1 //===-- memprof_allocator.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemProfiler, a memory profiler.
10 //
11 // Implementation of MemProf's memory allocator, which uses the allocator
12 // from sanitizer_common.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "memprof_allocator.h"
17 #include "memprof_mapping.h"
18 #include "memprof_mibmap.h"
19 #include "memprof_rawprofile.h"
20 #include "memprof_stack.h"
21 #include "memprof_thread.h"
22 #include "profile/MemProfData.inc"
23 #include "sanitizer_common/sanitizer_allocator_checks.h"
24 #include "sanitizer_common/sanitizer_allocator_interface.h"
25 #include "sanitizer_common/sanitizer_allocator_report.h"
26 #include "sanitizer_common/sanitizer_errno.h"
27 #include "sanitizer_common/sanitizer_file.h"
28 #include "sanitizer_common/sanitizer_flags.h"
29 #include "sanitizer_common/sanitizer_internal_defs.h"
30 #include "sanitizer_common/sanitizer_list.h"
31 #include "sanitizer_common/sanitizer_procmaps.h"
32 #include "sanitizer_common/sanitizer_stackdepot.h"
33 #include "sanitizer_common/sanitizer_vector.h"
34
35 #include <sched.h>
36 #include <time.h>
37
38 namespace __memprof {
39 namespace {
40 using ::llvm::memprof::MemInfoBlock;
41
Print(const MemInfoBlock & M,const u64 id,bool print_terse)42 void Print(const MemInfoBlock &M, const u64 id, bool print_terse) {
43 u64 p;
44
45 if (print_terse) {
46 p = M.TotalSize * 100 / M.AllocCount;
47 Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100,
48 M.MinSize, M.MaxSize);
49 p = M.TotalAccessCount * 100 / M.AllocCount;
50 Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount,
51 M.MaxAccessCount);
52 p = M.TotalLifetime * 100 / M.AllocCount;
53 Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime,
54 M.MaxLifetime);
55 Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps,
56 M.NumSameAllocCpu, M.NumSameDeallocCpu);
57 } else {
58 p = M.TotalSize * 100 / M.AllocCount;
59 Printf("Memory allocation stack id = %llu\n", id);
60 Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n",
61 M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize);
62 p = M.TotalAccessCount * 100 / M.AllocCount;
63 Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100,
64 p % 100, M.MinAccessCount, M.MaxAccessCount);
65 p = M.TotalLifetime * 100 / M.AllocCount;
66 Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100,
67 p % 100, M.MinLifetime, M.MaxLifetime);
68 Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc "
69 "cpu: %u, num same dealloc_cpu: %u\n",
70 M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu,
71 M.NumSameDeallocCpu);
72 }
73 }
74 } // namespace
75
GetCpuId(void)76 static int GetCpuId(void) {
77 // _memprof_preinit is called via the preinit_array, which subsequently calls
78 // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu
79 // will seg fault as the address of __vdso_getcpu will be null.
80 if (!memprof_init_done)
81 return -1;
82 return sched_getcpu();
83 }
84
85 // Compute the timestamp in ms.
GetTimestamp(void)86 static int GetTimestamp(void) {
87 // timespec_get will segfault if called from dl_init
88 if (!memprof_timestamp_inited) {
89 // By returning 0, this will be effectively treated as being
90 // timestamped at memprof init time (when memprof_init_timestamp_s
91 // is initialized).
92 return 0;
93 }
94 timespec ts;
95 clock_gettime(CLOCK_REALTIME, &ts);
96 return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000;
97 }
98
99 static MemprofAllocator &get_allocator();
100
101 // The memory chunk allocated from the underlying allocator looks like this:
102 // H H U U U U U U
103 // H -- ChunkHeader (32 bytes)
104 // U -- user memory.
105
106 // If there is left padding before the ChunkHeader (due to use of memalign),
107 // we store a magic value in the first uptr word of the memory block and
108 // store the address of ChunkHeader in the next uptr.
109 // M B L L L L L L L L L H H U U U U U U
110 // | ^
111 // ---------------------|
112 // M -- magic value kAllocBegMagic
113 // B -- address of ChunkHeader pointing to the first 'H'
114
115 constexpr uptr kMaxAllowedMallocBits = 40;
116
117 // Should be no more than 32-bytes
118 struct ChunkHeader {
119 // 1-st 4 bytes.
