1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/IR/LLVMContext.h"
17 #include "llvm/ProfileData/InstrProfReader.h"
18 #include "llvm/ProfileData/InstrProfWriter.h"
19 #include "llvm/ProfileData/ProfileCommon.h"
20 #include "llvm/ProfileData/SampleProfReader.h"
21 #include "llvm/ProfileData/SampleProfWriter.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Discriminator.h"
24 #include "llvm/Support/Errc.h"
25 #include "llvm/Support/FileSystem.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/FormattedStream.h"
28 #include "llvm/Support/InitLLVM.h"
29 #include "llvm/Support/MemoryBuffer.h"
30 #include "llvm/Support/Path.h"
31 #include "llvm/Support/ThreadPool.h"
32 #include "llvm/Support/Threading.h"
33 #include "llvm/Support/WithColor.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36
37 using namespace llvm;
38
39 enum ProfileFormat {
40 PF_None = 0,
41 PF_Text,
42 PF_Compact_Binary,
43 PF_Ext_Binary,
44 PF_GCC,
45 PF_Binary
46 };
47
warn(Twine Message,std::string Whence="",std::string Hint="")48 static void warn(Twine Message, std::string Whence = "",
49 std::string Hint = "") {
50 WithColor::warning();
51 if (!Whence.empty())
52 errs() << Whence << ": ";
53 errs() << Message << "\n";
54 if (!Hint.empty())
55 WithColor::note() << Hint << "\n";
56 }
57
warn(Error E,StringRef Whence="")58 static void warn(Error E, StringRef Whence = "") {
59 if (E.isA<InstrProfError>()) {
60 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
61 warn(IPE.message(), std::string(Whence), std::string(""));
62 });
63 }
64 }
65
exitWithError(Twine Message,std::string Whence="",std::string Hint="")66 static void exitWithError(Twine Message, std::string Whence = "",
67 std::string Hint = "") {
68 WithColor::error();
69 if (!Whence.empty())
70 errs() << Whence << ": ";
71 errs() << Message << "\n";
72 if (!Hint.empty())
73 WithColor::note() << Hint << "\n";
74 ::exit(1);
75 }
76
exitWithError(Error E,StringRef Whence="")77 static void exitWithError(Error E, StringRef Whence = "") {
78 if (E.isA<InstrProfError>()) {
79 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
80 instrprof_error instrError = IPE.get();
81 StringRef Hint = "";
82 if (instrError == instrprof_error::unrecognized_format) {
83 // Hint for common error of forgetting --sample for sample profiles.
84 Hint = "Perhaps you forgot to use the --sample option?";
85 }
86 exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
87 });
88 }
89
90 exitWithError(toString(std::move(E)), std::string(Whence));
91 }
92
exitWithErrorCode(std::error_code EC,StringRef Whence="")93 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
94 exitWithError(EC.message(), std::string(Whence));
95 }
96
97 namespace {
98 enum ProfileKinds { instr, sample };
99 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
100 }
101
warnOrExitGivenError(FailureMode FailMode,std::error_code EC,StringRef Whence="")102 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
103 StringRef Whence = "") {
104 if (FailMode == failIfAnyAreInvalid)
105 exitWithErrorCode(EC, Whence);
106 else
107 warn(EC.message(), std::string(Whence));
108 }
109
handleMergeWriterError(Error E,StringRef WhenceFile="",StringRef WhenceFunction="",bool ShowHint=true)110 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
111 StringRef WhenceFunction = "",
112 bool ShowHint = true) {
113 if (!WhenceFile.empty())
114 errs() << WhenceFile << ": ";
115 if (!WhenceFunction.empty())
116 errs() << WhenceFunction << ": ";
117
118 auto IPE = instrprof_error::success;
119 E = handleErrors(std::move(E),
120 [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
121 IPE = E->get();
122 return Error(std::move(E));
123 });
124 errs() << toString(std::move(E)) << "\n";
125
126 if (ShowHint) {
127 StringRef Hint = "";
128 if (IPE != instrprof_error::success) {
129 switch (IPE) {
130 case instrprof_error::hash_mismatch:
131 case instrprof_error::count_mismatch:
132 case instrprof_error::value_site_count_mismatch:
133 Hint = "Make sure that all profile data to be merged is generated "
134 "from the same binary.";
135 break;
136 default:
137 break;
138 }
139 }
140
141 if (!Hint.empty())
142 errs() << Hint << "\n";
143 }
144 }
145
146 namespace {
147 /// A remapper from original symbol names to new symbol names based on a file
148 /// containing a list of mappings from old name to new name.
149 class SymbolRemapper {
150 std::unique_ptr<MemoryBuffer> File;
151 DenseMap<StringRef, StringRef> RemappingTable;
152
153 public:
154 /// Build a SymbolRemapper from a file containing a list of old/new symbols.
create(StringRef InputFile)155 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
156 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
157 if (!BufOrError)
158 exitWithErrorCode(BufOrError.getError(), InputFile);
159
160 auto Remapper = std::make_unique<SymbolRemapper>();
161 Remapper->File = std::move(BufOrError.get());
162
163 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
164 !LineIt.is_at_eof(); ++LineIt) {
165 std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
166 if (Parts.first.empty() || Parts.second.empty() ||
167 Parts.second.count(' ')) {
168 exitWithError("unexpected line in remapping file",
169 (InputFile + ":" + Twine(LineIt.line_number())).str(),
170 "expected 'old_symbol new_symbol'");
171 }
172 Remapper->RemappingTable.insert(Parts);
173 }
174 return Remapper;
175 }
176
177 /// Attempt to map the given old symbol into a new symbol.
178 ///
179 /// \return The new symbol, or \p Name if no such symbol was found.
operator ()(StringRef Name)180 StringRef operator()(StringRef Name) {
181 StringRef New = RemappingTable.lookup(Name);
182 return New.empty() ? Name : New;
183 }
184 };
185 }
186
187 struct WeightedFile {
188 std::string Filename;
189 uint64_t Weight;
190 };
191 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
192
193 /// Keep track of merged data and reported errors.
194 struct WriterContext {
195 std::mutex Lock;
196 InstrProfWriter Writer;
197 std::vector<std::pair<Error, std::string>> Errors;
198 std::mutex &ErrLock;
199 SmallSet<instrprof_error, 4> &WriterErrorCodes;
200
WriterContextWriterContext201 WriterContext(bool IsSparse, std::mutex &ErrLock,
202 SmallSet<instrprof_error, 4> &WriterErrorCodes)
203 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock),
204 WriterErrorCodes(WriterErrorCodes) {}
205 };
206
207 /// Computer the overlap b/w profile BaseFilename and TestFileName,
208 /// and store the program level result to Overlap.
overlapInput(const std::string & BaseFilename,const std::string & TestFilename,WriterContext * WC,OverlapStats & Overlap,const OverlapFuncFilters & FuncFilter,raw_fd_ostream & OS,bool IsCS)209 static void overlapInput(const std::string &BaseFilename,
210 const std::string &TestFilename, WriterContext *WC,
211 OverlapStats &Overlap,
212 const OverlapFuncFilters &FuncFilter,
213 raw_fd_ostream &OS, bool IsCS) {
214 auto ReaderOrErr = InstrProfReader::create(TestFilename);
215 if (Error E = ReaderOrErr.takeError()) {
216 // Skip the empty profiles by returning sliently.
217 instrprof_error IPE = InstrProfError::take(std::move(E));
218 if (IPE != instrprof_error::empty_raw_profile)
219 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
220 return;
221 }
222
223 auto Reader = std::move(ReaderOrErr.get());
224 for (auto &I : *Reader) {
225 OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
226 FuncOverlap.setFuncInfo(I.Name, I.Hash);
227
228 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
229 FuncOverlap.dump(OS);
230 }
231 }
232
233 /// Load an input into a writer context.
loadInput(const WeightedFile & Input,SymbolRemapper * Remapper,WriterContext * WC)234 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
235 WriterContext *WC) {
236 std::unique_lock<std::mutex> CtxGuard{WC->Lock};
237
238 // Copy the filename, because llvm::ThreadPool copied the input "const
239 // WeightedFile &" by value, making a reference to the filename within it
240 // invalid outside of this packaged task.
241 std::string Filename = Input.Filename;
242
243 auto ReaderOrErr = InstrProfReader::create(Input.Filename);
244 if (Error E = ReaderOrErr.takeError()) {
245 // Skip the empty profiles by returning sliently.
246 instrprof_error IPE = InstrProfError::take(std::move(E));
247 if (IPE != instrprof_error::empty_raw_profile)
248 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
249 return;
250 }
251
252 auto Reader = std::move(ReaderOrErr.get());
253 bool IsIRProfile = Reader->isIRLevelProfile();
254 bool HasCSIRProfile = Reader->hasCSIRLevelProfile();
255 if (Error E = WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) {
256 consumeError(std::move(E));
257 WC->Errors.emplace_back(
258 make_error<StringError>(
259 "Merge IR generated profile with Clang generated profile.",
260 std::error_code()),
261 Filename);
262 return;
263 }
264 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled());
265
266 for (auto &I : *Reader) {
267 if (Remapper)
268 I.Name = (*Remapper)(I.Name);
269 const StringRef FuncName = I.Name;
270 bool Reported = false;
271 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
272 if (Reported) {
273 consumeError(std::move(E));
274 return;
275 }
276 Reported = true;
277 // Only show hint the first time an error occurs.
278 instrprof_error IPE = InstrProfError::take(std::move(E));
279 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
280 bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
281 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
282 FuncName, firstTime);
283 });
284 }
285 if (Reader->hasError())
286 if (Error E = Reader->getError())
287 WC->Errors.emplace_back(std::move(E), Filename);
288 }
289
290 /// Merge the \p Src writer context into \p Dst.
mergeWriterContexts(WriterContext * Dst,WriterContext * Src)291 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
292 for (auto &ErrorPair : Src->Errors)
293 Dst->Errors.push_back(std::move(ErrorPair));
294 Src->Errors.clear();
295
296 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
297 instrprof_error IPE = InstrProfError::take(std::move(E));
298 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
299 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
300 if (firstTime)
301 warn(toString(make_error<InstrProfError>(IPE)));
302 });
303 }
304
writeInstrProfile(StringRef OutputFilename,ProfileFormat OutputFormat,InstrProfWriter & Writer)305 static void writeInstrProfile(StringRef OutputFilename,
306 ProfileFormat OutputFormat,
307 InstrProfWriter &Writer) {
308 std::error_code EC;
309 raw_fd_ostream Output(OutputFilename.data(), EC,
310 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
311 : sys::fs::OF_None);
312 if (EC)
313 exitWithErrorCode(EC, OutputFilename);
314
315 if (OutputFormat == PF_Text) {
316 if (Error E = Writer.writeText(Output))
317 warn(std::move(E));
318 } else {
319 if (Output.is_displayed())
320 exitWithError("cannot write a non-text format profile to the terminal");
321 if (Error E = Writer.write(Output))
322 warn(std::move(E));
323 }
324 }
325
mergeInstrProfile(const WeightedFileVector & Inputs,SymbolRemapper * Remapper,StringRef OutputFilename,ProfileFormat OutputFormat,bool OutputSparse,unsigned NumThreads,FailureMode FailMode)326 static void mergeInstrProfile(const WeightedFileVector &Inputs,
327 SymbolRemapper *Remapper,
328 StringRef OutputFilename,
329 ProfileFormat OutputFormat, bool OutputSparse,
330 unsigned NumThreads, FailureMode FailMode) {
331 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
332 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
333 exitWithError("unknown format is specified");
334
335 std::mutex ErrorLock;
336 SmallSet<instrprof_error, 4> WriterErrorCodes;
337
338 // If NumThreads is not specified, auto-detect a good default.
339 if (NumThreads == 0)
340 NumThreads = std::min(hardware_concurrency().compute_thread_count(),
341 unsigned((Inputs.size() + 1) / 2));
342 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails
343 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't
344 // merged, thus the emitted file ends up with a PF_Unknown kind.
345
346 // Initialize the writer contexts.
347 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
348 for (unsigned I = 0; I < NumThreads; ++I)
349 Contexts.emplace_back(std::make_unique<WriterContext>(
350 OutputSparse, ErrorLock, WriterErrorCodes));
351
352 if (NumThreads == 1) {
353 for (const auto &Input : Inputs)
354 loadInput(Input, Remapper, Contexts[0].get());
355 } else {
356 ThreadPool Pool(hardware_concurrency(NumThreads));
357
358 // Load the inputs in parallel (N/NumThreads serial steps).
359 unsigned Ctx = 0;
360 for (const auto &Input : Inputs) {
361 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get());
362 Ctx = (Ctx + 1) % NumThreads;
363 }
364 Pool.wait();
365
366 // Merge the writer contexts together (~ lg(NumThreads) serial steps).
