eth_dev = rte_eth_dev_attach_secondary(name);
1790 if (!eth_dev)
1791 return NULL;
1792 }
1793
1794 eth_dev->device = &pci_dev->device;
1795 rte_eth_copy_pci_info(eth_dev, pci_dev);
1796 eth_dev->data->numa_node = numa_node;
1797 return eth_dev;
1798 }
1799
1800 /**
1801 * @brief Releases interval of rte_eth_dev devices from array.
1802 * @param eth_devs Array of pointers to rte_eth_dev devices.
1803 * @param from Index in array eth_devs to start with.
1804 * @param to Index in array right after the last element to release.
1805 *
1806 * Used for releasing at failed initialization.
1807 */
1808 static void
szedata2_eth_dev_release_interval(struct rte_eth_dev ** eth_devs,unsigned int from,unsigned int to)1809 szedata2_eth_dev_release_interval(struct rte_eth_dev **eth_devs,
1810 unsigned int from, unsigned int to)
1811 {
1812 unsigned int i;
1813
1814 PMD_INIT_FUNC_TRACE();
1815
1816 for (i = from; i < to; i++) {
1817 rte_szedata2_eth_dev_uninit(eth_devs[i]);
1818 rte_eth_dev_release_port(eth_devs[i]);
1819 }
1820 }
1821
1822 /**
1823 * @brief Callback .probe for struct rte_pci_driver.
1824 */
szedata2_eth_pci_probe(struct rte_pci_driver * pci_drv __rte_unused,struct rte_pci_device * pci_dev)1825 static int szedata2_eth_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1826 struct rte_pci_device *pci_dev)
1827 {
1828 struct port_info port_info[SZEDATA2_MAX_PORTS];
1829 unsigned int port_count;
1830 int ret;
1831 unsigned int i;
1832 struct pci_dev_list_entry *list_entry;
1833 struct rte_eth_dev *eth_devs[SZEDATA2_MAX_PORTS] = {NULL,};
1834
1835 PMD_INIT_FUNC_TRACE();
1836
1837 ret = get_port_info(pci_dev, &port_count, port_info,
1838 SZEDATA2_MAX_PORTS);
1839 if (ret != 0)
1840 return ret;
1841
1842 if (port_count == 0) {
1843 PMD_INIT_LOG(ERR, "No available ports!");
1844 return -ENODEV;
1845 }
1846
1847 list_entry = rte_zmalloc(NULL, sizeof(struct pci_dev_list_entry),
1848 RTE_CACHE_LINE_SIZE);
1849 if (list_entry == NULL) {
1850 PMD_INIT_LOG(ERR, "rte_zmalloc() failed!");
1851 return -ENOMEM;
1852 }
1853
1854 for (i = 0; i < port_count; i++) {
1855 eth_devs[i] = szedata2_eth_dev_allocate(pci_dev,
1856 port_info[i].numa_node, i);
1857 if (eth_devs[i] == NULL) {
1858 PMD_INIT_LOG(ERR, "Failed to alloc eth_dev for port %u",
1859 i);
1860 szedata2_eth_dev_release_interval(eth_devs, 0, i);
1861 rte_free(list_entry);
1862 return -ENOMEM;
1863 }
1864
1865 ret = rte_szedata2_eth_dev_init(eth_devs[i], &port_info[i]);
1866 if (ret != 0) {
1867 PMD_INIT_LOG(ERR, "Failed to init eth_dev for port %u",
1868 i);
1869 rte_eth_dev_release_port(eth_devs[i]);
1870 szedata2_eth_dev_release_interval(eth_devs, 0, i);
1871 rte_free(list_entry);
1872 return ret;
1873 }
1874
1875 rte_eth_dev_probing_finish(eth_devs[i]);
1876 }
1877
1878 /*
1879 * Add pci_dev to list of PCI devices for this driver
1880 * which is used at remove callback to release all created eth_devs.
1881 */
1882 list_entry->pci_dev = pci_dev;
1883 list_entry->port_count = port_count;
1884 LIST_INSERT_HEAD(&szedata2_pci_dev_list, list_entry, next);
1885 return 0;
1886 }
1887
1888 /**
1889 * @brief Callback .remove for struct rte_pci_driver.
1890 */
szedata2_eth_pci_remove(struct rte_pci_device * pci_dev)1891 static int szedata2_eth_pci_remove(struct rte_pci_device *pci_dev)
1892 {
1893 unsigned int i;
1894 unsigned int port_count;
1895 char name[RTE_ETH_NAME_MAX_LEN];
1896 struct rte_eth_dev *eth_dev;
1897 int ret;
1898 int retval = 0;
1899 bool found = false;
1900 struct pci_dev_list_entry *list_entry = NULL;
1901
1902 PMD_INIT_FUNC_TRACE();
1903
1904 LIST_FOREACH(list_entry, &szedata2_pci_dev_list, next) {
1905 if (list_entry->pci_dev == pci_dev) {
1906 port_count = list_entry->port_count;
1907 found = true;
1908 break;
1909 }
1910 }
1911 LIST_REMOVE(list_entry, next);
1912 rte_free(list_entry);
1913
1914 if (!found) {
1915 PMD_DRV_LOG(ERR, "PCI device " PCI_PRI_FMT " not found",
1916 pci_dev->addr.domain, pci_dev->addr.bus,
1917 pci_dev->addr.devid, pci_dev->addr.function);
1918 return -ENODEV;
1919 }
1920
1921 for (i = 0; i < port_count; i++) {
1922 snprintf(name, RTE_ETH_NAME_MAX_LEN, "%s"
1923 SZEDATA2_ETH_DEV_NAME_SUFFIX_FMT,
1924 pci_dev->device.name, i);
1925 PMD_DRV_LOG(DEBUG, "Removing eth_dev %s", name);
1926 eth_dev = rte_eth_dev_allocated(name);
1927 if (eth_dev == NULL)
1928 continue; /* port already released */
1929
1930 ret = rte_szedata2_eth_dev_uninit(eth_dev);
1931 if (ret != 0) {
1932 PMD_DRV_LOG(ERR, "eth_dev %s uninit failed", name);
1933 retval = retval ? retval : ret;
1934 }
1935
1936 rte_eth_dev_release_port(eth_dev);
1937 }
1938
1939 return retval;
1940 }
1941
1942 static struct rte_pci_driver szedata2_eth_driver = {
1943 .id_table = rte_szedata2_pci_id_table,
1944 .probe = szedata2_eth_pci_probe,
1945 .remove = szedata2_eth_pci_remove,
1946 };
1947
1948 RTE_PMD_REGISTER_PCI(RTE_SZEDATA2_DRIVER_NAME, szedata2_eth_driver);
1949 RTE_PMD_REGISTER_PCI_TABLE(RTE_SZEDATA2_DRIVER_NAME, rte_szedata2_pci_id_table);
1950 RTE_PMD_REGISTER_KMOD_DEP(RTE_SZEDATA2_DRIVER_NAME,
1951 "* combo6core & combov3 & szedata2 & ( szedata2_cv3 | szedata2_cv3_fdt )");
1952 RTE_LOG_REGISTER(szedata2_logtype_init, pmd.net.szedata2.init, NOTICE);
1953 RTE_LOG_REGISTER(szedata2_logtype_driver, pmd.net.szedata2.driver, NOTICE);
1954