120 u32 alloc_context_id;
121 // 2-nd 4 bytes
122 u32 cpu_id;
123 // 3-rd 4 bytes
124 u32 timestamp_ms;
125 // 4-th 4 bytes
126 // Note only 1 bit is needed for this flag if we need space in the future for
127 // more fields.
128 u32 from_memalign;
129 // 5-th and 6-th 4 bytes
130 // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this
131 // could be shrunk to kMaxAllowedMallocBits if we need space in the future for
132 // more fields.
133 atomic_uint64_t user_requested_size;
134 // 23 bits available
135 // 7-th and 8-th 4 bytes
136 u64 data_type_id; // TODO: hash of type name
137 };
138
139 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
140 COMPILER_CHECK(kChunkHeaderSize == 32);
141
142 struct MemprofChunk : ChunkHeader {
Beg__memprof::MemprofChunk143 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
UsedSize__memprof::MemprofChunk144 uptr UsedSize() {
145 return atomic_load(&user_requested_size, memory_order_relaxed);
146 }
AllocBeg__memprof::MemprofChunk147 void *AllocBeg() {
148 if (from_memalign)
149 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
150 return reinterpret_cast<void *>(this);
151 }
152 };
153
154 class LargeChunkHeader {
155 static constexpr uptr kAllocBegMagic =
156 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
157 atomic_uintptr_t magic;
158 MemprofChunk *chunk_header;
159
160 public:
Get() const161 MemprofChunk *Get() const {
162 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
163 ? chunk_header
164 : nullptr;
165 }
166
Set(MemprofChunk * p)167 void Set(MemprofChunk *p) {
168 if (p) {
169 chunk_header = p;
170 atomic_store(&magic, kAllocBegMagic, memory_order_release);
171 return;
172 }
173
174 uptr old = kAllocBegMagic;
175 if (!atomic_compare_exchange_strong(&magic, &old, 0,
176 memory_order_release)) {
177 CHECK_EQ(old, kAllocBegMagic);
178 }
179 }
180 };
181
FlushUnneededMemProfShadowMemory(uptr p,uptr size)182 void FlushUnneededMemProfShadowMemory(uptr p, uptr size) {
183 // Since memprof's mapping is compacting, the shadow chunk may be
184 // not page-aligned, so we only flush the page-aligned portion.
185 ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size));
186 }
187
OnMap(uptr p,uptr size) const188 void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const {
189 // Statistics.
190 MemprofStats &thread_stats = GetCurrentThreadStats();
191 thread_stats.mmaps++;
192 thread_stats.mmaped += size;
193 }
OnUnmap(uptr p,uptr size) const194 void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
195 // We are about to unmap a chunk of user memory.
196 // Mark the corresponding shadow memory as not needed.
197 FlushUnneededMemProfShadowMemory(p, size);
198 // Statistics.
199 MemprofStats &thread_stats = GetCurrentThreadStats();
200 thread_stats.munmaps++;
201 thread_stats.munmaped += size;
202 }
203
GetAllocatorCache(MemprofThreadLocalMallocStorage * ms)204 AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) {
205 CHECK(ms);
206 return &ms->allocator_cache;
207 }
208
209 // Accumulates the access count from the shadow for the given pointer and size.
GetShadowCount(uptr p,u32 size)210 u64 GetShadowCount(uptr p, u32 size) {
211 u64 *shadow = (u64 *)MEM_TO_SHADOW(p);
212 u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size);
213 u64 count = 0;
214 for (; shadow <= shadow_end; shadow++)
215 count += *shadow;
216 return count;
217 }
218
219 // Clears the shadow counters (when memory is allocated).
ClearShadow(uptr addr,uptr size)220 void ClearShadow(uptr addr, uptr size) {
221 CHECK(AddrIsAlignedByGranularity(addr));
222 CHECK(AddrIsInMem(addr));
223 CHECK(AddrIsAlignedByGranularity(addr + size));
224 CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY));
225 CHECK(REAL(memset));
226 uptr shadow_beg = MEM_TO_SHADOW(addr);
227 uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1;
228 if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) {
229 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
230 } else {
231 uptr page_size = GetPageSizeCached();
232 uptr page_beg = RoundUpTo(shadow_beg, page_size);
233 uptr page_end = RoundDownTo(shadow_end, page_size);
234
235 if (page_beg >= page_end) {
236 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
237 } else {
238 if (page_beg != shadow_beg) {
239 REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg);
240 }
241 if (page_end != shadow_end) {
242 REAL(memset)((void *)page_end, 0, shadow_end - page_end);
243 }
244 ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr);
245 }
246 }
247 }
248
249 struct Allocator {
250 static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits;
251
252 MemprofAllocator allocator;
253 StaticSpinMutex fallback_mutex;
254 AllocatorCache fallback_allocator_cache;
255
256 uptr max_user_defined_malloc_size;
257
258 // Holds the mapping of stack ids to MemInfoBlocks.