367 unsigned Mid = Contexts.size() / 2;
368 unsigned End = Contexts.size();
369 assert(Mid > 0 && "Expected more than one context");
370 do {
371 for (unsigned I = 0; I < Mid; ++I)
372 Pool.async(mergeWriterContexts, Contexts[I].get(),
373 Contexts[I + Mid].get());
374 Pool.wait();
375 if (End & 1) {
376 Pool.async(mergeWriterContexts, Contexts[0].get(),
377 Contexts[End - 1].get());
378 Pool.wait();
379 }
380 End = Mid;
381 Mid /= 2;
382 } while (Mid > 0);
383 }
384
385 // Handle deferred errors encountered during merging. If the number of errors
386 // is equal to the number of inputs the merge failed.
387 unsigned NumErrors = 0;
388 for (std::unique_ptr<WriterContext> &WC : Contexts) {
389 for (auto &ErrorPair : WC->Errors) {
390 ++NumErrors;
391 warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
392 }
393 }
394 if (NumErrors == Inputs.size() ||
395 (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
396 exitWithError("no profile can be merged");
397
398 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
399 }
400
401 /// The profile entry for a function in instrumentation profile.
402 struct InstrProfileEntry {
403 uint64_t MaxCount = 0;
404 float ZeroCounterRatio = 0.0;
405 InstrProfRecord *ProfRecord;
406 InstrProfileEntry(InstrProfRecord *Record);
407 InstrProfileEntry() = default;
408 };
409
InstrProfileEntry(InstrProfRecord * Record)410 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
411 ProfRecord = Record;
412 uint64_t CntNum = Record->Counts.size();
413 uint64_t ZeroCntNum = 0;
414 for (size_t I = 0; I < CntNum; ++I) {
415 MaxCount = std::max(MaxCount, Record->Counts[I]);
416 ZeroCntNum += !Record->Counts[I];
417 }
418 ZeroCounterRatio = (float)ZeroCntNum / CntNum;
419 }
420
421 /// Either set all the counters in the instr profile entry \p IFE to -1
422 /// in order to drop the profile or scale up the counters in \p IFP to
423 /// be above hot threshold. We use the ratio of zero counters in the
424 /// profile of a function to decide the profile is helpful or harmful
425 /// for performance, and to choose whether to scale up or drop it.
updateInstrProfileEntry(InstrProfileEntry & IFE,uint64_t HotInstrThreshold,float ZeroCounterThreshold)426 static void updateInstrProfileEntry(InstrProfileEntry &IFE,
427 uint64_t HotInstrThreshold,
428 float ZeroCounterThreshold) {
429 InstrProfRecord *ProfRecord = IFE.ProfRecord;
430 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
431 // If all or most of the counters of the function are zero, the
432 // profile is unaccountable and shuld be dropped. Reset all the
433 // counters to be -1 and PGO profile-use will drop the profile.
434 // All counters being -1 also implies that the function is hot so
435 // PGO profile-use will also set the entry count metadata to be
436 // above hot threshold.
437 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I)
438 ProfRecord->Counts[I] = -1;
439 return;
440 }
441
442 // Scale up the MaxCount to be multiple times above hot threshold.
443 const unsigned MultiplyFactor = 3;
444 uint64_t Numerator = HotInstrThreshold * MultiplyFactor;
445 uint64_t Denominator = IFE.MaxCount;
446 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
447 warn(toString(make_error<InstrProfError>(E)));
448 });
449 }
450
451 const uint64_t ColdPercentileIdx = 15;
452 const uint64_t HotPercentileIdx = 11;
453
454 using sampleprof::FSDiscriminatorPass;
455
456 // Internal options to set FSDiscriminatorPass. Used in merge and show
457 // commands.
458 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
459 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
460 cl::desc("Zero out the discriminator bits for the FS discrimiantor "
461 "pass beyond this value. The enum values are defined in "
462 "Support/Discriminator.h"),
463 cl::values(clEnumVal(Base, "Use base discriminators only"),
464 clEnumVal(Pass1, "Use base and pass 1 discriminators"),
465 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
466 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
467 clEnumVal(PassLast, "Use all discriminator bits (default)")));
468
getDiscriminatorMask()469 static unsigned getDiscriminatorMask() {
470 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
471 }
472
473 /// Adjust the instr profile in \p WC based on the sample profile in
474 /// \p Reader.
475 static void
adjustInstrProfile(std::unique_ptr<WriterContext> & WC,std::unique_ptr<sampleprof::SampleProfileReader> & Reader,unsigned SupplMinSizeThreshold,float ZeroCounterThreshold,unsigned InstrProfColdThreshold)476 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
477 std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
478 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
479 unsigned InstrProfColdThreshold) {
480 // Function to its entry in instr profile.
481 StringMap<InstrProfileEntry> InstrProfileMap;
482 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
483 for (auto &PD : WC->Writer.getProfileData()) {
484 // Populate IPBuilder.
485 for (const auto &PDV : PD.getValue()) {
486 InstrProfRecord Record = PDV.second;
487 IPBuilder.addRecord(Record);
488 }
489
490 // If a function has multiple entries in instr profile, skip it.
491 if (PD.getValue().size() != 1)
492 continue;
493
494 // Initialize InstrProfileMap.
495 InstrProfRecord *R = &PD.getValue().begin()->second;
496 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R);
497 }
498
499 ProfileSummary InstrPS = *IPBuilder.getSummary();
500 ProfileSummary SamplePS = Reader->getSummary();
501
502 // Compute cold thresholds for instr profile and sample profile.
503 uint64_t ColdSampleThreshold =
504 ProfileSummaryBuilder::getEntryForPercentile(
505 SamplePS.getDetailedSummary(),
506 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
507 .MinCount;
508 uint64_t HotInstrThreshold =
509 ProfileSummaryBuilder::getEntryForPercentile(
510 InstrPS.getDetailedSummary(),
511 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
512 .MinCount;
513 uint64_t ColdInstrThreshold =
514 InstrProfColdThreshold
515 ? InstrProfColdThreshold
516 : ProfileSummaryBuilder::getEntryForPercentile(
517 InstrPS.getDetailedSummary(),
518 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
519 .MinCount;
520
521 // Find hot/warm functions in sample profile which is cold in instr profile
522 // and adjust the profiles of those functions in the instr profile.
523 for (const auto &PD : Reader->getProfiles()) {
524 StringRef FName = PD.getKey();
525 const sampleprof::FunctionSamples &FS = PD.getValue();
526 auto It = InstrProfileMap.find(FName);
527 if (FS.getHeadSamples() > ColdSampleThreshold &&
528 It != InstrProfileMap.end() &&
529 It->second.MaxCount <= ColdInstrThreshold &&
530 FS.getBodySamples().size() >= SupplMinSizeThreshold) {
531 updateInstrProfileEntry(It->second, HotInstrThreshold,
532 ZeroCounterThreshold);
533 }
534 }
535 }
536
537 /// The main function to supplement instr profile with sample profile.
538 /// \Inputs contains the instr profile. \p SampleFilename specifies the
539 /// sample profile. \p OutputFilename specifies the output profile name.
540 /// \p OutputFormat specifies the output profile format. \p OutputSparse
541 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
542 /// specifies the minimal size for the functions whose profile will be
543 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
544 /// a function contains too many zero counters and whether its profile
545 /// should be dropped. \p InstrProfColdThreshold is the user specified
546 /// cold threshold which will override the cold threshold got from the
547 /// instr profile summary.
supplementInstrProfile(const WeightedFileVector & Inputs,StringRef SampleFilename,StringRef OutputFilename,ProfileFormat OutputFormat,bool OutputSparse,unsigned SupplMinSizeThreshold,float ZeroCounterThreshold,unsigned InstrProfColdThreshold)548 static void supplementInstrProfile(
549 const WeightedFileVector &Inputs, StringRef SampleFilename,
550 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
551 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
552 unsigned InstrProfColdThreshold) {
553 if (OutputFilename.compare("-") == 0)
554 exitWithError("cannot write indexed profdata format to stdout");
555 if (Inputs.size() != 1)
556 exitWithError("expect one input to be an instr profile");
557 if (Inputs[0].Weight != 1)
558 exitWithError("expect instr profile doesn't have weight");
559
560 StringRef InstrFilename = Inputs[0].Filename;
561
562 // Read sample profile.
563 LLVMContext Context;
564 auto ReaderOrErr = sampleprof::SampleProfileReader::create(
565 SampleFilename.str(), Context, FSDiscriminatorPassOption);
566 if (std::error_code EC = ReaderOrErr.getError())
567 exitWithErrorCode(EC, SampleFilename);
568 auto Reader = std::move(ReaderOrErr.get());
569 if (std::error_code EC = Reader->read())
570 exitWithErrorCode(EC, SampleFilename);
571
572 // Read instr profile.
573 std::mutex ErrorLock;
574 SmallSet<instrprof_error, 4> WriterErrorCodes;
575 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
576 WriterErrorCodes);
577 loadInput(Inputs[0], nullptr, WC.get());
578 if (WC->Errors.size() > 0)
579 exitWithError(std::move(WC->Errors[0].first), InstrFilename);
580
581 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
582 InstrProfColdThreshold);
583 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
584 }
585
586 /// Make a copy of the given function samples with all symbol names remapped
587 /// by the provided symbol remapper.
588 static sampleprof::FunctionSamples
remapSamples(const sampleprof::FunctionSamples & Samples,SymbolRemapper & Remapper,sampleprof_error & Error)589 remapSamples(const sampleprof::FunctionSamples &Samples,
590 SymbolRemapper &Remapper, sampleprof_error &Error) {
591 sampleprof::FunctionSamples Result;
592 Result.setName(Remapper(Samples.getName()));
593 Result.addTotalSamples(Samples.getTotalSamples());
594 Result.addHeadSamples(Samples.getHeadSamples());
595 for (const auto &BodySample : Samples.getBodySamples()) {
596 uint32_t MaskedDiscriminator =
597 BodySample.first.Discriminator & getDiscriminatorMask();
598 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
599 BodySample.second.getSamples());
600 for (const auto &Target : BodySample.second.getCallTargets()) {
601 Result.addCalledTargetSamples(BodySample.first.LineOffset,
602 MaskedDiscriminator,
603 Remapper(Target.first()), Target.second);
604 }
605 }
606 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
607 sampleprof::FunctionSamplesMap &Target =
608 Result.functionSamplesAt(CallsiteSamples.first);
609 for (const auto &Callsite : CallsiteSamples.second) {
610 sampleprof::FunctionSamples Remapped =
611 remapSamples(Callsite.second, Remapper, Error);
612 MergeResult(Error,
613 Target[std::string(Remapped.getName())].merge(Remapped));
614 }
615 }
616 return Result;
617 }
618
619 static sampleprof::SampleProfileFormat FormatMap[] = {
620 sampleprof::SPF_None,
621 sampleprof::SPF_Text,
622 sampleprof::SPF_Compact_Binary,
623 sampleprof::SPF_Ext_Binary,
624 sampleprof::SPF_GCC,
625 sampleprof::SPF_Binary};
626
627 static std::unique_ptr<MemoryBuffer>
getInputFileBuf(const StringRef & InputFile)628 getInputFileBuf(const StringRef &InputFile) {
629 if (InputFile == "")
630 return {};
631
632 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
633 if (!BufOrError)
634 exitWithErrorCode(BufOrError.getError(), InputFile);
635
636 return std::move(*BufOrError);
637 }
638
populateProfileSymbolList(MemoryBuffer * Buffer,sampleprof::ProfileSymbolList & PSL)639 static void populateProfileSymbolList(MemoryBuffer *Buffer,
640 sampleprof::ProfileSymbolList &PSL) {
641 if (!Buffer)
642 return;
643
644 SmallVector<StringRef, 32> SymbolVec;
645 StringRef Data = Buffer->getBuffer();
646 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
647
648 for (StringRef symbol : SymbolVec)
649 PSL.add(symbol);
650 }
651
handleExtBinaryWriter(sampleprof::SampleProfileWriter & Writer,ProfileFormat OutputFormat,MemoryBuffer * Buffer,sampleprof::ProfileSymbolList & WriterList,bool CompressAllSections,bool UseMD5,bool GenPartialProfile)652 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
653 ProfileFormat OutputFormat,
654 MemoryBuffer *Buffer,
655 sampleprof::ProfileSymbolList &WriterList,
656 bool CompressAllSections, bool UseMD5,
657 bool GenPartialProfile) {
658 populateProfileSymbolList(Buffer, WriterList);
659 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
660 warn("Profile Symbol list is not empty but the output format is not "
661 "ExtBinary format. The list will be lost in the output. ");
662
663 Writer.setProfileSymbolList(&WriterList);
664
665 if (CompressAllSections) {
666 if (OutputFormat != PF_Ext_Binary)
667 warn("-compress-all-section is ignored. Specify -extbinary to enable it");
668 else
669 Writer.setToCompressAllSections();
670 }
671 if (UseMD5) {
672 if (OutputFormat != PF_Ext_Binary)
673 warn("-use-md5 is ignored. Specify -extbinary to enable it");
674 else
675 Writer.setUseMD5();
676 }
677 if (GenPartialProfile) {
678 if (OutputFormat != PF_Ext_Binary)
679 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
680 else
681 Writer.setPartialProfile();
682 }
683 }
684
685 static void
mergeSampleProfile(const WeightedFileVector & Inputs,SymbolRemapper * Remapper,StringRef OutputFilename,ProfileFormat OutputFormat,StringRef ProfileSymbolListFile,bool CompressAllSections,bool UseMD5,bool GenPartialProfile,bool SampleMergeColdContext,bool SampleTrimColdContext,bool SampleColdContextFrameDepth,FailureMode FailMode)686 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
687 StringRef OutputFilename, ProfileFormat OutputFormat,
688 StringRef ProfileSymbolListFile, bool CompressAllSections,
689 bool UseMD5, bool GenPartialProfile,
690 bool SampleMergeColdContext, bool SampleTrimColdContext,
691 bool SampleColdContextFrameDepth, FailureMode FailMode) {
692 using namespace sampleprof;
693 StringMap<FunctionSamples> ProfileMap;
694 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
695 LLVMContext Context;
696 sampleprof::ProfileSymbolList WriterList;
697 Optional<bool> ProfileIsProbeBased;
698 Optional<bool> ProfileIsCS;
699 for (const auto &Input : Inputs) {
700 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context,
701 FSDiscriminatorPassOption);
702 if (std::error_code EC = ReaderOrErr.getError()) {
703 warnOrExitGivenError(FailMode, EC, Input.Filename);
704 continue;
705 }
706
707 // We need to keep the readers around until after all the files are
708 // read so that we do not lose the function names stored in each
709 // reader's memory. The function names are needed to write out the
710 // merged profile map.
