xref: /f-stack/freebsd/i386/i386/npx.c (revision 22ce4aff)
1 /*-
2  * Copyright (c) 1990 William Jolitz.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_cpu.h"
37 #include "opt_isa.h"
38 #include "opt_npx.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/module.h>
47 #include <sys/mutex.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/smp.h>
51 #include <sys/sysctl.h>
52 #include <machine/bus.h>
53 #include <sys/rman.h>
54 #ifdef NPX_DEBUG
55 #include <sys/syslog.h>
56 #endif
57 #include <sys/signalvar.h>
58 #include <vm/uma.h>
59 
60 #include <machine/asmacros.h>
61 #include <machine/cputypes.h>
62 #include <machine/frame.h>
63 #include <machine/md_var.h>
64 #include <machine/pcb.h>
65 #include <machine/psl.h>
66 #include <machine/resource.h>
67 #include <machine/specialreg.h>
68 #include <machine/segments.h>
69 #include <machine/ucontext.h>
70 #include <x86/ifunc.h>
71 
72 #include <machine/intr_machdep.h>
73 
74 #ifdef DEV_ISA
75 #include <isa/isavar.h>
76 #endif
77 
78 /*
79  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
80  */
81 
82 #if defined(__GNUCLIKE_ASM) && !defined(lint)
83 
84 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
85 #define	fnclex()		__asm __volatile("fnclex")
86 #define	fninit()		__asm __volatile("fninit")
87 #define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
88 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
89 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
90 #define	fp_divide_by_0()	__asm __volatile( \
91 				    "fldz; fld1; fdiv %st,%st(1); fnop")
92 #define	frstor(addr)		__asm __volatile("frstor %0" : : "m" (*(addr)))
93 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
94 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
95 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
96 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
97 
98 static __inline void
xrstor(char * addr,uint64_t mask)99 xrstor(char *addr, uint64_t mask)
100 {
101 	uint32_t low, hi;
102 
103 	low = mask;
104 	hi = mask >> 32;
105 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
106 }
107 
108 static __inline void
xsave(char * addr,uint64_t mask)109 xsave(char *addr, uint64_t mask)
110 {
111 	uint32_t low, hi;
112 
113 	low = mask;
114 	hi = mask >> 32;
115 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
116 	    "memory");
117 }
118 
119 static __inline void
xsaveopt(char * addr,uint64_t mask)120 xsaveopt(char *addr, uint64_t mask)
121 {
122 	uint32_t low, hi;
123 
124 	low = mask;
125 	hi = mask >> 32;
126 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
127 	    "memory");
128 }
129 #else	/* !(__GNUCLIKE_ASM && !lint) */
130 
131 void	fldcw(u_short cw);
132 void	fnclex(void);
133 void	fninit(void);
134 void	fnsave(caddr_t addr);
135 void	fnstcw(caddr_t addr);
136 void	fnstsw(caddr_t addr);
137 void	fp_divide_by_0(void);
138 void	frstor(caddr_t addr);
139 void	fxsave(caddr_t addr);
140 void	fxrstor(caddr_t addr);
141 void	ldmxcsr(u_int csr);
142 void	stmxcsr(u_int *csr);
143 void	xrstor(char *addr, uint64_t mask);
144 void	xsave(char *addr, uint64_t mask);
145 void	xsaveopt(char *addr, uint64_t mask);
146 
147 #endif	/* __GNUCLIKE_ASM && !lint */
148 
149 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
150 #define	stop_emulating()	clts()
151 
152 #define GET_FPU_CW(thread) \
153 	(cpu_fxsr ? \
154 		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
155 		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
156 #define GET_FPU_SW(thread) \
157 	(cpu_fxsr ? \
158 		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
159 		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
160 #define SET_FPU_CW(savefpu, value) do { \
161 	if (cpu_fxsr) \
162 		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
163 	else \
164 		(savefpu)->sv_87.sv_env.en_cw = (value); \
165 } while (0)
166 
167 CTASSERT(sizeof(union savefpu) == 512);
168 CTASSERT(sizeof(struct xstate_hdr) == 64);
169 CTASSERT(sizeof(struct savefpu_ymm) == 832);
170 
171 /*
172  * This requirement is to make it easier for asm code to calculate
173  * offset of the fpu save area from the pcb address. FPU save area
174  * must be 64-byte aligned.
175  */
176 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
177 
178 /*
179  * Ensure the copy of XCR0 saved in a core is contained in the padding
180  * area.
181  */
182 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
183     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
184 
185 static	void	fpu_clean_state(void);
186 
187 static	void	fpurstor(union savefpu *);
188 
189 int	hw_float;
190 
191 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
192     &hw_float, 0, "Floating point instructions executed in hardware");
193 
194 int lazy_fpu_switch = 0;
195 SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
196     &lazy_fpu_switch, 0,
197     "Lazily load FPU context after context switch");
198 
199 int use_xsave;
200 uint64_t xsave_mask;
201 static	uma_zone_t fpu_save_area_zone;
202 static	union savefpu *npx_initialstate;
203 
204 static struct xsave_area_elm_descr {
205 	u_int	offset;
206 	u_int	size;
207 } *xsave_area_desc;
208 
209 static	volatile u_int		npx_traps_while_probing;
210 
211 alias_for_inthand_t probetrap;
212 __asm("								\n\
213 	.text							\n\
214 	.p2align 2,0x90						\n\
215 	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
216 " __XSTRING(CNAME(probetrap)) ":				\n\
217 	ss							\n\
218 	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
219 	fnclex							\n\
220 	iret							\n\
221 ");
222 
223 /*
224  * Determine if an FPU is present and how to use it.
225  */
226 static int
npx_probe(void)227 npx_probe(void)
228 {
229 	struct gate_descriptor save_idt_npxtrap;
230 	u_short control, status;
231 
232 	/*
233 	 * Modern CPUs all have an FPU that uses the INT16 interface
234 	 * and provide a simple way to verify that, so handle the
235 	 * common case right away.
236 	 */
237 	if (cpu_feature & CPUID_FPU) {
238 		hw_float = 1;
239 		return (1);
240 	}
241 
242 	save_idt_npxtrap = idt[IDT_MF];
243 	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
244 	    GSEL(GCODE_SEL, SEL_KPL));
245 
246 	/*
247 	 * Don't trap while we're probing.