259 MIBMapTy MIBMap;
260
261 atomic_uint8_t destructing;
262 atomic_uint8_t constructed;
263 bool print_text;
264
265 // ------------------- Initialization ------------------------
Allocator__memprof::Allocator266 explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) {
267 atomic_store_relaxed(&destructing, 0);
268 atomic_store_relaxed(&constructed, 1);
269 }
270
~Allocator__memprof::Allocator271 ~Allocator() {
272 atomic_store_relaxed(&destructing, 1);
273 FinishAndWrite();
274 }
275
PrintCallback__memprof::Allocator276 static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value,
277 void *Arg) {
278 SpinMutexLock(&Value->mutex);
279 Print(Value->mib, Key, bool(Arg));
280 }
281
FinishAndWrite__memprof::Allocator282 void FinishAndWrite() {
283 if (print_text && common_flags()->print_module_map)
284 DumpProcessMap();
285
286 allocator.ForceLock();
287
288 InsertLiveBlocks();
289 if (print_text) {
290 if (!flags()->print_terse)
291 Printf("Recorded MIBs (incl. live on exit):\n");
292 MIBMap.ForEach(PrintCallback,
293 reinterpret_cast<void *>(flags()->print_terse));
294 StackDepotPrintAll();
295 } else {
296 // Serialize the contents to a raw profile. Format documented in
297 // memprof_rawprofile.h.
298 char *Buffer = nullptr;
299
300 MemoryMappingLayout Layout(/*cache_enabled=*/true);
301 u64 BytesSerialized = SerializeToRawProfile(MIBMap, Layout, Buffer);
302 CHECK(Buffer && BytesSerialized && "could not serialize to buffer");
303 report_file.Write(Buffer, BytesSerialized);
304 }
305
306 allocator.ForceUnlock();
307 }
308
309 // Inserts any blocks which have been allocated but not yet deallocated.
InsertLiveBlocks__memprof::Allocator310 void InsertLiveBlocks() {
311 allocator.ForEachChunk(
312 [](uptr chunk, void *alloc) {
313 u64 user_requested_size;
314 Allocator *A = (Allocator *)alloc;
315 MemprofChunk *m =
316 A->GetMemprofChunk((void *)chunk, user_requested_size);
317 if (!m)
318 return;
319 uptr user_beg = ((uptr)m) + kChunkHeaderSize;
320 u64 c = GetShadowCount(user_beg, user_requested_size);
321 long curtime = GetTimestamp();
322 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
323 m->cpu_id, GetCpuId());
324 InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap);
325 },
326 this);
327 }
328
InitLinkerInitialized__memprof::Allocator329 void InitLinkerInitialized() {
330 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
331 allocator.InitLinkerInitialized(
332 common_flags()->allocator_release_to_os_interval_ms);
333 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
334 ? common_flags()->max_allocation_size_mb
335 << 20
336 : kMaxAllowedMallocSize;
337 }
338
339 // -------------------- Allocation/Deallocation routines ---------------
Allocate__memprof::Allocator340 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
341 AllocType alloc_type) {
342 if (UNLIKELY(!memprof_inited))
343 MemprofInitFromRtl();
344 if (UNLIKELY(IsRssLimitExceeded())) {
345 if (AllocatorMayReturnNull())
346 return nullptr;
347 ReportRssLimitExceeded(stack);
348 }
349 CHECK(stack);
350 const uptr min_alignment = MEMPROF_ALIGNMENT;
351 if (alignment < min_alignment)
352 alignment = min_alignment;
353 if (size == 0) {
354 // We'd be happy to avoid allocating memory for zero-size requests, but
355 // some programs/tests depend on this behavior and assume that malloc
356 // would not return NULL even for zero-size allocations. Moreover, it
357 // looks like operator new should never return NULL, and results of
358 // consecutive "new" calls must be different even if the allocated size
359 // is zero.