711 Readers.push_back(std::move(ReaderOrErr.get()));
712 const auto Reader = Readers.back().get();
713 if (std::error_code EC = Reader->read()) {
714 warnOrExitGivenError(FailMode, EC, Input.Filename);
715 Readers.pop_back();
716 continue;
717 }
718
719 StringMap<FunctionSamples> &Profiles = Reader->getProfiles();
720 if (ProfileIsProbeBased.hasValue() &&
721 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
722 exitWithError(
723 "cannot merge probe-based profile with non-probe-based profile");
724 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
725 if (ProfileIsCS.hasValue() && ProfileIsCS != FunctionSamples::ProfileIsCS)
726 exitWithError("cannot merge CS profile with non-CS profile");
727 ProfileIsCS = FunctionSamples::ProfileIsCS;
728 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(),
729 E = Profiles.end();
730 I != E; ++I) {
731 sampleprof_error Result = sampleprof_error::success;
732 FunctionSamples Remapped =
733 Remapper ? remapSamples(I->second, *Remapper, Result)
734 : FunctionSamples();
735 FunctionSamples &Samples = Remapper ? Remapped : I->second;
736 StringRef FName = Samples.getNameWithContext();
737 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight));
738 if (Result != sampleprof_error::success) {
739 std::error_code EC = make_error_code(Result);
740 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName);
741 }
742 }
743
744 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
745 Reader->getProfileSymbolList();
746 if (ReaderList)
747 WriterList.merge(*ReaderList);
748 }
749
750 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) {
751 // Use threshold calculated from profile summary unless specified.
752 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
753 auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
754 uint64_t SampleProfColdThreshold =
755 ProfileSummaryBuilder::getColdCountThreshold(
756 (Summary->getDetailedSummary()));
757
758 // Trim and merge cold context profile using cold threshold above;
759 SampleContextTrimmer(ProfileMap)
760 .trimAndMergeColdContextProfiles(
761 SampleProfColdThreshold, SampleTrimColdContext,
762 SampleMergeColdContext, SampleColdContextFrameDepth);
763 }
764
765 auto WriterOrErr =
766 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
767 if (std::error_code EC = WriterOrErr.getError())
768 exitWithErrorCode(EC, OutputFilename);
769
770 auto Writer = std::move(WriterOrErr.get());
771 // WriterList will have StringRef refering to string in Buffer.
772 // Make sure Buffer lives as long as WriterList.
773 auto Buffer = getInputFileBuf(ProfileSymbolListFile);
774 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
775 CompressAllSections, UseMD5, GenPartialProfile);
776 if (std::error_code EC = Writer->write(ProfileMap))
777 exitWithErrorCode(std::move(EC));
778 }
779
parseWeightedFile(const StringRef & WeightedFilename)780 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
781 StringRef WeightStr, FileName;
782 std::tie(WeightStr, FileName) = WeightedFilename.split(',');
783
784 uint64_t Weight;
785 if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
786 exitWithError("input weight must be a positive integer");
787
788 return {std::string(FileName), Weight};
789 }
790
addWeightedInput(WeightedFileVector & WNI,const WeightedFile & WF)791 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
792 StringRef Filename = WF.Filename;
793 uint64_t Weight = WF.Weight;
794
795 // If it's STDIN just pass it on.
796 if (Filename == "-") {
797 WNI.push_back({std::string(Filename), Weight});
798 return;
799 }
800
801 llvm::sys::fs::file_status Status;
802 llvm::sys::fs::status(Filename, Status);
803 if (!llvm::sys::fs::exists(Status))
804 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
805 Filename);
806 // If it's a source file, collect it.
807 if (llvm::sys::fs::is_regular_file(Status)) {
808 WNI.push_back({std::string(Filename), Weight});
809 return;
810 }
811
812 if (llvm::sys::fs::is_directory(Status)) {
813 std::error_code EC;
814 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
815 F != E && !EC; F.increment(EC)) {
816 if (llvm::sys::fs::is_regular_file(F->path())) {
817 addWeightedInput(WNI, {F->path(), Weight});
818 }
819 }
820 if (EC)
821 exitWithErrorCode(EC, Filename);
822 }
823 }
824
parseInputFilenamesFile(MemoryBuffer * Buffer,WeightedFileVector & WFV)825 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
826 WeightedFileVector &WFV) {
827 if (!Buffer)
828 return;
829
830 SmallVector<StringRef, 8> Entries;
831 StringRef Data = Buffer->getBuffer();
832 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
833 for (const StringRef &FileWeightEntry : Entries) {
834 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
835 // Skip comments.
836 if (SanitizedEntry.startswith("#"))
837 continue;
838 // If there's no comma, it's an unweighted profile.
839 else if (SanitizedEntry.find(',') == StringRef::npos)
840 addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
841 else
842 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
843 }
844 }
845
merge_main(int argc,const char * argv[])846 static int merge_main(int argc, const char *argv[]) {
847 cl::list<std::string> InputFilenames(cl::Positional,
848 cl::desc("<filename...>"));
849 cl::list<std::string> WeightedInputFilenames("weighted-input",
850 cl::desc("<weight>,<filename>"));
851 cl::opt<std::string> InputFilenamesFile(
852 "input-files", cl::init(""),
853 cl::desc("Path to file containing newline-separated "
854 "[<weight>,]<filename> entries"));
855 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
856 cl::aliasopt(InputFilenamesFile));
857 cl::opt<bool> DumpInputFileList(
858 "dump-input-file-list", cl::init(false), cl::Hidden,
859 cl::desc("Dump the list of input files and their weights, then exit"));
860 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
861 cl::desc("Symbol remapping file"));
862 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
863 cl::aliasopt(RemappingFile));
864 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
865 cl::init("-"), cl::desc("Output file"));
866 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
867 cl::aliasopt(OutputFilename));
868 cl::opt<ProfileKinds> ProfileKind(
869 cl::desc("Profile kind:"), cl::init(instr),
870 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
871 clEnumVal(sample, "Sample profile")));
872 cl::opt<ProfileFormat> OutputFormat(
873 cl::desc("Format of output profile"), cl::init(PF_Binary),
874 cl::values(
875 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
876 clEnumValN(PF_Compact_Binary, "compbinary",
877 "Compact binary encoding"),
878 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
879 clEnumValN(PF_Text, "text", "Text encoding"),
880 clEnumValN(PF_GCC, "gcc",
881 "GCC encoding (only meaningful for -sample)")));
882 cl::opt<FailureMode> FailureMode(
883 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
884 cl::values(clEnumValN(failIfAnyAreInvalid, "any",
885 "Fail if any profile is invalid."),
886 clEnumValN(failIfAllAreInvalid, "all",
887 "Fail only if all profiles are invalid.")));
888 cl::opt<bool> OutputSparse("sparse", cl::init(false),
889 cl::desc("Generate a sparse profile (only meaningful for -instr)"));
890 cl::opt<unsigned> NumThreads(
891 "num-threads", cl::init(0),
892 cl::desc("Number of merge threads to use (default: autodetect)"));
893 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
894 cl::aliasopt(NumThreads));
895 cl::opt<std::string> ProfileSymbolListFile(
896 "prof-sym-list", cl::init(""),
897 cl::desc("Path to file containing the list of function symbols "
898 "used to populate profile symbol list"));
899 cl::opt<bool> CompressAllSections(
900 "compress-all-sections", cl::init(false), cl::Hidden,
901 cl::desc("Compress all sections when writing the profile (only "
902 "meaningful for -extbinary)"));
903 cl::opt<bool> UseMD5(
904 "use-md5", cl::init(false), cl::Hidden,
905 cl::desc("Choose to use MD5 to represent string in name table (only "
906 "meaningful for -extbinary)"));
907 cl::opt<bool> SampleMergeColdContext(
908 "sample-merge-cold-context", cl::init(false), cl::Hidden,
909 cl::desc(
910 "Merge context sample profiles whose count is below cold threshold"));
911 cl::opt<bool> SampleTrimColdContext(
912 "sample-trim-cold-context", cl::init(false), cl::Hidden,
913 cl::desc(
914 "Trim context sample profiles whose count is below cold threshold"));
915 cl::opt<uint32_t> SampleColdContextFrameDepth(
916 "sample-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore,
917 cl::desc("Keep the last K frames while merging cold profile. 1 means the "
918 "context-less base profile"));
919 cl::opt<bool> GenPartialProfile(
920 "gen-partial-profile", cl::init(false), cl::Hidden,
921 cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
922 cl::opt<std::string> SupplInstrWithSample(
923 "supplement-instr-with-sample", cl::init(""), cl::Hidden,
924 cl::desc("Supplement an instr profile with sample profile, to correct "
925 "the profile unrepresentativeness issue. The sample "
926 "profile is the input of the flag. Output will be in instr "
927 "format (The flag only works with -instr)"));
928 cl::opt<float> ZeroCounterThreshold(
929 "zero-counter-threshold", cl::init(0.7), cl::Hidden,
930 cl::desc("For the function which is cold in instr profile but hot in "
931 "sample profile, if the ratio of the number of zero counters "
932 "divided by the the total number of counters is above the "
933 "threshold, the profile of the function will be regarded as "
934 "being harmful for performance and will be dropped."));
935 cl::opt<unsigned> SupplMinSizeThreshold(
936 "suppl-min-size-threshold", cl::init(10), cl::Hidden,
937 cl::desc("If the size of a function is smaller than the threshold, "
938 "assume it can be inlined by PGO early inliner and it won't "
939 "be adjusted based on sample profile."));
940 cl::opt<unsigned> InstrProfColdThreshold(
941 "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
942 cl::desc("User specified cold threshold for instr profile which will "
943 "override the cold threshold got from profile summary."));
944
945 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
946
947 WeightedFileVector WeightedInputs;
948 for (StringRef Filename : InputFilenames)
949 addWeightedInput(WeightedInputs, {std::string(Filename), 1});
950 for (StringRef WeightedFilename : WeightedInputFilenames)
951 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
952
953 // Make sure that the file buffer stays alive for the duration of the
954 // weighted input vector's lifetime.