248 	 */
249 	stop_emulating();
250 
251 	/*
252 	 * Finish resetting the coprocessor, if any.  If there is an error
253 	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
254 	 * it OK.  Bogus halts have never been observed, but we enabled
255 	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
256 	 */
257 	fninit();
258 
259 	/*
260 	 * Don't use fwait here because it might hang.
261 	 * Don't use fnop here because it usually hangs if there is no FPU.
262 	 */
263 	DELAY(1000);		/* wait for any IRQ13 */
264 #ifdef DIAGNOSTIC
265 	if (npx_traps_while_probing != 0)
266 		printf("fninit caused %u bogus npx trap(s)\n",
267 		       npx_traps_while_probing);
268 #endif
269 	/*
270 	 * Check for a status of mostly zero.
271 	 */
272 	status = 0x5a5a;
273 	fnstsw(&status);
274 	if ((status & 0xb8ff) == 0) {
275 		/*
276 		 * Good, now check for a proper control word.
277 		 */
278 		control = 0x5a5a;
279 		fnstcw(&control);
280 		if ((control & 0x1f3f) == 0x033f) {
281 			/*
282 			 * We have an npx, now divide by 0 to see if exception
283 			 * 16 works.
284 			 */
285 			control &= ~(1 << 2);	/* enable divide by 0 trap */
286 			fldcw(control);
287 			npx_traps_while_probing = 0;
288 			fp_divide_by_0();
289 			if (npx_traps_while_probing != 0) {
290 				/*
291 				 * Good, exception 16 works.
292 				 */
293 				hw_float = 1;
294 				goto cleanup;
295 			}
296 			printf(
297 	"FPU does not use exception 16 for error reporting\n");
298 			goto cleanup;
299 		}
300 	}
301 
302 	/*
303 	 * Probe failed.  Floating point simply won't work.
304 	 * Notify user and disable FPU/MMX/SSE instruction execution.
305 	 */
306 	printf("WARNING: no FPU!\n");
307 	__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
308 	    "n" (CR0_EM | CR0_MP) : "ax");
309 
310 cleanup:
311 	idt[IDT_MF] = save_idt_npxtrap;
312 	return (hw_float);
313 }
314 
315 static void
fpusave_xsaveopt(union savefpu * addr)316 fpusave_xsaveopt(union savefpu *addr)
317 {
318 
319 	xsaveopt((char *)addr, xsave_mask);
320 }
321 
322 static void
fpusave_xsave(union savefpu * addr)323 fpusave_xsave(union savefpu *addr)
324 {
325 
326 	xsave((char *)addr, xsave_mask);
327 }
328 
329 static void
fpusave_fxsave(union savefpu * addr)330 fpusave_fxsave(union savefpu *addr)
331 {
332 
333 	fxsave((char *)addr);
334 }
335 
336 static void
fpusave_fnsave(union savefpu * addr)337 fpusave_fnsave(union savefpu *addr)
338 {
339 
340 	fnsave((char *)addr);
341 }
342 
343 static void
init_xsave(void)344 init_xsave(void)
345 {
346 
347 	if (use_xsave)
348 		return;
349 	if (!cpu_fxsr || (cpu_feature2 & CPUID2_XSAVE) == 0)
350 		return;
351 	use_xsave = 1;
352 	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
353 }
354 
355 DEFINE_IFUNC(, void, fpusave, (union savefpu *))
356 {
357 
358 	init_xsave();
359 	if (use_xsave)
360 		return ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0 ?
361 		    fpusave_xsaveopt : fpusave_xsave);
362 	if (cpu_fxsr)
363 		return (fpusave_fxsave);
364 	return (fpusave_fnsave);
365 }
366 
367 /*
368  * Enable XSAVE if supported and allowed by user.
369  * Calculate the xsave_mask.
370  */
371 static void
npxinit_bsp1(void)372 npxinit_bsp1(void)
373 {
374 	u_int cp[4];
375 	uint64_t xsave_mask_user;
376 
377 	TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
378 	if (!use_xsave)
379 		return;
380 	cpuid_count(0xd, 0x0, cp);
381 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
382 	if ((cp[0] & xsave_mask) != xsave_mask)
383 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
384 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
385 	xsave_mask_user = xsave_mask;
386 	TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
387 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
388 	xsave_mask &= xsave_mask_user;
389 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
390 		xsave_mask &= ~XFEATURE_AVX512;
391 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
392 		xsave_mask &= ~XFEATURE_MPX;
393 }
394 
395 /*
396  * Calculate the fpu save area size.
397  */
398 static void
npxinit_bsp2(void)399 npxinit_bsp2(void)
400 {
401 	u_int cp[4];
402 
403 	if (use_xsave) {
404 		cpuid_count(0xd, 0x0, cp);
405 		cpu_max_ext_state_size = cp[1];
406 
407 		/*
408 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
409 		 */
410 		do_cpuid(1, cp);
411 		cpu_feature2 = cp[2];
412 	} else
413 		cpu_max_ext_state_size = sizeof(union savefpu);
414 }
415 
416 /*
417  * Initialize floating point unit.
418  */
419 void
npxinit(bool bsp)420 npxinit(bool bsp)
421 {
422 	static union savefpu dummy;
423 	register_t saveintr;
424 	u_int mxcsr;
425 	u_short control;
426 
427 	if (bsp) {
428 		if (!npx_probe())
429 			return;
430 		npxinit_bsp1();
431 	}
432 
433 	if (use_xsave) {
434 		load_cr4(rcr4() | CR4_XSAVE);
435 		load_xcr(XCR0, xsave_mask);
436 	}
437 
438 	/*
439 	 * XCR0 shall be set up before CPU can report the save area size.
440 	 */
441 	if (bsp)
442 		npxinit_bsp2();
443 
444 	/*
445 	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
446 	 * fnsave to throw away any junk in the fpu.  fpusave() initializes
447 	 * the fpu.
448 	 *
449 	 * It is too early for critical_enter() to work on AP.