360 size = 1;
361 }
362 CHECK(IsPowerOfTwo(alignment));
363 uptr rounded_size = RoundUpTo(size, alignment);
364 uptr needed_size = rounded_size + kChunkHeaderSize;
365 if (alignment > min_alignment)
366 needed_size += alignment;
367 CHECK(IsAligned(needed_size, min_alignment));
368 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
369 size > max_user_defined_malloc_size) {
370 if (AllocatorMayReturnNull()) {
371 Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size);
372 return nullptr;
373 }
374 uptr malloc_limit =
375 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
376 ReportAllocationSizeTooBig(size, malloc_limit, stack);
377 }
378
379 MemprofThread *t = GetCurrentThread();
380 void *allocated;
381 if (t) {
382 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
383 allocated = allocator.Allocate(cache, needed_size, 8);
384 } else {
385 SpinMutexLock l(&fallback_mutex);
386 AllocatorCache *cache = &fallback_allocator_cache;
387 allocated = allocator.Allocate(cache, needed_size, 8);
388 }
389 if (UNLIKELY(!allocated)) {
390 SetAllocatorOutOfMemory();
391 if (AllocatorMayReturnNull())
392 return nullptr;
393 ReportOutOfMemory(size, stack);
394 }
395
396 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
397 uptr alloc_end = alloc_beg + needed_size;
398 uptr beg_plus_header = alloc_beg + kChunkHeaderSize;
399 uptr user_beg = beg_plus_header;
400 if (!IsAligned(user_beg, alignment))
401 user_beg = RoundUpTo(user_beg, alignment);
402 uptr user_end = user_beg + size;
403 CHECK_LE(user_end, alloc_end);
404 uptr chunk_beg = user_beg - kChunkHeaderSize;
405 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
406 m->from_memalign = alloc_beg != chunk_beg;
407 CHECK(size);
408
409 m->cpu_id = GetCpuId();
410 m->timestamp_ms = GetTimestamp();
411 m->alloc_context_id = StackDepotPut(*stack);
412
413 uptr size_rounded_down_to_granularity =
414 RoundDownTo(size, SHADOW_GRANULARITY);
415 if (size_rounded_down_to_granularity)
416 ClearShadow(user_beg, size_rounded_down_to_granularity);
417
418 MemprofStats &thread_stats = GetCurrentThreadStats();
419 thread_stats.mallocs++;
420 thread_stats.malloced += size;
421 thread_stats.malloced_overhead += needed_size - size;
422 if (needed_size > SizeClassMap::kMaxSize)
423 thread_stats.malloc_large++;
424 else
425 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
426
427 void *res = reinterpret_cast<void *>(user_beg);
428 atomic_store(&m->user_requested_size, size, memory_order_release);
429 if (alloc_beg != chunk_beg) {
430 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
431 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
432 }
433 RunMallocHooks(res, size);
434 return res;
435 }
436
Deallocate__memprof::Allocator437 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
438 BufferedStackTrace *stack, AllocType alloc_type) {
439 uptr p = reinterpret_cast<uptr>(ptr);
440 if (p == 0)
441 return;
442
443 RunFreeHooks(ptr);
444
445 uptr chunk_beg = p - kChunkHeaderSize;
446 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
447
448 u64 user_requested_size =
449 atomic_exchange(&m->user_requested_size, 0, memory_order_acquire);
450 if (memprof_inited && memprof_init_done &&
451 atomic_load_relaxed(&constructed) &&
452 !atomic_load_relaxed(&destructing)) {
453 u64 c = GetShadowCount(p, user_requested_size);
454 long curtime = GetTimestamp();
455
456 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
457 m->cpu_id, GetCpuId());
458 InsertOrMerge(m->alloc_context_id, newMIB, MIBMap);
459 }
460
461 MemprofStats &thread_stats = GetCurrentThreadStats();
462 thread_stats.frees++;
463 thread_stats.freed += user_requested_size;
464
465 void *alloc_beg = m->AllocBeg();
466 if (alloc_beg != m) {
467 // Clear the magic value, as allocator internals may overwrite the
468 // contents of deallocated chunk, confusing GetMemprofChunk lookup.