955 auto Buffer = getInputFileBuf(InputFilenamesFile);
956 parseInputFilenamesFile(Buffer.get(), WeightedInputs);
957
958 if (WeightedInputs.empty())
959 exitWithError("no input files specified. See " +
960 sys::path::filename(argv[0]) + " -help");
961
962 if (DumpInputFileList) {
963 for (auto &WF : WeightedInputs)
964 outs() << WF.Weight << "," << WF.Filename << "\n";
965 return 0;
966 }
967
968 std::unique_ptr<SymbolRemapper> Remapper;
969 if (!RemappingFile.empty())
970 Remapper = SymbolRemapper::create(RemappingFile);
971
972 if (!SupplInstrWithSample.empty()) {
973 if (ProfileKind != instr)
974 exitWithError(
975 "-supplement-instr-with-sample can only work with -instr. ");
976
977 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
978 OutputFormat, OutputSparse, SupplMinSizeThreshold,
979 ZeroCounterThreshold, InstrProfColdThreshold);
980 return 0;
981 }
982
983 if (ProfileKind == instr)
984 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename,
985 OutputFormat, OutputSparse, NumThreads, FailureMode);
986 else
987 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename,
988 OutputFormat, ProfileSymbolListFile, CompressAllSections,
989 UseMD5, GenPartialProfile, SampleMergeColdContext,
990 SampleTrimColdContext, SampleColdContextFrameDepth,
991 FailureMode);
992
993 return 0;
994 }
995
996 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
overlapInstrProfile(const std::string & BaseFilename,const std::string & TestFilename,const OverlapFuncFilters & FuncFilter,raw_fd_ostream & OS,bool IsCS)997 static void overlapInstrProfile(const std::string &BaseFilename,
998 const std::string &TestFilename,
999 const OverlapFuncFilters &FuncFilter,
1000 raw_fd_ostream &OS, bool IsCS) {
1001 std::mutex ErrorLock;
1002 SmallSet<instrprof_error, 4> WriterErrorCodes;
1003 WriterContext Context(false, ErrorLock, WriterErrorCodes);
1004 WeightedFile WeightedInput{BaseFilename, 1};
1005 OverlapStats Overlap;
1006 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1007 if (E)
1008 exitWithError(std::move(E), "error in getting profile count sums");
1009 if (Overlap.Base.CountSum < 1.0f) {
1010 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1011 exit(0);
1012 }
1013 if (Overlap.Test.CountSum < 1.0f) {
1014 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1015 exit(0);
1016 }
1017 loadInput(WeightedInput, nullptr, &Context);
1018 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1019 IsCS);
1020 Overlap.dump(OS);
1021 }
1022
1023 namespace {
1024 struct SampleOverlapStats {
1025 StringRef BaseName;
1026 StringRef TestName;
1027 // Number of overlap units
1028 uint64_t OverlapCount;
1029 // Total samples of overlap units
1030 uint64_t OverlapSample;
1031 // Number of and total samples of units that only present in base or test
1032 // profile
1033 uint64_t BaseUniqueCount;
1034 uint64_t BaseUniqueSample;
1035 uint64_t TestUniqueCount;
1036 uint64_t TestUniqueSample;
1037 // Number of units and total samples in base or test profile
1038 uint64_t BaseCount;
1039 uint64_t BaseSample;
1040 uint64_t TestCount;
1041 uint64_t TestSample;
1042 // Number of and total samples of units that present in at least one profile
1043 uint64_t UnionCount;
1044 uint64_t UnionSample;
1045 // Weighted similarity
1046 double Similarity;
1047 // For SampleOverlapStats instances representing functions, weights of the
1048 // function in base and test profiles
1049 double BaseWeight;
1050 double TestWeight;
1051
SampleOverlapStats__anon4e4d357f0911::SampleOverlapStats1052 SampleOverlapStats()
1053 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
1054 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
1055 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
1056 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
1057 };
1058 } // end anonymous namespace
1059
1060 namespace {
1061 struct FuncSampleStats {
1062 uint64_t SampleSum;
1063 uint64_t MaxSample;
1064 uint64_t HotBlockCount;
FuncSampleStats__anon4e4d357f0a11::FuncSampleStats1065 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
FuncSampleStats__anon4e4d357f0a11::FuncSampleStats1066 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1067 uint64_t HotBlockCount)
1068 : SampleSum(SampleSum), MaxSample(MaxSample),
1069 HotBlockCount(HotBlockCount) {}
1070 };
1071 } // end anonymous namespace
1072
1073 namespace {
1074 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1075
1076 // Class for updating merging steps for two sorted maps. The class should be
1077 // instantiated with a map iterator type.
1078 template <class T> class MatchStep {
1079 public:
1080 MatchStep() = delete;
1081
MatchStep(T FirstIter,T FirstEnd,T SecondIter,T SecondEnd)1082 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1083 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1084 SecondEnd(SecondEnd), Status(MS_None) {}
1085
areBothFinished() const1086 bool areBothFinished() const {
1087 return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1088 }
1089
isFirstFinished() const1090 bool isFirstFinished() const { return FirstIter == FirstEnd; }
1091
isSecondFinished() const1092 bool isSecondFinished() const { return SecondIter == SecondEnd; }
1093
1094 /// Advance one step based on the previous match status unless the previous
1095 /// status is MS_None. Then update Status based on the comparison between two
1096 /// container iterators at the current step. If the previous status is
1097 /// MS_None, it means two iterators are at the beginning and no comparison has
1098 /// been made, so we simply update Status without advancing the iterators.
1099 void updateOneStep();
1100
getFirstIter() const1101 T getFirstIter() const { return FirstIter; }
1102
getSecondIter() const1103 T getSecondIter() const { return SecondIter; }
1104
getMatchStatus() const1105 MatchStatus getMatchStatus() const { return Status; }
1106
1107 private:
1108 // Current iterator and end iterator of the first container.
1109 T FirstIter;
1110 T FirstEnd;
1111 // Current iterator and end iterator of the second container.
1112 T SecondIter;
1113 T SecondEnd;
1114 // Match status of the current step.
1115 MatchStatus Status;
1116 };
1117 } // end anonymous namespace
1118
updateOneStep()1119 template <class T> void MatchStep<T>::updateOneStep() {
1120 switch (Status) {
1121 case MS_Match:
1122 ++FirstIter;
1123 ++SecondIter;
1124 break;
1125 case MS_FirstUnique:
1126 ++FirstIter;
1127 break;
1128 case MS_SecondUnique:
1129 ++SecondIter;
1130 break;
1131 case MS_None:
1132 break;
1133 }
1134
1135 // Update Status according to iterators at the current step.
1136 if (areBothFinished())
1137 return;
1138 if (FirstIter != FirstEnd &&
1139 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1140 Status = MS_FirstUnique;
1141 else if (SecondIter != SecondEnd &&
1142 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1143 Status = MS_SecondUnique;
1144 else
1145 Status = MS_Match;
1146 }
1147
1148 // Return the sum of line/block samples, the max line/block sample, and the
1149 // number of line/block samples above the given threshold in a function
1150 // including its inlinees.
getFuncSampleStats(const sampleprof::FunctionSamples & Func,FuncSampleStats & FuncStats,uint64_t HotThreshold)1151 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1152 FuncSampleStats &FuncStats,
1153 uint64_t HotThreshold) {
1154 for (const auto &L : Func.getBodySamples()) {
1155 uint64_t Sample = L.second.getSamples();
1156 FuncStats.SampleSum += Sample;
1157 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1158 if (Sample >= HotThreshold)
1159 ++FuncStats.HotBlockCount;
1160 }
1161
1162 for (const auto &C : Func.getCallsiteSamples()) {
1163 for (const auto &F : C.second)
1164 getFuncSampleStats(F.second, FuncStats, HotThreshold);
1165 }
1166 }
1167
1168 /// Predicate that determines if a function is hot with a given threshold. We
1169 /// keep it separate from its callsites for possible extension in the future.
isFunctionHot(const FuncSampleStats & FuncStats,uint64_t HotThreshold)1170 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1171 uint64_t HotThreshold) {
1172 // We intentionally compare the maximum sample count in a function with the
1173 // HotThreshold to get an approximate determination on hot functions.
1174 return (FuncStats.MaxSample >= HotThreshold);
1175 }
1176
1177 namespace {
1178 class SampleOverlapAggregator {
1179 public:
SampleOverlapAggregator(const std::string & BaseFilename,const std::string & TestFilename,double LowSimilarityThreshold,double Epsilon,const OverlapFuncFilters & FuncFilter)1180 SampleOverlapAggregator(const std::string &BaseFilename,
1181 const std::string &TestFilename,
1182 double LowSimilarityThreshold, double Epsilon,
1183 const OverlapFuncFilters &FuncFilter)
1184 : BaseFilename(BaseFilename), TestFilename(TestFilename),
1185 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1186 FuncFilter(FuncFilter) {}
1187
1188 /// Detect 0-sample input profile and report to output stream. This interface
1189 /// should be called after loadProfiles().
1190 bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1191
1192 /// Write out function-level similarity statistics for functions specified by
1193 /// options --function, --value-cutoff, and --similarity-cutoff.
1194 void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1195
1196 /// Write out program-level similarity and overlap statistics.
1197 void dumpProgramSummary(raw_fd_ostream &OS) const;
1198
1199 /// Write out hot-function and hot-block statistics for base_profile,
1200 /// test_profile, and their overlap. For both cases, the overlap HO is
1201 /// calculated as follows:
1202 /// Given the number of functions (or blocks) that are hot in both profiles
1203 /// HCommon and the number of functions (or blocks) that are hot in at
1204 /// least one profile HUnion, HO = HCommon / HUnion.
1205 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1206
1207 /// This function tries matching functions in base and test profiles. For each
1208 /// pair of matched functions, it aggregates the function-level
1209 /// similarity into a profile-level similarity. It also dump function-level
1210 /// similarity information of functions specified by --function,
1211 /// --value-cutoff, and --similarity-cutoff options. The program-level
1212 /// similarity PS is computed as follows:
1213 /// Given function-level similarity FS(A) for all function A, the
1214 /// weight of function A in base profile WB(A), and the weight of function
1215 /// A in test profile WT(A), compute PS(base_profile, test_profile) =
1216 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1217 /// meaning no-overlap.
1218 void computeSampleProfileOverlap(raw_fd_ostream &OS);
1219
1220 /// Initialize ProfOverlap with the sum of samples in base and test
1221 /// profiles. This function also computes and keeps the sum of samples and
1222 /// max sample counts of each function in BaseStats and TestStats for later
1223 /// use to avoid re-computations.
1224 void initializeSampleProfileOverlap();
1225
1226 /// Load profiles specified by BaseFilename and TestFilename.
1227 std::error_code loadProfiles();
1228
1229 private:
1230 SampleOverlapStats ProfOverlap;
1231 SampleOverlapStats HotFuncOverlap;
1232 SampleOverlapStats HotBlockOverlap;
1233 std::string BaseFilename;
1234 std::string TestFilename;
1235 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1236 std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1237 // BaseStats and TestStats hold FuncSampleStats for each function, with
1238 // function name as the key.
1239 StringMap<FuncSampleStats> BaseStats;
1240 StringMap<FuncSampleStats> TestStats;
1241 // Low similarity threshold in floating point number
1242 double LowSimilarityThreshold;
1243 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1244 // for tracking hot blocks.
1245 uint64_t BaseHotThreshold;
1246 uint64_t TestHotThreshold;
1247 // A small threshold used to round the results of floating point accumulations
1248 // to resolve imprecision.
1249 const double Epsilon;
1250 std::multimap<double, SampleOverlapStats, std::greater<double>>
1251 FuncSimilarityDump;
1252 // FuncFilter carries specifications in options --value-cutoff and
1253 // --function.
1254 OverlapFuncFilters FuncFilter;
1255 // Column offsets for printing the function-level details table.
1256 static const unsigned int TestWeightCol = 15;
1257 static const unsigned int SimilarityCol = 30;
1258 static const unsigned int OverlapCol = 43;
1259 static const unsigned int BaseUniqueCol = 53;
1260 static const unsigned int TestUniqueCol = 67;
1261 static const unsigned int BaseSampleCol = 81;
1262 static const unsigned int TestSampleCol = 96;
1263 static const unsigned int FuncNameCol = 111;
1264
1265 /// Return a similarity of two line/block sample counters in the same
1266 /// function in base and test profiles. The line/block-similarity BS(i) is
1267 /// computed as follows:
1268 /// For an offsets i, given the sample count at i in base profile BB(i),
1269 /// the sample count at i in test profile BT(i), the sum of sample counts
1270 /// in this function in base profile SB, and the sum of sample counts in
1271 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1272 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1273 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1274 const SampleOverlapStats &FuncOverlap) const;
1275
1276 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1277 uint64_t HotBlockCount);
1278
1279 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats,
1280 StringMap<FuncSampleStats> &HotFunc,
1281 uint64_t HotThreshold) const;
1282
1283 void computeHotFuncOverlap();
1284
1285 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1286 /// Difference for two sample units in a matched function according to the
1287 /// given match status.
1288 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
1289 uint64_t HotBlockCount,
1290 SampleOverlapStats &FuncOverlap,
1291 double &Difference, MatchStatus Status);
1292
1293 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1294 /// Difference for unmatched callees that only present in one profile in a
1295 /// matched caller function.
1296 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
1297 SampleOverlapStats &FuncOverlap,
1298 double &Difference, MatchStatus Status);
1299
1300 /// This function updates sample overlap statistics of an overlap function in
1301 /// base and test profile. It also calculates a function-internal similarity
1302 /// FIS as follows:
1303 /// For offsets i that have samples in at least one profile in this
1304 /// function A, given BS(i) returned by computeBlockSimilarity(), compute
1305 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
1306 /// 0.0 meaning no overlap.