450 	 */
451 	saveintr = intr_disable();
452 	stop_emulating();
453 	if (cpu_fxsr)
454 		fninit();
455 	else
456 		fnsave(&dummy);
457 	control = __INITIAL_NPXCW__;
458 	fldcw(control);
459 	if (cpu_fxsr) {
460 		mxcsr = __INITIAL_MXCSR__;
461 		ldmxcsr(mxcsr);
462 	}
463 	start_emulating();
464 	intr_restore(saveintr);
465 }
466 
467 /*
468  * On the boot CPU we generate a clean state that is used to
469  * initialize the floating point unit when it is first used by a
470  * process.
471  */
472 static void
npxinitstate(void * arg __unused)473 npxinitstate(void *arg __unused)
474 {
475 	uint64_t *xstate_bv;
476 	register_t saveintr;
477 	int cp[4], i, max_ext_n;
478 
479 	if (!hw_float)
480 		return;
481 
482 	/* Do potentially blocking operations before disabling interrupts. */
483 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
484 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
485 	    XSAVE_AREA_ALIGN - 1, 0);
486 	npx_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
487 	if (use_xsave) {
488 		if (xsave_mask >> 32 != 0)
489 			max_ext_n = fls(xsave_mask >> 32) + 32;
490 		else
491 			max_ext_n = fls(xsave_mask);
492 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
493 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
494 	}
495 
496 	saveintr = intr_disable();
497 	stop_emulating();
498 
499 	if (cpu_fxsr)
500 		fpusave_fxsave(npx_initialstate);
501 	else
502 		fpusave_fnsave(npx_initialstate);
503 	if (cpu_fxsr) {
504 		if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
505 			cpu_mxcsr_mask =
506 			    npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
507 		else
508 			cpu_mxcsr_mask = 0xFFBF;
509 
510 		/*
511 		 * The fninit instruction does not modify XMM
512 		 * registers or x87 registers (MM/ST).  The fpusave
513 		 * call dumped the garbage contained in the registers
514 		 * after reset to the initial state saved.  Clear XMM
515 		 * and x87 registers file image to make the startup
516 		 * program state and signal handler XMM/x87 register
517 		 * content predictable.
518 		 */
519 		bzero(npx_initialstate->sv_xmm.sv_fp,
520 		    sizeof(npx_initialstate->sv_xmm.sv_fp));
521 		bzero(npx_initialstate->sv_xmm.sv_xmm,
522 		    sizeof(npx_initialstate->sv_xmm.sv_xmm));
523 
524 	} else
525 		bzero(npx_initialstate->sv_87.sv_ac,
526 		    sizeof(npx_initialstate->sv_87.sv_ac));
527 
528 	/*
529 	 * Create a table describing the layout of the CPU Extended
530 	 * Save Area.
531 	 */
532 	if (use_xsave) {
533 		xstate_bv = (uint64_t *)((char *)(npx_initialstate + 1) +
534 		    offsetof(struct xstate_hdr, xstate_bv));
535 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
536 
537 		/* x87 state */
538 		xsave_area_desc[0].offset = 0;
539 		xsave_area_desc[0].size = 160;
540 		/* XMM */
541 		xsave_area_desc[1].offset = 160;
542 		xsave_area_desc[1].size = 288 - 160;
543 
544 		for (i = 2; i < max_ext_n; i++) {
545 			cpuid_count(0xd, i, cp);
546 			xsave_area_desc[i].offset = cp[1];
547 			xsave_area_desc[i].size = cp[0];
548 		}
549 	}
550 
551 	start_emulating();
552 	intr_restore(saveintr);
553 }
554 SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
555 
556 /*
557  * Free coprocessor (if we have it).
558  */
559 void
npxexit(struct thread * td)560 npxexit(struct thread *td)
561 {
562 
563 	critical_enter();
564 	if (curthread == PCPU_GET(fpcurthread)) {
565 		stop_emulating();
566 		fpusave(curpcb->pcb_save);
567 		start_emulating();
568 		PCPU_SET(fpcurthread, NULL);
569 	}
570 	critical_exit();
571 #ifdef NPX_DEBUG
572 	if (hw_float) {
573 		u_int	masked_exceptions;
574 
575 		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
576 		/*
577 		 * Log exceptions that would have trapped with the old
578 		 * control word (overflow, divide by 0, and invalid operand).
579 		 */
580 		if (masked_exceptions & 0x0d)
581 			log(LOG_ERR,
582 	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
583 			    td->td_proc->p_pid, td->td_proc->p_comm,
584 			    masked_exceptions);
585 	}
586 #endif
587 }
588 
589 int
npxformat(void)590 npxformat(void)
591 {
592 
593 	if (!hw_float)
594 		return (_MC_FPFMT_NODEV);
595 	if (cpu_fxsr)
596 		return (_MC_FPFMT_XMM);
597 	return (_MC_FPFMT_387);
598 }
599 
600 /*
601  * The following mechanism is used to ensure that the FPE_... value
602  * that is passed as a trapcode to the signal handler of the user
603  * process does not have more than one bit set.
604  *
605  * Multiple bits may be set if the user process modifies the control
606  * word while a status word bit is already set.  While this is a sign
607  * of bad coding, we have no choise than to narrow them down to one
608  * bit, since we must not send a trapcode that is not exactly one of
609  * the FPE_ macros.
610  *
611  * The mechanism has a static table with 127 entries.  Each combination
612  * of the 7 FPU status word exception bits directly translates to a
613  * position in this table, where a single FPE_... value is stored.
614  * This FPE_... value stored there is considered the "most important"
615  * of the exception bits and will be sent as the signal code.  The
616  * precedence of the bits is based upon Intel Document "Numerical
617  * Applications", Chapter "Special Computational Situations".
618  *
619  * The macro to choose one of these values does these steps: 1) Throw
620  * away status word bits that cannot be masked.  2) Throw away the bits
621  * currently masked in the control word, assuming the user isn't
622  * interested in them anymore.  3) Reinsert status word bit 7 (stack
623  * fault) if it is set, which cannot be masked but must be presered.
624  * 4) Use the remaining bits to point into the trapcode table.
625  *
626  * The 6 maskable bits in order of their preference, as stated in the
627  * above referenced Intel manual:
628  * 1  Invalid operation (FP_X_INV)
629  * 1a   Stack underflow
630  * 1b   Stack overflow
631  * 1c   Operand of unsupported format
632  * 1d   SNaN operand.