469 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr);
470 }
471
472 MemprofThread *t = GetCurrentThread();
473 if (t) {
474 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
475 allocator.Deallocate(cache, alloc_beg);
476 } else {
477 SpinMutexLock l(&fallback_mutex);
478 AllocatorCache *cache = &fallback_allocator_cache;
479 allocator.Deallocate(cache, alloc_beg);
480 }
481 }
482
Reallocate__memprof::Allocator483 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
484 CHECK(old_ptr && new_size);
485 uptr p = reinterpret_cast<uptr>(old_ptr);
486 uptr chunk_beg = p - kChunkHeaderSize;
487 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
488
489 MemprofStats &thread_stats = GetCurrentThreadStats();
490 thread_stats.reallocs++;
491 thread_stats.realloced += new_size;
492
493 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
494 if (new_ptr) {
495 CHECK_NE(REAL(memcpy), nullptr);
496 uptr memcpy_size = Min(new_size, m->UsedSize());
497 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
498 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
499 }
500 return new_ptr;
501 }
502
Calloc__memprof::Allocator503 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
504 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
505 if (AllocatorMayReturnNull())
506 return nullptr;
507 ReportCallocOverflow(nmemb, size, stack);
508 }
509 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
510 // If the memory comes from the secondary allocator no need to clear it
511 // as it comes directly from mmap.
512 if (ptr && allocator.FromPrimary(ptr))
513 REAL(memset)(ptr, 0, nmemb * size);
514 return ptr;
515 }
516
CommitBack__memprof::Allocator517 void CommitBack(MemprofThreadLocalMallocStorage *ms,
518 BufferedStackTrace *stack) {
519 AllocatorCache *ac = GetAllocatorCache(ms);
520 allocator.SwallowCache(ac);
521 }
522
523 // -------------------------- Chunk lookup ----------------------
524
525 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
GetMemprofChunk__memprof::Allocator526 MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) {
527 if (!alloc_beg)
528 return nullptr;
529 MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
530 if (!p) {
531 if (!allocator.FromPrimary(alloc_beg))
532 return nullptr;
533 p = reinterpret_cast<MemprofChunk *>(alloc_beg);
534 }
535 // The size is reset to 0 on deallocation (and a min of 1 on
536 // allocation).
537 user_requested_size =
538 atomic_load(&p->user_requested_size, memory_order_acquire);
539 if (user_requested_size)
540 return p;
541 return nullptr;
542 }
543
GetMemprofChunkByAddr__memprof::Allocator544 MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) {
545 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
546 return GetMemprofChunk(alloc_beg, user_requested_size);
547 }
548
AllocationSize__memprof::Allocator549 uptr AllocationSize(uptr p) {
550 u64 user_requested_size;
551 MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size);
552 if (!m)
553 return 0;
554 if (m->Beg() != p)
555 return 0;
556 return user_requested_size;
557 }
558
Purge__memprof::Allocator559 void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); }
560
PrintStats__memprof::Allocator561 void PrintStats() { allocator.PrintStats(); }
562
ForceLock__memprof::Allocator563 void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
564 allocator.ForceLock();
565 fallback_mutex.Lock();
566 }
567
ForceUnlock__memprof::Allocator568 void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
569 fallback_mutex.Unlock();
570 allocator.ForceUnlock();
571 }
572 };
573
574 static Allocator instance(LINKER_INITIALIZED);
575
get_allocator()576 static MemprofAllocator &get_allocator() { return instance.allocator; }
577
InitializeAllocator()578 void InitializeAllocator() { instance.InitLinkerInitialized(); }
579
CommitBack()580 void MemprofThreadLocalMallocStorage::CommitBack() {
581 GET_STACK_TRACE_MALLOC;
582 instance.CommitBack(this, &stack);
583 }
584
PrintInternalAllocatorStats()585 void PrintInternalAllocatorStats() { instance.PrintStats(); }
586
memprof_free(void * ptr,BufferedStackTrace * stack,AllocType alloc_type)587 void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
588 instance.Deallocate(ptr, 0, 0, stack, alloc_type);
589 }
590
memprof_delete(void * ptr,uptr size,uptr alignment,BufferedStackTrace * stack,AllocType alloc_type)591 void memprof_delete(void *ptr, uptr size, uptr alignment,
592 BufferedStackTrace *stack, AllocType alloc_type) {
593 instance.Deallocate(ptr, size, alignment, stack, alloc_type);
594 }
595