1307 double computeSampleFunctionInternalOverlap(
1308 const sampleprof::FunctionSamples &BaseFunc,
1309 const sampleprof::FunctionSamples &TestFunc,
1310 SampleOverlapStats &FuncOverlap);
1311
1312 /// Function-level similarity (FS) is a weighted value over function internal
1313 /// similarity (FIS). This function computes a function's FS from its FIS by
1314 /// applying the weight.
1315 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
1316 uint64_t TestFuncSample) const;
1317
1318 /// The function-level similarity FS(A) for a function A is computed as
1319 /// follows:
1320 /// Compute a function-internal similarity FIS(A) by
1321 /// computeSampleFunctionInternalOverlap(). Then, with the weight of
1322 /// function A in base profile WB(A), and the weight of function A in test
1323 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
1324 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
1325 double
1326 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
1327 const sampleprof::FunctionSamples *TestFunc,
1328 SampleOverlapStats *FuncOverlap,
1329 uint64_t BaseFuncSample,
1330 uint64_t TestFuncSample);
1331
1332 /// Profile-level similarity (PS) is a weighted aggregate over function-level
1333 /// similarities (FS). This method weights the FS value by the function
1334 /// weights in the base and test profiles for the aggregation.
1335 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
1336 uint64_t TestFuncSample) const;
1337 };
1338 } // end anonymous namespace
1339
detectZeroSampleProfile(raw_fd_ostream & OS) const1340 bool SampleOverlapAggregator::detectZeroSampleProfile(
1341 raw_fd_ostream &OS) const {
1342 bool HaveZeroSample = false;
1343 if (ProfOverlap.BaseSample == 0) {
1344 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
1345 HaveZeroSample = true;
1346 }
1347 if (ProfOverlap.TestSample == 0) {
1348 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
1349 HaveZeroSample = true;
1350 }
1351 return HaveZeroSample;
1352 }
1353
computeBlockSimilarity(uint64_t BaseSample,uint64_t TestSample,const SampleOverlapStats & FuncOverlap) const1354 double SampleOverlapAggregator::computeBlockSimilarity(
1355 uint64_t BaseSample, uint64_t TestSample,
1356 const SampleOverlapStats &FuncOverlap) const {
1357 double BaseFrac = 0.0;
1358 double TestFrac = 0.0;
1359 if (FuncOverlap.BaseSample > 0)
1360 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
1361 if (FuncOverlap.TestSample > 0)
1362 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
1363 return 1.0 - std::fabs(BaseFrac - TestFrac);
1364 }
1365
updateHotBlockOverlap(uint64_t BaseSample,uint64_t TestSample,uint64_t HotBlockCount)1366 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
1367 uint64_t TestSample,
1368 uint64_t HotBlockCount) {
1369 bool IsBaseHot = (BaseSample >= BaseHotThreshold);
1370 bool IsTestHot = (TestSample >= TestHotThreshold);
1371 if (!IsBaseHot && !IsTestHot)
1372 return;
1373
1374 HotBlockOverlap.UnionCount += HotBlockCount;
1375 if (IsBaseHot)
1376 HotBlockOverlap.BaseCount += HotBlockCount;
1377 if (IsTestHot)
1378 HotBlockOverlap.TestCount += HotBlockCount;
1379 if (IsBaseHot && IsTestHot)
1380 HotBlockOverlap.OverlapCount += HotBlockCount;
1381 }
1382
getHotFunctions(const StringMap<FuncSampleStats> & ProfStats,StringMap<FuncSampleStats> & HotFunc,uint64_t HotThreshold) const1383 void SampleOverlapAggregator::getHotFunctions(
1384 const StringMap<FuncSampleStats> &ProfStats,
1385 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const {
1386 for (const auto &F : ProfStats) {
1387 if (isFunctionHot(F.second, HotThreshold))
1388 HotFunc.try_emplace(F.first(), F.second);
1389 }
1390 }
1391
computeHotFuncOverlap()1392 void SampleOverlapAggregator::computeHotFuncOverlap() {
1393 StringMap<FuncSampleStats> BaseHotFunc;
1394 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
1395 HotFuncOverlap.BaseCount = BaseHotFunc.size();
1396
1397 StringMap<FuncSampleStats> TestHotFunc;
1398 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
1399 HotFuncOverlap.TestCount = TestHotFunc.size();
1400 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
1401
1402 for (const auto &F : BaseHotFunc) {
1403 if (TestHotFunc.count(F.first()))
1404 ++HotFuncOverlap.OverlapCount;
1405 else
1406 ++HotFuncOverlap.UnionCount;
1407 }
1408 }
1409
updateOverlapStatsForFunction(uint64_t BaseSample,uint64_t TestSample,uint64_t HotBlockCount,SampleOverlapStats & FuncOverlap,double & Difference,MatchStatus Status)1410 void SampleOverlapAggregator::updateOverlapStatsForFunction(
1411 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
1412 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
1413 assert(Status != MS_None &&
1414 "Match status should be updated before updating overlap statistics");
1415 if (Status == MS_FirstUnique) {
1416 TestSample = 0;
1417 FuncOverlap.BaseUniqueSample += BaseSample;
1418 } else if (Status == MS_SecondUnique) {
1419 BaseSample = 0;
1420 FuncOverlap.TestUniqueSample += TestSample;
1421 } else {
1422 ++FuncOverlap.OverlapCount;
1423 }
1424
1425 FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
1426 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
1427 Difference +=
1428 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
1429 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
1430 }
1431
updateForUnmatchedCallee(const sampleprof::FunctionSamples & Func,SampleOverlapStats & FuncOverlap,double & Difference,MatchStatus Status)1432 void SampleOverlapAggregator::updateForUnmatchedCallee(
1433 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
1434 double &Difference, MatchStatus Status) {
1435 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
1436 "Status must be either of the two unmatched cases");
1437 FuncSampleStats FuncStats;
1438 if (Status == MS_FirstUnique) {
1439 getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
1440 updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
1441 FuncStats.HotBlockCount, FuncOverlap,
1442 Difference, Status);
1443 } else {
1444 getFuncSampleStats(Func, FuncStats, TestHotThreshold);
1445 updateOverlapStatsForFunction(0, FuncStats.SampleSum,
1446 FuncStats.HotBlockCount, FuncOverlap,
1447 Difference, Status);
1448 }
1449 }
1450
computeSampleFunctionInternalOverlap(const sampleprof::FunctionSamples & BaseFunc,const sampleprof::FunctionSamples & TestFunc,SampleOverlapStats & FuncOverlap)1451 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
1452 const sampleprof::FunctionSamples &BaseFunc,
1453 const sampleprof::FunctionSamples &TestFunc,
1454 SampleOverlapStats &FuncOverlap) {
1455
1456 using namespace sampleprof;
1457
1458 double Difference = 0;
1459
1460 // Accumulate Difference for regular line/block samples in the function.
1461 // We match them through sort-merge join algorithm because
1462 // FunctionSamples::getBodySamples() returns a map of sample counters ordered
1463 // by their offsets.
1464 MatchStep<BodySampleMap::const_iterator> BlockIterStep(
1465 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
1466 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
1467 BlockIterStep.updateOneStep();
1468 while (!BlockIterStep.areBothFinished()) {
1469 uint64_t BaseSample =
1470 BlockIterStep.isFirstFinished()
1471 ? 0
1472 : BlockIterStep.getFirstIter()->second.getSamples();
1473 uint64_t TestSample =
1474 BlockIterStep.isSecondFinished()
1475 ? 0
1476 : BlockIterStep.getSecondIter()->second.getSamples();
1477 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
1478 Difference, BlockIterStep.getMatchStatus());
1479
1480 BlockIterStep.updateOneStep();
1481 }
1482
1483 // Accumulate Difference for callsite lines in the function. We match
1484 // them through sort-merge algorithm because
1485 // FunctionSamples::getCallsiteSamples() returns a map of callsite records
1486 // ordered by their offsets.
1487 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
1488 BaseFunc.getCallsiteSamples().cbegin(),
1489 BaseFunc.getCallsiteSamples().cend(),
1490 TestFunc.getCallsiteSamples().cbegin(),
1491 TestFunc.getCallsiteSamples().cend());
1492 CallsiteIterStep.updateOneStep();
1493 while (!CallsiteIterStep.areBothFinished()) {
1494 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
1495 assert(CallsiteStepStatus != MS_None &&
1496 "Match status should be updated before entering loop body");
1497
1498 if (CallsiteStepStatus != MS_Match) {
1499 auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
1500 ? CallsiteIterStep.getFirstIter()
1501 : CallsiteIterStep.getSecondIter();
1502 for (const auto &F : Callsite->second)
1503 updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
1504 CallsiteStepStatus);
1505 } else {
1506 // There may be multiple inlinees at the same offset, so we need to try
1507 // matching all of them. This match is implemented through sort-merge
1508 // algorithm because callsite records at the same offset are ordered by
1509 // function names.
1510 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
1511 CallsiteIterStep.getFirstIter()->second.cbegin(),
1512 CallsiteIterStep.getFirstIter()->second.cend(),
1513 CallsiteIterStep.getSecondIter()->second.cbegin(),
1514 CallsiteIterStep.getSecondIter()->second.cend());
1515 CalleeIterStep.updateOneStep();
1516 while (!CalleeIterStep.areBothFinished()) {
1517 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
1518 if (CalleeStepStatus != MS_Match) {
1519 auto Callee = (CalleeStepStatus == MS_FirstUnique)
1520 ? CalleeIterStep.getFirstIter()
1521 : CalleeIterStep.getSecondIter();
1522 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
1523 CalleeStepStatus);
1524 } else {
1525 // An inlined function can contain other inlinees inside, so compute
1526 // the Difference recursively.
1527 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
1528 CalleeIterStep.getFirstIter()->second,
1529 CalleeIterStep.getSecondIter()->second,
1530 FuncOverlap);
1531 }
1532 CalleeIterStep.updateOneStep();
1533 }
1534 }
1535 CallsiteIterStep.updateOneStep();
1536 }
1537
1538 // Difference reflects the total differences of line/block samples in this
1539 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
1540 // reflect the similarity between function profiles in [0.0f to 1.0f].
1541 return (2.0 - Difference) / 2;
1542 }
1543
weightForFuncSimilarity(double FuncInternalSimilarity,uint64_t BaseFuncSample,uint64_t TestFuncSample) const1544 double SampleOverlapAggregator::weightForFuncSimilarity(
1545 double FuncInternalSimilarity, uint64_t BaseFuncSample,
1546 uint64_t TestFuncSample) const {
1547 // Compute the weight as the distance between the function weights in two
1548 // profiles.
1549 double BaseFrac = 0.0;
1550 double TestFrac = 0.0;
1551 assert(ProfOverlap.BaseSample > 0 &&
1552 "Total samples in base profile should be greater than 0");
1553 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
1554 assert(ProfOverlap.TestSample > 0 &&
1555 "Total samples in test profile should be greater than 0");
1556 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
1557 double WeightDistance = std::fabs(BaseFrac - TestFrac);
1558
1559 // Take WeightDistance into the similarity.
1560 return FuncInternalSimilarity * (1 - WeightDistance);
1561 }
1562
1563 double
weightByImportance(double FuncSimilarity,uint64_t BaseFuncSample,uint64_t TestFuncSample) const1564 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
1565 uint64_t BaseFuncSample,
1566 uint64_t TestFuncSample) const {
1567
1568 double BaseFrac = 0.0;
1569 double TestFrac = 0.0;
1570 assert(ProfOverlap.BaseSample > 0 &&
1571 "Total samples in base profile should be greater than 0");
1572 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
1573 assert(ProfOverlap.TestSample > 0 &&
1574 "Total samples in test profile should be greater than 0");
1575 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
1576 return FuncSimilarity * (BaseFrac + TestFrac);
1577 }
1578
computeSampleFunctionOverlap(const sampleprof::FunctionSamples * BaseFunc,const sampleprof::FunctionSamples * TestFunc,SampleOverlapStats * FuncOverlap,uint64_t BaseFuncSample,uint64_t TestFuncSample)1579 double SampleOverlapAggregator::computeSampleFunctionOverlap(
1580 const sampleprof::FunctionSamples *BaseFunc,
1581 const sampleprof::FunctionSamples *TestFunc,
1582 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
1583 uint64_t TestFuncSample) {
1584 // Default function internal similarity before weighted, meaning two functions
1585 // has no overlap.
1586 const double DefaultFuncInternalSimilarity = 0;
1587 double FuncSimilarity;
1588 double FuncInternalSimilarity;
1589
1590 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
1591 // In this case, we use DefaultFuncInternalSimilarity as the function internal
1592 // similarity.
1593 if (!BaseFunc || !TestFunc) {
1594 FuncInternalSimilarity = DefaultFuncInternalSimilarity;
1595 } else {
1596 assert(FuncOverlap != nullptr &&
1597 "FuncOverlap should be provided in this case");
1598 FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
1599 *BaseFunc, *TestFunc, *FuncOverlap);
1600 // Now, FuncInternalSimilarity may be a little less than 0 due to
1601 // imprecision of floating point accumulations. Make it zero if the
1602 // difference is below Epsilon.