633  * 2  QNaN operand (not an exception, irrelavant here)
634  * 3  Any other invalid-operation not mentioned above or zero divide
635  *      (FP_X_INV, FP_X_DZ)
636  * 4  Denormal operand (FP_X_DNML)
637  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
638  * 6  Inexact result (FP_X_IMP)
639  */
640 static char fpetable[128] = {
641 	0,
642 	FPE_FLTINV,	/*  1 - INV */
643 	FPE_FLTUND,	/*  2 - DNML */
644 	FPE_FLTINV,	/*  3 - INV | DNML */
645 	FPE_FLTDIV,	/*  4 - DZ */
646 	FPE_FLTINV,	/*  5 - INV | DZ */
647 	FPE_FLTDIV,	/*  6 - DNML | DZ */
648 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
649 	FPE_FLTOVF,	/*  8 - OFL */
650 	FPE_FLTINV,	/*  9 - INV | OFL */
651 	FPE_FLTUND,	/*  A - DNML | OFL */
652 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
653 	FPE_FLTDIV,	/*  C - DZ | OFL */
654 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
655 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
656 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
657 	FPE_FLTUND,	/* 10 - UFL */
658 	FPE_FLTINV,	/* 11 - INV | UFL */
659 	FPE_FLTUND,	/* 12 - DNML | UFL */
660 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
661 	FPE_FLTDIV,	/* 14 - DZ | UFL */
662 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
663 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
664 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
665 	FPE_FLTOVF,	/* 18 - OFL | UFL */
666 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
667 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
668 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
669 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
670 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
671 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
672 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
673 	FPE_FLTRES,	/* 20 - IMP */
674 	FPE_FLTINV,	/* 21 - INV | IMP */
675 	FPE_FLTUND,	/* 22 - DNML | IMP */
676 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
677 	FPE_FLTDIV,	/* 24 - DZ | IMP */
678 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
679 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
680 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
681 	FPE_FLTOVF,	/* 28 - OFL | IMP */
682 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
683 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
684 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
685 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
686 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
687 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
688 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
689 	FPE_FLTUND,	/* 30 - UFL | IMP */
690 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
691 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
692 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
693 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
694 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
695 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
696 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
697 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
698 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
699 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
700 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
701 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
702 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
703 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
704 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
705 	FPE_FLTSUB,	/* 40 - STK */
706 	FPE_FLTSUB,	/* 41 - INV | STK */
707 	FPE_FLTUND,	/* 42 - DNML | STK */
708 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
709 	FPE_FLTDIV,	/* 44 - DZ | STK */
710 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
711 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
712 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
713 	FPE_FLTOVF,	/* 48 - OFL | STK */
714 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
715 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
716 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
717 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
718 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
719 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
720 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
721 	FPE_FLTUND,	/* 50 - UFL | STK */
722 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
723 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
724 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
725 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
726 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
727 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
728 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
729 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
730 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
731 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
732 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
733 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
734 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
735 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
736 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
737 	FPE_FLTRES,	/* 60 - IMP | STK */
738 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
739 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
740 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
741 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
742 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
743 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
744 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
745 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
746 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
747 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
748 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
749 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
750 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
751 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
752 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
753 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
754 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
755 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
756 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
757 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
758 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
759 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
760 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
761 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
762 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
763 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
764 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
765 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
766 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
767 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
768 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
769 };
770 
771 /*
772  * Read the FP status and control words, then generate si_code value
773  * for SIGFPE.  The error code chosen will be one of the
774  * FPE_... macros.  It will be sent as the second argument to old
775  * BSD-style signal handlers and as "siginfo_t->si_code" (second
776  * argument) to SA_SIGINFO signal handlers.
777  *
778  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
779  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
780  * usermode code which understands the FPU hardware enough to enable
781  * the exceptions, can also handle clearing the exception state in the
782  * handler.  The only consequence of not clearing the exception is the
783  * rethrow of the SIGFPE on return from the signal handler and
784  * reexecution of the corresponding instruction.
785  *
786  * For XMM traps, the exceptions were never cleared.
787  */
788 int
npxtrap_x87(void)789 npxtrap_x87(void)
790 {
791 	u_short control, status;
792 
793 	if (!hw_float) {
794 		printf(
795 	"npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
796 		       PCPU_GET(fpcurthread), curthread, hw_float);
797 		panic("npxtrap from nowhere");
798 	}
799 	critical_enter();
800 
801 	/*
802 	 * Interrupt handling (for another interrupt) may have pushed the
803 	 * state to memory.  Fetch the relevant parts of the state from
804 	 * wherever they are.
805 	 */
806 	if (PCPU_GET(fpcurthread) != curthread) {
807 		control = GET_FPU_CW(curthread);
808 		status = GET_FPU_SW(curthread);
809 	} else {
810 		fnstcw(&control);
811 		fnstsw(&status);
812 	}
813 	critical_exit();
814 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
815 }
816 
817 int
npxtrap_sse(void)818 npxtrap_sse(void)
819 {
820 	u_int mxcsr;
821 
822 	if (!hw_float) {
823 		printf(
824 	"npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
825 		       PCPU_GET(fpcurthread), curthread, hw_float);
826 		panic("npxtrap from nowhere");
827 	}
828 	critical_enter();
829 	if (PCPU_GET(fpcurthread) != curthread)
830 		mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
831 	else
832 		stmxcsr(&mxcsr);
833 	critical_exit();
834 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
835 }
836 
837 static void
restore_npx_curthread(struct thread * td,struct pcb * pcb)838 restore_npx_curthread(struct thread *td, struct pcb *pcb)
839 {
840 
841 	/*
842 	 * Record new context early in case frstor causes a trap.
843 	 */
844 	PCPU_SET(fpcurthread, td);
845 
846 	stop_emulating();
847 	if (cpu_fxsr)
848 		fpu_clean_state();
849 
850 	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
851 		/*
852 		 * This is the first time this thread has used the FPU or
853 		 * the PCB doesn't contain a clean FPU state.  Explicitly
854 		 * load an initial state.