memprof_malloc(uptr size,BufferedStackTrace * stack)596 void *memprof_malloc(uptr size, BufferedStackTrace *stack) {
597 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
598 }
599
memprof_calloc(uptr nmemb,uptr size,BufferedStackTrace * stack)600 void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
601 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
602 }
603
memprof_reallocarray(void * p,uptr nmemb,uptr size,BufferedStackTrace * stack)604 void *memprof_reallocarray(void *p, uptr nmemb, uptr size,
605 BufferedStackTrace *stack) {
606 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
607 errno = errno_ENOMEM;
608 if (AllocatorMayReturnNull())
609 return nullptr;
610 ReportReallocArrayOverflow(nmemb, size, stack);
611 }
612 return memprof_realloc(p, nmemb * size, stack);
613 }
614
memprof_realloc(void * p,uptr size,BufferedStackTrace * stack)615 void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) {
616 if (!p)
617 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
618 if (size == 0) {
619 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
620 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
621 return nullptr;
622 }
623 // Allocate a size of 1 if we shouldn't free() on Realloc to 0
624 size = 1;
625 }
626 return SetErrnoOnNull(instance.Reallocate(p, size, stack));
627 }
628
memprof_valloc(uptr size,BufferedStackTrace * stack)629 void *memprof_valloc(uptr size, BufferedStackTrace *stack) {
630 return SetErrnoOnNull(
631 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC));
632 }
633
memprof_pvalloc(uptr size,BufferedStackTrace * stack)634 void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) {
635 uptr PageSize = GetPageSizeCached();
636 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
637 errno = errno_ENOMEM;
638 if (AllocatorMayReturnNull())
639 return nullptr;
640 ReportPvallocOverflow(size, stack);
641 }
642 // pvalloc(0) should allocate one page.
643 size = size ? RoundUpTo(size, PageSize) : PageSize;
644 return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC));
645 }
646
memprof_memalign(uptr alignment,uptr size,BufferedStackTrace * stack,AllocType alloc_type)647 void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
648 AllocType alloc_type) {
649 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
650 errno = errno_EINVAL;
651 if (AllocatorMayReturnNull())
652 return nullptr;
653 ReportInvalidAllocationAlignment(alignment, stack);
654 }
655 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type));
656 }
657
memprof_aligned_alloc(uptr alignment,uptr size,BufferedStackTrace * stack)658 void *memprof_aligned_alloc(uptr alignment, uptr size,
659 BufferedStackTrace *stack) {
660 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
661 errno = errno_EINVAL;
662 if (AllocatorMayReturnNull())
663 return nullptr;
664 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
665 }
666 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC));
667 }
668
memprof_posix_memalign(void ** memptr,uptr alignment,uptr size,BufferedStackTrace * stack)669 int memprof_posix_memalign(void **memptr, uptr alignment, uptr size,
670 BufferedStackTrace *stack) {
671 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
672 if (AllocatorMayReturnNull())
673 return errno_EINVAL;
674 ReportInvalidPosixMemalignAlignment(alignment, stack);
675 }
676 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC);
677 if (UNLIKELY(!ptr))
678 // OOM error is already taken care of by Allocate.
679 return errno_ENOMEM;
680 CHECK(IsAligned((uptr)ptr, alignment));
681 *memptr = ptr;
682 return 0;
683 }
684
memprof_malloc_usable_size(const void * ptr,uptr pc,uptr bp)685 uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
686 if (!ptr)
687 return 0;
688 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
689 return usable_size;
690 }
691
692 } // namespace __memprof
693
694 // ---------------------- Interface ---------------- {{{1
695 using namespace __memprof;
696
__sanitizer_get_estimated_allocated_size(uptr size)697 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
698
__sanitizer_get_ownership(const void * p)699 int __sanitizer_get_ownership(const void *p) {
700 return memprof_malloc_usable_size(p, 0, 0) != 0;
701 }
702
__sanitizer_get_allocated_size(const void * p)703 uptr __sanitizer_get_allocated_size(const void *p) {
704 return memprof_malloc_usable_size(p, 0, 0);
705 }
706
__memprof_profile_dump()707 int __memprof_profile_dump() {
708 instance.FinishAndWrite();
709 // In the future we may want to return non-zero if there are any errors
710 // detected during the dumping process.
711 return 0;
712 }
713