1603 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
1604 ? 0
1605 : FuncInternalSimilarity;
1606 }
1607 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
1608 BaseFuncSample, TestFuncSample);
1609 return FuncSimilarity;
1610 }
1611
computeSampleProfileOverlap(raw_fd_ostream & OS)1612 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
1613 using namespace sampleprof;
1614
1615 StringMap<const FunctionSamples *> BaseFuncProf;
1616 const auto &BaseProfiles = BaseReader->getProfiles();
1617 for (const auto &BaseFunc : BaseProfiles) {
1618 BaseFuncProf.try_emplace(BaseFunc.second.getNameWithContext(),
1619 &(BaseFunc.second));
1620 }
1621 ProfOverlap.UnionCount = BaseFuncProf.size();
1622
1623 const auto &TestProfiles = TestReader->getProfiles();
1624 for (const auto &TestFunc : TestProfiles) {
1625 SampleOverlapStats FuncOverlap;
1626 FuncOverlap.TestName = TestFunc.second.getNameWithContext();
1627 assert(TestStats.count(FuncOverlap.TestName) &&
1628 "TestStats should have records for all functions in test profile "
1629 "except inlinees");
1630 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
1631
1632 const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
1633 if (Match == BaseFuncProf.end()) {
1634 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
1635 ++ProfOverlap.TestUniqueCount;
1636 ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
1637 FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
1638
1639 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
1640
1641 double FuncSimilarity = computeSampleFunctionOverlap(
1642 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
1643 ProfOverlap.Similarity +=
1644 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
1645
1646 ++ProfOverlap.UnionCount;
1647 ProfOverlap.UnionSample += FuncStats.SampleSum;
1648 } else {
1649 ++ProfOverlap.OverlapCount;
1650
1651 // Two functions match with each other. Compute function-level overlap and
1652 // aggregate them into profile-level overlap.
1653 FuncOverlap.BaseName = Match->second->getNameWithContext();
1654 assert(BaseStats.count(FuncOverlap.BaseName) &&
1655 "BaseStats should have records for all functions in base profile "
1656 "except inlinees");
1657 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
1658
1659 FuncOverlap.Similarity = computeSampleFunctionOverlap(
1660 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
1661 FuncOverlap.TestSample);
1662 ProfOverlap.Similarity +=
1663 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
1664 FuncOverlap.TestSample);
1665 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
1666 ProfOverlap.UnionSample += FuncOverlap.UnionSample;
1667
1668 // Accumulate the percentage of base unique and test unique samples into
1669 // ProfOverlap.
1670 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
1671 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
1672
1673 // Remove matched base functions for later reporting functions not found
1674 // in test profile.
1675 BaseFuncProf.erase(Match);
1676 }
1677
1678 // Print function-level similarity information if specified by options.
1679 assert(TestStats.count(FuncOverlap.TestName) &&
1680 "TestStats should have records for all functions in test profile "
1681 "except inlinees");
1682 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
1683 (Match != BaseFuncProf.end() &&
1684 FuncOverlap.Similarity < LowSimilarityThreshold) ||
1685 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() &&
1686 FuncOverlap.BaseName.find(FuncFilter.NameFilter) !=
1687 FuncOverlap.BaseName.npos)) {
1688 assert(ProfOverlap.BaseSample > 0 &&
1689 "Total samples in base profile should be greater than 0");
1690 FuncOverlap.BaseWeight =
1691 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
1692 assert(ProfOverlap.TestSample > 0 &&
1693 "Total samples in test profile should be greater than 0");
1694 FuncOverlap.TestWeight =
1695 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
1696 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
1697 }
1698 }
1699
1700 // Traverse through functions in base profile but not in test profile.
1701 for (const auto &F : BaseFuncProf) {
1702 assert(BaseStats.count(F.second->getNameWithContext()) &&
1703 "BaseStats should have records for all functions in base profile "
1704 "except inlinees");
1705 const FuncSampleStats &FuncStats =
1706 BaseStats[F.second->getNameWithContext()];
1707 ++ProfOverlap.BaseUniqueCount;
1708 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
1709
1710 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
1711
1712 double FuncSimilarity = computeSampleFunctionOverlap(
1713 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
1714 ProfOverlap.Similarity +=
1715 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
1716
1717 ProfOverlap.UnionSample += FuncStats.SampleSum;
1718 }
1719
1720 // Now, ProfSimilarity may be a little greater than 1 due to imprecision
1721 // of floating point accumulations. Make it 1.0 if the difference is below
1722 // Epsilon.
1723 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
1724 ? 1
1725 : ProfOverlap.Similarity;
1726
1727 computeHotFuncOverlap();
1728 }
1729
initializeSampleProfileOverlap()1730 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
1731 const auto &BaseProf = BaseReader->getProfiles();
1732 for (const auto &I : BaseProf) {
1733 ++ProfOverlap.BaseCount;
1734 FuncSampleStats FuncStats;
1735 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
1736 ProfOverlap.BaseSample += FuncStats.SampleSum;
1737 BaseStats.try_emplace(I.second.getNameWithContext(), FuncStats);
1738 }
1739
1740 const auto &TestProf = TestReader->getProfiles();
1741 for (const auto &I : TestProf) {
1742 ++ProfOverlap.TestCount;
1743 FuncSampleStats FuncStats;
1744 getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
1745 ProfOverlap.TestSample += FuncStats.SampleSum;
1746 TestStats.try_emplace(I.second.getNameWithContext(), FuncStats);
1747 }
1748
1749 ProfOverlap.BaseName = StringRef(BaseFilename);
1750 ProfOverlap.TestName = StringRef(TestFilename);
1751 }
1752
dumpFuncSimilarity(raw_fd_ostream & OS) const1753 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
1754 using namespace sampleprof;
1755
1756 if (FuncSimilarityDump.empty())
1757 return;
1758
1759 formatted_raw_ostream FOS(OS);
1760 FOS << "Function-level details:\n";
1761 FOS << "Base weight";
1762 FOS.PadToColumn(TestWeightCol);
1763 FOS << "Test weight";
1764 FOS.PadToColumn(SimilarityCol);
1765 FOS << "Similarity";
1766 FOS.PadToColumn(OverlapCol);
1767 FOS << "Overlap";
1768 FOS.PadToColumn(BaseUniqueCol);
1769 FOS << "Base unique";
1770 FOS.PadToColumn(TestUniqueCol);
1771 FOS << "Test unique";
1772 FOS.PadToColumn(BaseSampleCol);
1773 FOS << "Base samples";
1774 FOS.PadToColumn(TestSampleCol);
1775 FOS << "Test samples";
1776 FOS.PadToColumn(FuncNameCol);
1777 FOS << "Function name\n";
1778 for (const auto &F : FuncSimilarityDump) {
1779 double OverlapPercent =
1780 F.second.UnionSample > 0
1781 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
1782 : 0;
1783 double BaseUniquePercent =
1784 F.second.BaseSample > 0
1785 ? static_cast<double>(F.second.BaseUniqueSample) /
1786 F.second.BaseSample
1787 : 0;
1788 double TestUniquePercent =
1789 F.second.TestSample > 0
1790 ? static_cast<double>(F.second.TestUniqueSample) /
1791 F.second.TestSample
1792 : 0;
1793
1794 FOS << format("%.2f%%", F.second.BaseWeight * 100);
1795 FOS.PadToColumn(TestWeightCol);
1796 FOS << format("%.2f%%", F.second.TestWeight * 100);
1797 FOS.PadToColumn(SimilarityCol);
1798 FOS << format("%.2f%%", F.second.Similarity * 100);
1799 FOS.PadToColumn(OverlapCol);
1800 FOS << format("%.2f%%", OverlapPercent * 100);
1801 FOS.PadToColumn(BaseUniqueCol);
1802 FOS << format("%.2f%%", BaseUniquePercent * 100);
1803 FOS.PadToColumn(TestUniqueCol);
1804 FOS << format("%.2f%%", TestUniquePercent * 100);
1805 FOS.PadToColumn(BaseSampleCol);
1806 FOS << F.second.BaseSample;
1807 FOS.PadToColumn(TestSampleCol);
1808 FOS << F.second.TestSample;
1809 FOS.PadToColumn(FuncNameCol);
1810 FOS << F.second.TestName << "\n";
1811 }
1812 }
1813
dumpProgramSummary(raw_fd_ostream & OS) const1814 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
1815 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName
1816 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n";
1817
1818 OS << " Whole program profile similarity: "
1819 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
1820
1821 assert(ProfOverlap.UnionSample > 0 &&
1822 "Total samples in two profile should be greater than 0");
1823 double OverlapPercent =
1824 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
1825 assert(ProfOverlap.BaseSample > 0 &&
1826 "Total samples in base profile should be greater than 0");
1827 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
1828 ProfOverlap.BaseSample;
1829 assert(ProfOverlap.TestSample > 0 &&
1830 "Total samples in test profile should be greater than 0");
1831 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
1832 ProfOverlap.TestSample;
1833
1834 OS << " Whole program sample overlap: "
1835 << format("%.3f%%", OverlapPercent * 100) << "\n";
1836 OS << " percentage of samples unique in base profile: "
1837 << format("%.3f%%", BaseUniquePercent * 100) << "\n";
1838 OS << " percentage of samples unique in test profile: "
1839 << format("%.3f%%", TestUniquePercent * 100) << "\n";
1840 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
1841 << " total samples in test profile: " << ProfOverlap.TestSample << "\n";
1842
1843 assert(ProfOverlap.UnionCount > 0 &&
1844 "There should be at least one function in two input profiles");
1845 double FuncOverlapPercent =
1846 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
1847 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
1848 << "\n";
1849 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
1850 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
1851 << "\n";
1852 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
1853 << "\n";
1854 }
1855
dumpHotFuncAndBlockOverlap(raw_fd_ostream & OS) const1856 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
1857 raw_fd_ostream &OS) const {
1858 assert(HotFuncOverlap.UnionCount > 0 &&
1859 "There should be at least one hot function in two input profiles");
1860 OS << " Hot-function overlap: "
1861 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
1862 HotFuncOverlap.UnionCount * 100)
1863 << "\n";
1864 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
1865 OS << " hot functions unique in base profile: "
1866 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
1867 OS << " hot functions unique in test profile: "
1868 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
1869
1870 assert(HotBlockOverlap.UnionCount > 0 &&
1871 "There should be at least one hot block in two input profiles");
1872 OS << " Hot-block overlap: "
1873 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
1874 HotBlockOverlap.UnionCount * 100)
1875 << "\n";
1876 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
1877 OS << " hot blocks unique in base profile: "
1878 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
1879 OS << " hot blocks unique in test profile: "
1880 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
1881 }
1882
loadProfiles()1883 std::error_code SampleOverlapAggregator::loadProfiles() {
1884 using namespace sampleprof;
1885
1886 LLVMContext Context;
1887 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context,
1888 FSDiscriminatorPassOption);
1889 if (std::error_code EC = BaseReaderOrErr.getError())
1890 exitWithErrorCode(EC, BaseFilename);
1891
1892 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context,
1893 FSDiscriminatorPassOption);
1894 if (std::error_code EC = TestReaderOrErr.getError())
1895 exitWithErrorCode(EC, TestFilename);
1896
1897 BaseReader = std::move(BaseReaderOrErr.get());
1898 TestReader = std::move(TestReaderOrErr.get());
1899
1900 if (std::error_code EC = BaseReader->read())
1901 exitWithErrorCode(EC, BaseFilename);
1902 if (std::error_code EC = TestReader->read())
1903 exitWithErrorCode(EC, TestFilename);
1904 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
1905 exitWithError(
1906 "cannot compare probe-based profile with non-probe-based profile");
1907 if (BaseReader->profileIsCS() != TestReader->profileIsCS())
1908 exitWithError("cannot compare CS profile with non-CS profile");
1909
1910 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
1911 // profile summary.
1912 const uint64_t HotCutoff = 990000;
1913 ProfileSummary &BasePS = BaseReader->getSummary();
1914 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) {
1915 if (SummaryEntry.Cutoff == HotCutoff) {
1916 BaseHotThreshold = SummaryEntry.MinCount;
1917 break;
1918 }
1919 }
1920
1921 ProfileSummary &TestPS = TestReader->getSummary();
1922 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) {
1923 if (SummaryEntry.Cutoff == HotCutoff) {
1924 TestHotThreshold = SummaryEntry.MinCount;
1925 break;
1926 }
1927 }
1928 return std::error_code();
1929 }
1930
overlapSampleProfile(const std::string & BaseFilename,const std::string & TestFilename,const OverlapFuncFilters & FuncFilter,uint64_t SimilarityCutoff,raw_fd_ostream & OS)1931 void overlapSampleProfile(const std::string &BaseFilename,
1932 const std::string &TestFilename,
1933 const OverlapFuncFilters &FuncFilter,
1934 uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
1935 using namespace sampleprof;
1936
1937 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
1938 // report 2--3 places after decimal point in percentage numbers.