855 		 *
856 		 * We prefer to restore the state from the actual save
857 		 * area in PCB instead of directly loading from
858 		 * npx_initialstate, to ignite the XSAVEOPT
859 		 * tracking engine.
860 		 */
861 		bcopy(npx_initialstate, pcb->pcb_save, cpu_max_ext_state_size);
862 		fpurstor(pcb->pcb_save);
863 		if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
864 			fldcw(pcb->pcb_initial_npxcw);
865 		pcb->pcb_flags |= PCB_NPXINITDONE;
866 		if (PCB_USER_FPU(pcb))
867 			pcb->pcb_flags |= PCB_NPXUSERINITDONE;
868 	} else {
869 		fpurstor(pcb->pcb_save);
870 	}
871 }
872 
873 /*
874  * Implement device not available (DNA) exception
875  *
876  * It would be better to switch FP context here (if curthread != fpcurthread)
877  * and not necessarily for every context switch, but it is too hard to
878  * access foreign pcb's.
879  */
880 int
npxdna(void)881 npxdna(void)
882 {
883 	struct thread *td;
884 
885 	if (!hw_float)
886 		return (0);
887 	td = curthread;
888 	critical_enter();
889 
890 	KASSERT((curpcb->pcb_flags & PCB_NPXNOSAVE) == 0,
891 	    ("npxdna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
892 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
893 		/*
894 		 * Some virtual machines seems to set %cr0.TS at
895 		 * arbitrary moments.  Silently clear the TS bit
896 		 * regardless of the eager/lazy FPU context switch
897 		 * mode.
898 		 */
899 		stop_emulating();
900 	} else {
901 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
902 			printf(
903 		    "npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
904 			    PCPU_GET(fpcurthread),
905 			    PCPU_GET(fpcurthread)->td_proc->p_pid,
906 			    td, td->td_proc->p_pid);
907 			panic("npxdna");
908 		}
909 		restore_npx_curthread(td, td->td_pcb);
910 	}
911 	critical_exit();
912 	return (1);
913 }
914 
915 /*
916  * Wrapper for fpusave() called from context switch routines.
917  *
918  * npxsave() must be called with interrupts disabled, so that it clears
919  * fpcurthread atomically with saving the state.  We require callers to do the
920  * disabling, since most callers need to disable interrupts anyway to call
921  * npxsave() atomically with checking fpcurthread.
922  */
923 void
npxsave(union savefpu * addr)924 npxsave(union savefpu *addr)
925 {
926 
927 	stop_emulating();
928 	fpusave(addr);
929 }
930 
931 void npxswitch(struct thread *td, struct pcb *pcb);
932 void
npxswitch(struct thread * td,struct pcb * pcb)933 npxswitch(struct thread *td, struct pcb *pcb)
934 {
935 
936 	if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
937 	    !PCB_USER_FPU(pcb)) {
938 		start_emulating();
939 		PCPU_SET(fpcurthread, NULL);
940 	} else if (PCPU_GET(fpcurthread) != td) {
941 		restore_npx_curthread(td, pcb);
942 	}
943 }
944 
945 /*
946  * Unconditionally save the current co-processor state across suspend and
947  * resume.
948  */
949 void
npxsuspend(union savefpu * addr)950 npxsuspend(union savefpu *addr)
951 {
952 	register_t cr0;
953 
954 	if (!hw_float)
955 		return;
956 	if (PCPU_GET(fpcurthread) == NULL) {
957 		bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
958 		return;
959 	}
960 	cr0 = rcr0();
961 	stop_emulating();
962 	fpusave(addr);
963 	load_cr0(cr0);
964 }
965 
966 void
npxresume(union savefpu * addr)967 npxresume(union savefpu *addr)
968 {
969 	register_t cr0;
970 
971 	if (!hw_float)
972 		return;
973 
974 	cr0 = rcr0();
975 	npxinit(false);
976 	stop_emulating();
977 	fpurstor(addr);
978 	load_cr0(cr0);
979 }
980 
981 void
npxdrop(void)982 npxdrop(void)
983 {
984 	struct thread *td;
985 
986 	/*
987 	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
988 	 * ones don't cause a panic on the next frstor.
989 	 */
990 	if (!cpu_fxsr)
991 		fnclex();
992 
993 	td = PCPU_GET(fpcurthread);
994 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
995 	CRITICAL_ASSERT(td);
996 	PCPU_SET(fpcurthread, NULL);
997 	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
998 	start_emulating();
999 }
1000 
1001 /*
1002  * Get the user state of the FPU into pcb->pcb_user_save without
1003  * dropping ownership (if possible).  It returns the FPU ownership
1004  * status.
1005  */
1006 int
npxgetregs(struct thread * td)1007 npxgetregs(struct thread *td)
1008 {
1009 	struct pcb *pcb;
1010 	uint64_t *xstate_bv, bit;
1011 	char *sa;
1012 	int max_ext_n, i;
1013 	int owned;
1014 
1015 	if (!hw_float)
1016 		return (_MC_FPOWNED_NONE);
1017 
1018 	pcb = td->td_pcb;
1019 	critical_enter();
1020 	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
1021 		bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
1022 		    cpu_max_ext_state_size);
1023 		SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
1024 		npxuserinited(td);
1025 		critical_exit();
1026 		return (_MC_FPOWNED_PCB);
1027 	}
1028 	if (td == PCPU_GET(fpcurthread)) {
1029 		fpusave(get_pcb_user_save_pcb(pcb));
1030 		if (!cpu_fxsr)
1031 			/*
1032 			 * fnsave initializes the FPU and destroys whatever
1033 			 * context it contains.  Make sure the FPU owner
1034 			 * starts with a clean state next time.
1035 			 */
1036 			npxdrop();
1037 		owned = _MC_FPOWNED_FPU;
1038 	} else {
1039 		owned = _MC_FPOWNED_PCB;
1040 	}
1041 	if (use_xsave) {
1042 		/*
1043 		 * Handle partially saved state.
1044 		 */
1045 		sa = (char *)get_pcb_user_save_pcb(pcb);
1046 		xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
1047 		    offsetof(struct xstate_hdr, xstate_bv));
1048 		if (xsave_mask >> 32 != 0)
1049 			max_ext_n = fls(xsave_mask >> 32) + 32;
1050 		else
1051 			max_ext_n = fls(xsave_mask);
1052 		for (i = 0; i < max_ext_n; i++) {
1053 			bit = 1ULL << i;
1054 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
1055 				continue;
1056 			bcopy((char *)npx_initialstate +
1057 			    xsave_area_desc[i].offset,
1058 			    sa + xsave_area_desc[i].offset,
1059 			    xsave_area_desc[i].size);
1060 			*xstate_bv |= bit;
1061 		}
1062 	}
1063 	critical_exit();
1064 	return (owned);
1065 }
1066 
1067 void
npxuserinited(struct thread * td)1068 npxuserinited(struct thread *td)
1069 {
1070 	struct pcb *pcb;
1071 
1072 	CRITICAL_ASSERT(td);
1073 	pcb = td->td_pcb;
1074 	if (PCB_USER_FPU(pcb))
1075 		pcb->pcb_flags |= PCB_NPXINITDONE;
1076 	pcb->pcb_flags |= PCB_NPXUSERINITDONE;
1077 }
1078 
1079 int
npxsetxstate(struct thread * td,char * xfpustate,size_t xfpustate_size)1080 npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
1081 {
1082 	struct xstate_hdr *hdr, *ehdr;
1083 	size_t len, max_len;
1084 	uint64_t bv;
1085 
1086 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
1087 	if (xfpustate == NULL)
1088 		return (0);
1089 	if (!use_xsave)
1090 		return (EOPNOTSUPP);
1091 
1092 	len = xfpustate_size;
1093 	if (len < sizeof(struct xstate_hdr))
1094 		return (EINVAL);
1095 	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
1096 	if (len > max_len)
1097 		return (EINVAL);
1098 
1099 	ehdr = (struct xstate_hdr *)xfpustate;
1100 	bv = ehdr->xstate_bv;
1101 
1102 	/*
1103 	 * Avoid #gp.
1104 	 */
1105 	if (bv & ~xsave_mask)
1106 		return (EINVAL);
1107 
1108 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
1109 
1110 	hdr->xstate_bv = bv;
1111 	bcopy(xfpustate + sizeof(struct xstate_hdr),
1112 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
1113 
1114 	return (0);
1115 }
1116 
1117 int
npxsetregs(struct thread * td,union savefpu * addr,char * xfpustate,size_t xfpustate_size)1118 npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
1119 	size_t xfpustate_size)
1120 {
1121 	struct pcb *pcb;
1122 	int error;
1123 
1124 	if (!hw_float)
1125 		return (ENXIO);
1126 
1127 	if (cpu_fxsr)
1128 		addr->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
1129 	pcb = td->td_pcb;
1130 	error = 0;
1131 	critical_enter();
1132 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
1133 		error = npxsetxstate(td, xfpustate, xfpustate_size);
1134 		if (error == 0) {
1135 			if (!cpu_fxsr)
1136 				fnclex();	/* As in npxdrop(). */
1137 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1138 			fpurstor(get_pcb_user_save_td(td));
1139 			pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
1140 		}
1141 	} else {
1142 		error = npxsetxstate(td, xfpustate, xfpustate_size);
1143 		if (error == 0) {
1144 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1145 			npxuserinited(td);
1146 		}
1147 	}
1148 	critical_exit();
1149 	return (error);
1150 }
1151 
1152 static void
npx_fill_fpregs_xmm1(struct savexmm * sv_xmm,struct save87 * sv_87)1153 npx_fill_fpregs_xmm1(struct savexmm *sv_xmm, struct save87 *sv_87)
1154 {
1155 	struct env87 *penv_87;
1156 	struct envxmm *penv_xmm;
1157 	struct fpacc87 *fx_reg;
1158 	int i, st;
1159 	uint64_t mantissa;
1160 	uint16_t tw, exp;
1161 	uint8_t ab_tw;
1162 
1163 	penv_87 = &sv_87->sv_env;
1164 	penv_xmm = &sv_xmm->sv_env;
1165 
1166 	/* FPU control/status */
1167 	penv_87->en_cw = penv_xmm->en_cw;
1168 	penv_87->en_sw = penv_xmm->en_sw;
1169 	penv_87->en_fip = penv_xmm->en_fip;
1170 	penv_87->en_fcs = penv_xmm->en_fcs;
1171 	penv_87->en_opcode = penv_xmm->en_opcode;
1172 	penv_87->en_foo = penv_xmm->en_foo;
1173 	penv_87->en_fos = penv_xmm->en_fos;
1174 
1175 	/*
1176 	 * FPU registers and tags.
1177 	 * For ST(i), i = fpu_reg - top; we start with fpu_reg=7.
1178 	 */
1179 	st = 7 - ((penv_xmm->en_sw >> 11) & 7);
1180 	ab_tw = penv_xmm->en_tw;
1181 	tw = 0;
1182 	for (i = 0x80; i != 0; i >>= 1) {
1183 		sv_87->sv_ac[st] = sv_xmm->sv_fp[st].fp_acc;
1184 		tw <<= 2;
1185 		if (ab_tw & i) {
1186 			/* Non-empty - we need to check ST(i) */
1187 			fx_reg = &sv_xmm->sv_fp[st].fp_acc;
1188 			/* The first 64 bits contain the mantissa. */
1189 			mantissa = *((uint64_t *)fx_reg->fp_bytes);
1190 			/*
1191 			 * The final 16 bits contain the sign bit and the exponent.
1192 			 * Mask the sign bit since it is of no consequence to these
1193 			 * tests.