1939 SampleOverlapAggregator OverlapAggr(
1940 BaseFilename, TestFilename,
1941 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
1942 if (std::error_code EC = OverlapAggr.loadProfiles())
1943 exitWithErrorCode(EC);
1944
1945 OverlapAggr.initializeSampleProfileOverlap();
1946 if (OverlapAggr.detectZeroSampleProfile(OS))
1947 return;
1948
1949 OverlapAggr.computeSampleProfileOverlap(OS);
1950
1951 OverlapAggr.dumpProgramSummary(OS);
1952 OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
1953 OverlapAggr.dumpFuncSimilarity(OS);
1954 }
1955
overlap_main(int argc,const char * argv[])1956 static int overlap_main(int argc, const char *argv[]) {
1957 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
1958 cl::desc("<base profile file>"));
1959 cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
1960 cl::desc("<test profile file>"));
1961 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
1962 cl::desc("Output file"));
1963 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
1964 cl::opt<bool> IsCS(
1965 "cs", cl::init(false),
1966 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
1967 cl::opt<unsigned long long> ValueCutoff(
1968 "value-cutoff", cl::init(-1),
1969 cl::desc(
1970 "Function level overlap information for every function (with calling "
1971 "context for csspgo) in test "
1972 "profile with max count value greater then the parameter value"));
1973 cl::opt<std::string> FuncNameFilter(
1974 "function",
1975 cl::desc("Function level overlap information for matching functions. For "
1976 "CSSPGO this takes a a function name with calling context"));
1977 cl::opt<unsigned long long> SimilarityCutoff(
1978 "similarity-cutoff", cl::init(0),
1979 cl::desc("For sample profiles, list function names (with calling context "
1980 "for csspgo) for overlapped functions "
1981 "with similarities below the cutoff (percentage times 10000)."));
1982 cl::opt<ProfileKinds> ProfileKind(
1983 cl::desc("Profile kind:"), cl::init(instr),
1984 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
1985 clEnumVal(sample, "Sample profile")));
1986 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
1987
1988 std::error_code EC;
1989 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
1990 if (EC)
1991 exitWithErrorCode(EC, Output);
1992
1993 if (ProfileKind == instr)
1994 overlapInstrProfile(BaseFilename, TestFilename,
1995 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
1996 IsCS);
1997 else
1998 overlapSampleProfile(BaseFilename, TestFilename,
1999 OverlapFuncFilters{ValueCutoff, FuncNameFilter},
2000 SimilarityCutoff, OS);
2001
2002 return 0;
2003 }
2004
2005 namespace {
2006 struct ValueSitesStats {
ValueSitesStats__anon4e4d357f0d11::ValueSitesStats2007 ValueSitesStats()
2008 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
2009 TotalNumValues(0) {}
2010 uint64_t TotalNumValueSites;
2011 uint64_t TotalNumValueSitesWithValueProfile;
2012 uint64_t TotalNumValues;
2013 std::vector<unsigned> ValueSitesHistogram;
2014 };
2015 } // namespace
2016
traverseAllValueSites(const InstrProfRecord & Func,uint32_t VK,ValueSitesStats & Stats,raw_fd_ostream & OS,InstrProfSymtab * Symtab)2017 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2018 ValueSitesStats &Stats, raw_fd_ostream &OS,
2019 InstrProfSymtab *Symtab) {
2020 uint32_t NS = Func.getNumValueSites(VK);
2021 Stats.TotalNumValueSites += NS;
2022 for (size_t I = 0; I < NS; ++I) {
2023 uint32_t NV = Func.getNumValueDataForSite(VK, I);
2024 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
2025 Stats.TotalNumValues += NV;
2026 if (NV) {
2027 Stats.TotalNumValueSitesWithValueProfile++;
2028 if (NV > Stats.ValueSitesHistogram.size())
2029 Stats.ValueSitesHistogram.resize(NV, 0);
2030 Stats.ValueSitesHistogram[NV - 1]++;
2031 }
2032
2033 uint64_t SiteSum = 0;
2034 for (uint32_t V = 0; V < NV; V++)
2035 SiteSum += VD[V].Count;
2036 if (SiteSum == 0)
2037 SiteSum = 1;
2038
2039 for (uint32_t V = 0; V < NV; V++) {
2040 OS << "\t[ " << format("%2u", I) << ", ";
2041 if (Symtab == nullptr)
2042 OS << format("%4" PRIu64, VD[V].Value);
2043 else
2044 OS << Symtab->getFuncName(VD[V].Value);
2045 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
2046 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
2047 }
2048 }
2049 }
2050
showValueSitesStats(raw_fd_ostream & OS,uint32_t VK,ValueSitesStats & Stats)2051 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2052 ValueSitesStats &Stats) {
2053 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
2054 OS << " Total number of sites with values: "
2055 << Stats.TotalNumValueSitesWithValueProfile << "\n";
2056 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
2057
2058 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
2059 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2060 if (Stats.ValueSitesHistogram[I] > 0)
2061 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2062 }
2063 }
2064
showInstrProfile(const std::string & Filename,bool ShowCounts,uint32_t TopN,bool ShowIndirectCallTargets,bool ShowMemOPSizes,bool ShowDetailedSummary,std::vector<uint32_t> DetailedSummaryCutoffs,bool ShowAllFunctions,bool ShowCS,uint64_t ValueCutoff,bool OnlyListBelow,const std::string & ShowFunction,bool TextFormat,bool ShowBinaryIds,raw_fd_ostream & OS)2065 static int showInstrProfile(const std::string &Filename, bool ShowCounts,
2066 uint32_t TopN, bool ShowIndirectCallTargets,
2067 bool ShowMemOPSizes, bool ShowDetailedSummary,
2068 std::vector<uint32_t> DetailedSummaryCutoffs,
2069 bool ShowAllFunctions, bool ShowCS,
2070 uint64_t ValueCutoff, bool OnlyListBelow,
2071 const std::string &ShowFunction, bool TextFormat,
2072 bool ShowBinaryIds, raw_fd_ostream &OS) {
2073 auto ReaderOrErr = InstrProfReader::create(Filename);
2074 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2075 if (ShowDetailedSummary && Cutoffs.empty()) {
2076 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990};
2077 }
2078 InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2079 if (Error E = ReaderOrErr.takeError())
2080 exitWithError(std::move(E), Filename);
2081
2082 auto Reader = std::move(ReaderOrErr.get());
2083 bool IsIRInstr = Reader->isIRLevelProfile();
2084 size_t ShownFunctions = 0;
2085 size_t BelowCutoffFunctions = 0;
2086 int NumVPKind = IPVK_Last - IPVK_First + 1;
2087 std::vector<ValueSitesStats> VPStats(NumVPKind);
2088
2089 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2090 const std::pair<std::string, uint64_t> &v2) {
2091 return v1.second > v2.second;
2092 };
2093
2094 std::priority_queue<std::pair<std::string, uint64_t>,
2095 std::vector<std::pair<std::string, uint64_t>>,
2096 decltype(MinCmp)>
2097 HottestFuncs(MinCmp);
2098
2099 if (!TextFormat && OnlyListBelow) {
2100 OS << "The list of functions with the maximum counter less than "
2101 << ValueCutoff << ":\n";
2102 }
2103
2104 // Add marker so that IR-level instrumentation round-trips properly.
2105 if (TextFormat && IsIRInstr)
2106 OS << ":ir\n";
2107
2108 for (const auto &Func : *Reader) {
2109 if (Reader->isIRLevelProfile()) {
2110 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2111 if (FuncIsCS != ShowCS)
2112 continue;
2113 }
2114 bool Show =
2115 ShowAllFunctions || (!ShowFunction.empty() &&
2116 Func.Name.find(ShowFunction) != Func.Name.npos);
2117
2118 bool doTextFormatDump = (Show && TextFormat);
2119
2120 if (doTextFormatDump) {
2121 InstrProfSymtab &Symtab = Reader->getSymtab();
2122 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2123 OS);
2124 continue;
2125 }
2126
2127 assert(Func.Counts.size() > 0 && "function missing entry counter");
2128 Builder.addRecord(Func);
2129
2130 uint64_t FuncMax = 0;
2131 uint64_t FuncSum = 0;
2132 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2133 if (Func.Counts[I] == (uint64_t)-1)
2134 continue;
2135 FuncMax = std::max(FuncMax, Func.Counts[I]);
2136 FuncSum += Func.Counts[I];
2137 }
2138
2139 if (FuncMax < ValueCutoff) {
2140 ++BelowCutoffFunctions;
2141 if (OnlyListBelow) {
2142 OS << " " << Func.Name << ": (Max = " << FuncMax
2143 << " Sum = " << FuncSum << ")\n";
2144 }
2145 continue;
2146 } else if (OnlyListBelow)
2147 continue;
2148
2149 if (TopN) {
2150 if (HottestFuncs.size() == TopN) {
2151 if (HottestFuncs.top().second < FuncMax) {
2152 HottestFuncs.pop();
2153 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2154 }
2155 } else
2156 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2157 }
2158
2159 if (Show) {
2160 if (!ShownFunctions)
2161 OS << "Counters:\n";
2162
2163 ++ShownFunctions;
2164
2165 OS << " " << Func.Name << ":\n"
2166 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2167 << " Counters: " << Func.Counts.size() << "\n";
2168 if (!IsIRInstr)
2169 OS << " Function count: " << Func.Counts[0] << "\n";
2170
2171 if (ShowIndirectCallTargets)
2172 OS << " Indirect Call Site Count: "
2173 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2174
2175 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2176 if (ShowMemOPSizes && NumMemOPCalls > 0)
2177 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
2178 << "\n";
2179
2180 if (ShowCounts) {
2181 OS << " Block counts: [";
2182 size_t Start = (IsIRInstr ? 0 : 1);
2183 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2184 OS << (I == Start ? "" : ", ") << Func.Counts[I];
2185 }
2186 OS << "]\n";
2187 }
2188
2189 if (ShowIndirectCallTargets) {
2190 OS << " Indirect Target Results:\n";
2191 traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2192 VPStats[IPVK_IndirectCallTarget], OS,
2193 &(Reader->getSymtab()));
2194 }
2195
2196 if (ShowMemOPSizes && NumMemOPCalls > 0) {
2197 OS << " Memory Intrinsic Size Results:\n";
2198 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2199 nullptr);
2200 }
2201 }
2202 }
2203 if (Reader->hasError())
2204 exitWithError(Reader->getError(), Filename);
2205
2206 if (TextFormat)
2207 return 0;
2208 std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2209 bool IsIR = Reader->isIRLevelProfile();
2210 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2211 if (IsIR)
2212 OS << " entry_first = " << Reader->instrEntryBBEnabled();
2213 OS << "\n";
2214 if (ShowAllFunctions || !ShowFunction.empty())
2215 OS << "Functions shown: " << ShownFunctions << "\n";
2216 OS << "Total functions: " << PS->getNumFunctions() << "\n";
2217 if (ValueCutoff > 0) {
2218 OS << "Number of functions with maximum count (< " << ValueCutoff
2219 << "): " << BelowCutoffFunctions << "\n";
2220 OS << "Number of functions with maximum count (>= " << ValueCutoff
2221 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2222 }
2223 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2224 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2225
2226 if (TopN) {
2227 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2228 while (!HottestFuncs.empty()) {
2229 SortedHottestFuncs.emplace_back(HottestFuncs.top());
2230 HottestFuncs.pop();
2231 }
2232 OS << "Top " << TopN
2233 << " functions with the largest internal block counts: \n";
2234 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2235 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2236 }
2237
2238 if (ShownFunctions && ShowIndirectCallTargets) {
2239 OS << "Statistics for indirect call sites profile:\n";
2240 showValueSitesStats(OS, IPVK_IndirectCallTarget,
2241 VPStats[IPVK_IndirectCallTarget]);
2242 }
2243
2244 if (ShownFunctions && ShowMemOPSizes) {
2245 OS << "Statistics for memory intrinsic calls sizes profile:\n";
2246 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2247 }
2248
2249 if (ShowDetailedSummary) {
2250 OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2251 OS << "Total count: " << PS->getTotalCount() << "\n";
2252 PS->printDetailedSummary(OS);
2253 }
2254
2255 if (ShowBinaryIds)
2256 if (Error E = Reader->printBinaryIds(OS))
2257 exitWithError(std::move(E), Filename);
2258
2259 return 0;
2260 }
2261
showSectionInfo(sampleprof::SampleProfileReader * Reader,raw_fd_ostream & OS)2262 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2263 raw_fd_ostream &OS) {
2264 if (!Reader->dumpSectionInfo(OS)) {
2265 WithColor::warning() << "-show-sec-info-only is only supported for "
2266 << "sample profile in extbinary format and is "
2267 << "ignored for other formats.\n";
2268 return;
2269 }
2270 }
2271
2272 namespace {
2273 struct HotFuncInfo {
2274 StringRef FuncName;
2275 uint64_t TotalCount;
2276 double TotalCountPercent;
2277 uint64_t MaxCount;
2278 uint64_t EntryCount;
2279
HotFuncInfo__anon4e4d357f0f11::HotFuncInfo2280 HotFuncInfo()
2281 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0),
2282 EntryCount(0) {}
2283
HotFuncInfo__anon4e4d357f0f11::HotFuncInfo2284 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
2285 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS),
2286 EntryCount(ES) {}
2287 };
2288 } // namespace
2289
2290 // Print out detailed information about hot functions in PrintValues vector.