1194 			 */
1195 			exp = *((uint16_t *)&fx_reg->fp_bytes[8]) & 0x7fff;
1196 			if (exp == 0) {
1197 				if (mantissa == 0)
1198 					tw |= 1; /* Zero */
1199 				else
1200 					tw |= 2; /* Denormal */
1201 			} else if (exp == 0x7fff)
1202 				tw |= 2; /* Infinity or NaN */
1203 		} else
1204 			tw |= 3; /* Empty */
1205 		st = (st - 1) & 7;
1206 	}
1207 	penv_87->en_tw = tw;
1208 }
1209 
1210 void
npx_fill_fpregs_xmm(struct savexmm * sv_xmm,struct save87 * sv_87)1211 npx_fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1212 {
1213 
1214 	bzero(sv_87, sizeof(*sv_87));
1215 	npx_fill_fpregs_xmm1(sv_xmm, sv_87);
1216 }
1217 
1218 void
npx_set_fpregs_xmm(struct save87 * sv_87,struct savexmm * sv_xmm)1219 npx_set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1220 {
1221 	struct env87 *penv_87;
1222 	struct envxmm *penv_xmm;
1223 	int i;
1224 
1225 	penv_87 = &sv_87->sv_env;
1226 	penv_xmm = &sv_xmm->sv_env;
1227 
1228 	/* FPU control/status */
1229 	penv_xmm->en_cw = penv_87->en_cw;
1230 	penv_xmm->en_sw = penv_87->en_sw;
1231 	penv_xmm->en_fip = penv_87->en_fip;
1232 	penv_xmm->en_fcs = penv_87->en_fcs;
1233 	penv_xmm->en_opcode = penv_87->en_opcode;
1234 	penv_xmm->en_foo = penv_87->en_foo;
1235 	penv_xmm->en_fos = penv_87->en_fos;
1236 
1237 	/*
1238 	 * FPU registers and tags.
1239 	 * Abridged  /  Full translation (values in binary), see FXSAVE spec.
1240 	 * 0		11
1241 	 * 1		00, 01, 10
1242 	 */
1243 	penv_xmm->en_tw = 0;
1244 	for (i = 0; i < 8; ++i) {
1245 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1246 		if ((penv_87->en_tw & (3 << i * 2)) != (3 << i * 2))
1247 			penv_xmm->en_tw |= 1 << i;
1248 	}
1249 }
1250 
1251 void
npx_get_fsave(void * addr)1252 npx_get_fsave(void *addr)
1253 {
1254 	struct thread *td;
1255 	union savefpu *sv;
1256 
1257 	td = curthread;
1258 	npxgetregs(td);
1259 	sv = get_pcb_user_save_td(td);
1260 	if (cpu_fxsr)
1261 		npx_fill_fpregs_xmm1(&sv->sv_xmm, addr);
1262 	else
1263 		bcopy(sv, addr, sizeof(struct env87) +
1264 		    sizeof(struct fpacc87[8]));
1265 }
1266 
1267 int
npx_set_fsave(void * addr)1268 npx_set_fsave(void *addr)
1269 {
1270 	union savefpu sv;
1271 	int error;
1272 
1273 	bzero(&sv, sizeof(sv));
1274 	if (cpu_fxsr)
1275 		npx_set_fpregs_xmm(addr, &sv.sv_xmm);
1276 	else
1277 		bcopy(addr, &sv, sizeof(struct env87) +
1278 		    sizeof(struct fpacc87[8]));
1279 	error = npxsetregs(curthread, &sv, NULL, 0);
1280 	return (error);
1281 }
1282 
1283 /*
1284  * On AuthenticAMD processors, the fxrstor instruction does not restore
1285  * the x87's stored last instruction pointer, last data pointer, and last
1286  * opcode values, except in the rare case in which the exception summary
1287  * (ES) bit in the x87 status word is set to 1.
1288  *
1289  * In order to avoid leaking this information across processes, we clean
1290  * these values by performing a dummy load before executing fxrstor().
1291  */
1292 static void
fpu_clean_state(void)1293 fpu_clean_state(void)
1294 {
1295 	static float dummy_variable = 0.0;
1296 	u_short status;
1297 
1298 	/*
1299 	 * Clear the ES bit in the x87 status word if it is currently
1300 	 * set, in order to avoid causing a fault in the upcoming load.
1301 	 */
1302 	fnstsw(&status);
1303 	if (status & 0x80)
1304 		fnclex();
1305 
1306 	/*
1307 	 * Load the dummy variable into the x87 stack.  This mangles
1308 	 * the x87 stack, but we don't care since we're about to call
1309 	 * fxrstor() anyway.
1310 	 */
1311 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1312 }
1313 
1314 static void
fpurstor(union savefpu * addr)1315 fpurstor(union savefpu *addr)
1316 {
1317 
1318 	if (use_xsave)
1319 		xrstor((char *)addr, xsave_mask);
1320 	else if (cpu_fxsr)
1321 		fxrstor(addr);
1322 	else
1323 		frstor(addr);
1324 }
1325 
1326 #ifdef DEV_ISA
1327 /*
1328  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1329  */
1330 static struct isa_pnp_id npxisa_ids[] = {
1331 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1332 	{ 0 }
1333 };
1334 
1335 static int
npxisa_probe(device_t dev)1336 npxisa_probe(device_t dev)
1337 {
1338 	int result;
1339 	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1340 		device_quiet(dev);
1341 	}
1342 	return(result);
1343 }
1344 
1345 static int
npxisa_attach(device_t dev)1346 npxisa_attach(device_t dev)
1347 {
1348 	return (0);
1349 }
1350 
1351 static device_method_t npxisa_methods[] = {
1352 	/* Device interface */
1353 	DEVMETHOD(device_probe,		npxisa_probe),
1354 	DEVMETHOD(device_attach,	npxisa_attach),
1355 	DEVMETHOD(device_detach,	bus_generic_detach),
1356 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1357 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1358 	DEVMETHOD(device_resume,	bus_generic_resume),
1359 	{ 0, 0 }
1360 };
1361 
1362 static driver_t npxisa_driver = {
1363 	"npxisa",
1364 	npxisa_methods,
1365 	1,			/* no softc */
1366 };
1367 
1368 static devclass_t npxisa_devclass;
1369 
1370 DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1371 DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1372 ISA_PNP_INFO(npxisa_ids);
1373 #endif /* DEV_ISA */
1374 
1375 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1376     "Kernel contexts for FPU state");
1377 
1378 #define	FPU_KERN_CTX_NPXINITDONE 0x01
1379 #define	FPU_KERN_CTX_DUMMY	 0x02
1380 #define	FPU_KERN_CTX_INUSE	 0x04
1381 
1382 struct fpu_kern_ctx {
1383 	union savefpu *prev;
1384 	uint32_t flags;
1385 	char hwstate1[];
1386 };
1387 
1388 struct fpu_kern_ctx *
fpu_kern_alloc_ctx(u_int flags)1389 fpu_kern_alloc_ctx(u_int flags)
1390 {
1391 	struct fpu_kern_ctx *res;
1392 	size_t sz;
1393 
1394 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
1395 	    cpu_max_ext_state_size;
1396 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
1397 	    M_NOWAIT : M_WAITOK) | M_ZERO);
1398 	return (res);
1399 }
1400 
1401 void
fpu_kern_free_ctx(struct fpu_kern_ctx * ctx)1402 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1403 {
1404 
1405 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1406 	/* XXXKIB clear the memory ? */
1407 	free(ctx, M_FPUKERN_CTX);
1408 }
1409 
1410 static union savefpu *
fpu_kern_ctx_savefpu(struct fpu_kern_ctx * ctx)1411 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1412 {
1413 	vm_offset_t p;
1414 
1415 	p = (vm_offset_t)&ctx->hwstate1;
1416 	p = roundup2(p, XSAVE_AREA_ALIGN);
1417 	return ((union savefpu *)p);
1418 }
1419 
1420 void
fpu_kern_enter(struct thread * td,struct fpu_kern_ctx * ctx,u_int flags)1421 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1422 {
1423 	struct pcb *pcb;
1424 
1425 	pcb = td->td_pcb;
1426 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1427 	    ("ctx is required when !FPU_KERN_NOCTX"));
1428 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1429 	    ("using inuse ctx"));
1430 	KASSERT((pcb->pcb_flags & PCB_NPXNOSAVE) == 0,
1431 	    ("recursive fpu_kern_enter while in PCB_NPXNOSAVE state"));
1432 
1433 	if ((flags & FPU_KERN_NOCTX) != 0) {
1434 		critical_enter();
1435 		stop_emulating();
1436 		if (curthread == PCPU_GET(fpcurthread)) {
1437 			fpusave(curpcb->pcb_save);
1438 			PCPU_SET(fpcurthread, NULL);
1439 		} else {
1440 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1441 			    ("invalid fpcurthread"));
1442 		}
1443 
1444 		/*
1445 		 * This breaks XSAVEOPT tracker, but
1446 		 * PCB_NPXNOSAVE state is supposed to never need to
1447 		 * save FPU context at all.
1448 		 */
1449 		fpurstor(npx_initialstate);
1450 		pcb->pcb_flags |= PCB_KERNNPX | PCB_NPXNOSAVE | PCB_NPXINITDONE;
1451 		return;
1452 	}
1453 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1454 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1455 		return;
1456 	}
1457 	pcb = td->td_pcb;
1458 	critical_enter();
1459 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1460 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1461 	ctx->flags = FPU_KERN_CTX_INUSE;
1462 	if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
1463 		ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
1464 	npxexit(td);
1465 	ctx->prev = pcb->pcb_save;
1466 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1467 	pcb->pcb_flags |= PCB_KERNNPX;
1468 	pcb->pcb_flags &= ~PCB_NPXINITDONE;
1469 	critical_exit();
1470 }
1471 
1472 int
fpu_kern_leave(struct thread * td,struct fpu_kern_ctx * ctx)1473 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1474 {
1475 	struct pcb *pcb;
1476 
1477 	pcb = td->td_pcb;
1478 
1479 	if ((pcb->pcb_flags & PCB_NPXNOSAVE) != 0) {
1480 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1481 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1482 		    ("non-NULL fpcurthread for PCB_NPXNOSAVE"));
1483 		CRITICAL_ASSERT(td);
1484 
1485 		pcb->pcb_flags &= ~(PCB_NPXNOSAVE | PCB_NPXINITDONE);
1486 		start_emulating();
1487 	} else {
1488 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1489 		    ("leaving not inuse ctx"));
1490 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1491 
1492 		if (is_fpu_kern_thread(0) &&
1493 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1494 			return (0);
1495 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1496 		    ("dummy ctx"));
1497 		critical_enter();
1498 		if (curthread == PCPU_GET(fpcurthread))
1499 			npxdrop();
1500 		pcb->pcb_save = ctx->prev;
1501 	}
1502 
1503 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1504 		if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0) {
1505 			pcb->pcb_flags |= PCB_NPXINITDONE;
1506 			if ((pcb->pcb_flags & PCB_KERNNPX_THR) == 0)
1507 				pcb->pcb_flags &= ~PCB_KERNNPX;
1508 		} else if ((pcb->pcb_flags & PCB_KERNNPX_THR) == 0)
1509 			pcb->pcb_flags &= ~(PCB_NPXINITDONE | PCB_KERNNPX);
1510 	} else {
1511 		if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
1512 			pcb->pcb_flags |= PCB_NPXINITDONE;
1513 		else
1514 			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1515 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1516 	}
1517 	critical_exit();
1518 	return (0);
1519 }
1520 
1521 int
fpu_kern_thread(u_int flags)1522 fpu_kern_thread(u_int flags)
1523 {
1524 
1525 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1526 	    ("Only kthread may use fpu_kern_thread"));
1527 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1528 	    ("mangled pcb_save"));
1529 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1530 
1531 	curpcb->pcb_flags |= PCB_KERNNPX | PCB_KERNNPX_THR;
1532 	return (0);
1533 }
1534 
1535 int
is_fpu_kern_thread(u_int flags)1536 is_fpu_kern_thread(u_int flags)
1537 {
1538 
1539 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1540 		return (0);
1541 	return ((curpcb->pcb_flags & PCB_KERNNPX_THR) != 0);
1542 }
1543 
1544 /*
1545  * FPU save area alloc/free/init utility routines
1546  */
1547 union savefpu *
fpu_save_area_alloc(void)1548 fpu_save_area_alloc(void)
1549 {
1550 
1551 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1552 }
1553 
1554 void
fpu_save_area_free(union savefpu * fsa)1555 fpu_save_area_free(union savefpu *fsa)
1556 {
1557 
1558 	uma_zfree(fpu_save_area_zone, fsa);
1559 }
1560 
1561 void
fpu_save_area_reset(union savefpu * fsa)1562 fpu_save_area_reset(union savefpu *fsa)
1563 {
1564 
1565 	bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
1566 }
1567