2291 // Users specify titles and offset of every columns through ColumnTitle and
2292 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
2293 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
2294 // print out or let it be an empty string.
dumpHotFunctionList(const std::vector<std::string> & ColumnTitle,const std::vector<int> & ColumnOffset,const std::vector<HotFuncInfo> & PrintValues,uint64_t HotFuncCount,uint64_t TotalFuncCount,uint64_t HotProfCount,uint64_t TotalProfCount,const std::string & HotFuncMetric,raw_fd_ostream & OS)2295 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
2296 const std::vector<int> &ColumnOffset,
2297 const std::vector<HotFuncInfo> &PrintValues,
2298 uint64_t HotFuncCount, uint64_t TotalFuncCount,
2299 uint64_t HotProfCount, uint64_t TotalProfCount,
2300 const std::string &HotFuncMetric,
2301 raw_fd_ostream &OS) {
2302 assert(ColumnOffset.size() == ColumnTitle.size() &&
2303 "ColumnOffset and ColumnTitle should have the same size");
2304 assert(ColumnTitle.size() >= 4 &&
2305 "ColumnTitle should have at least 4 elements");
2306 assert(TotalFuncCount > 0 &&
2307 "There should be at least one function in the profile");
2308 double TotalProfPercent = 0;
2309 if (TotalProfCount > 0)
2310 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
2311
2312 formatted_raw_ostream FOS(OS);
2313 FOS << HotFuncCount << " out of " << TotalFuncCount
2314 << " functions with profile ("
2315 << format("%.2f%%",
2316 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
2317 << ") are considered hot functions";
2318 if (!HotFuncMetric.empty())
2319 FOS << " (" << HotFuncMetric << ")";
2320 FOS << ".\n";
2321 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
2322 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
2323
2324 for (size_t I = 0; I < ColumnTitle.size(); ++I) {
2325 FOS.PadToColumn(ColumnOffset[I]);
2326 FOS << ColumnTitle[I];
2327 }
2328 FOS << "\n";
2329
2330 for (const HotFuncInfo &R : PrintValues) {
2331 FOS.PadToColumn(ColumnOffset[0]);
2332 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
2333 FOS.PadToColumn(ColumnOffset[1]);
2334 FOS << R.MaxCount;
2335 FOS.PadToColumn(ColumnOffset[2]);
2336 FOS << R.EntryCount;
2337 FOS.PadToColumn(ColumnOffset[3]);
2338 FOS << R.FuncName << "\n";
2339 }
2340 }
2341
2342 static int
showHotFunctionList(const StringMap<sampleprof::FunctionSamples> & Profiles,ProfileSummary & PS,raw_fd_ostream & OS)2343 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles,
2344 ProfileSummary &PS, raw_fd_ostream &OS) {
2345 using namespace sampleprof;
2346
2347 const uint32_t HotFuncCutoff = 990000;
2348 auto &SummaryVector = PS.getDetailedSummary();
2349 uint64_t MinCountThreshold = 0;
2350 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
2351 if (SummaryEntry.Cutoff == HotFuncCutoff) {
2352 MinCountThreshold = SummaryEntry.MinCount;
2353 break;
2354 }
2355 }
2356
2357 // Traverse all functions in the profile and keep only hot functions.
2358 // The following loop also calculates the sum of total samples of all
2359 // functions.
2360 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
2361 std::greater<uint64_t>>
2362 HotFunc;
2363 uint64_t ProfileTotalSample = 0;
2364 uint64_t HotFuncSample = 0;
2365 uint64_t HotFuncCount = 0;
2366
2367 for (const auto &I : Profiles) {
2368 FuncSampleStats FuncStats;
2369 const FunctionSamples &FuncProf = I.second;
2370 ProfileTotalSample += FuncProf.getTotalSamples();
2371 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
2372
2373 if (isFunctionHot(FuncStats, MinCountThreshold)) {
2374 HotFunc.emplace(FuncProf.getTotalSamples(),
2375 std::make_pair(&(I.second), FuncStats.MaxSample));
2376 HotFuncSample += FuncProf.getTotalSamples();
2377 ++HotFuncCount;
2378 }
2379 }
2380
2381 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
2382 "Entry sample", "Function name"};
2383 std::vector<int> ColumnOffset{0, 24, 42, 58};
2384 std::string Metric =
2385 std::string("max sample >= ") + std::to_string(MinCountThreshold);
2386 std::vector<HotFuncInfo> PrintValues;
2387 for (const auto &FuncPair : HotFunc) {
2388 const FunctionSamples &Func = *FuncPair.second.first;
2389 double TotalSamplePercent =
2390 (ProfileTotalSample > 0)
2391 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
2392 : 0;
2393 PrintValues.emplace_back(HotFuncInfo(
2394 Func.getNameWithContext(), Func.getTotalSamples(), TotalSamplePercent,
2395 FuncPair.second.second, Func.getEntrySamples()));
2396 }
2397 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
2398 Profiles.size(), HotFuncSample, ProfileTotalSample,
2399 Metric, OS);
2400
2401 return 0;
2402 }
2403
showSampleProfile(const std::string & Filename,bool ShowCounts,bool ShowAllFunctions,bool ShowDetailedSummary,const std::string & ShowFunction,bool ShowProfileSymbolList,bool ShowSectionInfoOnly,bool ShowHotFuncList,raw_fd_ostream & OS)2404 static int showSampleProfile(const std::string &Filename, bool ShowCounts,
2405 bool ShowAllFunctions, bool ShowDetailedSummary,
2406 const std::string &ShowFunction,
2407 bool ShowProfileSymbolList,
2408 bool ShowSectionInfoOnly, bool ShowHotFuncList,
2409 raw_fd_ostream &OS) {
2410 using namespace sampleprof;
2411 LLVMContext Context;
2412 auto ReaderOrErr =
2413 SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption);
2414 if (std::error_code EC = ReaderOrErr.getError())
2415 exitWithErrorCode(EC, Filename);
2416
2417 auto Reader = std::move(ReaderOrErr.get());
2418 if (ShowSectionInfoOnly) {
2419 showSectionInfo(Reader.get(), OS);
2420 return 0;
2421 }
2422
2423 if (std::error_code EC = Reader->read())
2424 exitWithErrorCode(EC, Filename);
2425
2426 if (ShowAllFunctions || ShowFunction.empty())
2427 Reader->dump(OS);
2428 else
2429 Reader->dumpFunctionProfile(ShowFunction, OS);
2430
2431 if (ShowProfileSymbolList) {
2432 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
2433 Reader->getProfileSymbolList();
2434 ReaderList->dump(OS);
2435 }
2436
2437 if (ShowDetailedSummary) {
2438 auto &PS = Reader->getSummary();
2439 PS.printSummary(OS);
2440 PS.printDetailedSummary(OS);
2441 }
2442
2443 if (ShowHotFuncList)
2444 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS);
2445
2446 return 0;
2447 }
2448
show_main(int argc,const char * argv[])2449 static int show_main(int argc, const char *argv[]) {
2450 cl::opt<std::string> Filename(cl::Positional, cl::Required,
2451 cl::desc("<profdata-file>"));
2452
2453 cl::opt<bool> ShowCounts("counts", cl::init(false),
2454 cl::desc("Show counter values for shown functions"));
2455 cl::opt<bool> TextFormat(
2456 "text", cl::init(false),
2457 cl::desc("Show instr profile data in text dump format"));
2458 cl::opt<bool> ShowIndirectCallTargets(
2459 "ic-targets", cl::init(false),
2460 cl::desc("Show indirect call site target values for shown functions"));
2461 cl::opt<bool> ShowMemOPSizes(
2462 "memop-sizes", cl::init(false),
2463 cl::desc("Show the profiled sizes of the memory intrinsic calls "
2464 "for shown functions"));
2465 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
2466 cl::desc("Show detailed profile summary"));
2467 cl::list<uint32_t> DetailedSummaryCutoffs(
2468 cl::CommaSeparated, "detailed-summary-cutoffs",
2469 cl::desc(
2470 "Cutoff percentages (times 10000) for generating detailed summary"),
2471 cl::value_desc("800000,901000,999999"));
2472 cl::opt<bool> ShowHotFuncList(
2473 "hot-func-list", cl::init(false),
2474 cl::desc("Show profile summary of a list of hot functions"));
2475 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
2476 cl::desc("Details for every function"));
2477 cl::opt<bool> ShowCS("showcs", cl::init(false),
2478 cl::desc("Show context sensitive counts"));
2479 cl::opt<std::string> ShowFunction("function",
2480 cl::desc("Details for matching functions"));
2481
2482 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
2483 cl::init("-"), cl::desc("Output file"));
2484 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
2485 cl::aliasopt(OutputFilename));
2486 cl::opt<ProfileKinds> ProfileKind(
2487 cl::desc("Profile kind:"), cl::init(instr),
2488 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2489 clEnumVal(sample, "Sample profile")));
2490 cl::opt<uint32_t> TopNFunctions(
2491 "topn", cl::init(0),
2492 cl::desc("Show the list of functions with the largest internal counts"));
2493 cl::opt<uint32_t> ValueCutoff(
2494 "value-cutoff", cl::init(0),
2495 cl::desc("Set the count value cutoff. Functions with the maximum count "
2496 "less than this value will not be printed out. (Default is 0)"));
2497 cl::opt<bool> OnlyListBelow(
2498 "list-below-cutoff", cl::init(false),
2499 cl::desc("Only output names of functions whose max count values are "
2500 "below the cutoff value"));
2501 cl::opt<bool> ShowProfileSymbolList(
2502 "show-prof-sym-list", cl::init(false),
2503 cl::desc("Show profile symbol list if it exists in the profile. "));
2504 cl::opt<bool> ShowSectionInfoOnly(
2505 "show-sec-info-only", cl::init(false),
2506 cl::desc("Show the information of each section in the sample profile. "
2507 "The flag is only usable when the sample profile is in "
2508 "extbinary format"));
2509 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
2510 cl::desc("Show binary ids in the profile. "));
2511
2512 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
2513
2514 if (Filename == OutputFilename) {
2515 errs() << sys::path::filename(argv[0])
2516 << ": Input file name cannot be the same as the output file name!\n";
2517 return 1;
2518 }
2519
2520 std::error_code EC;
2521 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2522 if (EC)
2523 exitWithErrorCode(EC, OutputFilename);
2524
2525 if (ShowAllFunctions && !ShowFunction.empty())
2526 WithColor::warning() << "-function argument ignored: showing all functions\n";
2527
2528 if (ProfileKind == instr)
2529 return showInstrProfile(
2530 Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets,
2531 ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs,
2532 ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction,
2533 TextFormat, ShowBinaryIds, OS);
2534 else
2535 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions,
2536 ShowDetailedSummary, ShowFunction,
2537 ShowProfileSymbolList, ShowSectionInfoOnly,
2538 ShowHotFuncList, OS);
2539 }
2540
main(int argc,const char * argv[])2541 int main(int argc, const char *argv[]) {
2542 InitLLVM X(argc, argv);
2543
2544 StringRef ProgName(sys::path::filename(argv[0]));
2545 if (argc > 1) {
2546 int (*func)(int, const char *[]) = nullptr;
2547
2548 if (strcmp(argv[1], "merge") == 0)
2549 func = merge_main;
2550 else if (strcmp(argv[1], "show") == 0)
2551 func = show_main;
2552 else if (strcmp(argv[1], "overlap") == 0)
2553 func = overlap_main;
2554
2555 if (func) {
2556 std::string Invocation(ProgName.str() + " " + argv[1]);
2557 argv[1] = Invocation.c_str();
2558 return func(argc - 1, argv + 1);
2559 }
2560
2561 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
2562 strcmp(argv[1], "--help") == 0) {
2563
2564 errs() << "OVERVIEW: LLVM profile data tools\n\n"
2565 << "USAGE: " << ProgName << " <command> [args...]\n"
2566 << "USAGE: " << ProgName << " <command> -help\n\n"
2567 << "See each individual command --help for more details.\n"
2568 << "Available commands: merge, show, overlap\n";
2569 return 0;
2570 }
2571 }
2572
2573 if (argc < 2)
2574 errs() << ProgName << ": No command specified!\n";
2575 else
2576 errs() << ProgName << ": Unknown command!\n";
2577
2578 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
2579 return 1;
2580 }
2581